EXCEPTIONAL DEL PEZZO HYPERSURFACES

IVAN CHELTSOV, JIHUN PARK, CONSTANTIN SHRAMOV

Abstract

We classify weakly exceptional quasismooth well-formed del Pezzo weighted hypersurfaces in $\mathbb{P}\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$, and we compute their global \log canonical thresholds.

Contents

Part 1. Introduction 1
1.1. Background 1
1.2. Notation 6
1.3. Results 6
1.4. Preliminaries 10
Part 2. Infinite series 14
2.1. Infinite series with $I=1$ 14
2.2. Infinite series with $I=2$ 15
2.3. Infinite series with $I=4$ 23
2.4. Infinite series with $I=6$ 26
Part 3. Sporadic cases 35
3.1. Sporadic cases with $I=1$ 35
3.2. Sporadic cases with $I=2$ 50
3.3. Sporadic cases with $I=3$ 78
3.4. Sporadic cases with $I=4$ 88
3.5. Sporadic cases with $I=5$ 107
3.6. Sporadic cases with $I=6$ 115
3.7. Sporadic cases with $I=7$ 119
3.8. Sporadic cases with $I=8$ 120
3.9. Sporadic cases with $I=9$ 123
3.10. Sporadic cases with $I=10$ 123
Part 4. The Big Table 126
References 139

Part 1. Introduction

1.1. Background

The multiplicity of a nonzero polynomial $f \in \mathbb{C}\left[z_{1}, \cdots, z_{n}\right]$ at a point $P \in \mathbb{C}^{n}$ is the nonnegative integer m such that $f \in \mathfrak{m}_{P}^{m} \backslash \mathfrak{m}_{P}^{m+1}$, where \mathfrak{m}_{P} is the maximal ideal of polynomials vanishing at the point P in $\mathbb{C}\left[z_{1}, \cdots, z_{n}\right]$. It can be also defined by derivatives. The multiplicity of f at the point P is the number

$$
\operatorname{mult}_{P}(f)=\min \left\{m \left\lvert\, \frac{\partial^{m} f}{\partial^{m_{1}} z_{1} \partial^{m_{2}} z_{2} \cdots \partial^{m_{n}} z_{n}}(P) \neq 0\right.\right\} .
$$

On the other hand, we have a similar invariant that is defined by integrations. This invariant, which is called the complex singularity exponent of f at the point P, is given by

$$
c_{P}(f)=\sup \left\{\left.c| | f\right|^{-c} \text { is locally } L^{2} \text { near the point } P \in \mathbb{C}^{n}\right\} .
$$

It is hard to calculate it in general. However for some cases there are easy ways to calculate it.

Example 1.1.1. Let f be a polynomial in $\mathbb{C}\left[z_{1}, z_{2}\right]$. Suppose that the polynomial defines an irreducible curve passing through the origin O in \mathbb{C}^{2}. We then have

$$
c_{O}(f)=\min \left(1, \frac{1}{m}+\frac{1}{n}\right),
$$

where (m, n) is the first pair of Puiseux exponents of f (see [32]). In particular, we have

$$
c_{O}\left(z_{1}^{n_{1}} z_{2}^{n_{2}}\left(z_{1}^{k m_{1}}+z_{2}^{k m_{2}}\right)\right)=\min \left(\frac{1}{n_{1}}, \frac{1}{n_{2}}, \frac{\frac{1}{m_{1}}+\frac{1}{m_{2}}}{k+\frac{n_{1}}{m_{1}}+\frac{n_{2}}{m_{2}}}\right),
$$

where $n_{1}, n_{2}, m_{1}, m_{2}, k$ are non-negative integers.
Example 1.1.2. Let m_{1}, \ldots, m_{n} be positive integers. Then

$$
\min \left(1, \sum_{i=1}^{n} \frac{1}{m_{i}}\right)=c_{O}\left(\sum_{i=1}^{n} z_{i}^{m_{i}}\right) \geqslant c_{O}\left(\prod_{i=1}^{n} z_{i}^{m_{i}}\right)=\min \left(\frac{1}{m_{1}}, \frac{1}{m_{2}}, \ldots, \frac{1}{m_{n}}\right) .
$$

Let X be a variety ${ }^{1}$ with at most \log canonical singularities (see [28]), let $Z \subseteq X$ be a closed subvariety, and let D be an effective \mathbb{Q}-Cartier \mathbb{Q}-divisor on the variety X. Then the number

$$
\operatorname{lct}_{Z}(X, D)=\sup \{\lambda \in \mathbb{Q} \mid \text { the } \log \text { pair }(X, \lambda D) \text { is } \log \text { canonical along } Z\} \in \mathbb{Q} \cup\{+\infty\}
$$

is called a \log canonical threshold of the divisor D along Z. It follows from [28] that for a polynomial f in n variables over \mathbb{C}

$$
\operatorname{lct}_{O}\left(\mathbb{C}^{n},(f=0)\right)=c_{O}(f)
$$

so that the \log canonical threshold $\operatorname{lct}_{Z}(X, D)$ is an algebraic counterpart of the complex singularity exponent $c_{O}(f)$. We can define the \log canonical threshold of D on X by

$$
\begin{aligned}
\operatorname{lct}_{X}(X, D) & =\inf \left\{\operatorname{lct}_{P}(X, D) \mid P \in X\right\} \\
& =\sup \{\lambda \in \mathbb{Q} \mid \text { the log pair }(X, \lambda D) \text { is } \log \text { canonical }\}
\end{aligned}
$$

and, for simplicity, we put $\operatorname{lct}(X, D)=\operatorname{lct}_{X}(X, D)$.
Example 1.1.3. Suppose that $X=\mathbb{P}^{2}$ and $D \in\left|\mathcal{O}_{\mathbb{P}^{2}}(3)\right|$. Then

$$
\operatorname{lct}(X, D)=\left\{\begin{array}{l}
1 \text { if } D \text { is a smooth curve, } \\
1 \text { if } D \text { is a curve with ordinary double points, } \\
\frac{5}{6} \text { if } D \text { is a curve with one cuspidal point, } \\
\frac{3}{4} \text { if } D \text { consists of a conic and a line that are tangent, } \\
\frac{2}{3} \text { if } D \text { consists of three lines intersecting at one point, } \\
\frac{1}{2} \text { if } \operatorname{Supp}(D) \text { consists of two lines, } \\
\frac{1}{3} \text { if } \operatorname{Supp}(D) \text { consists of one line. }
\end{array}\right.
$$

Now we suppose that X is a Fano variety with at most log terminal singularities (see [24]).

[^0]Definition 1.1.4. The global \log canonical threshold of the Fano variety X is the number defined by

$$
\operatorname{lct}(X)=\inf \left\{\operatorname{lct}(X, D) \mid D \text { is an effective } \mathbb{Q} \text {-divisor on } X \text { such that } D \sim_{\mathbb{Q}}-K_{X}\right\}
$$

The number $\operatorname{lct}(X)$ is an algebraic counterpart of the α-invariant of Tian (see [15], [48]).
The group $\operatorname{Pic}(X)$ is torsion free because X is rationally connected (see [53]). Therefore, we have

$$
\operatorname{lct}(X)=\sup \left\{\begin{array}{l|l}
\lambda \in \mathbb{Q} & \begin{array}{l}
\text { the log pair }(X, \lambda D) \text { is } \log \text { canonical } \\
\text { for every effective } \mathbb{Q} \text {-divisor } D \equiv-K_{X}
\end{array}
\end{array}\right\} .
$$

It immediately follows from Definition 1.1.4 that

$$
\operatorname{lct}(X)=\sup \left\{\begin{array}{l|l}
\varepsilon \in \mathbb{Q} & \begin{array}{l}
\text { the log pair }\left(X, \frac{\varepsilon}{n} D\right) \text { is } \log \text { canonical for } \\
\text { every divisor } D \in\left|-n K_{X}\right| \text { and every } n \in \mathbb{N}
\end{array}
\end{array}\right\}
$$

Example 1.1.5. Suppose that $\mathbb{P}\left(a_{0}, a_{1}, \ldots, a_{n}\right)$ is a well-formed weighted projective space (see [23]). Then

$$
\operatorname{lct}\left(\mathbb{P}\left(a_{0}, a_{1}, \ldots, a_{n}\right)\right)=\frac{a_{0}}{\sum_{i=0}^{n} a_{i}}
$$

Example 1.1.6. Let X be a smooth hypersurface in \mathbb{P}^{n} of degree $m \leqslant n$. The paper [6] shows that

$$
\operatorname{lct}(X)=\frac{1}{n+1-m}
$$

if $m<n$. For the case $m=n \geqslant 2$ it also shows that

$$
1-\frac{1}{n} \leqslant \operatorname{lct}(X) \leqslant 1
$$

and that $\operatorname{lct}(X)=1-\frac{1}{n}$ if X contains a cone of dimension $n-2$. Meanwhile, the papers [14] and [41] show that

$$
1 \geqslant \operatorname{lct}(X) \geqslant\left\{\begin{array}{l}
1 \text { if } n \geqslant 6 \\
\frac{22}{25} \text { if } n=5 \\
\frac{16}{21} \text { if } n=4 \\
\frac{3}{4} \text { if } n=3
\end{array}\right.
$$

if X is general.
Example 1.1.7. Let X be a smooth hypersurface in the weighted projective space $\mathbb{P}\left(1^{n+1}, d\right)$ of degree $2 d \geqslant 4$. Then

$$
\operatorname{lct}(X)=\frac{1}{n+1-d}
$$

in the case when $d<n$ (see [8, Proposition 20]). Suppose that $d=n$. Then the inequalities

$$
\frac{2 n-1}{2 n} \leqslant \operatorname{lct}(X) \leqslant 1
$$

hold (see [14]). But $\operatorname{lct}(X)=1$ if X is general and $n \geqslant 3$. Furthermore for the case $n=3$ the papers [14] and [41] prove that

$$
\operatorname{lct}(X) \in\left\{\frac{5}{6}, \frac{43}{50}, \frac{13}{15}, \frac{33}{38}, \frac{7}{8}, \frac{33}{38}, \frac{8}{9}, \frac{9}{10}, \frac{11}{12}, \frac{13}{14}, \frac{15}{16}, \frac{17}{18}, \frac{19}{20}, \frac{21}{22}, \frac{29}{30}, 1\right\}
$$

and all these values can be attained. For instance, if the hypersurface X is given by

$$
w^{2}=x^{6}+y^{6}+z^{6}+t^{6}+x^{2} y^{2} z t \subset \mathbb{P}(1,1,1,1,3) \cong \operatorname{Proj}(\mathbb{C}[x, y, z, t, w])
$$

where $\operatorname{wt}(x)=\operatorname{wt}(y)=\operatorname{wt}(z)=\operatorname{wt}(t)=1$ and $\operatorname{wt}(w)=3$, then $\operatorname{lct}(X)=1$ (see [14]).

Example 1.1.8. Let X be a rational homogeneous space such that $-K_{X} \sim r D$ and

$$
\operatorname{Pic}(X)=\mathbb{Z}[D]
$$

where D is an ample Cartier divisor and $r \in \mathbb{Z}_{>0}$. Then $\operatorname{lct}(X)=\frac{1}{r}$ (see [22]).
Example 1.1.9. Let X be a quasismooth well-formed (see [23]) hypersurface in $\mathbb{P}\left(1, a_{1}, a_{2}, a_{3}, a_{4}\right)$ of degree $\sum_{i=1}^{4} a_{i}$ with terminal singularities (see [28]), where $a_{1} \leqslant \ldots \leqslant$ a_{4}. Then

- there are exactly 95 possibilities for the quadruple $\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$ (see [23], [26]),
- if $X \subset \mathbb{P}\left(1, a_{1}, a_{2}, a_{3}, a_{4}\right)$ is general, then it follows from [7], [9], [10] and [14] that

$$
1 \geqslant \operatorname{lct}(X) \geqslant \begin{cases}\frac{16}{21} & \text { if } a_{1}=a_{2}=a_{3}=a_{4}=1 \\ \frac{7}{9} & \text { if }\left(a_{1}, a_{2}, a_{3}, a_{4}\right)=(1,1,1,2) \\ \frac{4}{5} & \text { if }\left(a_{1}, a_{2}, a_{3}, a_{4}\right)=(1,1,2,2) \\ \frac{6}{7} & \text { if }\left(a_{1}, a_{2}, a_{3}, a_{4}\right)=(1,1,2,3) \\ 1 & \text { in the remaining cases }\end{cases}
$$

- the global log canonical threshold of the hypersurface

$$
w^{2}=t^{3}+z^{9}+y^{18}+x^{18} \subset \mathbb{P}(1,1,2,6,9) \cong \operatorname{Proj}(\mathbb{C}[x, y, z, t, w])
$$

is equal to $\frac{17}{18}($ see $[7])$, where $\operatorname{wt}(x)=\mathrm{wt}(y)=1, \operatorname{wt}(z)=2, \operatorname{wt}(t)=6, \operatorname{wt}(w)=9$.
Example 1.1.10. Let X be a singular cubic surface in \mathbb{P}^{3} such that X has at most canonical singularities. The possible singularities of X are listed in [5]. It follows from [12] that

$$
\operatorname{lct}(X)= \begin{cases}\frac{2}{3} & \text { if } \operatorname{Sing}(X)=\left\{\mathbb{A}_{1}\right\}, \\ \frac{1}{3} & \text { if } \operatorname{Sing}(X) \supseteq\left\{\mathbb{A}_{4}\right\}, \operatorname{Sing}(X)=\left\{\mathbb{D}_{4}\right\} \text { or } \operatorname{Sing}(X) \supseteq\left\{\mathbb{A}_{2}, \mathbb{A}_{2}\right\}, \\ \frac{1}{4} & \text { if } \operatorname{Sing}(X) \supseteq\left\{\mathbb{A}_{5}\right\} \text { or } \operatorname{Sing}(X)=\left\{\mathbb{D}_{5}\right\}, \\ \frac{1}{6} & \text { if } \operatorname{Sing}(X)=\left\{\mathbb{E}_{6}\right\}, \\ \frac{1}{2} & \text { in the remaining cases. }\end{cases}
$$

So far we have not seen any single variety whose global log canonical threshold is irrational. In general, it is unknown whether $\operatorname{lct}(X)$ is a rational number or not ${ }^{2}$ (cf. Question 1 in [50]). However, we expect more than this as follows.

Conjecture 1.1.11. There is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ on the variety X such that

$$
\operatorname{lct}(X)=\operatorname{lct}(X, D) \in \mathbb{Q}
$$

The following definition is due to [46] (cf. [25], [31], [34], [40]).
Definition 1.1.12. The variety X is exceptional (resp. weakly exceptional, strongly exceptional) if for every effective \mathbb{Q}-divisor D on the variety X such that $D \equiv-K_{X}$, the pair (X, D) is \log terminal $(\operatorname{resp} . \operatorname{lct}(X) \geqslant 1, \operatorname{lct}(X)>1)$.

It is easy to see the implications

$$
\text { strongly exceptional } \Longrightarrow \text { exceptional } \Longrightarrow \text { weakly exceptional. }
$$

However, if Conjecture 1.1.11 holds for X, then we see that X is exceptional if and only if X is strongly exceptional.

[^1]Exceptional del Pezzo surfaces, which are called del Pezzo surfaces without tigers in [29], lie in finitely many families (see [46], [40]). We expect that strongly exceptional Fano varieties with quotient singularities enjoy very interesting geometrical properties (cf. [44, Theorem 3.3], [38, Theorem 1]).

The global log canonical threshold plays important roles both in birational geometry and in complex geometry.
Example 1.1.13. Let X_{1}, \ldots, X_{r} be threefolds satisfying hypotheses of Example 1.1.9. Then

- the threefolds X_{1}, \ldots, X_{r} are non-rational (see [16]),
- for every $i=1, \ldots, r$, there is no rational dominant map $\rho: X_{i} \rightarrow Y$ such that
- general fiber of the map ρ is rationally connected,
- the inequality $\operatorname{dim}(Y) \geqslant 1$ holds,
- there is no non-biregular birational map $\rho: X_{i} \rightarrow Y$ such that
- the variety Y has terminal \mathbb{Q}-factorial singularities,
- the equality $\mathrm{rk} \operatorname{Pic}(Y)=1$ holds.
- the structures of the groups $\operatorname{Bir}\left(X_{1}\right), \ldots, \operatorname{Bir}\left(X_{r}\right)$ are completely described in [16] and [13],
- if the equality $\operatorname{lct}\left(X_{1}\right)=\operatorname{lct}\left(X_{2}\right)=\ldots=\operatorname{lct}\left(X_{r}\right)=1$ holds, then
- the variety $X_{1} \times \ldots \times X_{r}$ is non-rational and

$$
\operatorname{Bir}\left(X_{1} \times \ldots \times X_{r}\right)=\left\langle\prod_{i=1}^{r} \operatorname{Bir}\left(X_{i}\right), \operatorname{Aut}\left(X_{1} \times \ldots \times X_{r}\right)\right\rangle
$$

- for every dominant map $\rho: X_{1} \times \ldots \times X_{r} \rightarrow Y$ whose general fiber is rationally connected, there is a subset $\left\{i_{1}, \ldots, i_{k}\right\} \subseteq\{1, \ldots, r\}$ and a commutative diagram

where ξ and σ are birational maps, and π is a projection (see [7], [41]).
The following result was proved in [17], [37], [48] (see [15, Appendix A]).
Theorem 1.1.14. Suppose that X is a Fano variety with at most quotient singularities. Then X admits an orbifold Kähler-Einstein metric if

$$
\operatorname{lct}(X)>\frac{\operatorname{dim}(X)}{\operatorname{dim}(X)+1}
$$

Examples 1.1.6, 1.1.7 and 1.1.9 are good examples to which we may apply Theorem 1.1.14.
There are many known obstructions for the existence of orbifold Kähler-Einstein metrics on Fano varieties with quotient singularities (see [18], [20], [33], [36], [43], [51]).
Example 1.1.15. Let X be a quasismooth hypersurface in $\mathbb{P}\left(a_{0}, \ldots, a_{n}\right)$ of degree $d<\sum_{i=0}^{n} a_{i}$, where $a_{0} \leqslant \ldots \leqslant a_{n}$. Suppose that X is well-formed and has a Kähler-Einstein metric. Then

$$
d\left(\sum_{i=0}^{n} a_{i}-d\right)^{n} \leqslant n^{n} \prod_{i=0}^{n} a_{i}
$$

and $\sum_{i=0}^{n} a_{i} \leqslant d+n a_{0}$ by [21] (see [2], [47]).
The problem of existence of Kähler-Einstein metrics on smooth del Pezzo surfaces is completely solved by [49].
Theorem 1.1.16. If X is a smooth del Pezzo surface, then the following conditions are equivalent:

- the automorphism group $\operatorname{Aut}(X)$ is reductive;
- the surface X admits a Kähler-Einstein metric;
- the surface X is not a blow up of \mathbb{P}^{2} at one or two points.

Acknowledgments. The first author is grateful to the Max Plank Institute for Mathematics at Bonn for the hospitality and excellent working condit. The first and the third authors has been supported by the EPSRC grant EP/E048412/1. The second author has been supported by the Korea Research Foundation Grant funded by the Korean Government (KRF-2007-412-J02302).

1.2. Notation

We reserve the following notation that will be used throughout the paper:

- $\mathbb{P}\left(a_{0}, a_{1}, a_{2}, a_{3}\right)$ denotes the weighted projective space $\operatorname{Proj}(\mathbb{C}[x, y, z, t])$ with weights $\operatorname{wt}(x)=a_{0}, \operatorname{wt}(y)=a_{1}, \operatorname{wt}(z)=a_{2}, \operatorname{wt}(t)=a_{3}$, where we always assume $a_{0} \leqslant a_{1} \leqslant$ $a_{2} \leqslant a_{3}$.
- O_{x} is the point in $\mathbb{P}\left(a_{0}, a_{1}, a_{2}, a_{3}\right)$ defined by $y=z=t=0$. The points O_{y}, O_{z} and O_{t} are defined in the similar way.
- X denotes a quasismooth and well-formed hypersurface in $\mathbb{P}\left(a_{0}, a_{1}, a_{2}, a_{3}\right)$ (see Definitions 6.3 and 6.9 in [23], respectively).
- C_{x} is the curve on X cut by the equation $x=0$. The curves C_{y}, C_{z} and C_{t} are defined by the similar way.
- $L_{x y}$ is the one-dimensional strata on $\mathbb{P}\left(a_{0}, a_{1}, a_{2}, a_{3}\right)$ defined by $x=y=0$ and the other one-dimensional stratum are labeled in the same way.
- Let D be a divisor on X and $P \in X$. Choose an orbifold chart $\pi: \tilde{U} \rightarrow U$ for some neighborhood $P \in U \subset X$. We put $\operatorname{mult}_{P}(D)=\operatorname{mult}_{P}\left(\pi^{*} D\right)$ and refer to this quantity as the multiplicity of D at P.

1.3. Results

Let X be a hypersurface in $\mathbb{P}=\mathbb{P}\left(a_{0}, a_{1}, a_{2}, a_{3}\right)$ of degree d. Then X is given by a quasihomogeneous polynomial equation $f(x, y, z, t)=0$ of degree d. The quasihomogeneous equation

$$
f(x, y, z, t)=0 \subset \mathbb{C}^{4} \cong \operatorname{Spec}(\mathbb{C}[x, y, z, t])
$$

defines an isolated quasihomogeneous singularity (V, O) with the Milnor number $\prod_{i=0}^{n}\left(\frac{d}{a_{i}}-1\right)$, where O is the origin of \mathbb{C}^{4}. It follows from the adjunction formula that

$$
K_{X} \sim_{\mathbb{Q}} \mathcal{O}_{\mathbb{P}\left(a_{0}, a_{1}, a_{2}, a_{3}\right)}\left(d-\sum_{i=0}^{3} a_{i}\right)
$$

and it follows from [19], [28, Proposition 8.14], [42] that the following conditions are equivalent:

- the inequality $d \leqslant \sum_{i=0}^{3} a_{i}-1$ holds;
- the surface X is a del Pezzo surface;
- the singularity (V, O) is rational;
- the singularity (V, O) is canonical.

Blowing up \mathbb{C}^{4} at the origin O with weights $\left(a_{0}, a_{1}, a_{2}, a_{3}\right)$, we get a purely \log terminal blow up of the singularity (V, O) (see [30], [39]). The paper [39] shows that the following conditions are equivalent:

- the surface X is exceptional (weakly exceptional, respectively);
- the singularity (V, O) is exceptional ${ }^{3}$ (weakly exceptional, respectively).

From now on we suppose that $d \leqslant \sum_{i=0}^{3} a_{i}-1$. Then X is a del Pezzo surface. Put $I=$ $\sum_{i=0}^{3} a_{i}-d$. The set of possible values of $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)$ can be obtained from [52]. The list of possible values of ($\left.a_{0}, a_{1}, a_{2}, a_{3}, d\right)$ with $2 I<3 a_{0}$ can be found in [4]. If the equality $I=1$ holds, then it follows from [27] that

- either the surface X is smooth and

$$
\left(a_{0}, a_{1}, a_{2}, a_{3}\right) \in\{(1,1,1,1),(1,1,1,2),(1,1,2,3)\}
$$

- or the surface X is singular and
- either $\left(a_{0}, a_{1}, a_{2}, a_{3}\right)=(2,2 n+1,2 n+1,4 n+1)$, where $n \in \mathbb{Z}_{>0}$,

[^2]- or the quadruple ($a_{0}, a_{1}, a_{2}, a_{3}$) lies in the set

$$
\left\{\begin{array}{l}
(1,2,3,5),(1,3,5,7),(1,3,5,8),(2,3,5,9) \\
(3,3,5,5),(3,5,7,11),(3,5,7,14),(3,5,11,18) \\
(5,14,17,21),(5,19,27,31),(5,19,27,50),(7,11,27,37) \\
(7,11,27,44),(9,15,17,20),(9,15,23,23),(11,29,39,49) \\
(11,49,69,128),(13,23,35,57),(13,35,81,128)
\end{array}\right\} .
$$

The global log canonical thresholds of such del Pezzo surfaces have been considered either implicitly or explicitly in [1], [3], [11], [17], [27]. For example, the papers [1], [3], [17] and [27] gives us lower bounds for global log canonical thresholds of singular del Pezzo surfaces with $I=1$.

Theorem 1.3.1. Suppose that $I=1$ and X is singular. Then

Meanwhile, the paper [11] deals with the exact values \log the global log canonical thresholds of smooth del Pezzo surfaces with $I=1$.

Theorem 1.3.2. Suppose that $I=1$ and X is smooth. Then

$$
\operatorname{lct}(X)= \begin{cases}1 & \text { if }\left(a_{0}, a_{1}, a_{2}, a_{3}\right)=(1,1,2,3) \text { and }\left|-K_{X}\right| \text { contains no cuspidal curves, } \\ \frac{5}{6} & \text { if }\left(a_{0}, a_{1}, a_{2}, a_{3}\right)=(1,1,2,3) \text { and }\left|-K_{X}\right| \text { contains a cuspidal curve, } \\ \overline{5} & \text { if }\left(a_{0}, a_{1}, a_{2}, a_{3}\right)=(1,1,1,2) \text { and }\left|-K_{X}\right| \text { contains no tacnodal curves, } \\ \frac{3}{4} & \text { if }\left(a_{0}, a_{1}, a_{2}, a_{3}\right)=(1,1,1,2) \text { and }\left|-K_{X}\right| \text { contains a tacnodal curve, } \\ \frac{3}{4} & \text { if } X \text { is a cubic in } \mathbb{P}^{3} \text { with no Eckardt points, } \\ \frac{2}{3} & \text { if either } X \text { is a cubic in } \mathbb{P}^{3} \text { with an Eckardt point. }\end{cases}
$$

A singular del Pezzo hypersurface X must satisfy exclusively one of the following properties:
(1) $2 I \geqslant 3 a_{0}$;
(2) $2 I<3 a_{0}$ and

$$
\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(I-k, I+k, a, a+k, 2 a+k+I)
$$

for some $\mathbb{Z}_{>0} \ni a \geqslant I+k$ and $I>k \in \mathbb{Z}_{\geqslant 0}$;
(3) $2 I<3 a_{0}$ but

$$
\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right) \neq(I-k, I+k, a, a+k, 2 a+k+I)
$$

for any $\mathbb{Z}_{>0} \ni a \geqslant I+k$ and $I>k \in \mathbb{Z}_{\geqslant 0}$.
For the first two cases it is easy to see $\operatorname{lct}\left(X, \frac{I}{a_{0}} C_{x}\right) \leq \frac{2}{3}$ and hence lct $(X) \leq \frac{2}{3}$ (for instance, see [4]). All the values of ($a_{0}, a_{1}, a_{2}, a_{3}, d$) whose hypersurface X satisfies the last condition are listed in Table 4 (see [4]).

We already know the global log canonical thresholds of smooth del Pezzo surfaces. For del Pezzo surfaces corresponding to the first two conditions, their global log canonical thresholds are relatively too small to enjoy the condition of Theorem 1.1.14. However, the global log canonical thresholds of del Pezzo surfaces corresponding to the last condition have not been investigated sufficiently. In the present paper we compute all of them and then we obtain the following result.

Theorem 1.3.3. Let X be a del Pezzo surface that appears in Table 4. Then

$$
\operatorname{lct}(X)=\min \left\{\operatorname{lct}\left(X, \frac{I}{a_{0}} C_{x}\right), \operatorname{lct}\left(X, \frac{I}{a_{1}} C_{y}\right), \operatorname{lct}\left(X, \frac{I}{a_{2}} C_{z}\right)\right\} .
$$

In particular, we obtain the value of $\operatorname{lct}(X)$ for every quintuple $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)$ listed in Table 4. As a result, we obtain the following corollaries.

Corollary 1.3.4. Suppose that $I=1$. Then X is exceptional if and only if $K_{X}^{2} \leqslant \frac{1}{15}$.
Corollary 1.3.5. The following assertions are equivalent:

- the surface X is exceptional;
- $\operatorname{lct}(X)>1$;
- the quintuple ($\left.a_{0}, a_{1}, a_{2}, a_{3}, d\right)$ lies in the set
$\left\{\begin{array}{l}(2,3,5,9,18),(3,3,5,5,15),(3,5,7,11,25),(3,5,7,14,28) \\ (3,5,11,18,36),(5,14,17,21,56),(5,19,27,31,81),(5,19,27,50,100) \\ (7,11,27,37,81),(7,11,27,44,88),(9,15,17,20,20),(9,15,23,23,69) \\ (11,29,39,49,127),(11,49,69,128,256),(13,23,35,57,127) \\ (13,35,81,128,256),(3,4,5,10,20),(3,4,10,15,30),(5,13,19,22,57) \\ (5,13,19,35,70),(6,9,10,13,36),(7,8,19,25,57),(7,8,19,32,64) \\ (9,12,13,16,48),(9,12,19,19,57),(9,19,24,31,81),(10,19,35,43,105) \\ (11,21,28,47,105),(11,25,32,41,107),(11,25,34,43,111),(11,43,61,113,226) \\ (13,18,45,61,135),(13,20,29,47,107),(13,20,31,49,111),(13,31,71,113,226) \\ (14,17,29,41,99),(5,7,11,13,33),(5,7,11,20,40),(11,21,29,37,95) \\ (11,37,53,98,196),(13,17,27,41,95),(13,27,61,98,196), 15,19,43,74,148) \\ (9,11,12,17,45),(10,13,25,31,75),(11,17,20,27,71),(11,17,24,31,79) \\ (13,14,19,29,71),(13,14,23,33,79),(13,23,51,83,166),(11,13,19,25,63) \\ (11,31,45,83,83),(11,25,37,68,136),(13,19,41,68,136) \\ (11,19,29,53,106),(13,15,31,53,106),(11,13,21,38,76)\end{array}\right\}$.

Corollary 1.3.6. The following assertions are equivalent:

- the surface X is weakly exceptional and not exceptional;
- $\operatorname{lct}(X)=1$;
- one of the following holds
- the quintuple ($a_{0}, a_{1}, a_{2}, a_{3}, d$) lies in the set

$$
\left\{\begin{array}{l}
(2,2 n+1,2 n+1,4 n+1,8 n+4),(4,2 n+3,2 n+3,4 n+4,8 n+12) \\
(3,3 n+1,6 n+1,9 n+3,18 n+6),(3,3 n+1,6 n+1,9 n, 18 n+3) \\
(3,3 n, 3 n+1,3 n+1,9 n+3),(3,3 n+1,3 n+2,3 n+2,9 n+6) \\
(4,2 n+1,4 n+2,6 n+1,12 n+6),(6,6 n+3,6 n+5,6 n+5,18 n+15) \\
(6,6 n+5,12 n+8,18 n+9,36 n+24) \\
(6,6 n+5,12 n+8,18 n+15,36 n+30) \\
(8,4 n+5,4 n+7,4 n+9,12 n+23) \\
(9,3 n+8,3 n+11,6 n+13,12 n+35) \\
(1,3,5,8,16),(2,3,4,7,14),(3,7,8,13,29) \\
(3,10,11,19,41),(5,6,8,9,24),(5,6,8,15,30)
\end{array}\right\},
$$

where $n \in \mathbb{Z}_{>0}$,

- $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(1,2,3,5,10)$ and C_{x} has an ordinary double point,
$-\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(1,3,5,7,15)$ and the defining equation of X contains $y z t$,
$-\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(2,3,4,5,12)$ and the defining equation of X contains $y z t$.
Corollary 1.3.7. The del Pezzo surface X has an orbifold Kähler-Einstein metric unless one of the following holds
- the quintuple ($\left.a_{0}, a_{1}, a_{2}, a_{3}, d\right)$ lies in the set

$$
\left\{\begin{array}{l}
(7,10,15,19,45),(7,18,27,37,81),(7,15,19,32,64) \\
(7,19,25,41,82),(7,26,39,55,117)
\end{array}\right\}
$$

- $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(1,3,5,7,15)$ and the defining equation of X does not contain $y z t$,
- $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(2,3,4,5,12)$ and the defining equation of X does not contain $y z t$.

Theorem 1.3.3 shows that Conjecture 1.1.11 holds for del Pezzo surfaces described in Table 4.

1.4. Preliminaries

Let Y be a variety with \log terminal singularities. Let us consider an effective \mathbb{Q}-Cartier \mathbb{Q}-divisor

$$
B_{Y}=\sum_{i=1}^{r} a_{i} B_{i}
$$

on Y, where B_{i} is a prime Weil divisor. Let $\pi: \bar{Y} \rightarrow Y$ be a birational morphism of a smooth variety \bar{Y}. Put

$$
B_{\bar{Y}}=\sum_{i=1}^{r} a_{i} \bar{B}_{i}
$$

where \bar{B}_{i} is the proper transform of the divisor B_{i} on the variety \bar{Y}. Then

$$
K_{\bar{Y}}+B_{\bar{Y}}=\pi^{*}\left(K_{Y}+B_{Y}\right)+\sum_{i=1}^{n} c_{i} E_{i}
$$

where $c_{i} \in \mathbb{Q}$ and E_{i} is an exceptional divisor of the morphism π. Suppose that the divisor

$$
\sum_{i=1}^{r} \bar{B}_{i}+\sum_{i=1}^{n} E_{i}
$$

is simple normal crossing and put

$$
B^{\bar{Y}}=B_{\bar{Y}}-\sum_{i=1}^{n} c_{i} E_{i}
$$

The singularities of $\left(Y, B_{Y}\right)$ are \log canonical (resp. log terminal) if $a_{i} \leqslant 1$ (resp. $a_{i}<1$) and $c_{j} \geqslant-1$ (resp. $c_{j}>-1$) for every $i=1, \ldots, r$ and $j=1, \ldots, n$. The locus of \log canonical singularities of the pair $\left(Y, B_{Y}\right)$, denoted by $\operatorname{LCS}\left(Y, B_{Y}\right)$, is defined by the set

$$
\operatorname{LCS}\left(Y, B_{Y}\right)=\left(\bigcup_{a_{i} \geqslant 1} B_{i}\right) \bigcup\left(\bigcup_{c_{i} \leqslant-1} \pi\left(E_{i}\right)\right) \subsetneq Y
$$

A proper irreducible subvariety $Z \subsetneq Y$ is said to be a center of \log canonical singularities of the \log pair $\left(Y, B_{Y}\right)$ if either $Z=B_{i}$ with $a_{i} \geqslant 1$ or $Z=\pi\left(E_{i}\right)$ with $c_{i} \leqslant-1$ for some choice of the birational morphism $\pi: \bar{Y} \rightarrow Y$. The set of all centers of \log canonical singularities of $\left(Y, B_{Y}\right)$ is denoted by $\mathbb{L C S}\left(Y, B_{Y}\right)$. Every member of $\mathbb{L C S}\left(Y, B_{Y}\right)$ is contained in $\operatorname{LCS}\left(Y, B_{Y}\right)$. We see that the set $\operatorname{LCS}\left(Y, B_{Y}\right)$ is empty, equivalently the set $\mathbb{L C S}\left(Y, B_{Y}\right)$ is empty, if and only if the \log pair $\left(Y, B_{Y}\right)$ is \log terminal.

Let \mathcal{H} be a base point free linear system on Y and let H be a sufficiently general divisor in the linear system \mathcal{H}. For an irreducible proper subvariety W of Y put

$$
\left.W\right|_{H}=\sum_{i=1}^{m} Z_{i}
$$

where $Z_{i} \subset H$ is an irreducible subvariety. It follows that the subvariety W belongs to $\mathbb{L} \mathbb{C S}\left(Y, B_{Y}\right)$ if and only if the set $\left\{Z_{1}, \ldots, Z_{m}\right\}$ is contained in $\mathbb{L} \mathbb{C S}\left(H,\left.B_{Y}\right|_{H}\right)$ (cf. Theorem 1.4.5).
Example 1.4.1. Let $\alpha: V \rightarrow Y$ be the blow up at a smooth point $O \in Y$. Then

$$
B_{V}=\alpha^{*}\left(B_{Y}\right)-\operatorname{mult}_{O}\left(B_{Y}\right) E
$$

where $\operatorname{mult}_{O}\left(B_{Y}\right) \in \mathbb{Q}$ and E is the exceptional divisor of the blow up α. Then

$$
\operatorname{mult}_{O}\left(B_{Y}\right)>1
$$

if the \log pair $\left(Y, B_{Y}\right)$ is not \log canonical at the point O. Put

$$
B^{V}=B_{V}+\left(\operatorname{mult}_{O}\left(B_{Y}\right)-\operatorname{dim}(Y)+1\right) E
$$

and suppose that $\operatorname{mult}_{O}\left(B_{Y}\right) \geqslant \operatorname{dim}(Y)-1$. Then $O \in \mathbb{L} \mathbb{C S}\left(Y, B_{Y}\right)$ if and only if

- either $E \in \mathbb{L} \mathbb{C S}\left(V, B^{V}\right)$ (equivalently, $\left.\operatorname{mult}_{O}\left(B_{Y}\right) \geqslant \operatorname{dim}(Y)\right)$
- or there is a subvariety $Z \subsetneq E$ such that $Z \in \mathbb{L} \mathbb{C S}\left(V, B^{V}\right)$.

The locus $\operatorname{LCS}\left(Y, B_{Y}\right) \subset Y$ can be equipped with a scheme structure (see [37], [45]). The ideal sheaf defined by

$$
\mathcal{I}\left(Y, B_{Y}\right)=\pi_{*} \mathcal{O}_{\bar{Y}}\left(\sum_{i=1}^{n}\left\lceil c_{i}\right\rceil E_{i}-\sum_{i=1}^{r}\left\lfloor a_{i}\right\rfloor \bar{B}_{i}\right),
$$

is called the multiplier ideal sheaf of $\left(Y, B_{Y}\right)$. The subscheme $\mathcal{L}\left(Y, B_{Y}\right)$ corresponding to the multiplier ideal sheaf $\mathcal{I}\left(Y, B_{Y}\right)$ is called the subscheme of \log canonical singularities of $\left(Y, B_{Y}\right)$. It follows from the construction of the subscheme $\mathcal{L}\left(Y, B_{Y}\right)$ that

$$
\operatorname{Supp}\left(\mathcal{L}\left(Y, B_{Y}\right)\right)=\operatorname{LCS}\left(Y, B_{Y}\right) \subset Y
$$

The following result is called the Nadel-Shokurov vanishing theorem (see [37], [45]).
Theorem 1.4.2. Let H be a nef and big \mathbb{Q}-divisor on Y such that

$$
K_{Y}+B_{Y}+H \equiv D
$$

for some Cartier divisor D on the variety Y. Then for every $i \geqslant 1$

$$
H^{i}\left(Y, \mathcal{I}\left(Y, B_{Y}\right) \otimes \mathcal{O}_{Y}(D)\right)=0
$$

Proof. It follows from the Kawamata-Viehweg vanishing theorem (see [28]) that

$$
R^{i} \pi_{*}\left(\pi^{*} \mathcal{O}_{Y}\left(K_{Y}+B_{Y}+H\right) \otimes \mathcal{O}_{\bar{Y}}\left(\sum_{i=1}^{n}\left\lceil c_{i}\right\rceil E_{i}-\sum_{i=1}^{r}\left\lfloor a_{i}\right\rfloor \bar{B}_{i}\right)\right)=0
$$

for every $i>0$. It follows from the equality of sheaves

$$
\pi_{*}\left(\pi^{*} \mathcal{O}_{Y}\left(K_{Y}+B_{Y}+H\right) \otimes \mathcal{O}_{\bar{Y}}\left(\sum_{i=1}^{n}\left\lceil c_{i}\right\rceil E_{i}-\sum_{i=1}^{r}\left\lfloor a_{i}\right\rfloor \bar{B}_{i}\right)\right)=\mathcal{I}\left(Y, B_{Y}\right) \otimes \mathcal{O}_{Y}(D)
$$

and from the degeneration of a local-to-global spectral sequence that

$$
H^{i}\left(Y, \mathcal{I}\left(Y, B_{Y}\right) \otimes \mathcal{O}_{Y}(D)\right)=H^{i}\left(\bar{Y}, \pi^{*} \mathcal{O}_{Y}\left(K_{Y} B_{Y}+H\right) \otimes \mathcal{O}_{\bar{Y}}\left(\sum_{i=1}^{n}\left\lceil c_{i}\right\rceil E_{i}-\sum_{i=1}^{r}\left\lfloor a_{i}\right\rfloor \bar{B}_{i}\right)\right)
$$

for every $i \geqslant 0$. But for $i>0$, the cohomology group

$$
H^{i}\left(\bar{Y}, \pi^{*} \mathcal{O}_{Y}\left(K_{Y} B_{Y}+H\right) \otimes \mathcal{O}_{\bar{Y}}\left(\sum_{i=1}^{n}\left\lceil c_{i}\right\rceil E_{i}-\sum_{i=1}^{r}\left\lfloor a_{i}\right\rfloor \bar{B}_{i}\right)\right),
$$

is trivial by the Kawamata-Viehweg vanishing theorem (see [28]).
For every Cartier divisor D on the variety Y, let us consider the exact sequence of sheaves

$$
0 \longrightarrow \mathcal{I}\left(Y, B_{Y}\right) \otimes \mathcal{O}_{Y}(D) \longrightarrow \mathcal{O}_{Y}(D) \longrightarrow \mathcal{O}_{\mathcal{L}\left(Y, B_{Y}\right)}(D) \longrightarrow 0
$$

We have the corresponding exact sequence of cohomology groups

$$
H^{0}\left(Y, \mathcal{O}_{Y}(D)\right) \longrightarrow H^{0}\left(\mathcal{L}\left(Y, B_{Y}\right), \mathcal{O}_{\mathcal{L}\left(Y, B_{Y}\right)}(D)\right) \longrightarrow H^{1}\left(Y, \mathcal{I}\left(Y, B_{Y}\right) \otimes \mathcal{O}_{Y}(D)\right)
$$

Theorem 1.4.3. Suppose that $-\left(K_{Y}+B_{Y}\right)$ is nef and big. Then $\operatorname{LCS}\left(Y, B_{Y}\right)$ is connected.
Proof. Put $D=0$. Then it follows from Theorem 1.4.2 that the sequence

$$
\mathbb{C}=H^{0}\left(Y, \mathcal{O}_{Y}\right) \longrightarrow H^{0}\left(\mathcal{L}\left(Y, B_{Y}\right), \mathcal{O}_{\mathcal{L}\left(Y, B_{Y}\right)}\right) \longrightarrow H^{1}\left(Y, \mathcal{I}\left(Y, B_{Y}\right)\right)=0
$$

is exact. Thus, the locus

$$
\operatorname{LCS}\left(Y, B_{Y}\right)=\operatorname{Supp}\left(\mathcal{L}\left(Y, B_{Y}\right)\right)
$$

is connected.
One can generalize Theorem 1.4.3 in the following way (see [45, Lemma 5.7]).

Theorem 1.4.4. Let $\psi: Y \rightarrow Z$ be a morphism. Then the set

$$
\operatorname{LCS}\left(\bar{Y}, B^{\bar{Y}}\right)
$$

is connected in a neighborhood of every fiber of the morphism $\psi \circ \pi: \bar{Y} \rightarrow Z$ in the case when

- the morphism ψ is surjective and has connected fibers,
- the divisor $-\left(K_{Y}+B_{Y}\right)$ is nef and big with respect to ψ.

Let us consider one important application of Theorem 1.4.4.
Theorem 1.4.5. Suppose that B_{1} is a Cartier divisor, $a_{1}=1$, and B_{1} has at most log terminal singularities. Then the following assertions are equivalent:

- the \log pair $\left(Y, B_{Y}\right)$ is \log canonical in a neighborhood of the divisor B_{1};
- the singularities of the log pair $\left(B_{1},\left.\sum_{i=2}^{r} a_{i} B_{i}\right|_{B_{1}}\right)$ are log canonical.

Proof. Suppose that the singularities of the \log pair $\left(Y, B_{Y}\right)$ are not \log canonical in a neighborhood of the divisor $B_{1} \subset Y$. Let us show that ($B_{1},\left.\sum_{i=2}^{r} a_{i} B_{i}\right|_{B_{1}}$) is not \log canonical.

In the case when $a_{m}>1$ and $B_{m} \cap B_{1} \neq \varnothing$ for some $m \geqslant 2$, the log pair

$$
\left(B_{1},\left.\sum_{i=2}^{r} a_{i} B_{i}\right|_{B_{1}}\right)
$$

is not \log canonical. Thus, we may assume that $a_{i} \leqslant 1$ for every i. Then

$$
\left(Y, B_{1}+\sum_{i=2}^{r} \lambda a_{i} B_{i}\right)
$$

is not \log canonical as well for some rational number $\lambda<1$. Then

$$
K_{\bar{Y}}+\bar{B}_{1}+\sum_{i=2}^{r} \lambda a_{i} \bar{B}_{i}=\pi^{*}\left(K_{Y}+B_{1}+\sum_{i=2}^{r} \lambda a_{i} B_{i}\right)+\sum_{i=1}^{n} d_{i} E_{i}
$$

for some rational numbers d_{1}, \ldots, d_{n}. It follows from Theorem 1.4.4 that

$$
\bar{B}_{1} \cap E_{k} \neq \varnothing
$$

and the inequality $d_{k} \leqslant-1$ holds for some k. But

$$
K_{\bar{B}_{1}}+\left.\sum_{i=2}^{r} \lambda a_{i} \bar{B}_{i}\right|_{B_{1}}=\phi^{*}\left(K_{B_{1}}+\left.\sum_{i=2}^{r} \lambda a_{i} B_{i}\right|_{B_{1}}\right)+\left.\sum_{i=1}^{n} d_{i} E_{i}\right|_{B_{1}},
$$

where $\phi: \bar{B}_{1} \rightarrow B_{1}$ is a birational morphism that is induced by π.
Thus, the \log pair $\left(B_{1},\left.\sum_{i=2}^{r} \lambda a_{i} B_{i}\right|_{B_{1}}\right)$ is not log terminal. Then the log pair

$$
\left(B_{1},\left.\sum_{i=2}^{r} a_{i} B_{i}\right|_{B_{1}}\right)
$$

is not \log canonical. The rest of the proof is similar (see the proof of [28, Theorem 7.5]).
The simplest application of Theorem 1.4.5 is a non-obvious result.
Lemma 1.4.6. Suppose that $\operatorname{dim}(Y)=2$ and $a_{1} \leqslant 1$. Then

$$
\left(\sum_{i=2}^{r} a_{i} B_{i}\right) \cdot B_{1}>1
$$

whenever $\left(Y, B_{Y}\right)$ is not \log canonical at a point $O \in B_{1}$ such that $O \notin \operatorname{Sing}(Y) \cup \operatorname{Sing}\left(B_{1}\right)$.
Proof. Suppose that $\left(Y, B_{Y}\right)$ is not \log canonical at a point $O \in B_{1}$. By Theorem 1.4.5, the pair $\left(B_{1},\left.\sum_{i=2}^{r} a_{i} B_{i}\right|_{B_{1}}\right)$ is not \log canonical at the point O. Therefore,

$$
\left(\sum_{i=2}^{r} a_{i} B_{i}\right) \cdot B_{1} \geqslant \operatorname{mult}{ }_{O}\left(\left.\sum_{i=2}^{r} a_{i} B_{i}\right|_{B_{1}}\right)>1
$$

if $O \notin \operatorname{Sing}(Y) \cup \operatorname{Sing}\left(B_{1}\right)$.

Let P be a point in Y. Let us consider an effective divisor

$$
\Delta=\sum_{i=1}^{r} \varepsilon_{i} B_{i} \sim_{\mathbb{Q}} B_{Y}
$$

where ε_{i} is a non-negative rational number. Suppose that

- the divisor Δ is a \mathbb{Q}-Cartier divisor,
- the \log pair (Y, Δ) is \log canonical at the point $P \in X$.

Remark 1.4.7. Suppose that $\left(Y, B_{Y}\right)$ is not \log canonical in the point $P \in Y$. Put

$$
\alpha=\min \left\{\left.\frac{a_{i}}{\varepsilon_{i}} \right\rvert\, \varepsilon_{i} \neq 0\right\}
$$

where α is well defined, because there is $\varepsilon_{i} \neq 0$. Then $\alpha<1$, the \log pair

$$
\left(Y, \sum_{i=1}^{r} \frac{a_{i}-\alpha \varepsilon_{i}}{1-\alpha} B_{i}\right)
$$

is not \log canonical in the point $P \in Y$, the equivalence

$$
\sum_{i=1}^{r} \frac{a_{i}-\alpha \varepsilon_{i}}{1-\alpha} B_{i} \sim_{\mathbb{Q}} B_{X} \sim_{\mathbb{Q}} \Delta
$$

holds, and at least one irreducible component of the divisor $\operatorname{Supp}(\Delta)$ is not contained in

$$
\operatorname{Supp}\left(\sum_{i=1}^{r} \frac{a_{i}-\alpha \varepsilon_{i}}{1-\alpha} B_{i}\right)
$$

Suppose that X is a hypersurface in $\mathbb{P}\left(a_{0}, a_{1}, a_{2}, a_{3}\right)$ of degree d.
Lemma 1.4.8. Let C be a reduced and irreducible curve on X and D be an ample effective \mathbb{Q}-divisor on X. Suppose that for a given positive rational number λ we have $\lambda \operatorname{mult}_{C} D \leqslant 1$. If $\lambda\left(C \cdot D-\left(\right.\right.$ mult $\left.\left._{C} D\right) C^{2}\right) \leqslant 1$, then the pair $(X, \lambda D)$ is \log canonical at each smooth point P of C not in $\operatorname{Sing}(X)$. Furthermore, if the point P of C is a singular point of X of type $\frac{1}{r}(a, b)$ and $r \lambda\left(C \cdot D-\left(\operatorname{mult}_{C} D\right) C^{2}\right) \leqslant 1$, then the pair $(X, \lambda D)$ is \log canonical at P.
Proof. We may write $D=m C+\Omega$, where Ω is an effective divisor whose support does not contain the curve C. Suppose that the pair $(X, \lambda D)$ is not \log canonical at a smooth point P of C not in $\operatorname{Sing}(X)$. Since $\lambda m \leqslant 1$, the pair $(X, C+\lambda \Omega)$ is not \log canonical at the point P. Then by Lemma 1.4.6 we obtain an absurd inequality

$$
1<\lambda \Omega \cdot C=\lambda C \cdot(D-m C) \leqslant 1
$$

Also, if the point P is a singular point of X, then we have

$$
\frac{1}{r}<\lambda \Omega \cdot C=\lambda C \cdot(D-m C) \leqslant \frac{1}{r}
$$

This proves the second statement.
Let D be an effective \mathbb{Q}-divisor on X such that

$$
D \sim_{\mathbb{Q}} \mathcal{O}_{\mathbb{P}\left(a_{0}, a_{1}, a_{2}, a_{3}\right)}(1) .
$$

Lemma 1.4.9. Let l be a positive integer such that the linear system

$$
\left|\mathcal{O}_{\mathbb{P}\left(a_{0}, a_{1}, a_{2}, a_{3}\right)}(l)\right|
$$

contains effective divisors that are given by the vanishing of

- at least two different monomials of the form $x^{\alpha} y^{\beta}$,
- at least two different monomials of the form $x^{\gamma} z^{\delta}$,
- at least two different monomials of the form $x^{\mu} t^{\nu}$,
where $\alpha, \beta, \gamma, \delta, \mu, \nu$ are non-negative integers. Let P be a point in $X \backslash\left(\operatorname{Sing}(X) \cup C_{x}\right)$. Then

$$
\operatorname{mult}_{P}(D) \leqslant \frac{l d}{a_{0} a_{1} a_{2} a_{3}}
$$

Proof. The required assertion follows from [1, Lemma 3.3].
Let $\psi: X \rightarrow \mathbb{P}\left(a_{0}, a_{1}, a_{2}\right)$ be a projection.
Lemma 1.4.10. Let l be a positive integer such that the linear system

$$
\left|\mathcal{O}_{\mathbb{P}\left(a_{0}, a_{1}, a_{2}, a_{3}\right)}(l)\right|
$$

contains effective divisors that are given by the vanishing of

- at least two different monomials of the form $x^{\alpha} y^{\beta}$,
- at least two different monomials of the form $x^{\gamma} z^{\delta}$,
where $\alpha, \beta, \gamma, \delta$ are non-negative integers. Let P be a point in $X \backslash\left(\operatorname{Sing}(X) \cup C_{x}\right)$. Then

$$
\operatorname{mult}_{P}(D) \leqslant \frac{l d}{a_{0} a_{1} a_{2} a_{3}}
$$

in the case when P is not contained in any curve that is contracted by ψ.
Proof. Arguing as in the proof of [1, Corollary 3.4], we obtain the required assertion.
The following result is [4, Corollary 5.3] (cf. [27, Proposition 11]).
Lemma 1.4.11. Suppose that X is given by a quasihomogeneous equation

$$
f(x, y, z, t)=0 \subset \mathbb{P}\left(a_{0}, a_{1}, a_{2}, a_{3}\right) \cong \operatorname{Proj}(\mathbb{C}[x, y, z, t])
$$

where $\operatorname{wt}(x)=a_{0}, \operatorname{wt}(y)=a_{1}, \operatorname{wt}(z)=a_{2}, \operatorname{wt}(t)=a_{3}$. Then

$$
\operatorname{lct}(X) \geqslant\left\{\begin{array}{l}
\frac{a_{0} a_{1}}{d I} \\
\frac{a_{0} a_{2}}{d I} \text { if } f(0,0, z, t) \neq 0 \\
\frac{a_{0} a_{3}}{d I} \text { if } f(0,0,0, t) \neq 0
\end{array}\right.
$$

Lemma 1.4.12. Suppose that C_{x} is irreducible and reduced, and $C_{x} \not \subset \operatorname{Supp}(D)$. Then

$$
\operatorname{lct}(X, D) \geqslant\left\{\begin{array}{l}
\frac{a_{1} a_{2}}{d} \\
\frac{a_{1} a_{3}}{d} \text { if } f(0,0,0, t) \neq 0
\end{array}\right.
$$

Proof. Arguing as in the proof of [27, Proposition 11], we obtain the required assertion.
Thus, using Remark 1.4.7, we obtain the following result.
Corollary 1.4.13. Suppose that C_{x} is irreducible and reduced, and $d<\sum_{i=0}^{3} a_{i}$. Then

$$
\operatorname{lct}(X) \geqslant\left\{\begin{array}{l}
\min \left(\frac{a_{1} a_{2}}{d I}, \operatorname{lct}\left(X, \frac{I}{a_{0}} C_{x}\right)\right) \\
\min \left(\frac{a_{1} a_{3}}{d I}, \operatorname{lct}\left(X, \frac{I}{a_{0}} C_{x}\right)\right) \text { if } f(0,0,0, t) \neq 0
\end{array}\right.
$$

where $I=\sum_{i=0}^{3} a_{i}-d$.

Part 2. Infinite series

2.1. Infinite series with $I=1$

Lemma 2.1.1. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(2,2 n+1,2 n+1,4 n+1,8 n+4)$ for $n \in \mathbb{Z}_{>0}$. Then $\operatorname{lct}(X)=1$.

Proof. The surface X is singular at the point O_{t}, which is a singular point of type $\frac{1}{4 n+1}(1,1)$ on the surface X. But X has also 4 singular points $O_{1}, O_{2}, O_{3}, O_{4}$, which are cut out on X by the equations $x=t=0$. Then O_{i} is a singular point of type $\frac{1}{2 n+1}(1,2 n)$ on the surface X.

The curve C_{x} is reducible. Namely, we have

$$
C_{x}=L_{1}+L_{2}+L_{3}+L_{4},
$$

where L_{i} is an irreducible reduced smooth rational curves such that

$$
-K_{X} \cdot L_{i}=\frac{1}{(2 n+1)(4 n+1)},
$$

and $L_{1} \cap L_{2} \cap L_{3} \cap L_{4}=O_{t}$. Then $L_{i} \cdot L_{j}=1 /(4 n+1)$ for $i \neq j$. The subadjunction formula implies that

$$
L_{i} \cdot L_{i}=\frac{1}{(2 n+1)(4 n+1)}-\frac{1}{2 n+1}-\frac{1}{4 n+1}=-\frac{6 n+1}{(2 n+1)(4 n+1)} .
$$

Note that $\operatorname{lct}\left(X, C_{x}\right)=1 / 2$, which implies that $\operatorname{lct}(X) \leqslant 1$. Suppose that $\operatorname{lct}(X)<1$. Then there is a \mathbb{Q}-effective divisor $D \equiv-K_{X}$ such that the \log pair (X, D) is not \log canonical at some point $P \in X$.

Suppose that $P \notin C_{x}$. Then P is a smooth point of the surface X. Then

$$
1<\operatorname{mult}_{P}(D) \leqslant \frac{(4 n+2)(8 n+4)}{2(2 n+2)^{2}(4 n+1)}=\frac{4}{4 n+1}<1
$$

by Lemma 1.4.10. We see that $P \in C_{x}$. It follows from Remark 1.4.7 that we may assume that $L_{i} \not \subset \operatorname{Supp}(D)$ for some $i=1, \ldots, 4$.

Suppose that $P=O_{t}$. Then

$$
\frac{1}{(2 n+1)(4 n+1)}=-K_{X} \cdot L_{i}=D \cdot L_{i} \geqslant \frac{\operatorname{mult}_{O_{t}}(D)}{4 n+1}>\frac{1}{4 n+1},
$$

which is a contradiction. Thus, we see that $P \neq O_{t}$. Then either $P=O_{1}$, or $P \in X \backslash \operatorname{Sing}(X)$.
Without loss of generality, we may assume that $P \in L_{1}$. Put $D=m L_{1}+\Omega$, where Ω is an effective \mathbb{Q}-divisor such that $L_{1} \not \subset \operatorname{Supp}(\Omega)$. If $m \neq 0$, then

$$
\frac{1}{(2 n+1)(4 n+1)}=-K_{X} \cdot L_{i}=D \cdot L_{i}=\left(m L_{1}+\Omega\right) \cdot L_{i} \geqslant m L_{1} \cdot L_{i}=\frac{m}{4 n+1},
$$

which implies that $m \leqslant 1 /(2 k+1)$. Then it follows from Lemma 1.4.6 that

$$
\frac{1+m(6 n+1)}{(2 n+1)(4 n+1)}=\left(-K_{X}-m L_{1}\right) \cdot L_{1}=\Omega \cdot L_{1}>\left\{\begin{array}{l}
1 \text { if } P \neq O_{1} \\
\frac{1}{2 n+1} \text { if } P=O_{1}
\end{array}\right.
$$

which implies, in particular, that $m>4 n /(6 n+1)$. But we already proved that $m \leqslant 1 /(2 k+1)$. The obtained contradiction completes the proof.

2.2. Infinite series with $I=2$

Lemma 2.2.1. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(4,2 n+3,2 n+3,4 n+4,8 n+12)$ for $n \geqslant 1$. Then $\operatorname{lct}(X)=1$.

Proof. The only singularities of X are a singular point O_{t} of index $4 n+4$, two singular points $O_{x t}^{i}, i=1,2$, of index 4 on the stratum $y=z=0$, and four singular points $O_{y z}^{i}, i=1, \ldots, 4$, of index $2 n+3$ on the stratum $x=t=0$.

The curve C_{x} is reduced and splits into four irreducible components L_{1}, \ldots, L_{4} (L_{i} passing through $O_{y z}^{i}$) that intersect at O_{t}. One can easily see that $\operatorname{lct}\left(X, C_{x}\right)=1 / 2$, which implies $\operatorname{lct}(X) \leqslant 1$.

Suppose that $\operatorname{lct}(X)<1$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the log pair (X, D) is not \log canonical at some point $P \in X$.

