Strong McKay correspondence,
string-theoretic Hodge numbers and
Mirror Symmetry

Victor V. Batyrev, Dimitrios 1. Dais

MPI / 94-115

Max-Planck-Institut fiir Mathematik
Gottfried-Claren-Strale 26
D-53225 Bonn

Germany






Strong McKay Correspondence,
String-theoretic Hodge Numbers

and Mirror Symmetry

Victor V. Batyrev*

FB Mathematik, Universitit-GHS-Fssen
Universitatsstrfe 3, 45141 Essen, FRG
e-mail: matfPP@vm.hrz.uni-essen.de
and
Dimitrios I. Dais
Max-Plank-lnstitut fiir Mathematik
Gottfried-Claren-Str. 26, 53225 Bonn, FRG

e-mail: dais@mpim-bonn.mpg.de

Abstract

We propose a new conjectural version of the McKay correspondence which
enables us to understand the “Hodge numbers” assighed to singular Goren-
stein varieties by physicists. Our results lead to the conjecture that string
theory indicates the existence of some new cohomology theory HZ(X) for
algebraic varieties with Giorenstein singularities. We give a formal mathemat-
ical definition of the Hodge numbers hE4(X) inspired from the consideration
of strings on orbifolds and from this new conjectural version of the McKay
correspondence. The numbers A5;%(X) are expected to give the spectrum of
orbifoldized Landau-Ginzburg models and mirror duality relations for higher
dimensional Calabi-Yau varieties with Gorenstein toroidal or quotient singu-

larities.
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1 Introduction

Throughout this paper by an algebraic variely (or simply variety) we mean an in-
tegral, separated algebraic scheme over C. By a compact algebraic variely we mean
the representative of a complete variety within the analytic category. The singular
locus of an algebraic variety X is denoted by Sing X. The words smooth variety and
manifold are used interchangeably. By the word singularity we sometimes intimate a
singular point and sometimes the underlying space of a neighbourhood or the germ
of a singular point, but its meaning will be always clear from the context. Following
Danilov [9], §13.3, we shall say that an z € X is a toroidal singularity of X, if there
is an analytic isomorphism between the germ (X, z) and the germ corresponding to
the toric singularity (A,,p,) (see also §4).

Our main tool will be certain algebraic varieties with special Gorenstein singu-
larities, primarily having in mind the Calabi-Yau varieties. A Calabi-Yau variety is
defined to be a normal projective algebraic variety X with trivial canonical sheaf
wy and HY(X,0x) = 0, 0 < i < dimg X, which, in addition, can have at most
canonical Gorenstein singularities. (For the notion of canonical singularity we refer
to [41].) If Sing X = @, then X is called, as usual, Calabi- Yau manifold.

In this paper we shall attempt to realize some Hodge-theoretical invariants
used by physicists for singular varieties being related to the mirror symmetry phe-
nomenon. The necessity of working with singular varieties becomes unavoidable
from the fact that, in many examples of pairs X, X* of mirror symmetric Calabi-
Yau manifolds, at least one of the two manifolds X or X~ is obtained as a crepant
desingularization of a singular Calabi-Yau variety [4, 32]. llere, by a crepant desin-
gularization of a Gorenstein variety 7, we mean a birational morphism 7 : 2/ — Z,
such that n*(wz) = wz, where wyz and wyz denote the canonical sheaves on Z and
Z' respectively. 3-dimensional Gorenstein quotient singularities and their crepant
desingularizations have been studied in [6, 24, 25, 29, 30, 36, 37, 38, 39, ?, 42, 50].

The most known physical cohomological invariant of singular varieties obtained
as quotient-spaces of certain compact manifolds by actions of finite groups is the so
called physicists Buler number [12]. It has been investigated by several mathemati-

cians in (1, 16, 23, 35, 37, 42].

Let X be a smooth simplectic manifold over C having an action of a finite group
G such that the simplectic volume form w is G-invariant. For any ¢ € G, we set

X9 := {z € X | g(z) = 2}. Physicists have proposed the following formula for
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computing the orbifold Euler number [12]:

e(X,G) = ST oe(XTn Xty (1)

It is expected that e(X, ) coincides with the usual Euler number e(,%) of a
crepant desingularization ATTG' of the quotient space X/( provided such a desin-
gularization exists. For a volume-invariant lincar action on C" ol a finite group
G, the corresponding conjectural local properties of crepant desingularizations were
formulated by M. Reid [42]:

Conjecture 1.1 (genecralized McKay correspondence) Let X = C*, (i an arbitrary
finite subgroup in SL(n,C). Assume that Y = X/G admils a crepant desingulariza-
tionm : Y = Y. Then H*(r=1(0),C) has a basis consisling of classes of algebraic
cycles Z. C w~1(0) which are in 1-to-1 correspondence with conjugacy clusses ¢ of

G. In particular, we oblain for the Euler number

e(Y) = e(n~1(0)) = #{conjugacy classes in G'}.

Remark 1.2 For n = 2 an one-to-one correspondence between the nontrivial irre-
ducible representations of a subgroup ¢ C S£L(2, C) and the irreducible components
of #71(0) was discovered by McKay [31] and investigated in [14, 28, 43].

Our first purpose is to use some stronger version of Conjecture 1.1 in order to give
an analogous interpretation for the physicisis Hodge numbers h»( X, () of orbifolds
considered by C. Vafa [48] and E. Zaslow [49]. Let X be a smooth compact Kahler
manifold of dimension n over C being equipped with an action of a finite group
G, such that X has a G-invariant volume form. Let C(g) := {h € G | hg = gh}.
Then the action of C(g) on X can be restricted on X9, For any point z € X7, the

eigenvalues of ¢ in the tangent space 7, are roots of unity:

27icey 27iay
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where 0 < a; <1 (5 =1,...,d) are locally constant functions on X9 with values in
Q. We write X9 = X (g)U--- U X, (g), where Xi(g),..., X,,(g) arc the smooth
connected components of X9. For each i € {1,...,7,}, the fermion shift number

Fi(g) is defined to be equal to the value of 3, ¢, a; on the connected component



Xi(g). We denote by hﬁ’;” ,(Xi(g)) the dimension of the subspace of C(g)-invariant
elements in HP9(X;(g)). We set

WX, G) = Z@&ﬂ4”Wx@)

The orbifold Hodge numbers of X/G ave defined by the formula (3.21) in [49]:

WP9(X,GY = hI(X,G) (2)
{g}
where {g} runs over the conjugacy classes of G/, so that ¢ represents {g}. As we
shall see in Corollary 6.15, these numbers coincide with the usual Hodge numbers
of a crepant desingularization of X/G.

One ol our next intentions is to convince the reader of the existence of some
new cohomology theory Hi(X) of more general algebraic varieties X with mild
Gorenstein singularities. Since this cohomology is inspired from the string theory,
we call H(X) the string cohomology of X. For compact varieties X, we expect that
the string cohomology groups HZ(X) will satisfy the Poincaré duality and will be
endowed with a pure Hodge structure. The role of crepant resolutions for the string-
cohomology H (X) is analogous to that one of small resolutions for the intersection
cohomology [H=(X) with middle perversity. Physicists compute orbifold Hodge
numbers without using crepant desingularizations. From mathematical point of
view, however, crepant desingularizations seem to be rather helpful, although they
have some disadvantages. Firstly, they might not exist {at least in dimension > 4)
and ,secondly, even if they exist, they might be not unique. The consistency of
the physical approach naturally suggests the formulation of the following conjecture

(which can be verified for the toric case by Theorem 4.4):

Conjecture 1.3 Hodge numbers of smooth crepant resolutions do nol depend on

the choice of such a resolution.

Let us briefly review the rest of the paper. In Section 2, we consider an exan-
ple showing the importance of the “physical Hodge numbers” in connection with
the mirror duality. In Section 3, we remind basic properties of F-polynomials. In
Section 4, we study the Hodge structure of the exceptional loci of local crepant
toric resolutions. In Section 5, we formulate the conjecture concerning the strong
McKay correspondence and we prove that it is true lor 2- and 3-dimensional Goren-
stein quotient singularities, as well as for abelian Gorenstein quotient singularities

of arbitrary dimension. This correspondence will be used in Section 6 in order to



give the formal definition of the string-theoretic Hodge numbers and to study their
main properties. In Section 7, we give some applications relating to the mirror
symmetry and formulate the string-theoretic Hodge diamond-mirror conjecture for
Calabi-Yau complete intersections in d-dimensional toric fano varieties. This con-
jecture will be proved in Section 8 for the case of A-regular hypersurfaces in toric
Fano varieties P5 which are defined by d-dimensional reflexive simplices A (for ar-
bitrary d); it gives the mirror duality for all string-theoretic Hodge numbers hi*
of abelian quotients of Calabi-Yau Fermat-type hypersurfaces which are embedded
in d-dimensional weighted projective spaces. This duality agrees with the mirror
construction proposed by Greene and Plesser [19, 20, 21] and the polar duality of

reflexive polyhedra proposed in [4].

