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Calea Griviţei 21, P.O. Box 1-462, Bucharest, Romania

E-mail: leustean@mathematik.tu-darmstadt.de

October 10, 2007

Abstract

In this paper we obtain new effective results on the Halpern itera-
tions of nonexpansive mappings using methods from mathematical logic
or, more specifically, proof-theoretic techniques. We give effective rates
of asymptotic regularity for the Halpern iterations of nonexpansive self-
mappings of nonempty convex sets in normed spaces. The paper presents
another case study in the project of proof mining, which is concerned with
the extraction of effective uniform bounds from (prima-facie) ineffective
proofs.

1 Introduction

This paper presents another case study in the project of proof mining, by which
we mean the logical analysis of mathematical proofs with the aim of extracting
new numerically relevant information hidden in the proofs.

General logical metatheorems were obtained (using proof-theoretic methods)
in [10] and [4] for various classes of spaces in functional analysis and metric ge-
ometry, such as metric, hyperbolic spaces in the sense of Reich/Kirk/ Kohlen-
bach, CAT(0), (uniformly convex) normed and inner product spaces. Further
examples (R-trees, hyperbolic spaces in the sense of Gromov and uniformly
convex hyperbolic spaces) are discussed in [14]. These metatheorems guarantee
a priorly, under very general logical conditions, the extractability of effective

∗The research reported in this paper was carried out during the author’s stay at the Max-
Planck-Institute for Mathematics (Bonn) whose support is gratefully acknowledged.
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bounds from large classes of proofs in functional analysis, and moreover they
provide algorithms for actually extracting the bounds. The bounds are uniform
for all parameters meeting very weak local boundedness conditions. We refer to
Kohlenbach’s forthcoming book for details [11].

In this paper we apply proof mining to metric fixed point theory, more
specifically to the (approximate) fixed point theory of nonexpansive mappings,
one of the most active branches of nonlinear functional analysis. We refer to [7]
for an extensive account of metric fixed point theory.

In the following, (X, ‖ · ‖) is a normed space and C is a nonempty convex
subset of X . A mapping T : C → C is called nonexpansive if for all x, y ∈ C,

‖Tx − Ty‖ ≤ ‖x − y‖.

The usual Picard iterations are not the proper iterations for nonexpansive
mappings and that’s why other iterations were considered in this case. The
Krasnoselski-Mann iteration [18, 13, 5] star-ting with x ∈ C is defined by:

x0 := x, xn+1 := (1 − λn)xn + λnTxn for n ≥ 0, (1)

where (λn)n≥0 is a sequence in [0, 1].
One of the most important notions in fixed point theory is the asymptotic

regularity, defined in [2], but already implicit in [13, 19, 3]. A mapping T : C →
C is called asymptotically regular if for all x ∈ C,

lim
n→∞

‖T n(x) − T n+1(x)‖ = 0.

For constant λn = λ ∈ [0, 1], the asymptotic regularity of the averaged mapping
Tλ := (1 − λ)I + λT is equivalent to the fact that lim

n→∞
‖xn − Txn‖ = 0 for

all x ∈ C. Therefore, for general (λn) in [0, 1], a nonexpansive mapping T is
λn-asymptotically regular [1] if for all x ∈ C,

lim
n→∞

‖xn − Txn‖ = 0. (2)

Methods of proof mining were applied in [8, 9, 12, 15] to obtain effective rates
of as-ymptotic regularity for the Krasnoselski-Mann iterations of nonexpansive
mappings in normed and CAT(0)-spaces or even in the more general class of
(uniformly convex) hyperbolic spaces.