Suppose that $P=O_{t}$. By Remark 1.4.7 we may assume that one of the curves L_{i} (say, L_{1}) is not contained in $\operatorname{Supp}(D)$. One has

$$
\frac{1}{(2 n+2)(2 n+3)}=L_{1} \cdot D \geqslant \frac{\operatorname{mult}_{P}\left(L_{1}\right) \operatorname{mult}_{P}(D)}{4 n+4}>\frac{1}{4 n+4}>\frac{1}{(2 n+2)(2 n+3)}
$$

for all $n \geqslant 1$, which is a contradiction.
Suppose that $P=O_{x t}^{1}$. By a coordinate change we may assume that $P=O_{x}$. The curve C_{t} is reduced and splits into four irreducible components $L_{1}^{\prime}, \ldots, L_{4}^{\prime}\left(L_{i}^{\prime}\right.$ passing through $\left.O_{y z}^{i}\right)$ that intersect at O_{x}. One can easily see that the \log pair $\left(X, \frac{1}{2} \cdot \frac{4}{4 n+4} C_{t}\right)$ is \log canonical at least for $n \geqslant 1$ since $\operatorname{mult}_{P}\left(C_{t}\right)=4$. By Remark 1.4.7 we may assume that one of the curves L_{i}^{\prime} (say, $\left.L_{1}^{\prime}\right)$ is not contained in $\operatorname{Supp}(D)$. One has

$$
\frac{1}{2(2 n+3)}=L_{1}^{\prime} \cdot D \geqslant \frac{\operatorname{mult}_{P}\left(L_{1}^{\prime}\right) \operatorname{mult}_{P}(D)}{4}>\frac{1}{4}>\frac{1}{2(2 n+3)}
$$

for all $n \geqslant 1$, which is a contradiction. The point $O_{x t}^{1}$ is excluded in a similar way.
Suppose that $P=O_{y z}^{1}$. Put $D=\mu L_{1}+\Omega$, where Ω is an effective divisor such that $L_{1} \not \subset$ $\operatorname{Supp}(\Omega)$. We claim that

$$
\mu \leqslant \frac{1}{2 n+3} .
$$

Indeed, if the inequality fails, by Remark 1.4 .7 we may assume that one of the curves L_{2}, L_{3} and L_{4} (say, L_{2}) is not contained in $\operatorname{Supp}(D)$. Then

$$
\frac{\mu}{4 n+4}=\mu L_{1} \cdot L_{2} \leqslant D \cdot L_{2}=\frac{1}{2(n+1)(2 n+3)},
$$

which is a contradiction. Note that

$$
L_{1}^{2}=-\frac{6 n+5}{4(n+1)(2 n+3)} .
$$

By Lemma 1.4.6 one has

$$
\frac{1}{2 n+3}<\Omega \cdot L_{1}=\frac{2+(6 n+5) \mu}{4(n+1)(2 n+3)}<\frac{1}{2 n+3}
$$

for all $n \geqslant 1$, which is a contradiction. The points $O_{z t}^{i}, i=2,3,4$, are excluded in a similar way. So are the smooth points on C_{x}, which are excluded by this argument for $n=1$ as well.

Hence P is a smooth point of $X \backslash C_{x}$. Applying Lemma 1.4.10 (which is possible since the projection of X from O_{t} has finite fibers outside C_{x}), we see that

$$
1<\operatorname{mult}_{P}(D) \leqslant \frac{2 \cdot 4(n+1)(8 n+12)}{2(2 n+3)(2 n+3) \cdot 4(n+1)}<1
$$

for $n \geqslant 1$, because $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(8 n+12)\right)$ contains $x^{2 n+3}, y^{4}$ and z^{4}. The obtained contradiction completes the proof.
Lemma 2.2.2. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(3,4,7,12,24)$. Then $\operatorname{lct}(X)=1$.
Proof. The surface X can be defined by the quasihomogeneous equation

$$
t^{2}+y^{3} t+x z^{3}+x^{4} t+\epsilon_{1} y^{6}+\epsilon_{2} x^{2} y z^{2}+\epsilon_{3} x^{3} y^{2} z+\epsilon_{4} x^{4} y^{3}+\epsilon_{5} x^{8}=0,
$$

where $\epsilon_{i} \in \mathbb{C}$. The surface X is singular at the point O_{z}. It is also singular at two points P_{1} and P_{2} that are cut out on X by the equations $y=z=0$. It is also singular at two points Q_{1} and Q_{2} that are cut out on X by the equations $x=z=0$.

The curve C_{x} is reducible. We have $C_{x}=L_{1}+L_{2}$, where L_{1} and L_{2} are irreducible and reduced curves such that $Q_{1} \in L_{1}$ and $Q_{2} \in L_{2}$. We have

$$
L_{1} \cdot L_{1}=L_{2} \cdot L_{2}=\frac{-9}{28}, L_{1} \cdot L_{2}=\frac{3}{7},
$$

and $L_{1} \cap L_{2}=O_{z}$. The curve C_{y} is irreducible and

$$
1=\operatorname{lct}\left(X, \frac{2}{3} C_{y}\right)<\operatorname{lct}\left(X, \frac{2}{4} C_{y}\right)=2,
$$

which implies, in particular, that $\operatorname{lct}(X) \leqslant 1$.
Suppose that $\operatorname{lct}(X)<1$. Then there is a \mathbb{Q}-effective divisor $D \equiv-K_{X}$ such that the pair (X, D) is not \log canonical at some point P. By Remark 1.4.7, we may assume that the support of the divisor D does not contain the curve C_{y}. Similarly, without loss of generality we may assume that $L_{2} \nsubseteq \operatorname{Supp}(D)$.

Since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(21)\right)$ contains $x^{7}, x^{3} y^{3}$ and z^{3}, it follows from Lemma 1.4.10 that $P \in$ $\operatorname{Sing}(X) \cup C_{x}$.

Suppose that $P=P_{1}$. Then

$$
\frac{4}{21}=D \cdot C_{y} \geqslant \frac{\operatorname{mult}_{P}(D)}{4}>\frac{1}{4},
$$

which is a contradiction. We see that $P \neq P_{1}$. Similarly, we see that $P \neq P_{2}$. Then $P \in C_{x}$.
Suppose that $P \in L_{2}$. Then

$$
\frac{1}{14}=D \cdot L_{2}>\left\{\begin{array}{l}
1 \text { if } P \neq O_{z} \text { and } P \neq Q_{2}, \\
\frac{1}{7} \text { if } P=O_{z}, \\
\frac{1}{4} \text { if } P=Q_{2},
\end{array}\right.
$$

which is a contradiction. The obtained contradiction shows that $P \notin L_{2}$.
We see that $P \neq O_{z}$ and $P \in L_{1}$. Put $D=m L_{1}+\Omega$, where Ω is an effective \mathbb{Q}-divisor such that $L_{1} \not \subset \operatorname{Supp}(\Omega)$. Then

$$
\frac{1}{14}=D \cdot L_{2}=\left(m L_{1}+\Omega\right) \cdot L_{2} \geqslant m L_{1} \cdot L_{2}=\frac{3 m}{7},
$$

which implies that $m \leqslant 1 / 6$. Then it follows from Lemma 1.4.6 that

$$
\frac{2+9 m}{28}=\left(-K_{X}-m L_{1}\right) \cdot L_{1}=\Omega \cdot L_{1}>\left\{\begin{array}{l}
1 \text { if } P \neq Q_{1} \\
\frac{1}{4} \text { if } P=Q_{1}
\end{array}\right.
$$

which implies that $m>5 / 9$. But we already proved that $m \leqslant 1 / 6$. The obtained contradiction completes the proof.

Lemma 2.2.3. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(3,3 n+1,6 n+1,9 n+3,18 n+6)$ for $n \geqslant 2$. Then $\operatorname{lct}(X)=1$.

Proof. The only singularities of X are a singular point O_{z} of index $6 n+1$, two singular points $O_{x t}^{i}, i=1,2$, of index 3 on the stratum $y=z=0$, and two singular points $O_{y t}^{i}, i=1,2$, of index $3 n+1$ on the stratum $x=z=0$.

The curve C_{x} is reduced and splits into two components L_{1} and L_{2} that intersect at O_{z}. It is easy to see that $\operatorname{lct}\left(X, C_{x}\right)=2 / 3$, which implies $\operatorname{lct}(X) \leqslant 1$.

The curve C_{y} is reduced and splits into two components L_{1}^{\prime} and L_{2}^{\prime} that intersect at O_{z}. It is easy to see that the \log pair $\left(X, \frac{2}{3} \cdot \frac{3}{3 n+1} C_{y}\right)$ is \log terminal.

Suppose that $\operatorname{lct}(X)<1$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the log pair (X, D) is not \log canonical at some point $P \in X$.

Note that

$$
L_{1} \cdot L_{2}=\left(L_{1} \cdot L_{2}\right)_{O_{z}}=\frac{3}{6 n+1} \text { and } L_{i}^{2}=\frac{3-9 n}{(3 n+1)(6 n+1)} .
$$

Suppose that $P=O_{z}$. Put $D=\mu L_{1}+\Omega$, where $L_{1} \not \subset \operatorname{Supp}(\Omega)$. If $\mu>0$, then by Remark 1.4.7 one can assume that $L_{2} \not \subset \operatorname{Supp}(D)$, and hence

$$
\frac{2}{(3 n+1)(6 n+1)}=D \cdot L_{2} \geqslant \frac{3 \mu}{(3 n+1)(6 n+1)},
$$

so that

$$
\mu \leqslant \frac{2}{3(3 n+1)} .
$$

Since (X, D) is not log canonical at O_{z}, by Theorem 1.4.5 one has

$$
\frac{1}{6 n+1} \leqslant \Omega \cdot L_{1}=\frac{2+\mu(9 n-3)}{(3 n+1)(6 n+1)}<\frac{4}{(3 n+1)(6 n+1)}
$$

which is impossible for all $n \geqslant 1$. The points $P=O_{y t}^{i} \in L_{i}$ and the smooth points $P \in C_{x}$ are excluded in a similar way.

Suppose that $P=O_{x t}^{1} \in L_{1}^{\prime}$. Note that

$$
L_{1}^{\prime} \cdot L_{2}^{\prime}=\left(L_{1}^{\prime} \cdot L_{2}^{\prime}\right)_{O_{z}}=\frac{3 n+1}{6 n+1} \text { and }\left(L_{i}^{\prime}\right)^{2}=\frac{-2(3 n+1)}{3(6 n+1)} .
$$

Put $D=\mu L_{1}^{\prime}+\Omega$, where $L_{1}^{\prime} \not \subset \operatorname{Supp}(\Omega)$. If $\mu>0$, then by Remark 1.4.7 one can assume that $L_{2}^{\prime} \not \subset \operatorname{Supp}(D)$, and hence

$$
\mu \leqslant \frac{2}{3(3 n+1)} .
$$

Since (X, D) is not \log canonical at O_{z}, by Theorem 1.4.5 one has

$$
\frac{1}{3 n+1} \leqslant \Omega \cdot L_{1}=\frac{2+2 \mu(3 n+1)}{3(6 n+1)} \leqslant \frac{10}{9(6 n+1)}
$$

which is impossible for all $n \geqslant 1$. The point $P=O_{x t}^{2} \in L_{2}^{\prime}$ is excluded in a similar way.
Hence P is a smooth point of $X \backslash C_{x}$. Applying Lemma 1.4.10 (which is possible since the projection of X from O_{t} has finite fibers), we see that

$$
1<\operatorname{mult}_{P}(D) \leqslant \frac{2(18 n+6)^{2}}{3(3 n+1)(6 n+1)(9 n+3)}<1
$$

for all $n \geqslant 2$, because $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(18 n+6)\right)$ contains $x^{6 n+2}, y^{6}$ and $z^{3} x$. The obtained contradiction completes the proof.

Lemma 2.2.4. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(3,3 n+1,6 n+1,9 n, 18 n+3)$ for $n \geqslant 1$. Then $\operatorname{lct}(X)=1$.

Proof. The only singularities of X are a singular point O_{y} of index $3 n+1$, a singular point O_{t} of index $9 n$, and two singular points $O_{x t}^{i}, i=1,2$, of index 3 on the stratum $y=z=0$.

The curve C_{x} is reduced and irreducible and has the only singularity (of multiplicity 3) at O_{t}. It is easy to see that $\operatorname{lct}\left(X, C_{x}\right)=2 / 3$, which implies $\operatorname{lct}(X) \leqslant 1$.

The curve C_{y} is quasismooth. It is easy to see that the \log pair $\left(X, \frac{2}{3} \cdot \frac{3}{3 n+1} C_{y}\right)$ is log terminal.
Suppose that $\operatorname{lct}(X)<1$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the log pair (X, D) is not \log canonical at some point $P \in X$. By Remark 1.4.7 we may assume that neither C_{x} nor C_{y} is contained in $\operatorname{Supp}(D)$.

Suppose that $P=O_{t}$. One has

$$
\frac{2}{3 n(3 n+1)}=C_{x} \cdot D \geqslant \frac{\operatorname{mult}_{P}\left(C_{x}\right) \operatorname{mult}_{P}(D)}{9 n}>\frac{3}{9 n}>\frac{2}{3 n(3 n+1)},
$$

for all $n \geqslant 1$, which is a contradiction.
Suppose that $P=O_{y}$. One has

$$
\frac{2}{(3 n+1)}=C_{x} \cdot D \geqslant \frac{\operatorname{mult}_{P}\left(C_{x}\right) \operatorname{mult}_{P}(D)}{3 n}>\frac{1}{3 n}>\frac{2}{3 n(3 n+1)}
$$

for all $n \geqslant 1$, which is a contradiction. The smooth points on C_{x} are excluded in a similar way.
Suppose that $P=O_{x t}^{1}$. One has

$$
\frac{2}{9 n}=C_{y} \cdot D \geqslant \frac{\operatorname{mult}_{P}(D)}{3 n+1}>\frac{1}{3 n+1}>\frac{2}{9 n}
$$

for all $n \geqslant 1$, which is a contradiction.
Hence P is a smooth point of $X \backslash C_{x}$. Applying Lemma 1.4.10 (which is possible since the projection of X from O_{t} has finite fibers outside of C_{x}), we see that

$$
1<\operatorname{mult}_{P}(D) \leqslant \frac{2(18 n+3)^{2}}{3(3 n+1)(6 n+1) \cdot 9 n}<1
$$

for all $n \geqslant 2$, because $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(18 n+3)\right)$ contains $x^{6 n+1}, y^{3} x^{3 n}$ and z^{3}.
Thus, we see that P is a smooth point of $X \backslash C_{x}$ and $n=1$. Applying Lemma 1.4.10, we see that

$$
1<\operatorname{mult}_{P}(D) \leqslant \frac{24}{3 \cdot 4 \cdot 7 \cdot 9}<1
$$

because $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(12)\right)$ contains x^{4}, y^{3} and $x t$. The obtained contradiction completes the proof.

Lemma 2.2.5. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(3,3,4,4,12)$. Then $\operatorname{lct}(X)=1$.
Proof. The surface X can be defined by the quasihomogeneous equation

$$
\prod_{i=1}^{4}\left(\alpha_{i} x+\beta_{i} y\right)=\prod_{i=1}^{3}\left(\gamma_{i} z+\delta_{i} t\right)
$$

where $\left(\alpha_{i}, \beta_{i}\right) \in \mathbb{P}^{1} \ni\left(\gamma_{i}, \delta_{i}\right)$.
Let P_{i} be a point in X that is given by $z=t=\alpha_{i} x+\beta_{i} y=0$, where $i=1, \ldots, 4$. Then P_{i} is a singular point of X of type $\frac{1}{3}(1,1)$.

Let Q_{i} be a point in X that is given by $x=y=\gamma_{i} z+\delta_{i} t=0$, where $i=1, \ldots, 3$. Then Q_{i} is a singular point of X of type $\frac{1}{4}(1,1)$.

Let $L_{i j}$ be a curve in X that is given by $\alpha_{i} x+\beta_{i} y=\gamma_{j} z+\delta_{j} t=0$, where $i=1, \ldots, 4$ and $j=1, \ldots, 3$. Then

$$
\frac{L_{i 1}+L_{i 2}+L_{i 3}}{3} \sim_{\mathbb{Q}} \frac{L_{1 j}+L_{2 j}+L_{3 j}+L_{4 j}}{4} \sim_{\mathbb{Q}}-\frac{1}{2} K_{X},
$$

and $L_{i 1} \cap L_{i 2} \cap L_{i 3}=P_{i}$ and $L_{1 j} \cap L_{2 j} \cap L_{3 j} \cap L_{4 j}=Q_{j}$. We have

$$
\operatorname{lct}\left(X, \frac{2}{3}\left(L_{i 1}+L_{i 2}+L_{i 3}\right)\right)=\operatorname{lct}\left(X, \frac{2}{4}\left(L_{1 j}+L_{2 j}+L_{3 j}+L_{4 j}\right)\right)=1
$$

which implies that $\operatorname{lct}(X) \leqslant 3 / 2$. We have $L_{i j} \cdot L_{i k}=1 / 3$ and $L_{j i} \cdot L_{k i}=1 / 4$ if $k \neq j$. But $L_{i j}^{2}=-5 / 12$.

Suppose that $\operatorname{lct}(X)<1$. Then there is a \mathbb{Q}-effective divisor $D \equiv-K_{X}$ such that the pair (X, D) is not \log canonical at some point P. For every $i=1, l d o t s, 4$, we may assume that the support of the divisor D does not contain at least one curve among $L_{i 1}, L_{i 2}, L_{i 3}$. For every $j=1, \ldots, 3$, we may assume that the support of the divisor D does not contain at least one curve among $L_{1 j}, L_{2 j}, L_{3 j}, L_{4 j}$.

Suppose that $\operatorname{lct}(X)<1$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the log pair (X, D) is not \log canonical at some point $P \in X$.

Suppose that $P=P_{1}$. If $L_{1 k} \nsubseteq \operatorname{Supp}(D)$, then

$$
\frac{1}{6}=D \cdot L_{1 k} \geqslant \frac{\operatorname{mult}_{P}(D)}{4}>\frac{1}{4}>\frac{1}{6},
$$

which implies that $P \neq P_{1}$. Similarly, we see that $P \notin \operatorname{Sing}(X)$.
Suppose that $P \in L_{11}$. Put $D=\mu L_{11}+\Omega$, where Ω is an effective divisor such that $L_{11} \not \subset$ $\operatorname{Supp}(\Omega)$. If $\mu>0$, then $\mu \leqslant 1 / 2$, because either $L_{12} \cdot \Omega \geqslant 0$ or $L_{13} \cdot \Omega \geqslant 0$ in the case when $\mu>0$. Thus, by Lemma 1.4.6 one has

$$
1<\Omega \cdot L_{11}=\frac{2+5 \mu}{12}
$$

which implies that $m>1 / 2$. But we know that $\mu \leqslant 1 / 2$. Thus, we see that $P \notin L_{11}$. Similarly, we see that

$$
P \notin \bigcup_{i=1}^{4} \bigcup_{j=1}^{3} L_{i j}
$$

There is a unique curve $C \subset X$ such that $P \in C$ and C is cut out on X by $\lambda x+\mu y=0$, where $(\lambda, \mu) \in \mathbb{P}^{1}$. Then C is irreducible and quasismooth. Thus, we may assume that C is not contained in the support of D. Then

$$
\frac{1}{2}=D \cdot C \geqslant \operatorname{mult}_{P}(D)>1
$$

which is a contradiction. The obtained contradiction completes the proof.
Lemma 2.2.6. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(3,3 n, 3 n+1,3 n+1,9 n+3)$ for $n \geqslant 2$. Then $\operatorname{lct}(X)=1$.

Proof. The only singularities of X are a singular point O_{y} of index $3 n$, three singular points $O_{x y}^{i}, i=1,2,3$, of index 3 on the stratum $z=t=0$, and three singular points $O_{z t}^{i}, i=1,2,3$, of index $3 n+1$ on the stratum $x=y=0$.

The curve C_{x} is reduced and splits into three irreducible components L_{1}, L_{2} and L_{3} (L_{i} passing through $O_{z t}^{i}$) that intersect at O_{y}. One can easily check that $\operatorname{lct}\left(X, C_{x}\right)=2 / 3$, which implies $\operatorname{lct}(X) \leqslant 1$.

The curve C_{y} is quasismooth. One can easily see that the \log pair $\left(X, \frac{2}{3} \cdot \frac{3}{3 n} C_{y}\right)$ is \log terminal.
Suppose that $\operatorname{lct}(X)<1$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the \log pair (X, D) is not \log canonical at some point $P \in X$.

Suppose that $P=O_{y}$. By Remark 1.4.7 we may assume that one of the curves L_{i} (say, L_{1}) is not contained in $\operatorname{Supp}(D)$. One has

$$
\frac{2}{3 n(3 n+1)}=L_{1} \cdot D \geqslant \frac{\operatorname{mult}_{P}\left(L_{1}\right) \operatorname{mult}_{P}(D)}{3 n}>\frac{1}{3 n}>\frac{2}{3 n(3 n+1)}
$$

for all $n \geqslant 1$, which is a contradiction.
Suppose that $P=O_{z t}^{1}$. Put $D=\mu L_{1}+\Omega$, where Ω is an effective divisor such that $L_{1} \not \subset$ $\operatorname{Supp}(\Omega)$. We claim that

$$
\mu \leqslant \frac{2}{3 n+1}
$$

Indeed, if the inequality fails, by Remark 1.4 .7 we may assume that one of the curves L_{2} and L_{3} (say, L_{2}) is not contained in $\operatorname{Supp}(D)$. Then

$$
\frac{\mu}{3 n}=\mu L_{1} \cdot L_{2} \leqslant D \cdot L_{2}=\frac{2}{3 n(3 n+1)},
$$

which is a contradiction. Note that

$$
L_{1}^{2}=-\frac{6 n-1}{3 n(3 n+1)} .
$$

By Lemma 1.4.6 one has

$$
\frac{1}{3 n+1}<\Omega \cdot L_{1}=\frac{2+(6 n-1) \mu}{3 n(3 n+1)}<\frac{1}{3 n+1}
$$

for all $n \geqslant 2$, which is a contradiction. The points $O_{z t}^{2}$ and $O_{z t}^{3}$ are excluded in a similar way. So are the smooth points on C_{x}, which are excluded by this argument for $n=1$ as well.

Suppose that $P=O_{x y}^{1}$. By Remark 1.4.7 we may assume that C_{y} is not contained in Supp (D). One has

$$
\frac{2}{3 n+1}=C_{y} \cdot D \geqslant \frac{\operatorname{mult}_{P}\left(C_{y}\right) \operatorname{mult}_{P}(D)}{3}>\frac{1}{3}>\frac{2}{3 n+1}
$$

for all $n \geqslant 2$, which is a contradiction. The points $O_{x y}^{2}$ and $O_{x y}^{3}$ are excluded in a similar way.
Hence P is a smooth point of $X \backslash C_{x}$. Applying Lemma 1.4.10 (which is possible since the projection of X from O_{t} has finite fibers), we see that

$$
1<\operatorname{mult}_{P}(D) \leqslant \frac{2(9 n+3) \cdot 12 n}{3 \cdot 3 n(3 n+1)(3 n+1)}<1
$$

for $n \geqslant 2$, because $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(12 n)\right)$ contains $x^{4 n}, y^{4}$ and $z^{3} x^{n-1}$. The obtained contradiction completes the proof.

Lemma 2.2.7. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(3,3 n+1,3 n+2,3 n+2,9 n+6)$ for $n \geqslant 1$. Then $\operatorname{lct}(X)=1$.

Proof. The only singularities of X are a singular point O_{y} of index $3 n+1$, and three singular points $O_{z t}^{i}, i=1,2,3$, of index $3 n+2$ on the stratum $x=y=0$.

The curve C_{x} is reduced and reducible. We have $C_{x}=L_{1}+L_{2}+L_{3}$, where L_{i} is an irreducible curve such that $O_{z t}^{i} \in L_{i}$. Then $L_{1} \cap L_{2} \cap L_{3}=O_{y}$. One can easily see that $\operatorname{lct}\left(X, C_{x}\right)=2 / 3$, which implies $\operatorname{lct}(X) \leqslant 1$.

Suppose that $\operatorname{lct}(X)<1$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the \log pair (X, D) is not \log canonical at some point $P \in X$. By Remark 1.4.7 we may assume that L_{1} is not contained in $\operatorname{Supp}(D)$.

Suppose that $P \in L_{1}$. Then

$$
\frac{2}{(3 n+1)(3 n+2)}=L_{1} \cdot D \geqslant\left\{\begin{array}{l}
1 \text { if } P \neq O_{z t}^{1}, \\
\frac{\operatorname{mult}_{P}(D)}{3 n+2} \text { if } P=O_{z t}^{1},
\end{array}>\frac{1}{3 n+2}>\frac{2}{(3 n+1)(3 n+2)}\right.
$$

for all $n \geqslant 1$, which is a contradiction. Thus, we see that $P \notin L_{1}$. In particular, we see that $P \neq O_{y}$.

Suppose that $P \in L_{2}$. Put $D=\mu L_{2}+\Omega$, where Ω is an effective divisor such that $L_{2} \not \subset$ $\operatorname{Supp}(\Omega)$. Then

$$
\frac{\mu}{3 n+1}=\mu L_{1} \cdot L_{2} \leqslant D \cdot L_{1}=\frac{2}{(3 n+1)(3 n+2)},
$$

which implies that $\mu \leqslant 2 /(3 n+2)$. Note that the inequality

$$
L_{1}^{2}=-\frac{6 n+1}{(3 n+1)(3 n+2)}
$$

holds. Therefore, by Lemma 1.4.6 one has

$$
\frac{2+(6 n+1) \mu}{(3 n+1)(3 n+2)}=\Omega \cdot L_{2}>\left\{\begin{array}{l}
1 \text { if } P \neq O_{z t}^{2}, \\
\frac{1}{3 n+2} \text { if } P=O_{z t}^{2}
\end{array}\right.
$$

which implies that $n=1$ and $P=O_{z t}^{2}$, because $\mu \leqslant 2 /(3 n+2)$.
Let R_{2} be a unique curve in the pencil $\left|\mathcal{O}_{\mathbb{P}}(3 n+2)\right|_{X} \mid$ that passes through the point $O_{z t}^{2}$. Then $R_{2}=L_{2}+Z_{2}$, where Z_{2} is an irreducible reduced curve that is singular at the point $O_{z t}^{2}$. Moreover, the \log pair $\left(X, \frac{2}{5}\left(L_{2}+R_{2}\right)\right.$ is \log canonical at the point $O_{z t}^{2}$. By Remark 1.4.7, we may assume that $R_{2} \nsubseteq \operatorname{Supp}(D)$. Then

$$
\frac{2}{5}<\frac{\operatorname{mult}_{P}(D) \operatorname{mult}_{P}\left(R_{2}\right)}{5} \leqslant D \cdot R_{2}=\frac{2}{5}
$$

which is a contradiction. Thus, we see that $P \notin L_{2}$. Similarly, we see that $P \notin L_{3}$.
Hence P is a smooth point of $X \backslash C_{x}$. Applying Lemma 1.4.10, we see that

$$
1<\operatorname{mult}_{P}(D) \leqslant \frac{2(9 n+6) \cdot 3(3 n+2)}{3(3 n+1)(3 n+2)(3 n+2)}<1
$$

for $n \geqslant 2$, because because $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(3(3 n+2))\right)$ contains $x^{3 n+2}, y^{3} x$ and z^{3}. Therefore, we see that $n=1$.

Let R_{P} be a unique curve in the pencil $\left|\mathcal{O}_{\mathbb{P}}(5)\right|_{X} \mid$ that passes through the point P. The log pair $\left(X, \frac{2}{5} R_{P}\right)$ is log terminal at the point P. By Remark 1.4.7, we may assume that $\operatorname{Supp}(D)$ does not contain at least one irreducible component of R_{P}. Note that either R_{P} is irreducible or $O_{z t}^{k} \in R_{P}$ for some $k=1,2,3$.

Suppose that R_{P} is irreducible. Then

$$
1<\operatorname{mult}_{P}(D) \leqslant D \cdot R_{P}=\frac{1}{2}<1
$$

which is contradiction. Thus, we see that $O_{z t}^{k} \in R_{P}$. Then $R_{P}=L_{k}+Z$, where Z is an irreducible curve such that $P \in Z$. We have

$$
L_{k} \cdot L_{k}=\frac{-7}{20}, L_{k} \cdot Z=\frac{3}{5}, Z \cdot Z=\frac{2}{5} .
$$

Put $D=m Z+\Delta$, where Δ is an effective divisor such that $Z \not \subset \operatorname{Supp}(\Delta)$. If $m>0$, then

$$
\frac{3 m}{5}=m L_{k} \cdot Z \leqslant D \cdot L_{k}=\frac{1}{10},
$$

which implies that $\mu \leqslant 1 / 6$. Therefore, by Lemma 1.4.6 one has

$$
\frac{2-2 m}{5}=\Delta \cdot Z>1
$$

which is a contradiction. The obtained contradiction completes the proof.
Lemma 2.2.8. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(4,2 n+1,4 n+2,6 n+1,12 n+6)$ for $n \in \mathbb{Z}_{>0}$. Then $\operatorname{lct}(X)=1$.

Proof. The only singularities of X are a singular point O_{x} of index 4, a singular point O_{t} of index $6 n+1$, a singular point $O_{x z}$ of index 2 on the stratum $y=t=0$, and three singular points $O_{y z}^{i}, i=1,2,3$, of index $2 n+1$ on the stratum $x=t=0$.

The curve C_{x} is reduced and splits into three irreducible components L_{1}, L_{2} and L_{3} (L_{i} passing through $O_{y z}^{i}$) that intersect at O_{t}. One can easily see that $\operatorname{lct}\left(X, C_{x}\right)=1 / 2$, which implies $\operatorname{lct}(X) \leqslant 1$.

The curve C_{y} is quasismooth. One can easily see that the \log pair $\left(X, \frac{1}{2} \cdot \frac{4}{2 n+1} C_{y}\right)$ is \log terminal.

Suppose that $\operatorname{lct}(X)<1$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the \log pair (X, D) is not \log canonical at some point $P \in X$.

Suppose that $P=O_{t}$. By Remark 1.4.7 we may assume that one of the curves L_{i} (say, L_{1}) is not contained in $\operatorname{Supp}(D)$. One has

$$
\frac{2}{(2 n+1)(6 n+1)}=L_{1} \cdot D \geqslant \frac{\operatorname{mult}_{P}\left(L_{1}\right) \operatorname{mult}_{P}(D)}{6 n+1}>\frac{1}{6 n+1}>\frac{2}{(2 n+1)(6 n+1)}
$$

for all $n \geqslant 1$, which is a contradiction.
Suppose that $P=O_{y z}^{1}$. Put $D=\mu L_{1}+\Omega$, where Ω is an effective divisor such that $L_{1} \not \subset$ $\operatorname{Supp}(\Omega)$. We claim that

$$
\mu \leqslant \frac{1}{2 n+1}
$$

Indeed, if the inequality fails, by Remark 1.4.7 we may assume that one of the curves L_{2} and L_{3} (say, L_{2}) is not contained in $\operatorname{Supp}(D)$. Then

$$
\frac{2 \mu}{6 n+1}=\mu L_{1} \cdot L_{2} \leqslant D \cdot L_{2}=\frac{2}{(2 n+1)(6 n+1)}
$$

which is a contradiction. Note that

$$
L_{1}^{2}=-\frac{8 n}{(2 n+1)(6 n+1)}
$$

By Lemma 1.4.6 one has

$$
\frac{1}{2 n+1}<\Omega \cdot L_{1}=\frac{2+8 n \mu}{(2 n+1)(6 n+1)}<\frac{2}{(2 n+1)^{2}}<\frac{1}{2 n+1}
$$

for all $n \geqslant 1$, which is a contradiction. The points $O_{y z}^{2}$ and $O_{y z}^{3}$ are excluded in a similar way, and so are the smooth points on C_{x}.

Suppose that $P=O_{x}$. By Remark 1.4.7 we may assume that C_{y} is not contained in $\operatorname{Supp}(D)$. One has

$$
\frac{3}{6 n+1}=C_{y} \cdot D \geqslant \frac{\operatorname{mult}_{P}\left(C_{y}\right) \operatorname{mult}_{P}(D)}{4}>\frac{1}{4}>\frac{3}{6 n+1}
$$

for all $n \geqslant 2$, which is a contradiction. The point $O_{x z}$ is excluded in a similar way.
Hence P is a smooth point of $X \backslash C_{x}$. Applying Lemma 1.4.10 (which is possible since the projection of X from O_{t} has finite fibers outside C_{x}), we see that

$$
1<\operatorname{mult}_{P}(D) \leqslant \frac{2(12 n+6) \cdot 12 n}{2(2 n+1)(4 n+2)(6 n+1)}<1
$$

for $n \geqslant 2$, because $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(12 n)\right)$ contains $x^{3 n}, y^{4} x^{n-1}$ and $z^{2} x^{n-1}$. The obtained contradiction completes the proof.

2.3. Infinite series with $I=4$

Lemma 2.3.1. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(6,6 n+3,6 n+5,6 n+5,18 n+15)$ for $n \geqslant 1$. Then $\operatorname{lct}(X)=1$.

Proof. The only singularities of X are a singular point O_{x} of index 6 , a singular point O_{y} of index $6 n+3$, a singular point $O_{x y}$ of index 3 on the stratum $z=t=0$, and three singular points $O_{z t}^{i}, i=1,2,3$, of index $6 n+5$ on the stratum $x=y=0$.

The curve C_{x} is reduced and splits into three irreducible components L_{1}, L_{2} and $L_{3}\left(L_{i}\right.$ passing through $O_{z t}^{i}$) that intersect at O_{y}. One can easily check that $\operatorname{lct}\left(X, C_{x}\right)=2 / 3$, which implies $\operatorname{lct}(X) \leqslant 1$.

The curve C_{y} is reduced and splits into three irreducible components $L_{1}^{\prime}, L_{2}^{\prime}$ and $L_{3}^{\prime}\left(L_{i}^{\prime}\right.$ passing through $O_{z t}^{i}$) that intersect at O_{x}. One can easily see that the \log pair $\left(X, \frac{2}{3} \cdot \frac{6}{6 n+3} C_{y}\right)$ is \log terminal.

Suppose that $\operatorname{lct}(X)<1$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the log pair (X, D) is not \log canonical at some point $P \in X$. By Remark 1.4.7 we may assume that L_{1} and L_{1}^{\prime} are not contained in $\operatorname{Supp}(D)$.

Suppose that $P=O_{x}$. Then

$$
\frac{4}{6(6 n+5)}=L_{1}^{\prime} \cdot D \geqslant \frac{\operatorname{mult}_{P}\left(L_{1}^{\prime}\right) \operatorname{mult}_{P}(D)}{6}>\frac{1}{6}>\frac{4}{6(6 n+5)}
$$

for all $n \geqslant 1$, which is a contradiction.
Suppose that $P=O_{x y}$. Let R be a general curve in the pencil $\left|\mathcal{O}_{\mathbb{P}}(6 n+5)\right|_{X} \mid$. Then

$$
\frac{1}{3}<\frac{\operatorname{mult}_{P}(D)}{3} \leqslant D \cdot R=\frac{4(18 n+15) \cdot(6 n+5)}{6(6 n+3)(6 n+5)(6 n+5)}<1
$$

for all $n \geqslant 1$, which is a contradiction. Thus, we see that $P \neq O_{x y}$.
Suppose that $P \in L_{1}$. Then

$$
\frac{4}{(6 n+3)(6 n+5)}=L_{1} \cdot D \geqslant\left\{\begin{array}{l}
1 \text { if } P \neq O_{z t}^{1} \text { and } P \neq O_{y}, \\
\frac{\operatorname{mult}_{P}(D)}{6 n+3} \text { if } P=O_{y}, \quad>\frac{1}{6 n+5}>\frac{4}{(6 n+3)(6 n+5)} \\
\frac{\operatorname{mult}_{P}(D)}{6 n+5} \text { if } P=O_{z t}^{1},
\end{array}\right.
$$

for all $n \geqslant 1$, which is a contradiction. Thus, we see that $P \notin L_{1}$. In particular, we see that $P \neq O_{y}$.

Suppose that $P \in L_{2}$. Put $D=\mu L_{2}+\Omega$, where Ω is an effective divisor such that $L_{2} \not \subset$ $\operatorname{Supp}(\Omega)$. Then

$$
\frac{\mu}{6 n+3}=\mu L_{1} \cdot L_{2} \leqslant D \cdot L_{1}=\frac{4}{(6 n+3)(6 n+5)}
$$

which implies that $\mu \leqslant 4 /(6 n+5)$. Note that the inequality

$$
L_{2}^{2}=-\frac{12 n+4}{(6 n+3)(6 n+5)}
$$

holds. Therefore, by Lemma 1.4.6 one has

$$
\frac{4+(12 n+4) \mu}{(6 n+3)(6 n+5)}=\Omega \cdot L_{2}>\left\{\begin{array}{l}
1 \text { if } P \neq O_{z t}^{2} \\
\frac{1}{6 n+5} \text { if } P=O_{z t}^{2}
\end{array}\right.
$$

which implies that $n=1$ and $P=O_{z t}^{2}$, because $\mu \leqslant 4 /(6 n+5)$.
Let R_{2} be a unique curve in the pencil $\left|\mathcal{O}_{\mathbb{P}}(6 n+5)\right|_{X} \mid$ that passes through the point $O_{z t}^{2}$. Then $R_{2}=L_{2}+Z_{2}$, where Z_{2} is an irreducible reduced curve that is singular at the point $O_{z t}^{2}$. Moreover, the \log pair $\left(X, \frac{4}{11}\left(L_{2}+R_{2}\right)\right.$ is \log canonical at the point $O_{z t}^{2}$. By Remark 1.4.7, we may assume that $R_{2} \nsubseteq \operatorname{Supp}(D)$. Then

$$
\frac{2}{11}<\frac{\operatorname{mult}_{P}(D) \operatorname{mult}_{P}\left(R_{2}\right)}{11} \leqslant D \cdot R_{2}=\frac{2}{11}
$$

which is a contradiction. Thus, we see that $P \notin L_{2}$. Similarly, we see that $P \notin L_{3}$.
Hence P is a smooth point of $X \backslash C_{x}$. Applying Lemma 1.4.10, we see that

$$
1<\operatorname{mult}_{P}(D) \leqslant \frac{4(18 n+15) \cdot 6(6 n+5)}{6(6 n+3)(6 n+5)(6 n+5)}<1
$$

for $n \geqslant 2$, because $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(6(6 n+5))\right.$ contains $x^{6 n+5}, y^{6} x^{2}$ and z^{6}. Therefore, we see that $n=1$.

Let R_{P} be a unique curve in the pencil $\left|\mathcal{O}_{\mathbb{P}}(11)\right|_{X} \mid$ that passes through the point P. The log pair $\left(X, \frac{4}{11} R_{P}\right)$ is \log terminal at the point P. By Remark 1.4.7, we may assume that $\operatorname{Supp}(D)$ does not contain at least one irreducible component of R_{P}. Note that either R_{P} is irreducible or $O_{z t}^{k} \in R_{P}$ for some $k=1,2,3$.

Suppose that R_{P} is irreducible. Then

$$
1<\operatorname{mult}_{P}(D) \leqslant D \cdot R_{P}=\frac{2}{9}<1
$$

which is contradiction. Thus, we see that $O_{z t}^{k} \in R_{P}$. Then $R_{P}=L_{k}+Z$, where Z is an irreducible curve such that $P \in Z$. We have

$$
L_{k} \cdot L_{k}=\frac{-16}{99}, L_{k} \cdot Z=\frac{3}{11}, Z \cdot Z=\frac{5}{22} .
$$

Put $D=m Z+\Delta$, where Δ is an effective divisor such that $Z \not \subset \operatorname{Supp}(\Delta)$. If $m>0$, then

$$
\frac{3 m}{11}=m L_{k} \cdot Z \leqslant D \cdot L_{k}=\frac{4}{99},
$$

which implies that $\mu \leqslant 4 / 27$. Therefore, by Lemma 1.4.6 one has

$$
\frac{4-5 m}{22}=\Delta \cdot Z>1
$$

which is a contradiction. The obtained contradiction completes the proof.
Lemma 2.3.2. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(6,6 n+5,12 n+8,18 n+9,36 n+24)$ for $n \in \mathbb{Z}_{>0}$. Then $\operatorname{lct}(X)=1$.

Proof. The only singularities of X are a singular point O_{y} of index $6 n+5$, a singular point O_{t} of index $18 n+9$, and a singular point $O_{x t}$ of index 3 on the stratum $y=z=0$.

The curve C_{x} is reduced and irreducible and has the only singularity (of multiplicity 3) at O_{t}. It is easy to see that $\operatorname{lct}\left(X, C_{x}\right)=2 / 3$, which implies $\operatorname{lct}(X) \leqslant 1$.

The curve C_{y} is quasismooth. It is easy to see that the \log pair $\left(X, \frac{2}{3} \cdot \frac{6}{6 n+5} C_{y}\right)$ is \log terminal.
Suppose that $\operatorname{lct}(X)<1$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the log pair (X, D) is not \log canonical at some point $P \in X$. By Remark 1.4.7 we may assume that neither C_{x} nor C_{y} is contained in $\operatorname{Supp}(D)$.

Suppose that $P=O_{t}$. One has

$$
\frac{4}{(6 n+3)(6 n+5)}=C_{x} \cdot D \geqslant \frac{\operatorname{mult}_{P}\left(C_{x}\right) \operatorname{mult}_{P}(D)}{18 n+9}>\frac{3}{18 n+9}>\frac{4}{(6 n+3)(6 n+5)},
$$

which is a contradiction.
Suppose that $P=O_{y}$. One has

$$
\frac{4}{(6 n+3)(6 n+5)}=C_{x} \cdot D \geqslant \frac{\operatorname{mult}_{P}\left(C_{x}\right) \operatorname{mult}_{P}(D)}{6 n+5}>\frac{1}{6 n+5}>\frac{4}{(6 n+3)(6 n+5)}
$$

which is a contradiction. The smooth points on C_{x} are excluded in a similar way.
Suppose that $P=O_{x t}$. One has

$$
\frac{2}{3(6 n+3)}=C_{y} \cdot D \geqslant \frac{\operatorname{mult}_{P}(D)}{3}>\frac{1}{3}>\frac{2}{3(6 n+3)},
$$

which is a contradiction.
Hence P is a smooth point of $X \backslash C_{x}$. Applying Lemma 1.4.10 (which is possible since the projection of X from O_{t} has finite fibers), we see that

$$
1<\operatorname{mult}_{P}(D) \leqslant \frac{4(36 n+24)(36 n+30)}{6(6 n+5)(12 n+8)(18 n+9)}<1
$$

because $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(36 n+30)\right)$ contains $x^{6 n+5}, y^{6}$ and $z^{3} x$. The obtained contradiction completes the proof.

Lemma 2.3.3. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(6,6 n+5,12 n+8,18 n+15,36 n+30)$ for $n \in \mathbb{Z}_{>0}$. Then $\operatorname{lct}(X)=1$.

Proof. The only singularities of X are a singular point O_{z} of index $12 n+8$, a singular point $O_{x z}$ of index 2 on the stratum $y=t=0$, a singular point $O_{x t}$ of index 3 on the stratum $y=z=0$, and two singular points $O_{y t}^{i}, i=1,2$, of index $6 n+5$ on the stratum $x=z=0$.

The curve C_{x} is reduced and splits into two irreducible components L_{1} and L_{2} (L_{i} passing through $O_{y t}^{i}$) that are tangent to order 2 at (the preimage of) the point O_{z}. One can easily check that $\operatorname{lct}\left(X, C_{x}\right)=2 / 3$, which implies $\operatorname{lct}(X) \leqslant 1$.

The curve C_{y} is quasismooth. It is easy to see that the \log pair $\left(X, \frac{2}{3} \cdot \frac{6}{6 n+5} C_{y}\right)$ is \log terminal.
Suppose that $\operatorname{lct}(X)<1$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the log pair (X, D) is not \log canonical at some point $P \in X$.

Suppose that $P=O_{z}$. By Remark 1.4.7 we may assume that one of the curves L_{1} and L_{2} (say, L_{1}) is not contained in $\operatorname{Supp}(D)$. One has

$$
\frac{1}{(3 n+2)(6 n+5)}=L_{1} \cdot D \geqslant \frac{\operatorname{mult}_{P}\left(L_{1}\right) \operatorname{mult}_{P}(D)}{12 n+8}>\frac{1}{12 n+8}>\frac{1}{(3 n+2)(6 n+5)},
$$

which is a contradiction.
Suppose that $P=O_{x t}$. By Remark 1.4.7 we may assume that C_{y} is not contained in $\operatorname{Supp}(D)$. One has

$$
\frac{1}{3(3 n+2)}=C_{y} \cdot D \geqslant \frac{\operatorname{mult}_{P}(D)}{3}>\frac{1}{3} \frac{1}{3(3 n+2)},
$$

which is a contradiction. The point $O_{x z}$ is excluded in a similar way.
Suppose that $P=O_{y t}^{1}$. Put $D=\mu L_{1}+\Omega$, where Ω is an effective divisor such that $L_{1} \not \subset$ $\operatorname{Supp}(\Omega)$. We claim that

$$
\mu \leqslant \frac{4}{3(6 n+5)} .
$$

Indeed, if the inequality fails, by Remark 1.4 .7 we may assume that L_{2} is not contained in $\operatorname{Supp}(D)$. Then

$$
\frac{3 \mu}{12 n+8}=\mu L_{1} \cdot L_{2} \leqslant D \cdot L_{2}=\frac{1}{(3 n+2)(6 n+5)},
$$

which is a contradiction. Note that

$$
L_{1}^{2}=-\frac{18 n+9}{(12 n+8)(6 n+5)} .
$$

By Lemma 1.4.6 one has

$$
\frac{1}{6 n+5}<\Omega \cdot L_{1}=\frac{4+(18 n+9) \mu}{(12 n+8)(6 n+5)}<\frac{1}{6 n+5},
$$

which is a contradiction. The points $O_{y t}^{2}$ and the smooth points on C_{x} are excluded in a similar way.

Hence P is a smooth point of $X \backslash C_{x}$. Applying Lemma 1.4.10 (which is possible since the projection of X from O_{t} has finite fibers), we see that

$$
1<\operatorname{mult}_{P}(D) \leqslant \frac{4(36 n+30)(3(12 n+8)+6)}{6(6 n+5)(12 n+8)(18 n+15)}<1,
$$

because $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(3(12 n+8)+6)\right)$ contains $x^{12 n+9}, y^{6}$ and $z^{3} x$. The obtained contradiction completes the proof.

2.4. Infinite series With $I=6$

Lemma 2.4.1. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(8,4 n+5,4 n+7,4 n+9,12 n+13)$ for $n \geqslant 2$. Then $\operatorname{lct}(X)=1$.

Proof. The surface X can be given by the equation

$$
z^{2} t+y t^{2}+x y^{3}+x^{n+2} z=0
$$

and the only singularities of X are O_{x}, O_{y}, O_{z} and O_{t}.
The curve C_{x} is reduced and splits into a union of the stratum $L_{x t}$ and a residual curve M_{x} intersecting at O_{y}. One can easily see that $\operatorname{lct}\left(X, C_{x}\right)=3 / 4$, which implies $\operatorname{lct}(X) \leqslant 1$.

The curve C_{y} is reduced and splits into a union of the stratum $L_{y z}$ and a residual curve M_{y} intersecting at O_{t}. One can easily see that $\operatorname{lct}\left(X, C_{y}\right)=\frac{n+3}{2 n+4}$, and hence the log pair $\left(X, \frac{4 n+5}{6} C_{y}\right)$ is \log canonical for $n \geqslant 1$.

The curve C_{z} is reduced and splits into a union of the stratum $L_{y z}$ and a residual curve M_{z} intersecting at O_{x}. One can easily see that $\operatorname{lct}\left(X, C_{z}\right)=2 / 3$, and hence the log pair $\left(X, \frac{4 n+7}{6} C_{z}\right)$ is \log terminal for $n \geqslant 1$.

The curve C_{t} is reduced and splits into a union of the stratum $L_{x t}$ and a residual curve M_{t} intersecting at O_{z}. One can easily see that $\operatorname{lct}\left(X, C_{t}\right)=\frac{2 n-1}{5(n-1)}$, and hence the \log pair $\left(X, \frac{4 n+9}{6} C_{t}\right)$ is \log terminal for $n \geqslant 1$.

One has the following intersection numbers.

$$
\begin{gathered}
L_{x t} \cdot D=\frac{6}{(4 n+5)(4 n+7)}, L_{x t} \cdot M_{x}=\frac{2}{4 n+5}, L_{x t} \cdot M_{t}=\frac{3}{4 n+7}, \\
M_{x} \cdot D=\frac{12}{(4 n+5)(4 n+9)}, M_{t} \cdot D=\frac{18}{8(4 n+7)}, \\
M_{x}^{2}=-\frac{8 n+2}{(4 n+5)(4 n+9)}, M_{t}^{2}=-\frac{4 n-3}{8(4 n+7)}, \\
L_{y z} \cdot D=\frac{6}{8(4 n+9)}, L_{y z} \cdot M_{y}=\frac{n+2}{4 n+9}, L_{y z} \cdot M_{z}=\frac{1}{4}, \\
M_{y} \cdot D=\frac{6(n+2)}{(4 n+7)(4 n+9)}, M_{z} \cdot D=\frac{12}{8(4 n+5)}, \\
M_{y}^{2}=-\frac{2 n+4}{(4 n+7)(4 n+9)}, M_{z}^{2}=-\frac{4 n+1}{8(4 n+5)} .
\end{gathered}
$$

Suppose that $\operatorname{lct}(X)<1$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the log pair (X, D) is not \log canonical at some point $P \in X$.

Suppose that $P=O_{x}$. Assume that $L_{y z} \not \subset \operatorname{Supp}(D)$. Then

$$
\frac{6}{8(4 n+9)}=L_{y z} \cdot D>\frac{1}{8}
$$

which is a contradiction for all $n \geqslant 1$. Hence $L_{y z} \subset \operatorname{Supp}(D)$. By Remark 1.4.7 we may assume that $M_{y} \not \subset \operatorname{Supp}(D)$. Put $D=\mu L_{y z}+\Omega$, where $L_{y z} \not \subset \operatorname{Supp}(\Omega)$. By Theorem 1.4.5 one has

$$
\frac{1}{8}<\Omega \cdot L_{y z}=\frac{6+(4 n+11) \mu}{8(4 n+9)}
$$

and hence $\mu>(4 n+3)(4 n+11)$. On the other hand,

$$
\frac{6(n+2)}{(4 n+7)(4 n+9)}=D \cdot M_{y} \geqslant \mu L_{y z} \cdot M_{y}+\frac{\operatorname{mult}_{O_{x}}(D)-\mu}{8}>\frac{\mu(n+2)}{4 n+9}+\frac{1-\mu}{8}
$$

which is a contradiction for $n \geqslant 1$, because $\mu>(4 n+3)(4 n+11)$.

Suppose that $P=O_{y}$. Assume that $L_{x t} \not \subset \operatorname{Supp}(D)$. Then

$$
\frac{6}{(4 n+5)(4 n+7)}=L_{x t} \cdot D>\frac{1}{4 n+5},
$$

which is a contradiction for all $n \geqslant 1$. Hence $L_{x t} \subset \operatorname{Supp}(D)$, and by Remark 1.4.7 we may assume that $M_{x} \not \subset \operatorname{Supp}(D)$. Put $D=\mu L_{x t}+\Omega$, where $L_{x t} \not \subset \operatorname{Supp}(\Omega)$. Then

$$
\frac{12}{(4 n+5)(4 n+9)}=D \cdot M_{x}<\frac{2 \mu}{4 n+5},
$$

which gives $\mu \leqslant 6 /(4 n+9)$. By Theorem 1.4.5 one has

$$
\frac{1}{4 n+5}<\Omega \cdot L_{x t}=\frac{6+(8 n+6) \mu}{(4 n+5)(4 n+7)},
$$

which is a contradiction for $n \geqslant 2$.
Suppose that $P=O_{z}$. Assume that $L_{x t} \not \subset \operatorname{Supp}(D)$. Then

$$
\frac{6}{(4 n+5)(4 n+7)}=L_{x t} \cdot D>\frac{1}{4 n+7},
$$

which is a contradiction for $n \geqslant 1$. Hence $L_{x t} \subset \operatorname{Supp}(D)$, and by Remark 1.4.7 we may assume that $M_{x} \not \subset \operatorname{Supp}(D) \not \supset M_{t}$. Then $\mu \leqslant 6 /(4 n+9)$ as above, and by Theorem 1.4.5 one has

$$
\frac{1}{4 n+7}<\Omega \cdot L_{x t}=\frac{6+(8 n+6) \mu}{(4 n+5)(4 n+7)} \leqslant \frac{18}{(4 n+7)(4 n+9)},
$$

which is a contradiction for $n \geqslant 3$. If $n=2$, then

$$
\frac{18}{8 \cdot 15}=M_{t} \cdot D \geqslant \frac{\operatorname{mult}_{O_{z}}(D) \operatorname{mult}_{O_{z}}\left(M_{t}\right)}{17}=\frac{3 \operatorname{mult}_{O_{z}}(D)}{17}>\frac{3}{17},
$$

which is a contradiction.
Suppose that $P=O_{t}$. Assume that $M_{x} \not \subset \operatorname{Supp}(D)$. Then

$$
\frac{12}{(4 n+5)(4 n+9)}=M_{x} \cdot D>\frac{1}{4 n+9},
$$

which is a contradiction for $n \geqslant 2$. Hence $M_{x} \subset \operatorname{Supp}(D)$, and by Remark 1.4.7 we may assume that $L_{x t} \not \subset \operatorname{Supp}(D)$. Put $D=\mu M_{x}+\Omega$, where $M_{x} \not \subset \operatorname{Supp}(\Omega)$. Then

$$
\frac{6}{(4 n+5)(4 n+7)}=L_{x t} \cdot D<\frac{2 \mu}{4 n+5},
$$

which implies that $\mu \leqslant 3 /(4 n+7)$. By Theorem 1.4.5 one has

$$
\frac{1}{4 n+9}<\Omega \cdot M_{x}=\frac{12+(8 n+2) \mu}{(4 n+5)(4 n+9)} \leqslant \frac{18}{(4 n+7)(4 n+9)},
$$

which is a contradiction for $n \geqslant 2$.
Suppose that P is a smooth point on $L_{x t}$. Assume that $L_{x t} \not \subset \operatorname{Supp}(D)$. Then

$$
\frac{6}{(4 n+5)(4 n+7)}=L_{x t} \cdot D>1,
$$

which is a contradiction for all $n \geqslant 1$. Hence $L_{x t} \subset \operatorname{Supp}(D)$, and by Remark 1.4 .7 we may assume that $M_{x} \not \subset \operatorname{Supp}(D)$. Put $D=\mu L_{x t}+\Omega$, where $L_{x t} \not \subset \operatorname{Supp}(\Omega)$. Then

$$
1<\Omega \cdot L_{x t}=\frac{6+(8 n+6) \mu}{(4 n+5)(4 n+7)} \leqslant \frac{18}{(4 n+7)(4 n+9)}
$$

by Theorem 1.4.5, because $\mu \leqslant 6 /(4 n+9)$, which is a contradiction for all $n \geqslant 1$.
Suppose that P is a smooth point on M_{x}. Assume that $M_{x} \not \subset \operatorname{Supp}(D)$. Then

$$
\frac{12}{(4 n+5)(4 n+9)}=M_{x} \cdot D>1,
$$

which is a contradiction for all $n \geqslant 1$. Hence $M_{x} \subset \operatorname{Supp}(D)$. By Remark 1.4.7 we may assume that $L_{x t} \not \subset \operatorname{Supp}(D)$. Put $D=\mu M_{x}+\Omega$, where $M_{x} \not \subset \operatorname{Supp}(\Omega)$. By Theorem 1.4.5 one has

$$
1<\Omega \cdot M_{x}=\frac{12+(8 n+2) \mu}{(4 n+5)(4 n+9)} \leqslant \frac{18}{(4 n+7)(4 n+9)},
$$

which is a contradiction for all $n \geqslant 1$, because $\mu \leqslant 3 /(4 n+7)$.
Suppose that P is a smooth point on $L_{y z}$. Assume that $L_{y z} \not \subset \operatorname{Supp}(D)$. Then

$$
\frac{6}{8(4 n+9)}=L_{y z} \cdot D>1
$$

which is a contradiction for all $n \geqslant 1$. Hence $L_{y z} \subset \operatorname{Supp}(D)$. By Remark 1.4.7 we may assume that $M_{y} \not \subset \operatorname{Supp}(D)$. Put $D=\mu L_{y z}+\Omega$, where $L_{y z} \not \subset \operatorname{Supp}(\Omega)$. By Theorem 1.4.5 one has

$$
1<\Omega \cdot L_{y z}=\frac{6+(4 n+11) \mu}{8(4 n+9)} \leqslant \frac{3}{2(4 n+7)},
$$

which is a contradiction for all $n \geqslant 1$, because $\mu \leqslant 6 /(4 n+7)$.
Suppose that P is a smooth point on M_{y}. Assume that $M_{y} \not \subset \operatorname{Supp}(D)$. Then

$$
\frac{6(n+2)}{(4 n+7)(4 n+9)}=M_{y} \cdot D>1,
$$

which is a contradiction for all $n \geqslant 1$. Hence $M_{y} \subset \operatorname{Supp}(D)$, and by Remark 1.4.7 we may assume that $L_{y z} \not \subset \operatorname{Supp}(D)$. Put $D=\mu M_{y}+\Omega$, where $M_{y} \not \subset \operatorname{Supp}(\Omega)$. Then

$$
\frac{6}{8(4 n+9)}=L_{y z} \cdot D<\frac{\mu(n+2)}{4 n+9},
$$

which implies that $\mu \leqslant 6 /(8 n+16)$. By Theorem 1.4.5 one has

$$
1<\Omega \cdot M_{y}=\frac{12+(8 n+2) \mu}{(4 n+5)(4 n+9)} \leqslant \frac{6(24 n+34)}{8(n+2)(4 n+5)(4 n+9)},
$$

which is a contradiction for all $n \geqslant 1$.
Hence P is a smooth point of $X \backslash\left(C_{x} \cup C_{y}\right)$. Applying Lemma 1.4.10 (which is possible since the projection of X from O_{t} has finite fibers outside $L_{y z}$) we see that

$$
1<\operatorname{mult}_{P}(D) \leqslant \frac{6(12 n+23) \cdot 8(4 n+7)}{8(4 n+5)(4 n+7)(4 n+9)}<1
$$

for $n \geqslant 3$, because $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(8(4 n+7))\right)$ contains $x^{2 n+4}, y^{8} x^{2}$ and z^{8}. Arguing as in the end of the proof of Lemma 2.4.3, we see that $n \neq 2$.
Lemma 2.4.2. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(8,9,11,13,35)$. Then $\operatorname{lct}(X)=1$.
Proof. We have $I=6$. Let us use the notations and assumptions of the proof of Lemma 2.4.1, where $n=2$. Then it follows from the proof of Lemma 2.4.3 that either $P=O_{z}$ or O_{t}.