Acknowledgements. We would like to express our thanks to D. Cox, A. Dimca,
H. Esnault, L. Gottsche, Yu. Ito, D. Kazhdan, M. Kontsevich, D. Markushevich,
Yu. Manin, K. Oguiso, M. Reid, A. V. Sardo-Infirri, D). van Straten and E. Viehweg

for fruitful discussions, suggestions and remarks.

2 Hodge numbers and mirror symmetry

At the beginning we shall state some introductory questions which could be con-
sidered also as another motivation for the paper. These questions are related to
singular varieties of dimension > 4 which arose as examples of the mirror duality

[4, 8, 21, 45, 46, 47]. 1f two d-dimensional Calabi-Yau manifolds X and Y form a

mirror pair, then for all 0 < p, ¢ < d their Hodge numbers must satisfy the relation
hPE(X) = hEPa(Y), (3)

However, it might happen that a mirror pair consists of two d-dimensional Calabi-
Yau varieties X and Y having singularities. In this case, the duality (3) is expected
to take place not for X and Y themselves, but for their crepant desingularizations
X and f/, if such desingularizations exist. Using the existence of smooth crepant
desigularizations of Gorenstein toroidal singularities in dimension < 3, one can
check the relations (3) for many examples of 3-dimensional mirror pairs [4, 36]. But
there are difficulties to prove (3) for all p,q and d > 4, even if one heuristically
knows a mirror pair of singular Calabi-Yau varieties, [or instance, as an orbifold.
The main problem in dimension d > 4 is due to the existence of many terminal
Gorenstein quotient singularities, i.e., to singularities which obviously do not admit

any crepant resolution. In [4], the first author constructed the so called mazimal



projective crepant partial desingularizations (MPCP-desingularizations) of singular
Calabi-Yau hypersurfaces in toric varieties. Using MPCP-desingularizations, the
relation (3) was proved for A% and h*=!! in [4]. We shall show later that MPCP-
desingularizations are sufficient to establish (3) for ¢ = 1 and arbitrary p in the case
of d-dimensional Calabi-Yau hypersurfaces in toric varieties (see 7.6, 7.7). Although
MPCP-desingularizations always exist, it is important to stress that they are not
sufficient to prove (3) for all p, ¢, and d > 4, because of the following two properties

which can be easily illustrated by means of various examples:

o [n general, a MPCP-desingularization of a Gorenstein toroidal singularity is
not a manifold, but a variety with Gorenstein terminal abelian quotient sin-

gularities.

o Cohomology and Hodge numbers of different MPCP-desingularizations might

be diflerent.

It turns out that, even for 3-dimensional Calabi-Yau manifolds, the mirror con-
struction inspired {from the superconformal field theory demands consideration of
higher dimensional manifolds with singularities [5, 8, 45, 46, 47). In this case, we
again meet difficulties if we wish to obtain analogues of the duality in (3). Let us .
explain them for the example which was discussed in [8].

Let Ey be the umque elliptic curve having an authomorphism of order 3 with 3
fixed points pg, p1,p2 € Ep. We consider the natural diagonal action of G = Z/3Z
on Z = Ey x Fy x Ey. The quotient X = Z/( is a singular Calabi-Yau variety

whose smooth crepant resolution X has Hodge numbers
RYX) =36, hPY(X) =0.

As the mirror partner of X, it has been proposed the 7-dimensional orbifold Y
obtained from the quotient of the Fermat-cubic (W : 25 +---z3 = 0) in P® by the

order 3 cyclic group action defined by the matrix

g= dlag(l,l, 1, e?ﬂ’i/3,62ni/3: e?n’i/S: c—?ﬂ'i/S: e—??ri/S’ e~21r:'/3).

By standard methods, counting G-invariant monomials in the Jacobian ring, one
immediately verifies that 2*3(Y) = 30. One could expect that a crepant resolution

of singularities of Y along the 3 elliptic curves
COZ {232"*=Zs=O}QY,
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Cl={20=21=Z2=26=z7'228=0}ny=
Cz={z0=--~=25=0}ﬂY

would give the missing 6 dimensions to 2"3(Y) in order to obtain 36 (this would be
the analogue of (3)). But also this hope must be given up because of a very simple
reason: all singularities along Co, ), Cy are terminal, i.e., they do not admit any
smooth crepant resolution.

Question 2.1 What could be that suilable mathematical reasoning which would give
back the missing 6 in the above crample?

iFrom the viewpoint of physicists, one should consider ¥ as an orbifold quotient

of Wby G ={e,g,97'}. By physicists’ formula (2),
R3(W,G) = W3 (W, G) + h2P(W, G) + k2 (W, G).

It is clear that A3°(W,G) = )5 (W,G) and A*(W,G) = k*3(Y) = 30. So, it
remains to compute h;'S(VV, (). Notice that W9 = Cy U C, U Cy; re., Wi(g) = C;
(i = 0,1,2). Moreover, ¢ acts on the tangent space T}, of a point w € W9 by the
matrix

diag(l,cz"‘/a, eZm/d’ 6211/3,6—2m/3’ e—Zﬂt/d’e-‘Zm/S).

Therefore, Fi(g) =3 (for 7 = 0,1,2). So Ad3(W,G) = Siy hi=H)3-F)(C;) = 3

and the required 6 is indeed present!

Question 2.2 [s there a local version of the formula (2) for the underlying space

of a quotient singularity exlending that of .17

We shall answer both questions in Seciions 5 and 6.

3 E-polynomials of algebraic varieties

In this section we recall some basic properties of the E-polynomials of (not neces-
sarily smooth or compact) algebraic varieties. F-polynomials are defined by means
of the mixed Hodge structure (MHS) of rational cohomology groups with compact
supports [10]. As we shall see below, these polynomials obey to similar additive and
multiplicative laws as those of the usual Buler characteristic, which enables us to
compute all the Hodge numbers coming into question in a very convenient way.

As Deligne shows in [11], the cohomology groups H*(X, Q) of a (not necessarily

smooth or compact) algebraic variety X carry a natural MHS. By similar methods,
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one can determine a canonical MHS by considering H*(X, Q), i.e., the cohomology
groups with compact supports. Compared with H*(X,Q), the MHS on H*(X,Q)
presents some additional techincal advantages. One of them is the existence of the

following exact sequence:

Proposition 3.1 Lel X be an algebraic variely and Y C X a closed subvariety.

Then there is an ezxacl sequence
L= HEY\Y,Q) — HYX,Q) = HE(Y, Q) -
consisting of M HS-morphisms.

Definition 3.2 Let X be an algebraic variety over C which is not necessarily com-
pact or smooth. Denote by hP¢(H¥( X, C})) the dimension of the (p, ¢)-Hodge com-
ponent of the k-th cohomology with compact supports. We define:

ePIX) = Y (=P (HE(X, C)).

k>0

The polynomial
E(X;u,v) Z (X)uPv?
P.q

is called the E-polynomial of X .

Remark 3.3 If the Hodge structure of X" in 3.2 is pure, then the coeflicients e??{ X)
of the E-polynomial of X are related to the usual Hodge numbers by e”(X) =
(—1)P*9hP9(X). In fact, the E-polynomial (in the general case) can be regarded
as a notional refinement of the virtual Poincaré polynomial E(X; —u, —u) and, of
course, of the Euler characteristic with compact supports e.(X) := E(X,—1,-1). It
should be also mentioned, that e.(X) = ¢(X), i.e., that e.(X) is equal to the usual
Euler characteristic of X (cf. [13], pp. 141-142).

Using Proposition 3.1, one obtains:

Proposition 3.4 Lel X be a disjoint union of locally closed subvarieties X; (1 € I).
Then

E(X;u,v) ZL(R,,uv

iel

Definition 3.5 Let X be a disjoint union of locally closed subvarieties X; (1 € I).
We shall write X < X, if Xy # X; and Xy is contained in the Zariski closure X;
of 1\’,'.