In this paper, we consider other iterations, introduced in [6]. For x ∈ C and
(λn)n≥1 in [0, 1], the Halpern iteration starting with x is defined as:

x0 := x, xn+1 := λn+1x + (1 − λn+1)Txn for n ≥ 0. (3)

As Wittmann remarked [20, 21], if T is linear and λn :=
1

n + 1
, then xn =

1

n + 1

n
∑

i=0

T ix, so the Halpern iterations could be regarded as nonlinear gener-

alizations of the usual Cesaro averages.
One of the earliest and most important results on the convergence of Halpern

iterations is the following one.
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Theorem 1.1. [21, Theorem 2]
Let X be a Hilbert space, C ⊆ X a nonempty closed convex subset, T : C →
C nonexpansive and (λn)n≥1 be a sequence in ∈ [0, 1] satisfying the following

conditions: lim
n→∞

λn = 0,

∞
∑

n=1

λn is divergent and

∞
∑

n=1

|λn+1 − λn| is convergent.

Assume moreover that the set Fix(T ) of fixed points of T is nonempty .
Then for any x ∈ C, the Halpern iteration (xn)n≥1 is norm convergent to

the unique fixed point Px of T with ‖x − Px‖ ≤ ‖x − y‖ for any y ∈ Fix(T ) .

Generalizations of this theorem to the Banach space case and different con-
ditions on (λn) were considered in numerous papers. We refer to [24] for a nice
exposition.

In the following, we consider the important problem of asymptotic regularity,
this time associated to the Halpern iterations: lim

n→∞
‖xn − Txn‖ = 0, where

(xn)n≥1 is defined by (3). By inspecting the proof of Theorem 1.1 (and its
generalizations), it is easy to see that the first step is to obtain asymptotic
regularity, and that this can be done in a much more general setting.

Thus, the following theorem, essentially contained in [21, 22, 23], can be
proved.

Theorem 1.2. Let (X, ‖ · ‖) be a normed space, C ⊆ X a nonempty convex
subset and T : C → C be nonexpansive.

Assume that (λn)n≥1 is a sequence in [0, 1] such that lim
n→∞

λn = 0,

∞
∑

n=1

λn is

divergent and

∞
∑

n=1

|λn+1 − λn| is convergent.

Let x ∈ C be such that (xn) is bounded.
Then

lim
n→∞

‖xn − Txn‖ = 0.

This theorem is our point of departure. By a logical analysis of its proof, we
shall obtain a quantitative version (Theorem 2.1), providing for the first time
effective rates of asymptotic regularity for the Halpern iterates, that is rates of
convergence of

(

‖xn − Txn‖
)

towards 0.

2 Main results

Before stating our main theorem, let us recall some terminology.

Let (an)n≥1 be a sequence of real numbers. If the series

∞
∑

n=1

an is divergent,
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then a function γ : N
∗ → N

∗ is called a rate of divergence of

∞
∑

n=1

an if

∀n ∈ N
∗





γ(n)
∑

i=1

ai ≥ n



 . (4)

If (an)n≥1 is convergent, then a function γ : (0,∞) → N
∗ is called a Cauchy

modulus of (an) if

∀ε > 0 ∀n ∈ N
∗
(

aγ(ε)+n − aγ(ε) < ε
)

. (5)

If lim
n→∞

an = a, then a function γ : (0,∞) → N
∗ is called a rate of convergence

of (an) if
∀ε > 0 ∀n ≥ γ(ε) (|an − a| < ε) . (6)

The following quantitative version of Theorem 1.2 is the main result of our
paper.

Theorem 2.1. Let (X, ‖ · ‖) be a normed space, C ⊆ X a nonempty convex
subset and T : C → C be nonexpansive.

Assume that (λn)n≥1 is a sequence in [0, 1] such that lim
n→∞

λn = 0,

∞
∑

n=1

λn is

divergent and

∞
∑

n=1

|λn+1 − λn| is convergent. Moreover, let α : (0,∞) → N
∗

be a rate of convergence of (λn), β : (0,∞) → N
∗ be a Cauchy modulus of

sn :=

n
∑

i=1

|λi+1 − λi| and θ : N
∗ → N

∗ be a rate of divergence of

∞
∑

n=1

λn.