Suppose that $P=O_{z}$. Then $L_{x t} \subset \operatorname{Supp}(D)$, since otherwise we have

$$
\frac{6}{9 \cdot 11}=D \cdot L_{x t}>\frac{1}{11}>\frac{6}{9 \cdot 11},
$$

which is a contradiction. We may assume that $M_{t} \not \subset \operatorname{Supp}(D)$ by Remark 1.4.7. Put

$$
D=m L_{x t}+c M_{y}+\Omega
$$

where $m>0$ and $c \geqslant 0$, and Ω is an effective \mathbb{Q}-divisor such that $L_{x t} \not \subset \operatorname{Supp}(\Omega) \not \supset M_{y}$. Then

$$
\frac{18}{8 \cdot 11}=D \cdot M_{t}=\left(m L_{x t}+c M_{y}+\Omega\right) \cdot M_{t} \geqslant \frac{3 m}{11}+\frac{\operatorname{mult}_{O_{z}}(D)-m}{33}>\frac{m+1}{11},
$$

which implies that $m<1 / 4$. Then it follows from Lemma 1.4.6 that

$$
\frac{6+14 m}{9 \cdot 11}=\left(-K_{X}-m L_{x t}\right) \cdot L_{x t}=\left(\Omega+c M_{y}\right) \cdot L_{x t}>\frac{1}{11}
$$

which implies that $m>3 / 14$. On the other hand, if $c>0$, then

$$
\frac{6}{8 \cdot 13}=D \cdot L_{y z}=\left(m L_{x t}+c M_{y}+\Omega\right) \cdot L_{y z} \geqslant \frac{3 c}{13},
$$

which implies that $c \leqslant 1 / 4$.
Let $\pi: \bar{X} \rightarrow X$ be a weighted blow up of O_{z} with weights (3,2), let E be the exceptional curve of π, let $\bar{\Omega}, \bar{L}_{x t}$ and \bar{M}_{y} be the proper transforms of $\Omega, L_{x t}$ and M_{y}, respectively. Then

$$
K_{\bar{X}} \equiv \pi^{*}\left(K_{X}\right)-\frac{6}{11} E, \bar{L}_{x t} \equiv \pi^{*}\left(L_{x t}\right)-\frac{3}{11} E, \bar{M}_{y} \equiv \pi^{*}\left(M_{y}\right)-\frac{2}{11} E, \bar{\Omega} \equiv \pi^{*}(\Omega)-\frac{a}{11} E .
$$

where a is a positive rational number a.
The curve E contains two singular points Q_{2} and Q_{3} of \bar{X} such that Q_{2} is a singular point of type $\frac{1}{2}(1,1)$, and Q_{3} is a singular point of type $\frac{1}{2}(1,2)$. Then

$$
\bar{L}_{x t} \not \supset Q_{3} \in \bar{M}_{y} \not \supset Q_{2} \in \bar{L}_{x t},
$$

and $\bar{L}_{x t} \cap \bar{M}_{y}=\varnothing$. The log pull back of the \log pair (X, D) is the log pair

$$
\left(\bar{X}, \bar{\Omega}+m \bar{L}_{x t}+c \bar{M}_{y}+\frac{6+a+3 m+2 c}{11} E\right),
$$

which must have non-log canonical singularity at some point $Q \in E$. We have

$$
\frac{18+6 c}{11 \cdot 13}-\frac{m}{11}-\frac{a}{33}=\bar{\Omega} \cdot \bar{M}_{y} \geqslant 0 \leqslant \bar{\Omega} \cdot \bar{L}_{x t}=\frac{6+14 m}{9 \cdot 11}-\frac{c}{11}-\frac{a}{22},
$$

hence $a \leqslant(12+28 m) / 9 \leqslant 19 / 9$, because $m \leqslant 1 / 4$. Then $6+a+3 m+2 c<11$, because $c \leqslant 1 / 4$.
Suppose that $Q \neq Q_{2}$ and $Q \neq Q_{3}$. Then $Q \notin \bar{L}_{x t} \cup \bar{M}_{y}$. By Lemma 1.4.6, we have

$$
\frac{a}{2 \cdot 3}=-\frac{a}{11} E^{2}=\bar{\Omega} \cdot E>1,
$$

which implies that $a>6$, which is impossible, because $a<19 / 9$.
Therefore, we see that either $Q=Q_{2}$ or $Q=Q_{3}$.
Suppose that $Q=Q_{2}$. Then $Q \notin \bar{M}_{y}$. Hence, it follows from Lemma 1.4.6 that

$$
\frac{6+14 m}{9 \cdot 11}-\frac{c}{11}-\frac{a}{22}+\frac{6+a+3 m+2 c}{22}=\left(\bar{\Omega}+\frac{6+a+3 m+2 c}{11} E\right) \cdot \bar{L}_{x t}>\frac{1}{2}
$$

which implies that $m>68 / 55$. But $m<1 / 4$, which is a contradiction.
Thus, we see that $Q=Q_{3}$. Then $Q \notin \bar{L}_{x t}$, and it follows from Lemma 1.4.6 that

$$
\frac{18+6 c}{11 \cdot 13}-\frac{m}{11}-\frac{a}{33}+\frac{6+a+3 m+2 c}{33}=\left(\bar{\Omega}+\frac{6+a+3 m+2 c}{11} E\right) \cdot \bar{M}_{y}>\frac{1}{3},
$$

which implies that $c>1 / 4$. But $c \leqslant 1 / 4$. The obtained contradiction shows that $P \neq O_{z}$.
We see that $P=O_{t}$. Then $L_{y z} \not \subset \operatorname{Supp}(D)$, since otherwise we have

$$
\frac{6}{8 \cdot 13}=D \cdot L_{y z}>\frac{1}{13}>\frac{6}{8 \cdot 13},
$$

which is a contradiction. By Remark 1.4.7, we may assume that $M_{y} \not \subset \operatorname{Supp}(D)$. Put

$$
D=m L_{y z}+c M_{x}+\Omega
$$

where $m>0$ and $c \geqslant 0$, and Ω is an effective \mathbb{Q}-divisor such that $L_{y z} \not \subset \operatorname{Supp}(\Omega) \not \supset M_{x}$. Then

$$
\frac{8}{11 \cdot 13}=D \cdot M_{y}=\left(m L_{y z}+c M_{x}+\Omega\right) \cdot M_{y} \geqslant \frac{3 m}{13}+\frac{\operatorname{mult}_{O_{t}}(D)-m}{13}>\frac{2 m+1}{13},
$$

which implies that $m<7 / 22$. Then it follows from Lemma 1.4.6 that

$$
\frac{6+15 m}{8 \cdot 13}=\left(-K_{X}-m L_{y z}\right) \cdot L_{y z}=\left(\Omega+c M_{x}\right) \cdot L_{y z}>\frac{1}{13},
$$

which implies that $m>2 / 15$. On the other hand, if $c>0$, then

$$
\frac{6}{9 \cdot 11}=D \cdot L_{x t}=\left(m L_{y z}+c M_{x}+\Omega\right) \cdot L_{y t}=\left(c M_{x}+\Omega\right) \cdot L_{y t} \geqslant \frac{3 c}{11},
$$

which implies that $c \leqslant 3 / 11$.
Let $\pi: \bar{X} \rightarrow X$ be a weighted blow up of O_{t} with weights (5,2), let E be the exceptional curve of π, let $\bar{\Omega}, \bar{L}_{y z}$ and \bar{M}_{x} be the proper transforms of $\Omega, L_{y z}$ and M_{x}, respectively. Then

$$
K_{\bar{X}} \equiv \pi^{*}\left(K_{X}\right)+\frac{6}{13} E, \bar{L}_{y z} \equiv \pi^{*}\left(L_{y z}\right)-\frac{2}{13} E, \bar{M}_{x} \equiv \pi^{*}\left(M_{x}\right)-\frac{5}{13} E, \bar{\Omega} \equiv \pi^{*}(\Omega)-\frac{a}{13} E,
$$

where a is a positive rational number.
The curve E contains two singular points Q_{5} and Q_{2} of \bar{X} such that Q_{5} is a singular point of type $\frac{1}{5}(1,1)$, and Q_{2} is a singular point of type $\frac{1}{2}(1,1)$. Then

$$
\bar{L}_{y z} \not \supset Q_{2} \in \bar{M}_{x} \not \supset Q_{5} \in \bar{L}_{y z},
$$

and $\bar{L}_{y z} \cap \bar{M}_{x}=\varnothing$. The log pull back of the \log pair (X, D) is the \log pair

$$
\left(\bar{X}, \bar{\Omega}+m \bar{L}_{y z}+c \bar{M}_{y}+\frac{6+a+2 m+5 c}{13} E\right)
$$

which must have non-log canonical singularity at some point $Q \in E$. Then

$$
\frac{12+10 c}{9 \cdot 13}-\frac{m}{13}-\frac{a}{26}=\bar{\Omega} \cdot \bar{M}_{x} \geqslant 0 \leqslant \bar{\Omega} \cdot \bar{L}_{y z}=\frac{6+15 m}{8 \cdot 13}-\frac{c}{13}-\frac{a}{65}
$$

which implies that $30+75 m \geqslant 40 c+8 a$ and $24+20 c \geqslant 18 m+9 a$. In particular, we see that $a \leqslant 36 / 11$. Then $6+a+2 m+5 c<13$, because $c \leqslant 3 / 11$ and $m \leqslant 7 / 22$.

Suppose that $Q \neq Q_{2}$ and $Q \neq Q_{5}$. Then $Q \notin \bar{L}_{y z} \cup \bar{M}_{x}$. By Lemma 1.4.6, we have

$$
\frac{a}{10}=-\frac{a}{13} E^{2}=\bar{\Omega} \cdot E>1
$$

which implies that $a>10$, which is impossible, because $a<36 / 11$. Therefore, we see that either $Q=Q_{2}$ or $Q=Q_{5}$.

Suppose that $Q=Q_{2}$. Then $Q \notin \bar{L}_{y z}$. Hence, it follows from Lemma 1.4.6 that

$$
\frac{12+10 c}{9 \cdot 13}-\frac{m}{13}-\frac{a}{26}+\frac{6+a+2 m+5 c}{26}=\left(\bar{\Omega}+\frac{6+a+2 m+5 c}{13} E\right) \cdot \bar{M}_{x}>\frac{1}{2}
$$

which implies that $c>3 / 5$. But $c \leqslant 3 / 11$, which is a contradiction.
Thus, we see that $Q=Q_{5}$. Then $Q \notin \bar{M}_{x}$, and it follows from Lemma 1.4.6 that

$$
\frac{6+15 m}{8 \cdot 13}+\frac{6+2 m}{65}=\left(\bar{\Omega}+\frac{6+a+2 m+5 c}{13} E\right) \cdot \bar{L}_{y z}>\frac{1}{5}<\left(\bar{\Omega}+m \bar{L}_{y z}\right) \cdot E=\frac{a}{10}+\frac{m}{5}
$$

which implies that $m>2 / 7$ and $a+2 m>2$. But we have no contradiction here.
Let $\psi: \tilde{X} \rightarrow \bar{X}$ be a weighted blow up of Q_{5} with weights $(1,1)$, let G be the exceptional curve of ψ, let $\tilde{\Omega}, \tilde{L}_{y z}, \tilde{M}_{x}$ and \tilde{E} be the proper transforms of $\Omega, L_{y z}, M_{x}$ and E, respectively. Then

$$
K_{\tilde{X}} \equiv \psi^{*}\left(K_{\bar{X}}\right)-\frac{3}{5} G, \tilde{L}_{y z} \equiv \psi^{*}\left(\bar{L}_{y z}\right)-\frac{1}{5} G, \tilde{E} \equiv \psi^{*}(E)-\frac{1}{5} G, \tilde{\Omega} \equiv \psi^{*}(\bar{\Omega})-\frac{b}{5} G
$$

where b is a positive rational number.
The surface is smooth along G. The \log pull back of (X, D) is the \log pair

$$
\left(\tilde{X}, \tilde{\Omega}+m \tilde{L}_{y z}+c \tilde{M}_{x}+\frac{6+a+2 m+5 c}{13} \tilde{E}+\theta G\right)
$$

where $\theta=3 m / 13+c / 13+a / 65+b / 5+9 / 13$. Then the \log pull back of the \log pair (X, D) is not \log canonical at some point $O \in G$. We have

$$
\frac{a}{10}-\frac{b}{5}=\tilde{E} \cdot \tilde{\Omega} \geqslant 0 \leqslant \tilde{L}_{y z} \cdot \tilde{\Omega}=\frac{6+15 m}{8 \cdot 13}-\frac{c}{13}-\frac{a}{65}-\frac{b}{5}
$$

which implies that $30+75 m \geqslant 4-c+8 a+104 b$ and $a \geqslant 2 b$. The system of inequalities

$$
\left\{\begin{array}{l}
30+75 m \geqslant 40 c+8 a+104 b \\
3 m+c+a / 5+13 b / 5+9 \geqslant 13 \\
7 / 22 \geqslant m
\end{array}\right.
$$

is inconsistent. Thus, we see that $\theta<1$.
Suppose that $O \notin \tilde{E} \cup \tilde{L}_{y z}$. Then it follows from Lemma 1.4.6 that

$$
b=-\frac{b}{5} G^{2}=\tilde{\Omega} \cdot G>1
$$

which implies that $b>1$. But the system of inequalities

$$
\left\{\begin{array}{l}
30+75 m \geqslant 40 c+8 a+104 b \\
a \geqslant 2 b>1 \\
3 / 11 \geqslant c \\
24+12 c \geqslant 18 m+9 a
\end{array}\right.
$$

is inconsistent. Therefore, we see that $O \notin \tilde{E} \cup \tilde{L}_{y z}$. Note that $\tilde{E} \cap \tilde{L}_{y z}=\varnothing$.
Suppose that $O \in \tilde{L}_{y z}$. Then it follows from Lemma 1.4.6 that

$$
b+m=\left(\tilde{\Omega}+m \tilde{L}_{y z}\right) \cdot G>1<(\tilde{\Omega}+\theta G) \cdot \tilde{L}_{y z}=\frac{6+15 m}{8 \cdot 13}-\frac{c}{13}-\frac{a}{65}-\frac{b}{5}+\theta,
$$

which implies that $b+m>1$ and $m>2 / 3$. But $m<7 / 22$, which is a contradiction.
Thus, we see that $O \in \tilde{E}$. Hence, it follows from Lemma 1.4.6 that

$$
b+\frac{6+a+2 m+5 c}{13}=\left(\tilde{\Omega}+\frac{6+a+2 m+5 c}{13} \tilde{E}\right) \cdot G>1<(\tilde{\Omega}+\theta G) \cdot \tilde{E}=\frac{a}{10}-\frac{b}{5}+\theta,
$$

which implies that which implies that $130 a+845 m+1820 c>1312$. Applying Lemma 1.4.6 again, we see that

$$
\frac{65}{32} \frac{b}{13 \cdot 14}=\frac{65}{32} \tilde{\Omega} \cdot G>\frac{37}{462}-\frac{1495 m}{14784}-\frac{65 c}{1056}-\frac{65 a}{14784}
$$

which implies that $13 b+a+2 m+5 c>7$ and $3 a+2 c+6 m>8$.
Let $\phi: \hat{X} \rightarrow \tilde{X}$ be a blow up of the point O, let F be the exceptional curve of ϕ, let $\hat{\Omega}, \hat{L}_{y z}$, \hat{M}_{x}, \hat{E} and \hat{G} be the proper transforms of $\Omega, L_{y z}, M_{x}, E$ and G, respectively. Then

$$
K_{\hat{X}} \equiv \phi^{*}\left(K_{\tilde{X}}\right)+F, \hat{G} \equiv \phi^{*}(G)-F, \hat{E} \equiv \phi^{*}(\tilde{E})-F, \hat{\Omega} \equiv \phi^{*}(\tilde{\Omega})-d F,
$$

where d is a positive rational number. The \log pull back of (X, D) is the log pair

$$
\left(\hat{X}, \hat{\Omega}+m \hat{L}_{y z}+c \hat{M}_{x}+\frac{6+a+2 m+5 c}{13} \hat{E}+\theta \hat{G}+\nu F\right)
$$

where $\nu=d+5 m / 13+6 a / 65+6 c / 13+b / 5+2 / 13$. Then the log pull back of the log pair (X, D) is not \log canonical at some point $A \in F$. We have

$$
\frac{a}{10}-\frac{b}{5}-d=\hat{E} \cdot \hat{\Omega} \geqslant 0 \leqslant \hat{G} \cdot \hat{\Omega}=b-d
$$

which implies that $b \geqslant d$ and $a \geqslant 2 b+10 d$. The system of inequalities

$$
\left\{\begin{array}{l}
30+75 m \geqslant 40 c+8 a+104 b, \\
13 d+5 m+6 a / 5+6 c+13 b / 5 \geqslant 11, \\
b \geqslant d, \\
7 / 22 \geqslant m,
\end{array}\right.
$$

is inconsistent. Thus, we see that $\nu<1$.
Suppose that $A \notin \hat{E} \cup \hat{G}$. Then t follows from Lemma 1.4.6 that

$$
d=\hat{\Omega} \cdot F>1,
$$

which is impossible, because the system of inequalities

$$
\left\{\begin{array}{l}
30+75 m \geqslant 40 c+8 a+104 b \\
24+20 c \geqslant 18 m+9 a \\
a \geqslant 2 b+10 d \\
7 / 22 \geqslant m \\
b \geqslant d>1
\end{array}\right.
$$

is inconsistent. Thus, we see that $A \in \hat{E} \cup \hat{G}$. Note that $\hat{E} \cap \hat{G}=\varnothing$.

Suppose that $A \in \hat{E}$. Then it follows from Lemma 1.4.6 that

$$
\frac{a}{10}-\frac{b}{5}-d+\nu=(\hat{\Omega}+\nu F) \cdot \hat{E}>1
$$

which implies that $5 a+10 m+12 c>22$. But the system of inequalities

$$
\left\{\begin{array}{l}
5 a+10 m+12 c>22, \\
24+12 c \geqslant 18 m+9 a, \\
3 / 11 \geqslant c,
\end{array}\right.
$$

is inconsistent. Thus, we see that $A \notin \hat{E}$. Then $A \in \hat{G}$. By Lemma 1.4.6, we see that

$$
b-d+\nu=(\hat{\Omega}+\nu F) \cdot \hat{G}>1
$$

which implies that $6 a+25 m+30 c+78 b>55$. But the system of inequalities

$$
\left\{\begin{array}{l}
6 a+25 m+30 c+78 b>55 \\
30+75 m \geqslant 40 c+8 a+104 b \\
7 / 22 \geqslant m
\end{array}\right.
$$

is inconsistent. The obtained contradiction completes the proof.
Lemma 2.4.3. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(9,3 n+8,3 n+11,6 n+13,12 n+35)$ for $n \geqslant 1$. Then $\operatorname{lct}(X)=1$.

Proof. The surface X can be given by the equation

$$
z^{2} t+y^{3} z+x t^{2}+x^{n+3} y=0
$$

and the only singularities of X are O_{x}, O_{y}, O_{z} and O_{t}.
The curve C_{x} is reduced and splits into a union of the stratum $L_{x z}$ and a residual curve M_{x} intersecting at O_{t}. One can easily see that $\operatorname{lct}\left(X, C_{x}\right)=2 / 3$, which implies $\operatorname{lct}(X) \leqslant 1$.

The curve C_{y} is reduced and splits into a union of the stratum $L_{y t}$ and a residual curve M_{y} intersecting at O_{x}. One can easily see that $\operatorname{lct}\left(X, C_{y}\right)=3 / 4$, and hence the \log pair $\left(X, \frac{3 n+8}{6} C_{y}\right)$ is \log canonical for $n \geqslant 1$.

The curve C_{z} is reduced and splits into a union of the stratum $L_{x z}$ and a residual curve M_{z} intersecting at O_{y}. One can easily see that $\operatorname{lct}\left(X, C_{z}\right)=\frac{2 n+3}{4 n+4}$, and hence the log pair $\left(X, \frac{3 n+11}{6} C_{z}\right)$ is \log terminal for $n \geqslant 1$.

The curve C_{t} is reduced and splits into a union of the stratum $L_{y t}$ and a residual curve M_{t} intersecting at O_{z}. One can easily see that $\operatorname{lct}\left(X, C_{t}\right)=\frac{2 n+5}{4 n+9}$, and hence the \log pair $\left(X, \frac{6 n+13}{6} C_{t}\right)$ is \log terminal for $n \geqslant 1$.

One has the following intersection numbers.

$$
\begin{gathered}
L_{x z} \cdot D=\frac{6}{(3 n+8)(6 n+13)}, L_{x z} \cdot M_{x}=\frac{3}{6 n+13}, L_{x z} \cdot M_{z}=\frac{2}{3 n+8}, \\
M_{x} \cdot D=\frac{L_{x z}^{2}=-\frac{9 n 15}{(3 n+8)(6 n+13)},}{(3 n+11)(6 n+13)}, M_{z} \cdot D=\frac{12}{9(3 n+8)}, \\
M_{x}^{2}=-\frac{9 n+6}{(3 n+11)(6 n+13)}, M_{z}^{2}=-\frac{3 n+5}{9(3 n+8)}, \\
L_{y t} \cdot D=\frac{6}{9(3 n+11)}, L_{y t} \cdot M_{y}=\frac{2}{9}, L_{y t} \cdot M_{t}=\frac{n+3}{3 n+11}, L_{y t}^{2}=-\frac{3 n+14}{9(3 n+11)}, \\
M_{y} \cdot D=\frac{12}{9(6 n+13)}, M_{t} \cdot D=\frac{6(n+3)}{(3 n+8)(3 n+11)}, \\
M_{y}^{2}=-\frac{6 n+10}{9(6 n+13)}, M_{t}^{2}=-\frac{1}{(3 n+8)(3 n+11)} .
\end{gathered}
$$

Now we suppose that $\operatorname{lct}(X)<1$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the \log pair (X, D) is not \log canonical at some point $P \in X$.

Suppose that $P=O_{x}$. Assume that $L_{y t} \not \subset \operatorname{Supp}(D)$. Then

$$
\frac{6}{9(3 n+11)}=L_{y t} \cdot D>\frac{1}{9},
$$

which is a contradiction for all $n \geqslant 1$. Hence $L_{y t} \subset \operatorname{Supp}(D)$. By Remark 1.4.7 we may assume that $M_{y} \not \subset \operatorname{Supp}(D)$. Put $D=\mu L_{y t}+\Omega$, where $L_{y t} \not \subset \operatorname{Supp}(\Omega)$. By Theorem 1.4.5 one has

$$
\frac{1}{9}<\Omega \cdot L_{y t}=\frac{6+(3 n+14) \mu}{9(3 n+11)}
$$

and hence $\mu>(3 n+5) /(3 n+14)$. On the other hand,

$$
\frac{12}{9(6 n+13)}=D \cdot M_{y} \geqslant \mu L_{y t} \cdot M_{y}+\frac{\operatorname{mult}_{O_{x}}(D)-\mu}{9}>\frac{2 \mu}{9}+\frac{1-\mu}{9}>\frac{6 n+19}{9(3 n+14)},
$$

which is a contradiction for $n \geqslant 1$.
Suppose that $P=O_{y}$. Assume that $L_{x z} \not \subset \operatorname{Supp}(D)$. Then

$$
\frac{6}{(3 n+8)(6 n+13)}=L_{x z} \cdot D>\frac{1}{3 n+8},
$$

which is a contradiction for all $n \geqslant 1$. Hence $L_{x z} \subset \operatorname{Supp}(D)$, and by Remark 1.4.7 we may assume that $M_{x}, M_{z} \not \subset \operatorname{Supp}(D)$. Put $D=\mu L_{x z}+\Omega$, where $L_{x z} \not \subset \operatorname{Supp}(\Omega)$. Then

$$
\frac{18}{(3 n+11)(6 n+13)}=D \cdot M_{x}<\frac{3 \mu}{6 n+13},
$$

which implies that $\mu \leqslant 6 /(3 n+11)$. By Theorem 1.4.5 one has

$$
\frac{1}{3 n+8}<\Omega \cdot L_{x z}=\frac{6+(9 n+15) \mu}{(3 n+8)(6 n+13)}
$$

which contradicts the inequality $\mu \leqslant 6 /(3 n+11)$ for $n \geqslant 1$.
Suppose that $P=O_{z}$. Assume that $L_{y t} \not \subset \operatorname{Supp}(D)$. Then

$$
\frac{6}{9(3 n+11)}=L_{y t} \cdot D>\frac{1}{3 n+11},
$$

which is a contradiction for $n \geqslant 1$. Hence $L_{y t} \subset \operatorname{Supp}(D)$. By Remark 1.4.7 we may assume that $M_{t} \not \subset \operatorname{Supp}(D)$. Put $D=\mu L_{y t}+\Omega$, where $L_{y t} \not \subset \operatorname{Supp}(\Omega)$. Then
$\frac{6(n+3)}{(3 n+8)(3 n+11)}=M_{t} \cdot D \geqslant \mu L_{y t} \cdot M_{t}+\frac{\left.\left(\operatorname{mult}_{O_{z}}\right)(D)-\mu\right) \operatorname{mult}_{O_{z}}\left(M_{t}\right)}{3 n+11}>\frac{\mu(n+3)}{3 n+11}+\frac{2(1-\mu)}{3 n+11}$,
which implies that $\mu<2 /((3 n+8)(n+1))$ for $n \geqslant 1$. By Theorem 1.4.5 one has

$$
\frac{6}{9(3 n+11)}=D \cdot L_{y t}=-\mu \frac{3 n+14}{9(3 n+11)}+\Omega \cdot L_{y z}>-\mu \frac{3 n+14}{9(3 n+11)}+\frac{1}{3 n+11},
$$

which gives $\mu>3 /(3 n+14)$, which is impossible for $n \geqslant 1$.
Suppose that $P=O_{t}$. Assume that $L_{x z} \not \subset \operatorname{Supp}(D)$. Then

$$
\frac{6}{(3 n+8)(6 n+13)}=L_{x z} \cdot D>\frac{1}{6 n+13},
$$

which is a contradiction for all $n \geqslant 1$. Hence $L_{x z} \subset \operatorname{Supp}(D)$. By Remark 1.4.7 we may assume that $M_{x} \not \subset \operatorname{Supp}(D)$. Put $D=\mu L_{x z}+\Omega$, where $L_{x z} \not \subset \operatorname{Supp}(\Omega)$. Then

$$
\frac{18}{(3 n+11)(6 n+13)}=D \cdot M_{x} \geqslant \mu L_{x z} \cdot M_{x}+\frac{\operatorname{mult}_{O_{t}}(D)-\mu}{6 n+13}>\frac{1+2 \mu}{6 n+13},
$$

but arguing as above, we get $\mu>(6 n+7) /(9 n+15)$, which is a contradiction for $n \geqslant 1$.
Suppose that P is a smooth point on $L_{x z}$. Assume that $L_{x z} \not \subset \operatorname{Supp}(D)$. Then

$$
\frac{6}{(3 n+8)(6 n+13)}=L_{x z} \cdot D>1,
$$

which is a contradiction for all $n \geqslant 1$. Hence $L_{x z} \subset \operatorname{Supp}(D)$, and by Remark 1.4.7 we may assume that $M_{x} \not \subset \operatorname{Supp}(D)$. Put $D=\mu L_{x z}+\Omega$, where $L_{x z} \not \subset \operatorname{Supp}(\Omega)$. Then

$$
1<\Omega \cdot L_{x z}=\frac{6+(3 n+3) \mu}{(3 n+8)(6 n+13)} \leqslant \frac{6(6 n+14)}{(3 n+8)(3 n+11)(6 n+13)},
$$

by Theorem 1.4.5, because $\mu \leqslant 6 /(3 n+11)$. Thus, we have a contradiction here for all $n \geqslant 1$.
Suppose that P is a smooth point on M_{x}. Assume that $M_{x} \not \subset \operatorname{Supp}(D)$. Then

$$
\frac{18}{(3 n+11)(6 n+13)}=M_{x} \cdot D>1,
$$

which is a contradiction for all $n \geqslant 1$. Hence $M_{x} \subset \operatorname{Supp}(D)$, and by Remark 1.4.7 we may assume that $L_{x z} \not \subset \operatorname{Supp}(D)$. Put $D=\mu M_{x}+\Omega$, where $M_{x} \not \subset \operatorname{Supp}(\Omega)$. Then

$$
\mu \leqslant \frac{3 n+11}{3(3 n+8)}
$$

as above. On the other hand, by Theorem 1.4.5 one has

$$
1<\Omega \cdot M_{x}=\frac{18+(9 n+6) \mu}{(3 n+11)(6 n+13)},
$$

which is a contradiction for all $n \geqslant 1$. Hence $P \notin C_{x}$. Similarly, we see that $P \notin C_{y} \cup C_{z} \cup C_{t}$.
Applying Lemma 1.4.10, we see that $n \leqslant 3$, because $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(9(3 n+11))\right)$ contains $x^{3 n+11}$, $y^{9} x^{3}$ and z^{9}. Thus, either $n=4$ or $n=3$.

There is a unique curve $Z_{\alpha} \subset X$ that is cut out by

$$
x t+\alpha z^{2}=0
$$

such that $P \in Z$, where $0 \neq \alpha \in \mathbb{C}$. The curve Z_{α} is always reducible. Indeed, one can easily check that $Z_{\alpha}=C_{\alpha}+L_{x z}$ where C_{α} is a reduced curve whose support contains no $L_{x z}$.

The open subset $Z_{\alpha} \backslash\left(Z_{\alpha} \cap C_{x}\right)$ of the curve Z_{α} is a \mathbb{Z}_{9}-quotient of the affine curve

$$
t+\alpha z^{2}=0=z^{2} t+y^{3} z+t^{2}+y=0 \subset \mathbb{C}^{3} \cong \operatorname{Spec}(\mathbb{C}[y, z, t]),
$$

which is isomorphic to a plane affine quartic curve that is given by the equation

$$
\alpha(\alpha-1) z^{4}+y+y^{3} z=0 \subset \mathbb{C}^{2} \cong \operatorname{Spec}(\mathbb{C}[y, z])
$$

which implies that the curve C_{α} is irreducible and $\operatorname{mult}_{P}\left(C_{\alpha}\right) \leqslant 3$ if $\alpha \neq 1$.
The case $\alpha=1$ is special. Namely, if $\alpha=1$, then $C_{1}=R_{1}+M_{y}$, where R_{1} is a reduced curve whose support does not contain the curve C_{1}. Arguing as in the case $\alpha \neq 1$, we see that R_{1} is irreducible and R_{1} is smooth at the point P.

By Remark 1.4.7, we may assume that $\operatorname{Supp}(D)$ does not contain at least one irreducible components of the curve Z_{α}.

Suppose that $\alpha \neq 1$. Then elementary calculations imply that
$C_{\alpha} \cdot L_{x z}=\frac{9 n+25}{(3 n+8)(6 n+13)}, C_{\alpha} \cdot C_{\alpha}=\frac{144(n+2)^{2}+237(n+2)+67}{9(3 n+8)(6 n+13)}, D \cdot C_{\alpha}=\frac{6(24 n+61)}{9(3 n+8)(6 n+13)}$,
and we can put $D=\epsilon C_{\alpha}+\Xi$, where Ξ is an effective \mathbb{Q}-divisor such that $C_{\alpha} \not \subset \operatorname{Supp}(\Xi)$. Then

$$
\frac{6}{(3 n+8)(6 n+13)}=D \cdot L_{x z}=\epsilon C_{\alpha} \cdot L_{x z}+\Xi \cdot L_{x z} \geqslant \epsilon \frac{9 n+25}{(3 n+8)(6 n+13)},
$$

if $\epsilon>0$. Thus, we see that $\epsilon \leqslant 6 /(9 n+25)$. But

$$
\begin{aligned}
\frac{6(24 n+61)}{9(3 n+8)(6 n+13)} & =D \cdot C_{\alpha} \\
& =\epsilon C_{\alpha}^{2}+\Xi \cdot C_{\alpha} \\
& \geqslant \epsilon C_{\alpha}^{2}+\operatorname{mult}_{P}(\Xi) \\
& =\epsilon C_{\alpha}^{2}+\operatorname{mult}_{P}(D)-\epsilon \operatorname{mult}_{P}\left(C_{\alpha}\right) \\
& >\epsilon C_{\alpha}^{2}+1-3 \epsilon,
\end{aligned}
$$

which implies that $6 /(9 n+25) \geqslant \epsilon>\left(162(n+2)^{2}-9(n+2)-60\right) /\left(342(n+2)^{2}+168(n+2)-13\right)$. The latter is impossible for $n \geqslant 1$.

Thus, we see that $\alpha=1$. Then elementary calculations imply that

$$
\begin{gathered}
R_{1} \cdot L_{x z}=\frac{6 n+17}{(3 n+8)(6 n+13)}, \quad R_{1} \cdot R_{1}=\frac{6(n+2)^{2}+13(n+2)+3}{(3 n+8)(6 n+13)}, \\
M_{y} \cdot R_{1}=\frac{2 n+5}{6 n+13}, D \cdot R_{1}=\frac{6(2 n+5)}{(3 n+8)(6 n+13)},
\end{gathered}
$$

and we can put $D=\epsilon_{1} R_{1}+\Xi_{1}$, where Ξ_{1} is an effective \mathbb{Q}-divisor such that $R_{1} \not \subset \operatorname{Supp}\left(\Xi_{1}\right)$. Now we obtain the inequality $\epsilon_{1} \leqslant 1$, because either $\epsilon_{1}=0$, or $L_{x y} \cdot \Xi_{1} \geqslant 0$ or $M_{z} \cdot \Xi_{1} \geqslant 0$. By Lemma 1.4.6, we see that

$$
\frac{6(2 n+5)-\epsilon_{1}\left(6(n+2)^{2}+13(n+2)+3\right)}{(3 n+8)(6 n+13)}=\Xi_{1} \cdot R_{1}>1,
$$

which is impossible for $n \geqslant 1$. The obtained contradiction completes the proof.

Part 3. Sporadic cases

3.1. Sporadic cases with $I=1$

Lemma 3.1.1. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(1,2,3,5,10)$. Then

$$
\operatorname{lct}(X)=\left\{\begin{array}{l}
1 \text { if } C_{x} \text { has an ordinary double point } \\
7 / 10 \text { if } C_{x} \text { has a non-ordinary double point. }
\end{array}\right.
$$

Proof. The curve C_{x} is reduced and irreducible. Moreover, we have

$$
\operatorname{lct}\left(X, C_{x}\right)=\left\{\begin{array}{l}
1 \text { if the curve } C_{x} \text { has an ordinary double point at the point } O_{z}, \\
7 / 10 \text { if the curve } C_{x} \text { has a non-ordinary double point at the point } O_{z} .
\end{array}\right.
$$

Let D be an arbitrary effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that $C_{x} \not \subset \operatorname{Supp}(D)$, and the log pair (X, D) is not \log canonical at some point $P \in X$. Then $P \in C_{x}$ by Lemma 1.4.10. Then

$$
\frac{1}{3}=D \cdot C_{x} \geqslant\left\{\begin{array}{l}
\operatorname{mult}_{P}(D) \operatorname{mult}_{P}\left(C_{x}\right) \text { if } P \neq O_{z}, \\
\frac{\operatorname{mult}_{P}(D) \operatorname{mult}_{P}\left(C_{x}\right)}{3} \text { if } P=O_{z},
\end{array}>\left\{\begin{array}{l}
1 \text { if } P \neq O_{z} \\
\frac{2}{3} \text { if } P=O_{z}
\end{array}\right.\right.
$$

because the curve C_{x} is singular at the point O_{z}. The obtained contradiction completes the proof due to Remark 1.4.7.
Lemma 3.1.2. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(1,3,5,7,15)$. Then

$$
\operatorname{lct}(X)=\left\{\begin{array}{l}
1 \text { if } f(x, y, z, t) \text { contains } y z t \\
8 / 15 \text { if } f(x, y, z, t) \text { does not contain } y z t
\end{array}\right.
$$

Proof. The curve C_{x} is reduced and irreducible. Moreover, we have

$$
\operatorname{lct}\left(X, C_{x}\right)=\left\{\begin{array}{l}
1 \text { if } f(x, y, z, t) \text { contains } y z t \\
8 / 15 \text { if } f(x, y, z, t) \text { does not contain } y z t
\end{array}\right.
$$

Let D be an arbitrary effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that $C_{x} \not \subset \operatorname{Supp}(D)$, and the log pair (X, D) is not \log canonical at some point $P \in X$. Then $P \in C_{x}$ by Lemma 1.4.10. Hence, we have

$$
\frac{1}{7}=D \cdot C_{x} \geqslant\left\{\begin{array}{l}
\operatorname{mult}_{P}(D) \text { if } P \neq O_{t} \\
\frac{\operatorname{mult}_{P}(D)}{7} \text { if } P=O_{t}
\end{array}>\left\{\begin{array}{l}
1 \text { if } P \neq O_{t} \\
\frac{1}{7} \text { if } P=O_{t}
\end{array}\right.\right.
$$

which is a contradiction. The obtained contradiction completes the proof due to Remark 1.4.7.

Lemma 3.1.3. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(1,3,5,8,16)$. Then $\operatorname{lct}(X)=1$.

Proof. We have $d=16$. The surface X is singular at the point O_{y}, which is a singular point of type $\frac{1}{3}(1,1)$ on the surface X. The surface X is singular at the point O_{z}, which is a singular point of type $\frac{1}{5}(1,1)$ on the surface X.

It follows from the quasismoothness of X that the curve C_{x} is reduced. Then C_{x} is reducible. Namely, we have $C_{x}=L_{1}+L_{2}$, where L_{1} and L_{2} are irreducible reduced smooth rational curves such that

$$
-K_{X} \cdot L_{1}=-K_{X} \cdot L_{2}=\frac{1}{15}
$$

and $L_{1} \cap L_{2}=O_{y} \cup O_{z}$. Then

$$
L_{1} \cdot L_{1}=L_{2} \cdot L_{2}=-\frac{7}{15}
$$

and $L_{1} \cdot L_{2}=8 / 15$. Moreover, we have $\operatorname{lct}\left(X, C_{x}\right)=1$.
Let D be an arbitrary effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the \log pair (X, D) is not log canonical at some point $P \in X$. Suppose that $\operatorname{Supp}(D)$ does not contain the curve L_{1}. Then $P \in C_{x}$ by Lemma 1.4.10.

Suppose that $P \in L_{1}$. Then

$$
\frac{1}{15}=D \cdot L_{1} \geqslant\left\{\begin{array}{l}
\frac{\operatorname{mult}_{P}(D)}{3} \text { if } P=O_{y} \\
\frac{\operatorname{mult}_{P}(D)}{5} \text { if } P=O_{z}, \\
\operatorname{mult}_{P}(D) \text { if } P \neq O_{y} \text { and } P \neq O_{z}
\end{array} \quad>\left\{\begin{array}{l}
\frac{1}{3} \text { if } P=O_{y} \\
\frac{1}{5} \text { if } P=O_{z} \\
1 \text { if } P \neq O_{y} \text { and } P \neq O_{z}
\end{array}\right.\right.
$$

which is a contradiction. Thus, we see that $P \in L_{2}$ and $P \in X \backslash \operatorname{Sing}(X)$. Put

$$
D=m L_{2}+\Omega
$$

where Ω is an effective \mathbb{Q}-divisor such that $L_{2} \not \subset \operatorname{Supp}(\Omega)$. Then

$$
\frac{1}{15}=D \cdot L_{2}=\left(m L_{2}+\Omega\right) \cdot L_{1} \geqslant m L_{1} \cdot L_{2}=\frac{m 8}{15}
$$

which implies that $m \leqslant 1 / 8$. Thus, it follows from Lemma 1.4.6 that

$$
\frac{1+7 m}{15}=\left(-K_{X}-m L_{2}\right) \cdot L_{2}=\Omega \cdot L_{2}>1
$$

which implies that $m>2$. But $m \leqslant 1 / 8$. The obtained contradiction completes the proof due to Remark 1.4.7.

Lemma 3.1.4. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}\right)=(2,3,5,9,18)$. Then

$$
\operatorname{lct}(X)=\left\{\begin{array}{l}
2 \text { if } C_{y} \text { has a tacknodal point } \\
11 / 6 \text { if } C_{y} \text { has no tacknodal points. }
\end{array}\right.
$$

Proof. We have $d=18$. The surface X is singular at the point O_{z}, which is a singular point of type $\frac{1}{5}(1,2)$ on the surface X. The surface X also has 2 singular points O_{1} and O_{2}, which are cut out on X by the equations $x=z=0$. The points O_{1} and O_{2} are singular points of type $\frac{1}{3}(1,1)$ on the surface X.

The curves C_{x} and C_{y} are irreducible, $\operatorname{lct}\left(X, C_{x}\right)=1$, and

$$
\operatorname{lct}\left(X, C_{y}\right)=\left\{\begin{array}{l}
\frac{3}{4} \text { if } C_{y} \text { has a tacknodal singularity at the point } O_{z} \\
\frac{11}{18} \text { if } C_{y} \text { has a non-tacknodal singularity at the point } O_{z}
\end{array}\right.
$$

If C_{y} has a tacknodal point, put $\epsilon=2$. Otherwise put $e=11 / 6$. Then $\operatorname{lct}(X) \leqslant \epsilon$. Suppose that $\operatorname{lct}(X)<\epsilon$. Then there is a \mathbb{Q}-effective divisor $D \equiv-K_{X}$ such that the log pair $(X, \epsilon D)$ is not \log canonical at some point $P \in X$. Then it follows from Remark 1.4.7 that we may assume that the support of the divisor D does not contain the curves C_{x} and C_{y}.

Suppose that $P \notin C_{x} \cup C_{y}$. Then $P \in X \backslash \operatorname{Sing}(X)$ and there is a unique curve C in the pencil $\left|-5 K_{X}\right|$ such that $P \in C$. The curve C is a hypersurface in $\mathbb{P}(1,2,3)$ of degree 6 such that the natural projection

$$
C \longrightarrow \mathbb{P}(1,2) \cong \mathbb{P}^{1}
$$

is a double cover. Thus, we have $\operatorname{mult}_{P}(C) \leqslant 2$. In particular, the \log pair $\left(X, \frac{\epsilon}{5} C\right)$ is \log canonical. Thus, it follows from Remark 1.4.7 that we may assume that the support of the divisor D does not contain one of the irreducible components of the curve C. Then

$$
\frac{1}{3}=D \cdot C \geqslant \operatorname{mult}_{P}(D)>\frac{1}{2}
$$

in the case when C is irreducible (but possibly non-reduced). Therefore, the curve C must be reducible and reduced. Then

$$
C=C_{1}+C_{2},
$$

where C_{1} and C_{2} are irreducible and reduced smooth rational curves such that

$$
C_{1} \cdot C_{1}=C_{2} \cdot C_{2}=-\frac{7}{6}
$$

and $C_{1} \cdot C_{2}=2$ on the surface X. Without loss of generality we may assume that $P \in R_{1}$. Put

$$
D=m R_{1}+\Omega,
$$

where Ω is an effective \mathbb{Q}-divisor such that $R_{1} \not \subset \operatorname{Supp}(\Omega)$. If $m \neq 0$, then $R_{2} \not \subset \operatorname{Supp}(\Omega)$ and

$$
\frac{1}{6}=D \cdot R_{2}=\left(m R_{1}+\Omega\right) \cdot R_{2} \geqslant m R_{1} \cdot R_{2}=2 m
$$

which implies that $m \leqslant 1 / 6$. Thus, it follows from Lemma 1.4.6 that

$$
\frac{1+7 m}{6}=\left(-K_{X}-m R_{1}\right) \cdot R_{1}=\Omega \cdot R_{1}>\frac{1}{\epsilon} \geqslant \frac{1}{2}
$$

which implies, in particular, that $m>2 / 7$. But $m \leqslant 1 / 6$. The obtained contradiction implies that $P \in C_{x} \cup C_{y}$.

Suppose that $P \in C_{x}$. Then

$$
\frac{2}{15}=D \cdot C_{x} \geqslant\left\{\begin{array} { l }
{ \operatorname { m u l t } _ { P } (D) \text { if } P \in X \backslash \operatorname { S i n g } (X) , } \\
{ \frac { \operatorname { m u l t } _ { P } (D) } { 3 } \text { if } P = O _ { 1 } \text { or } P = O _ { 2 } , > } \\
{ \frac { \operatorname { m u l t } _ { P } (D) } { 5 } \text { if } P = O _ { z } , }
\end{array} \left\{\begin{array}{l}
\frac{1}{2} \text { if } P \in X \backslash \operatorname{Sing}(X) \\
\frac{1}{6} \text { if } P=O_{1} \text { or } P=O_{2} \\
\frac{1}{10} \text { if } P=O_{z}
\end{array}\right.\right.
$$

which implies that $P=O_{z}$. Then

$$
\frac{1}{5}=D \cdot C_{y} \geqslant \frac{\operatorname{mult}_{P}(D) \operatorname{mult}_{P}\left(C_{y}\right)}{5}=\frac{2 \operatorname{mult}_{P}(D)}{5}>\frac{2}{5 \epsilon} \geqslant \frac{1}{5}
$$

which is a contradiction. Thus, we see that $P \notin C_{x}$. Then $P \in C_{y}$ and $P \in X \backslash \operatorname{Sing}(X)$, which implies that

$$
\frac{1}{5}=D \cdot C_{y} \geqslant \operatorname{mult}_{P}(D)>\frac{1}{\epsilon} \geqslant \frac{1}{2}
$$

which is a contradiction. The obtained contradiction completes the proof.
Lemma 3.1.5. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}\right)=(3,3,5,5,15)$. Then $\operatorname{lct}(X)=2$.
Proof. We have $d=15$. The surface X has 5 singular points O_{1}, \ldots, O_{5} of type $\frac{1}{3}(1,1)$, which are cut out on X by the equations $z=t=0$. The surface X has 3 singular points Q_{1}, Q_{2}, Q_{3} of type $\frac{1}{5}(1,1)$, which are cut out on X by the equations $x=y=0$. The surface X is exceptional by [25].

Let C_{i} be a curve in the pencil $\left|-3 K_{X}\right|$ such that $O_{i} \in C_{i}$, where $i=1, \ldots, 5$. Then

$$
C_{i}=L_{1}^{i}+L_{2}^{i}+L_{3}^{i}
$$

where L_{j}^{i} is an irreducible reduced smooth rational curve such that

$$
-K_{X} \cdot L_{j}^{i}=\frac{1}{15},
$$

and $Q_{j} \in L_{j}^{i}$. Then $L_{1}^{i} \cap L_{2}^{i} \cap L_{3}^{i}=O_{i}$ and $L_{j}^{i} \cdot L_{k}^{i}=1 / 3$ if $j \neq k$. It follows from the subadjunction formula that

$$
L_{1}^{i} \cdot L_{1}^{i}=L_{2}^{i} \cdot L_{2}^{i}=L_{3}^{i} \cdot L_{3}^{i}=-\frac{7}{15} .
$$

Note that $\operatorname{lct}\left(X, C_{i}\right)=2 / 3$, which implies that $\operatorname{lct}(X) \leqslant 2$. Suppose that $\operatorname{lct}(X)<2$. Then there is a \mathbb{Q}-effective divisor $D \equiv-K_{X}$ such that the \log pair $(X, 2 D)$ is not \log canonical at some point $P \in X$.

Suppose that $P \notin C_{1} \cup C_{2} \cup C_{3} \cup C_{4} \cup C_{5}$. Then $P \in X \backslash \operatorname{Sing}(X)$ and there is a unique curve $C \in\left|-3 K_{X}\right|$ such that $P \in C$. Then C is different from the curves C_{1}, \ldots, C_{5}, which implies that C is irreducible and (X, C) is \log canonical. Thus, it follows from Remark 1.4.7 that we may assume that $C \not \subset \operatorname{Supp}(D)$. Then

$$
\frac{1}{5}=D \cdot C \geqslant \operatorname{mult}_{P}(D)>\frac{1}{2},
$$

because $(X, 2 D)$ is not \log canonical at the point P. The obtained contradiction implies that $P \in C_{1} \cup C_{2} \cup C_{3} \cup C_{4} \cup C_{5}$. Without loss of generality, we may assume that $P \in C_{1}$.

It follows from Remark 1.4.7 that we may assume that $L_{i}^{1} \not \subset \operatorname{Supp}(D)$ for some $i=1,2,3$.
Suppose that $P=O_{1}$. Then

$$
\frac{1}{15}=D \cdot L_{i}^{1} \geqslant \frac{\operatorname{mult}_{O_{1}}(D)}{3}>\frac{1}{6}
$$

because $(X, 2 D)$ is not \log canonical at the point P. The obtained contradiction implies that $P \neq O_{1}$.

Without loss of generality, we may assume that $P \in L_{1}^{1}$. Then either $P=Q_{1}$, or $P \in$ $X \backslash \operatorname{Sing}(X)$.

Suppose that $P=Q_{1}$. Let Z be a curve in the pencil $\left|-5 K_{X}\right|$ such that $Q_{1} \in Z$. Then

$$
Z=Z_{1}+Z_{2}+Z_{3}+Z_{4}+Z_{5}
$$

where Z_{i} is an irreducible reduced smooth rational curve such that

$$
-K_{X} \cdot Z_{i}=\frac{1}{15}
$$

and $O_{i} \in Z_{i}$. Then $Z_{1} \cap Z_{2} \cap Z_{3} \cap Z_{4} \cap Z_{5}=Q_{1}$ and $\operatorname{lct}(X, Z)=2 / 5$. Thus, it follows from Remark 1.4.7 that we may assume that $Z_{k} \not \subset \operatorname{Supp}(D)$ for some $k=1, \ldots, 5$. Then

$$
\frac{1}{15}=D \cdot Z_{k} \geqslant \frac{\operatorname{mult}_{Q_{1}}(D)}{5}>\frac{1}{10},
$$

because $(X, 2 D)$ is not \log canonical at the point P. The obtained contradiction implies that $P \neq Q_{1}$.

Thus, we see that $P \in L_{1}^{1}$ and $P \in X \backslash \operatorname{Sing}(X)$. Put

$$
D=m L_{1}^{1}+\Omega
$$

where Ω is an effective \mathbb{Q}-divisor such that $L_{1}^{1} \not \subset \operatorname{Supp}(\Omega)$. If $m \neq 0$, then

$$
\frac{1}{15}=D \cdot L_{i}^{1}=\left(m L_{1}^{1}+\Omega\right) \cdot L_{i}^{1} \geqslant m L_{1}^{1} \cdot L_{i}^{1}=\frac{m}{3}
$$

which implies that $m \leqslant 1 / 5$. Then it follows from Lemma 1.4.6 that

$$
\frac{1+7 m}{15}=\left(-K_{X}-m L_{1}^{1}\right) \cdot L_{1}^{1}=\Omega \cdot L_{1}^{1}>\frac{1}{2}
$$

which implies that $m>13 / 14$. But $m \leqslant 1 / 5$. The obtained contradiction completes the proof.
Lemma 3.1.6. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(3,5,7,11,25)$. Then $\operatorname{lct}(X)=21 / 10$.
Proof. By the quasismoothness of X, the curve $C_{x}=X \cap\{x=0\}$ is irreducible and reduced. It is easy to see that $\operatorname{lct}\left(X, \frac{1}{3} C_{x}\right)=21 / 10$, which implies that $\operatorname{lct} X \leqslant 21 / 10$.

Suppose that lct $X<21 / 10$. Then there is a \mathbb{Q}-effective divisor $D \equiv-K_{X}$ such that the log pair $\left(X, \frac{21}{10} D\right)$ is not \log canonical at some point $P \in X$. We may assume that the support of D does not contain the curve C_{x} by Remark 1.4.7.

Since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(21)\right)$ contains $x^{7}, x^{2} y^{3}, z^{3}$, we have

$$
\frac{10}{21}<\operatorname{mult}_{P}(D) \leqslant \frac{21 \cdot 25}{3 \cdot 5 \cdot 7 \cdot 11}<\frac{10}{21}
$$

in the case when $P \in X \backslash C_{x}$ or $P \neq O_{x}$. Thus, we see that either $P \in C_{x} \cup O_{x}$.
Since C_{x} is smooth outside of the singular locus of X, we have

$$
\frac{5}{77}=D \cdot C_{x} \geqslant\left\{\begin{array}{l}
\operatorname{mult}_{P}(D) \operatorname{mult}_{P}\left(C_{x}\right) \text { if } P \in X \backslash \operatorname{Sing}(X), \\
\frac{\operatorname{mult}_{P}(D) \operatorname{mult}_{P}\left(C_{x}\right)}{7} \text { if } P=O_{z}, \\
\frac{\operatorname{mult}_{P}(D) \operatorname{mult}_{P}\left(C_{x}\right)}{11} \text { if } P=O_{t},
\end{array} \quad>\left\{\begin{array}{l}
\frac{10}{21} \text { if } P \in X \backslash \operatorname{Sing}(X), \\
\frac{10}{147} \text { if } P=O_{z}, \\
\frac{20}{231} \text { if } P=O_{t},
\end{array}\right.\right.
$$

in the case when $P \in C_{x}$. Therefore, we see that $P=O_{x}$.
Since the curve C_{y} is irreducible and the \log pair $\left(X, \frac{1}{5} C_{y}\right)$ is \log canonical at the point O_{x}, we may assume that the support of D does not contain the curve C_{y}. Then

$$
\frac{10}{63}<\frac{\text { mult }_{O_{x}}(D)}{3} \leqslant D \cdot C_{y}=\frac{25}{231}<\frac{10}{63},
$$

which is a contradiction. The obtained contradiction completes the proof.
Lemma 3.1.7. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}\right)=(3,5,7,14,28)$. Then $\operatorname{lct}(X)=9 / 4$.
Proof. We have $d=28$. The surface X is singular at the point O_{x}, which is a singular point of type $\frac{1}{3}(1,1)$ on the surface X. The surface X is singular at the point O_{y}, which is a singular point of type $\frac{1}{5}(1,2)$ on the surface X. But X has also 2 singular points O_{1} and O_{2}, which are cut out on X by the equations $x=y=0$. The points O_{1} and O_{2} are singular points of type $\frac{1}{7}(3,5)$ on the surface X.

We have $C_{x}=L_{1}+L_{2}$, where L_{i} is an irreducible reduced smooth rational curve such that

$$
-K_{X} \cdot L_{i}=\frac{1}{35},
$$

and $L_{1} \cap L_{2}=O_{y}$. Then $L_{1} \cdot L_{2}=2 / 5$ and

$$
L_{1} \cdot L_{1}=L_{2} \cdot L_{2}=-\frac{11}{35}
$$

Without loss of generality, we may assume that $O_{1} \in L_{1}$ and $O_{2} \in L_{2}$.
Note that $\operatorname{lct}\left(X, C_{x}\right)=3 / 4$, which implies that $\operatorname{lct}(X) \leqslant 9 / 4$. Suppose that $\operatorname{lct}(X)<9 / 4$. Then there is a \mathbb{Q}-effective divisor $D \equiv-K_{X}$ such that the \log pair $\left(X, \frac{9}{4} D\right)$ is not \log canonical at some point $P \in X$.

Suppose that $P \notin C_{x}$ and $P \in X \backslash \operatorname{Sing}(X)$. Then

$$
\operatorname{mult}_{P}(D) \leqslant \frac{588}{1470}
$$

by Lemma 1.4.10, because $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(21)\right)$ contains $x^{7}, z^{3}, x^{2} y^{3}$. On the other hand, we have $\operatorname{mult}_{P}(D)>4 / 9>588 / 1470$, because $\left(X, \frac{9}{4} D\right)$ is not \log canonical at the point P. We see that either $P \in C_{x}$ or $P=O_{x}$.

It follows from Remark 1.4.7 that we may assume that $L_{i} \not \subset \operatorname{Supp}(D)$ for some $i=1,2$. Similarly, we may assume that $C_{y} \not \subset \operatorname{Supp}(D)$, because $\left(X, \frac{9}{4} C_{y}\right)$ is \log canonical and the curve C_{y} is irreducible.

Suppose that $P=O_{x}$. Then

$$
\frac{2}{21}=D \cdot C_{y} \geqslant \frac{\operatorname{mult}_{O_{x}}}{3}(D)>\frac{4}{27},
$$

which is a contradiction. Thus, we see that $P \neq O_{x}$. Then $P \in C_{x}$.
Suppose that $P=O_{y}$. Then

$$
\frac{1}{35}=D \cdot L_{i} \geqslant \frac{\operatorname{mult}_{O_{y}}(D)}{5}>\frac{4}{45}
$$

which is a contradiction. Thus, we see that $P \neq O_{y}$.
Without loss of generality, we may assume that $P \in L_{1}$. Put $D=m L_{1}+\Omega$, where Ω is an effective \mathbb{Q}-divisor such that $L_{1} \not \subset \operatorname{Supp}(\Omega)$. If $m \neq 0$, then

$$
\frac{1}{35}=D \cdot L_{i}=\left(m L_{1}+\Omega\right) \cdot L_{i} \geqslant m L_{1} \cdot L_{i}=\frac{2 m}{5}
$$

which implies that $m \leqslant 1 / 14$. Then it follows from Lemma 1.4.6 that

$$
\frac{1+11 m}{35}=\left(-K_{X}-m L_{1}\right) \cdot L_{1}=\Omega \cdot L_{1}>\left\{\begin{array}{l}
\frac{4}{9} \text { if } P \neq O_{1} \\
\frac{4}{63} \text { if } P=O_{1}
\end{array}\right.
$$

which implies that $m>1 / 9$. But $m \leqslant 1 / 14$. The obtained contradiction completes the proof.

Lemma 3.1.8. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=\mathbb{P}(3,5,11,18,36)$. Then $\operatorname{lct}(X)=21 / 10$.
Proof. The surface X is singular at the points O_{y} and O_{z}. It is also singular at two points P_{1} and P_{2} on the curve defined by $y=z=0$. By the quasismoothness of X, the curve C_{x} is irreducible and reduced. It is easy to see that $\operatorname{lct}\left(X, \frac{1}{3} C_{x}\right)=21 / 10$. Also, the curve C_{y} is always irreducible and the pair $\left(X, \frac{21}{5 \cdot 10} C_{y}\right)$ is \log canonical.

We see that $\operatorname{lct} X \leqslant 21 / 10$. Suppose that $\operatorname{lct} X<21 / 10$. Then there is a \mathbb{Q}-effective divisor $D \equiv-K_{X}$ such that the pair $\left(X, \frac{21}{10} D\right)$ is not \log canonical at some point $P \in X$. By Remark 1.4.7, we may assume that the support of D contain neither the curve C_{x} nor C_{y}.

If $P \in C_{x}$ and $P \in X \backslash \operatorname{Sing}(X)$, then

$$
\frac{10}{21}<\operatorname{mult}_{P}(D) \leqslant D \cdot C_{x}=\frac{36}{5 \cdot 11 \cdot 18}<\frac{10}{21}
$$

which is a contradiction. Since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(39)\right)$ contains $x^{13}, x^{3} y^{6}, x^{2} z^{3}$, we have

$$
\frac{10}{21}<\operatorname{mult}_{P}(D) \leqslant \frac{36 \cdot 39}{3 \cdot 5 \cdot 11 \cdot 18}<\frac{10}{21}
$$

in the case when $P \notin C_{x}$ and $P \in X \backslash \operatorname{Sing}(X)$. Thus, we see that $P \in \operatorname{Sing}(X)$. Then

$$
\frac{10}{105}<\frac{\text { mult }_{O_{y}}(D)}{5} \leqslant D \cdot C_{x}=\frac{3 \cdot 36}{3 \cdot 5 \cdot 11 \cdot 18}<\frac{10}{105}
$$

in the case when $P=O_{y}$. Similarly, we have

$$
\frac{10}{231}<\frac{\operatorname{mult}_{O_{z}}(D)}{21} \leqslant D \cdot C_{x}=\frac{3 \cdot 36}{3 \cdot 5 \cdot 11 \cdot 18}<\frac{10}{231}
$$

in the case when $P=O_{z}$. Thus, we see that $P=P_{i}$. Then

$$
\frac{10}{63}<\frac{\operatorname{mult}_{P_{i}}(D)}{3} \leqslant D \cdot C_{y}=\frac{5 \cdot 36}{3 \cdot 5 \cdot 11 \cdot 18}<\frac{10}{63}
$$

which is a contradiction. The obtained contradiction completes the proof.
Lemma 3.1.9. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}\right)=(5,14,17,21,56)$. Then $\operatorname{lct}(X)=25 / 8$.
Proof. We have $d=56$. The surface X is singular at the point O_{x}, which is a singular point of type $\frac{1}{5}(2,1)$ on the surface X, the surface X is singular at the point O_{z}, which is a singular point of type $\frac{1}{17}(7,2)$ on the surface X, the surface X is singular at the point O_{t}, which is a singular point of type $\frac{1}{21}(5,17)$ on the surface X. The surface X also one singular point O of type $\frac{1}{7}(5,3)$ such that the points O and O_{t} are cut out on the surface X by the equations $x=z=0$.