Proposition 3.6 For any iy € I, one has

E(Xig;u,v) =Y (=1 > E(X,:u,v).

k>0 1\'ik<~~-<x\'.'l <.a\'.'o

Proof. By 3.4, we get
E(Xiyiu,v) = B(X,u,v) — B(X;, \ Xig;u, v).

Moreover,
B(X i, \ Xigiw,v) = Z E(X:u,v).
1\'." <X.'O
Repeating the same procedure for ¢y € /, we obtain:
B(Xiu,v) = (X u,v) — B(Xi \ Xijw,v),
EXi\ Xiwv)= Y B(Xypuv), ete ...
Xip <X,
This leads to the claimed formula. m]

Applying the Kinneth formula, we get:

Proposition 3.7 Let 7 : X = Y be a locally (rivial fibering in Zariski topology.
Denote by F' the fiber over a closed point in' Y. Then

E(X;u,v) = E(Y;u,v)- E(F;u,v).

We shall use 3.4 and 3.7 in the following situation. Let # : X' — X be a proper
birational morphism of algebraic varieties X' and X. Let us further assume that
X' is smooth and X has a stratification by locally closed subvarieties X; (1 € ),
such that each X; is smooth and the restriction of m on #='(X;) is a locally trivial
fibering over X; in Zariski topology. Using 3.4 and 3.7, we can compute all Hodge
numbers of X’ as follows:

Proposition 3.8 Let [ (1 € I) denole the fiber over a closed point of X;. Then
E(X'u,0) = B(X;u,0) - B(Fju,v).

tef

We shall next deal with the case in which 7 : X — X represents a crepant resolu-
tion of singularities of an algebraic variety X having only Gorenstein singularities.
The problem of main interest is to characterize the ff-polynomials F(F;;u,v) in
terms of singularities of X along the X;’s. This problem will be solved in the case

when X has Gorenstein toroidal or quotient singularities.
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4 Local crepant toric resolutions

We shall compute here the £-polynomials of the fibers of crepant toric resolution
mappings of Gorenstein toric singularities by using their combinatorial description
in terms of convex cones. Tt is assumed that the reader is familiar with the theory
of toric varieties as it is presented, for instance, in the expository article of Danilov
(9], or in the books of Oda [34] and TFulton [13].

Let M, N be two free abelian groups of rank «, which are dual to each other,
and let My and Ny be their real scalar extensions. The type of every d-dimensional
Gorenstein toroidal singularity can be described combinatorially by a d-dimensional
cone ¢ = oa C N which supports a (d—1)-dimensional lattice polyhedron A C Ny
[41]. This lattice polyhedron A can be defined as {¢ € o | (z,m,) = 1} for
some uniquely determined element m, € M. Let 6 C Mg be dual to o and set
A, := SpecC[g N M]. Then A, is a d-dimensional affine toric variety with only
Gorenstein singularities. We denote by p = p, the unique torus invariant closed

point in A,.

Definition 4.1 A finite collection T = {0} of simplices with vertices in AN N is
called a triangulation of A if the following properties are satisfied:

(1) if 8 is a face of @ € T, then §' € T;

(ii) the intersection of any two simplices 81,05 € T is either empty, or a common
face of both of them:;

(ii) A = Uper 0.

Every triangulation T of A gives rise to a partial crepant toric desingulariza-
tion mr : X+ — A, of A,, so that X7 lias at most abelian quotient Gorenstein

singularities.

Definition 4.2 A simplex § C A C {2 € Nr | (z,ms) = 1} is called regular if its
vertices form a part of a Z-basis of N.

It is known (see, for instance, [34], Thm. 1.10, p.15) that X7 is smooth if and only
if all simplices in T are regular.

Theorem 4.3 Assume that A admits « triangulation T into regular simplices; i.e.,

that the corresponding toric variely Xt in the crepant resolulion
T . }\’7' — A,
is smooth. Then F = n7'(p) can be stratified by affine spaces.
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Proof. Let 0y be an arbitrary (d — 1)-dimensional simplex in 7 with vertices
ery...,eq. Choose an l-parameter multiplicative subgroup G, C (C*)¢ whose action
on A, is defined by a weight-vector w € o NN, so that w = w;e; + - - - +wyeq, where
Wy, ..., wy are positive integers. The action of G, on A, extends naturally to an
action on X7. If {0p,01,...,0,} denotes the set of all {d — 1)-dimensional simplices
in T, then ¢ = Uy 0s,, and X7 is canonically covered by the corresponding G-
invariant open subsets Uy, ...,U,, so that U; & C. Denote by p; (i = 0,1,...,s)
the unique torus invariant point in {/;. We assume that w has been already cho-
sen in such a way, that p; is the unique G,-invariant point in U;. We consider a
multiplicative parameter ¢ on (G, for which the action of Gy, on Uy is defined as
follows:

t-(zy, .. aa) = (", .., T¥y).

Furthermore, we set:
Xii={z=(2,...,24) € X7| t]_i:];}t(m) =p}.

Since mr(p;) = p, we have X; C F. By compactness of F', for every point z € F,
there exists limyo t(x) which is a G -invariant point; i.e., limy,e t(z) = p; for
some ¢ (0 <7< s). SoUiog Xi = F. Obviously, X; C U;. Moreover, X;NX; =0
for v # .
If we now choose appropriate torus coordinates yi,...,yq on U;, so that G, acts
by
b (s Y Yrrtn - oY) = (1, P 5 g, )

with Ay, ..., Ap positive and Agyy. ..., Ay negative, X; is defined by the equations

1 = ... =y = 0. Therefore, X; is isomorphic to an affine space. O

Let {(kA) denote the number of lattice points of AA. Then the Fhrhart power
series

Pa(t) i= S (kA

k>0
can be considered as a numerical characteristic of the toric singularity at p,. It is
well-known (see, for instance, {4], Thm 2.11, p.356) that Pa(t) can be always written

it the form:
’ ; e . d—1
Pa(t) = o(A) + le(A)(il-l- t)d-{- by (A |

where ¥o(A) =1 and ¥((A),...,1%a—1(A) are certain nonnegative integers.

Theorem 4.4 Lel A be as in 4.3, and ' = n3'(p). Then the cohomology groups
HY(F,C), i =0,...,d—1 arc generated by the (i,1)-classes of algebraic cycles,

11



and Hi(F,C) = 0 for odd values of j . Moreover, h"'(F) = ;(A) i =0,...,d—1.
In particular, the dimensions h**(F) = dim H*(F,C) (0 < i < d—1) do not depend

on the choice of the triangulation T.

Proof. The first statement [ollows immediately from Theorem 4.3. Since F is
compact, we have H'(F,C) = H!(I',C). Therelore, it is sufficient to compute the
E-polynomial

E(F;u,v) = Ze”q (1" )P0l

Since Xy is a toric variety, it admits a na,lluml stratification by strata which are
isomorphic to algebraic tori Ty corresponding to regular subsimplices § € T, such
that

dimPy +dimd =d— 1.

The natural stratification of X7 induces a stratification of F'. Notice that mr(Tp) =
po (i.e., Tp € F) if and only if § does not belong to the boundary of A. If a; denotes
the number of i-dimensional regular simplices of 7 which do not belong to the
boundary of A, then «; can be identified with the number of (d — 1 — i)-dimensional

tori in the natural stratification of 73'(p). By 3.4, we get:

E(F;u,v) = Z L (Ty;w,v).

ar(Te)=p

Since E((C*)*;u,v) = (uv — 1), we obtain
E(F;u,v) = agluv — 1) 4 ay(uv — 1)1 4 -+ ag_y.

Now we compute Pa(t) by using the numbers a;. If ¢ € T is a i-dimensional regular
simplex, then
k+i 1
(kO) = : e, P(l)=——.
(k) ( ! ) o) =T
Applying the usual inclusion-exclusion principle {or the counting of lattice points of

kA, we obtain:
d=1

=2 2 (=1)Uke),

=0 dimf=d—1-1
where 0 runs over all regular simplices in 7 which do not belong to the boundary

of A. Thus,

g ()}

_ o
(T =R e

(1 —1)

Pa(t) =
and the polynomial

Yo(A) + (D) + - hua (AN = Pa(t)(1 - 2)*

12
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is equal to
gy + tg—a(t — 1)+ - 4+ ao(t — ].)d_l.