Let x ∈ C be such that (xn) is bounded.
Then lim

n→∞
‖xn − Txn‖ = 0 and moreover

∀ε ∈ (0, 2)∀n ≥ Φ(α, β, θ, M, ε)
(

‖xn − Txn‖ < ε
)

,

where

Φ(α, β, θ, M, ε) = max

{

θ

(

β
( ε

8M

)

+ 1 +

⌈

ln

(

8M

ε

)⌉)

, α
( ε

4M

)

}

,

M ∈ N
∗ is such that M ≥ ‖xn‖ + ‖x‖+ ‖Tx‖ for all n ≥ 1.

We shall give the proof of the above theorem in the last section of our paper.
We derive now some further consequences.

Corollary 2.2. Let (X, ‖ · ‖) be a normed space, C ⊆ X a nonempty convex
bounded subset with finite diameter dC and T : C → C be nonexpansive.
Assume that (λn)n≥1 satisfies the hypotheses of Theorem 2.1.

Then lim
n→∞

‖xn − Txn‖ = 0 for all x ∈ C and moreover

∀ε ∈ (0, 2)∀n ≥ Φ(α, β, θ, dC , ε)
(

‖xn − Txn‖ < ε
)

,
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where

Φ(α, β, θ, dC , ε) = max

{

θ

(

β
( ε

8M

)

+ 1 +

⌈

ln

(

8M

ε

)⌉)

, α
( ε

4M

)

}

,

M ∈ N
∗ is such that M ≥ 3dC .

Proof. Since C is bounded, it has a finite diameter dC := sup{‖x‖ | x ∈ C}.
Moreover, for all x ∈ C, (xn) is bounded and ‖xn‖+ ‖x‖+ ‖Tx‖ ≤ 3dC . Apply
now Theorem 2.1.

Thus, for bounded C, we get asymptotic regularity for general (λn) and an
explicit rate of asymptotic regularity Φ(α, β, θ, dC , ε) which depends only on
the error ε, on the diameter dC of C, and on (λn) via α, β, θ, but not on the
nonexpansive mapping T , the starting point x ∈ C of the Halpern iteration or
other data related with C and X .

Corollary 2.3. Let (X, ‖ · ‖) be a normed space, C ⊆ X be a nonempty convex
subset and T : C → C nonexpansive.
Assume that (λn)n≥1 is a decreasing sequence in [0, 1] such that lim

n→∞
λn = 0,

∞
∑

n=1

λn is divergent and let α : (0,∞) → N
∗ be a rate of convergence of (λn) and

θ : N
∗ → N

∗ be a rate of divergence of

∞
∑

n=1

λn.

Let x ∈ C be such that (xn) is bounded.
Then lim ‖xn − Txn‖ = 0 and moreover

∀ε ∈ (0, 2)∀n ≥ Ψ(α, θ, M, ε)
(

‖xn − Txn‖ < ε
)

,

where

Ψ(α, θ, M, ε) = max

{

θ

(

α
( ε

8M

)

+ 1 +

⌈

ln

(

8M

ε

)⌉)

, α
( ε

4M

)

}

,

M ∈ N
∗ is such that M ≥ ‖xn‖ + ‖x‖ + ‖Tx‖ for all n ≥ 1.

Proof. Remark that (λn) decreasing implies that

sn :=

n
∑

i=1

|λi+1 − λi| =

n
∑

i=1

(λi − λi+1) = λ1 − λn+1.

Since lim
n→∞

λn = 0, it follows that

∞
∑

n=1

|λn+1 − λn| = λ1, that is it is convergent.

Moreover, for all ε > 0, n ∈ N
∗,

sα(ε)+n − sα(ε) = (λ1 − λα(ε)+n+1) − (λ1 − λα(ε)+1) = λα(ε)+1 − λα(ε)+n+1

≤ λα(ε)+1 ≤ λα(ε) < ε,

since α is a rate of convergence of (λn). Thus, α is a Cauchy modulus of (sn),
so we can apply now Theorem 2.1 with β := α.
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The rate of asymptotic regularity can be further simplified for λn = 1/n.