The curves C_{x} and C_{y} are reducible. Namely, we have $C_{x}=L+Z_{x}$ and $C_{y}=L+Z_{y}$, where L, Z_{x} and Z_{y} are irreducible curves such that the curve L is cut out on X by the equations $x=y=0$. Easy calculations imply that

$$
L \cdot L=-\frac{37}{357}, L \cdot Z_{x}=\frac{2}{17}, Z_{x} \cdot Z_{x}=-\frac{9}{119}, L \cdot Z_{y}=\frac{1}{7}, Z_{y} \cdot Z_{y}=\frac{9}{35},
$$

the curve Z_{x} is singular at the point O_{z}, the curve Z_{y} is singular at the point O_{t}. Moreover, we have $Z_{x} \cap L=O_{z}$ and $Z_{y} \cap L=O_{t}$.

We have $\operatorname{lct}\left(X, C_{x}\right)=5 / 8$ and $\operatorname{lct}\left(X, C_{y}\right)=3 / 7$, which implies that $\operatorname{lct}(X) \leqslant 25 / 8$. Suppose that $\operatorname{lct}(X)<25 / 8$. Then there is a \mathbb{Q}-effective divisor $D \equiv-K_{X}$ such that the log pair $\left(X, \frac{25}{8} D\right)$ is not \log canonical at some point $P \in X$. Then it follows from Remark 1.4.7 that we may assume that the support of the divisor D does not contain either the curve L, or both curves Z_{x} and Z_{y}.

Suppose that $P \notin C_{x} \cup C_{y}$. Then $P \in X \backslash \operatorname{Sing}(X)$ and

$$
\operatorname{mult}_{P}(D) \leqslant \frac{340}{3570}<\frac{8}{25}
$$

by Lemma 1.4.10, because the natural projection $X \rightarrow \mathbb{P}(5,14,17)$ is a finite morphism outside of the curve C_{y}, and $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(85)\right)$ contains monomials $x^{17}, z^{5}, x^{3} y^{5}$. On the other hand, we have $\operatorname{mult}_{P}(D)>8 / 25$, because $\left(X, \frac{25}{8} D\right)$ is not \log canonical at the point P. Thus, we see that $P \in C_{x} \cup C_{y}$.

Suppose that $P \in L$. Put $D=m L+\Omega$, where Ω is an effective \mathbb{Q}-divisor such that $L \not \subset$ $\operatorname{Supp}(\Omega)$. If $m \neq 0$, then

$$
\frac{1}{119}=D \cdot Z_{x}=(m L+\Omega) \cdot Z_{x} \geqslant m L \cdot Z_{x}=\frac{2 m}{17},
$$

which implies that $m \leqslant 1 / 14$. Then it follows from Lemma 1.4.6 that

$$
\frac{1+37 m}{357}=\left(-K_{X}-m L\right) \cdot L=\Omega \cdot L>\left\{\begin{array}{l}
\frac{8}{525} \text { if } P=O_{t} \\
\frac{8}{425} \text { if } P=O_{z} \\
\frac{8}{25} \text { if } P \neq O_{z} \text { and } P \neq O_{t}
\end{array}\right.
$$

which implies, in particular, that $m>3 / 25$. But $m \leqslant 1 / 14$. The obtained contradiction implies that $P \notin L$.

Suppose that $P \in Z_{x}$. Put $D=a Z_{x}+\Upsilon$, where Υ is an effective \mathbb{Q}-divisor such that $Z_{x} \not \subset \operatorname{Supp}(\Upsilon)$. If $a \neq 0$, then

$$
\frac{1}{357}=D \cdot L=\left(a Z_{x}+\Upsilon\right) \cdot L \geqslant a L \cdot Z_{x}=\frac{2 a}{17}
$$

which implies that $a \leqslant 1 / 42$. Then it follows from Lemma 1.4.6 that

$$
\frac{1+9 a}{119}=\left(-K_{X}-a Z_{x}\right) \cdot Z_{x}=\Upsilon \cdot Z_{x}>\left\{\begin{array}{l}
\frac{8}{175} \text { if } P=O \\
\frac{8}{25} \text { if } P \neq O
\end{array}\right.
$$

which is impossible, because $a \leqslant 1 / 42$. Thus, we see that $P \notin C_{x}$.
Suppose that $P=O_{x}$. The curve C_{z} is irreducible and $\left(X, \frac{25}{8} C_{z}\right)$ is \log canonical. Thus, it follows from the Remark 1.4.7 that we may assume that $C_{z} \not \subset \operatorname{Supp}(D)$. Then

$$
\frac{4}{105}=D \cdot C_{z} \geqslant \frac{\operatorname{mult}_{O_{x}}(D)}{5}>\frac{8}{125},
$$

which is a contradiction. Hence, we see that $P \neq O_{x}$.
We see that $P \in Z_{y}$ and $P \in X \backslash \operatorname{Sing}(X)$. Put $D=b Z_{y}+\Delta$, where Δ is an effective \mathbb{Q}-divisor such that $Z_{y} \not \subset \operatorname{Supp}(\Delta)$. If $b \neq 0$, then

$$
\frac{1}{357}=D \cdot L=\left(b Z_{y}+\Delta\right) \cdot L \geqslant b L \cdot Z_{y}=\frac{b}{7},
$$

which implies that $b \leqslant 1 / 51$. Then it follows from Lemma 1.4.6 that

$$
\frac{1+9 b}{35}=\left(-K_{X}-b Z_{y}\right) \cdot Z_{y}=\Delta \cdot Z_{y}>\frac{8}{25}
$$

which is impossible, because $b \leqslant 1 / 51$. The obtained contradiction completes the proof.
Lemma 3.1.10. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(5,19,27,31,81)$. Then $\operatorname{lct}(X)=25 / 6$.
Proof. By the quasismoothness of X, the curve C_{x} is irreducible and reduced. Moreover, the curve C_{x} is smooth outside of the singular locus of the surface X. It is easy to see that $\operatorname{lct}\left(X, \frac{1}{5} C_{x}\right)=25 / 6$. Hence, we have $\operatorname{lct}(X) \leqslant 25 / 6$.

Suppose that $\operatorname{lct}(X)<\frac{25}{6}$. Then there is a \mathbb{Q}-effective divisor $D \equiv-K_{X}$ such that the pair $\left(X, \frac{25}{6} D\right)$ is not \log canonical at some point $P \in X$. We may assume that the support of D does not contain the curve C_{x} by Remark 1.4.7.

Suppose that $P \notin C_{x} \cup O_{x}$. Then

$$
\frac{6}{25}<\operatorname{mult}_{P}(D) \leqslant \frac{190 \cdot 81}{5 \cdot 19 \cdot 27 \cdot 31}<\frac{6}{25}
$$

by Lemma 1.4.10, because $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(190)\right)$ contains $x^{38}, x^{11} z, y^{10}$. Thus, we see that $P \in C_{x} \cup O_{x}$.
Suppose that $P \in X \backslash \operatorname{Sing}(X)$. Then $P \in C_{x}$ and

$$
\frac{6}{25}<\operatorname{mult}_{P}(D) \leqslant D \cdot C_{x}=\frac{81}{19 \cdot 27 \cdot 31}<\frac{6}{25},
$$

because $\left(X, \frac{25}{6} D\right)$ is not \log canonical at the point $P \in X$.
We see that $P \in \operatorname{Sing}(X)$. Suppose that $P=O_{y}$. Then

$$
\frac{6}{475}<\frac{\text { mult }_{O_{y}}(D)}{19} \leqslant D \cdot C_{x}=\frac{5 \cdot 81}{5 \cdot 19 \cdot 27 \cdot 31}<\frac{6}{475}
$$

which is a contradiction. Hence, we see that $P \neq O_{y}$. Suppose that $P=O_{t}$. Then

$$
\frac{6}{775}<\frac{\operatorname{mult}_{O_{t}}(D)}{31} \leqslant D \cdot C_{x}=\frac{5 \cdot 81}{5 \cdot 19 \cdot 27 \cdot 31}<\frac{6}{775}
$$

which is a contradiction. Hence, we see that $P=O_{x}$.
Since the curve C_{y} is irreducible and the \log pair $\left(X, \frac{1}{19} C_{y}\right)$ is \log canonical at the point O_{x}, we may assume that the support of D does not contain the curve C_{y} by Remark 1.4.7. Then

$$
\frac{6}{125}<\frac{\operatorname{mult}_{O_{x}}(D)}{5} \leqslant D \cdot C_{y}=\frac{19 \cdot 81}{5 \cdot 19 \cdot 27 \cdot 31}<\frac{6}{125},
$$

which is a contradiction. The obtained contradiction completes the proof.
Lemma 3.1.11. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(5,19,27,50,100)$. Then $\operatorname{lct}(X)=25 / 6$.
Proof. By the quasismoothness of X, the curve C_{x} is irreducible and reduced. It is easy to see that $\operatorname{lct}\left(X, \frac{1}{5} C_{x}\right)=25 / 6$, which implies that $\operatorname{lct}(X) \leqslant 25 / 6$. Suppose that $\operatorname{lct}(X)<25 / 6$. Then it follows from Remark 1.4.7 that there is a \mathbb{Q}-effective divisor $D \equiv-K_{X}$ such that $C_{x} \not \subset \operatorname{Supp}(D)$, and the pair $\left(X, \frac{25}{6} D\right)$ is not \log canonical at some point $P \in X$.

Suppose that $P \in X \backslash \operatorname{Sing}(X)$ and $P \notin C_{x}$. Then

$$
\frac{6}{25}<\operatorname{mult}_{P}(D) \leqslant \frac{270 \cdot 100}{5 \cdot 19 \cdot 27 \cdot 50}<\frac{6}{25}
$$

by Lemma 1.4.10, because $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(270)\right)$ contains $x^{54}, x^{16} y^{10}, z^{10}$. Thus, we see that either $P \in \operatorname{Sing}(X)$ or $P \in C_{x}$.

Suppose that $P \in X \backslash \operatorname{Sing}(X)$ and $P \in C_{x}$. Then

$$
\frac{6}{25}<\operatorname{mult}_{P}(D) \leqslant D \cdot C_{x}=\frac{100}{19 \cdot 27 \cdot 50}<\frac{6}{25}
$$

because $C_{x} \not \subset \operatorname{Supp}(D)$. Thus, we see that $P \in \operatorname{Sing}(X)$.
Note that X is singular at O_{y} and O_{z}. The surface X is also singular at two points P_{1} and P_{2} on the curve defined by $y=z=0$.

Suppose that $P=O_{y}$. Then it follows from $C_{x} \not \subset \operatorname{Supp}(D)$ that

$$
\frac{6}{475}<\frac{\text { mult }_{O_{y}}(D)}{19} \leqslant D \cdot C_{x}=\frac{5 \cdot 100}{5 \cdot 19 \cdot 27 \cdot 50}<\frac{6}{475},
$$

which is a contradiction. Suppose that $P=O_{z}$. Then

$$
\frac{6}{675}<\frac{\text { mult }_{O_{z}}(D)}{27} \leqslant D \cdot C_{x}=\frac{5 \cdot 100}{5 \cdot 19 \cdot 27 \cdot 50}<\frac{6}{675},
$$

which is a contradiction. Thus, we see that $P=P_{i}$.
The curve C_{z} is irreducible, and the log pair $\left(X, \frac{25}{6.27} C_{z}\right)$ is \log canonical. By Remark 1.4.7, we may assume that the support of D does not contain the curve C_{z}. Then

$$
\frac{6}{125}<\frac{\operatorname{mult}_{P_{i}}(D)}{5} \leqslant D \cdot C_{z}=\frac{27 \cdot 100}{5 \cdot 19 \cdot 27 \cdot 50}<\frac{6}{125},
$$

which is a contradiction.
Lemma 3.1.12. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(7,11,27,37,81)$. Then $\operatorname{lct}(X)=49 / 12$.

Proof. The curve C_{x} is irreducible and reduced, because X is quasismooth. It is easy to see that $\operatorname{lct}\left(X, \frac{1}{7} C_{x}\right)=49 / 12$, which implies that $\operatorname{lct}(X) \leqslant 49 / 12$.

Suppose that $\operatorname{lct}(X)<49 / 12$. By Remark 1.4.7, there is a \mathbb{Q}-effective divisor $D \equiv-K_{X}$ such that the support of D does not contain the curve C_{x}, and the \log pair $\left(X, \frac{49}{12} D\right)$ is not \log canonical at some point $P \in X$.

Since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(189)\right)$ contains $x^{27}, x^{16} y^{7}, z^{7}$, it follows from Lemma 1.4.10 that

$$
\frac{12}{49}<\operatorname{mult}_{P}(D) \leqslant \frac{189 \cdot 81}{7 \cdot 11 \cdot 27 \cdot 37}<\frac{12}{49}
$$

in the case when $P \in X \backslash \operatorname{Sing}(X)$ and $P \in X \backslash C_{x}$. On the other hand, we have

$$
\frac{12}{49}<\operatorname{mult}_{P}(D) \leqslant D \cdot C_{x}=\frac{81}{11 \cdot 27 \cdot 37}<\frac{12}{49}
$$

if $P \in X \backslash \operatorname{Sing}(X)$ and $P \in C_{x}$. Thus, we see that $P \in \operatorname{Sing}(X)$.
Either $\operatorname{mult}_{O_{x}}(D)>12 / 49, \operatorname{mult}_{O_{y}}(D)>12 / 49$ or $\operatorname{mult}_{O_{t}}(D)>12 / 49$. In the former case we have

$$
\frac{12}{539}<\frac{\text { mult }_{O_{y}}(D)}{11} \leqslant D \cdot C_{x}=\frac{7 \cdot 81}{7 \cdot 11 \cdot 27 \cdot 37}<\frac{12}{539}
$$

which is a contradiction. If mult $_{O_{t}}(D)>12 / 49$, then

$$
\frac{36}{1813}<\frac{\text { mult }_{O_{t}}(D) \text { mult }_{O_{t}}\left(C_{x}\right)}{37} \leqslant D \cdot C_{x}=\frac{7 \cdot 81}{3 \cdot 7 \cdot 11 \cdot 27 \cdot 37}<\frac{12}{1813},
$$

which is a contradiction. Therefore, we must have $\operatorname{mult}_{O_{x}}(D)>12 / 49$. Since the curve C_{y} is irreducible and the \log pair $\left(X, \frac{49}{11 \cdot 12} C_{y}\right)$ is \log canonical at the point O_{x}, we may assume that the support of D does not contain the curve C_{y}. Then, we obtain

$$
\frac{12}{343}<\frac{\text { mult }_{O_{x}}(D)}{7} \leqslant D \cdot C_{y}=\frac{11 \cdot 81}{7 \cdot 11 \cdot 27 \cdot 37}<\frac{12}{343},
$$

which is a contradiction.
Lemma 3.1.13. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}\right)=(7,11,27,44,88)$. Then $\operatorname{lct}(X)=35 / 8$.
Proof. We have $d=88$. The surface X is singular at the point O_{x}, which is a singular point of type $\frac{1}{7}(3,1)$ on the surface X. The surface X is singular at the point O_{z}, which is a singular point of type $\frac{1}{27}(11,17)$ on the surface X. The surface X has 2 singular points O_{1} and O_{2} of type $\frac{1}{11}(7,5)$ that are cut out on the surface X by the equations $x=z=0$.

The curve C_{x} is irreducible. Namely, we have $C_{x}=L_{1}+L_{2}$, where L_{1} and L_{2} are smooth irreducible rational curves such that $O_{1} \in L_{1}$ and $O_{2} \in L_{2}$. Then

$$
L_{1} \cdot L_{1}=L_{2} \cdot L_{2}=-\frac{5}{99}, L_{1} \cdot L_{2}=\frac{2}{27},
$$

and $L_{1} \cap L_{2}=O_{z}$.
We have $\operatorname{lct}\left(X, C_{x}\right)=5 / 8$, which implies that $\operatorname{lct}(X) \leqslant 35 / 8$. Suppose that $\operatorname{lct}(X)<35 / 8$. Then there is a \mathbb{Q}-effective divisor $D \equiv-K_{X}$ such that the \log pair $\left(X, \frac{35}{8} D\right)$ is not \log canonical at some point $P \in X$. Then it follows from Remark 1.4.7 that we may assume that $L_{i} \not \subset \operatorname{Supp}(D)$ for some $i=1,2$.

Suppose that $P \notin C_{x}$ and $P \neq O_{x}$. Then

$$
\operatorname{mult}_{P}(D) \leqslant \frac{2}{11}<\frac{8}{35}
$$

by Lemma 1.4.10, because $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(189)\right)$ contains monomials $x^{27}, z^{7}, x^{16} y^{7}$. Thus, we see that $P \in C_{x} \cup O_{x}$.

Suppose that $P=O_{z}$. Then

$$
\frac{1}{297}=D \cdot L_{i} \geqslant \frac{\operatorname{mult}_{O_{z}}(D)}{27}>\frac{8}{945},
$$

which is a contradiction. Thus, we see that $P \neq O_{z}$.

Suppose that $P=O_{x}$. The curve C_{y} is irreducible and $\left(X, \frac{35}{8} C_{y}\right)$ is \log canonical. Thus, we may assume that $C_{y} \not \subset \operatorname{Supp}(D)$ by Remark 1.4.7. Then

$$
\frac{2}{189}=D \cdot C_{y} \geqslant \frac{\text { mult }_{O_{x}}(D) \operatorname{mult}_{O_{x}}\left(C_{y}\right)}{7}=\frac{2 \operatorname{mult}_{O_{x}}(D)}{7}>\frac{16}{245},
$$

which is a contradiction. Hence, we see that $P \neq O_{x}$. In particular, we see that $P \in C_{x}$.
Without loss of generality we may assume that $P \in L_{1}$. Put

$$
D=m L_{1}+\Omega
$$

where Ω is an effective \mathbb{Q}-divisor such that $L_{1} \not \subset \operatorname{Supp}(\Omega)$. If $m \neq 0$, then

$$
\frac{1}{297}=D \cdot L_{i}=\left(m L_{1}+\Omega\right) \cdot L_{i} \geqslant m L_{1} \cdot L_{i}=\frac{2 m}{27},
$$

which implies that $m \leqslant 1 / 22$. Then it follows from Lemma 1.4.6 that

$$
\frac{1+15 m}{297}=\left(-K_{X}-m L_{1}\right) \cdot L_{1}=\Omega \cdot L_{1}>\left\{\begin{array}{l}
\frac{8}{275} \text { if } P=O_{1} \\
\frac{8}{25} \text { if } P \neq O_{1}
\end{array}\right.
$$

which implies, in particular, that $m>191 / 375$. But $m \leqslant 1 / 22$, which is a contradiction. The obtained contradiction completes the proof.

Lemma 3.1.14. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(9,15,17,20,60)$. Then $\operatorname{lct}(X)=21 / 4$.
Proof. We may assume that the surface X is defined by the quasihomogeneous equation

$$
x z^{3}+x^{5} y+y^{4}+t^{3}=0 .
$$

Note that X is singular at O_{x} and O_{z}. It is also singular at a point P_{1} on the curve defined by $z=t=0$ and at a point P_{2} on the curve defined by $x=z=0$. The point P_{1} is different from the point O_{x}.

The curves C_{x}, C_{y}, and C_{z} are irreducible. We have

$$
\operatorname{lct}\left(X, \frac{1}{9} C_{x}\right)=\frac{21}{4}, \operatorname{lct}\left(X, \frac{1}{15} C_{y}\right)=\frac{2 \cdot 15}{3}, \operatorname{lct}\left(X, \frac{1}{17} C_{z}\right)=\frac{6 \cdot 17}{15}
$$

which implies, in particular, that $\operatorname{lct}(X) \leqslant 21 / 4$.
Suppose that $\operatorname{lct}(X)<21 / 4$. Then there is a \mathbb{Q}-effective divisor $D \equiv-K_{X}$ such that the pair $\left(X, \frac{21}{4} D\right)$ is not \log canonical at some point P. By Remark 1.4.7, we may assume that the support of D contains none of the curves C_{x}, C_{y}, C_{z}.

Suppose that $P \in C_{x}$ and $P \notin \operatorname{Sing}(X)$. Then

$$
\frac{4}{21}<\operatorname{mult}_{P}(D) \leqslant D \cdot C_{x}=\frac{60}{15 \cdot 17 \cdot 20}<\frac{4}{21},
$$

which is a contradiction. Suppose that $P \in C_{y}$ and $P \notin \operatorname{Sing}(X)$. Then

$$
\frac{4}{21}<\operatorname{mult}_{P}(D) \leqslant D \cdot C_{y}=\frac{60}{9 \cdot 17 \cdot 20}<\frac{4}{21},
$$

which is a contradiction. Suppose that $P \in C_{z}$ and $P \notin \operatorname{Sing}(X)$. Then

$$
\frac{4}{21}<\operatorname{mult}_{P}(D) \leqslant D \cdot C_{z}=\frac{60}{5 \cdot 15 \cdot 20}<\frac{4}{21},
$$

which is a contradiction. Suppose that $P=O_{x}$. Then

$$
\frac{4}{21}<\operatorname{mult}_{O_{x}}(D) \leqslant 9 D \cdot C_{y}=\frac{9 \cdot 15 \cdot 60}{9 \cdot 15 \cdot 17 \cdot 20}<\frac{4}{21}
$$

which is a contradiction. Suppose that $P=O_{z}$. Then

$$
\frac{4}{21}<\operatorname{mult}_{O_{z}}(D) \leqslant \frac{17}{3} D \cdot C_{x}=\frac{17 \cdot 9 \cdot 60}{3 \cdot 9 \cdot 15 \cdot 17 \cdot 20}<\frac{4}{21},
$$

which is a contradiction. Suppose that $P=P_{1}$. Then

$$
\frac{4}{21}<\operatorname{mult}_{P_{1}}(D) \leqslant 3 D \cdot C_{z}=\frac{3 \cdot 17 \cdot 60}{9 \cdot 15 \cdot 17 \cdot 20}<\frac{4}{21},
$$

which is a contradiction. Suppose that $P=P_{2}$. Then

$$
\frac{4}{21}<\operatorname{mult}_{P_{2}}(D) \leqslant 5 D \cdot C_{x}=\frac{5 \cdot 9 \cdot 60}{9 \cdot 15 \cdot 17 \cdot 20}<\frac{4}{21} .
$$

which is a contradiction. Thus, there is a point $Q \in X \backslash \operatorname{Sing}(X)$ such that $P \notin C_{x} \cup C_{y} \cup C_{z}$ and $\operatorname{mult}_{Q}(D)>4 / 21$.

Let \mathcal{L} be the pencil on X that is cut out by the pencil

$$
\lambda z^{3}+\mu x^{4} y=0,
$$

where $[\lambda: \mu] \in \mathbb{P}^{1}$. Then the base locus of the pencil \mathcal{L} consists of the points P_{2} and O_{x}.
Let C be the unique curve in \mathcal{L} that passes through the point Q. Then C is cut out on X by an equation

$$
x^{4} y=\alpha z^{3},
$$

where α is a non-zero constant. The curve C is smooth outside of the points P_{2} and O_{x} by the Bertini theorem, because C is isomorphic to a general curve in the pencil \mathcal{L} unless $\alpha=-1$. In the case when $\alpha=-1$, the curve C is smooth outside the points P_{2} and O_{x} as well.

We claim that the curve C is irreducible. If so, then we may assume that the support of D does not contain the curve C and hence we obtain

$$
\frac{4}{21}<\operatorname{mult}_{Q}(D) \leqslant D \cdot C=\frac{51 \cdot 60}{9 \cdot 15 \cdot 17 \cdot 20}<\frac{4}{21},
$$

which is a contradiction.
For the irreducibility of the curve C, we may consider the curve C as a surface in \mathbb{A}^{4} defined by the equations $t^{3}+y^{4}+(1+\alpha) x z^{3}=0$ and $x^{4} y=\alpha z^{3}$. Then the surface is isomorphic to the surface in \mathbb{A}^{4} defined by the equations $t^{3}+y^{4}+\beta x z^{3}=0$ and $x^{4} y=z^{3}$, where $\beta=1$ or 0 . Then, we consider the surface in \mathbb{P}^{4} defined by the equations $t^{3} w+y^{4}+\beta x z^{3}=0$ and $x^{4} y=z^{3} w^{2}$. We then take the affine piece defined by $t \neq 1$. Then, the affine piece is isomorphic to the surface defined by the equation $x^{4} y+z^{3}\left(y^{4}+\beta x z^{3}\right)^{2}=0$ in \mathbb{A}^{3}. If $\beta=1$, the surface is irreducible. If $\beta=0$, then it has an extra component defined by $y=0$. However, this component originates from the hyperplane $w=0$ in \mathbb{P}^{4}. Therefore, the surface in \mathbb{A}^{4} defined by the equations $t^{3}+y^{4}=0$ and $x^{4} y=z^{3}$ is also irreducible.
Lemma 3.1.15. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(9,15,23,23,69)$. Then $\operatorname{lct}(X)=6$.
Proof. We may assume that the surface X is defined by the quasihomogeneous equation

$$
z t(z-t)+x y^{4}+x^{6} y=0
$$

which implies that X is singular at three distinct points O_{x}, O_{y}, P_{1} on the curve defined by $z=t=0$. Also, the surface X is singular at three distinct points O_{z}, O_{t}, Q_{1} on the curve defined by $x=y=0$.

Note that $\operatorname{lct}\left(X, \frac{1}{9} C_{x}\right)=6$, which implies that $\operatorname{lct}(X) \leqslant 6$. Suppose that $\operatorname{lct}(X)<6$. Then there is a \mathbb{Q}-effective divisor $D \equiv-K_{X}$ such that the pair $(X, 6 D)$ is not log canonical at some point $P \in X$.

The curve C_{x} consists of three distinct curves $L_{1}=\{x=z=0\}, L_{2}=\{x=t=0\}$ and $L_{3}=\{x=z-t=0\}$ that intersect altogether at the point O_{y}. Similarly, the curve C_{y} consists of three curves $L_{1}^{\prime}=\{y=z=0\}, L_{2}^{\prime}=\{y=t=0\}$ and $L_{3}^{\prime}=\{y=z-t=0\}$ that intersect altogether at the point O_{x}.

The pairs $\left(X, \frac{6}{9} C_{x}\right)$ and $\left(X, \frac{6}{15} C_{y}\right)$ are \log canonical. By Remark 1.4.7, we may assume that the support of D does not contain at least one component, say L_{1}^{\prime}, of C_{y}. Also, we may assume that the support of D does not contain at least one component, say L_{1}, of C_{x}. Then

$$
\operatorname{mult}_{O_{x}}(D) \leqslant 9 D \cdot L_{1}^{\prime}=\frac{9 \cdot 23 \cdot 15}{9 \cdot 15 \cdot 23 \cdot 23}<\frac{1}{6}>\frac{15 \cdot 23 \cdot 9}{9 \cdot 15 \cdot 23 \cdot 23}=15 D \cdot L_{1} \geqslant \operatorname{mult}_{O_{y}}(D)
$$

which imply that $P \neq O_{x}$ and $P \neq O_{y}$.
The curve C_{z} consists of three distinct curves L_{1}, L_{1}^{\prime} and $C=\left\{z=y^{3}+x^{5}=0\right\}$. It is easy to see $\operatorname{lct}\left(X, \frac{1}{23} C_{z}\right)=8$. Therefore, we may assume that the support of D does not contain at least one component of C_{z} by Remark 1.4.7. Then the equalities

$$
D \cdot L_{1}=\frac{1}{15 \cdot 23}<\frac{1}{6 \cdot 23}, D \cdot L_{1}^{\prime}=\frac{1}{9 \cdot \cdot 23}<\frac{1}{6 \cdot 23}, \frac{1 D \cdot C}{3}=\frac{1}{9 \cdot 23}<\frac{1}{6 \cdot 23}
$$

show that $\operatorname{mult}_{O_{t}}(D)<1 / 6$. Thus, we see that $P \neq O_{t}$. By the same way, one can show that $P \neq O_{z}$ and $P \neq Q_{1}$.

Suppose that $P=P_{1}$. Put $D=m C+\Omega$, where Ω is an effective \mathbb{Q}-divisor such that $C \not \subset \operatorname{Supp}(\Omega)$. Then $m \leqslant 1 / 6$, because $(X, 6 D)$ is \log canonical at O_{z}. We have

$$
C \cdot\left(L_{1}+L_{1}^{\prime}\right)=\frac{5+3}{23}=\frac{8}{23}, C \cdot C_{z}=\frac{1}{3},
$$

which implies that $C^{2}=C \cdot\left(C_{z}-L_{1}-L_{1}^{\prime}\right)=-1 / 69$. Hence, it follows from Lemma 1.4.6 that

$$
\frac{1}{3 \cdot 6}<\Omega \cdot C=D \cdot C-m C^{2}=\frac{1+m}{3 \cdot 23} \leqslant \frac{7}{6 \cdot 3 \cdot 23}<\frac{1}{3 \cdot 6},
$$

which is absurd. Thus, we see that P is a smooth point of the surface X.
Suppose that P is not contained in $C_{z} \cup C_{t} \cup\{z-t=0\}$. Let E be the unique curve on X such that E is given by the equation $z=\lambda t$ and $P \in E$, where λ is a non-zero constant different from 1. Then E is quasismooth and hence irreducible. Therefore, we may assume that the support of D does not contain the curve E. Then

$$
\operatorname{mult}_{P}(D) \leqslant D \cdot E=\frac{23 \cdot 69}{9 \cdot 15 \cdot 23 \cdot 23}<\frac{1}{6}
$$

which is a contradiction. Thus, we see that $P \in C_{z} \cup C_{t} \cup\{z-t=0\}$.
Suppose that $P \in L_{1}$. Put $D=a L_{1}+\Delta$, where Δ is an effective \mathbb{Q}-divisor, whose support does not contain the curve L_{1}. Then $a \leqslant 1 / 6$. Hence, it follows from Lemma 1.4.6 that

$$
1<6 \Omega \cdot L_{1}=6\left(D \cdot L_{1}-a L_{1}^{2}\right)=\frac{6 \cdot(1+37 a)}{345} \leqslant \frac{6+37}{345}<1
$$

because $L_{i}^{2}=-37 / 345$. Thus, we see that $P \notin L_{1}$. Similarly, we see that $P \notin L_{1}^{\prime}$ and $P \notin C$. Thus, we see that $P \notin C_{z}$. By the same way, one can see that P is not contained in the curves C_{t} and $\{z-t=0\}$. The obtained contradiction completes the proof.
Lemma 3.1.16. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(11,29,39,49,127)$. Then $\operatorname{lct}(X)=33 / 4$.
Proof. The hypersurface X is unique, it can be given by the equation

$$
z^{2} t+y t^{2}+x y^{4}+x^{8} z=0
$$

and the singularities of X consist of a singular point of type $1 / 11(7,5)$ at O_{x}, a singular point of type $1 / 29(1,2)$ at O_{y}, a singular point of type $1 / 39(11,29)$ at O_{z}, and a singular point of type $1 / 49(11,39)$ at O_{t}.

The curve C_{x} is reduced and reducible. We have $C_{x}=L_{x t}+M_{x}$, where $L_{x t}$ and M_{x} are irreducible curves such that $L_{x t}$ is given by the equations $x=t=0$, and M_{x} is given by the equations $x=z^{2}+y t=0$. Note that $O_{y} \in C_{x}$ and C_{x} is smooth outside of the point O_{y}. We have $\operatorname{lct}\left(X, 1 / 11 C_{x}\right)=33 / 4$, which implies that $\operatorname{lct}(X) \leqslant 33 / 4$.

The curve C_{y} is reduced and reducible. We have $C_{y}=L_{y z}+M_{y}$, where $L_{y z}$ and M_{y} are irreducible curves such that $L_{y z}$ is given by the equations $y=z=0$, and M_{y} is given by the equations $y=x^{8}+z t=0$. The only singular point of the curve C_{y} is O_{t}. It is easy to see that the log pair $\left(X, \frac{33}{4 \cdot 29} C_{y}\right)$ is log terminal.

The curve C_{z} is reduced and reducible. We have $C_{z}=L_{y z}+M_{z}$, where M_{z} is an irreducible curve that is given by the equations $z=t^{2}+x y^{3}=0$. The only singular point of C_{z} is O_{x}. It is easy to see that the \log pair $\left(X, \frac{33}{4 \cdot 39} C_{z}\right)$ is \log terminal.

The curve C_{t} is reduced and reducible. We have $C_{t}=L_{x t}+M_{t}$, where M_{t} is an irreducible curve that is given by the equations $t=y^{4}+x^{7} z=0$. The only singular point of C_{t} is O_{z}. It is easy to see that the \log pair $\left(X, \frac{33}{4 \cdot 49} C_{t}\right)$ is \log terminal.

Suppose that $\operatorname{lct}(X)<33 / 4$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the \log pair $(X, 33 / 4 D)$ is not \log canonical at some point $P \in X$.

Suppose tat $P=O_{y}$. Let us show that this assumption leads to a contradiction. One has

$$
C_{x} \cdot D=\frac{127}{29 \cdot 39 \cdot 49}, \quad L_{x t} \cdot D=\frac{1}{29 \cdot 39}, \quad M_{x} \cdot D=\frac{2}{29 \cdot 49},
$$

and we may assume that either $L_{x t} \nsubseteq \operatorname{Supp}(D)$ or $M_{x} \nsubseteq \operatorname{Supp}(D)$ by Remark 1.4.7. If $L_{x t} \not \subset$ $\operatorname{Supp}(D)$, then

$$
\frac{1}{29 \cdot 39}=L_{x t} \cdot D \geqslant \frac{\operatorname{mult}_{O_{y}}(D)}{29}>\frac{4}{29 \cdot 33}>\frac{1}{29 \cdot 39},
$$

which is a contradiction. Thus, we see that $M_{x} \subseteq \operatorname{Supp}(D)$. Then

$$
\frac{2}{29 \cdot 49}=M_{x} \cdot D \geqslant \frac{\operatorname{mult}_{O_{y}}(D)}{29}>\frac{4}{29 \cdot 33}>\frac{2}{29 \cdot 49}
$$

which gives a contradiction. Thus, we see that $P \neq O_{y}$.
Suppose that $P=O_{x}$. Let us show that this assumption leads to a contradiction. One has

$$
C_{z} \cdot D=\frac{127}{11 \cdot 29 \cdot 49}, \quad L_{y z} \cdot D=\frac{1}{11 \cdot 49}, \quad M_{z} \cdot D=\frac{2}{11 \cdot 29},
$$

and we may assume that either $L_{y z} \nsubseteq \operatorname{Supp}(D)$ or $M_{z} \nsubseteq \operatorname{Supp}(D)$ by Remark 1.4.7. If $L_{y z} \not \subset$ $\operatorname{Supp}(D)$, then

$$
\frac{1}{11 \cdot 49}=L_{y z} \cdot D \geqslant \frac{\operatorname{mult}_{O_{x}}(D)}{11}>\frac{4}{11 \cdot 33}>\frac{1}{11 \cdot 49}
$$

which is a contradiction. Thus, we see that $M_{z} \subseteq \operatorname{Supp}(D)$. Then

$$
\frac{2}{11 \cdot 29}=M_{z} \cdot D \geqslant \frac{\operatorname{mult}_{O_{x}}(D) \operatorname{mult}_{O_{x}}\left(M_{z}\right)}{11}>\frac{2}{11} \cdot \frac{4}{33}>\frac{2}{11 \cdot 29},
$$

because M_{z} is singular at the point O_{x}. The obtained contradiction shows that $P \neq O_{x}$.
Suppose that $P=O_{z}$. Let us show that this assumption leads to a contradiction. One has

$$
C_{t} \cdot D=\frac{127}{11 \cdot 29 \cdot 39}, \quad M_{t} \cdot D=\frac{4}{11 \cdot 39},
$$

and we may assume that either $L_{x t} \nsubseteq \operatorname{Supp}(D)$ or $M_{t} \nsubseteq \operatorname{Supp}(D)$ by Remark 1.4.7. If $L_{x t} \nsubseteq$ $\operatorname{Supp}(D)$, then

$$
\frac{1}{29 \cdot 39}=L_{x t} \cdot D \geqslant \frac{\operatorname{mult}_{O_{z}}(D)}{39}>\frac{4}{39 \cdot 33}>\frac{1}{29 \cdot 39},
$$

which is a contradiction. Thus, we see that $M_{t} \subseteq \operatorname{Supp}(D)$. Then

$$
\frac{4}{11 \cdot 39}=M_{t} \cdot D \geqslant \frac{\operatorname{mult}_{O_{z}}(D) \operatorname{mult}_{O_{z}}\left(M_{t}\right)}{39}>\frac{4}{39} \cdot \frac{4}{33}>\frac{4}{11 \cdot 39},
$$

because M_{t} is singular at the point O_{z}. The obtained contradiction shows that $P \neq O_{t}$.
Suppose that $P=O_{t}$. Let us show that this assumption leads to a contradiction. By Remark 1.4.7 we may assume that either $L_{x t} \nsubseteq \operatorname{Supp}(D)$ or $M_{x t} \nsubseteq \operatorname{Supp}(D)$. Note that

$$
M_{x} \cdot L_{x t}=2 / 29
$$

which implies that $M_{x}^{2}=-76 / 1421$ and $L_{x t}^{2}=-67 / 1131$. Put

$$
D=\mu M_{x}+\Omega
$$

where Ω is an effective \mathbb{Q}-divisor such that $M_{x} \not \subset \operatorname{Supp}(\Omega)$. If $\mu>0$, then

$$
\frac{2}{29} \mu=\mu M_{x} \cdot L_{x t} \leqslant D \cdot L_{x t}=\frac{1}{29 \cdot 39},
$$

which implies that $\mu \leqslant 1 / 78$. Then

$$
\frac{1}{49} \cdot \frac{4}{33}<\Omega \cdot M_{x}=D \cdot M_{x}-\mu M_{x}^{2}=\frac{2+76 \mu}{29 \cdot 49}<\frac{1}{49} \cdot \frac{4}{33},
$$

by Lemma 1.4.6. The obtained contradiction shows that $P \neq O_{t}$.
Therefore, we see that P is a smooth point of the surface X.
Suppose that $P \in L_{x t}$. Put $D=\epsilon L_{x t}+\Delta$, where Δ is an effective \mathbb{Q}-divisor such that $L_{x t} \not \subset \operatorname{Supp}(\Delta)$. Then $\epsilon \leqslant 4 / 33$, because $\left(X, \frac{33}{4} D\right)$ is \log canonical at the point $O_{y} \in L_{x t}$. Thus, it follows from Lemma 1.4.6 that

$$
\frac{4}{33}<\Delta \cdot L_{x t}=D \cdot L_{x t}-\epsilon L_{x t}^{2}=\frac{1+67 \epsilon}{29 \cdot 39}<\frac{4}{33}
$$

which is a contradiction. We see that $P \notin L_{x t}$.

Suppose that $P \in M_{x}$. Put $D=\omega M_{x}+\Upsilon$, where Υ is an effective \mathbb{Q}-divisor such that $M_{x} \not \subset \operatorname{Supp}(\Upsilon)$. Then $\omega \leqslant 4 / 33$, because $\left(X, \frac{33}{4} D\right)$ is \log canonical at the point $O_{y} \in M_{x}$. Hence, it follows from Lemma 1.4.6 that

$$
\frac{4}{33}<\Upsilon \cdot M_{x}=D \cdot M_{x}-\omega M_{x}^{2}=\frac{2+76 \omega}{29 \cdot 49}<\frac{4}{33},
$$

which is a contradiction. We see that $P \notin M_{x}$.
We see that P is a smooth point of X such that P is not contained in C_{x}. Then it follows from Lemma 1.4.9 that

$$
\frac{4}{33}<\operatorname{mult}_{P}(D) \leqslant \frac{539 \cdot 127}{11 \cdot 29 \cdot 39 \cdot 49}<\frac{4}{33},
$$

because $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(190)\right)$ contains $x^{20} y^{11}, x^{49}, x^{10} z^{11}$ and t^{11}. The obtained contradiction completes the proof.

Lemma 3.1.17. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(11,49,69,128,256)$. Then $\operatorname{lct}(X)=55 / 6$.
Proof. By the quasismoothness of X, the curve C_{x} is irreducible and reduced. Moreover, it is easy to see that $\operatorname{lct}\left(X, \frac{1}{11} C_{x}\right)=55 / 6$, which implies that $\operatorname{lct}(X) \leqslant 55 / 6$.

Suppose that $\operatorname{lct}(X)<55 / 6$. By Remark 1.4.7, there is an effective \mathbb{Q} divisor $D \equiv-K_{X}$ such that $C_{x} \not \subset \operatorname{Supp}(D)$, and the \log pair $\left(X, \frac{55}{6} D\right)$ is not \log canonical at some point $P \in X$.

Suppose that $P \in X \backslash \operatorname{Sing}(X)$ and $P \in X \backslash C_{x}$. Then

$$
\frac{6}{55}<\operatorname{mult}_{P}(D) \leqslant \frac{759 \cdot 256}{11 \cdot 49 \cdot 69 \cdot 128}<\frac{6}{55}
$$

by Lemma 1.4.10, because $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(759)\right)$ contains $x^{69}, x^{20} y^{11}, z^{11}$. But

$$
\frac{6}{55}<\operatorname{mult}_{P}(D) \leqslant D \cdot C_{x}=\frac{256}{49 \cdot 69 \cdot 128}<\frac{6}{55}
$$

if $P \in X \backslash \operatorname{Sing}(X)$ and $P \in C_{x}$. Thus, we see that $P \in \operatorname{Sing}(X)$.
Suppose that $P=O_{y}$. Then

$$
\frac{6}{55}<\operatorname{mult}_{O_{y}}(D) \leqslant 49 D \cdot C_{x}=\frac{49 \cdot 11 \cdot 256}{11 \cdot 49 \cdot 69 \cdot 128}<\frac{6}{55}
$$

which is a contradiction. Suppose that $P=O_{z}$. Then

$$
\frac{6}{55}<\operatorname{mult}_{O_{z}}(D) \leqslant 69 D \cdot C_{x}=\frac{69 \cdot 11 \cdot 256}{11 \cdot 49 \cdot 69 \cdot 128}<\frac{6}{55}
$$

which is a contradiction. Therefore, we see that $P=O_{x}$.
Since the curve C_{y} is irreducible and the \log pair $\left(X, \frac{1}{49} C_{y}\right)$ is \log canonical at the point O_{x}, we may assume that the support of D does not contain the curve C_{y} due to Remark 1.4.7. Then

$$
\frac{6}{55}<\operatorname{mult}_{O_{x}}(D) \leqslant 11 D \cdot C_{y}=\frac{11 \cdot 49 \cdot 256}{11 \cdot 49 \cdot 69 \cdot 128}<\frac{6}{55}
$$

which is a contradiction. The obtained contradiction completes the proof.
Lemma 3.1.18. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(13,23,35,57,127)$. Then $\operatorname{lct}(X)=65 / 8$.
Proof. The only singularities of X are a singular point of type $1 / 13(9,5)$ at O_{x}, a singular point of type $1 / 23(13,11)$ at O_{y}, a singular point of type $1 / 35(13,23)$ at O_{z}, and a singular point of type $1 / 57(23,35)$ at O_{t}. Note that the hypersurface X is unique and can is given by an equation

$$
z^{2} t+y^{4} z+x t^{2}+x^{8} y=0
$$

The curve C_{x} is reduced and reducible. We have $C_{x}=L_{x z}+M_{x}$, where $L_{x z}$ and M_{x} are irreducible curves such that $L_{x z}$ is given by the equations $x=z=0$, and M_{x} is given by the equations $x=z t+y^{4}=0$. Note that the only singular point of the curve C_{x} is the point $O_{t} \in C_{x}$. The inequality $\operatorname{lct}\left(X, C_{x}\right)=5 / 8$ holds, which implies that $\operatorname{lct}(X) \leqslant 65 / 8$.

The curve C_{y} is reduced and reducible. We have $C_{y}=L_{y t}+M_{y}$, where $L_{y t}$ and M_{y} are irreducible curves such that $L_{y t}$ is given by the equations $y=t=0$, and M_{y} is given by the equations $y=z^{2}+x t=0$. The only singular point of C_{y} is O_{x}. It is easy to see that the log pair $\left(X, \frac{65}{8.23} C_{y}\right)$ is \log terminal.

The curve C_{z} is reduced and reducible. We have $C_{z}=L_{x z}+M_{z}$, where M_{z} is an irreducible curve that is given by the equations $z=t^{2}+x^{7} y=0$. The only singular point of C_{z} is O_{y}. It is easy to see that the \log pair $\left(X, \frac{65}{8.35} C_{z}\right)$ is log terminal.

The curve C_{t} is reduced and reducible. We have $C_{t}=L_{y t}+M_{t}$, where M_{t} is an irreducible curve that is given by the equations $t=y^{3} z+x^{8}=0$. The only singular point of C_{t} is O_{z}. It is easy to see that the \log pair $\left(X, \frac{65}{8.57} C_{t}\right)$ is \log terminal.

Suppose that $\operatorname{lct}(X)<65 / 8$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the \log pair $(X, 65 / 8 D)$ is not \log canonical at some point $P \in X$.

Suppose that $P=O_{t}$. Then $L_{x z} \subseteq \operatorname{Supp}(D)$, because

$$
\frac{1}{23 \cdot 57}=L_{x z} \cdot D \geqslant \frac{\operatorname{mult}_{O_{t}}(D)}{57}>\frac{8}{57 \cdot 65}>\frac{1}{23 \cdot 57}
$$

if $L_{x z} \nsubseteq \operatorname{Supp}(D)$. By Remark 1.4 .7 we may assume that $M_{x} \nsubseteq \operatorname{Supp}(D)$. Then

$$
\frac{4}{35 \cdot 57}=M_{x} \cdot D \geqslant \frac{\operatorname{mult}_{O_{t}}(D)}{57}>\frac{8}{57 \cdot 65}>\frac{4}{35 \cdot 57}
$$

which is a contradiction. Thus, we see that $P \neq O_{t}$.
Suppose that $P=O_{z}$. Then $L_{y t} \subseteq \operatorname{Supp}(D)$, because

$$
\frac{1}{13 \cdot 35}=L_{y t} \cdot D \geqslant \frac{\text { mult }_{O_{z}}(D)}{35}>\frac{8}{35 \cdot 65}>\frac{1}{13 \cdot 35}
$$

if $L_{y t} \nsubseteq \operatorname{Supp}(D)$. By Remark 1.4 .7 we may assume that $M_{t} \nsubseteq \operatorname{Supp}(D)$. Then

$$
\frac{8}{23 \cdot 35}=M_{t} \cdot D \geqslant \frac{\operatorname{mult}_{O_{z}}(D) \operatorname{mult}_{O_{z}}\left(M_{t}\right)}{35}>\frac{24}{35 \cdot 65}>\frac{8}{23 \cdot 35}
$$

because M_{t} is singular at O_{t}. The obtained contradiction shows that $P \neq O_{z}$.
Suppose that $P=O_{y}$. Then $L_{x z} \subseteq \operatorname{Supp}(D)$, because

$$
\frac{1}{23 \cdot 57}=L_{x z} \cdot D \geqslant \frac{\text { mult }_{O_{y}}(D)}{23}>\frac{8}{23 \cdot 65}>\frac{1}{23 \cdot 57}
$$

if $L_{x z} \nsubseteq \operatorname{Supp}(D)$. By Remark 1.4.7 we may assume that $M_{z} \nsubseteq \operatorname{Supp}(D)$. Then

$$
\frac{2}{13 \cdot 23}=M_{z} \cdot D \geqslant \frac{\operatorname{mult}_{O_{y}}(D) \operatorname{mult}_{O_{y}}\left(M_{z}\right)}{23}>\frac{16}{23 \cdot 65}>\frac{2}{13 \cdot 23}
$$

because M_{z} is singular at O_{y}. The obtained contradiction shows that $P \neq O_{y}$.
Suppose that $P=O_{x}$. Then $L_{y t} \subseteq \operatorname{Supp}(D)$, because

$$
\frac{1}{13 \cdot 35}=L_{x z} \cdot D \geqslant \frac{\operatorname{mult}_{O_{x}}(D)}{13}>\frac{8}{13 \cdot 65}>\frac{1}{13 \cdot 35}
$$

if $L_{y t} \nsubseteq \operatorname{Supp}(D)$. By Remark 1.4 .7 we may assume that $M_{y} \nsubseteq \operatorname{Supp}(D)$. Then

$$
\frac{2}{13 \cdot 57}=M_{y} \cdot D \geqslant \frac{\operatorname{mult}_{O_{x}}(D)}{13}>\frac{8}{13 \cdot 65}>\frac{2}{13 \cdot 57}
$$

which is a contradiction. Thus, we see that $P \neq O_{x}$.
Therefore, we see that P is a smooth point of the surface X. Note that

$$
L_{x z}^{2}=-\frac{79}{23 \cdot 57}, M_{x}^{2}=-\frac{88}{35 \cdot 57}
$$

Suppose that $P \in L_{x z}$. Put $D=\mu L_{x z}+\Omega$, where Ω is an effective \mathbb{Q}-divisor such that $L_{x z} \not \subset \operatorname{Supp}(\Omega)$. Then $\mu \leqslant 8 / 65$, because the $\log \operatorname{pair}\left(X, \frac{65}{8} D\right)$ is \log canonical at the point $O_{t} \in L_{x z}$. Hence, it follows from Lemma 1.4.6 that

$$
1<\frac{65}{8} \Omega \cdot L_{x z}=\frac{65}{8}\left(D \cdot L_{x z}-\mu L_{x z}^{2}\right)=\frac{65}{8} \cdot \frac{1+79 \mu}{23 \cdot 57}<1
$$

which is a contradiction. We see that $P \notin L_{x z}$.
Suppose that $P \in M_{x}$. Put $D=\epsilon M_{x}+\Delta$, where Δ is an effective \mathbb{Q}-divisor such that $M_{x} \not \subset \operatorname{Supp}(\Delta)$. Then $\epsilon \leqslant 8 / 65$, because the \log pair $\left(X, \frac{65}{8} D\right)$ is \log canonical at the point $O_{t} \in M_{x}$. So, it follows from Lemma 1.4.6 that

$$
1<\frac{65}{8} \Delta \cdot M_{x}=\frac{65}{8}\left(D \cdot M_{x}-\epsilon M_{x}^{2}\right)=\frac{65}{8} \cdot \frac{4+88 \epsilon}{35 \cdot 57}<1
$$

which is a contradiction. We see that $P \notin C_{x}$.
Applying Lemma 1.4.9, we see that

$$
\frac{8}{65}<\operatorname{mult}_{P}(D) \leqslant \frac{741 \cdot 127}{13 \cdot 23 \cdot 35 \cdot 57}<\frac{8}{65},
$$

because $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(741)\right)$ contains $x^{11} y^{26}, x^{34} y^{13}, x^{57}, x^{22} z^{13}, t^{13}$. The obtained contradiction completes the proof.

Lemma 3.1.19. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(13,35,81,128,256)$. Then $\operatorname{lct}(X)=91 / 10$.
Proof. The only singularities of X are a singular point of type $1 / 13(3,11)$ at O_{x}, a singular point of type $1 / 35(13,23)$ at O_{y}, and a singular point of type $1 / 81(35,47)$ at O_{z}. In fact, the hypersurface X is unique and can be given by an equation

$$
t^{2}+y^{5} t+x z^{3}+x^{17} y=0
$$

The curve C_{x} is reduced and irreducible. One can easily check that $\operatorname{lct}\left(X, C_{x}\right)=7 / 10$, which implies $\operatorname{lct}(X) \leqslant 91 / 10$.

The curve C_{y} is reduced and irreducible. The only singular point of C_{y} is O_{x}. Moreover, elementary calculations imply that the \log pair $\left(X, \frac{91}{10 \cdot 35} C_{y}\right)$ is \log terminal.

Suppose that $\operatorname{lct}(X)<91 / 10$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the \log pair $\left(X, \frac{91}{10} D\right)$ is not \log canonical at some point $P \in X$. By Remark 1.4.7 we may assume neither C_{x} nor C_{y} is contained in $\operatorname{Supp}(D)$.

Suppose that $P=O_{z}$. Then

$$
\frac{2}{35 \cdot 81}=C_{x} \cdot D \geqslant \frac{\operatorname{mult}_{P}\left(C_{x}\right) \operatorname{mult}_{P}(D)}{81}=\frac{2 \operatorname{mult}_{P}(D)}{81}>\frac{2}{81} \cdot \frac{10}{91}>\frac{2}{35 \cdot 81},
$$

which is a contradiction. Suppose that $P=O_{y}$. Then

$$
\frac{2}{35 \cdot 81}=C_{x} \cdot D \geqslant \frac{\operatorname{mult}_{P}(D)}{35}>\frac{1}{35} \cdot \frac{10}{91}>\frac{2}{35 \cdot 81},
$$

which is a contradiction. Suppose that $P=O_{x}$. Then

$$
\frac{2}{13 \cdot 81}=C_{y} \cdot D \geqslant \frac{\operatorname{mult}_{P}\left(C_{y}\right) \operatorname{mult}_{P}(D)}{13}>\frac{2}{13} \cdot \frac{10}{91}>\frac{2}{13 \cdot 81},
$$

which is a contradiction. Hence, we see that $P \notin \operatorname{Sing}(X)$.
We see that P is a smooth point of the surface X. Suppose that $P \in C_{x}$. Then

$$
\frac{2}{35 \cdot 81}=C_{x} \cdot D \geqslant \operatorname{mult}_{P}(D)>\frac{10}{91}>\frac{2}{35 \cdot 81},
$$

which is a contradiction. Thus, we see that $P \notin C_{x}$.
Applying Lemma 1.4.10, we see that

$$
\operatorname{mult}_{P}(D) \leqslant \frac{1053 \cdot 256}{13 \cdot 35 \cdot 81 \cdot 128}<\frac{10}{91}
$$

because $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(1053)\right)$ contains $x^{81}, x^{11} y^{26}$ and z^{13}. The obtained contradiction completes the proof.

3.2. Sporadic cases with $I=2$

Lemma 3.2.1. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(2,3,4,5,12)$. Then $\operatorname{lct}(X)=1$ if X contains the term $y z t$. And $\operatorname{lct}(X)=\frac{7}{12}$ if it contains no $y z t$.
Proof. We may assume that X is defined by the quasihomogenous equation

$$
z\left(z-x^{2}\right)\left(z-\epsilon x^{2}\right)+y^{4}+x t^{2}+a y z t+b x y^{2} z+c x^{2} y t+d x^{3} y^{2},
$$

where $\epsilon(\neq 0,1), a, b, c, d$ are constants. Note that X is singular at the point O_{t} and three points $Q_{1}=[1: 0: 0: 0], Q_{2}=[1: 0: 1: 0], Q_{3}=[1: 0: \epsilon: 0]$.

First, we consider the case where $a=0$. The curve C_{x} is irreducible and reduced. Also we have $\operatorname{lct}\left(X, C_{x}\right)=\frac{7}{12}$. Suppose that $\operatorname{lct}(X)<\frac{7}{12}$. Then there is an effective \mathbb{Q}-divisor $D \equiv-K_{X}$
such that the log pair $\left(X, \frac{7}{12} D\right)$ is not \log canonical at some point $P \in X$. Since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(6)\right)$ contains x^{3}, y^{2}, and $x z$, Lemma 1.4.10 implies that for a smooth point $O \in X \backslash C_{x}$

$$
\operatorname{mult}_{O} D<\frac{2 \cdot 12 \cdot 6}{2 \cdot 3 \cdot 4 \cdot 5}<\frac{12}{7} .
$$

Therefore, the point P cannot be a smooth point in $X \backslash C_{x}$. Since the curve C_{x} is irreducible we may assume that the support of D does not contain the curve C_{x}. The inequality

$$
\frac{5}{3} D \cdot C_{x}=\frac{5 \cdot 2 \cdot 2 \cdot 12}{3 \cdot 2 \cdot 3 \cdot 4 \cdot 5}<\frac{12}{7}
$$

implies that the point P is located in the outside of C_{x}, i.e., the point P must be one of the point Q_{1}, Q_{2}, Q_{3}. The curve C_{y} is quasismooth. Therefore, we may assume that the support of D does not contain the curve C_{y}. Then the inequality

$$
\operatorname{mult}_{Q_{i}} D \geqslant 2 D \cdot C_{y}=\frac{2 \cdot 2 \cdot 3 \cdot 12}{2 \cdot 3 \cdot 4 \cdot 5}<\frac{12}{7}
$$

gives us a contradiction.
From now we consider the case where $a \neq 0$. In this case, the curve C_{x} is also irreducible and reduced. However, we have $\operatorname{lct}\left(X, C_{x}\right)=1$. Suppose that $\operatorname{lct}(X)<1$. Then there is an effective \mathbb{Q}-divisor $D \equiv-K_{X}$ such that the \log pair (X, D) is not \log canonical at some point $P \in X$. Since

$$
\frac{5}{2} D \cdot C_{x}=\frac{5 \cdot 2 \cdot 2 \cdot 12}{2 \cdot 2 \cdot 3 \cdot 4 \cdot 5}=1
$$

the point P is located in the outside of C_{x}.
The curve C_{z} is irreducible and the \log pair $\left(X, \frac{1}{2} C_{z}\right)$ is \log canonical. Therefore, we may assume that the support of D does not contain the curve C_{z}. The curve C_{z} is singular at the point Q_{1}. The inequality

$$
\operatorname{mult}_{Q_{1}} D \geqslant D \cdot C_{z}=\frac{2 \cdot 4 \cdot 12}{2 \cdot 3 \cdot 4 \cdot 5}<1
$$

implies that P cannot be the point Q_{1}. We consider the curves $C_{z-x^{2}}$ defined by $z=x^{2}$ and $C_{z-\epsilon x^{2}}$ defined by $z=\epsilon x^{2}$. Then by coordinate changes we can see they have the same properties as that of C_{z}. Moreover, we can see that the point P can be neither Q_{2} nor Q_{3}. Therefore, the point P must be located in the outside of $C_{x} \cup C_{z} \cup C_{z-x^{2}} \cup C_{z-\epsilon x^{2}}$.