The latter coincides with the /2-polynomial F(F;wu,v) alter making the substitution
t = uv. Hence, ;(A) =" (F) (0 <i<d—1). o

Definition 4.5 Let A be a (d — 1)-dimensional lattice polyhedron defining a d-

dimensional Gorenstein toric singularity p € A,. Then
S(A5uv) 1= o(A) + $r(AJuv + - + oy (A) (wr)t™
will be called the S-polynomial of the Gorenstein toric singularity at p.
Corollary 4.6 The Fuler number ¢(F') equals S(A,1) = (d — 1)Ivol(A).
Proof. By definition of Pa(?),
Po(A) + $1(A) + -+ + a1 (A) = (d = T)lvol(A).
Obviously, the left hand side equals e( 7). O

Remark 4.7 It is known that the coefficient i,_;(A) equals [7(A), i.e., the number
of rational points in the interior of A (see [10], pp. 292-293).

5 Gorenstein quotient singularities

Let G be a finite subgroup of SL(d,C). We shall usc the fact that any element

g € G is obviously conjugate to a diagonal matrix.
Definition 5.1 If an element ¢ € (i is conjugate to
diag(e?™, ..., e2"™)
with a; € QN [0,1), then the sum
wi(g) = oy 4+ -+ ay

will be called the weight of the element ¢ € (. The number hi(g) := rk(g — €) will
be called the height of g.

Proposition 5.2 for any g € i, one has

wi(g) + wi(g™') = hi(g) = ht(g™").



Proof. Let g = diag(e®™,...,e?), ¢~ = diag(e®™® ... e?™P4). Then hi(g)
equals the number of nonzero elements in {a,...,aq4}. On the other hand, o; +5; =
1if a; # 0, and «; + B = 0 otherwise. Hence Y0 (a; + 8;) = ht(g). 0

Conjecture 5.3 (strong McKay correspondence) Let G C SL(d,C) be a finite
group. Assume that X = C¥/C adwmils a smooth crepant desingularization m :
X = X and F := #7Y0). Then H*(F,C) has a basis consisting of classes of
algebraic cycles Zy,y C F which arc in 1-lo-1 correspondence with the conjugacy
classes {g} of G, so thal

dim H*(F,C) = #{conjugacy classes {g} C G, such that wi(g) = 7}.

Now we give several evidences in support of Conjecture 5.3.

Theorem 5.4 Let (¢ C SL(d, C) be a finite abelian group. Suppose that X = C¢/G
admits a smooth crepant toric desingularizalion © : X = Xand F = n71(0). Then
H™(F,C) has a basis consisting of classes of algebraic cycles Z, C F which are in

1-to-1 correspondence with the elements g of i, so that
dim H*(F, C) = #{elements ¢ € G, such that wt(g) = i}.
In particular, the Euler number of I equals | G |.

Proof. Let N C RY be the free abelian group generated by Z¢ C R and all
vectors (avy,...,aq) where g = diag(e®™1, ... e*™¢) runs over all the elements of
G. Then N is a full sublattice of RY = Ng, Z¢ is a subgroup of finite index in N,
and N/Z? is canonically isomorphic to G. Let M = Hom(N,Z). We identify Z¢
with Hom(Z¢,Z) by using the dual basis. A is a canonical sublattice of Z¢ and
can be identified with the set of all Laurent monomials in variables ¢y,...,{; which
are G-invariant. Therefore, the cone ¢ defining the affine toric variety X = A,
is the positive d-dimensional octant R{, C R? = Np. Furthermore, the element
m, € M, which was mentioned at the beginning of the previous section, equals
(1,...,1) € Z% Now if S := Clo N N] and if for any = € o N N, we define a degree

degz := (&, m,), S becomes a graded ring, so that
ny = (1,0,...,0),...,ny:=(0,...,0,1)

form a regular sequence of elements of degree 1 in S. This means that S/(ny,...,ng)

has a monomial basis corresponding to those elements of N which are not in
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Z¢. The element (y,...,aq) € N corresponds precisely to the element g =
diag(e?™, ..., e?™4) € . Moreover,

((ary oo oyaq),mg) = w(g).

Thus, the Poincaré series of the quotient ring S/(ny,...,nq) equals

Wo(A) + Yr(AY + -+ + gy (A4

with coefficients
Pi(A) = #{elements ¢ € & such that wit(g) = 7}

and ¢ = g5 as in §4. The proof is completed after making use of Theorem 4.4 and
Corollary 4.6. O

Proposition 5.5 The Conjecture 5.8 is true for d < 3.

Proof. If d = 2, then wi(g) =1 unless g = e. The number of the conjugacy classes
with weight 1 is equal to the number of nontrivial irreducible representations of G.
Since the exceptional locus I of a crepant resolution is a tree of rational curves,
dim H®(F,C)= 1, and dim H*(F,C) is the number of irrecucible components of F.
By the classical McKay correspondence [14, 28, 31], we obtain the statement 5.3.
If d = 3, we use the result of Roan [39] about the existence of crepant resolutions
and the Euler number of the exceptional locus. Let F' be the exceptional locus over
0 of a crepant resolution # : X — X. Then F is a strong deformation retract
of }:'; e, H'(I"C) = H"(X',C). On the other hand, H“(X’,C) is Poincaré dual
to H(X,C). Note that dim H*(F,C) is nothing but the number of irreducible
2-dimensional components of F'. Since FIZ(.X’, Z) is isomorphic to the Picard group
of X, dim Hz():’,C) is equal to the number of w-exceptional divisors. Moreover,
the subspace H2(X,C) C H*(X,C) is spanned exactly by the classes of those

exceptional divisors whose image under 7 is 0. Therefore,

dim H*(X,C) — dim H'(X,C) =
= #{exceptional divisors £ C X, such that 7(£) is a curve on X}.
By the classical McKay correspondence in dimension 2,

dim H*(X,C) — dim H*(X,C) =

= #{conjugacy classes {¢g} C G, such that wi(g) = 1 and hi(g) = 2}.
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By [39],
1 + dim H*(X,C) 4 dim #*(X, C) = #{all conjugacy classes {g} C G}.  (4)
By 5.2,
#{conjugacy classes {¢} C G, with wi(g) =1 and hi(g) =3} =

= #{conjugacy classes {¢} C G, with wi(g) = 2 and hi(g) = 3}.

Hence,
#{conjugacy classes {g} C G, with wi(g) = 2 and ht(g) = 3 } = dim H*(X, C).

Notice that if wi(g) = 2, then the height of ¢ must be equal to 3. Thus,

dim H*(F,C) = #{conjugacy classes {g} C G, such that wt(g) =2 }.
Finally,

dim H*(F,C) = #{conjugacy classes {g} C G, such that wi(g) =1}
follows immediately from (4). a
Definition 5.6 Let G be a finite subgroup of SL(d,C) and 0 € C*/G the cor-

responding d-dimensional Gorenstein toric singularity. If we denote by ¥;(G) the

number of the conjugacy classes of ¢ having the weight 7, then
S(Guw) i= o(C) + i (Cwv 4 - 4+ gy (G (ww)*!
will be called the S-polynomial of the regarded Gorenstein quotient singularity at 0.

Definition 5.7 Let G be a finite subgroup of SL(d,C) and 0 € C?%/( the cor-
responding d-dimenstonal Gorenstein toric singularity. If we denote by 'zj:,-(G') the

number of the conjugacy classes of (i having the weight ¢ and the height d, then
S(Guv) := Po(G) + D1 (Guv + - + gy () (u)*?
will be called the S'-polynomial of the Gorenstein quotient singularity at 0.
By 5.2, we easily obtain:
Proposition 5.8 The S-polynomial satisfies the following reciprocity relation:

S(Gyuv) = (ww)? S(G; (uv) ™).
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6 String-theoretic Hodge numbers

Let X be a compact d-dimensional Gorenstein variety with Sing X' consisting of at

most toroidal or quotient singularities.