Corollary 2.4. Let (X, ‖ · ‖) be a normed space, C ⊆ X a nonempty convex
bounded subset with finite diameter dC and T : C → C be nonexpansive.

Assume that λn =
1

n
for all n ≥ 1.

Then lim
n→∞

‖xn − Txn‖ = 0 for all x ∈ C and moreover

∀ε ∈ (0, 2)∀n ≥ Φ(dC , ε)
(

‖xn − Txn‖ < ε
)

,

where

Φ(dC , ε) = exp

(

ln 4 ·

(

16M

ε
+ 3

))

,

M ∈ N
∗ is such that M ≥ 3dC .

Proof. Obviously, lim
n→∞

1

n
= 0 with a rate of convergence

α : (0,∞) → N
∗, α(ε) =

⌈

1

ε

⌉

+ 1.

Moreover,
∞
∑

n=1

1

n
is divergent with a rate of divergence given by

θ : N
∗ → N

∗, θ(n) = 4n.

Since, furthermore,

(

1

n

)

is decreasing, we can apply Corollaries 2.3 and 2.2 to

get that lim ‖xn − Txn‖ = 0 for all x ∈ C and moreover

∀ε ∈ (0, 2)∀n ≥ Ψ(α, θ, M, ε)
(

‖xn − Txn‖ < ε
)

,

where

Ψ(α, θ, M, ε) = max

{

θ

(

α
( ε

8M

)

+ 1 +

⌈

ln

(

8M

ε

)⌉)

, α
( ε

4M

)

}

= θ

(

α
( ε

8M

)

+ 1 +

⌈

ln

(

8M

ε

)⌉)

and M ∈ N
∗ is such that M ≥ 3dC . Using that dae < a + 1 and 1 + ln a ≤ a for

all a > 0, we get that

α
( ε

8M

)

+ 1 +

⌈

ln

(

8M

ε

)⌉

< α
( ε

8M

)

+ 2 + ln

(

8M

ε

)

≤ α
( ε

8M

)

+ 1 +
8M

ε

=

⌈

8M

ε

⌉

+ 2 +
8M

ε
<

16M

ε
+ 3,

we get that

Ψ(α, θ, M, ε) < 4
16M

ε
+3 = exp

(

ln 4 ·

(

16M

ε
+ 3

))

= Φ(dc, ε).

The conclusion follows now immediately. �
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Hence, we get an exponential (in 1/ε) rate of asymptotic regularity in the case
λn = 1/n.

3 Some technical lemmas

The following lemma collects some useful properties of Halpern iterations and
it is essentially contained in [22, 23]. In order to make the paper self-contained,
we still give the proof.

Lemma 3.1. Let (X, ‖ · ‖) be a normed space, C ⊆ X be a nonempty convex
subset, T : C → C nonexpansive and (λn)n≥1 be a sequence in [0, 1]. Assume
that (xn)n≥1 is the Halpern iteration starting with x ∈ C. Then

1. For all n ≥ 1,

‖Txn‖ ≤ ‖xn‖+ ‖x‖+ ‖Tx‖,

‖Txn − xn‖ ≤ ‖xn+1 − xn‖ + λn+1‖x − Txn‖,

‖xn+1 − xn‖ ≤ (1 − λn+1)‖xn − xn−1‖ + |λn+1 − λn| · ‖x − Txn−1‖.

2. If (xn) is bounded, then (Txn) is also bounded. Moreover, if M ≥ ‖xn‖, ‖Txn‖
for all n ≥ 1, then

‖Txn − xn‖ ≤ ‖xn+1 − xn‖ + 2Mλn+1,

‖xn+1 − xn‖ ≤ (1 − λn+1)‖xn − xn−1‖ + 2M |λn+1 − λn|

for all n ≥ 1.

Proof. 1.