Let \mathcal{L} be the pencil on X defined by $\lambda x^{2}+\mu z=0$, where $[\lambda: \mu] \in \mathbb{P}^{1}$. Let C the curve in \mathcal{L} that passes through the point P. Then it is cut by $z=\alpha x^{2}$, where $\alpha \neq 0,1, \epsilon$. The curve C is isomorphic to the curve in $\mathbb{P}(2,3,5)$ defined by

$$
x^{6}+y^{4}+x t^{2}+\beta x^{2} y t=0,
$$

where β is a constant. We can easily see that the curve C is irreducible. Since

$$
D \cdot C=\frac{2 \cdot 4 \cdot 12}{2 \cdot 3 \cdot 4 \cdot 5}<1
$$

it is enough to show that $\left(X, \frac{1}{4} C\right)$ is \log canonical. If $\beta \neq \zeta 2 \sqrt{2}$, where ζ is a forth root of unity, then the curve C is quasismooth and hence the pair is \log canonical at the point P. If $\beta=\zeta 2 \sqrt{2}$, then the curve C is singular at $\left[1: \zeta:-\zeta^{2} \sqrt{2}\right]$. However, elementary calculation shows the pair $\left(X, \frac{1}{4} C\right)$ is \log canonical.
Lemma 3.2.2. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(2,3,4,7,14)$. Then $\operatorname{lct}(X)=1$.
Proof. We may assume that X is defined by the quasihomogenous equation

$$
t^{2}-y^{2} z^{2}+x\left(z-\beta_{1} x^{2}\right)\left(z-\beta_{2} x^{2}\right)\left(z-\beta_{3} x^{2}\right)+\epsilon x y^{2}\left(y^{2}-\gamma x^{3}\right)
$$

where $\epsilon(\neq 0), \beta_{1}, \beta_{2}, \beta_{3}, \gamma$ are constants. Note that X is singular at the points O_{y}, O_{z} and three points $Q_{1}=\left[1: 0: \beta_{1}: 0\right], Q_{2}=\left[1: 0: \beta_{2}: 0\right], Q_{3}=\left[1: 0: \beta_{3}: 0\right]$. The constants β_{1}, β_{2} and β_{3} are distinct since X is quasismooth. The curve C_{x} consists of two irreducible reduced curves C_{-}and C_{+}. However, the curves C_{y} and C_{z} are irreducible. We can easily see that $\operatorname{lct}\left(X, C_{x}\right)=1, \operatorname{lct}\left(X, \frac{2}{3} C_{y}\right)=\frac{3}{2}$ and $\operatorname{lct}\left(X, \frac{1}{2} C_{z}\right)>1$.

Suppose that $\operatorname{lct}(X)<1$. Then there is an effective \mathbb{Q}-divisor $D \equiv-K_{X}$ such that the log pair (X, D) is not \log canonical at some point $P \in X$. Since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(6)\right)$ contains x^{3}, y^{2} and
$x z$, Lemma 1.4.10 implies that the point P is either a singular point of X or a point of C_{x}. Furthermore, since C_{y} is irreducible and hence we may assume that the support of D does not contain the curve C_{y} the equality

$$
2 C_{y} \cdot D=\frac{2 \cdot 3 \cdot 2 \cdot 14}{2 \cdot 3 \cdot 4 \cdot 5}=1
$$

implies that $P \neq Q_{i}$ for each $i=1,2,3$. In particular, the point must belong to C_{x}.
We have the following intersection numbers:

$$
C_{x} \cdot C_{-}=C_{x} \cdot C_{+}=\frac{1}{6}, \quad C_{-} \cdot C_{+}=\frac{7}{12}, C_{-}^{2}=C_{+}^{2}=-\frac{5}{12} .
$$

We may assume that the support of D cannot contain both C_{-}and C_{+}. If D does not contain the curve C_{+}, then we obtain

$$
\operatorname{mult}_{O_{y}} D, \text { mult }_{O_{z}} D \geqslant 4 D \cdot C_{+}=\frac{2}{3}<1
$$

On the other hand, if D does not contain the curve C_{-}, then we obtain

$$
\operatorname{mult}_{O_{y}} D, \operatorname{mult}_{O_{z}} D \geqslant 4 D \cdot C_{-}=\frac{2}{3}<1 .
$$

Therefore, the point P must be in $C_{x} \backslash \operatorname{Sing}(X)$.
We write $D=m C_{+}+\Omega$, where the support of Ω does not contain the curve C_{+}. Then $m \geqslant \frac{2}{7}$ since $D \cdot C_{-} \geq m C_{+} \cdot C_{-}$. Then we see $C_{+} \cdot D-m C_{+}^{2}<1$. By the same way, we also obtain $C_{-} \cdot D-m C_{-}^{2}<1$. Then Lemma 1.4.8 completes the proof.
Lemma 3.2.3. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(3,4,5,10,20)$. Then $\operatorname{lct}(X)=3 / 2$.
Proof. The surface X can be defined by the quasihomogeneous equation

$$
t^{2}=z^{4}+y^{5}+x^{5} z+\epsilon_{1} x y^{3} z+\epsilon_{2} x^{2} y z^{2}+\epsilon_{3} x^{4} y^{2}=0
$$

where $\epsilon_{i} \in \mathbb{C}$. Note that X is singular at the point O_{x}. Note that X is also singular at a point O that is cut out on X by the equations $x=z=0$, and X is also singular at points P_{1} and P_{2} that are cut out on X by the equations $x=y=0$.

The curves C_{x}, C_{y} and C_{z} are irreducible. Moreover, we have

$$
\frac{3}{2}=\operatorname{lct}\left(X, \frac{2}{3} C_{x}\right)<\operatorname{lct}\left(X, \frac{2}{5} C_{z}\right)=\frac{7}{4}<\operatorname{lct}\left(X, \frac{2}{4} C_{y}\right)=2
$$

which implies, in particular, that $\operatorname{lct}(X) \leqslant 3 / 2$.
Suppose that $\operatorname{lct}(X)<3 / 2$. Then there is a \mathbb{Q}-effective divisor $D \equiv-K_{X}$ such that the pair $\left(X, \frac{3}{2} D\right)$ is not \log canonical at some point P. By Remark 1.4.7, we may assume that the support of the divisor D does not contain the curves C_{x}, C_{y} and C_{z}.

Suppose that $P \notin C_{x} \cup C_{y} \cup C_{z}$. Then there is a unique (possibly reducible or non-reduced) curve $Z \subset X$ that is cut out by

$$
\alpha y^{2}=z x
$$

such that $P \in Z$, where $0 \neq \alpha \in \mathbb{C}$. There is a natural double cover $\omega: Z \rightarrow C$, where C is a curve in $\mathbb{P}(3,4,5)$ that is given by the equations

$$
\alpha y^{2}=z x \subset \mathbb{P}(3,4,5) \cong \operatorname{Proj}(\mathbb{C}[x, z, y]),
$$

where $\operatorname{wt}(x)=3, \operatorname{wt}(y)=4$ and $\operatorname{wt}(z)=5$. The curve C is quasismooth, and $\omega(P)$ is a smooth point of $\mathbb{P}(3,4,5)$. Thus, we see that mult $P(Z) \leqslant 2$, the curve Z consists of at most 2 components, each component of Z is a smooth rational curve.

We may assume that $\operatorname{Supp}(D)$ does not contain at least one irreducible component of Z. Thus, if Z is irreducible, then

$$
\frac{8}{15}=D \cdot C \geqslant \operatorname{mult}_{P}(D) \operatorname{mult}_{P}(C) \geqslant \frac{2}{3}>\frac{8}{15}
$$

which is a contradiction. So, we see that $C=C_{1}+C_{2}$, where C_{1} and C_{2} are smooth irreducible rational curves. Then

$$
C_{1} \cdot C_{1}=C_{2} \cdot C_{2}=-\frac{4}{5}, C_{1} \cdot C_{2}=\frac{4}{3}
$$

Without loss of generality we may assume that $P \in C_{1}$. Put $D=\delta C_{1}+\Omega$, where Ω is an effective \mathbb{Q}-divisor such that $C_{1} \not \subset \operatorname{Supp}(\Omega)$. If $\delta \neq 0$, then

$$
\frac{4}{15}=D \cdot C_{2}=\left(\delta C_{1}+\Omega\right) \cdot C_{2} \geqslant \delta C_{1} \cdot C_{2}=\frac{4 \delta}{3}
$$

which implies that $\delta \leqslant 1 / 5$. Then it follows from Lemma 1.4.6 that

$$
\frac{4+4 \delta}{15}=\left(-K_{X}-\delta C_{1}\right) \cdot C_{1}=\Omega \cdot C_{1}>\frac{2}{3},
$$

which implies that $\delta>3 / 2$. But $\delta \leqslant 1 / 5$. The obtained contradiction show that $P \in C_{x} \cup C_{y} \cup C_{z}$.
Suppose that $P \in C_{x}$ and $P \notin \operatorname{Sing}(X)$. Then

$$
\frac{1}{5}=D \cdot C_{x} \geqslant \operatorname{mult}_{P}(D) \geqslant \frac{2}{3}>\frac{1}{5},
$$

which is a contradiction. Suppose that $P \in C_{y}$ and $P \notin \operatorname{Sing}(X)$. Then

$$
\frac{4}{15}=D \cdot C_{y} \geqslant \operatorname{mult}_{P}(D) \geqslant \frac{2}{3}>\frac{4}{15},
$$

which is a contradiction. Suppose that $P \in C_{z}$ and $P \notin \operatorname{Sing}(X)$. Then

$$
\frac{1}{3}=D \cdot C_{z} \geqslant \operatorname{mult}_{P}(D) \geqslant \frac{2}{3}>\frac{1}{3}
$$

which is a contradiction. Thus we see that $P \in \operatorname{Sing}(X)$.
Suppose that $P=O_{x}$. The curve C_{z} is singular at the point O_{x}. Thus, we have

$$
\frac{1}{3}=D \cdot C_{z} \geqslant \frac{\operatorname{mult}_{P}(D) \operatorname{mult}_{P}\left(C_{z}\right)}{3} \geqslant \frac{4}{9}>\frac{1}{3},
$$

which is a contradiction. Suppose that $P=O$. Then

$$
\frac{1}{5}=D \cdot C_{x} \geqslant \frac{\operatorname{mult}_{P}(D)}{2} \geqslant \frac{1}{3}>\frac{1}{5}
$$

which is a contradiction. Hence, without loss of generality we may assume that $P=P_{1}$. Note that $C_{x} \cap C_{y}=\left\{P_{1}, P_{2}\right\}$.

Let $\pi: \bar{X} \rightarrow X$ be a weighted blow up of the point P_{1} with weights $(3,4)$, let E be the exceptional curve of π, let \bar{D}, \bar{C}_{x} and \bar{C}_{y} be the proper transforms of D, C_{x} and C_{y}, respectively. Then

$$
K_{\bar{X}} \equiv \pi^{*}\left(K_{X}\right)+\frac{2}{5} E, \bar{C}_{x} \equiv \pi^{*}\left(C_{x}\right)-\frac{3}{5} E, \bar{C}_{y} \equiv \pi^{*}\left(C_{y}\right)-\frac{4}{5} E, \bar{D} \equiv \pi^{*}(D)-\frac{a}{5} E,
$$

where a is a positive rational. The curve E contains two singular points Q_{3} and Q_{4} of the surface \bar{X} such that Q_{3} is a singular point of type $\frac{1}{3}(1,1)$, and Q_{4} is a singular point of type $\frac{1}{4}(1,1)$. Then

$$
\bar{C}_{x} \nexists Q_{3} \in \bar{C}_{y} \not \nexists Q_{4} \in \bar{C}_{x},
$$

and the intersection $\bar{C}_{x} \cap \bar{C}_{y}$ consists of the single point that dominates the point P_{2}.
The \log pull back of the \log pair $\left(X, \frac{3}{2} D\right)$ is the \log pair

$$
\left(\bar{X}, \frac{3}{2} \bar{D}+\frac{\frac{3 a}{2}-2}{5} E\right),
$$

which is not \log canonical at some point $Q \in E$. We have $E^{2}=5 / 12$. Then

$$
0 \leqslant \bar{C}_{x} \cdot \bar{D}=C_{x} \cdot D-\frac{a}{5} E \cdot \bar{C}_{x}=C_{x} \cdot D+\frac{3 a}{25} E^{2}=\frac{1}{5}-\frac{a}{20},
$$

which implies that $a \leqslant 4$. Hence, we see that

$$
\frac{\frac{3 a}{2}-2}{5} \leqslant \frac{4}{5}<1,
$$

which implies that the \log pull back of the \log pair $\left(X, \frac{3}{2} D\right)$ is \log canonical in a punctured neighborhood of the point Q.

Note that the \log pull back of the the \log pair $\left(X, \frac{3}{2} D\right)$ is effective if and only if $a \geqslant 4 / 3$. On the other hand, if $a \leqslant 4 / 3$, then the \log pair $\left(\bar{X}, \frac{3}{2} \bar{D}\right)$ is not \log canonical at Q as well, which implies that

$$
\frac{a}{12}=\frac{a}{5} E^{2}=\bar{D} \cdot E>\left\{\begin{array}{l}
\frac{2}{3} \text { if } Q \neq Q_{3} \text { and } Q \neq Q_{4} \\
\frac{2}{3} \frac{1}{3} \text { if } Q=Q_{3} \\
\frac{2}{3} \frac{1}{4} \text { if } Q=Q_{4}
\end{array}\right.
$$

which implies, in particular, that $a>2$, which is a contradiction. Hence, we see that $a>4 / 3$ and the \log pull back of the the \log pair $\left(X, \frac{3}{2} D\right)$ is always effective. Then

$$
\operatorname{mult}_{P}(D)>\frac{2}{3}\left(1-\frac{\frac{3 a}{2}-2}{5}\right)=\frac{7 \frac{2}{3}-a}{15}
$$

Suppose that $Q \neq Q_{3}$ and $Q \neq Q_{4}$. Then it follows from Lemma 1.4.6 that

$$
\frac{a}{12}=\frac{a}{5} E^{2}=\bar{D} \cdot E>\frac{2}{3}
$$

which is a contradiction. Therefore, we see that either $Q=Q_{3}$ or $Q=Q_{4}$.
Suppose that $Q=Q_{4}$. Then

$$
\frac{1}{5}-\frac{a}{20}=\bar{D} \cdot \bar{C}_{x} \geqslant \frac{\operatorname{mult}_{Q_{4}}(D)}{4}>\frac{7 \frac{2}{3}-a}{20}
$$

which immediately leads to a contradiction. Thus, we see that $Q=Q_{3}$. Then

$$
\frac{4}{15}-\frac{a}{15}=\bar{D} \cdot \bar{C}_{y} \geqslant \frac{\operatorname{mult}_{Q_{3}}(D)}{3}>\frac{7 \frac{2}{3}-a}{15}
$$

which immediately leads to a contradiction.
Lemma 3.2.4. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(3,4,6,7,18)$. Then $\operatorname{lct}(X)=1$.
Proof. The surface X can be defined by the the quasihomogenous equation

$$
t^{2} y+y^{3} z+\left(z-\beta_{1} x^{2}\right)\left(z-\beta_{2} x^{2}\right)\left(z-\beta_{3} x^{2}\right)
$$

where $\beta_{1}, \beta_{2}, \beta_{3}$ are distinct nonzero constants. Note that X is singular at the points O_{y}, O_{t} and three points $P_{1}=\left[1: 0: \beta_{1}: 0\right], P_{2}=\left[1: 0: \beta_{2}: 0\right], P_{3}=\left[1: 0: \beta_{3}: 0\right]$ and one point $Q=[0:-1: 1: 0]$.

The curve C_{y} is reducible. We have $C_{y}=L_{1}+L_{2}+L_{3}$, where L_{i} is an irreducible and reduced curve such that $P_{i} \in L_{i}$. We have

$$
L_{1} \cdot L_{1}=L_{2} \cdot L_{2}=L_{3} \cdot L_{3}=-\frac{8}{21}, L_{1} \cdot L_{2}=L_{1} \cdot L_{3}=L_{2} \cdot L_{3}=\frac{2}{7}
$$

and $L_{1} \cap L_{2} \cap L_{3}=O_{t}$. The curve C_{x} is irreducible and

$$
1=\operatorname{lct}\left(X, \frac{2}{4} C_{y}\right)<\operatorname{lct}\left(X, \frac{2}{3} C_{x}\right)=\frac{3}{2}
$$

which implies, in particular, that $\operatorname{lct}(X) \leqslant 1$.
Suppose that $\operatorname{lct}(X)<1$. Then there is a \mathbb{Q}-effective divisor $D \equiv-K_{X}$ such that the pair (X, D) is not \log canonical at some point P. By Remark 1.4.7, we may assume that the support of the divisor D does not contain the curve C_{x}. Similarly, we may assume that $L_{k} \nsubseteq \operatorname{Supp}(D)$ for some $k=1,2,3$.

Since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(12)\right)$ contains x^{4}, y^{3} and z^{2}, it follows from Lemma 1.4.10 that $P \in C_{x} \cup C_{y}$.
Suppose that $P=O_{t}$. Then

$$
\frac{2}{21}=D \cdot L_{k} \geqslant \frac{\operatorname{mult}_{P}(D)}{7}>\frac{1}{7}>\frac{2}{21}
$$

which is a contradiction. Thus, we see that $P \neq O_{t}$.

Suppose that $P \in C_{x}$. Then

$$
\frac{3}{14}=D \cdot C_{x}>\left\{\begin{array}{l}
1 \text { if } P \neq O_{y} \text { and } P \neq Q \\
\frac{1}{4} \text { if } P=O_{y} \\
\frac{1}{2} \text { if } P=Q
\end{array}\right.
$$

because $P \neq O_{t}$. The obtained contradiction shows that $P \notin C_{x}$.
Without loss of generality we may assume that $P \in L_{1}$. Put $D=m L_{1}+\Omega$, where Ω is an effective \mathbb{Q}-divisor such that $L_{1} \not \subset \operatorname{Supp}(\Omega)$. If $m \neq 0$, then

$$
\frac{2}{21}=D \cdot L_{k}=\left(m L_{1}+\Omega\right) \cdot L_{k} \geqslant m L_{1} \cdot L_{k}=\frac{2 m}{7},
$$

which implies that $m \leqslant 1 / 3$. Then it follows from Lemma 1.4.6 that

$$
\frac{2+8 m}{21}=\left(-K_{X}-m L_{1}\right) \cdot L_{1}=\Omega \cdot L_{1}>\left\{\begin{array}{l}
1 \text { if } P \neq P_{1} \\
\frac{1}{3} \text { if } P=P_{1}
\end{array}\right.
$$

which implies that $m>5 / 8$. But we already proved that $m \leqslant 1 / 3$. The obtained contradiction completes the proof.

Lemma 3.2.5. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(3,4,10,15,30)$. Then $\operatorname{lct}(X)=3 / 2$.
Proof. The surface X can be defined by the quasihomogeneous equation

$$
t^{2}=z^{3}+y^{5} z+x^{10}+\epsilon_{1} x^{2} y z^{2}+\epsilon_{2} x^{2} y^{6}+\epsilon_{3} x^{4} y^{2} z+\epsilon_{4} x^{6} y^{3},
$$

where $\epsilon_{i} \in \mathbb{C}$. The surface X is singular at the point O_{y}. Note that X is also singular at a point O_{2} that is cut out on X by the equations $x=t=0$, the surface X is also singular at a point O_{5} that is cut out on X by the equations $x=y=0$, and X is also singular at points P_{1} and P_{2} that are cut out on X by the equations $y=z=0$.

The curves C_{x} and C_{y} are irreducible. Moreover, we have

$$
\frac{3}{2}=\operatorname{lct}\left(X, \frac{2}{3} C_{x}\right)>\operatorname{lct}\left(X, \frac{2}{4} C_{y}\right)=2,
$$

which implies, in particular, that $\operatorname{lct}(X) \leqslant 3 / 2$.
Suppose that $\operatorname{lct}(X)<3 / 2$. Then there is a \mathbb{Q}-effective divisor $D \equiv-K_{X}$ such that the pair $\left(X, \frac{3}{2} D\right)$ is not log canonical at some point P. By Remark 1.4.7, we may assume that the support of the divisor D does not contain the curves C_{x} and C_{y}.

Since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(20)\right)$ contains $y^{5}, y^{2} x^{4}, z^{2}$, it follows from Lemma 1.4.10 that $P \in \operatorname{Sing}(X) \cup$ C_{y}.

Suppose that $P \in C_{y}$ and $P \notin \operatorname{Sing}(X)$. Then

$$
\frac{2}{15}=D \cdot C_{y} \geqslant \operatorname{mult}_{P}(D)>\frac{2}{3}>\frac{2}{15},
$$

which is a contradiction. Suppose that $P=P_{1}$. Then

$$
\frac{2}{15}=D \cdot C_{y} \geqslant \operatorname{mult}_{P}(D)>\frac{2}{9}>\frac{2}{15},
$$

which is a contradiction. Similarly, we see that $P \neq P_{2}$.
Thus, we see that $P \in C_{x} \cap \operatorname{Sing}(X)$. Then

$$
\frac{1}{10}=D \cdot C_{x} \geqslant\left\{\begin{array} { l }
{ \frac { \operatorname { m u l t } _ { P } (D) } { 2 } \text { if } P = O _ { 2 } , } \\
{ \frac { \operatorname { m u l t } _ { P } (D) } { 4 } \text { if } P = O _ { y } , } \\
{ \frac { \operatorname { m u l t } _ { P } (D) } { 5 } \text { if } P = O _ { 5 } , }
\end{array} \quad \left\{\begin{array}{l}
\frac{2}{6} \text { if } P=O_{2}, \\
\frac{2}{12} \text { if } P=O_{y},>\frac{1}{10} \\
\frac{2}{15} \text { if } P=O_{5},
\end{array}\right.\right.
$$

which is a contradiction. Thus, we see that $\operatorname{lct}(X)=3 / 2$.

Lemma 3.2.6. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(3,7,8,13,29)$. Then $\operatorname{lct}(X)=1$.
Proof. The surface X can be given by the equation

$$
z^{2} t+y^{3} z+x t^{2}+x^{7} z+\epsilon_{1} x^{2} y z^{2}+\epsilon_{2} x^{3} y t+\epsilon_{2} x^{5} y^{2}=0
$$

where $\epsilon_{i} \in \mathbb{C}$. The surface X is singular at the point O_{x}, O_{y}, O_{z} and O_{t}.
The curves C_{x} is reducible. Namely, we have $C_{x}=L+Z$, where L and Z are irreducible curves such that the curve L is cut out on X by the equations $x=z=0$. Easy calculations imply that

$$
L \cdot L=-\frac{18}{91}, L \cdot Z=\frac{3}{13}, Z \cdot Z=-\frac{15}{104},
$$

the curve Z contains the points O_{z} and O_{t}, the curve L contains the points O_{y} and O_{t}, and $L \cap Z=O_{t}$. We have lct $\left(X, C_{x}\right)=2 / 3$, which implies that $\operatorname{lct}(X) \leqslant 1$.

Suppose that $\operatorname{lct}(X)<1$. Then there is a \mathbb{Q}-effective divisor $D \equiv-K_{X}$ such that the log pair (X, D) is not \log canonical at some point $P \in X$. Then it follows from Remark 1.4.7 that we may assume that the support of the divisor D does not contain either the curve L or the curve Z.

The curve C_{y} is irreducible and $\left(X, \frac{2}{7} C\right)$ is \log canonical. Thus, it follows from Remark 1.4.7 that we may assume that the support of the divisor D does not contain the curve C_{y} as well.

Suppose that $P \notin C_{x} \cup C_{y}$. Then $P \in X \backslash \operatorname{Sing}(X)$ and

$$
1<\operatorname{mult}_{P}(D) \leqslant \frac{91}{58}<1
$$

by Lemma 1.4.10, because the natural projection $X \rightarrow \mathbb{P}(3,7,8)$ is a finite morphism outside of the curve C_{x}, and $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(24)\right)$ contains monomials $x^{8}, z^{3}, x y^{3}$. Thus, we see that $P \in C_{x} \cup C_{y}$.

Suppose that $P \in C_{y}$ and $P \notin \operatorname{Sing}(X)$. Then

$$
1<\operatorname{mult}_{P}(D) \leqslant D \cdot C_{y}=\frac{29}{156}<1,
$$

which is a contradiction. Suppose that $P=O_{x}$. Then

$$
\frac{1}{3}<\frac{\text { mult }_{O_{x}}(D)}{3} \leqslant D \cdot C_{y}=\frac{29}{156}<\frac{1}{3},
$$

which is a contradiction. Thus, we see that $P \in C_{x}$.
Suppose that $P=O_{t}$ and $L \not \subset \operatorname{Supp}(D)$. Then

$$
\frac{1}{13}<\frac{\text { mult }_{O_{t}}(D)}{13} \leqslant D \cdot L=\frac{2}{91}<\frac{1}{13},
$$

which is a contradiction. Suppose that $P=O_{t}$ and $M \not \subset \operatorname{Supp}(D)$. Then

$$
\frac{1}{13}<\frac{\operatorname{mult}_{O_{t}}(D)}{13} \leqslant D \cdot M=\frac{3}{52}<\frac{1}{13},
$$

which is a contradiction. Thus, we see that $P \neq O_{t}$.
Suppose that $P \in L$. Put $D=m L+\Omega$, where Ω is an effective \mathbb{Q}-divisor such that $L \not \subset$ $\operatorname{Supp}(\Omega)$. If $m \neq 0$, then

$$
\frac{3}{52}=D \cdot Z=(m L+\Omega) \cdot Z \geqslant m L \cdot Z=\frac{3 m}{13},
$$

which implies that $m \leqslant 1 / 4$. Then it follows from Lemma 1.4.6 that

$$
\frac{2+18 m}{91}=\left(-K_{X}-m L\right) \cdot L=\Omega \cdot L>\left\{\begin{array}{l}
\frac{1}{7} \text { if } P=O_{y} \\
\text { 1if } P \neq O_{y}
\end{array}\right.
$$

because $P \neq O_{t}$. Therefore, we see that $m>11 / 18$. But $m \leqslant 1 / 4$. The obtained contradiction implies that $P \notin L$.

Suppose that $P \in Z$. Put $D=a Z+\Upsilon$, where Υ is an effective \mathbb{Q}-divisor such that $Z \not \subset$ $\operatorname{Supp}(\Upsilon)$. If $a \neq 0$, then

$$
\frac{2}{91}=D \cdot L=(a Z+\Upsilon) \cdot L \geqslant a L \cdot Z=\frac{3 a}{13},
$$

which implies that $a \leqslant 2 / 21$. Then it follows from Lemma 1.4.6 that

$$
\frac{6+15 a}{104}=\left(-K_{X}-a Z\right) \cdot Z=\Upsilon \cdot Z>\left\{\begin{array}{l}
\frac{1}{8} \text { if } P=O_{z} \\
1 \text { if } P \neq O_{z}
\end{array}\right.
$$

which implies, in particular, that $a>7 / 15$. But $a \leqslant 2 / 21$. The obtained contradiction completes the proof.

Lemma 3.2.7. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(3,10,11,19,41)$. Then $\operatorname{lct}(X)=1$.
Proof. The surface X can be defined by the quasihomogeneous equation

$$
z^{2} t+y^{3} z+x t^{2}+x^{10} z+\epsilon_{1} x^{3} y z^{2}+\epsilon_{2} x^{4} y t+\epsilon_{3} x^{7} y^{2}=0
$$

where $\epsilon_{i} \in \mathbb{C}$. The surface X is singular at the point O_{x}, O_{y} and O_{z}.
The curve C_{x} is reducible. We have $C_{x}=L_{x z}+Z_{x}$, where $L_{x z}$ and Z_{x} are irreducible and reduced curves such that $L_{x z}$ is given by the equations $x=z=0$, and Z_{x} is given by the equations $x=t z+y^{3}=0$. Then

$$
L_{x z} \cdot L_{x z}=\frac{-27}{10 \cdot 19}, Z_{x} \cdot Z_{x}=\frac{-21}{11 \cdot 19}, L_{x z} \cdot Z_{x}=\frac{3}{19},
$$

and $L_{x z} \cap Z_{x}=O_{t}$. The curve C_{y} is irreducible and

$$
1=\operatorname{lct}\left(X, \frac{2}{3} C_{x}\right)<\operatorname{lct}\left(X, \frac{2}{10} C_{y}\right)=5,
$$

which implies, in particular, that $\operatorname{lct}(X) \leqslant 1$.
Suppose that $\operatorname{lct}(X)<1$. Then there is a \mathbb{Q}-effective divisor $D \equiv-K_{X}$ such that the pair (X, D) is not \log canonical at some point P. By Remark 1.4.7, we may assume that the support of the divisor D does not contain the curve C_{y}. Similarly, we may assume that either $L_{x z} \nsubseteq \operatorname{Supp}(D)$, or $Z_{x} \nsubseteq \operatorname{Supp}(D)$.

Since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(60)\right)$ contains x^{20}, y^{6} and $x^{6} z^{2}$, it follows from Lemma 1.4.10 that $P \in$ $\operatorname{Sing}(X) \cup C_{x}$.

Suppose that $P=O_{t}$. If $L_{x z} \nsubseteq \operatorname{Supp}(D)$, then

$$
\frac{1}{5 \cdot 19}=D \cdot L_{x z} \geqslant \frac{\operatorname{mult}_{P}(D)}{19}>\frac{1}{19}>\frac{1}{5 \cdot 19}
$$

which is a contradiction. If $Z_{x} \nsubseteq \operatorname{Supp}(D)$, then

$$
\frac{8}{11 \cdot 19}=D \cdot Z_{x} \geqslant \frac{\operatorname{mult}_{P}(D)}{19}>\frac{1}{19}>\frac{8}{11 \cdot 19},
$$

which is a contradiction. Thus, we see that $P \neq O_{t}$.
Suppose that $P \in L_{x z}$. Put $D=m L_{x z}+\Omega$, where Ω is an effective \mathbb{Q}-divisor such that $L_{x z} \not \subset \operatorname{Supp}(\Omega)$. If $m \neq 0$, then

$$
\frac{8}{11 \cdot 19}=-K_{X} \cdot Z_{x}=D \cdot Z_{x}=\left(m L_{x z}+\Omega\right) \cdot Z_{x} \geqslant m L_{x z} \cdot Z_{x}=\frac{3 m}{19},
$$

which implies that $m \leqslant 8 / 33$. Then it follows from Lemma 1.4.6 that

$$
\frac{2+27 m}{190}=\left(-K_{X}-m L_{x z}\right) \cdot L_{x z}=\Omega \cdot L_{x z}>\left\{\begin{array}{l}
1 \text { if } P \neq O_{y} \\
\frac{1}{10} \text { if } P=O_{y}
\end{array}\right.
$$

which implies that $m>17 / 27$. But we already proved that $m \leqslant 8 / 33$. Thus, we see that $P \notin L_{x z}$.

Suppose that $P \in Z_{x}$. Put $D=\epsilon Z_{x}+\Delta$, where Δ is an effective \mathbb{Q}-divisor such that $Z_{x} \not \subset \operatorname{Supp}(\Delta)$. If $\epsilon \neq 0$, then

$$
\frac{2}{190}=-K_{X} \cdot L_{x z}=D \cdot L_{x z}=\left(\epsilon Z_{x}+\Delta\right) \cdot L_{x z} \geqslant \epsilon L_{x z} \cdot Z_{x}=\frac{3 \epsilon}{19},
$$

which implies that $\epsilon \leqslant 1 / 15$. Then it follows from Lemma 1.4.6 that

$$
\frac{8+21 \epsilon}{11 \cdot 19}=\left(-K_{X}-\epsilon Z_{x}\right) \cdot Z_{x}=\Delta \cdot Z_{x}>\left\{\begin{array}{l}
1 \text { if } P \neq O_{z} \\
\frac{1}{11} \text { if } P=O_{z}
\end{array}\right.
$$

which implies that $\epsilon>11 / 21$. But we already proved that $\epsilon \leqslant 1 / 15$. Thus, we see that $P \notin Z_{x}$.
We see that $P \notin C_{x}$ and $P \in \operatorname{Sing}(X)$. Then $P=O_{x}$. We have

$$
\frac{82}{627}=D \cdot C_{y} \geqslant \frac{\operatorname{mult}_{P}(D)}{3}>\frac{1}{3}>\frac{82}{627}
$$

which is a contradiction. Thus, we see that $\operatorname{lct}(X)=1$.
Lemma 3.2.8. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(5,13,19,22,57)$. Then $\operatorname{lct}(X)=25 / 12$.
Proof. The surface X can be defined by the quasihomogeneous equation

$$
z^{3}+y t^{2}+x y^{4}+x^{7} t+\epsilon x^{5} y z=0
$$

where $\epsilon \in \mathbb{C}$. The surface X is singular at the points O_{x}, O_{y} and O_{t}.
The curves C_{x} and C_{y} are irreducible. Moreover, we have

$$
\frac{25}{12}=\operatorname{lct}\left(X, \frac{2}{5} C_{x}\right)>\operatorname{lct}\left(X, \frac{2}{13} C_{y}\right)=\frac{65}{21},
$$

which implies, in particular, that $\operatorname{lct}(X) \leqslant 25 / 12$.
Suppose that $\operatorname{lct}(X)<25 / 12$. Then there is a \mathbb{Q}-effective divisor $D \equiv-K_{X}$ such that the pair $\left(X, \frac{25}{12} D\right)$ is not log canonical at some point P. By Remark 1.4.7, we may assume that the support of the divisor D does not contain the curves C_{x} and C_{y}.

Since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(110)\right)$ contains $x^{9} y^{5} x^{22}$ and t^{5}, it follows from Lemma 1.4.10 that $P \in$ $\operatorname{Sing}(X) \cup C_{x}$.

Suppose that $P=O_{x}$. Then

$$
\frac{3}{55}=D \cdot C_{y} \geqslant \frac{\operatorname{mult}_{P}(D)}{5}>\frac{12}{125}>\frac{3}{55},
$$

which is a contradiction. Thus, we see that $P \in C_{x}$. Then

$$
\frac{3}{143}=D \cdot C_{x} \geqslant\left\{\begin{array}{l}
\frac{\operatorname{mult}_{P}(D)}{13} \text { if } P=O_{y}, \\
\frac{\operatorname{mult}_{P}(D)}{22} \text { if } P=O_{t}, \\
\operatorname{mult}_{P}(D) \text { if } P \notin O_{y} \text { and } P \notin O_{t},
\end{array}>\frac{12}{25 \cdot 22}>\frac{3}{143}\right.
$$

which is a contradiction. Thus, we see that $\operatorname{lct}(X)=25 / 12$.
Lemma 3.2.9. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(5,13,19,35,70)$. Then $\operatorname{lct}(X)=25 / 12$.
Proof. The surface X can be defined by the quasihomogeneous equation

$$
t^{2}+y z^{3}+x y^{5}+x^{14}+\epsilon x^{5} y^{2} z=0
$$

where $\epsilon \in \mathbb{C}$. The surface X is singular at the points O_{y} and O_{z}. It is also singular at two points P_{1} and P_{2} that are cut out on X by the equations $y=z=0$.

The curves C_{x} and C_{y} are irreducible. Moreover, we have

$$
\frac{25}{12}=\operatorname{lct}\left(X, \frac{2}{5} C_{x}\right)>\operatorname{lct}\left(X, \frac{2}{13} C_{y}\right)=\frac{26}{7},
$$

which implies, in particular, that $\operatorname{lct}(X) \leqslant 25 / 12$.
Suppose that $\operatorname{lct}(X)<25 / 12$. Then there is a \mathbb{Q}-effective divisor $D \equiv-K_{X}$ such that the pair $\left(X, \frac{25}{12} D\right)$ is not \log canonical at some point P. By Remark 1.4.7, we may assume that the support of the divisor D does not contain the curves C_{x} and C_{y}.

Since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(95)\right)$ contains $x^{6} y^{5}, x^{19}, z^{5}$, it follows from Lemma 1.4.10 that $P \in \operatorname{Sing}(X) \cup$ C_{x}.

Suppose that $P=P_{1}$. Then

$$
\frac{4}{95}=D \cdot C_{y} \geqslant \frac{\operatorname{mult}_{P_{1}}(D)}{5}>\frac{12}{125}>\frac{4}{95},
$$

which is a contradiction. We see that $P \neq P_{1}$. Similarly, we see that $P \neq P_{2}$. Then $P \in C_{x}$ and

$$
\frac{4}{247}=D \cdot C_{x} \geqslant\left\{\begin{array}{l}
\frac{\operatorname{mult}_{P}(D)}{13} \text { if } P=O_{y}, \\
\frac{\operatorname{mult}_{P}(D)}{19} \text { if } P=O_{z}, \\
\operatorname{mult}_{P}(D) \text { if } P \notin O_{y} \text { and } P \notin O_{z},
\end{array} \quad>\frac{12}{25 \cdot 19}>\frac{4}{247}\right.
$$

which is a contradiction. Thus, we see that $\operatorname{lct}(X)=25 / 12$.
Lemma 3.2.10. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(6,9,10,13,36)$. Then $\operatorname{lct}(X)=25 / 12$.
Proof. The surface X can be defined by the quasihomogeneous equation

$$
z t^{2}+y^{4}+x z^{3}+x^{6}+\epsilon x^{3} y^{2}=0
$$

where $\epsilon \in \mathbb{C}$. The surface X is singular at the points O_{z} and O_{t}. It is also singular at two points P_{1} and P_{2} that are cut out on X by the equations $z=t=0$. The surface X is also singular at two points Q_{1} and Q_{2} that are cut out on X by the equations $y=t=0$.

The curve C_{z} is reducible. We have $C_{z}=C_{1}+C_{2}$, where C_{1} and C_{2} are irreducible and reduced curves on X such that

$$
C_{1} \cdot C_{1}=C_{2} \cdot C_{2}=-\frac{8}{39}, C_{1} \cdot C_{2}=\frac{6}{13},
$$

and $Q_{1} \in C_{1} \nexists Q_{2} \in C_{2} \not \supset Q_{1}$. The curves C_{x} and C_{y} are irreducible. Then

$$
\frac{25}{12}=\operatorname{lct}\left(X, \frac{2}{10} C_{z}\right)>\frac{9}{4}=\operatorname{lct}\left(X, \frac{2}{6} C_{x}\right)>\frac{9}{2}=\operatorname{lct}\left(X, \frac{2}{9} C_{y}\right),
$$

which implies, in particular, that $\operatorname{lct}(X) \leqslant 25 / 12$.
Suppose that $\operatorname{lct}(X)<25 / 12$. Then there is a \mathbb{Q}-effective divisor $D \equiv-K_{X}$ such that the pair $\left(X, \frac{25}{12} D\right)$ is not \log canonical at some point P. By Remark 1.4.7, we may assume that the support of the divisor D does not contain the curves C_{x} and C_{y}, and the support of the divisor D does not contain either C_{1} or C_{2}.

Since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(30)\right)$ contains $x^{2} t^{2}, x^{5}, z^{3}$, it follows from Lemma 1.4.10 that $P \in \operatorname{Sing}(X) \cup$ $C_{x} \cup C_{z}$.

Suppose that $P \in C_{1}$. Put $D=m C_{1}+\Omega$, where Ω is an effective \mathbb{Q}-divisor such that $C_{1} \not \subset \operatorname{Supp}(\Omega)$. If $m \neq 0$, then

$$
\frac{2}{39}=-K_{X} \cdot C_{2}=D \cdot C_{2}=\left(m C_{1}+\Omega\right) \cdot C_{2} \geqslant m C_{1} \cdot C_{2}=\frac{6 m}{13},
$$

which implies that $m \leqslant 1 / 9$. Then it follows from Lemma 1.4.6 that

$$
\frac{2+m 8}{39}=\left(-K_{X}-m C_{1}\right) \cdot C_{1}=\Omega \cdot C_{1}>\left\{\begin{array}{l}
\frac{12}{25} \text { if } P \neq Q_{1}, \\
\frac{12}{25} \frac{1}{2} \text { if } P=W_{1},
\end{array} \geqslant \frac{6}{25},\right.
$$

which contradicts the inequality $m \leqslant 1 / 9$. Thus, we see that $P \notin C_{1}$. Similarly, we see that $P \notin C_{2}$.

Suppose that $P=P_{1}$. Then

$$
\frac{6}{65}=D \cdot C_{y} \geqslant \frac{\operatorname{mult}_{P_{1}}(D)}{3} \geqslant \frac{12}{75}>\frac{6}{65},
$$

which is a contradiction. We see that $P \neq P_{1}$. Similarly, we see that $P \neq P_{2}$. Then $P \in C_{x}$ and

$$
\frac{4}{65}=D \cdot C_{x} \geqslant\left\{\begin{array}{l}
\frac{\operatorname{mult}_{P}(D)}{10} \text { if } P=O_{z}, \\
\frac{\operatorname{mult}_{P}(D)}{13} \text { if } P=O_{t}, \\
\operatorname{mult}_{P}(D) \text { if } P \notin O_{z} \text { and } P \notin O_{t},
\end{array}>\frac{12}{25 \cdot 13}>\frac{4}{65}\right.
$$

which is a contradiction. Thus, we see that $\operatorname{lct}(X)=25 / 12$.
Lemma 3.2.11. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(7,8,19,25,57)$. Then $\operatorname{lct}(X)=49 / 24$.
Proof. The surface X can be defined by the quasihomogeneous equation

$$
z^{3}+y^{4} t+x t^{2}+x^{7} y+\epsilon x^{2} y^{3} z=0
$$

where $\epsilon \in \mathbb{C}$. The surface X is singular at the point O_{x}, O_{y} and O_{t}. The curves C_{x}, C_{y} and C_{z} are irreducible. We have

$$
\frac{49}{24}=\operatorname{lct}\left(X, \frac{2}{7} C_{x}\right)<\operatorname{lct}\left(X, \frac{2}{8} C_{y}\right)=\frac{10}{3}<\operatorname{lct}\left(X, \frac{2}{19} C_{z}\right)=\frac{19}{2},
$$

which implies, in particular, that $\operatorname{lct}(X) \leqslant 49 / 24$.
Suppose that $\operatorname{lct}(X)<49 / 24$. Then there is a \mathbb{Q}-effective divisor $D \equiv-K_{X}$ such that the pair $\left(X, \frac{49}{24} D\right)$ is not \log canonical at some point P. By Remark 1.4.7, we may assume that the support of the divisor D does not contain the curves C_{x}, C_{y} and C_{z}.

The point P is not contained in the curve $P \in C_{x}$, because otherwise we have

$$
\frac{3}{200}=D \cdot C_{x} \geqslant\left\{\begin{array}{l}
\frac{\operatorname{mult}_{P}(D)}{8} \text { if } P=O_{y} \\
\frac{\operatorname{mult}_{P}(D)}{25} \text { if } P=O_{t} \\
\operatorname{mult}_{P}(D) \text { if } P \neq O_{y} \text { and } P \neq O_{t}
\end{array}\right.
$$

which is impossible, because $\operatorname{mult}_{P}(D)>24 / 49$. Similarly, we see that $P \neq C_{y} \cup C_{z}$. Then there is a unique curve $Z \subset X$ that is cut out by

$$
z y^{2}=\alpha x^{5}
$$

such that $P \in Z$, where $0 \neq \alpha \in \mathbb{C}$. We see that $C_{y} \not \subset \operatorname{Supp}(Z)$. But the open subset $Z \backslash\left(Z \cap C_{y}\right)$ of the curve Z is a \mathbb{Z}_{8}-quotient of the affine curve

$$
z-\alpha x^{5}=z^{3}+t+x t^{2}+x^{7}+\epsilon x^{2} z=0 \subset \mathbb{C}^{3} \cong \operatorname{Spec}(\mathbb{C}[x, z, t])
$$

which is isomorphic to a plane affine curve that is given by the equation

$$
\alpha^{3} x^{15}+t+x t^{2}+x^{7}+\epsilon \alpha x^{7}=0 \subset \mathbb{C}^{2} \cong \operatorname{Spec}(\mathbb{C}[x, t])
$$

which is easily seen to be irreducible. In particular, the curve Z is irreducible and $\operatorname{mult}_{P}(Z) \leqslant 14$. Thus, we may assume that $\operatorname{Supp}(D)$ does not contain the curve Z by Remark 1.4.7. Then

$$
\frac{3}{40}=D \cdot Z \geqslant \operatorname{mult}_{P}(D)>\frac{24}{49},
$$

which is a contradiction. Thus, we see that $\operatorname{lct}(X)=49 / 24$.
Lemma 3.2.12. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(7,8,19,32,64)$. Then $\operatorname{lct}(X)=35 / 16$.
Proof. The surface X can be defined by the quasihomogeneous equation

$$
t^{2}+y^{8}+x z^{3}+x^{8} y+\epsilon x^{3} y^{3} z
$$

where $\epsilon \in \mathbb{C}$. Note that X is singular at the points O_{x} and O_{z}. The surface X also has two singular points P_{1} and P_{2} of type $\frac{1}{8}(7,3)$ that are cut out on X by the equations $x=z=0$.

The curve C_{x} is reducible. We have $C_{x}=C_{1}+C_{2}$, where C_{1} and C_{2} are irreducible reduced curves such that

$$
C_{1} \cdot C_{1}=C_{2} \cdot C_{2}=-\frac{25}{8 \cdot 19}, C_{1} \cdot C_{2}=\frac{4}{19},
$$

and $P_{1} \in C_{1}, P_{2} \in C_{2}$. Then $C_{1} \cap C_{2}=O_{z}$. The curve C_{y} is irreducible. We have

$$
\text { lct }\left(X, \frac{2}{7} C_{x}\right)=\frac{35}{16}<\operatorname{lct}\left(X, \frac{2}{8} C_{y}\right)=\frac{10}{3},
$$

which implies that $\operatorname{lct}(X) \leqslant 35 / 16$.
Suppose that $\operatorname{lct}(X)<35 / 16$. Then there is a \mathbb{Q}-effective divisor $D \equiv-K_{X}$ such that the pair $\left(X, \frac{35}{16} D\right)$ is not \log canonical at some point P. By Remark 1.4.7, we may assume that the support of D does not contain the curve C_{y}. Moreover, we may assume that the support of D does not contain either the curve C_{1} or the curve C_{2}.

Suppose that $P=O_{z}$. We know that $C_{i} \not \subset \operatorname{Supp}(D)$ for some $i=1,2$. Then

$$
\frac{16}{35} \frac{1}{19}<\frac{\operatorname{mult}_{O_{z}}(D)}{19} \leqslant D \cdot C_{i}=\frac{1}{4 \cdot 19},
$$

which is a contradiction. Therefore, we see that $P \neq O_{z}$.
Suppose that $P \in C_{1}$. Put $D=m C_{1}+\Omega$, where Ω is an effective \mathbb{Q}-divisor such that $C_{1} \not \subset \operatorname{Supp}(\Omega)$. If $m \neq 0$, then

$$
\frac{1}{4 \cdot 19}=-K_{X} \cdot C_{2}=D \cdot C_{2}=\left(m C_{1}+\Omega\right) \cdot C_{2} \geqslant m C_{1} \cdot C_{2}=\frac{4 m}{19}
$$

which implies that $m \leqslant 1 / 16$. Then it follows from Lemma 1.4.6 that

$$
\frac{2+25 m}{8 \cdot 19}=\left(-K_{X}-m C_{1}\right) \cdot C_{1}=\Omega \cdot C_{1}>\left\{\begin{array}{l}
\frac{16}{35} \text { if } P \neq P_{1} \\
\frac{16}{35} \frac{1}{8} \text { if } P=P_{1}
\end{array}\right.
$$

which is impoassible, because $m \leqslant 1 / 16$. Thus, we see that $P \notin C_{1}$. Similarly, we see that $P \notin C_{2}$.

Suppose that $P \in C_{x}$. Then

$$
\frac{4}{7 \cdot 19}=D \cdot C_{y} \geqslant\left\{\begin{array}{l}
\operatorname{mult}_{P}(D) \text { if } P \neq O_{x} \\
\frac{\operatorname{mult}_{O_{y}}(D)}{7} \text { if } P=O_{x}
\end{array}\right.
$$

which leads to a contradiction, because $\operatorname{mult}_{P}(D)>16 / 35$. Thus, we see that $P \notin C_{x}$.
Thus, we see that $P \in X \backslash \operatorname{Sing}(X)$ and $P \notin C_{x} \cup C_{y}$. But $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(64)\right)$ contains monomials $y^{8}, x^{8} y, y^{4} t$ and t^{2}, which is impossible by Lemma 1.4.10. The obtained contradiction completes the proof.

Lemma 3.2.13. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(9,12,13,16,48)$. Then $\operatorname{lct}(X)=63 / 24$.
Proof. The surface X can be defined by the quasihomogeneous equation

$$
t^{3}+y^{4}+x z^{3}+x^{4} y=0
$$

the surface X is singular at the point O_{x} and O_{z}. The surface X is also singular at a point Q_{4} that is cut out on X by the equations $z=x=0$. The surface X is also singular at a point Q_{3} such that $Q_{3} \neq O_{x}$ and the points Q_{3} and Q_{x} are cut out on X by the equations $z=t=0$.

The curves C_{x}, C_{y}, C_{z} and C_{t} are irreducible. We have

$$
\frac{63}{24}=\operatorname{lct}\left(X, \frac{2}{9} C_{x}\right)<\operatorname{lct}\left(X, \frac{2}{12} C_{y}\right)=4<\operatorname{lct}\left(X, \frac{2}{13} C_{z}\right)=\frac{13}{2}<\operatorname{lct}\left(X, \frac{2}{16} C_{t}\right)=\frac{16}{2},
$$

which implies, in particular, that $\operatorname{lct}(X) \leqslant 63 / 24$.
Suppose that $\operatorname{lct}(X)<63 / 24$. Then there is a \mathbb{Q}-effective divisor $D \equiv-K_{X}$ such that the pair $\left(X, \frac{63}{24} D\right)$ is not \log canonical at some point P. By Remark 1.4.7, we may assume that the support of the divisor D does not contain the curves C_{x}, C_{y}, C_{z} and C_{t}.

The point P is not contained in the curve C_{x}, because otherwise we have

$$
\frac{9}{18 \cdot 13}=D \cdot C_{x} \geqslant\left\{\begin{array}{l}
\frac{\operatorname{mult}_{P}(D)}{13} \text { if } P=O_{z} \\
\frac{\operatorname{mult}_{P}(D)}{4} \text { if } P=Q_{4} \\
\operatorname{mult}_{P}(D) \text { if } P \neq O_{z} \text { and } P \neq Q_{4}
\end{array}\right.
$$

which is impossible, because $\operatorname{mult}_{P}(D)>24 / 63$. Similarly, we see that $P \neq C_{y} \cup C_{z} \cup C_{t}$. Then there is a unique curve $Z \subset X$ that is cut out by

$$
x t=\alpha y z
$$

such that $P \in Z$, where $0 \neq \alpha \in \mathbb{C}$. We see that $C_{x} \not \subset \operatorname{Supp}(Z)$. But the open subset $Z \backslash\left(Z \cap C_{x}\right)$ of the curve Z is a \mathbb{Z}_{9}-quotient of the affine curve

$$
t-\alpha y z=t^{3}+y^{4}+z^{3}+y=0 \subset \mathbb{C}^{3} \cong \operatorname{Spec}(\mathbb{C}[y, z, t])
$$

which is isomorphic to a plane affine quartic curve that is given by the equation

$$
\alpha^{2} y^{2} z^{2}+y^{4}+z^{3}=0 \subset \mathbb{C}^{2} \cong \operatorname{Spec}(\mathbb{C}[y, z])
$$

which is easily seen to be irreducible. In particular, the curve Z is irreducible and mult $_{P}(Z) \leqslant 3$. Thus, we may assume that $\operatorname{Supp}(D)$ does not contain the curve Z by Remark 1.4.7. Then

$$
\frac{25}{18 \cdot 13}=D \cdot Z \geqslant \operatorname{mult}_{P}(D)>\frac{24}{63}
$$

which is a contradiction. Thus, we see that $\operatorname{lct}(X)=63 / 24$.
Lemma 3.2.14. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(9,12,19,19,57)$. Then $\operatorname{lct}(X)=3$.
Proof. We may assume that the surface X is defined by the quasihomogeneous equation

$$
z t(z-t)+x y^{4}+x^{5} y=0
$$

which implies that X is singular at three distinct points O_{x}, O_{y}, P_{1} on the curve defined by $z=t=0$. Also, the surface X is singular at three distinct points O_{z}, O_{t}, Q_{1} on the curve defined by $x=y=0$, where O_{z} is cut out by $x=y=z=0$, the point O_{t} is cut out by $x=y=t=0$, and Q_{1} is cut out by $x=y=z-t=0$.

Note that $\operatorname{lct}\left(X, \frac{2}{9} C_{x}\right)=3$, which implies that $\operatorname{lct}(X) \leqslant 3$. Suppose that $\operatorname{lct}(X)<3$. Then there is a \mathbb{Q}-effective divisor $D \equiv-K_{X}$ such that the pair $(X, 3 D)$ is not log canonical at some point $P \in X$.

The curve C_{x} consists of three distinct curves $L_{1}=\{x=z=0\}, L_{2}=\{x=t=0\}$ and $L_{3}=\{x=z-t=0\}$ that intersect altogether at the point O_{y}. We have

$$
L_{1}^{2}=L_{2}^{2}=L_{2}^{2}=\frac{-29}{19 \cdot 12}, L_{1} \cdot L_{2}=L_{1} \cdot L_{3}=L_{3} \cdot L_{3}=\frac{1}{12},
$$

and $D \cdot L_{1}=D \cdot L_{2}=D \cdot L_{3}=1 / 114$. Similarly, the curve C_{y} consists of three curves $L_{1}^{\prime}=\{y=z=0\}, L_{2}^{\prime}=\{y=t=0\}$ and $L_{3}^{\prime}=\{y=z-t=0\}$ that intersect altogether at the point O_{x}. We have

$$
L_{1}^{\prime 2}=L_{2}^{\prime 2}=L_{2}^{\prime 2}=\frac{-26}{19 \cdot 9}, L_{1}^{\prime} \cdot L_{2}^{\prime}=L_{1}^{\prime} \cdot L_{3}^{\prime}=L_{3}^{\prime} \cdot L_{3}^{\prime}=\frac{1}{9}
$$

and $D \cdot L_{1}^{\prime}=D \cdot L_{2}^{\prime}=D \cdot L_{3}^{\prime}=2 / 171$.
The pairs $\left(X, \frac{6}{9} C_{x}\right)$ and $\left(X, \frac{6}{12} C_{y}\right)$ are \log canonical. By Remark 1.4.7, we may assume that the support of D does not contain at least one component of C_{y}. Also, we may assume that the support of D does not contain at least one component of C_{x}. Then arguing as in the proof of Lemma 3.1.15, we see that $P \neq O_{x}$ and $P \neq O_{y}$.

The curve C_{z} consists of three distinct curves L_{1}, L_{1}^{\prime} and M_{z}, where M_{z} is an irreducible reduced curve that is cut out by the equations $z=y^{3}+x^{4}=0$. The curve C_{t} consists of three distinct curves L_{2}, L_{2}^{\prime} and M_{t}, where M_{t} is an irreducible reduced curve that is cut out by the equations $t=y^{3}+x^{4}=0$.

Let C_{1} be the curve that is cut out on X by $z-t$. Then C_{1} consists of three distinct curves L_{3}, L_{3}^{\prime} and M_{1}, where M_{1} is an irreducible reduced curve that is cut out by the equations $z-t=y^{3}+x^{4}=0$. We have

$$
\operatorname{lct}\left(X, \frac{2}{19} C_{z}\right)=\operatorname{lct}\left(X, \frac{2}{19} C_{t}\right)=\operatorname{lct}\left(X, \frac{2}{19} C_{1}\right)=\frac{7}{2}
$$

and $D \cdot M_{z}=D \cdot M_{t}=D \cdot M_{1}=2 / 57$. By Remark 1.4.7, we may assume that the support of D does not contain at least one component of every curve C_{z}, C_{t} and C_{1}. Arguing as in the proof of Lemma 3.1.15, we see that $P \neq O_{t}, P \neq O_{z}$ and $P \neq Q_{1}$.

Suppose that $P=P_{1}$. We have $P_{1}=M_{z} \cap M_{t} \cap M_{z}$, the log pair

$$
\left(X, \frac{3}{18}\left(M_{z}+M_{t}+M_{z}\right)\right)
$$

is \log canonical at P_{1}, and $M_{z}+M_{t}+M_{z} \sim-18 K_{X}$. By Remark 1.4.7, we may assume that the support of D does not contain at least one curve among M_{z}, M_{t} and M_{1}. Without loss of generality, we may assume that the support of D does not contain the curve M_{z}. Then

$$
\frac{2}{57}=D \cdot M_{z} \geqslant \frac{\operatorname{mult}_{P}(D)}{3}>\frac{1}{9}
$$

which is a contradiction. Thus, we see that $P \neq P_{1}$. Then $P \notin \operatorname{Sing}(X)$.
Arguing Arguing as in the proof of Lemma 3.1.15, we see that $P \notin C_{z} \cup C_{t} \cup C_{1}$. Then there is a quasismooth irreducible curve $E \subset X$ such that E is given by the equation $z=\lambda t$ and $P \in E$, where λ is a non-zero constant different from 1. By Remark 1.4.7, we may assume that the support of D does not contain the curve E. Then

$$
\frac{1}{3}<\operatorname{mult}_{P}(D) \leqslant D \cdot E=\frac{1}{18},
$$

which is a contradiction. The obtained contradiction completes the proof.
Lemma 3.2.15. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(9,19,24,31,81)$. Then $\operatorname{lct}(X)=77 / 30$.
Proof. The surface X can be defined by the quasihomogeneous equation

$$
y t^{2}+y^{3} z+x z^{3}+x^{9}=0,
$$

and X is singular at the point O_{y}, O_{z} and O_{t}. The surface X is also singular at a point Q such that $Q \neq O_{z}$ and the points Q and Q_{z} are cut out on X by the equations $y=t=0$.

The curve C_{x} is reducible. We have $C_{x}=L_{x y}+Z_{x}$, where $L_{x y}$ and Z_{x} are irreducible and reduced curves such that $L_{x y}$ is given by the equations $x=y=0$, and Z_{x} is given by the equations $x=t^{2}+y^{2} z=0$. Then

$$
L_{x y} \cdot L_{x y}=\frac{-53}{24 \cdot 31}, Z_{x} \cdot Z_{x}=\frac{-20}{19 \cdot 24}, L_{x y} \cdot Z_{x}=\frac{2}{24},
$$

and $L_{x y} \cap Z_{x}=O_{z}$. The curve C_{y} is also reducible. We have $C_{x}=L_{x y}+Z_{y}$, where Z_{y} is an irreducible and reduced curve that is given by the equations $y=z^{3}+x^{8}=0$. Then

$$
Z_{y} \cdot Z_{y}=\frac{10}{3 \cdot 31}, L_{x y} \cdot Z_{y}=\frac{3}{31}, D \cdot Z_{y}=\frac{2}{3 \cdot 31}, D \cdot Z_{x}=\frac{4}{19 \cdot 24}, D \cdot L_{x y}=\frac{2}{24 \cdot 31}
$$

and $L_{x y} \cap Z_{y}=O_{t}$. The curve C_{z} is irreducible. We see that $\operatorname{lct}(X) \leqslant 3$, because

$$
3=\operatorname{lct}\left(X, \frac{2}{9} C_{x}\right)<\operatorname{lct}\left(X, \frac{2}{21} C_{y}\right)=\frac{209}{54}<\operatorname{lct}\left(X, \frac{2}{24} C_{z}\right)=\frac{22}{3} .
$$

Suppose that $\operatorname{lct}(X)<3$. Then there is a \mathbb{Q}-effective divisor $D \equiv-K_{X}$ such that the pair $(X, 3 D)$ is not \log canonical at some point P. By Remark 1.4.7, we may assume that $C_{z} \notin \operatorname{Supp}(D)$, and either $L_{x y} \nsubseteq \operatorname{Supp}(D)$, or $Z_{x} \nsubseteq \operatorname{Supp}(D) \not \supset Z_{y}$.