Definition 6.1 Let x € Sing X. We say that the d-dimensional singularity at 2
has the splitiing codimension k, if k is the maximal number for which the analytic
germ at z is locally isomorphic to the product of C4™* and a k-dimensional toric
singularity defined by a (k — 1)-dimensional lattice polyhedron A’ or, correspond-
ingly, to the product of C*~* and the underlying space C*/G" of a k-dimensional
quotient singularity defined by a finite subgroup ' C SL(k, C). For simplicity, we
also say that the singularity at = is defined by A’, or by ¢,

Using standard arguments, we can casily show that X is always stratified by
locally closed subvarieties X; (1 € [), such that the germs of the singularities of
X along X; are analytically isomorphic to that of a Gorenstein toric singularity
defined by means of a (k— 1)-dimensional lattice polytope A; or to that of a quotient
singularity defined by means of a finite subgroup G; of SL(k, C), respectively, where

k denotes the splitting codimension of singularities on Xj.

Definition 6.2 We denote by S(X;;uv) the S-polynomial S(A;;uv) or S(Gijuv).
Andalogously, S(X;;uv) will denote the S-polynomial S'(G',-; wv) if X; has only Goren-

stein quolient singularities.

Definition 6.3 Suppose that X has at most quotient Gorenstein singularities. A
stratification X = (J;¢; Xy, as above, is called canonical, if for every 1 € [ and every
x € X, there exists an open subset I/ = C?/G; in X and an element g € G, such
that X; N U = (C%)?/C(g), where (C*)¢ is the set of g-invariant points of C¥.

Remark 6.4 An algebraic variety is called V-variety if it has at most quotient sin-
gularities. A Gorenstein V-variety (abbreviated GV -variety) is a V-variety having
at most Gorenstein quotient singularities. The notion of V-variety (or V-manifold)
was first introduced by Satake [44]. The existence and the uniqueness of the canon-
ical stratification for a V-variety was proved by Kawasaki in [26]. ( Note that our
canontcal stratification in 6.3 is not the first, but the second stratification of X

defined by Kawasaki in [26], p. 77.)

Proposition 6.5 Suppose thal X is a GV -variety and X = U;c; Xi is ils canonical

stratification. Then for any ig € I, one has:

S(Xipsuv) = S(Xjg;uv)+ > S(XNijuv).

Nig <Xy,



Proof. Tt is sufficient to prove the corresponding local statement; i.e., we can assume,
without loss of generality, that X;; = C*/G;,. For simplicity, we set Y = CF,
Z = X;,. Denote by 7 the natural mapping ¥ — Z. For ¢ € G;,, the image
Z(g) := m(Y¥) C Z depends only on the conjugacy class of g. Since ht(g) equals
the codimension of Z{¢) in Z, we obtain

S(Xig;uv) = S( Ny uv) + S ,,,uv
Nig<Xi,

a

Corollary 6.6 Suppose that X is a GV -variely and X = ;1 X; is ils canonical
stratification. Then for any ig € I one has:

S(Xig;uv) = Z(*l)k > S(Xik:; uv).

k>0 Nip << Xy

Proof. By 6.5, we have

S(Xip;uv) = S(Xiy; uv) — 3 S(Xi,;uw).

Nig <Xy,
After that we apply 6.5 to Xj;:
S(Xiy;uv) = S(Xi,;uv) — Xy uv), eic...
Xip < \-2
The repetition of this procedure completes the proof of the assertion. a

Definition 6.7 Let X be a stratified variety with at most Gorenstein toroidal or

quotient singularities. We shall call the polynomial
Eu(X;u,v) =) B(Xi;u,0) - S(Xiuv)
el

the siring-theoretic E-polynomial of X. Let us write Eg(X;w,v) in the following

expanded form:

Ea(XN;5u,v) Za,,qu v

The numbers A5 (X) := (=1)"*%a, , will be called the string-theoretic Hodge num-
bers of X. Correspondingly,

eu(X) 1= (X =1, =1) = S (= 1)PH9R2(X)

P.q

will be called the siring-theoretic fuler number of X.
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Remark 6.8 If X admits a smooth crepant toroidal desingularization 7 : X — X,

then, by 3.8 and 4.4, the E-polynomial of X equals

E(X;u,v) =Y B(XNiu,v) - B(F;u,v)

tel

where F; denotes a the special fiber 77'(z) over a point z € X;.
By 6.8, we obtain:

Theorem 6.9 If X admils a smoolh crepant toroidal desingularization X, then the
string-theoretic Hodge numbers hL?(X) coincide with the ordinary Hodge numbers
hPe(X). In particular, the numbers REY(X) are nonnegative and satisfy the Poincaré
duality B (X) = pi-pd=a (X).

The next theorem will play an important role in the forthcoming statements:

Theorem 6.10 Suppose that X is a GV-variety and X = U;g; Xi denoles its

canonical stratificalion. Then

B (X;5u,v) ZL/ Xiu,v) S’(X,—;uv).
tel

Proof. By 3.6, we get

E(Xyu,v) =) (-1)F > E(Xi;u,v).

k>0 N <Xy <X
Therefore,

Eu(X;uv) =) (Z(—l)k > B(X;;u, v)) S (Xypjuv) =

i€l \k>0 XNy <X <Xig

= > E(Xy;u,v)- (Z(—.l)k > S(Xig; [H))) :

el k>0 .r\',‘k<---<.r\',‘1 <XNig
By 6.6, we have

S(Xi;uv) = S (-1)* > S(Xig; uv).

k>0 XNip << Xi <X

This implies the required formula. ]

Corollary 6.11 Suppose thal X is a GV -variely. Then the numbers h5*(X) are
nonnegative and satisfy the Poincaré duality h3)'(X) = hd ~Pid=g “(X).
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Proof. Since X; itself is a V-variety, one has h?9(X;) > 0, as well as the Poincaré
duality
E(Xi;u,v) = (uo)™ Y B(X et v,

On the other hand, by 5.8, we obtain

S(X;uv) = ('Ja‘t))‘li""\_"g(.k',-; (uv)™h).

This implies
E"st.(}\,; u, ’I)) — (uv)rlim,\' Em‘(-x; wol : ‘U_l).

Since S(X;;uv) s a polynomial of wn with nonnegative coefficients, we conclude

that ART(X) > 0. O

Theorem 6.12 Suppose that X has at most toroidal Gorenstein singularities. Let
m X3 XbeaM PC P-desingularization of X. Then

ESf-(‘x; , Uy U) = Est-():,; u, U)-

Moreover,
RN = I'Ip‘l(.i'), for all p.

Proof. Let X = U;c; Xi be a stratification of X, such that

Ea(X5u,v) =) E(Xiu,v) - S(A;w)

ie!
and ™ : X = X be a MPCP-desingularization of X. We set X; := 7N X5).
Then X; has the natural stratification by products X; x (C*)eedimé ipduced by the
triangulation
=@
geT:
Thus,

Ey(X;u,v) = > (Z (wv — D)MmE (X0, v) - S(0, uv)) .

i€l \0eT;

By counting lattice points in k4\;, we obtain

S(Ajuv) =3 (wv — 1)°M™IG(9; ww).
6eT;

Hence,
B (X, u,v) = Est(,i';u, v).
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Since X has only terminal Q-factorial singularitics, for any 0 € T; we obtain
D (0) =05 ie., S(O;uv) =14+ do(0)(uv)? +---

Therefore, the coeflicient of u”v in Est():'; u, v) coincides with the coellicient of uPv
in the usual £-polynomial E():'; u,v). As Xisa V-variety, the Hodge structure in
H'(X,C) is pure, and

REN (XY = AP (X)), for all p.

O

Corollary 6.13 Suppose that X has at most toroidal Gorenstein singularities. Then
the nwinbers hL"(X) are nonnegative and satisfy the Poincaré duality hi(X) =

B X,

Proof. By 6.12, it is sufficient to prove the statement for a M PC P-desingularization
X of X. The latter follows from 6.11. g

Theorem 6.14 Let X be a smooth compact Kihler manifold of dimension n over
C being equipped with an action of « finite group G, such that X has a G-invariant
volume form. Then the orbifold Hodge numbers hP4(X, ) which were defined in the

introduction coincide with the string-theoretic Hodge numbers hE*(X/G). Moreover,

38

e(X,G) = en(X/C).

Proof. We use the canonical stratification of ¥ = X/
"= U Y.
iel
For every stratum Y;, there exists an element ¢; € G, such that Y; = X% /C(g).
We note that
E(Yu,v) = Z(—l)”'“’dimH"“’(Xg‘)C(g‘)u”v".

nq

Now the equality
REH(X/G) = WP (X, G)

follows from Theorem 6.10.