‖Txn‖ ≤ ‖Txn − Tx‖ + ‖Tx‖ ≤ ‖xn − x‖ + ‖Tx‖ ≤ ‖xn‖+ ‖x‖ + ‖Tx‖

‖Txn − xn‖ = ‖(λn+1x + (1 − λn+1)Txn − λn+1(x − Txn)) − xn‖

= ‖xn+1 − xn − λn+1(x − Txn)‖ ≤ ‖xn+1 − xn‖ + λn+1‖x − Txn‖

‖xn+1 − xn‖ = ‖λn+1x + (1 − λn+1)Txn − λnx − (1 − λn)Txn−1‖

= ‖(λn+1 − λn)x + (1 − λn+1)(Txn − Txn−1) + (λn − λn+1)Txn−1‖

= ‖(λn+1 − λn)(x − Txn−1) + (1 − λn+1)(Txn − Txn−1)‖

≤ |λn+1 − λn| · ‖x − Txn−1‖ + (1 − λn+1)‖xn − xn−1‖,

since T is nonexpansive.

2. is an immediate consequence of 1.

7



Lemma 3.2. Let (λn)n≥1 be a sequence in [0, 1] and (an)n≥1, (bn)n≥1 be se-

quences in R+ such that

∞
∑

n=1

bn is convergent and

an+1 ≤ (1 − λn+1)an + bn for all n ∈ N
∗.

Then

1. for all m, n ∈ N
∗,

an+m ≤





n+m−1
∏

j=n

(1 − λj+1)



 an +

n+m−1
∑

j=n

bj (7)

2. (an) is bounded.

Proof. 1. By an easy induction on m.

2. Applying (7) with n := 1, we get that for all m ≥ 1,

0 ≤ am+1 ≤





m
∏

j=1

(1 − λj+1)



 a1 +

m
∑

j=1

bj ≤ a1 +

m
∑

j=1

bj ≤ a1 +

∞
∑

j=1

bj < ∞,

since
∞
∑

j=1

bj < ∞. Thus, (an) is bounded.

The following lemma is a quantitative version of [17, Lemma 2].

Lemma 3.3.

Let (λn)n≥1 be a sequence in [0, 1] and (an)n≥1, (bn)n≥1 be sequences in R+ such
that for all n ∈ N

∗,
an+1 ≤ (1 − λn+1)an + bn. (8)

Assume moreover that

∞
∑

n=1

λn is divergent,

∞
∑

n=1

bn is convergent and let δ : N
∗ →

N
∗ be a rate of divergence of

∞
∑

n=1

λn, γ : (0,∞) → N
∗ be a Cauchy modulus of

(sm)m≥1, where sm :=

m
∑

i=1

bi.

Then lim
n→∞

an = 0 and moreover

∀ε ∈ (0, 2)∀n ≥ h(γ, δ, D, ε)
(

an < ε
)

, (9)

where

h(γ, δ, D, ε) = δ

(

γ
(ε

2

)

+ 1 +

⌈

ln

(

2D

ε

)⌉)

,

D ∈ N
∗ is an upper bound on (an).
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Proof. By Lemma 3.2, (an) is bounded, so there exists D ∈ N
∗ such that an ≤ D

for all n ∈ N
∗. Let ε ∈ (0, 2) and define

N := γ
(ε

2

)

+ 1. (10)

Applying (7) with n := N , it follows that for all m ∈ N
∗

aN+m ≤





N+m−1
∏

j=N

(1 − λj+1)



 aN +

N+m−1
∑

j=N

bj

≤ exp



−

N+m−1
∑

j=N

λj+1



 aN +

N+m−1
∑

j=N

bj ,

since 1 − x ≤ exp(−x) for all x ∈ [0,∞)

= exp



−

N+m−1
∑

j=N

λj+1



 aN +
(

s
γ( ε

2 )+m
− s

γ( ε

2 )

)

< D exp



−

N+m−1
∑

j=N

λj+1



aN +
ε

2
,

since γ is a Cauchy modulus of (sm).