Since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(171)\right)$ contains $y^{9}, x^{19}, x^{3} z^{6}, x^{11} z^{3}$, it follows from Lemma 1.4.9 that $P \in$ $\operatorname{Sing}(X) \cup C_{x} \cup C_{y}$.

Suppose that $P=O_{t}$. If $L_{x y} \nsubseteq \operatorname{Supp}(D)$, then

$$
\frac{2}{24 \cdot 31}=D \cdot L_{x y} \geqslant \frac{\operatorname{mult}_{P}(D)}{31}>\frac{1}{3 \cdot 31}>\frac{2}{24 \cdot 31}
$$

which is a contradiction. If $Z_{y} \nsubseteq \operatorname{Supp}(D)$, then

$$
\frac{2}{3 \cdot 31}=D \cdot Z_{y} \geqslant \frac{\operatorname{mult}_{P}(D) \operatorname{mult}_{P}\left(Z_{y}\right)}{31}=\frac{3 \operatorname{mult}_{P}(D)}{31}>\frac{1}{31}>\frac{2}{3 \cdot 31},
$$

which is a contradiction. Thus, we see that $P \neq O_{t}$.
Suppose that $P=O_{z}$. If $L_{x y} \nsubseteq \operatorname{Supp}(D)$, then

$$
\frac{2}{24 \cdot 31}=D \cdot L_{x y} \geqslant \frac{\operatorname{mult}_{P}(D)}{24}>\frac{1}{3 \cdot 24}>\frac{2}{24 \cdot 31}
$$

which is a contradiction. If $Z_{x} \nsubseteq \operatorname{Supp}(D)$, then

$$
\frac{4}{19 \cdot 24}=D \cdot Z_{x} \geqslant \frac{\operatorname{mult}_{P}(D) \operatorname{mult}_{P}\left(Z_{x}\right)}{24}=\frac{2 \operatorname{mult}_{P}(D)}{24}>\frac{2}{3 \cdot 24}>\frac{4}{19 \cdot 24},
$$

which is a contradiction. Thus, we see that $P \neq O_{z}$.
Suppose that $P=O_{y}$. Then

$$
\frac{18}{19 \cdot 31}=D \cdot C_{z} \geqslant \frac{\operatorname{mult}_{P}(D) \operatorname{mult}_{P}\left(C_{z}\right)}{19}=\frac{2 \operatorname{mult}_{P}(D)}{19}>\frac{2}{3 \cdot 19}>\frac{18}{19 \cdot 31},
$$

which is a contradiction. Thus, we see that $P \neq O_{y}$.
Suppose that $P \in L_{x y}$. Put $D=m L_{x y}+\Omega$, where Ω is an effective \mathbb{Q}-divisor such that $L_{x y} \not \subset \operatorname{Supp}(\Omega)$. If $m \neq 0$, then

$$
\frac{2}{19 \cdot 12}=-K_{X} \cdot Z_{x}=D \cdot Z_{x}=\left(m L_{x y}+\Omega\right) \cdot Z_{x} \geqslant m L_{x y} \cdot Z_{x}=\frac{m}{12},
$$

which implies that $m \leqslant 2 / 19$. Then it follows from Lemma 1.4.6 that

$$
\frac{2+53 m}{24 \cdot 31}=\left(-K_{X}-m L_{x y}\right) \cdot L_{x y}=\Omega \cdot L_{x y}>\frac{1}{3},
$$

which is impossible, because $m \leqslant 2 / 19$. Thus, we see that $P \notin L_{x y}$.
Suppose that $P \in Z_{y}$. Put $D=\epsilon Z_{y}+\Delta$, where Δ is an effective \mathbb{Q}-divisor such that $Z_{y} \not \subset \operatorname{Supp}(\Delta)$. If $\epsilon \neq 0$, then

$$
\frac{2}{24 \cdot 31}=-K_{X} \cdot L_{x y}=D \cdot L_{x y}=\left(\epsilon Z_{y}+\Delta\right) \cdot L_{x y} \geqslant \epsilon L_{x y} \cdot Z_{y}=\frac{3 \epsilon}{31},
$$

which implies that $\epsilon \leqslant 1 / 36$. Then it follows from Lemma 1.4.6 that

$$
\frac{6-30 \epsilon}{9 \cdot 31}=\left(-K_{X}-\epsilon Z_{y}\right) \cdot Z_{y}=\Delta \cdot Z_{x}>\left\{\begin{array}{l}
\frac{1}{3} \text { if } P \neq Q \\
\frac{1}{9} \text { if } P=Q
\end{array}\right.
$$

which is impossible, because $\epsilon \leqslant 1 / 36$. Thus, we see that $P \notin Z_{y}$. Then $P \in Z_{x}$.
Put $D=\delta Z_{x}+\Upsilon$, where Υ is an effective \mathbb{Q}-divisor such that $Z_{x} \not \subset \operatorname{Supp}(\Upsilon)$. If $\epsilon \neq 0$, then

$$
\frac{1}{12 \cdot 31}=-K_{X} \cdot L_{x y}=D \cdot L_{x y}=\left(\delta Z_{x}+\Upsilon\right) \cdot L_{x y} \geqslant \delta L_{x y} \cdot Z_{x}=\frac{1 \delta}{12},
$$

which implies that $\delta \leqslant 1 / 31$. Then it follows from Lemma 1.4.6 that

$$
\frac{4+20 \delta}{19 \cdot 24}=\left(-K_{X}-\delta Z_{x}\right) \cdot Z_{x}=\Upsilon \cdot Z_{x}>\frac{1}{3}
$$

which is impossible, because $\delta \leqslant 1 / 31$. The obtained contradiction shows that $\operatorname{lct}(X)=3$.
Lemma 3.2.16. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(10,19,35,43,105)$. Then $\operatorname{lct}(X)=57 / 14$.
Proof. The surface X can be defined by the quasihomogeneous equation

$$
z^{3}+y t^{2}+x y^{5}+x^{7} z=0
$$

and X is singular at the point O_{x}, O_{y} and O_{t}. The surface X is also singular at a point Q such that $Q \neq O_{x}$ and the points Q and Q_{x} are cut out on X by the equations $y=t=0$.

The curve C_{y} is reducible. We have $C_{y}=L_{y z}+Z_{y}$, where $L_{y z}$ and Z_{y} are irreducible and reduced curves such that $L_{y z}$ is given by the equations $y=z=0$, and Z_{y} is given by the equations $y=z^{2}+x^{7}=0$. Then

$$
L_{y z} \cdot L_{y z}=\frac{-51}{10 \cdot 43}, Z_{y} \cdot Z_{y}=\frac{-32}{10 \cdot 43}, L_{y z} \cdot Z_{y}=\frac{7}{43},
$$

and $L_{y z} \cap Z_{y}=O_{t}$. The curve C_{x} is irreducible and

$$
\frac{57}{14}=\operatorname{lct}\left(X, \frac{2}{19} C_{y}\right)<\operatorname{lct}\left(X, \frac{2}{10} C_{x}\right)=\frac{25}{6},
$$

which implies, in particular, that $\operatorname{lct}(X) \leqslant 57 / 14$.
Suppose that $\operatorname{lct}(X)<57 / 14$. Then there is a \mathbb{Q}-effective divisor $D \equiv-K_{X}$ such that the pair $\left(X, \frac{57}{14} D\right)$ is not log canonical at some point P. By Remark 1.4.7, we may assume that the support of the divisor D does not contain the curve C_{x}. Similarly, we may assume that either $L_{y z} \nsubseteq \operatorname{Supp}(D)$, or $Z_{y} \nsubseteq \operatorname{Supp}(D)$.

Since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(190)\right)$ contains $x^{19}, y^{10}, x^{5} z^{4}$ and $x^{12} z^{2}$, it follows from Lemma 1.4.10 that $P \in \operatorname{Sing}(X) \cup C_{x} \cup C_{y}$.

Suppose that $P=O_{t}$. If $L_{y z} \nsubseteq \operatorname{Supp}(D)$, then

$$
\frac{2}{10 \cdot 43}=D \cdot L_{y z} \geqslant \frac{\operatorname{mult}_{P}(D)}{43}>\frac{14}{57 \cdot 43}>\frac{2}{10 \cdot 43},
$$

which is a contradiction. If $Z_{y} \nsubseteq \operatorname{Supp}(D)$, then

$$
\frac{4}{10 \cdot 43}=D \cdot Z_{y} \geqslant \frac{\operatorname{mult}_{P}(D) \operatorname{mult}_{P}\left(Z_{y}\right)}{43}=\frac{2 \operatorname{mult}_{P}(D)}{43}>\frac{28}{57 \cdot 43}>\frac{4}{10 \cdot 43},
$$

which is a contradiction. Thus, we see that $P \neq O_{t}$.
Suppose that $P \in L_{y z}$. Put $D=m L_{y z}+\Omega$, where Ω is an effective \mathbb{Q}-divisor such that $L_{y z} \not \subset \operatorname{Supp}(\Omega)$. If $m \neq 0$, then

$$
\frac{4}{10 \cdot 43}=-K_{X} \cdot Z_{y}=D \cdot Z_{y}=\left(m L_{y z}+\Omega\right) \cdot Z_{y} \geqslant m L_{y z} \cdot Z_{y}=\frac{7 m}{43},
$$

which implies that $m \leqslant 4 / 70$. Then it follows from Lemma 1.4.6 that

$$
\frac{2+51 m}{430}=\left(-K_{X}-m L_{y z}\right) \cdot L_{y z}=\Omega \cdot L_{y z}>\left\{\begin{array}{l}
\frac{14}{57} \text { if } P \neq O_{x} \\
\frac{14}{57 \cdot 10} \text { if } P=O_{x}
\end{array}\right.
$$

which is impossible, because $m \leqslant 4 / 70$. Thus, we see that $P \notin L_{y z}$.
Suppose that $P \in Z_{y}$. Put $D=\epsilon Z_{y}+\Delta$, where Δ is an effective \mathbb{Q}-divisor such that $Z_{y} \not \subset \operatorname{Supp}(\Delta)$. If $\epsilon \neq 0$, then

$$
\frac{2}{430}=-K_{X} \cdot L_{y z}=D \cdot L_{y z}=\left(\epsilon Z_{y}+\Delta\right) \cdot L_{y z} \geqslant \epsilon L_{y z} \cdot Z_{y}=\frac{7 \epsilon}{43},
$$

which implies that $\epsilon \leqslant 2 / 70$. Then it follows from Lemma 1.4.6 that

$$
\frac{4+32 \epsilon}{430}=\left(-K_{X}-\epsilon Z_{y}\right) \cdot Z_{y}=\Delta \cdot Z_{y}>\left\{\begin{array}{l}
\frac{14}{57} \text { if } P \neq Q \\
\frac{14}{57 \cdot 5} \text { if } P=Q
\end{array}\right.
$$

which is impossible, because $\epsilon \leqslant 2 / 70$. Thus, we see that $P \notin Z_{y}$.
We see that $P \in C_{x}$ and $P \notin C_{y}$. Then have

$$
\frac{6}{19 \cdot 43}=D \cdot C_{x} \geqslant\left\{\begin{array}{l}
\frac{14}{57} \text { if } P \neq O_{y} \\
\frac{14}{57 \cdot 19} \text { if } P=O_{y}
\end{array}\right.
$$

which is a contradiction. Thus, we see that $\operatorname{lct}(X)=57 / 14$.
Lemma 3.2.17. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(11,21,28,47,105)$. Then $\operatorname{lct}(X)=77 / 30$.

Proof. The surface X can be defined by the quasihomogeneous equation

$$
y z^{3}+y^{5}+x t^{2}+x^{7} z=0
$$

and X is singular at the point O_{x}, O_{z} and O_{t}. The surface X is also singular at a point Q such that $Q \neq O_{z}$ and the points Q and Q_{z} are cut out on X by the equations $x=t=0$.

The curve C_{x} is reducible. We have $C_{x}=L_{x y}+Z_{x}$, where $L_{x y}$ and Z_{x} are irreducible and reduced curves such that $L_{x y}$ is given by the equations $x=y=0$, and Z_{x} is given by the equations $x=z^{3}+y^{4}=0$. Then

$$
L_{x y} \cdot L_{x y}=\frac{-73}{28 \cdot 47}, Z_{x} \cdot Z_{x}=\frac{-10}{7 \cdot 47}, L_{x y} \cdot Z_{x}=\frac{3}{47},
$$

and $L_{x y} \cap Z_{x}=O_{t}$. The curve C_{y} is also reducible. We have $C_{x}=L_{x y}+Z_{y}$, where Z_{y} is an irreducible and reduced curve that is given by the equations $y=t^{2}+x^{6} z=0$. Then

$$
Z_{y} \cdot Z_{y}=\frac{20}{11 \cdot 28}, L_{x y} \cdot Z_{y}=\frac{2}{28}, D \cdot Z_{y}=\frac{4}{11 \cdot 28}, D \cdot Z_{x}=\frac{2}{11 \cdot 47}, D \cdot L_{x y}=\frac{2}{28 \cdot 47}
$$

and $L_{x y} \cap Z_{y}=O_{z}$. We see that $\operatorname{lct}(X) \leqslant 77 / 30$, because

$$
\frac{77}{30}=\operatorname{lct}\left(X, \frac{2}{11} C_{x}\right)<\operatorname{lct}\left(X, \frac{2}{21} C_{y}\right)=6
$$

Suppose that $\operatorname{lct}(X)<77 / 30$. Then there is a \mathbb{Q}-effective divisor $D \equiv-K_{X}$ such that the pair $\left(X, \frac{77}{30} D\right)$ is not \log canonical at some point P. By Remark 1.4.7, we may assume that either $L_{x y} \nsubseteq \operatorname{Supp}(D)$, or $Z_{x} \nsubseteq \operatorname{Supp}(D) \not \supset Z_{y}$.

Since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(517)\right)$ contains $x^{5} y^{22}, x^{26} y^{11}, x^{47}, x^{19} z^{11}, x^{47}, t^{11}$, it follows from Lemma 1.4.9 that $P \in \operatorname{Sing}(X) \cup C_{x}$.

Suppose that $P=O_{t}$. If $L_{x y} \nsubseteq \operatorname{Supp}(D)$, then

$$
\frac{2}{28 \cdot 47}=D \cdot L_{x y} \geqslant \frac{\operatorname{mult}_{P}(D)}{47}>\frac{30}{77 \cdot 47}>\frac{2}{28 \cdot 47}
$$

which is a contradiction. If $Z_{x} \nsubseteq \operatorname{Supp}(D)$, then

$$
\frac{2}{7 \cdot 47}=D \cdot Z_{x} \geqslant \frac{\operatorname{mult}_{P}(D) \operatorname{mult}_{P}\left(Z_{x}\right)}{47}=\frac{3 \operatorname{mult}_{P}(D)}{47}>\frac{90}{91 \cdot 47}>\frac{2}{7 \cdot 47}
$$

which is a contradiction. Thus, we see that $P \neq O_{t}$.
Suppose that $P=O_{z}$. If $L_{x y} \nsubseteq \operatorname{Supp}(D)$, then

$$
\frac{2}{28 \cdot 47}=D \cdot L_{x y} \geqslant \frac{\operatorname{mult}_{P}(D)}{28}>\frac{30}{77 \cdot 28}>\frac{2}{28 \cdot 47}
$$

which is a contradiction. If $Z_{y} \nsubseteq \operatorname{Supp}(D)$, then

$$
\frac{4}{11 \cdot 28}=D \cdot Z_{y} \geqslant \frac{\operatorname{mult}_{P}(D) \operatorname{mult}_{P}\left(Z_{y}\right)}{28}=\frac{2 \operatorname{mult}_{P}(D)}{28}>\frac{60}{91 \cdot 28}>\frac{4}{11 \cdot 28},
$$

which is a contradiction. Thus, we see that $P \neq O_{z}$.
Suppose that $P \in L_{x y}$. Put $D=m L_{x y}+\Omega$, where Ω is an effective \mathbb{Q}-divisor such that $L_{x y} \not \subset \operatorname{Supp}(\Omega)$. If $m \neq 0$, then

$$
\frac{2}{7 \cdot 47}=-K_{X} \cdot Z_{x}=D \cdot Z_{x}=\left(m L_{x y}+\Omega\right) \cdot Z_{x} \geqslant m L_{x y} \cdot Z_{x}=\frac{3 m}{47},
$$

which implies that $m \leqslant 2 / 21$. Then it follows from Lemma 1.4.6 that

$$
\frac{2+73 m}{28 \cdot 47}=\left(-K_{X}-m L_{x y}\right) \cdot L_{x y}=\Omega \cdot L_{x y}>\frac{30}{77}
$$

which is impossible, because $m \leqslant 2 / 21$. Thus, we see that $P \notin L_{x y}$.
Suppose that $P \in Z_{x}$. Put $D=\epsilon Z_{x}+\Delta$, where Δ is an effective \mathbb{Q}-divisor such that $Z_{x} \not \subset \operatorname{Supp}(\Delta)$. If $\epsilon \neq 0$, then

$$
\frac{2}{28 \cdot 47}=-K_{X} \cdot L_{x y}=D \cdot L_{x y}=\left(\epsilon Z_{x}+\Delta\right) \cdot L_{x y} \geqslant \epsilon L_{x y} \cdot Z_{x}=\frac{3 \epsilon}{47}
$$

which implies that $\epsilon \leqslant 1 / 42$. Then it follows from Lemma 1.4.6 that

$$
\frac{2+10 \epsilon}{7 \cdot 47}=\left(-K_{X}-\epsilon Z_{x}\right) \cdot Z_{x}=\Delta \cdot Z_{x}>\left\{\begin{array}{l}
\frac{30}{77} \text { if } P \neq Q \\
\frac{30}{77 \cdot 7} \text { if } P=Q
\end{array}\right.
$$

which is impossible, because $\epsilon \leqslant 1 / 42$. Thus, we see that $P \notin Z_{x}$. Then $P=O_{x}$.
Put $D=\delta Z_{y}+\Upsilon$, where Υ is an effective \mathbb{Q}-divisor such that $Z_{y} \not \subset \operatorname{Supp}(\Upsilon)$. If $\epsilon \neq 0$, then

$$
\frac{2}{28 \cdot 47}=-K_{X} \cdot L_{x y}=D \cdot L_{x y}=\left(\delta Z_{y}+\Upsilon\right) \cdot L_{x y} \geqslant \delta L_{x y} \cdot Z_{y}=\frac{2 \delta}{28},
$$

which implies that $\delta \leqslant 1 / 47$. Then it follows from Lemma 1.4.6 that

$$
\frac{4-20 \delta}{11 \cdot 28}=\left(-K_{X}-\delta Z_{y}\right) \cdot Z_{y}=\Upsilon \cdot Z_{y}>\frac{30}{77 \cdot 11},
$$

which is impossible, because $\delta \leqslant 1 / 47$. The obtained contradiction shows that $\operatorname{lct}(X)=77 / 30$.

Lemma 3.2.18. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(11,25,32,41,107)$. Then $\operatorname{lct}(X)=11 / 3$.
Proof. The surface X can be defined by the quasihomogeneous equation

$$
y t^{2}+y^{3} z+x z^{3}+x^{6} t=0
$$

and X is singular at the point O_{x}, O_{y}, O_{z} and O_{t}.
The curve C_{x} is reducible. We have $C_{x}=L_{x y}+M_{x}$, where $L_{x y}$ and M_{x} are irreducible and reduced curves such that $L_{x y}$ is given by the equations $x=y=0$, and M_{x} is given by the equations $x=t^{2}+y^{2} z=0$. Then

$$
L_{x y} \cdot L_{x y}=\frac{-71}{32 \cdot 41}, M_{x} \cdot M_{x}=\frac{-28}{25 \cdot 32}, L_{x y} \cdot M_{x}=\frac{3}{32},
$$

and $L_{x y} \cap M_{x}=O_{z}$. The curve C_{y} is also reducible. We have $C_{y}=L_{x y}+M_{y}$, where M_{y} is an irreducible and reduced curve that is given by the equations $y=z^{3}+x^{5} t=0$. Then

$$
M_{y} \cdot M_{y}=\frac{42}{11 \cdot 41}, L_{x y} \cdot M_{y}=\frac{3}{41}, D \cdot M_{y}=\frac{6}{11 \cdot 41}, D \cdot M_{x}=\frac{3}{11 \cdot 32}, D \cdot L_{x y}=\frac{2}{32 \cdot 41}
$$

and $L_{x y} \cap M_{y}=O_{t}$. The curve C_{z} is also reducible. We have $C_{z}=L_{z t}+M_{z}$, where $L_{z t}$ and M_{z} are irreducible and reduced curves such that $L_{z t}$ is given by the equations $z=t=0$, and M_{z} is given by the equations $z=x^{6}+t y=0$. Then

$$
L_{z t} \cdot L_{z t}=\frac{-34}{11 \cdot 25}, L_{z t} \cdot M_{z}=\frac{6}{25}, D \cdot L_{z t}=\frac{2}{11 \cdot 25}, D \cdot M_{z}=\frac{12}{25 \cdot 41}
$$

and $L_{z t} \cap M_{z}=O_{y}$. The curve C_{t} is also reducible. We have $C_{t}=L_{z t}+M_{t}$, where M_{t} is an irreducible and reduced curve that is given by the equations $t=y^{3}+x z^{2}=0$. Then $\operatorname{lct}(X) \leqslant 11 / 3$, because

$$
\frac{11}{3}=\operatorname{lct}\left(X, \frac{2}{11} C_{x}\right)<\frac{50}{9}=\operatorname{lct}\left(X, \frac{2}{25} C_{y}\right)<\frac{28}{3}=\operatorname{lct}\left(X, \frac{2}{32} C_{z}\right)<\frac{205}{18}=\operatorname{lct}\left(X, \frac{2}{41} C_{t}\right) .
$$

Suppose that $\operatorname{lct}(X)<11 / 3$. Then there is a \mathbb{Q}-effective divisor $D \equiv-K_{X}$ such that the pair $\left(X, \frac{11}{3} D\right)$ is not \log canonical at some point P. By Remark 1.4.7, we may assume that either $\operatorname{Supp}(D)$ does not contain at least one irreducible component of C_{x}, C_{y}, C_{z} and C_{t}.

Since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(352)\right)$ contains $x^{7} y^{11}, x^{32}$ and z^{11}, it follows from Lemma 1.4.9 that $P \in$ $\operatorname{Sing}(X) \cup C_{x} \cup C_{y}$.

Suppose that $P=O_{t}$. If $L_{x y} \nsubseteq \operatorname{Supp}(D)$, then

$$
\frac{2}{32 \cdot 41}=D \cdot L_{x y} \geqslant \frac{\operatorname{mult}_{P}(D)}{41}>\frac{3}{11 \cdot 41}>\frac{2}{32 \cdot 41},
$$

which is a contradiction. If $M_{y} \nsubseteq \operatorname{Supp}(D)$, then

$$
\frac{6}{11 \cdot 41}=D \cdot M_{y} \geqslant \frac{\operatorname{mult}_{P}(D) \operatorname{mult}_{P}\left(M_{y}\right)}{41}=\frac{3 \operatorname{mult}_{P}(D)}{41}>\frac{9}{11 \cdot 41}>\frac{6}{11 \cdot 41},
$$

which is a contradiction. Thus, we see that $P \neq O_{t}$.

Suppose that $P=O_{z}$. If $L_{x y} \nsubseteq \operatorname{Supp}(D)$, then

$$
\frac{2}{32 \cdot 41}=D \cdot L_{x y} \geqslant \frac{\operatorname{mult}_{P}(D)}{32}>\frac{3}{11 \cdot 32}>\frac{2}{32 \cdot 41},
$$

which is a contradiction. If $M_{x} \nsubseteq \operatorname{Supp}(D)$, then

$$
\frac{4}{25 \cdot 32}=D \cdot M_{x} \geqslant \frac{\operatorname{mult}_{P}(D)}{32}>\frac{3}{11 \cdot 32}>\frac{4}{25 \cdot 32},
$$

which is a contradiction. Thus, we see that $P \neq O_{z}$.
Suppose that $P=O_{x}$. If $L_{x z} \nsubseteq \operatorname{Supp}(D)$, then

$$
\frac{2}{11 \cdot 25}=D \cdot L_{z t} \geqslant \frac{\operatorname{mult}_{P}(D)}{11}>\frac{3}{11 \cdot 11}>\frac{2}{11 \cdot 25},
$$

which is a contradiction. If $M_{t} \nsubseteq \operatorname{Supp}(D)$, then

$$
\frac{6}{11 \cdot 32}=D \cdot M_{t} \geqslant \frac{\operatorname{mult}_{P}(D)}{11}>\frac{3}{11 \cdot 11}>\frac{6}{11 \cdot 32},
$$

which is a contradiction. Thus, we see that $P \neq O_{x}$.
Suppose that $P=O_{y}$. If $L_{x z} \nsubseteq \operatorname{Supp}(D)$, then

$$
\frac{2}{11 \cdot 25}=D \cdot L_{z t} \geqslant \frac{\operatorname{mult}_{P}(D)}{25}>\frac{2}{11 \cdot 25}
$$

which is a contradiction. Thus, we see that $M_{z} \nsubseteq \operatorname{Supp}(D)$. Put $D=\epsilon L_{z t}+\Delta$, where Δ is an effective \mathbb{Q}-divisor such that $L_{z t} \not \subset \operatorname{Supp}(\Omega)$. If $\epsilon \neq 0$, then
$\frac{12}{25 \cdot 41}=D \cdot M_{z}=\left(\epsilon L_{z t}+\Delta\right) \cdot M_{z} \geqslant \epsilon L_{z t} \cdot M_{z}+\frac{\operatorname{mult}_{O_{y}}(D)-\epsilon}{25}>\epsilon L_{z t} \cdot M_{z}+\frac{3 / 11-\epsilon}{25}=\frac{6 \epsilon}{25}+\frac{3 / 11-\epsilon}{25}$,
which implies that $\epsilon<9 / 2255$. Then it follows from Lemma 1.4.6 that

$$
\frac{2+34 \epsilon}{11 \cdot 25}=\left(-K_{X}-\epsilon L_{z t}\right) \cdot L_{z t}=\Omega \cdot L_{z t}>\frac{3}{11 \cdot 25}
$$

which implies that $\epsilon>1 / 34$. But $\epsilon<9 / 2255$. Thus, we see that $P \neq O_{y}$. Then $P \notin \operatorname{Sing}(X)$.
Suppose that $P \in L_{x y}$. Put $D=m L_{x y}+\Omega$, where Ω is an effective \mathbb{Q}-divisor such that $L_{x y} \not \subset \operatorname{Supp}(\Omega)$. If $m \neq 0$, then

$$
\frac{4}{25 \cdot 32}=-K_{X} \cdot M_{x}=D \cdot M_{x}=\left(m L_{x y}+\Omega\right) \cdot M_{x} \geqslant m L_{x y} \cdot M_{x}=\frac{2 m}{32},
$$

which implies that $m \leqslant 2 / 25$. Then it follows from Lemma 1.4.6 that

$$
\frac{2+71 m}{32 \cdot 41}=\left(-K_{X}-m L_{x y}\right) \cdot L_{x y}=\Omega \cdot L_{x y}>\frac{3}{11},
$$

which is impossible, because $m \leqslant 2 / 25$. Thus, we see that $P \notin L_{x y}$.
Suppose that $P \in M_{x}$. Put $D=\delta M_{x}+\Upsilon$, where Υ is an effective \mathbb{Q}-divisor such that $M_{x} \not \subset \operatorname{Supp}(\Upsilon)$. If $\epsilon \neq 0$, then

$$
\frac{2}{32 \cdot 41}=-K_{X} \cdot L_{x y}=D \cdot L_{x y}=\left(\delta M_{x}+\Upsilon\right) \cdot L_{x y} \geqslant \delta L_{x y} \cdot M_{x}=\frac{2 \delta}{32},
$$

which implies that $\delta \leqslant 1 / 41$. Then it follows from Lemma 1.4.6 that

$$
\frac{4+28 \delta}{25 \cdot 32}=\left(-K_{X}-\delta M_{x}\right) \cdot M_{x}=\Upsilon \cdot M_{x}>\frac{3}{11}
$$

which contradicts to $\delta \leqslant 1 / 41$. Similarly, we see that $P \notin M_{y}$, which is a contradiction.
Lemma 3.2.19. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(11,25,34,43,111)$. Then $\operatorname{lct}(X)=33 / 8$.
Proof. We may assume that the surface X is defined by the quasihomogeneous equation

$$
t^{2} y+t z^{2}+x y^{4}+x^{7} z=0 .
$$

The surface X is singular at the points $O_{x}, O_{y}, O_{z}, O_{t}$. Each of the divisors C_{x}, C_{y}, C_{z}, and C_{t} consists of two irreducible and reduced components. The divisor C_{x} (resp. C_{y}, C_{z}, C_{t}) consists of $L_{x t}=\{x=t=0\}$ (resp. $L_{y z}=\{y=z=0\}, L_{y z}, L_{x t}$) and $R_{x}=\left\{x=y t+z^{2}=0\right\}$ (resp.
$R_{y}=\left\{y=z t+x^{7}=0\right\}, R_{z}=\left\{z=x y^{3}+t^{2}=0\right\}, R_{t}=\left\{t=y^{4}+x^{6} z=0\right\}$). Also, we see that

$$
L_{x t} \cap R_{x}=\left\{O_{y}\right\}, L_{y z} \cap R_{y}=\left\{O_{t}\right\}, L_{y z} \cap R_{z}=\left\{O_{x}\right\}, L_{x t} \cap R_{t}=\left\{O_{z}\right\} .
$$

We can easily see that

$$
\operatorname{lct}\left(X, \frac{2}{11} C_{x}\right)=\frac{33}{8}<\operatorname{lct}\left(X, \frac{2}{25} C_{y}\right), \quad \operatorname{lct}\left(X, \frac{2}{34} C_{z}\right), \quad \operatorname{lct}\left(X, \frac{2}{43} C_{t}\right) .
$$

Therefore, $\operatorname{lct}(X) \leq \frac{33}{8}$. Suppose $\operatorname{lct}(X)<\frac{33}{8}$. Then, there is an effective \mathbb{Q}-divisor $D \equiv-K_{X}$ such that the \log pair $\left(X, \frac{33}{8} D\right)$ is not \log canonical at some point $P \in X$.

The intersection numbers among the divisors $D, L_{x t}, L_{y z}, R_{x}, R_{y}, R_{z}, R_{t}$ are as follows:

$$
\begin{gathered}
D \cdot L_{x t}=\frac{1}{17 \cdot 25}, \quad D \cdot R_{x}=\frac{4}{25 \cdot 43}, \quad D \cdot R_{y}=\frac{14}{34 \cdot 43}, \\
D \cdot L_{y z}=\frac{2}{11 \cdot 43}, \quad D \cdot R_{z}=\frac{4}{11 \cdot 25}, \quad D \cdot R_{t}=\frac{8}{11 \cdot 34}, \\
L_{x t} \cdot R_{x}=\frac{2}{25}, \quad L_{y z} \cdot R_{y}=\frac{7}{43}, \quad L_{y z} \cdot R_{z}=\frac{2}{11}, \quad L_{x t} \cdot R_{t}=\frac{4}{34}, \\
L_{x t}^{2}=-\frac{57}{2 \cdot 17 \cdot 25}, \quad R_{x}^{2}=-\frac{64}{25 \cdot 43}, \quad R_{y}^{2}=-\frac{63}{34 \cdot 43}, \\
L_{y z}^{2}=-\frac{52}{11 \cdot 43}, \quad R_{z}^{2}=\frac{18}{11 \cdot 25}, \quad R_{t}^{2}=\frac{64}{11 \cdot 17} .
\end{gathered}
$$

By Remark 1.4.7 we may assume that the support of D does not contain at least one component of each divisor $C_{x}, C_{y}, C_{z}, C_{t}$. The inequalities

$$
25 D \cdot L_{x t}=\frac{1}{17}<\frac{8}{33}, \quad 25 D \cdot R_{x}=\frac{4}{43}<\frac{8}{33}
$$

imply $P \neq O_{y}$. The inequalities

$$
11 D \cdot L_{y z}=\frac{2}{43}<\frac{8}{33}, \quad 11 D \cdot R_{z}=\frac{4}{25}<\frac{8}{33}
$$

imply $P \neq O_{x}$. The inequalities

$$
34 D \cdot L_{x t}=\frac{34}{17 \cdot 25}<\frac{8}{33}, \quad \frac{34}{4} D \cdot R_{t}=\frac{2}{11}<\frac{8}{33}
$$

imply $P \neq O_{z}$. The curve R_{t} is singular at the point O_{z}.
We write $D=a_{1} L_{x t}+a_{2} L_{y z}+a_{3} R_{x}+a_{4} R_{y}+a_{5} R_{z}+a_{6} R_{t}+\Omega$, where Ω is an effective divisor whose support contains none of the curves $L_{x t}, L_{y z}, R_{x}, R_{y}, R_{z}, R_{t}$. Since the pair $\left(X, \frac{33}{8} D\right)$ is \log canonical at the points O_{x}, O_{y}, O_{z}, the numbers a_{i} are at most $\frac{8}{33}$. Then by Lemma 1.4.8 the following inequalities enable us to conclude that either the point P is in the outside of $C_{x} \cup C_{y} \cup C_{z} \cup C_{t}$ or $P=O_{t}$:

$$
\begin{gathered}
\frac{33}{8} D \cdot L_{x t}-L_{x t}^{2}=\frac{261}{8 \cdot 17 \cdot 25}<1, \quad \frac{33}{8} D \cdot L_{y z}-L_{x t}^{2}=\frac{241}{4 \cdot 11 \cdot 43}<1, \\
\frac{33}{8} D \cdot R_{x}-R_{x}^{2}=\frac{161}{2 \cdot 25 \cdot 43}<1, \quad \frac{33}{8} D \cdot R_{y}-R_{y}^{2}=\frac{483}{4 \cdot 34 \cdot 43}<1, \\
\frac{33}{8} D \cdot R_{z}-R_{z}^{2} \leq \frac{33}{8} D \cdot R_{z}=\frac{11}{2 \cdot 25}<1, \quad \frac{33}{8} D \cdot R_{t}-R_{t}^{2} \leq \frac{33}{8} D \cdot R_{t}=\frac{3}{34}<1 .
\end{gathered}
$$

Suppose that $P \neq O_{t}$. Then we consider the pencil \mathcal{L} defined by $\lambda y t+\mu z^{2}=0,[\lambda: \mu] \in \mathbb{P}^{1}$. The base locus of the pencil consists of the curve $L_{y z}$ and the point O_{y}. Let E be the unique divisor in \mathcal{L} that passes through the point P. Since $P \notin C_{x} \cup C_{y} \cup C_{z} \cup C_{t}$, the divisor E is defined by the equation $z^{2}=\alpha y t$, where $\alpha \neq 0$.

Suppose that $\alpha \neq-1$. Then the curve E is isomorphic to the curve defined by the equations $y t=z^{2}$ and $t^{2} y+x y^{4}+x^{7} z=0$. Since the curve E is isomorphic to a general curve in \mathcal{L}, it is smooth at the point P. The affine piece of E defined by $t \neq 0$ is the curve given by
$z\left(z^{3}+x z^{7}+x^{7}\right)=0$. Therefore, the divisor E consists of two irreducible and reduced curves $L_{y z}$ and C. We have the intersection numbers

$$
D \cdot C=D \cdot E-D \cdot L_{y z}=\frac{394}{11 \cdot 25 \cdot 43}, \quad C \cdot L_{y z}=E \cdot L_{y z}-L_{y z}^{2}=\frac{120}{11 \cdot 43}
$$

Also, we see

$$
C^{2}=E \cdot C-C \cdot L_{y z}>0
$$

By Lemma 1.4 .8 the inequality $D \cdot C<\frac{8}{33}$ gives us a contradiction.
Suppose that $\alpha=-1$. Then divisor E consists of three irreducible and reduced curves $L_{y z}$, R_{x}, and M. Note that the curve M is different from the curves R_{y} and $L_{x t}$. Also, it is smooth at the point P. We have

$$
\begin{gathered}
D \cdot M=D \cdot E-D \cdot L_{y z}-D \cdot R_{x}=\frac{14}{11 \cdot 43}, \\
M^{2}=E \cdot M-L_{y z} \cdot M-R_{x} \cdot M \geq E \cdot M-C_{y} \cdot M-C_{x} \cdot M>0
\end{gathered}
$$

By Lemma 1.4.8 the inequality $D \cdot M<\frac{8}{33}$ gives us a contradiction. Therefore, $P=O_{t}$.
Put $D=b R_{x}+\Delta$, where Δ is an effective divisor whose support contains neither R_{x}. By Remark 1.4.7, we may assume that $R_{x} \nsubseteq \operatorname{Supp}(\Delta)$ if $b>0$. Thus, if $b>0$, then

$$
\frac{2}{25 \cdot 34}=D \cdot L_{x t} \geqslant b R_{x} \cdot L_{x t}=\frac{2 b}{25},
$$

which implies that $b \leqslant 1 / 34$. On the other hand, it follows from Lemma 1.4.6 that

$$
\frac{4+64 a}{25 \cdot 43}=\Delta \cdot R_{x}>\frac{8}{33 \cdot 43}
$$

which implies that $b>17 / 528$. But $17 / 528>1 / 34$, which is a contradiction.
Lemma 3.2.20. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(11,43,61,113,226)$. Then $\operatorname{lct}(X)=55 / 12$.
Proof. The surface X can be defined by the quasihomogeneous equation

$$
t^{2}+y z^{3}+x y^{5}+x^{15} z=0
$$

the surface X is singular at the point O_{x}, O_{y} and O_{z}. The curves C_{x} and C_{y} are irreducible. We have

$$
\frac{55}{12}=\operatorname{lct}\left(X, \frac{2}{11} C_{x}\right)<\operatorname{lct}\left(X, \frac{2}{43} C_{y}\right)=\frac{17 \cdot 43}{60}
$$

which implies, in particular, that $\operatorname{lct}(X) \leqslant 55 / 12$.
Suppose that $\operatorname{lct}(X)<55 / 12$. Then there is a \mathbb{Q}-effective divisor $D \equiv-K_{X}$ such that the pair $\left(X, \frac{55}{12} D\right)$ is not \log canonical at some point P. By Remark 1.4.7, we may assume that the support of the divisor D does not contain the curves C_{x} and C_{y}.

Since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(671)\right)$ contains $x^{18} y^{11}, x^{61}$ and z^{11}, it follows from Lemma 1.4.10 that $P \in$ $\operatorname{Sing}(X) \cup C_{x}$.

Suppose that $P \in C_{x}$. Then

$$
\frac{4}{43 \cdot 61}=D \cdot C_{x} \geqslant\left\{\begin{array}{l}
\frac{\operatorname{mult}_{P}(D)}{43} \text { if } P=O_{y} \\
\frac{\operatorname{mult}_{P}(D)}{61} \text { if } P=O_{z} \\
\operatorname{mult}_{P}(D) \text { if } P \neq O_{y} \text { and } P \neq O_{z}
\end{array}\right.
$$

which is impossible, because $\operatorname{mult}_{P}(D)>12 / 55$. Thus, we see that $P=O_{x}$. Then

$$
\frac{4}{11 \cdot 61}=D \cdot C_{y} \geqslant \frac{\operatorname{mult}_{P}(D)}{11}>\frac{12}{55 \cdot 11}>\frac{4}{11 \cdot 61}
$$

which is a contradiction. Thus, we see that $\operatorname{lct}(X)=55 / 12$.
Lemma 3.2.21. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(13,18,45,61,135)$. Then $\operatorname{lct}(X)=91 / 30$.

Proof. The surface X can be defined by the quasihomogeneous equation

$$
z^{3}+y^{5} z+x t^{2}+x^{9} y=0
$$

and X is singular at the point O_{x}, O_{y} and O_{t}. The surface X is also singular at a point Q such that $Q \neq O_{y}$ and the points Q and Q_{y} are cut out on X by the equations $x=t=0$.

The curve C_{x} is reducible. We have $C_{x}=L_{x z}+Z_{x}$, where $L_{x z}$ and Z_{x} are irreducible and reduced curves such that $L_{x z}$ is given by the equations $x=z=0$, and Z_{x} is given by the equations $x=z^{2}+y^{5}=0$. Then

$$
L_{x z} \cdot L_{x z}=\frac{-77}{18 \cdot 61}, Z_{x} \cdot Z_{x}=\frac{-32}{9 \cdot 61}, L_{x z} \cdot Z_{x}=\frac{5}{61},
$$

and $L_{x z} \cap Z_{x}=O_{t}$. The curve C_{y} is irreducible and

$$
\frac{91}{30}=\operatorname{lct}\left(X, \frac{2}{13} C_{x}\right)<\operatorname{lct}\left(X, \frac{2}{18} C_{y}\right)=\frac{15}{2},
$$

which implies, in particular, that $\operatorname{lct}(X) \leqslant 91 / 30$.
Suppose that $\operatorname{lct}(X)<91 / 30$. Then there is a \mathbb{Q}-effective divisor $D \equiv-K_{X}$ such that the pair $\left(X, \frac{91}{30} D\right)$ is not \log canonical at some point P. By Remark 1.4.7, we may assume that the support of the divisor D does not contain the curve C_{y}. Similarly, we may assume that either $L_{x z} \nsubseteq \operatorname{Supp}(D)$, or $Z_{x} \nsubseteq \operatorname{Supp}(D)$.

Since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(793)\right)$ contains $x^{7} y^{39}, x^{25} y^{26}, x^{43} y^{13}, x^{61}, x^{16} z^{13}, t^{13}$, it follows from Lemma 1.4.9 that $P \in \operatorname{Sing}(X) \cup C_{x}$.

Suppose that $P=O_{t}$. If $L_{x z} \nsubseteq \operatorname{Supp}(D)$, then

$$
\frac{2}{18 \cdot 61}=D \cdot L_{x z} \geqslant \frac{\operatorname{mult}_{P}(D)}{61}>\frac{30}{91 \cdot 61}>\frac{2}{18 \cdot 61},
$$

which is a contradiction. If $Z_{x} \nsubseteq \operatorname{Supp}(D)$, then

$$
\frac{4}{18 \cdot 61}=D \cdot Z_{x} \geqslant \frac{\operatorname{mult}_{P}(D) \operatorname{mult}_{P}\left(Z_{x}\right)}{61}=\frac{2 \operatorname{mult}_{P}(D)}{61}>\frac{60}{91 \cdot 61}>\frac{4}{18 \cdot 61},
$$

which is a contradiction. Thus, we see that $P \neq O_{t}$.
Suppose that $P \in L_{x z}$. Put $D=m L_{x z}+\Omega$, where Ω is an effective \mathbb{Q}-divisor such that $L_{x z} \not \subset \operatorname{Supp}(\Omega)$. If $m \neq 0$, then

$$
\frac{4}{18 \cdot 61}=-K_{X} \cdot Z_{x}=D \cdot Z_{x}=\left(m L_{x z}+\Omega\right) \cdot Z_{x} \geqslant m L_{x z} \cdot Z_{x}=\frac{5 m}{61}
$$

which implies that $m \leqslant 2 / 45$. Then it follows from Lemma 1.4.6 that

$$
\frac{2+77 m}{18 \cdot 61}=\left(-K_{X}-m L_{x z}\right) \cdot L_{x z}=\Omega \cdot L_{x z}>\left\{\begin{array}{l}
\frac{30}{91} \text { if } P \neq O_{y} \\
\frac{30}{91 \cdot 18} \text { if } P=O_{y}
\end{array}\right.
$$

which is impossible, because $m \leqslant 2 / 45$. Thus, we see that $P \notin L_{x z}$.
Suppose that $P \in Z_{x}$. Put $D=\epsilon Z_{x}+\Delta$, where Δ is an effective \mathbb{Q}-divisor such that $Z_{x} \not \subset \operatorname{Supp}(\Delta)$. If $\epsilon \neq 0$, then

$$
\frac{2}{18 \cdot 61}=-K_{X} \cdot L_{x z}=D \cdot L_{x z}=\left(\epsilon Z_{x}+\Delta\right) \cdot L_{x z} \geqslant \epsilon L_{x z} \cdot Z_{x}=\frac{5 \epsilon}{61}
$$

which implies that $\epsilon \leqslant 1 / 45$. Then it follows from Lemma 1.4.6 that

$$
\frac{2+32 \epsilon}{9 \cdot 61}=\left(-K_{X}-\epsilon Z_{x}\right) \cdot Z_{x}=\Delta \cdot Z_{x}>\left\{\begin{array}{l}
\frac{30}{91} \text { if } P \neq Q \\
\frac{30}{91 \cdot 9} \text { if } P=Q
\end{array}\right.
$$

which is impossible, because $\epsilon \leqslant 1 / 45$. Thus, we see that $P \notin Z_{x}$. Then $P=O_{x}$. We have

$$
\frac{6}{13 \cdot 61}=D \cdot C_{y} \geqslant \frac{\operatorname{mult}_{P}(D)}{13}>\frac{30}{91 \cdot 13}>\frac{6}{13 \cdot 61}
$$

which is a contradiction. Thus, we see that $\operatorname{lct}(X)=91 / 30$.

Lemma 3.2.22. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(13,20,29,47,107)$. Then lct $(X)=65 / 18$.
Proof. The surface X can be defined by the quasihomogeneous equation

$$
y z^{3}+y^{3} t+x t^{2}+x^{6} z=0,
$$

and X is singular at the point O_{x}, O_{y}, O_{z} and O_{t}.
The curve C_{x} is reducible. We have $C_{x}=L_{x y}+M_{x}$, where $L_{x y}$ and M_{x} are irreducible and reduced curves such that $L_{x y}$ is given by the equations $x=y=0$, and M_{x} is given by the equations $x=z^{3}+y^{2} t=0$. Then

$$
L_{x y} \cdot L_{x y}=\frac{-74}{29 \cdot 47}, M_{x} \cdot M_{x}=\frac{-21}{20 \cdot 47}, L_{x y} \cdot M_{x}=\frac{3}{47},
$$

and $L_{x y} \cap M_{x}=O_{t}$. The curve C_{y} is also reducible. We have $C_{y}=L_{x y}+M_{y}$, where M_{y} is an irreducible and reduced curve that is given by the equations $y=t^{2}+x^{5} z=0$. and $L_{x y} \cap M_{y}=O_{t}$. The curve C_{z} is also reducible. We have $C_{z}=L_{z t}+M_{z}$, where $L_{z t}$ and M_{z} are irreducible and reduced curves such that $L_{z t}$ is given by the equations $z=t=0$, and M_{z} is given by the equations $z=y^{3}+x t^{2}=0$. Then $L_{z t} \cap M_{z}=O_{x}$. The curve C_{t} is also reducible. We have $C_{t}=L_{z t}+M_{t}$, where M_{t} is an irreducible and reduced curve that is given by the equations $t=x^{6}+y z^{2}=0$. Then

$$
\begin{aligned}
D \cdot L_{x y}=\frac{2}{29 \cdot 47}, D \cdot L_{z t}=\frac{2}{13 \cdot 20}, D \cdot M_{x} & =\frac{6}{20 \cdot 47}, \\
D \cdot M_{y} & =\frac{4}{13 \cdot 19}, D \cdot M_{z}=\frac{6}{13 \cdot 47}, D \cdot M_{t}=\frac{12}{20 \cdot 29},
\end{aligned}
$$

and the inequality then $\operatorname{lct}(X) \leqslant 65 / 18$ holds, because

$$
\frac{65}{18}=\operatorname{lct}\left(X, \frac{2}{13} C_{x}\right)<\frac{70}{12}=\operatorname{lct}\left(X, \frac{2}{20} C_{y}\right)<\frac{145}{18}=\operatorname{lct}\left(X, \frac{2}{29} C_{z}\right)<\frac{82}{9}=\operatorname{lct}\left(X, \frac{2}{47} C_{t}\right) .
$$

Suppose that $\operatorname{lct}(X)<65 / 18$. Then there is a \mathbb{Q}-effective divisor $D \equiv-K_{X}$ such that the pair $\left(X, \frac{65}{18} D\right)$ is not \log canonical at some point P. By Remark 1.4.7, we may assume that either $\operatorname{Supp}(D)$ does not contain at least one irreducible component of C_{x}, C_{y}, C_{z} and C_{t}.

Since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(377)\right)$ contains $x^{9} y^{13}, x^{29}$ and z^{13}, it follows from Lemma 1.4.9 that $P \in$ $\operatorname{Sing}(X) \cup C_{x}$.

Suppose that $P=O_{t}$. If $L_{x y} \nsubseteq \operatorname{Supp}(D)$, then

$$
\frac{2}{29 \cdot 47}=D \cdot L_{x y} \geqslant \frac{\operatorname{mult}_{P}(D)}{47}>\frac{18}{65 \cdot 47}>\frac{2}{29 \cdot 47},
$$

which is a contradiction. If $M_{x} \nsubseteq \operatorname{Supp}(D)$, then

$$
\frac{6}{29 \cdot 47}=D \cdot M_{x} \geqslant \frac{\operatorname{mult}_{P}(D) \operatorname{mult}_{P}\left(M_{x}\right)}{47}=\frac{2 \operatorname{mult}_{P}(D)}{47}>\frac{36}{65 \cdot 47}>\frac{6}{29 \cdot 47},
$$

which is a contradiction. Thus, we see that $P \neq O_{t}$.
Suppose that $P=O_{z}$. If $L_{x y} \nsubseteq \operatorname{Supp}(D)$, then

$$
\frac{6}{29 \cdot 47}=D \cdot L_{x y} \geqslant \frac{\operatorname{mult}_{P}(D)}{32}>\frac{18}{65 \cdot 29}>\frac{6}{29 \cdot 47}
$$

which is a contradiction. If $M_{y} \nsubseteq \operatorname{Supp}(D)$, then

$$
\frac{4}{13 \cdot 29}=D \cdot M_{y} \geqslant \frac{\operatorname{mult}_{P}(D) \operatorname{mult}_{P}\left(M_{y}\right)}{29}=\frac{2 \operatorname{mult}_{P}(D)}{29}>\frac{36}{65 \cdot 29}>\frac{4}{13 \cdot 29},
$$

which is a contradiction. Thus, we see that $P \neq O_{z}$.
Suppose that $P=O_{y}$. If $L_{x z} \nsubseteq \operatorname{Supp}(D)$, then

$$
\frac{2}{13 \cdot 20}=D \cdot L_{z t} \geqslant \frac{\operatorname{mult}_{P}(D)}{20}>\frac{18}{65 \cdot 20}>\frac{2}{13 \cdot 20},
$$

which is a contradiction. If $M_{t} \nsubseteq \operatorname{Supp}(D)$, then

$$
\frac{12}{20 \cdot 29}=D \cdot M_{t} \geqslant \frac{\operatorname{mult}_{P}(D) \operatorname{mult}_{P}\left(M_{t}\right)}{20}=\frac{2 \operatorname{mult}_{P}(D)}{20}>\frac{36}{65 \cdot 20}>\frac{12}{20 \cdot 29},
$$

which is a contradiction. Thus, we see that $P \neq O_{y}$.
Suppose that $P=O_{y}$. If $L_{x z} \nsubseteq \operatorname{Supp}(D)$, then

$$
\frac{2}{13 \cdot 20}=D \cdot L_{z t} \geqslant \frac{\operatorname{mult}_{P}(D)}{20}>\frac{18}{65 \cdot 13}>\frac{2}{13 \cdot 20},
$$

which is a contradiction. If $M_{z} \nsubseteq \operatorname{Supp}(D)$, then

$$
\frac{6}{13 \cdot 47}=D \cdot M_{z} \geqslant \frac{\operatorname{mult}_{P}(D)}{13}>\frac{18}{65 \cdot 13}>\frac{6}{13 \cdot 47}
$$

which is a contradiction. Thus, we see that $P \neq O_{x}$. Then $P \notin \operatorname{Sing}(X)$.
Suppose that $P \in L_{x y}$. Put $D=m L_{x y}+\Omega$, where Ω is an effective \mathbb{Q}-divisor such that $L_{x y} \not \subset \operatorname{Supp}(\Omega)$. If $m \neq 0$, then

$$
\frac{3}{10 \cdot 47}=-K_{X} \cdot M_{x}=D \cdot M_{x}=\left(m L_{x y}+\Omega\right) \cdot M_{x} \geqslant m L_{x y} \cdot M_{x}=\frac{3 m}{47},
$$

which implies that $m \leqslant 1 / 10$. Then it follows from Lemma 1.4.6 that

$$
\frac{2+74 m}{29 \cdot 47}=\left(-K_{X}-m L_{x y}\right) \cdot L_{x y}=\Omega \cdot L_{x y}>\frac{18}{65},
$$

which is impossible, because $m \leqslant 1 / 10$. Thus, we see that $P \notin L_{x y}$.
Put $D=\delta M_{x}+\Upsilon$, where Υ is an effective \mathbb{Q}-divisor such that $M_{x} \not \subset \operatorname{Supp}(\Upsilon)$. If $\epsilon \neq 0$, then

$$
\frac{2}{29 \cdot 47}=-K_{X} \cdot L_{x y}=D \cdot L_{x y}=\left(\delta M_{x}+\Upsilon\right) \cdot L_{x y} \geqslant \delta L_{x y} \cdot M_{x}=\frac{3 \delta}{47},
$$

which implies that $\delta \leqslant 2 / 87$. Then it follows from Lemma 1.4.6 that

$$
\frac{6+21 \delta}{20 \cdot 47}=\left(-K_{X}-\delta M_{x}\right) \cdot M_{x}=\Upsilon \cdot M_{x}>\frac{18}{65}
$$

which contradicts to $\delta \leqslant 2 / 87$. The obtained contradiction shows that lct $(X)=65 / 18$.
Lemma 3.2.23. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(13,20,31,49,111)$. Then $\operatorname{lct}(X)=65 / 16$.
Proof. The surface X can be defined by the quasihomogeneous equation

$$
z^{2} t+y^{4} z+x t^{2}+x^{7} y=0
$$

and X is singular at the point O_{x}, O_{y}, O_{z} and O_{t}.
The curve C_{x} is reducible. We have $C_{x}=L_{x z}+M_{x}$, where $L_{x z}$ and M_{x} are irreducible reduced curves such that $L_{x z}$ is given by the equations $x=z=0$, and M_{x} is given by the equations $x=y^{4}+z t=0$. Then

$$
L_{x z} \cdot L_{x z}=\frac{-67}{20 \cdot 49}, M_{x} \cdot M_{x}=\frac{-72}{31 \cdot 49}, L_{x z} \cdot M_{x}=\frac{4}{49}, D \cdot L_{x z}=\frac{2}{20 \cdot 49}, D \cdot M_{x}=\frac{8}{31 \cdot 49},
$$

and $L_{x z} \cap M_{x}=O_{t}$. The curves C_{y}, C_{z} and C_{t} are also reducible. We have $C_{y}=L_{y t}+M_{y}$, where $L_{y t}$ and M_{y} are irreducible reduced curves such that $L_{y t}$ is given by the equations $y=t=0$, and M_{y} is given by the equations $y=z^{2}+x t=0$. We have $C_{z}=L_{x z}+M_{z}$ and $C_{t}=L_{y t}+M_{t}$, where M_{z} and M_{t} are irreducible reduced curves such that M_{z} is given by the equations $z={ }^{2}+x^{6} y=0$, and M_{t} is given by the equations $t=x^{7}+z y^{3}=0$. Then the equalities

$$
D \cdot L_{y t}=\frac{2}{13 \cdot 31}, D \cdot M_{y}=\frac{4}{13 \cdot 49}, D \cdot M_{z}=\frac{4}{13 \cdot 20}, D \cdot M_{t}=\frac{14}{20 \cdot 31}
$$

holds. We have $L_{y t} \cap M_{y}=O_{x}, L_{x z} \cap M_{z}=O_{y}$ and $L_{y t} \cap M_{t}=O_{z}$. Then $\operatorname{lct}(X) \leqslant 65 / 16$, because

$$
\frac{65}{16}=\operatorname{lct}\left(X, \frac{2}{13} C_{x}\right)<\frac{30}{4}=\operatorname{lct}\left(X, \frac{2}{20} C_{y}\right)<\frac{245}{28}=\operatorname{lct}\left(X, \frac{2}{49} C_{t}\right)<\frac{62}{7}=\operatorname{lct}\left(X, \frac{2}{31} C_{z}\right) .
$$

Suppose that $\operatorname{lct}(X)<65 / 16$. Then there is a \mathbb{Q}-effective divisor $D \equiv-K_{X}$ such that the pair $\left(X, \frac{65}{16} D\right)$ is not \log canonical at some point P. By Remark 1.4.7, we may assume that either $\operatorname{Supp}(D)$ does not contain at least one irreducible component of C_{x}, C_{y}, C_{z} and C_{t}.

Since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(403)\right)$ contains $x^{11} y^{13}, x^{31}$ and z^{13}, it follows from Lemma 1.4.9 that $P \in$ $\operatorname{Sing}(X) \cup C_{x}$.