In order to get e(X, () = ey (X/G), it remains to prove the equality

e(X,G) = Y=DPRP(X, ).

p.q
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We shall make use of the notation which was introduced in §1. Since {¢} expresses
a system of representatives for G//C(g) and the number of conjugacy classes ol ¢
equals
> 1Cl
' C’ I ge(,

one can rewrite the physicists Euler number (1) as

e(X, &) =Ta] C Z'C e(X?/C(g)) = D_e(X?/C(9)),
' {g}
where {¢g} runs over all conjugacy classes of i with g representing {g}. We show
that
S (C1)PHRRIX, G) = e(X9/C(g)).

P

This follows from the equalities

rg

Z(_l)pﬂhg.q(‘x’ G) — ZZ( ])p+q—2-" (y)hp I'J(y).q F(y)( X’.-(g)) —

pP.q =1 g

= Z — P (X)) = e(X?/C(g))-

Corollary 6.15 Suppose thal X/G has a crepant desingularization )\TTG and that
the strong McKay correspondence (Conjgeclure 5.8) holds lrue for the singularities

occuring along every strafum of X /G . Then
g g Y

WP(X]C) = W5 (X/G).

Example 6.16 Let us first give a 3-dimensional example of an orbit space (with
a simple acting group) containing both abelian and non-abelian quotient singular-
ities, and which was proposed by . Hirzebruch. We consider the Fermat quintic

= {[z1,...,25) € P* | £0_, 2% = 0} and let the alternating group As act on it
coordinatewise. The group As has five conjugacy classes: the trivial, one consisting
of all 20 3-cycles, one consisting of the 15 products of disjoint transpositions, and
two more conjugacy classes of 5-cycles, each of which has 12 elements. Note that the
action of the elements of these last two conjugacy classes 1s fixed point free. ach
of the 20 3-cycles fixes a plane quintic and two additional points. Correspondingly,

each of the 15 products of disjoint traspositions fixes a plane quintic and a projective

SN
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line (without common points). As X/As is a Calabi-Yau variety, the generic points
of the 1-dimensional components ol Sing X/As are compound Du Val points [41].
Up to the above mentioned 40 additional points coming from the 3-cycles and hav-
ing isotropy groups = Z/3Z, there exist 175 more fixed points on X creating (after
appropriate group identifications) dissident points on X/ Ag (we follow here the ter-
minology of M. Reid). Namely, the 25 points of the intersection locus of the 20 plane
quintics (with isotropy groups = A,), further 125 points lying in the intersection
locus of the 15 plane quintics (with isotropy groups = S3), as well as 15+ 10 = 25
points coming from the intersection of the projective lines (with isotropy groups
isomorphic to the Kleinian four-group and to &3 respectively). Using [to’s results
[24, 25], we can construct global crepant desingularizations 7 : .3\7:45 — X/As. By
6.15, 11”-“‘(/\"/-:45) = hE4(X/As). Thus, for the computation of h_Prq(X//‘:zls), we just
need to choose two representatives, say (123) and (12)(34), of the two non-freely

acting conjugacy classes. We have:

o hPi1(X/A5) = hf’l"}(X As) equals é,, ( = Kronecker symbol) for p + ¢ # 3,
hER (X, As) = 1 for (p,q) € {(3,0),(0,3)} and AT{}(X, As) = 5 for (p,q) €
{(2,1),(1,2)}

o hi{aan (X, As) equals 2 for (p,q) € {(1,1),(2,2)}, A{{p (X, As) = 6 for
(p,q) € {(2,1), (1,2)}, hi{l05),(X. As) = 0 otherwise;

hd h{(]g)(34 (X, As) equals 2 for 1 < p,¢ <2 and 0 otherwise.

Thus, we get:
REN(X/As) = hiP (X[ As) = 13,

RLNXTAs) = 2P (X As) = 5.

In particular, e(X7745) = e(X/As) = —16, in agreement with the calculations of
physicists (cf. [27], p. 57).

Example 6.17 Let X := X"/S, be the n-th symmetric power of a smooth
projective surface X. As it is known (see, for instance, [16], p.54 or [23], p.258),
X is endowed with a canonical crepant desingularization X := Hilb*(X) - X )
given by the Hilbert scheme of finite subschemes of length n. In {15, 16], Gottsche
computed the Poincaré polynomial of X"l In particular, his formula for the Euler

number gives:
(e w)

sz: X[n] "= H e(.a\)

n=0 k=1



Using power series comparison and the above formula, Hirzebruch and Hofer gave
in [23] a formal proof of the equality e( X)) = ¢(X™),S,). In fact, for the proof of
the validity of orbifold Luler formulae of this kind, it is enough to check locally that
the Conjecture 1.1 of M. Reid is true (cf. [39], Lemma 1). Our results 6.14 and 6.15
say more: in order to obtain the equality h?¢( X[} = pP9(X (™) @) it is sufficient to
verify locally our “strong” McKay correspondence. The latter has been checked by
Gottsche in {17]. The numbers h74( X)) can be computed by means of the Hodge
polynomial A( X0 u,v) := B(XP: —u, —v).

Il TI(n) denotes the set of all finite series (o) = (e, @9,...) of nonnegative
integers with Y ;ia; = n, then the conjugacy class of a permutation ¢ € S, is
determined by its type (o) = (o1, a2,...) € I1(n), where a; expresses the number of

cycles of length 7 in 0. Godttsche and Soergel [18, 16] proved that
oo

R(X0L: oy, v) = > (wv)rlel II R(X @)y, v),
{a}€l(n) k=1

where | a |:= o) 4+ a7 + - - - denotes the sum of the members of (a) € I1(n).
(Similar formulae can be obtained for the even-dimensional Kummer varieties of

higher order, cf. [16, 17, 18].)

7 Applications to quantum cohomology

and mirror symmetry

;From now on, and throughout this section, we use the notation being introduced
in [4]. We start with the description of the lollowing relation between the polar

duality of lattice polyhedra and string-theoretic cohomology:

Theorem 7.1 Let Pa be o d-dimensional Gorenstein toric Fano variely corre-

sponding to a d-dimensional reflexive polyhedron A. Then
Eaq(Pazu,v) = (1 —uw)?t! Py (uv)
where A™ is the dual reflexive polyhedron.

Proof. P4 has a natural stratification being defined by the strata Tp, where 8 runs
over all the faces of A. On the other hand, the Gorenstein singularities along Tj are
determined by the dual face §* of the dual polyhedron A* (cf. [4], 4.2.4). We set
S0 ,uv)=1if § = A. Then

Ex(Pasu,v) =) E(Tou,v)- S(07;uv).

[ afa
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Note that
E(Tg;u’ U) — ('U'U _ 1)c|imﬂ’

and that, for dim@ < d, one has by definition:
S0 uv) = (1 — uo) MO+ Py (uw).

Since dimf 4+ dim 8™ = d — 1, we obtain

Ew(Pasu,v) = (vv = 1) + (1 =)'y (9 > (—])‘“‘“0!(139')) (uv)F.
C

£>0 A8£A

We remark that

Z (—1)""“9[(A:0‘) — Z (—]_)cm]img‘[(kﬁ*)
8CA G£A g CA
is equal to the number [{k - 9A~) of lattice points on the boundary of the lattice

polytope kA*. We set [(0- JA™) = L. It remains to use the obvious relation

(1= t)Pas(t)y = S U(k - 0A™ )5

k>0

Corollary 7.2 The string-theoretic Euler number of Pa is equal to d!(vol A7).

Remark 7.3 The quantum cohomology ring of a smooth toric variety was described
in [3]. It was proved that the usual cohomology of a smooth toric manifold can be
obtained as a limit of the quantum cohomology ring. On the other hand, one can
immediately extend the description of the quantum cohomology ring to arbitrary
(possibly singular) toric variety (cf. [3], 5.1). In particular, one can easily show
that dimQH;(Pa,C) = d!(vol A*), for any d-dimensional reflexive polyhedron.
Comparing dimensions, we see that, for singular toric Fano varieties P, the limit
of the quantum cohomology ring is not the usual cohomology ring, but rather the
cohomology of a smooth crepant desingularization, if such a desingularization exists
(cf. [3], 6.5). By our general philosophy, we should consider the string-theoretic
Hodge numbers AL”(P4) as the Betti numbers of a limit of the quantum cohomology
ring QH;(Pa, C).