For simplicity, let us denote dm := D exp



−

N+m−1
∑

j=N

λj+1



. We have got then

that for all m ∈ N
∗,

aN+m < dm +
ε

2
. (11)

Let us note that

dm ≤
ε

2
⇔ exp



−

N+m−1
∑

j=N

λj+1



 ≤
ε

2D
⇔ −

N+m−1
∑

j=N

λj+1 ≤ ln
( ε

2D

)

⇔
N+m−1
∑

j=N

λj+1 ≥ − ln
( ε

2D

)

= ln

(

2D

ε

)

⇔
N+m
∑

i=N+1

λi ≥ ln

(

2D

ε

)

⇔

N+m
∑

i=1

λi ≥

N
∑

i=1

λi + ln

(

2D

ε

)

.

Let

M := δ

(

N +

⌈

ln

(

2D

ε

)⌉)

− N. (12)

Since δ is a rate of divergence of

∞
∑

n=1

λn and λn ≤ 1, it is obvious that δ(n) ≥ n

for all n ∈ N
∗. Using also the fact that

2D

ε
> D > 1, so ln

(

2D

ε

)

> 0, it is

9



easy to see that M ∈ N
∗. Moreover, for m ≥ M , we get that

N+m
∑

i=1

λi ≥

N+M
∑

i=1

λi ≥ N +

⌈

ln

(

2D

ε

)⌉

≥

N
∑

i=1

λi + ln

(

2D

ε

)

.

Hence, dm ≤
ε

2
for all m ≥ M . Combining this with (11), we get that for all

m ≥ M , aN+m < ε, that is
aN+M+n < ε. (13)

for all n ∈ N. Define

h(γ, δ, D, ε) := N + M = δ

(

N +

⌈

ln

(

2D

ε

)⌉)

(14)

Then (9) follows. Thus, lim an = 0 and h(γ, δ, D, ε) is a rate of convergence of
(an) towards 0.

4 Proof of Theorem 2.1

By Lemma 3.1, we get that M ≥ ‖xn‖, ‖Txn‖ for all n ≥ 1 and

‖xn+1 − xn‖ ≤ (1 − λn+1)‖xn − xn−1‖ + 2M · |λn+1 − λn|. (15)

Let us consider the sequences

an := ‖xn − xn−1‖, bn := 2M |λn+1 − λn|

and let D := 2M . Then D is a bound on (an) and, by (15), for all n ≥ 1,

an+1 ≤ (1 − λn+1)an + bn.

Moreover,

∞
∑

n=1

λn is divergent with rate of divergence θ and if we define

γ : (0,∞) → N
∗, γ(ε) := β

( ε

2M

)

,

we get that for all n ∈ N
∗,

γ(ε)+n
∑

i=1

bi −

γ(ε)
∑

i=1

bi = 2M





γ(ε)+n
∑

i=1

|λi+1 − λi| −

γ(ε)
∑

i=1

|λi+1 − λi|





= 2M
(

s
β( ε

2M )+n
− s

β( ε

2M )

)

< 2M ·
ε

2M
= ε,

so
∞
∑

n=1

bn is convergent and γ is a Cauchy modulus of

(

n
∑

i=1

bi

)

.
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Thus, the hypothesis of Lemma 3.3 are satisfied, so we can apply it to get
that for all ε ∈ (0, 2) and for all n ≥ h1(β, θ, M, ε)

‖xn − xn−1‖ <
ε

2
, (16)

where

h1(β, θ, M, ε) := θ

(

β
( ε

8M

)

+ 1 +

⌈

ln

(

8M

ε

)⌉)

.

By Lemma 3.1.2, for all n ≥ 2,

‖xn−1 − Txn−1‖ ≤ ‖xn − xn−1‖ + 2Mλn. (17)

Let h2(α, M, ε) := α
( ε

4M

)

. Then, using the fact that α is a rate of convergence

of (λn) towards 0, we get that for all n ≥ h2(α, M, ε)

2Mλn < 2M
ε

4M
=

ε

2
. (18)

Combining (16), (17) and (18), it follows that

‖xn−1 − Txn−1‖ < ε

for all n ≥ max{h1(β, θ, M, ε), h2(α, M, ε)}, so the conclusion of the theorem
follows with Φ defined by (7).
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