Suppose that $P=O_{x}$. If $L_{y t} \nsubseteq \operatorname{Supp}(D)$, then

$$
\frac{2}{13 \cdot 31}=D \cdot L_{y t} \geqslant \frac{\operatorname{mult}_{P}(D)}{13}>\frac{16}{65 \cdot 13}>\frac{2}{13 \cdot 31}=
$$

which is a contradiction. If $M_{y} \nsubseteq \operatorname{Supp}(D)$, then

$$
\frac{4}{13 \cdot 49}=D \cdot M_{y} \geqslant \frac{\operatorname{mult}_{P}(D)}{13}>\frac{16}{65 \cdot 13}>\frac{4}{13 \cdot 49},
$$

which is a contradiction. Thus, we see that $P \neq O_{x}$.
Suppose that $P=O_{y}$. If $L_{x z} \nsubseteq \operatorname{Supp}(D)$, then

$$
\frac{2}{20 \cdot 49}=D \cdot L_{x z} \geqslant \frac{\operatorname{mult}_{P}(D)}{20}>\frac{16}{65 \cdot 20}>\frac{2}{20 \cdot 49},
$$

which is a contradiction. If $M_{z} \nsubseteq \operatorname{Supp}(D)$, then

$$
\frac{4}{13 \cdot 20}=D \cdot M_{x} \geqslant \geqslant \frac{\operatorname{mult}_{P}(D) \operatorname{mult}_{P}\left(M_{z}\right)}{20}=\frac{2 \operatorname{mult}_{P}(D)}{20}>\frac{32}{65 \cdot 20}>\frac{4}{13 \cdot 20},
$$

which is a contradiction. Thus, we see that $P \neq O_{y}$.
Suppose that $P=O_{z}$. If $L_{y t} \nsubseteq \operatorname{Supp}(D)$, then

$$
\frac{2}{13 \cdot 31}=D \cdot L_{y t} \geqslant \frac{\operatorname{mult}_{P}(D)}{31}>\frac{16}{65 \cdot 31}>\frac{2}{13 \cdot 31},
$$

which is a contradiction. If $M_{t} \nsubseteq \operatorname{Supp}(D)$, then

$$
\frac{14}{20 \cdot 31}=D \cdot M_{t} \geqslant \geqslant \frac{\operatorname{mult}_{P}(D) \operatorname{mult}_{P}\left(M_{t}\right)}{20}=\frac{3 \operatorname{mult}_{P}(D)}{31}>\frac{48}{65 \cdot 20}>\frac{14}{20 \cdot 31},
$$

which is a contradiction. Thus, we see that $P \neq O_{z}$.
Suppose that $P \in M_{x} \backslash O_{t}$. Put $D=\delta M_{x}+\Upsilon$, where Υ is an effective \mathbb{Q}-divisor such that $M_{x} \not \subset \operatorname{Supp}(\Upsilon)$. If $\epsilon \neq 0$, then

$$
\frac{2}{20 \cdot 49}=-K_{X} \cdot L_{x z}=D \cdot L_{x z}=\left(\delta M_{x}+\Upsilon\right) \cdot L_{x z} \geqslant \delta L_{x z} \cdot M_{x}=\frac{4 \delta}{49},
$$

which implies that $\delta \leqslant 1 / 40$. Then it follows from Lemma 1.4.6 that

$$
\frac{8+72 \delta}{31 \cdot 49}=\left(-K_{X}-\delta M_{x}\right) \cdot M_{x}=\Upsilon \cdot M_{x}>\frac{16}{65},
$$

because $P \neq O_{z}$. But $\delta \leqslant 1 / 40$. Thus, we see that $M \notin M_{x} \backslash O_{t}$.
We see that $P \in L_{x z}$ and $P \neq O_{y}$. If $L_{x z} \nsubseteq \operatorname{Supp}(D)$, then

$$
\frac{2}{20 \cdot 49}=D \cdot L_{x z} \geqslant \frac{\operatorname{mult}_{P}(D)}{49}>\frac{16}{65 \cdot 49}>\frac{2}{20 \cdot 49},
$$

which is a contradiction. Thus, we see that $M_{x} \nsubseteq \operatorname{Supp}(D)$. Put $D=\epsilon L_{x z}+\Delta$, where Δ is an effective \mathbb{Q}-divisor such that $L_{x z} \not \subset \operatorname{Supp}(\Omega)$. Then

$$
\frac{8}{31 \cdot 49}=D \cdot M_{x}=\left(\epsilon L_{x z}+\Delta\right) \cdot M_{x} \geqslant \epsilon L_{x z} \cdot M_{x}=\frac{4 \epsilon}{49},
$$

which implies that $\epsilon \leqslant 2 / 31$. Then it follows from Lemma 1.4.6 that

$$
\frac{2+67 \epsilon}{20 \cdot 49}=\left(-K_{X}-\epsilon L_{x z}\right) \cdot L_{x z}=\Omega \cdot L_{x z} \gg\left\{\begin{array}{l}
\frac{16}{65} \text { if } P \neq O_{t} \\
\frac{16}{65 \cdot 49} \text { if } P=O_{t}
\end{array}\right.
$$

which implies that $\epsilon>38 / 871$ and $P=O_{t}$, because $\epsilon \leqslant 2 / 31$. Then
$\frac{8}{31 \cdot 49}=D \cdot M_{x}=\left(\epsilon L_{x z}+\Delta\right) \cdot M_{x} \geqslant \epsilon L_{x z} \cdot M_{x}+\frac{\text { mult }_{O_{t}}(D)-\epsilon}{49}>\epsilon L_{x z} \cdot M_{x}+\frac{16 / 65-\epsilon}{49}=\frac{4 \epsilon}{49}+\frac{16 / 65-\epsilon}{49}$, which implies that $\epsilon<8 / 2015$. But $\epsilon>38 / 871>8 / 2015$, which is a contradiction.

Lemma 3.2.24. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(13,31,71,113,226)$. Then $\operatorname{lct}(X)=91 / 20$.

Proof. The surface X can be defined by the quasihomogeneous equation

$$
t^{2}+y^{5} z+x z^{3}+x^{15} y=0
$$

the surface X is singular at the point O_{x}, O_{y} and O_{z}. The curves C_{x} and C_{y} are irreducible. We have

$$
\frac{91}{20}=\operatorname{lct}\left(X, \frac{2}{13} C_{x}\right)<\operatorname{lct}\left(X, \frac{2}{31} C_{y}\right)=\frac{17 \cdot 71}{60}
$$

which implies, in particular, that $\operatorname{lct}(X) \leqslant 91 / 20$.
Suppose that $\operatorname{lct}(X)<91 / 20$. Then there is a \mathbb{Q}-effective divisor $D \equiv-K_{X}$ such that the pair $\left(X, \frac{91}{20} D\right)$ is not \log canonical at some point P. By Remark 1.4.7, we may assume that the support of the divisor D does not contain the curves C_{x} and C_{y}.

Since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(923)\right)$ contains $x^{71}, y^{26} x^{9}, y^{13} x^{40}$ and z^{13}, it follows from Lemma 1.4.10 that $P \in \operatorname{Sing}(X) \cup C_{x}$.

Suppose that $P \in C_{x}$. Then

$$
\frac{4}{31 \cdot 71}=D \cdot C_{x} \geqslant\left\{\begin{array}{l}
\frac{\operatorname{mult}_{P}(D)}{31} \text { if } P=O_{y} \\
\frac{\operatorname{mult}_{P}(D)}{71} \text { if } P=O_{z}, \\
\operatorname{mult}_{P}(D) \text { if } P \neq O_{y} \text { and } P \neq O_{z}
\end{array}\right.
$$

which is impossible, because $\operatorname{mult}_{P}(D)>20 / 91$. Thus, we see that $P=O_{x}$. Then

$$
\frac{4}{13 \cdot 71}=D \cdot C_{y} \geqslant \frac{\operatorname{mult}_{P}(D)}{13}>\frac{20}{91 \cdot 13}>\frac{4}{13 \cdot 71}
$$

which is a contradiction. Thus, we see that $\operatorname{lct}(X)=91 / 20$.
Lemma 3.2.25. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(14,17,29,41,99)$. Then $\operatorname{lct}(X)=21 / 4$.
Proof. We may assume that the surface X is defined by the quasihomogeneous equation

$$
t^{2} y+t z^{2}+x y^{5}+x^{5} z=0
$$

The surface X is singular at the points $O_{x}, O_{y}, O_{z}, O_{t}$. Each of the divisors C_{x}, C_{y}, C_{z}, and C_{t} consists of two irreducible and reduced components. The divisor C_{x} (resp. C_{y}, C_{z}, C_{t}) consists of $L_{x t}=\{x=t=0\}$ (resp. $L_{y z}=\{y=z=0\}, L_{y z}, L_{x t}$) and $R_{x}=\left\{x=y t+z^{2}=0\right\}$ (resp. $R_{y}=\left\{y=z t+x^{5}=0\right\}, R_{z}=\left\{z=x y^{4}+t^{2}=0\right\}, R_{t}=\left\{t=y^{5}+x^{4} z=0\right\}$). Also, we see that

$$
L_{x t} \cap R_{x}=\left\{O_{y}\right\}, L_{y z} \cap R_{y}=\left\{O_{t}\right\}, L_{y z} \cap R_{z}=\left\{O_{x}\right\}, L_{x t} \cap R_{t}=\left\{O_{z}\right\} .
$$

We can easily see that

$$
\operatorname{lct}\left(X, \frac{2}{14} C_{x}\right)=\frac{21}{4}<\operatorname{lct}\left(X, \frac{2}{17} C_{y}\right), \quad \operatorname{lct}\left(X, \frac{2}{29} C_{z}\right), \quad \operatorname{lct}\left(X, \frac{2}{41} C_{t}\right) .
$$

Therefore, $\operatorname{lct}(X) \leq \frac{21}{4}$. Suppose $\operatorname{lct}(X)<\frac{21}{4}$. Then, there is an effective \mathbb{Q}-divisor $D \equiv-K_{X}$ such that the \log pair $\left(X, \frac{21}{4} D\right)$ is not \log canonical at some point $P \in X$.

The intersection numbers among the divisors $D, L_{x t}, L_{y z}, R_{x}, R_{y}, R_{z}, R_{t}$ are as follows:

$$
\begin{gathered}
D \cdot L_{x t}=\frac{2}{17 \cdot 29}, \quad D \cdot R_{x}=\frac{4}{17 \cdot 41}, \quad D \cdot R_{y}=\frac{10}{29 \cdot 41}, \\
D \cdot L_{y z}=\frac{1}{7 \cdot 41}, \quad D \cdot R_{z}=\frac{2}{7 \cdot 17}, \quad D \cdot R_{t}=\frac{5}{7 \cdot 29}, \\
L_{x t} \cdot R_{x}=\frac{2}{17}, \quad L_{y z} \cdot R_{y}=\frac{5}{41}, \quad L_{y z} \cdot R_{z}=\frac{1}{7}, \quad L_{x t} \cdot R_{t}=\frac{5}{29}, \\
L_{x t}^{2}=-\frac{44}{17 \cdot 29}, \quad R_{x}^{2}=-\frac{54}{17 \cdot 41}, \quad R_{y}^{2}=-\frac{60}{29 \cdot 41}, \\
L_{y z}^{2}=-\frac{53}{14 \cdot 41}, \quad R_{z}^{2}=\frac{12}{7 \cdot 17}, \quad R_{t}^{2}=\frac{135}{14 \cdot 29} .
\end{gathered}
$$

By Remark 1.4.7 we may assume that the support of D does not contain at least one component of each divisor $C_{x}, C_{y}, C_{z}, C_{t}$. The inequalities

$$
17 D \cdot L_{x t}=\frac{2}{29}<\frac{4}{21}, \quad 17 D \cdot R_{x}=\frac{4}{41}<\frac{4}{21}
$$

imply $P \neq O_{y}$. The inequalities

$$
14 D \cdot L_{y z}=\frac{2}{41}<\frac{4}{21}, \quad 7 D \cdot R_{z}=\frac{2}{17}<\frac{4}{21}
$$

imply $P \neq O_{x}$. The curve R_{z} is singular at the point O_{x}. The inequalities

$$
29 D \cdot L_{x t}=\frac{2}{17}<\frac{4}{21}, \quad \frac{29}{4} D \cdot R_{t}=\frac{5}{28}<\frac{4}{21}
$$

imply $P \neq O_{z}$. The curve R_{t} is singular at the point O_{z}.
We write $D=a_{1} L_{x t}+a_{2} L_{y z}+a_{3} R_{x}+a_{4} R_{y}+a_{5} R_{z}+a_{6} R_{t}+\Omega$, where Ω is an effective divisor whose support contains none of the curves $L_{x t}, L_{y z}, R_{x}, R_{y}, R_{z}, R_{t}$. Since the pair $\left(X, \frac{21}{4} D\right)$ is \log canonical at the points O_{x}, O_{y}, O_{z}, the numbers a_{i} are at most $\frac{4}{21}$. Then by Lemma 1.4.8 the following inequalities enable us to conclude that either the point P is in the outside of $C_{x} \cup C_{y} \cup C_{z} \cup C_{t}$ or $P=O_{t}$:

$$
\begin{gathered}
\frac{21}{4} D \cdot L_{x t}-L_{x t}^{2}=\frac{109}{2 \cdot 17 \cdot 29}<1, \quad \frac{21}{4} D \cdot L_{y z}-L_{x t}^{2}=\frac{127}{4 \cdot 7 \cdot 41}<1, \\
\frac{21}{4} D \cdot R_{x}-R_{x}^{2}=\frac{75}{17 \cdot 41}<1, \quad \frac{21}{4} D \cdot R_{y}-R_{y}^{2}=\frac{225}{2 \cdot 29 \cdot 41}<1, \\
\frac{21}{4} D \cdot R_{z}-R_{z}^{2} \leq \frac{21}{4} D \cdot R_{z}=\frac{3}{2 \cdot 17}<1, \quad \frac{21}{4} D \cdot R_{t}-R_{t}^{2} \leq \frac{21}{4} D \cdot R_{t}=\frac{15}{4 \cdot 29}<1 .
\end{gathered}
$$

Suppose that $P \neq O_{t}$. Then we consider the pencil \mathcal{L} defined by $\lambda y t+\mu z^{2}=0,[\lambda: \mu] \in \mathbb{P}^{1}$. The base locus of the pencil consists of the curve $L_{y z}$ and the point O_{y}. Let E be the unique divisor in \mathcal{L} that passes through the point P. Since $P \notin C_{x} \cup C_{y} \cup C_{z} \cup C_{t}$, the divisor E is defined by the equation $z^{2}=\alpha y t$, where $\alpha \neq 0$.

Suppose that $\alpha \neq-1$. Then the curve E is isomorphic to the curve defined by the equations $y t=z^{2}$ and $t^{2} y+x y^{5}+x^{5} z=0$. Since the curve E is isomorphic to a general curve in \mathcal{L}, it is smooth at the point P. The affine piece of E defined by $t \neq 0$ is the curve given by $z\left(z+x z^{9}+x^{5}\right)=0$. Therefore, the divisor E consists of two irreducible and reduced curves $L_{y z}$ and C. We have the intersection number

$$
D \cdot C=D \cdot E-D \cdot L_{y z}=\frac{181}{7 \cdot 17 \cdot 41} .
$$

Also, we see

$$
C^{2}=E \cdot C-C \cdot L_{y z} \geq E \cdot C-C_{y} \cdot C>0
$$

since C is different from R_{y}. By Lemma 1.4.8 the inequality $D \cdot C<\frac{4}{21}$ gives us a contradiction.
Suppose that $\alpha=-1$. Then divisor E consists of three irreducible and reduced curves $L_{y z}$, R_{x}, and M. Note that the curve M is different from the curves R_{y} and $L_{x t}$. Also, it is smooth at the point P. We have

$$
\begin{gathered}
D \cdot M=D \cdot E-D \cdot L_{y z}-D \cdot R_{x}=\frac{153}{7 \cdot 17 \cdot 41}, \\
M^{2}=E \cdot M-L_{y z} \cdot M-R_{x} \cdot M \geq E \cdot M-C_{y} \cdot M-C_{x} \cdot M>0 .
\end{gathered}
$$

By Lemma 1.4.8 the inequality $D \cdot M<\frac{4}{21}$ gives us a contradiction. Therefore, $P=O_{t}$.
Put $D=a L_{y z}+b R_{x}+\Delta$, where Δ is an effective divisor whose support contains neither $L_{y z}$ nor R_{x}. Then $a>0$, because otherwise

$$
\frac{2}{14 \cdot 41}=D \cdot L_{y z}=\geqslant \operatorname{mult}_{P}(D) 41>\frac{4}{21 \cdot 41}>\frac{2}{14 \cdot 41},
$$

which is a contradiction. Therefore, we may assume that $R_{y} \nsubseteq \operatorname{Supp}(\Delta)$ by Remark 1.4.7. Similarly, we may assume that $L_{x t} \nsubseteq \operatorname{Supp}(\Delta)$ if $b>0$.

Let us find upper bounds for a and b. If $b>0$, then

$$
\frac{2}{17 \cdot 29}=D \cdot L_{x t} \geqslant b R_{x} \cdot L_{x t}=\frac{2 b}{17},
$$

which implies that $b \leqslant 1 / 29$. Similarly, we have

$$
\frac{10}{29 \cdot 41}=D \cdot R_{y} \geqslant \frac{7 a}{41}+\frac{b}{41}+\frac{\operatorname{mult}_{O_{t}}(D)-a-b}{41}>\frac{6 a+\frac{4}{21}}{41},
$$

which implies that $a<47 / 1827$. On the other hand, it follows from Lemma 1.4.6 that

$$
\frac{2+53 a}{14 \cdot 41}=\Delta \cdot L_{y z}>\frac{4 / 21-b}{41}
$$

which implies that $a>2 / 159$.
Let $\pi: \bar{X} \rightarrow X$ be the weighted blow up of the point O_{t} with weight $(9,4)$, and let F be the exceptional curve of the morphism π. Then F contains two singular points Q_{9} and Q_{4} such that Q_{9} is a singular point of type $\frac{1}{9}(1,1)$, and Q_{4} is a singular point of type $\frac{1}{4}(1,3)$. Then
$K_{\bar{X}}=\pi^{*}\left(K_{X}\right)-\frac{38}{41} F, \bar{L}_{y z}=\pi^{*}\left(L_{y z}\right)-\frac{4}{41} F, \bar{R}_{x}=\pi^{*}\left(R_{x}\right)-\frac{9}{41} F, \bar{R}_{y}=\pi^{*}\left(R_{y}\right)-\frac{4}{41} F, \bar{\Delta}=\pi^{*}(\Delta)-\frac{c}{41} F$,
where $\bar{L}_{y z}, \bar{R}_{x}, \bar{R}_{y}$ and $\bar{\Delta}$ are the proper transforms of $L_{y z}, R_{x}, R_{y}$ and Δ by π, respectively, and c is a non-negative rational number c. Note that $F \cap \bar{R}_{x}=Q_{4}$ and $F \cap \bar{L}_{y z}=Q_{9}$.

The \log pull-back of the \log pair $\left(X, \frac{21}{4} D\right)$ by π is the \log pair

$$
\left(\bar{X}, \frac{21 a}{4} \bar{L}_{y z}+\frac{21 b}{4} \bar{R}_{x}+\frac{21}{4} \bar{\Delta}+\theta_{1} F\right),
$$

which is not \log canonical at some point $Q \in F$, where $\theta_{1}=(21(c+4 a+9 b) / 4+28) / 41$. We have

$$
\frac{2+53 a}{14 \cdot 41}-\frac{b}{41}-\frac{c}{9 \cdot 41}=\bar{\Delta} \cdot \bar{L}_{y z} \geqslant 0 \leqslant \bar{\Delta} \cdot \bar{R}_{x}=\frac{4+54 b}{17 \cdot 41}-\frac{a}{41}-\frac{c}{4 \cdot 41},
$$

which implies that $\theta_{1}<1$, because $b<1 / 29$. Similarly, we see that

$$
0 \leqslant \bar{\Delta} \cdot \bar{R}_{y}=\frac{10}{29 \cdot 41}-\frac{7 a}{41}-\frac{b}{41}-\frac{c}{9 \cdot 41} .
$$

Suppose that $Q \notin \bar{R}_{x} \cup \bar{L}_{y z}$. Then

$$
\frac{21 c}{16 \cdot 9}=\frac{21}{4} \bar{\Delta} \cdot F>1
$$

by Lemma 1.4.6. Thus, we see that $c>48 / 7$. But the system of inequalities

$$
\left\{\begin{array}{l}
\frac{2+53 a}{14 \cdot 41}-\frac{b}{41}-\frac{c}{9 \cdot 41} \geqslant 0, \\
\frac{4+54 b}{17 \cdot 41}-\frac{a}{41}-\frac{c}{4 \cdot 41} \geqslant 0, \quad b \leqslant 1 / 29 \\
c>48 / 7
\end{array}\right.
$$

is inconsistent. Thus, we see that $Q \in \bar{R}_{x} \cup \bar{L}_{y z}$.
Suppose that $Q \in \bar{M}_{x}$. Then $Q=Q_{4}$, and it follows from Lemma 1.4.6 that

$$
\frac{21}{4}\left(\frac{4+54 b}{17 \cdot 41}-\frac{a}{41}-\frac{c}{4 \cdot 41}\right)+\frac{\theta_{1}}{4}=\left(\frac{21}{4} \bar{\Delta}+\theta_{1} F\right) \cdot \bar{M}_{x}>\frac{1}{4}<\left(\frac{21}{4} \bar{\Delta}+\frac{21 b}{4} \bar{M}_{x}\right) \cdot F=\frac{21}{4}\left(\frac{c}{4 \cdot 9}+\frac{b}{4}\right)
$$

which implies that $b>548 / 7749$. But $b<1 / 29$, which is a contradiction.
We see that $Q=Q_{9}$. Then it follows from Lemma 1.4.6 that

$$
\frac{21}{4}\left(\frac{2+53 a}{14 \cdot 41}-\frac{b}{41}-\frac{c}{9 \cdot 41}\right)+\frac{\theta_{1}}{9}=\left(\frac{21}{4} \bar{\Delta}+\theta_{1} F\right) \cdot \bar{L}_{y z}>\frac{1}{9}<\left(\frac{21}{4} \bar{\Delta}+\frac{21 a}{4} \bar{L}_{y z}\right) \cdot F=\frac{21}{4}\left(\frac{c}{4 \cdot 9}+\frac{a}{9}\right)
$$

which leads to a contradiction, because the system of inequalities

$$
\left\{\begin{array}{l}
\frac{21}{4}\left(\frac{c}{4 \cdot 9}+\frac{a}{9}\right)>\frac{1}{9} \\
\frac{21}{4}\left(\frac{2+53 a}{14 \cdot 41}-\frac{b}{41}-\frac{c}{9 \cdot 41}\right)+\frac{\theta_{1}}{9}>\frac{1}{9} \\
\frac{2+53 a}{14 \cdot 41}-\frac{b}{41}-\frac{c}{9 \cdot 41} \geqslant 0 \\
\frac{4+54 b}{17 \cdot 41}-\frac{a}{41}-\frac{c}{4 \cdot 41} \geqslant 0 \\
a<47 / 1827, \\
b \leqslant 1 / 29
\end{array}\right.
$$

is inconsistent. The obtained contradiction completes the proof.

3.3. Sporadic cases with $I=3$

Lemma 3.3.1. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(5,7,11,13,33)$. Then $\operatorname{lct}(X)=49 / 36$.
Proof. The surface X can be defined by the quasihomogeneous equation

$$
z^{3}+y t^{2}+x y^{4}+x^{4} t+\epsilon x^{3} y z=0
$$

where $\epsilon \in \mathbb{C}$. Note that X is singular at O_{x}, O_{y} and O_{t}.
The curves C_{x} and C_{y} are irreducible. Moreover, we have

$$
\frac{25}{18}=\operatorname{lct}\left(X, \frac{3}{5} C_{x}\right)>\operatorname{lct}\left(X, \frac{3}{7} C_{y}\right)=\frac{49}{36},
$$

which implies, in particular, that $\operatorname{lct}(X) \leqslant 49 / 36$.
Suppose that $\operatorname{lct}(X)<49 / 36$. Then there is a \mathbb{Q}-effective divisor $D \equiv-K_{X}$ such that the pair $\left(X, \frac{49}{36} D\right)$ is not \log canonical at some point P. By Remark 1.4.7, we may assume that the support of D does not contain the curves C_{x} and C_{y}.

Suppose that $P \in C_{x}$ and $P \notin \operatorname{Sing}(X)$. Then

$$
\frac{36}{49}<\operatorname{mult}_{P}(D) \leqslant D \cdot C_{x}=\frac{9}{91}<\frac{36}{49},
$$

which is a contradiction. Suppose that $P \in C_{y}$ and $P \notin \operatorname{Sing}(X)$. Then

$$
\frac{36}{49}<\operatorname{mult}_{P}(D) \leqslant D \cdot C_{y}=\frac{9}{65}<\frac{36}{49}
$$

which is a contradiction. Suppose that $P=O_{x}$. Then

$$
\frac{36}{49} \frac{1}{5}<\frac{\text { mult }_{O_{x}}(D)}{5} \leqslant D \cdot C_{y}=\frac{9}{65}<\frac{36}{49} \frac{1}{5},
$$

which is a contradiction. Suppose that $P=O_{t}$. Then

$$
\frac{36}{49} \frac{3}{13}<\frac{3 \text { mult }_{O_{t}}(D)}{13}=\frac{\text { mult }_{O_{t}}(D) \text { mult }_{O_{t}}\left(C_{y}\right)}{13} \leqslant D \cdot C_{y}=\frac{9}{65}<\frac{36}{49} \frac{3}{13},
$$

which is a contradiction. Suppose that $P=O_{y}$. Then

$$
\frac{36}{49} \frac{1}{7}<\frac{\text { mult }_{O_{y}}(D)}{7} \leqslant D \cdot C_{x}=\frac{9}{91}<\frac{36}{49} \frac{1}{7},
$$

which is a contradiction. Thus, we see that $P \in X \backslash \operatorname{Sing}(X)$ and $P \notin C_{x} \cup C_{y}$.
Let \mathcal{L} be the pencil on X that is cut out by the pencil

$$
\lambda x^{7}+\mu y^{5}=0,
$$

where $[\lambda: \mu] \in \mathbb{P}^{1}$. Then the base locus of the pencil \mathcal{L} consists of the point O_{t}.
Let C be the unique curve in \mathcal{L} that passes through the point P. Suppose that C is irreducible and reduced. Then mult $P_{P}(C) \leqslant 3$, because C is a triple cover of the curve

$$
\lambda x^{7}+\mu y^{5}=0 \subset \mathbb{P}(5,7,13) \cong \operatorname{Proj}(\mathbb{C}[x, y, t])
$$

such that $\lambda \neq 0$ and $\mu \neq 0$. In particular, the \log pair $\left(X, \frac{3}{35} C\right)$ is \log canonical. Thus, we may assume that the support of D does not contain the curve C and hence we obtain

$$
\frac{10}{13}<\operatorname{mult}_{P}(D) \leqslant D \cdot C=\frac{9}{13}<\frac{10}{13}
$$

which is a contradiction. Thus, to conclude the proof we must prove that C is irreducible and reduced.

Let $S \subset \mathbb{C}^{4}$ be an affine subscheme that is given by the equations

$$
y^{5}-\alpha x^{7}=z^{3}+y t^{2}+x y^{4}+x^{4} t+\epsilon x^{3} y z=0 \subset \mathbb{C}^{4} \cong \operatorname{Spec}(\mathbb{C}[x, y, z, t]),
$$

where $\epsilon \in \mathbb{C}$ and $\alpha \in \mathbb{C}^{4}$ such that $\alpha \neq 0$. To conclude the proof, it is enough to prove that the subscheme S is an irreducible. For simplicity, we treat S as a surface in \mathbb{C}^{4}.

Let $\bar{S} \subset \mathbb{P}^{4}$ be a natural compactification of the surface $S \subset \mathbb{C}^{4}$ that is given by the equations

$$
\bar{y}^{5} \bar{w}^{2}-\alpha \bar{x}^{7}=\bar{z}^{3} \bar{w}^{2}+\bar{y} \bar{t}^{2} \bar{w}^{2}+\bar{x} \bar{y}^{4}+\bar{x}^{4} \bar{t}+\epsilon \bar{x}^{3} \bar{y} \bar{z}=0 \subset \mathbb{P}^{4} \cong \operatorname{Proj}(\mathbb{C}[\bar{x}, \bar{y}, \bar{z}, \bar{t}, \bar{w}])
$$

and let \bar{H} be a surface in \mathbb{P}^{4} that is given by the equations $\bar{x}=\bar{w}=0$. Then

$$
\operatorname{Supp}(\bar{S})=\operatorname{Supp}\left(\bar{S}^{\prime}\right) \cup \bar{H},
$$

where \bar{S}^{\prime} is another compactification of the affine surface S. Then S is irreducible $\Longleftrightarrow \bar{S}^{\prime}$ is irreducible.
Let \bar{T} be be a hyperplane in \mathbb{P}^{4} that is given by the equation $\bar{y}=0$. Then the intersection $\bar{T} \cap \bar{S}$ is one-dimensional. Consider an affine open subset $U=\mathbb{P}^{4} \backslash \bar{T} \subset \mathbb{P}^{4}$. Put $\breve{S}^{\prime}=U \cap \bar{S}^{\prime}$, $\breve{S}=U \cap \bar{S}$ and $\breve{H}=U \cap \bar{H}$. Then S is irreducible $\Longleftrightarrow \breve{S}^{\prime}$ is irreducible.

The surface \breve{S} can be given by the equations

$$
\breve{w}^{2}-\alpha \breve{x}^{7}=\breve{z}^{3} \breve{w}^{2}+\breve{t}^{2} \breve{w}^{2}+\breve{x}+\breve{x}^{4} \breve{t}+\epsilon \breve{x}^{3} \breve{z}=0 \subset \mathbb{C}^{4} \cong \operatorname{Spec}(\mathbb{C}[\breve{x}, \breve{z}, \breve{t}, \breve{w}])
$$

where \breve{H} is given by $\breve{x}=\breve{w}=0$. Therefore, the surface \breve{S} is isomorphic to an affine hypersurface

$$
\alpha \breve{x}^{7} \breve{z}^{3}+\alpha \breve{x}^{7} \breve{t}^{2}+\breve{x}+\breve{x}^{4} \breve{t}+\epsilon \breve{x}^{3} \breve{z}=0 \subset \mathbb{C}^{3} \cong \operatorname{Spec}(\mathbb{C}[\breve{x}, \breve{z}, \breve{t}]),
$$

where \breve{H} is given by $\breve{x}=0$. Thus, we see that the surface \breve{S}^{\prime} is a hypersurface in \mathbb{C}^{3} that is given by the zeroes of the polynomial

$$
f(\breve{x}, \breve{z}, \breve{t})=\alpha \breve{x}^{6} \breve{z}^{3}+\alpha \breve{x}^{6} \breve{t}^{2}+1+\breve{x}^{3} \breve{t}+\epsilon \breve{x}^{2} \breve{z},
$$

which implies that S is irreducible \Longleftrightarrow the polynomial $f(\breve{x}, \breve{z}, \breve{t})$ is irreducible. But elementary calculations imply that the polynomial $f(\breve{x}, \breve{z}, \breve{t})$ is irreducible.

Lemma 3.3.2. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(5,7,11,20,40)$. Then $\operatorname{lct}(X)=25 / 18$.
Proof. The surface X can be defined by the quasihomogeneous equation

$$
t^{2}+y z^{3}+x y^{5}+x^{4} t+x^{8}+\epsilon x^{3} y^{2} z,
$$

where $\epsilon \in \mathbb{C}$. Note that X is singular at the points O_{y} and O_{z}. The surface X also has two singular points P_{1} and P_{2} of type $\frac{1}{5}(2,1)$ that are cut out on X by the equations $y=z=0$.

The curve C_{x} is irreducible. We have

$$
\operatorname{lct}\left(X, \frac{3}{5} C_{x}\right)=\frac{25}{18}
$$

which implies that $\operatorname{lct}(X) \leqslant 49 / 36$. The curve C_{y} is reducible. We have $C_{y}=C_{1}+C_{2}$, where C_{1} and C_{2} are irreducible reduced curves such that

$$
C_{1} \cdot C_{1}=C_{2} \cdot C_{2}=-\frac{13}{55}, C_{1} \cdot C_{2}=\frac{4}{11},
$$

and $P_{1} \in C_{1}, P_{2} \in C_{2}$. Then $C_{1} \cap C_{2}=O_{z}$.
Suppose that $\operatorname{lct}(X)<25 / 18$. Then there is a \mathbb{Q}-effective divisor $D \equiv-K_{X}$ such that the pair $\left(X, \frac{25}{18} D\right)$ is not \log canonical at some point P. By Remark 1.4.7, we may assume that the
support of D does not contain the curve C_{x}. Moreover, we may assume that the support of D does not contain either the curve C_{1} or the curve C_{2}, because

$$
\operatorname{lct}\left(X, \frac{3}{7} C_{x}\right)=\frac{35}{24}>\frac{25}{18} .
$$

Suppose that $P \in C_{x}$. Then

$$
\frac{18}{25}>\frac{18}{25} \frac{1}{7}>\frac{6}{77}=D \cdot C_{x} \geqslant\left\{\begin{array}{l}
\operatorname{mult}_{P}(D) \text { if } P \in X \backslash \operatorname{Sing}(X), \\
\frac{\operatorname{mult}_{O_{y}}(D)}{7} \text { if } P=O_{y},
\end{array}>\left\{\begin{array}{l}
\frac{18}{25} \text { if } P \in X \backslash \operatorname{Sing}(X), \\
\frac{18}{25} \frac{1}{7} \text { if } P=O_{y},
\end{array}\right.\right.
$$

which is a contradiction. Thus, we see that $P \notin C_{x}$.
Suppose that $P=O_{z}$. We know that $C_{i} \not \subset \operatorname{Supp}(D)$ for some $i=1,2$. Then

$$
\frac{18}{25} \frac{1}{11}<\frac{\operatorname{mult}_{O_{z}}(D)}{11} \leqslant D \cdot C_{i}=\frac{3}{55}<\frac{18}{25} \frac{1}{11},
$$

which is a contradiction. Therefore, we see that $P \neq O_{z}$.
Suppose that $P \in C_{1}$. Put $D=m C_{1}+\Omega$, where Ω is an effective \mathbb{Q}-divisor such that $C_{1} \not \subset \operatorname{Supp}(\Omega)$. If $m \neq 0$, then

$$
\frac{3}{55}=-K_{X} \cdot C_{2}=D \cdot C_{2}=\left(m C_{1}+\Omega\right) \cdot C_{2} \geqslant m C_{1} \cdot C_{2}=\frac{4 m}{11},
$$

which implies that $m \leqslant 3 / 20$. Then it follows from Lemma 1.4.6 that

$$
\frac{3+m 13}{55}=\left(-K_{X}-m C_{1}\right) \cdot C_{1}=\Omega \cdot C_{1}>\left\{\begin{array}{l}
\frac{18}{25} \text { if } P \neq P_{1} \\
\frac{18}{25} \frac{1}{5} \text { if } P=P_{1}
\end{array}\right.
$$

because $P \neq O_{z}$. Thus, we see that $m>123 / 325$, which is impossible, because $m \leqslant 3 / 20$.
Thus, we see that $P \in X \backslash \operatorname{Sing}(X)$ and $P \notin C_{x} \cup C_{y}$. Then

$$
\frac{18}{25}<\operatorname{mult}_{P}(D) \leqslant \frac{240}{385}<\frac{18}{25}
$$

by Lemma 1.4.10, because the natural projection $X \rightarrow \mathbb{P}(5,7,20)$ is a finite morphism outside of the curve C_{y}, and $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(40)\right)$ contains monomials $x^{8}, x y^{5}, x^{4} t$. The obtained contradiction completes the proof.

Lemma 3.3.3. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(11,21,29,37,95)$. Then $\operatorname{lct}(X)=11 / 4$.
Proof. We may assume that the surface X is defined by the quasihomogeneous equation

$$
t^{2} y+t z^{2}+x y^{4}+x^{6} z=0 .
$$

The surface X is singular at the points $O_{x}, O_{y}, O_{z}, O_{t}$. Each of the divisors C_{x}, C_{y}, C_{z}, and C_{t} consists of two irreducible and reduced components. The divisor C_{x} (resp. C_{y}, C_{z}, C_{t}) consists of $L_{x t}=\{x=t=0\}$ (resp. $L_{y z}=\{y=z=0\}, L_{y z}, L_{x t}$) and $R_{x}=\left\{x=y t+z^{2}=0\right\}$ (resp. $R_{y}=\left\{y=z t+x^{6}=0\right\}, R_{z}=\left\{z=x y^{3}+t^{2}=0\right\}, R_{t}=\left\{t=y^{4}+x^{5} z=0\right\}$). Also, we see that

$$
L_{x t} \cap R_{x}=\left\{O_{y}\right\}, L_{y z} \cap R_{y}=\left\{O_{t}\right\}, L_{y z} \cap R_{z}=\left\{O_{x}\right\}, L_{x t} \cap R_{t}=\left\{O_{z}\right\} .
$$

We can easily see that

$$
\operatorname{lct}\left(X, \frac{3}{11} C_{x}\right)=\frac{11}{4}<\operatorname{lct}\left(X, \frac{3}{21} C_{y}\right), \quad \operatorname{lct}\left(X, \frac{3}{29} C_{z}\right), \quad \operatorname{lct}\left(X, \frac{3}{37} C_{t}\right) .
$$

Therefore, $\operatorname{lct}(X) \leq \frac{11}{4}$. Suppose $\operatorname{lct}(X)<\frac{11}{4}$. Then, there is an effective \mathbb{Q}-divisor $D \equiv-K_{X}$ such that the \log pair $\left(X, \frac{11}{4} D\right)$ is not \log canonical at some point $P \in X$.

The intersection numbers among the divisors $D, L_{x t}, L_{y z}, R_{x}, R_{y}, R_{z}, R_{t}$ are as follows:

$$
\begin{aligned}
& D \cdot L_{x t}=\frac{1}{7 \cdot 29}, \quad D \cdot R_{x}=\frac{2}{7 \cdot 37}, \quad D \cdot R_{y}=\frac{18}{29 \cdot 37} \\
& D \cdot L_{y z}=\frac{3}{11 \cdot 37}, \quad D \cdot R_{z}=\frac{2}{7 \cdot 11}, \quad D \cdot R_{t}=\frac{12}{11 \cdot 29}
\end{aligned}
$$

$$
\begin{gathered}
L_{x t} \cdot R_{x}=\frac{2}{21}, \quad L_{y z} \cdot R_{y}=\frac{6}{37}, \quad L_{y z} \cdot R_{z}=\frac{2}{11}, \quad L_{x t} \cdot R_{t}=\frac{4}{29}, \\
L_{x t}^{2}=-\frac{47}{21 \cdot 29}, \quad R_{x}^{2}=-\frac{52}{21 \cdot 37}, \quad R_{y}^{2}=-\frac{48}{29 \cdot 37}, \\
L_{y z}^{2}=-\frac{45}{11 \cdot 37}, \quad R_{z}^{2}=\frac{16}{11 \cdot 21}, \quad R_{t}^{2}=\frac{104}{11 \cdot 29} .
\end{gathered}
$$

By Remark 1.4.7 we may assume that the support of D does not contain at least one component of each divisor $C_{x}, C_{y}, C_{z}, C_{t}$. The inequalities

$$
21 D \cdot L_{x t}=\frac{3}{29}<\frac{4}{11}, \quad 17 D \cdot R_{x}=\frac{6}{37}<\frac{4}{11}
$$

imply $P \neq O_{y}$. The inequalities

$$
11 D \cdot L_{y z}=\frac{3}{37}<\frac{4}{11}, \quad \frac{11}{2} D \cdot R_{z}=\frac{1}{7}<\frac{4}{11}
$$

imply $P \neq O_{x}$. The curve R_{z} is singular at the point O_{x}. The inequalities

$$
29 D \cdot L_{x t}=\frac{1}{7}<\frac{4}{11}, \quad \frac{29}{4} D \cdot R_{t}=\frac{3}{11}<\frac{4}{11}
$$

imply $P \neq O_{z}$. The curve R_{t} is singular at the point O_{z}.
We write $D=a_{1} L_{x t}+a_{2} L_{y z}+a_{3} R_{x}+a_{4} R_{y}+a_{5} R_{z}+a_{6} R_{t}+\Omega$, where Ω is an effective divisor whose support contains none of the curves $L_{x t}, L_{y z}, R_{x}, R_{y}, R_{z}, R_{t}$. Since the pair $\left(X, \frac{11}{4} D\right)$ is \log canonical at the points O_{x}, O_{y}, O_{z}, the numbers a_{i} are at most $\frac{4}{11}$. Then by Lemma 1.4.8 the following inequalities enable us to conclude that either the point P is in the outside of $C_{x} \cup C_{y} \cup C_{z} \cup C_{t}$ or $P=O_{t}$:

$$
\begin{gathered}
\frac{11}{4} D \cdot L_{x t}-L_{x t}^{2}=\frac{221}{3 \cdot 4 \cdot 7 \cdot 29}<1, \quad \frac{11}{4} D \cdot L_{y z}-L_{x t}^{2}=\frac{214}{4 \cdot 11 \cdot 37}<1, \\
\frac{11}{4} D \cdot R_{x}-R_{x}^{2}=\frac{137}{2 \cdot 3 \cdot 7 \cdot 37}<1, \quad \frac{11}{4} D \cdot R_{y}-R_{y}^{2}=\frac{195}{2 \cdot 29 \cdot 37}<1, \\
\frac{11}{4} D \cdot R_{z}-R_{z}^{2} \leq \frac{11}{4} D \cdot R_{z}=\frac{1}{14}<1, \quad \frac{11}{4} D \cdot R_{t}-R_{t}^{2} \leq \frac{11}{4} D \cdot R_{t}=\frac{3}{29}<1 .
\end{gathered}
$$

Suppose that $P \neq O_{t}$. Then we consider the pencil \mathcal{L} defined by $\lambda y t+\mu z^{2}=0,[\lambda: \mu] \in \mathbb{P}^{1}$. The base locus of the pencil consists of the curve $L_{y z}$ and the point O_{y}. Let E be the unique divisor in \mathcal{L} that passes through the point P. Since $P \notin C_{x} \cup C_{y} \cup C_{z} \cup C_{t}$, the divisor E is defined by the equation $z^{2}=\alpha y t$, where $\alpha \neq 0$.

Suppose that $\alpha \neq-1$. Then the curve E is isomorphic to the curve defined by the equations $y t=z^{2}$ and $t^{2} y+x y^{4}+x^{6} z=0$. Since the curve E is isomorphic to a general curve in \mathcal{L}, it is smooth at the point P. The affine piece of E defined by $t \neq 0$ is the curve given by $z\left(z+x z^{7}+x^{6}\right)=0$. Therefore, the divisor E consists of two irreducible and reduced curves $L_{y z}$ and C. We have the intersection number

$$
D \cdot C=D \cdot E-D \cdot L_{y z}=\frac{169}{7 \cdot 11 \cdot 37} .
$$

Also, we see

$$
C^{2}=E \cdot C-C \cdot L_{y z} \geq E \cdot C-C_{y} \cdot C>0
$$

since C is different from R_{y}. By Lemma 1.4.8 the inequality $D \cdot C<\frac{4}{11}$ gives us a contradiction.
Suppose that $\alpha=-1$. Then divisor E consists of three irreducible and reduced curves $L_{y z}$, R_{x}, and M. Note that the curve M is different from the curves R_{y} and $L_{x t}$. Also, it is smooth at the point P. We have

$$
\begin{gathered}
D \cdot M=D \cdot E-D \cdot L_{y z}-D \cdot R_{x}=\frac{147}{7 \cdot 11 \cdot 37}, \\
M^{2}=E \cdot M-L_{y z} \cdot M-R_{x} \cdot M \geq E \cdot M-C_{y} \cdot M-C_{x} \cdot M>0
\end{gathered}
$$

By Lemma 1.4.8 the inequality $D \cdot M<\frac{4}{11}$ gives us a contradiction. Therefore, $P=O_{t}$.

Put $D=a L_{y z}+b R_{x}+\Delta$, where Δ is an effective divisor whose support contains neither $L_{y z}$ nor R_{x}. Then $a>0$, because otherwise

$$
\frac{3}{11 \cdot 37}=D \cdot L_{y z}=\geqslant \operatorname{mult}_{P}(D) 37>\frac{4}{11 \cdot 37}>\frac{3}{11 \cdot 37},
$$

which is a contradiction. Therefore, we may assume that $R_{y} \nsubseteq \operatorname{Supp}(\Delta)$ by Remark 1.4.7. Similarly, we may assume that $L_{x t} \nsubseteq \operatorname{Supp}(\Delta)$ if $b>0$.

Let us find upper bounds for a and b. If $b>0$, then

$$
\frac{3}{21 \cdot 29}=D \cdot L_{x t} \geqslant b R_{x} \cdot L_{x t}=\frac{2 b}{21},
$$

which implies that $b \leqslant 3 / 42$. Similarly, we have

$$
\frac{18}{29 \cdot 37}=D \cdot R_{y} \geqslant \frac{6 a}{37}+\frac{b}{37}+\frac{\operatorname{mult}_{O_{t}}(D)-a-b}{37}>\frac{5 a+\frac{4}{11}}{37},
$$

which implies that $a<82 / 1595$. On the other hand, it follows from Lemma 1.4.6 that

$$
\frac{3+45 a}{11 \cdot 37}=\Delta \cdot L_{y z}>\frac{4 / 11-b}{37},
$$

which implies that $a>1 / 45$. Similarly, we see that

$$
\frac{6+52 b}{21 \cdot 37}=\Delta \cdot R_{x}>\frac{4 / 11-a}{37}
$$

which implies that $b>9 / 286$.
Let $\pi: \bar{X} \rightarrow X$ be the weighted blow up of the point O_{t} with weight $(13,4)$, and let F be the exceptional curve of the morphism π. Then F contains two singular points Q_{13} and Q_{4} such that Q_{13} is a singular point of type $\frac{1}{13}(1,2)$, and Q_{4} is a singular point of type $\frac{1}{4}(1,3)$. Then

$$
K_{\bar{X}}=\pi^{*}\left(K_{X}\right)-\frac{20}{37} F, \bar{L}_{y z}=\pi^{*}\left(L_{y z}\right)-\frac{4}{37} F, \bar{R}_{x}=\pi^{*}\left(R_{x}\right)-\frac{13}{37} F, \bar{\Delta}=\pi^{*}(\Delta)-\frac{c}{37} F,
$$

where $\bar{L}_{y z}, \bar{R}_{x}$ and $\bar{\Delta}$ are the proper transforms of $L_{y z}, R_{x}$ and Δ by π, respectively, and c is a non-negative rational number c.

The log pull-back of the \log pair $\left(X, \frac{11}{4} D\right)$ by π is the \log pair

$$
\left(\bar{X}, \frac{11 a}{4} \bar{L}_{y z}+\frac{11 b}{4} \bar{R}_{x}+\frac{11}{4} \bar{\Delta}+\theta_{1} F\right),
$$

which is not \log canonical at some point $Q \in F$, where $\left.\theta_{1}=(11(c+4 a+13 b) / 4+20) / 37\right)$. We have

$$
\frac{3+45 a}{11 \cdot 37}-\frac{b}{37}-\frac{c}{13 \cdot 37}=\bar{\Delta} \cdot \bar{L}_{y z} \geqslant 0 \leqslant \bar{\Delta} \cdot \bar{R}_{x}=\frac{6+52 b}{21 \cdot 37}-\frac{a}{37}-\frac{c}{4 \cdot 37},
$$

which implies that $\theta_{1}<1$, because $b<3 / 42$. Note that $F \cap \bar{R}_{x}=Q_{4}$ and $F \cap \bar{L}_{y z}=Q_{13}$.
Suppose that $Q \notin \bar{R}_{x} \cup \bar{L}_{y z}$. Then

$$
\frac{11 c}{16 \cdot 13}=\frac{11}{4} \bar{\Delta} \cdot F>1
$$

by Lemma 1.4.6. Thus, we see that $c>208 / 11$. But the system of inequalities

$$
\left\{\begin{array}{l}
\frac{3+45 a}{11 \cdot 37}-\frac{b}{37}-\frac{c}{13 \cdot 37} \geqslant 0 \\
\frac{6+52 b}{21 \cdot 37}-\frac{a}{37}-\frac{c}{4 \cdot 37} \geqslant 0, \quad b \leqslant 3 / 42 \\
c>208 / 11
\end{array}\right.
$$

is inconsistent. Thus, we see that $Q \in \bar{R}_{x} \cup \bar{L}_{y z}$.
Suppose that $Q \in \bar{M}_{x}$. Then $Q=Q_{4}$, and it follows from Lemma 1.4.6 that
$\frac{11}{4}\left(\frac{6+52 b}{21 \cdot 37}-\frac{a}{37}-\frac{c}{4 \cdot 37}\right)+\frac{\theta_{1}}{4}=\left(\frac{11}{4} \bar{\Delta}+\theta_{1} F\right) \cdot \bar{M}_{x}>\frac{1}{4}<\left(\frac{11}{4} \bar{\Delta}+\frac{11 b}{4} \bar{M}_{x}\right) \cdot F=\frac{11}{4}\left(\frac{c}{4 \cdot 13}+\frac{b}{4}\right)$
which implies that $b>1164 / 5291$. But $b<3 / 42$, which is a contradiction.

We see that $Q=Q_{13}$. Then it follows from Lemma 1.4.6 that
$\frac{11}{4}\left(\frac{3+45 a}{11 \cdot 37}-\frac{b}{37}-\frac{c}{13 \cdot 37}\right)+\frac{\theta_{1}}{13}=\left(\frac{11}{4} \bar{\Delta}+\theta_{1} F\right) \cdot \bar{L}_{y z}>\frac{1}{13}<\left(\frac{11}{4} \bar{\Delta}+\frac{11 a}{4} \bar{L}_{y z}\right) \cdot F=\frac{11}{4}\left(\frac{c}{4 \cdot 13}+\frac{a}{13}\right)$
Let $\phi: \tilde{X} \rightarrow \bar{X}$ be the weighted blow up at the point Q_{13} with weight $(1,2)$. Let G be the exceptional divisor of the morphism ϕ. Then G contains one singular point Q_{2} of the surface \tilde{X} that is a singular point of type $\frac{1}{2}(1,1)$. Let $\tilde{L}_{y z}, \tilde{R}_{x}, \tilde{\Delta}$ and \tilde{F} be the proper transforms of $L_{y z}$, R_{x}, Δ and F by ϕ, respectively. We have

$$
K_{\tilde{X}}=\phi^{*}\left(K_{\bar{X}}\right)-\frac{10}{13} G, \tilde{L}_{y z}=\phi^{*}\left(\bar{L}_{y z}\right)-\frac{2}{13} G, \tilde{F}=\phi^{*}(F)-\frac{1}{13} G, \tilde{\Delta}=\phi^{*}(\bar{\Delta})-\frac{d}{13} G,
$$

where d is a positive rational number. The \log pull-back of the \log pair $\left(X, \frac{11}{4} D\right)$ via $\phi \circ \pi$ is

$$
\left(\tilde{X}, \frac{11 a}{4} \tilde{L}_{y z}+\frac{11 b}{4} \tilde{R}_{x}+\frac{11}{4} \tilde{\Delta}+\theta_{1} \tilde{F}+\theta_{2} G\right),
$$

where $\theta_{2}=33 a / 74+11 c / 1924+11 b / 148+11 d / 52+30 / 37$. This \log pair is not log canonical at some point $O \in G$. We have

$$
\frac{c}{13 \cdot 4}-\frac{d}{13 \cdot 2}=\tilde{\Delta} \cdot \tilde{F} \geqslant 0 \leqslant \tilde{\Delta} \cdot \tilde{L}_{y z}=\frac{3+45 a}{11 \cdot 37}-\frac{b}{37}-\frac{c}{13 \cdot 37}-\frac{d}{13},
$$

which implies that $\theta_{2}<1$, because the system of inequalities

$$
\left\{\begin{array}{l}
\theta_{2} \geqslant 1 \\
\frac{3+45 a}{11 \cdot 37}-\frac{b}{37}-\frac{c}{13 \cdot 37}-\frac{d}{13} \geqslant 0 \\
a \leqslant 82 / 1595
\end{array}\right.
$$

is inconsistent. Note that $\tilde{F} \cap G=Q_{2}$ and $Q_{2} \notin \tilde{L}_{y z}$.
Suppose that $O \notin \tilde{F} \cup \tilde{L}_{y z}$. Applying Lemma 1.4.6, we get

$$
1<\frac{11}{4} \tilde{\Delta} \cdot G=\frac{11 d}{4 \cdot 2},
$$

which gives $d>8 / 11$. Hence, we obtain the system of inequalities

$$
\left\{\begin{array}{l}
\frac{3+45 a}{11 \cdot 37}-\frac{b}{37}-\frac{c}{13 \cdot 37}-\frac{d}{13} \geqslant 0 \\
\frac{6+52 b}{21 \cdot 37}-\frac{a}{37}-\frac{c}{4 \cdot 37} \geqslant 0 \\
\frac{c}{13 \cdot 4}-\frac{d}{13 \cdot 2} \geqslant 0 \\
d>8 / 11 \\
b \leqslant 3 / 42
\end{array}\right.
$$

which is inconsistent. Thus, we see that $O \in \tilde{F} \cup \tilde{L}_{y z}$.
Suppose that $O \in \tilde{L}_{y z}$. Applying Lemma 1.4.6, we get
$\frac{11}{4}\left(\frac{3+45 a}{11 \cdot 37}-\frac{b}{37}-\frac{c}{13 \cdot 37}-\frac{d}{13}\right)+\theta_{2}=\left(\frac{11}{4} \tilde{\Delta}+\theta_{2} G\right) \cdot \tilde{L}_{y z}>1<\left(\frac{11}{4} \tilde{\Delta}+\frac{11 a}{4} \tilde{L}_{y z}\right) \cdot G=\frac{33}{16}\left(\frac{d}{2}+a\right)$,
which gives $a>25 / 11$. But $a<82 / 1595$, which is a contradiction. Thus, we see that $O \notin \tilde{L}_{y z}$.
We see that $O \in \tilde{F}$. Then $Q=Q_{2}$. Applying Lemma 1.4.6, we get

$$
\frac{11}{4}\left(\frac{c}{4 \cdot 13}-\frac{d}{2 \cdot 13}\right)+\frac{\theta_{2}}{2}=\left(\frac{11}{4} \tilde{\Delta}+\theta_{2} G\right) \cdot \tilde{F}>\frac{1}{2}<\left(\frac{11}{4} \tilde{\Delta}+\theta_{1} \tilde{F}\right) \cdot G=\frac{11 d}{4 \cdot 2}+\frac{\theta_{1}}{2} .
$$

Let $\xi: \hat{X} \rightarrow \tilde{X}$ be the weighted blow up at the point Q_{2} with weights $(1,1)$, let H be the exceptional divisor of ξ, let $\hat{L}_{y z}, \hat{R}_{x}, \hat{\Delta}, \hat{G}$, and \hat{F} be the proper transforms of $L_{y z}, R_{x}, \Delta, G$ and F by ξ, respectively. Then \bar{X} is smooth along H. We have

$$
K_{\hat{X}}=\xi^{*}\left(K_{\tilde{X}}\right)-\frac{1}{2} H, \hat{G}=\xi^{*}(G)-\frac{1}{2} H, \hat{F}=\xi^{*}(F)-\tilde{1} 2 G, \hat{\Delta}=\xi^{*}(\tilde{\Delta})-\frac{e}{2} G,
$$

where e is a positive rational number. The \log pull-back of the \log pair $\left(X, \frac{11}{4} D\right)$ via $\phi \circ \pi$ is

$$
\left(\hat{X}, \frac{11 a}{4} \hat{L}_{y z}+\frac{11 b}{4} \hat{R}_{x}+\frac{11}{4} \hat{\Delta}+\theta_{1} \hat{F}+\theta_{2} \hat{G}+\theta_{3} H\right),
$$

where $\theta_{3}=\left(\theta_{1}+\theta_{2}+11 e / 4\right) / 2=55 a / 148+77 b / 148+77 c / 1924+11 d / 104+11 / 8 e+25 / 37$. This \log pair is not \log canonical at some point $A \in G$. We have

$$
\frac{c}{13 \cdot 4}-\frac{d}{13 \cdot 2}-\frac{e}{2}=\hat{\Delta} \cdot \hat{F} \geqslant 0 \leqslant \tilde{\Delta} \cdot \hat{G}=\frac{d-e}{2},
$$

which implies that $\theta_{3}<1$, because the system of inequalities

$$
\left\{\begin{array}{l}
\theta_{3} \geqslant 1 \\
\frac{3+45 a}{11 \cdot 37}-\frac{b}{37}-\frac{c}{13 \cdot 37}-\frac{d}{13} \geqslant 0 \\
d \geqslant e \\
a \leqslant 82 / 1595
\end{array}\right.
$$

is inconsistent. Note that $\hat{F} \cap \hat{G}=\varnothing$.
Suppose that $O \notin \hat{F} \cup \hat{G}$. Applying Lemma 1.4.6, we get

$$
1<\frac{11}{4} \hat{\Delta} \cdot H=\frac{11 e}{4}
$$

which gives $e>4 / 11$. Hence, we obtain the system of inequalities

$$
\left\{\begin{array}{l}
\frac{3+45 a}{11 \cdot 37}-\frac{b}{37}-\frac{c}{13 \cdot 37}-\frac{d}{13} \geqslant 0 \\
\frac{6+52 b}{21 \cdot 37}-\frac{a}{37}-\frac{c}{4 \cdot 37} \geqslant 0 \\
\frac{c}{13 \cdot 4}-\frac{d}{13 \cdot 2}-\frac{e}{2} \geqslant 0 \\
d \geqslant e>4 / 11, \\
a \leqslant 82 / 1595
\end{array}\right.
$$

which is inconsistent. Thus, we see that $O \in \hat{F} \cup \hat{G}$.
Suppose that $O \in \hat{F}$. Applying Lemma 1.4.6, we get

$$
\frac{11}{4}\left(\frac{c}{4 \cdot 13}-\frac{d}{2 \cdot 13}-\frac{e}{2}\right)+\theta_{3}=\left(\frac{11}{4} \hat{\Delta}+\theta_{3} H\right) \cdot \hat{F}>1<\left(\frac{11}{4} \hat{\Delta}+\theta_{1} \hat{F}\right) \cdot H=\frac{11 e}{4}+\theta_{1},
$$

which leads to a contradiction, because the system of inequalities

$$
\left\{\begin{array}{l}
\frac{11}{4}\left(\frac{c}{4 \cdot 13}-\frac{d}{2 \cdot 13}-\frac{e}{2}\right)+\theta_{3}>1 \\
\frac{6+52 b}{21 \cdot 37}-\frac{a}{37}-\frac{c}{4 \cdot 37} \geqslant 0 \\
b \leqslant 3 / 42
\end{array}\right.
$$

is inconsistent. Thus, we see that $O \in \hat{F} \cup \hat{G}$. Then

$$
\frac{11 e}{4}+\theta_{2}=\left(\frac{11}{4} \hat{\Delta}+\theta_{2} \hat{G}\right) \cdot H>1<\left(\frac{11}{4} \hat{\Delta}+\theta_{3} H\right) \cdot \hat{G}=\frac{11}{4}\left(\frac{d}{2}-\frac{e}{2}\right)+\theta_{3},
$$

by Lemma 1.4.6. Thus, we obtain the system of inequalities

$$
\left\{\begin{array}{l}
\frac{11}{4}\left(\frac{d}{2}-\frac{e}{2}\right)+\theta_{3}>1 \\
\frac{3+45 a}{11 \cdot 37}-\frac{b}{37}-\frac{c}{13 \cdot 37}-\frac{d}{13} \geqslant 0 \\
a \leqslant 82 / 1595
\end{array}\right.
$$

is inconsistent. The obtained contradiction completes the proof.
Lemma 3.3.4. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(11,37,53,98,196)$. Then $\operatorname{lct}(X)=55 / 18$.

Proof. The surface X can be defined by the quasihomogeneous equation

$$
t^{2}+y z^{3}+x y^{5}+x^{13} z=0
$$

the surface X is singular at the point O_{x}, O_{y} and O_{z}. The curves C_{x} and C_{y} are irreducible. We have

$$
\frac{55}{18}=\operatorname{lct}\left(X, \frac{3}{11} C_{x}\right)<\operatorname{lct}\left(X, \frac{3}{37} C_{y}\right)=\frac{37 \cdot 5}{26}
$$

which implies, in particular, that $\operatorname{lct}(X) \leqslant 55 / 18$.
Suppose that $\operatorname{lct}(X)<55 / 18$. Then there is a \mathbb{Q}-effective divisor $D \equiv-K_{X}$ such that the pair $\left(X, \frac{55}{3} D\right)$ is not \log canonical at some point P. By Remark 1.4.7, we may assume that the support of the divisor D does not contain the curves C_{x} and C_{y}.

Since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(583)\right)$ contains $x^{53}, y^{11} x^{16}$ and z^{11}, it follows from Lemma 1.4.10 that $P \in$ $\operatorname{Sing}(X) \cup C_{x}$.