Let Z; := Z;, N---N Z;, be a generic (d — r)-dimensional Calabi-Yau com-
f h I 8

plete intersection varicty, which is embedded in a Gorenstein toric Fano variety Py
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corresponding to a d-dimensional reflexive polyhedron A = Ay 4+ --- A,, where A;
is the Newton polyhedron of f; ( = 1,...,r). Assume that the lattice polyhedra
Ay, ..., A, are defined by a nef-partition of vertices of the dual reflexive polyhedron

* = Conv{V,,...,V,.}. (For definitions and notations the reader is referred to
[5, 7].) Denote by Z, := Z,, N---NZ, a generic Calabi-Yau complete intersection
variety in the Gorenstein toric IFano variety Py., which is defined by the reflex-
ive polyhedron V™ = Conv{A,,...,A,}, where V; is the Newton polyhedron of ¢;

(i=1,...,7r).

Conjecture 7.4 (Mirror duality of string-theoretic Hodge numbers) The string-

theoretic E-polynomials of Z; and Z, obey to the following reciprocity law:
EalZ s;u,0) = (=)™ B (Zy; 0™ 0).

Equivalently, the string-theovetic Hodge numbers of Z; and Z, are related to each
other by:
hEA(Zy) = h&™P9(Z,), for all p,q.

We want to show some evidences in support of Conjecture 7.4 for Calabi-Yau hyper-
surfaces (r = 1). For this purpose, we use the duality among the faces of A and A~.

For a face 8 of A, we denote by v(#) the normalized volume of #: (dim 6)!vol(8).

Theorem 7.5 Lel A be a d-dimensional reflexive polyhedron. Then

-2

est(Af Z Z V(H v(07).

=1 dimf=i

By dim0 +dim@* = d — 1, we obtain as a consequence of the conjectural duality in
(7.4):
est(_Zf) = (-1 )d—lcst‘(jy)-

Proof. Since
Ei(Zy) =Y E(Zygu,0) - S(07,uv),
8CA
we have

ea(Z)) =Y e(Zyg) - S(0°,1).

N
By 4.6, S(6°,1) = v(0*). Moreover, it is known that e(Z;4) = (=1)3™-1v(9).

Observe that Z; ¢ is empty if dim 0 = 0. It remains to show the equality

via)= S v().

dim f@=d—-1
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This follows easily from the reflexivity of A (see [4], p. 522). m)

We remark that 7.4 is evident if ¢ = 0, because h;’g"(?,) =1, forq=0,d-1
and h%°(Z;) = 0 otherwise. For ¢ =1 (r = 1), and p € {1,d — 2}, Conjecture 7.4
is proved by Theorem 6.12 combined with Thm. 4.4.3 from [4]. We generalize this

for arbitrary values of p.

Theorem 7.6 For a face 0 of A, we denote by *(9) the number of lattice points in
the relative interior of 8. Asswme thal d 2 5. Then for 2 < p < d—3 one has

WelZp) = 3 I(0)-1°(07).
codimf=p

By the duality emong faces, one has

WM (Z ) = hETPN(Z).

Proof. By the Poincaré duality, it is enough to compute 11.217“”"*‘2(7,) = WM Z)).
We use

Ea(Zpu,v) = B(Z56;u,0) - S(07;uv).
ocA

By 4.7,

807 uv) = (07 (uw)™™? + {lower order terms in uv}.
On the other hand, by [10], Prop. 3.9,
ePNZse) =0 il p+qg>dimf —1=dimZ;p and p # q.

Hence, the only possible case in which we can meet the monomial of type w1 =Pyd—2
within the product £(Zjg;u,v)- S(07;u,v) is that occuring by consideration of the
product of the term [*(0*)(wv)¥™ ¢ from S(#~; uv) and the term

eO,dim -1 (Zf 0)vclim€—l
where dim8” = d — 1 — p. As it is known (cf. [10], Prop. 5.8.):
eO,dimG—l (Zf,a) — (_] )dimﬁ—llt(a).

Therefore,
i TP Z ) = 10 (0) - 1 (0),

O]
-~



Corollary 7.7 Let Zf be a MPCP-desingularization of Z;. Assume that d > 5.
Then, for2 <p<d-3, one has

RPN Zp) = Y 1(0) - ().

codimf=p

Proof. 1t follows from Theorem 7.6 and Theorem 6.12. O

8 Duality of string-theoretic Hodge numbers for

the Greene-Plesser construction

In [19, 20] B. Greene and R. Plesser proposed an explicit construction of mirror
pairs of Calabi-Yau orbifolds which are obtained as abelian quotients of Fermat
hypersurfaces in weighted projective spaces. As it was shown in [4], 5.5, the Greene-
Plesser construction can be interpreted in terms of the polar duality of reflexive
stmplices. The main purpose of this section is to verify the mirror duality of all
string-theoretic Hodge numbers for this construction.

“Trom now on, we assume that A and A" are d-dimensional reflexive simplices.

We shall prove Conjecture 7.4 for A-regular Calabi-Yau hypersurfaces in P, and
Pa-. (We remind that, for this kind of hypersurfaces and for d = 4, Conjecture 7.4
was proved in (36, 4].)
Definition 8.1 Let © be a k-dimensional lattice simplex. We denote by g(@;uv)
the S-polynomial of the (k + 1)-dimensional abelian quotient singularity defined by
©. We denote the corresponding finite abelian subgroup of SL(k+ 1,C) by Ge (in
the sence of §4,5).

Our main statement is an immediate consequence of the following:

Theorem 8.2 Let Z; be a A-regular Calabi-Yau hypersurface in Pa. Then

1 ,»d
Ex(Zu,v) = L5'(A"‘;uv) + (—l)d_IL (Aju~'v)+

uv v

v

Amé ~
+ Z (—1)dimé=1 (_u : S(0;u"'v)- S(O‘;uv)) .
1<dim0<d—-2

gca



Indeed, if we apply Theorem 8.2 to the dual polyhedron A*, then we get

.
Ew(Zg;u,v) = —S(A; wv) + (—1)d_li5'(&';‘t¢_"u)+

uv v

‘ ydimer .
+ > (—1)dimér=1 ( p S0 u"tv) - S(0; uv))
1<dim 6 <d—2
g CcAr
Now the required equality
E(Z i, v) = (—)" " By (Z g0t v)

follows evidently from the 1-to-1 correspondence 8 « 0* (1 < dimé, dimd* < d—1)

and from the property: dimf +dimf* =d — 1.

For the proof of Theorem 8.2, we need some preliminary facts.

Proposition 8.3 Let 8 be a face of A and dim 0 > 1. Then

uo — l)dimﬂ _ (_l)diml? dim e ,udimr
E(Zgp;u,v) = ( — + (—1)dimo-t 3 > S(r;u ')
dimr>1
\ TCH

Proof. By [10], Prop. 3.9, the natural mapping
H{(Z;6) = HFN(Ty)

is an isomorphism if 7 > dim@ — 1 and surjective if 7 = dim8 — 1. Moreover,
Hi(Z;g) = 0 if i < dim0 — 1. In order to compute the mixed Hodge struc-

ture in HIMO-1(Z,5), we use the explicit description of the weight filtration in
HAmO=1(7,4) (see [2]). Note that if we choose a 0-regular Laurent polynomial f
containing only dim#+1 monomials associated with vertices of § (such a polynomial
f defines a Fermat-type hypersurface Z; in Py), then the corresponding Jacobian
ring Ry has a monomial basis. Thus, the weight filtration on Ry can be described
in terms of the partition of monomials in 2y which is defined by the faces 7 C 6. To
get the claimed formula, it suffices to identify the partition of monomials in Ry with
the height-partition of elements of the finite abelian group Gy C SL(dim0 + 1,C)
and its subroups G, C Gjy.

Another way to obtain the same result is to use the formulae of Danilov and
Khovanskii (cf. [10], §5.6,5.7) which are valid for an arbitrary simple polyhedron A.
O



Proposition 8.4 Let 0 be a face of A and dim® > 1. Then

S)=14+ > S(;t).

dimn>1

nC#é

Proof. It is similar to that of 6.5. ]

Proposition 8.5 We fiz a face 1 C A and a face n C A=, such that: 7 is a face of
n*. Then
Z (_-l)clilnﬂ — (_1)dim*r U‘T — n*
#, TC6Cn*

and

Z (—])di'"t9 =0 if T £y

#, rCHCn*

-

Proof. 1f n* = 7, this is obvious. For k := dim#n* — dim7 > 0, the number of faces

§ C A, for which 7 C 0 C 7, is equal to ("™?~4™™) 1t remains to use the equalit
) ] | k | y

f:o(_])i(’:) = 0. O

Proposition 8.6

Uv uy — 1 uv — 1

1 . d _ apgyYdimr* .
L5'(!_3;11!.1)) = (w) 1 + > ((uv)—l) - S(m; uw).
I <dim7<d-2

TCA

Proof. Since

(k-0A)=" Y (—1)4=1=dimér 0y, for k> 0,

0<dimd<d—-1

and the Euler number of a (d — 1)-dimensional sphere is 1 + (—1)?"!, we obtain

(=D =0Pa) = (=D Y (DI,

0<dim8<d—1

1yd—1 S(A;) _ 1yd—1 dim S(Git)
(‘“Ud +m = (—1)[ Z ("1)I a(l_t)dimﬁ+l'

0<dimd<d—1
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Applying Proposition 8.4 to both sides of this equality, we get

_1 1 S(Tﬂ)
S (R D (L

dimr>1

TCA

= (=) X ) i

— #Ydim 841
0<dimé<d—1 (l [')

o S(r;t)

d—1 dim @ ’

+ (_l) Z (_J) Z (I _!)din19+1'
0<dim<d-1 dimr>1 b ’

TCl

As the number of k-dimensional faces of A equals (Hi), we have

T e M L

(1—1t)d ogigin (1 — ¢)dimo+1 -
1 pand DF fd+1 14+ — ¢
_ -1 d—1 _ — (] d_7 "
(=1) TSN 1—t‘~+‘(k+1) Ty r

and we can deduce that:

S(A, 1) 3 S(r,1) Py S(T, 1) _

(1 - t)d dim r=d-1 (l - t)d 1<dimr<d-2 (1 - i)d

t(H-l —1

— 1\d S.(Tat)
—(—1)m + Y /=

dimr=d-1 (1 - t)d

S(r,1)
+ Z Z 1—1)¢ +
dim =d-1 ( )
1 <dimr<d-2

TCO

. S(7. ¢
+ (=D Y (=t Y - S(T:un),a-}-l‘
1<dimf<d-2 i o1 (l - 1)

TCO

The terms containing 5(7, 1), with dimr = d — 1, have the same contribution to the

right and left hand sides. The coefficient of 5’(1‘, $) (1 £dimr < d—2) in the right
hand side of the last equality is

. 1
d—1 dim @ _
(-1) | Ed 0™ e =
dim 0<d-2

TCEH
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(=1)*

m (td—dim'r -1 = ((l — dim T)(t — ]_)) .

Correspondingly, the coefficient of S(7,4) (1 < dim7 < d —2) in the left hand side

equals
d—1—=dimr

(1 =)

Finally, using dimr + dim7* = d — 1, we obtain:

S(A, 1) (r . plimr 4+l g
d—09 (—l)ctW + (= 3 S(T,t)((t_—l)m)

1<7<d-2

Proof of Theorem 8.2. By definition,

Est(?f;u,'u) = IE(Z‘/'A;‘U,U) + Z E(Zf,g;u,'u) +
dimf=d-1

oca

+ > E(Zse;u,v) - S(07;uvw),
1<dim #<d~-2

8CA

Substituting the expressions which were found out in 8.3 for the £-polynomials

of the above three summands, we get:

dim ¥
{

(uv = 1)¢ = (=1)4
uv

S'(T; 'u_l'u)

T D

dimr2>1

E(Zga;u,v) =

TCA

(’U.U _ 1)(Iim6‘ _ (_1)dim€

Z E(Zf'g;u,v) = Z +

wy

dim f=d—1 dim f=d—1

8Ca ocA

dim -1 u‘[imT &t -1
+ Z (—1) Z - S(ryu'v) |,
dim f=d-1 dimr2>1
6ca Tl
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and

2

1<dimf<d-2

fca

+ X

1 <cim 8<d—2

fCcA

(_1)(liluﬂ—l

E(Zro;u,v) - S(0% uv)

>

dimr>1

TCél

2

('U'U _ ])dimg _ (_l)dimB

1<dim 8<d-2

8CA

_udllll‘f N

S(riu'v)

v

Uy

1+ 3 S(n; uv)

dimn>1

nCcé*

Hence, Ey(Z;u,v) can be written as the sum of the following 4 terms £; (i
1,2,3,4):

('N‘U — I)r]im@ . (___1)(1im!?

E] =
Z Uy ’
1<dim#
aca

(

(o= 2! (pt).

wu

i
A dimg-1 u T Gr . —1
Ey = Z (—1) Z ” S(r;u=v) |,
1<dim#é dim7>1
fCcA TCH

2.

S(muv) |,

1<dim #<d—2 dim#n>1
8ca nCo*®
and
. ,”’dim‘r . .
E,= > (—1)dimé=1 > - S(r;u"'v) > S(pww)
1<dim 8<d-2 dimr>1 dimn>1
6CcA TCH nCo*
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By 8.5, we can simplify the multiple summation into a single sum:

v

dimé .
F, = 3> (—)dimé-t (u S(0;u" ) - S0 uv)) .
1<dim8<d-2

aca

If we make use of the combinatorial identity
d+1 |
: d+ 1Y\ ,
> qdm? — > ( 2_ )a"'l =a! ((a + )% -1 —(d+ l)a) ,
1<dim ¢ k=2 ‘
6ca
we obtain:

(’H"l) _ ]v)diluﬂ _ (_l )dilnﬂ

By= 3 =

uv
1<dim ¢
fCA
Sl
= [uo(wo = 1) (("v)dH —1=(d+1)(uw - 1)) + d(uv)™' = w) =1 L
uv — 1

By 8.5, we get

dimé~1 “dim-r & -1 d_lud Fer -1
Ey= 3% (-1} > > S(ryutv) =(-1) ?S(A;u v).
1<dim # dimir>1
ca TC#H

It remains to compute £5. As above for E,, we have

Uv uv — 1

Z (uv _ ])dima _ (—l )dimﬂ B (uv)dimn‘ -1

1<dim @

fCn*

Hence, by 8.6,

wv — 1 Wy uv — 1

Ydimnp* | ) 5 d_
2R DY ((—l—) S uw) = —§(A% w0y - L1
1<dimy<d-2

nCA*

Finally, we get altogether

o
E(Z j;u,v) = L,S'(A'; uv) + (—ilv)d_'LS(A;u"v)—i-

Uuv U

34



__1ydimé#-1 udhno a0 T PRSI LI
+ Z (=1) —S5(0;u” ) - S(0%; uv) | .

'U
1<dim §<d~2

[

Example 8.7 The polar duality between reflexive simplices shows (cf. {4], Thm.
5.1.1.) that the family of all smooth Calabi-Yau hypersurfaces Xy4; of degree d + 1

in P4 has as its mirror partner the one-parameter family {Qqy1(A)/Gay1}, where

d
Qur1(A) = {[z0,..., 2] € Pd|zd+l (d+D)A]] 2 =0}
1=0

denotes the so called Dwork pencil and (/qyy the acting finite abelian group

d
Gayr = {{c0, ... aq) € (Z/(d + 1)Z)" | T] ai = 1}/{scalars},

1=0

which is abstractly isomorphic to (Z/(d+1)Z)*"'. The moduli space P'\ {0, 1, o}
of {Qus1(A)/Gas1}ys can be described by means of the parameter A3+t (cf. [21], §3.1,
[32], §5, and [33] §11).

Since Conjecture 7.4 is true for the case being under consideration, the quotient

Qa+1(X)/Gagy has the following string-theoretic Hodge numbers:

REN(Qar1 (X)) Gagr) = BP9 (Qap1(N), Gugr) = K477 (XNagt) = Sucipy, Tor p#

REP(Qasr (M) Cagr) = WP (Qugr(N), Gapy) = A7'PP(Xyyy) =

S () )

=0

In particular, the string-theoretic Euler number is given by:

Cst(Qas1(A)/Gapr) = e(Qur1(A), Gupr) = —e(Xgp1) =

— I d+2 | jd+1
_H,I(( D2 1) —d -1,

The first two equalities follow from Lefschetz hyperplane section theorem and from
the “four-term formula” (cf. [22], §2.2 ). The third one can be obtained directly by
computing the (d — 1)-th Chern class of Xy4.
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