Suppose that $P \in C_{x}$. Then

$$
\frac{6}{37 \cdot 53}=D \cdot C_{x} \geqslant\left\{\begin{array}{l}
\frac{\operatorname{mult}_{P}(D)}{37} \text { if } P=O_{y} \\
\frac{\operatorname{mult}_{P}(D)}{53} \text { if } P=O_{z} \\
\operatorname{mult}_{P}(D) \text { if } P \neq O_{y} \text { and } P \neq O_{z}
\end{array}\right.
$$

which is impossible, because $\operatorname{mult}_{P}(D)>18 / 55$. Thus, we see that $P=O_{x}$. Then

$$
\frac{6}{11 \cdot 53}=D \cdot C_{y} \geqslant \frac{\operatorname{mult}_{P}(D)}{11}>\frac{18}{55 \cdot 11}>\frac{6}{11 \cdot 53}
$$

which is a contradiction. Thus, we see that $\operatorname{lct}(X)=55 / 18$.
Lemma 3.3.5. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(13,17,27,41,95)$. Then $\operatorname{lct}(X)=65 / 24$.
Proof. The surface X can be defined by the quasihomogeneous equation

$$
z^{2} t+y^{4} z+x t^{2}+x^{6} y=0
$$

and X is singular at the point O_{x}, O_{y}, O_{z} and O_{t}.
The curve C_{x} is reducible. We have $C_{x}=L_{x z}+M_{x}$, where $L_{x z}$ and M_{x} are irreducible and reduced curves such that $L_{x z}$ is given by the equations $x=z=0$, and M_{x} is given by the equations $x=y^{4}+z t=0$. Then

$$
L_{x z} \cdot L_{x z}=\frac{-55}{17 \cdot 41}, M_{x} \cdot M_{x}=\frac{-56}{27 \cdot 41}, L_{x z} \cdot M_{x}=\frac{4}{41}, D \cdot M_{x}=\frac{12}{27 \cdot 41}, D \cdot L_{x z}=\frac{3}{17 \cdot 41}
$$

and $L_{x z} \cap M_{x}=O_{t}$. The curve C_{y} is also reducible. We have $C_{y}=L_{y t}+M_{y}$, where $L_{y t}$ and M_{y} are irreducible and reduced curves such that $L_{y t}$ is given by the equations $y=t=0$, and M_{y} is given by the equations $y=z^{2}+x t=0$. Then

$$
L_{y t} \cdot M_{y t}=\frac{-37}{17 \cdot 41}, M_{y} \cdot M_{y}=\frac{-48}{13 \cdot 41}, L_{y t} \cdot M_{y}=\frac{2}{13}, D \cdot M_{y}=\frac{6}{13 \cdot 41}, D \cdot L_{y t}=\frac{3}{13 \cdot 27},
$$

and $L_{y t} \cap M_{y}=O_{x}$. The curve C_{z} is also reducible. We have $C_{z}=L_{x z}+M_{z}$, where M_{z} is an irreducible and reduced curve that is given by the equations $z=t^{2}+x^{5} y=0$. Then

$$
L_{x z} \cdot M_{z}=\frac{2}{17}, L_{x z} \cdot M_{z}=\frac{-55}{17 \cdot 41}, L_{x z} \cdot M_{y}=\frac{1}{41}, D \cdot M_{z}=\frac{6}{13 \cdot 17}
$$

and $L_{x z} \cap M_{z}=O_{y}$. The curve C_{t} is also reducible. We have $C_{t}=L_{y t}+M_{t}$, where M_{t} is an irreducible and reduced curve that is given by the equations $t=x^{6}+z y^{3}=0$. Then

$$
L_{y t} \cdot M_{t}=\frac{6}{27}, M_{t} \cdot M_{t}=\frac{168}{13 \cdot 27}, D \cdot M_{t}=\frac{18}{13 \cdot 27}
$$

and $L_{y t} \cap M_{t}=O_{z}$. We have $\operatorname{lct}(X) \leqslant 65 / 24$, because

$$
\frac{65}{24}=\operatorname{lct}\left(X, \frac{3}{13} C_{x}\right)<\frac{51}{12}=\operatorname{lct}\left(X, \frac{3}{17} C_{y}\right)<\frac{41}{8}=\operatorname{lct}\left(X, \frac{3}{41} C_{t}\right)<\frac{21}{4}=\operatorname{lct}\left(X, \frac{3}{27} C_{z}\right) .
$$

Suppose that $\operatorname{lct}(X)<65 / 24$. Then there is a \mathbb{Q}-effective divisor $D \equiv-K_{X}$ such that the pair $\left(X, \frac{65}{24} D\right)$ is not \log canonical at some point P. By Remark 1.4.7, we may assume that either $\operatorname{Supp}(D)$ does not contain at least one irreducible component of C_{x}, C_{y}, C_{z} and C_{t}.

Suppose that $P \notin C_{x} \cup C_{y} \cup C_{z} \cup C_{t}$. Then there is a unique curve $Z_{\alpha} \subset X$ that is cut out by

$$
x t+\alpha z^{2}=0
$$

such that $P \in Z$, where $0 \neq \alpha \in \mathbb{C}$. The curve Z_{α} is reduced. But it is always reducible. Indeed, taking into account the geometry of the open subset $Z_{\alpha} \backslash\left(Z_{\alpha} \cap C_{t}\right)$, one can easily check that

$$
Z_{\alpha}=C_{\alpha}+L_{x z}
$$

for any $\alpha \neq 0$, where C_{α} is a curve whose support contains no $L_{x y}$. Let us prove that C_{α} is reduced and irreducible if $\alpha \neq 1$.

The open subset $Z_{\alpha} \backslash\left(Z_{\alpha} \cap C_{x}\right)$ of the curve Z_{α} is a $\mathbb{Z}_{13 \text {-quotient of the affine curve }}$

$$
t+\alpha z^{2}=z^{2} t+y^{4} z+t^{2}+y=0 \subset \mathbb{C}^{3} \cong \operatorname{Spec}(\mathbb{C}[y, z, t])
$$

which is isomorphic to a plane affine quartic curve that is given by the equation

$$
\alpha(\alpha-1) z^{4}+y^{4} z+y=0 \subset \mathbb{C}^{2} \cong \operatorname{Spec}(\mathbb{C}[y, z])
$$

which implies that the curve C_{α} is and irreducible reduced curve and $\operatorname{mult}_{P}\left(C_{\alpha}\right) \leqslant 3$ if $\alpha \neq 1$.
The case $\alpha=1$ is special. Namely, if $\alpha=1$, then

$$
C_{1}=R_{1}+M_{y}
$$

where R_{1} is a curve whose support contains no C_{1}. Arguing as in the case $\alpha \neq 1$, we see that R_{1} is an irreducible reduced curve that is smooth at the point P.

By Remark 1.4.7, we may assume that $\operatorname{Supp}(D)$ does not contain at least one irreducible components of the curve Z_{α}.

Suppose that $\alpha \neq 1$. Then elementary calculations imply that

$$
C_{\alpha} \cdot L_{x z}=\frac{109}{17 \cdot 41}, C_{\alpha} \cdot C_{\alpha}=\frac{8141}{13 \cdot 17 \cdot 41}, D \cdot C_{\alpha}=\frac{531}{13 \cdot 17 \cdot 41},
$$

and we can put $D=\epsilon C_{\alpha}+\Delta_{\alpha}$, where Δ_{α} is an effective \mathbb{Q}-divisor such that $C_{\alpha} \not \subset \operatorname{Supp}\left(\Delta_{\alpha}\right)$. If $\epsilon \neq 0$, then

$$
\frac{3}{17 \cdot 41}=D \cdot L_{x z}=\left(\epsilon C_{\alpha}+\Delta_{\alpha}\right) \cdot L_{x z} \geqslant \epsilon C_{\alpha} \cdot L_{x z}=\frac{109 \epsilon}{17 \cdot 41},
$$

which implies that $\epsilon \leqslant 3 / 109$. On the other hand, we see that
$\frac{531}{13 \cdot 17 \cdot 41}=D \cdot C_{\alpha}=\epsilon C_{\alpha}^{2}+\Delta_{\alpha} \cdot C_{\alpha} \geqslant \epsilon C^{2}+\operatorname{mult}_{P}\left(\Delta_{\alpha}\right)=\epsilon C^{2}+\operatorname{mult}_{P}(D)-\epsilon \operatorname{mult}_{P}\left(C_{\alpha}\right)>\epsilon C^{2}+\frac{24}{65}-3 \epsilon$,
which is impossible, because $\epsilon \leqslant 3 / 109$.
Thus, we see that $\alpha=1$. We have

$$
R_{1} \cdot L_{x z}=\frac{92}{17 \cdot 41}, \quad R_{1} \cdot R_{1}=\frac{3177}{13 \cdot 17 \cdot 41}, \quad M_{y} \cdot R_{1}=\frac{197}{13 \cdot 41}, D \cdot R_{1}=\frac{429}{13 \cdot 17 \cdot 41},
$$

and we can put $D=\epsilon_{1} R_{1}+\Xi_{1}$, where Ξ_{1} is an effective \mathbb{Q}-divisor such that $R_{1} \not \subset \operatorname{Supp}\left(\Xi_{1}\right)$. Then $\epsilon_{1} \leqslant 3 / 91$, because either $\epsilon_{1}=0$, or $L_{x z} \cdot \Xi_{1} \geqslant 0$ or $M_{y} \cdot \Xi_{1} \geqslant 0$. By Lemma 1.4.6, we see that

$$
\frac{429-3177 \epsilon_{1}}{13 \cdot 17 \cdot 41}=\Xi_{1} \cdot R_{1}>\frac{24}{65}
$$

which is a contradiction. The obtained contradiction shows that $P \in C_{x} \cup C_{y} \cup C_{z} \cup C_{t}$.
Suppose that $P=O_{t}$. If $L_{x z} \nsubseteq \operatorname{Supp}(D)$, then

$$
\frac{3}{17 \cdot 41}=D \cdot L_{x z} \geqslant \frac{\operatorname{mult}_{P}(D)}{41}>\frac{3}{11 \cdot 41}>\frac{24}{65 \cdot 41},
$$

which is a contradiction. Thus, we see that $L_{x z} \nsubseteq \operatorname{Supp}(D) \supset M_{x}$. Put $D=\omega L_{x z}+\Psi$, where Ψ is an effective \mathbb{Q}-divisor such that $L_{x z} \not \subset \operatorname{Supp}(\Psi)$, and $\omega>0$. Then
$\frac{12}{27 \cdot 41}=D \cdot M_{x}=\left(\omega L_{x z}+\Psi\right) \cdot M_{x} \geqslant \omega L_{x z} \cdot M_{x}+\frac{\operatorname{mult}_{O_{t}}(D)-\omega}{41}>\omega L_{x z} \cdot M_{x}+\frac{3 / 11-\omega}{41}=\frac{4 \omega}{41}+\frac{24 / 65-\omega}{41}$,
which implies that $\omega 44 / 585$. Then it follows from Lemma 1.4.6 that

$$
\frac{3+55 \omega}{17 \cdot 41}=\left(-K_{X}-\omega L_{x z}\right) \cdot L_{x z}=\Psi \cdot L_{x z}>\frac{24}{65 \cdot 41}
$$

which is impossible, because $\omega 44 / 585$. Thus, we see that $P \neq O_{t}$. Note, that applying similar arguments to $O_{z}=M_{t} \cap L_{y t}$, we do not see that $P \neq O_{z}$.

Suppose that $P=O_{z}$. Put $D=\epsilon M_{x}+\Delta$, where Δ is an effective \mathbb{Q}-divisor such that $M_{x} \not \subset \operatorname{Supp}(\Omega)$. If $\epsilon \neq 0$, then

$$
\frac{3}{17 \cdot 41}=D \cdot L_{x z}=\left(\epsilon M_{x}+\Delta\right) \cdot L_{x z} \geqslant \epsilon M_{x} \cdot L_{x z}
$$

which implies that $\epsilon<3 / 68$. Then it follows from Lemma 1.4.6 that

$$
\frac{12+56 \epsilon}{27 \cdot 41}=\left(-K_{X}-\epsilon L_{x z}\right) \cdot L_{x z}=\Omega \cdot L_{x z}>\frac{22}{65 \cdot 27}
$$

which implies that $\epsilon>51 / 910$. But $\epsilon<3 / 68<51 / 910$. Thus, we see that $P \neq O_{z}$.
Suppose that $P=O_{y}$. If $L_{x z} \nsubseteq \operatorname{Supp}(D)$, then

$$
\frac{3}{17 \cdot 41}=D \cdot L_{x z} \geqslant \frac{\operatorname{mult}_{P}(D)}{17}>\frac{24}{65 \cdot 17}>\frac{3}{17 \cdot 41},
$$

which is a contradiction. If $M_{z} \nsubseteq \operatorname{Supp}(D)$,

$$
\frac{6}{13 \cdot 17}=D \cdot M_{z} \geqslant \frac{\operatorname{mult}_{P}(D) \operatorname{mult}_{O_{y}}\left(M_{z}\right)}{17} \frac{2 \operatorname{mult}_{P}(D)}{17} \gg \frac{48}{65 \cdot 17}>\frac{6}{13 \cdot 17}
$$

which is a contradiction. Thus, we see that $P \neq O_{y}$. Similarly, we see that $P \neq O_{x}=M_{y} \cap L_{y z}$. Then $P \notin \operatorname{Sing}(X)$.

Suppose that $P \in L_{x z}$. Put $D=m L_{x z}+\Omega$, where Ω is an effective \mathbb{Q}-divisor such that $L_{x z} \not \subset \operatorname{Supp}(\Omega)$. If $m \neq 0$, then

$$
\frac{12}{27 \cdot 41}=-K_{X} \cdot M_{x}=D \cdot M_{x}=\left(m L_{x z}+\Omega\right) \cdot M_{x} \geqslant m L_{x z} \cdot M_{x}=\frac{4 m}{41}
$$

which implies that $m \leqslant 3 / 27$. Then it follows from Lemma 1.4.6 that

$$
\frac{3+55 m}{17 \cdot 41}=\left(-K_{X}-m L_{x z}\right) \cdot L_{x z}=\Omega \cdot L_{x z}>\frac{24}{65}
$$

which is impossible, because $m \leqslant 3 / 27$. Thus, we see that $P \notin L_{x z}$. Similarly, we see that $P \notin L_{y t}$.

Suppose that $P \in M_{x}$. Put $D=\delta M_{x}+\Upsilon$, where Υ is an effective \mathbb{Q}-divisor such that $M_{x} \not \subset \operatorname{Supp}(\Upsilon)$. If $\epsilon \neq 0$, then

$$
\frac{3}{17 \cdot 41}=-K_{X} \cdot L_{x z}=D \cdot L_{x z}=\left(\delta M_{x}+\Upsilon\right) \cdot L_{x z} \geqslant \delta L_{x z} \cdot M_{x}=\frac{4 \delta}{41},
$$

which implies that $\delta \leqslant 3 / 68$. Then it follows from Lemma 1.4.6 that

$$
\frac{12+56 \delta}{27 \cdot 41}=\left(-K_{X}-\delta M_{x}\right) \cdot M_{x}=\Upsilon \cdot M_{x}>\frac{24}{65}
$$

which is impossible, because $\delta \leqslant 3 / 68$. Similarly, we see that $P \notin M_{y} \cup M_{z} \cup M_{t}$, which is a contradiction.

Lemma 3.3.6. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(13,27,61,98,196)$. Then $\operatorname{lct}(X)=91 / 30$.
Proof. The surface X can be defined by the quasihomogeneous equation

$$
t^{2}+y^{5} z+x z^{3}+x^{13} y=0
$$

the surface X is singular at the point O_{x}, O_{y} and O_{z}. The curves C_{x} and C_{y} are irreducible. We have

$$
\frac{91}{30}=\operatorname{lct}\left(X, \frac{3}{13} C_{x}\right)<\operatorname{lct}\left(X, \frac{3}{27} C_{y}\right)=\frac{15}{2},
$$

which implies, in particular, that $\operatorname{lct}(X) \leqslant 91 / 30$.

Suppose that $\operatorname{lct}(X)<91 / 30$. Then there is a \mathbb{Q}-effective divisor $D \equiv-K_{X}$ such that the pair $\left(X, \frac{91}{30} D\right)$ is not \log canonical at some point P. By Remark 1.4.7, we may assume that the support of the divisor D does not contain the curves C_{x} and C_{y}.

Since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(793)\right)$ contains $x^{61}, y^{26} x^{7}, y^{13} x^{34}$ and z^{13}, it follows from Lemma 1.4.10 that $P \in \operatorname{Sing}(X) \cup C_{x}$.

Suppose that $P \in C_{x}$. Then

$$
\frac{2}{9 \cdot 61}=D \cdot C_{x} \geqslant\left\{\begin{array}{l}
\frac{\operatorname{mult}_{P}(D)}{27} \text { if } P=O_{y} \\
\frac{\operatorname{mult}_{P}(D)}{61} \text { if } P=O_{z}, \\
\operatorname{mult}_{P}(D) \text { if } P \neq O_{y} \text { and } P \neq O_{z},
\end{array}\right.
$$

which is impossible, because $\operatorname{mult}_{P}(D)>30 / 91$. Thus, we see that $P=O_{x}$. Then

$$
\frac{6}{13 \cdot 61}=D \cdot C_{y} \geqslant \frac{\operatorname{mult}_{P}(D)}{13}>\frac{30}{91 \cdot 13}>\frac{6}{13 \cdot 61},
$$

which is a contradiction. Thus, we see that $\operatorname{lct}(X)=91 / 30$.
Lemma 3.3.7. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(15,19,43,74,148)$. Then $\operatorname{lct}(X)=57 / 14$.
Proof. The surface X can be defined by the quasihomogeneous equation

$$
t^{2}+y z^{3}+x y^{7}+x^{7} z=0
$$

the surface X is singular at the point O_{x}, O_{y} and O_{z}, the curves C_{x} and C_{y} are irreducible, and

$$
\frac{25}{6}=\operatorname{lct}\left(X, \frac{3}{15} C_{x}\right)>\operatorname{lct}\left(X, \frac{3}{19} C_{y}\right)=\frac{57}{14},
$$

which implies, in particular, that $\operatorname{lct}(X) \leqslant 57 / 14$.
Suppose that $\operatorname{lct}(X)<57 / 14$. Then there is a \mathbb{Q}-effective divisor $D \equiv-K_{X}$ such that the pair $\left(X, \frac{57}{14} D\right)$ is not \log canonical at some point P. By Remark 1.4.7, we may assume that the support of the divisor D does not contain the curves C_{x} and C_{y}.

Since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(645)\right)$ contains $x^{43}, y^{15} x^{24}, y^{30} x^{5}$ and z^{15}, it follows from Lemma 1.4.10 that $P \in \operatorname{Sing}(X) \cup C_{x}$.

Suppose that $P \in C_{x}$. Then

$$
\frac{6}{19 \cdot 43}=D \cdot C_{x} \geqslant\left\{\begin{array}{l}
\frac{\operatorname{mult}_{P}(D)}{19} \text { if } P=O_{y} \\
\frac{\operatorname{mult}_{P}(D)}{43} \text { if } P=O_{z}, \\
\operatorname{mult}_{P}(D) \text { if } P \neq O_{y} \text { and } P \neq O_{z}
\end{array}\right.
$$

which implies that $P=O_{z}$, because $\operatorname{mult}_{P}(D)>14 / 57$. Then

$$
\frac{6}{15 \cdot 43}=D \cdot C_{y} \geqslant \frac{\operatorname{mult}_{P}(D) \operatorname{mult}_{P}\left(C_{y}\right)}{43}>\frac{28}{57 \cdot 43}>\frac{6}{15 \cdot 43},
$$

because $\operatorname{mult}_{P}\left(C_{y}\right)=2$. Thus, we see that $P=O_{x}$. Then

$$
\frac{6}{15 \cdot 43}=D \cdot C_{y} \geqslant \frac{\operatorname{mult}_{P}(D)}{15}>\frac{14}{57 \cdot 15}>\frac{6}{15 \cdot 43},
$$

which is a contradiction. Thus, we see that $\operatorname{lct}(X)=57 / 14$.

3.4. Sporadic cases with $I=4$

Lemma 3.4.1. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(5,6,8,9,24)$. Then $\operatorname{lct}(X)=1$.

Proof. The surface X can be defined by the quasihomogeneous equation

$$
z^{3}+y t^{2}+y^{4}+\epsilon x^{2} y z+x^{3} t=0
$$

where $\epsilon \in \mathbb{C}$. The surface X is singular at the point O_{x} and O_{t}. The surface X is also singular at a point Q_{2} that is cut out on X by the equations $x=t=0$. The surface X is also singular at a point Q_{3} such that $Q_{3} \neq O_{t}$ and the points Q_{3} and Q_{t} are cut out on X by the equations $x=z=0$.

The curves C_{x}, C_{y}, C_{z} and C_{t} are irreducible. We have

$$
\text { lct }\left(X, \frac{4}{9} C_{t}\right)>1=\operatorname{lct}\left(X, \frac{4}{6} C_{y}\right)<\operatorname{lct}\left(X, \frac{4}{5} C_{x}\right)=\frac{5}{4}<\operatorname{lct}\left(X, \frac{4}{8} C_{z}\right)=2 \text {, }
$$

which implies, in particular, that $\operatorname{lct}(X) \leqslant 1$.
Suppose that $\operatorname{lct}(X)<1$. Then there is a \mathbb{Q}-effective divisor $D \equiv-K_{X}$ such that the pair (X, D) is not \log canonical at some point P. By Remark 1.4.7, we may assume that the support of the divisor D does not contain the curves C_{x}, C_{y}, C_{z} and C_{t}.

Suppose that $P \in C_{y}$. Then

$$
\frac{12}{9}=D \cdot C_{y} \geqslant\left\{\begin{array}{l}
\frac{\operatorname{mult}_{P}(D)}{5} \text { if } P=O_{x} \\
\frac{\operatorname{mult}_{P}(D) \operatorname{mult}_{O_{t}}\left(C_{y}\right)}{9} \text { if } P=O_{t} \\
\operatorname{mult}_{P}(D) \text { if } P \neq O_{x} \text { and } P \neq O_{t}
\end{array}\right.
$$

which is impossible, because mult ${ }_{P}(D)>1$ and $\operatorname{mult}_{O_{t}}\left(C_{y}\right)=3$.
We see that $P \neq O_{t}$. Suppose that $P \in C_{x}$. Then

$$
\frac{2}{9}=D \cdot C_{x} \geqslant\left\{\begin{array}{l}
\frac{\operatorname{mult}_{P}(D)}{2} \text { if } P=Q_{2} \\
\frac{\operatorname{mult}_{P}(D)}{3} \text { if } P=Q_{3} \\
\operatorname{mult}_{P}(D) \text { if } P \neq Q_{2} \text { and } P \neq Q_{3}
\end{array}\right.
$$

which is impossible, because $\operatorname{mult}_{P}(D)>1$. Thus, we see that $P \notin \operatorname{Sing}(X)$.
Let us show that $P \notin C_{z}$. Suppose that $P \in C_{z}$. Then

$$
\frac{16}{45}=D \cdot C_{z} \geqslant \operatorname{mult}_{P}(D)>1
$$

which is a contradiction. Similarly, we see that $P \notin C_{t}$.
We see that $P \notin C_{x} \cup C_{y} \cup C_{z} \cup C_{t}$. Then there is a unique curve $Z \subset X$ that is cut out by

$$
x t=\alpha y z
$$

such that $P \in Z$, where $0 \neq \alpha \in \mathbb{C}$. We see that $C_{x} \not \subset \operatorname{Supp}(Z)$. But the open subset $Z \backslash\left(Z \cap C_{x}\right)$ of the curve Z is a \mathbb{Z}_{5}-quotient of the affine curve

$$
t-\alpha y z=z^{3}+y t^{2}+y^{4}+\epsilon y z+t=0 \subset \mathbb{C}^{3} \cong \operatorname{Spec}(\mathbb{C}[y, z, t]),
$$

which is isomorphic to a plane affine quintic curve $R_{x} \subset \mathbb{C}^{2}$ that is given by the equation

$$
z^{3}+\alpha^{2} y^{3} z^{2}+y^{4}+(\epsilon+\alpha) y z=0 \subset \mathbb{C}^{2} \cong \operatorname{Spec}(\mathbb{C}[y, z])
$$

which is easily seen to be irreducible. In particular, the curve Z is irreducible.
The inequality mult ${ }_{P}(Z) \leqslant 3$ holds, because quintic R_{x} is singular at the origin. Thus, we may assume that $\operatorname{Supp}(D)$ does not contain the curve Z by Remark 1.4.7. Then

$$
\frac{28}{45}=D \cdot Z \geqslant \operatorname{mult}_{P}(D)>1
$$

which is a contradiction. The obtained contradiction completes the proof.
Lemma 3.4.2. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(5,6,8,15,30)$. Then $\operatorname{lct}(X)=1$.

Proof. The surface X can be defined by the quasihomogeneous equation

$$
t^{2}+y z^{3}+y^{5}+x^{2} y^{2} z+x^{3} t+x^{6}=0
$$

and X is singular at the point O_{z}. The surface X is also singular at points P_{1} and P_{2} that are cut out on X by the equations $y=z=0$. The surface X is also singular at a point Q_{3} that is cut out on X by the equations $x=z=0$. The surface X is also singular at a point Q_{2} such that $Q_{2} \neq O_{z}$ and the points Q_{2} and Q_{z} are cut out on X by the equations $x=t=0$.

The curve C_{y} is reducible. We have $C_{y}=L_{1}+L_{2}$, where L_{1} and L_{2} are irreducible and reduced curves such that $P_{1} \in L_{1}$ and $P_{2} \in L_{2}$. Then

$$
L_{1} \cdot L_{1}=L_{2} \cdot L_{2}=\frac{-9}{40}, L_{1} \cdot L_{2}=\frac{3}{8}
$$

and $L_{1} \cap L_{2}=O_{z}$. The curve C_{x} is irreducible and

$$
1=\operatorname{lct}\left(X, \frac{4}{6} C_{y}\right)<\operatorname{lct}\left(X, \frac{4}{5} C_{x}\right)=\frac{5}{4},
$$

which implies, in particular, that $\operatorname{lct}(X) \leqslant 1$.
Suppose that $\operatorname{lct}(X)<1$. Then there is a \mathbb{Q}-effective divisor $D \equiv-K_{X}$ such that the pair (X, D) is not \log canonical at some point P. By Remark 1.4.7, we may assume that the support of the divisor D does not contain the curve C_{x}. Similarly, without loss of generality we may assume that $L_{1} \nsubseteq \operatorname{Supp}(D)$.

Since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(30)\right)$ contains $y^{5}, y z^{3}$ and t^{2}, it follows from Lemma 1.4.10 that $P \in \operatorname{Sing}(X) \cup$ C_{y}.

Suppose that $P \in L_{1}$. Then

$$
\frac{1}{10}=D \cdot L_{1} \geqslant\left\{\begin{array}{l}
1 \text { if } P \neq P_{1} \text { and } P \neq O_{z} \\
\frac{1}{5} \text { if } P=P_{1} \\
\frac{1}{8} \text { if } P=O_{z}
\end{array}\right.
$$

which is a contradiction. Thus, we see that $P \notin L_{1}$. In particular, we see that $P \neq O_{t}$.
Suppose that $P \in L_{2}$. Put $D=m L_{2}+\Omega$, where Ω is an effective \mathbb{Q}-divisor such that $L_{2} \not \subset \operatorname{Supp}(\Omega)$. Then

$$
\frac{1}{10}=-K_{X} \cdot L_{1}=D \cdot Z_{x}=\left(m L_{2}+\Omega\right) \cdot L_{1} \geqslant m L_{2} \cdot L_{1}=\frac{3 m}{8}
$$

which implies that $m \leqslant 4 / 15$. Then it follows from Lemma 1.4.6 that

$$
\frac{2+9 m}{40}=\left(-K_{X}-m L_{2}\right) \cdot L_{2}=\Omega \cdot L_{2}>\left\{\begin{array}{l}
1 \text { if } P \neq P_{2} \\
\frac{1}{5} \text { if } P=P_{2}
\end{array}\right.
$$

which implies that $m>4 / 9$. But $m \leqslant 4 / 15$. Thus, we see that $P \notin L_{1}$.
Therefore, we see that either $P=Q_{2}$ or $P=Q_{3}$. Then

$$
\frac{1}{6}=D \cdot C_{x} \geqslant\left\{\begin{array}{l}
\frac{\operatorname{mult}_{P}(D)}{2} \text { if } P=Q_{2} \\
\frac{\operatorname{mult}_{P}(D)}{3} \text { if } P=Q_{3}
\end{array}\right.
$$

which is a contradiction. Thus, we see that $\operatorname{lct}(X)=1$.
Lemma 3.4.3. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(9,11,12,17,45)$. Then $\operatorname{lct}(X)=77 / 60$.
Proof. We may assume that the surface X is defined by the quasihomogeneous equation

$$
t^{2} y+y^{3} z+x z^{3}+x^{5}=0
$$

Note that it is singular at the point O_{y}, O_{z}, O_{t}, and the point $Q=[1: 0:-1: 0]$. The curve C_{x} consists of two irreducible and reduced curves $L_{x y}=\{x=y=0\}$ and $R_{x}=\left\{x=t^{2}+y^{2} z=0\right\}$.

The curve C_{y} also consists of two irreducible and reduced curves $L_{x y}$ and $R_{y}=\left\{y=z^{3}+x^{4}=0\right\}$. The curve C_{z} and C_{t} are irreducible and reduced. We have

$$
\operatorname{lct}\left(X, \frac{4}{11} C_{y}\right)=\frac{77}{60}<\operatorname{lct}\left(X, \frac{4}{9} C_{x}\right), \quad \operatorname{lct}\left(X, \frac{4}{12} C_{z}\right), \quad \operatorname{lct}\left(X, \frac{4}{17} C_{t}\right) .
$$

Suppose that $\operatorname{lct}(X)<\frac{77}{60}$. Then there is an effective \mathbb{Q}-divisor $D \equiv-K_{X}$ such that the pair $\left(X, \frac{77}{60} D\right)$ is not canonical at some point P. By Remark 1.4.7 we may assume that the support of D contains neither C_{z} nor C_{t}. The inequalities

$$
\begin{aligned}
D \cdot C_{z} & =\frac{4 \cdot 12 \cdot 45}{9 \cdot 11 \cdot 12 \cdot 17}<\frac{60}{77} \\
D \cdot C_{t} & =\frac{4 \cdot 17 \cdot 45}{9 \cdot 11 \cdot 12 \cdot 17}<\frac{60}{77}
\end{aligned}
$$

imply $P \notin C_{z} \cup C_{t} \backslash \operatorname{Sing}(X)$. Moreover, we have

$$
\begin{aligned}
\operatorname{mult}_{O_{y}} D & \leqslant \frac{11}{2} D \cdot C_{z}=\frac{10}{17}<\frac{60}{77} \\
\operatorname{mult}_{Q} D & \leqslant 3 D \cdot C_{t}=\frac{5}{11}<\frac{60}{77}
\end{aligned}
$$

and hence P can be neither the point O_{y} nor the point Q.
We can see that

$$
\begin{gathered}
L_{x y} \cdot D=\frac{1}{17 \cdot 3}, \quad R_{x} \cdot D=\frac{2}{33}, \quad R_{y} \cdot D=\frac{11}{9 \cdot 17}, \quad L_{x y} \cdot R_{x}=\frac{1}{6} \\
L_{x y} \cdot R_{y}=\frac{3}{17}, \quad L_{x y}^{2}=-\frac{15}{4 \cdot 17}, \quad R_{x}^{2}=-\frac{1}{33}, \quad R_{y}^{2}=\frac{13}{4 \cdot 9 \cdot 17} .
\end{gathered}
$$

By Remark 1.4.7 we may assume that the support of D does not contain both $L_{x y}$ and R_{x}. If the support of D does not contain $L_{x y}$, then

$$
\operatorname{mult}_{O_{z}} D \leqslant 12 D \cdot L_{x y}=\frac{4}{17}<\frac{60}{77}
$$

If the support of D does not contain R_{x}, then

$$
\text { mult }_{O_{z}} D \leqslant 12 D \cdot R_{x}=\frac{8}{11}<\frac{60}{77} .
$$

Therefore, P cannot be O_{z}.
Also, we may assume that the support of D does not contain both $L_{x y}$ and R_{y}. If the support of D does not contain $L_{x y}$, then

$$
\operatorname{mult}_{O_{t}} D \leqslant 17 D \cdot L_{x y}=\frac{1}{3}<\frac{60}{77} .
$$

If the support of D does not contain R_{y}, then

$$
\text { mult }_{O_{t}} D \leqslant \frac{17}{3} D \cdot R_{y}=\frac{11}{27}<\frac{60}{77} .
$$

Therefore, P cannot be O_{t}.
By Remark 1.4.7 we may assume that the support of D does not contain both $L_{x y}$ and R_{x}. If we write $D=n L_{x y}+\Delta$, where Δ does not contain the curve $L_{x y}$, then we can see $n \leqslant \frac{4}{11}$ since $D \cdot R_{x} \geqslant n R_{x} \cdot L_{x y}$. By Lemma 1.4.8 the inequality

$$
\frac{77}{60}\left(L_{x y} \cdot D-m L_{x y}^{2}\right) \leqslant \frac{7 \cdot 14}{15 \cdot 3 \cdot 17}<1
$$

implies that the point P cannot belong to the curve $L_{x y}$. By the same method, we see the point P must be outside of R_{x}.

If we write $D=m R_{y}+\Omega$, where Ω does not contain the curve R_{y}, then we can see $0 \leqslant m \leqslant \frac{1}{9}$ since $D \cdot L_{x y} \geqslant m R_{y} \cdot L_{x y}$. By Lemma 1.4.8 the inequality

$$
\frac{77}{60}\left(R_{y} \cdot D-m R_{y}^{2}\right) \leqslant \frac{77}{60} R_{y} \cdot D<1
$$

implies that the point P cannot belong to the curve R_{y}.

Now we consider the pencil \mathcal{L} on X cut by $\lambda t^{2}+\mu y^{2} z=0$. The base locus of the pencil consists of three points O_{y}, O_{z}, and Q. Let F be the member in \mathcal{L} defined by $t^{2}+y^{2} z=0$. The divisor F consists of two irreducible and reduced curves R_{x} and $E=\left\{t^{2}+y^{2} z=x^{4}+z^{3}=0\right\}$. The Jacobian criterion shows us that the curve E is smooth in the outside of the base points. Also we have

$$
F \cdot D=\frac{10}{33}, \quad R_{x} \cdot E=\frac{4}{11}, \quad E \cdot D=\frac{8}{3 \cdot 11}, \quad E^{2}=\frac{4 \cdot 14}{3 \cdot 11} .
$$

We write $D=l E+\Gamma$, where Γ does not contain the curve E. Since $\left(X, \frac{77}{60} D\right)$ is \log canonical at the point O_{y}, the non-negative number l is at most $\frac{60}{77}$. By Lemma 1.4.8, the inequality shows

$$
\frac{77}{60}\left(E \cdot D-l E^{2}\right) \leqslant \frac{77}{60} E \cdot D<1
$$

implies that the point P cannot belong to the curve E.
So far we have seen that the point P must lie in the outside of $C_{x} \cup C_{y} \cup C_{z} \cup C_{t} \cup E$. In particular, it is a smooth point. There is a unique member C in \mathcal{L} which passes through the point P. Then the curve C is cut by $t^{2}=\alpha y^{2} z$ where α is a constant different from 0 and -1 . The curve C is isomorphic to the curve defined by $y^{3} z+x z^{3}+x^{5}=0$ and $t^{2}=y^{2} z$. The curve C is smooth in the outside of the base points by the Bertini theorem, since it is isomorphic to a general curve in the pencil \mathcal{L}. We claim that the curve C is irreducible. If so then we may assume that the support of D does not contain the curve C hand hence we obtain

$$
\operatorname{mult}_{P} D \leqslant C \cdot D=\frac{10}{33}<\frac{60}{77}
$$

This is a contradiction.
For the irreducibility of the curve C, we may consider the curve C as a surface in \mathbb{A}^{4} defined by the equations $y^{3} z+x z^{3}+x^{5}=0$ and $t^{2}=y^{2} z$. Then, we consider the surface in \mathbb{P}^{4} defined by the equations $y^{3} z w+x z^{3} w+x^{5}=0$ and $t^{2} w=y^{2} z$. We then take the affine piece defined by $t \neq 0$. Then, the affine piece is isomorphic to the surface defined by the equation $y^{3} z w+x z^{3} w+x^{5}=0$ and $w=y^{2} z$ in \mathbb{A}^{4}. It is isomorphic the irreducible hypersurface $y^{5} z^{2}+x y^{2} z^{5}+x^{5}=0$ in \mathbb{A}^{3}. Therefore, the curve C must be irreducible.

Lemma 3.4.4. Suppose that and $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(10,13,25,31,75)$. Then $\operatorname{lct}(X)=91 / 60$.
Proof. We may assume that the surface X is defined by the quasihomogeneous equation

$$
t^{2} y+z^{3}+x y^{5}+x^{5} z=0
$$

It has singular points at O_{x}, O_{y}, O_{t} and $Q=[-1: 0: 1: 0]$. The curve C_{x} and C_{t} are irreducible and reduced. The curve C_{y} consists of two irreducible reduced curves $L_{y z}=\{y=z=0\}$ and $R_{y}=\left\{y=z^{2}+x^{5}=0\right\}$. The curve C_{z} consists of two irreducible reduced curves $L_{y z}$ and $R_{z}=\left\{y=t^{2}+x y^{4}=0\right\}$. It is easy to see that

$$
\operatorname{lct}\left(X, \frac{4}{13} C_{y}\right)=\frac{91}{60}<\operatorname{lct}\left(X, \frac{4}{10} C_{x}\right)<\operatorname{lct}\left(X, \frac{4}{25} C_{z}\right)<\operatorname{lct}\left(X, \frac{4}{31} C_{t}\right) .
$$

Also, we have the following intersection numbers:

$$
\begin{gathered}
C_{x} \cdot D=\frac{12}{13 \cdot 31}, \quad C_{t} \cdot D=\frac{6}{5 \cdot 13}, \quad L_{y z} \cdot D=\frac{2}{5 \cdot 31}, \quad R_{y} \cdot D=\frac{4}{5 \cdot 31}, \quad R_{z} \cdot D=\frac{4}{5 \cdot 13} \\
L_{y z} \cdot R_{y}=\frac{2}{31}, \quad L_{y z} \cdot R_{z}=\frac{1}{5}, \quad L_{y z}^{2}=-\frac{7}{10 \cdot 31}, \quad R_{y}^{2}=-\frac{3}{5 \cdot 31}, \quad R_{z}^{2}=\frac{12}{5 \cdot 13} .
\end{gathered}
$$

Suppose that $\operatorname{lct}(X)<\frac{91}{60}$. Then, there is an effective \mathbb{Q}-divisor $D \equiv-K_{X}$ such that the \log pair $\left(X, \frac{91}{60} D\right)$ is not \log canonical at some point $P \in X$. Since the curves C_{x} and C_{t} are irreducible we may assume that the support of D contains none of them. The inequalities

$$
13 D \cdot C_{x}<\frac{60}{91}, \quad 5 D \cdot C_{t}<\frac{60}{91}
$$

show that the point P must be in the outside of $C_{x} \cup C_{t} \backslash\left\{O_{x}, O_{t}\right\}$.

By Remark 1.4.7, we may assume that the support of D cannot contain both $L_{y z}$ and R_{y}. If the support of D does not contain $L_{y z}$, then the inequality

$$
31 D \cdot L_{y z}=\frac{2}{5}<\frac{60}{91}
$$

shows that the point P cannot be O_{t}. On the other hand, if the support of D does not contain R_{y}, then the inequality

$$
\frac{31}{2} D \cdot R_{y}=\frac{2}{5}<\frac{60}{91}
$$

shows that the point P cannot be O_{t}. We use the same method for $R_{z}+L_{y z}$ so that we can see the point P cannot be O_{x}.

We write $D=m R_{y}+\Omega$, where Ω is an effective \mathbb{Q}-divisor whose support does not contain the curve R_{y}. Then we see $m \leqslant \frac{1}{5}$ since the support of D cannot contain both $L_{y z}$ and R_{y} and $D \cdot L_{y z} \geqslant m R_{y} \cdot L_{y z}$. Since $R_{y} \cdot D-m R_{y}^{2}<\frac{60}{91}$, Lemma 1.4.8 implies that the point P is located in the outside of R_{y}. Using the same argument for $L_{y z}$, we can also see that the point P is located in the outside of $L_{y z}$. Also, the same method shows that the point P is located in the outside of R_{z} Consequently, the point P must lie in the outside of $C_{x} \cup C_{y} \cup C_{z} \cup C_{t}$.

Now we consider the pencil \mathcal{L} on X cut by $\lambda t^{2}+\mu x y^{4}=0$. The base locus of the pencil consists of three points O_{x}, O_{y}, and Q. Let F be the member in \mathcal{L} defined by $t^{2}+x y^{4}=0$. The divisor F consists of two irreducible and reduced curves R_{z} and $E=\left\{t^{2}+x y^{4}=z^{2}+x^{5}=0\right\}$. The Jacobian criterion shows us that the curve E is smooth in the outside of $\operatorname{Sing}(X)$. Also we have

$$
F \cdot D=\frac{12}{5 \cdot 13}, \quad R_{z} \cdot E=\frac{2}{13}, \quad E \cdot D=\frac{8}{5 \cdot 13}, \quad E^{2}=\frac{2}{5 \cdot 13} .
$$

We write $D=l E+\Gamma$, where Γ does not contain the curve E. Since $\left(X, \frac{91}{60} D\right)$ is \log canonical at the point O_{y}, the non-negative number l is at most $\frac{60}{91}$. By Lemma 1.4.8, the inequality shows

$$
\frac{91}{60}\left(E \cdot D-l E^{2}\right) \leqslant \frac{91}{60} E \cdot D<1
$$

implies that the point P cannot belong to the curve E.
So far we have seen that the point P must lie in the outside of $C_{x} \cup C_{y} \cup C_{z} \cup C_{t} \cup E$. In particular, it is a smooth point. There is a unique member C in \mathcal{L} which passes through the point P. Then the curve C is cut by $t^{2}=\alpha x y^{4}$ where α is a constant different from 0 and -1 . The curve C is isomorphic to the curve defined by $x y^{5}+z^{3}+x^{5} z=0$ and $t^{2}=x y^{4}$. The curve C is smooth in the outside of the base points by the Bertini theorem, since it is isomorphic to a general curve in the pencil \mathcal{L}. We claim that the curve C is irreducible. If so then we may assume that the support of D does not contain the curve C and hence we obtain

$$
\operatorname{mult}_{P} D \leqslant C \cdot D=\frac{12}{5 \cdot 13}<\frac{60}{91} .
$$

This is a contradiction.
For the irreducibility of the curve C, we may consider the curve C as a surface in \mathbb{A}^{4} defined by the equations $x y^{5}+z^{3}+x^{5} z=0$ and $t^{2}=x y^{4}$. Then, we consider the surface in \mathbb{P}^{4} defined by the equations $x y^{5}+w^{3} z^{3}+x^{5} z=0$ and $t^{2} w^{3}=x y^{4}$. We then take the affine piece defined by $y \neq 0$. Then, the affine piece is isomorphic to the surface defined by the equation $x+w^{3} z^{3}+x^{5} z=0$ and $t^{2} w^{3}=x$ in \mathbb{A}^{4}. It is isomorphic the hypersurface defined by $t^{2} w^{3}+w^{3} z^{3}+t^{10} w^{15} z=0$ in \mathbb{A}^{3}. It has two irreducible components $w=0$ and $t^{2}+z^{3}+t^{10} w^{12} z=0$. The former component originates from the hyperplane at infinity in \mathbb{P}^{4}. Therefore, the curve C must be irreducible.
Lemma 3.4.5. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(11,17,20,27,71)$. Then $\operatorname{lct}(X)=11 / 6$.
Proof. We may assume that the surface X is defined by the quasihomogeneous equation

$$
t^{2} y+y^{3} z+x z^{3}+x^{4} t=0 .
$$

The surface X is singular at the points $O_{x}, O_{y}, O_{z}, O_{t}$. Each of the divisors C_{x}, C_{y}, C_{z}, and C_{t} consists of two irreducible and reduced components. The divisor C_{x} (resp. C_{y}, C_{z}, C_{t}) consists of $L_{x y}=\{x=y=0\}$ (resp. $\left.L_{x y}=\{x=y=0\}, L_{z t}=\{z=t=0\}, L_{z t}=\{z=t=0\}\right)$
and $R_{x}=\left\{x=y^{2} z+t^{2}=0\right\}$ (resp. $R_{y}=\left\{y=x^{3} t+z^{3}=0\right\}, R_{z}=\left\{z=x^{4}+y t=0\right\}$, $\left.R_{t}=\left\{t=y^{3}+x z^{2}=0\right\}\right)$. Also, we see that

$$
L_{x y} \cap R_{x}=\left\{O_{z}\right\}, L_{x y} \cap R_{y}=\left\{O_{t}\right\}, L_{z t} \cap R_{z}=\left\{O_{y}\right\}, L_{z t} \cap R_{t}=\left\{O_{x}\right\} .
$$

We can easily see that

$$
\operatorname{lct}\left(X, \frac{11}{4} C_{x}\right)=\frac{11}{6}<\operatorname{lct}\left(X, \frac{17}{4} C_{y}\right), \quad \operatorname{lct}\left(X, \frac{20}{4} C_{z}\right), \quad \operatorname{lct}\left(X, \frac{27}{4} C_{t}\right) .
$$

Therefore, $\operatorname{lct}(X) \geqslant \frac{11}{6}$. Suppose $\operatorname{lct}(X)<\frac{11}{6}$. Then, there is an effective \mathbb{Q}-divisor $D \equiv-K_{X}$ such that the \log pair $\left(X, \frac{11}{6} D\right)$ is not \log canonical at some point $P \in X$.

The intersection numbers among the divisors $D, L_{x y}, L_{z t}, R_{x}, R_{y}, R_{z}, R_{t}$ are as follows:

$$
\begin{gathered}
D \cdot L_{x y}=\frac{1}{5 \cdot 27}, \quad D \cdot R_{x}=\frac{2}{5 \cdot 17}, \quad D \cdot R_{y}=\frac{4}{9 \cdot 11}, \\
D \cdot L_{z t}=\frac{4}{11 \cdot 17}, \quad D \cdot R_{z}=\frac{16}{17 \cdot 27}, \quad D \cdot R_{t}=\frac{3}{5 \cdot 11}, \\
L_{x y} \cdot R_{x}=\frac{1}{10}, \quad L_{x y} \cdot R_{y}=\frac{1}{9}, \quad L_{z t} \cdot R_{z}=\frac{4}{17}, \quad L_{z t} \cdot R_{t}=\frac{3}{11}, \\
L_{x y}^{2}=-\frac{43}{20 \cdot 27}, \quad R_{x}^{2}=-\frac{3}{5 \cdot 17}, \quad R_{y}^{2}=\frac{2}{3 \cdot 11}, \\
L_{z t}^{2}=\frac{24}{11 \cdot 17}, \quad R_{z}^{2}=-\frac{28}{17 \cdot 27}, \quad R_{t}^{2}=\frac{21}{20 \cdot 11} .
\end{gathered}
$$

By Remark 1.4.7 we may assume that the support of D does not contain at least one component of each divisor $C_{x}, C_{y}, C_{z}, C_{t}$. The inequalities

$$
11 D \cdot L_{z t}=\frac{4}{17}<\frac{6}{11}, \quad \frac{11}{2} D \cdot R_{t}=\frac{3}{10}<\frac{6}{11}
$$

imply $P \neq O_{x}$. Note that the curve R_{t} is singular at O_{x}. The inequalities

$$
20 D \cdot L_{x y}=\frac{4}{27}<\frac{6}{11}, \quad 20 D \cdot R_{x}=\frac{8}{17}<\frac{6}{11}
$$

imply $P \neq O_{z}$. The inequalities

$$
27 D \cdot L_{x y}=\frac{1}{5}<\frac{6}{11}, \quad \frac{27}{3} D \cdot R_{y}=\frac{4}{11}<\frac{6}{11}
$$

imply $P \neq O_{t}$. The curve R_{y} is singular at the point O_{t}.
Since the pair $\left(X, \frac{11}{6} D\right)$ is \log canonical at the point $O_{x}, \operatorname{mult}_{L_{z t}} D \geqslant \frac{6}{11}$. By Lemma 1.4.8 the inequality $D \cdot L_{z t}-\left(\operatorname{mult}_{L_{z t}} D\right) L_{z t}^{2} \geqslant D \cdot L_{z t}=\frac{4}{11 \cdot 17} \geqslant \frac{6}{17 \cdot 11}$ implies $P \notin L_{z t}$. In particular, $P \neq O_{y}$. We write $D=a_{1} L_{x y}+a_{2} R_{x}+a_{3} R_{y}+a_{4} R_{z}+a_{5} R_{t}+\Omega$, where Ω is an effective divisor whose support contains none of the curves $L_{x y}, R_{x}, R_{y}, R_{z}, R_{t}$. Since the pair $\left(X, \frac{11}{6} D\right)$ is \log canonical at the points $O_{x}, O_{y}, O_{z}, O_{t}$, the numbers a_{i} are at most $\frac{6}{11}$. Then by Lemma 1.4.8 the following inequalities enable us to conclude that the point P is in the outside of $C_{x} \cup C_{y} \cup C_{z} \cup C_{t}$:

$$
\begin{aligned}
& \frac{11}{6} D \cdot L_{x y}-L_{x y}^{2}<1, \quad \frac{11}{6} D \cdot R_{x}-R_{x}^{2}<1, \quad \frac{11}{6} D \cdot R_{z}-R_{z}^{2}<1, \\
& \frac{11}{6} D \cdot R_{y}-R_{y}^{2} \geqslant \frac{11}{6} D \cdot R_{y}<1, \quad \frac{11}{6} D \cdot R_{t}-R_{t}^{2} \geqslant \frac{11}{6} D \cdot R_{t}<1 .
\end{aligned}
$$

We consider the pencil \mathcal{L} defined by $\lambda t y+\mu x^{4}=0,[\lambda: \mu] \in \mathbb{P}^{1}$. The base locus of the pencil consists of the curve $L_{x y}$ and the point O_{y}. Let E be the unique divisor in \mathcal{L} that passes through the point P. Since $P \notin C_{x} \cup C_{y} \cup C_{z} \cup C_{t}$, the divisor E is defined by the equation $t y=\alpha x^{4}$, where $\alpha \neq 0$.

Suppose that $\alpha \neq-1$. Then the curve E is isomorphic to the curve defined by the equations $t y=x^{4}$ and $x^{4} t+y^{3} z+x z^{3}=0$. Since the curve E is isomorphic to a general curve in \mathcal{L}, it is smooth at the point P. The affine piece of E defined by $t \neq 0$ is the curve given by
$x\left(x^{2}+x^{11} z+z^{3}\right)=0$. Therefore, the divisor E consists of two irreducible and reduced curves $L_{x y}$ and C. We have the intersection numbers

$$
D \cdot C=D \cdot E-D \cdot L_{x y}=\frac{267}{5 \cdot 17 \cdot 27}, \quad C \cdot L_{x y}=E \cdot L_{x y}-L_{x y}^{2}=\frac{87}{20 \cdot 27} .
$$

Also, we see

$$
C^{2}=E \cdot C-C \cdot L_{x y}=\frac{10269}{17 \cdot 20 \cdot 27}
$$

By Lemma 1.4 .8 the inequality $D \cdot C<\frac{6}{11}$ gives us a contradiction.
Suppose that $\alpha=-1$. Then divisor E consists of three irreducible and reduced curves $L_{x y}$, R_{z}, and M. Note that the curve M is different from the curves R_{x} and $L_{z t}$. Also, it is smooth at the point P. We have

$$
\begin{gathered}
D \cdot M=D \cdot E-D \cdot L_{x y}-D \cdot R_{z}=\frac{187}{5 \cdot 17 \cdot 27}, \\
M^{2}=E \cdot M-L_{x y} \cdot M-R_{z} \cdot M \geq E \cdot M-C_{x} \cdot M-C_{z} \cdot M=\frac{13}{4} D \cdot M>0 .
\end{gathered}
$$

By Lemma 1.4.8 the inequality $D \cdot M<\frac{6}{11}$ gives us a contradiction.
Lemma 3.4.6. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(11,17,24,31,79)$. Then $\operatorname{lct}(X)=33 / 16$.
Proof. We may assume that the surface X is defined by the quasihomogeneous equation

$$
t^{2} y+t z^{2}+x y^{4}+x^{5} z=0
$$

The surface X is singular at the points $O_{x}, O_{y}, O_{z}, O_{t}$. Each of the divisors C_{x}, C_{y}, C_{z}, and C_{t} consists of two irreducible and reduced components. The divisor C_{x} (resp. C_{y}, C_{z}, C_{t}) consists of $L_{x t}=\{x=t=0\}$ (resp. $L_{y z}=\{y=z=0\}, L_{y z}, L_{x t}$) and $R_{x}=\left\{x=y t+z^{2}=0\right\}$ (resp. $\left.R_{y}=\left\{y=z t+x^{5}=0\right\}, R_{z}=\left\{z=x y^{3}+t^{2}=0\right\}, R_{t}=\left\{t=y^{4}+x^{4} z=0\right\}\right)$. Also, we see that

$$
L_{x t} \cap R_{x}=\left\{O_{y}\right\}, L_{y z} \cap R_{y}=\left\{O_{t}\right\}, L_{y z} \cap R_{z}=\left\{O_{x}\right\}, L_{x t} \cap R_{t}=\left\{O_{z}\right\} .
$$

We can easily see that

$$
\operatorname{lct}\left(X, \frac{4}{11} C_{x}\right)=\frac{33}{16}<\operatorname{lct}\left(X, \frac{4}{17} C_{y}\right), \quad \operatorname{lct}\left(X, \frac{4}{24} C_{z}\right), \quad \operatorname{lct}\left(X, \frac{4}{31} C_{t}\right) .
$$

Therefore, $\operatorname{lct}(X) \geqslant \frac{33}{16}$. Suppose $\operatorname{lct}(X)<\frac{33}{16}$. Then, there is an effective \mathbb{Q}-divisor $D \equiv-K_{X}$ such that the \log pair $\left(X, \frac{33}{16} D\right)$ is not \log canonical at some point $P \in X$.

The intersection numbers among the divisors $D, L_{x t}, L_{y z}, R_{x}, R_{y}, R_{z}, R_{t}$ are as follows:

$$
\begin{gathered}
D \cdot L_{x t}=\frac{1}{6 \cdot 17}, \quad D \cdot R_{x}=\frac{8}{17 \cdot 31}, \quad D \cdot R_{y}=\frac{5}{6 \cdot 31}, \\
D \cdot L_{y z}=\frac{4}{11 \cdot 31}, \quad D \cdot R_{z}=\frac{8}{11 \cdot 17}, \quad D \cdot R_{t}=\frac{2}{3 \cdot 11}, \\
L_{x t} \cdot R_{x}=\frac{2}{17}, \quad L_{y z} \cdot R_{y}=\frac{5}{31}, \quad L_{y z} \cdot R_{z}=\frac{2}{11}, \quad L_{x t} \cdot R_{t}=\frac{1}{6}, \\
L_{x t}^{2}=-\frac{37}{17 \cdot 24}, \quad R_{x}^{2}=-\frac{40}{17 \cdot 31}, \quad R_{y}^{2}=-\frac{35}{24 \cdot 31}, \\
L_{y z}^{2}=-\frac{38}{11 \cdot 31}, \quad R_{z}^{2}=\frac{14}{11 \cdot 17}, \quad R_{t}^{2}=\frac{10}{3 \cdot 11} .
\end{gathered}
$$

By Remark 1.4.7 we may assume that the support of D does not contain at least one component of each divisor $C_{x}, C_{y}, C_{z}, C_{t}$. The inequalities

$$
17 D \cdot L_{x t}=\frac{1}{6}<\frac{16}{33}, \quad 17 D \cdot R_{x}=\frac{8}{31}<\frac{16}{33}
$$

imply $P \neq O_{y}$. The inequalities

$$
11 D \cdot L_{y z}=\frac{4}{31}<\frac{16}{33}, \quad 11 D \cdot R_{z}=\frac{8}{17}<\frac{16}{33}
$$

imply $P \neq O_{x}$. The inequalities

$$
24 D \cdot L_{x t}=\frac{24}{6 \cdot 17}<\frac{16}{33}, \quad \frac{24}{4} D \cdot R_{t}=\frac{4}{11}<\frac{16}{33}
$$

imply $P \neq O_{z}$. The curve R_{t} is singular at the point O_{z}.
We write $D=a_{1} L_{x t}+a_{2} L_{y z}+a_{3} R_{x}+a_{4} R_{y}+a_{5} R_{z}+a_{6} R_{t}+\Omega$, where Ω is an effective divisor whose support contains none of the curves $L_{x t}, L_{y z}, R_{x}, R_{y}, R_{z}, R_{t}$. Since the pair $\left(X, \frac{33}{16} D\right)$ is \log canonical at the points O_{x}, O_{y}, O_{z}, the numbers a_{i} are at most $\frac{16}{33}$. Then by Lemma 1.4.8 the following inequalities enable us to conclude that either the point P is in the outside of $C_{x} \cup C_{y} \cup C_{z} \cup C_{t}$ or $P=O_{t}$:

$$
\begin{aligned}
& \frac{33}{16} D \cdot L_{x t}-L_{x t}^{2}=\frac{181}{3 \cdot 17 \cdot 32}<1, \quad \frac{33}{16} D \cdot R_{x}-R_{x}^{2}=\frac{113}{2 \cdot 17 \cdot 31}<1, \quad \frac{33}{16} D \cdot R_{y}-R_{y}^{2}=\frac{25}{3 \cdot 31}<1, \\
& \frac{33}{16} D \cdot L_{y z}-L_{x t}^{2}=\frac{185}{4 \cdot 11 \cdot 31}<1, \quad \frac{33}{16} D \cdot R_{z}-R_{z}^{2}=\frac{5}{2 \cdot 11 \cdot 17}<1, \quad \frac{33}{16} D \cdot R_{t}-R_{t}^{2}=\frac{-47}{3 \cdot 8 \cdot 11}<1 .
\end{aligned}
$$

Suppose that $P \neq O_{t}$. Then we consider the pencil \mathcal{L} defined by $\lambda y t+\mu z^{2}=0,[\lambda: \mu] \in \mathbb{P}^{1}$. The base locus of the pencil consists of the curve $L_{y z}$ and the point O_{y}. Let E be the unique divisor in \mathcal{L} that passes through the point P. Since $P \notin C_{x} \cup C_{y} \cup C_{z} \cup C_{t}$, the divisor E is defined by the equation $z^{2}=\alpha y t$, where $\alpha \neq 0$.

Suppose that $\alpha \neq-1$. Then the curve E is isomorphic to the curve defined by the equations $y t=z^{2}$ and $t^{2} y+x y^{4}+x^{5} z=0$. Since the curve E is isomorphic to a general curve in \mathcal{L}, it is smooth at the point P. The affine piece of E defined by $t \neq 0$ is the curve given by $z\left(z+x z^{7}+x^{5}\right)=0$. Therefore, the divisor E consists of two irreducible and reduced curves $L_{y z}$ and C. We have the intersection numbers

$$
D \cdot C=D \cdot E-D \cdot L_{y z}=\frac{564}{11 \cdot 17 \cdot 31}, \quad C \cdot L_{y z}=E \cdot L_{y z}-L_{y z}^{2}=\frac{2}{11} .
$$

Also, we see

$$
C^{2}=E \cdot C-C \cdot L_{y z}>0
$$

By Lemma 1.4.8 the inequality $D \cdot C<\frac{16}{33}$ gives us a contradiction.
Suppose that $\alpha=-1$. Then divisor E consists of three irreducible and reduced curves $L_{y z}$, R_{x}, and M. Note that the curve M is different from the curves R_{y} and $L_{x t}$. Also, it is smooth at the point P. We have

$$
\begin{gathered}
D \cdot M=D \cdot E-D \cdot L_{y z}-D \cdot R_{x}=\frac{4 \cdot 119}{11 \cdot 17 \cdot 31}, \\
M^{2}=E \cdot M-L_{y z} \cdot M-R_{x} \cdot M \geq E \cdot M-C_{y} \cdot M-C_{x} \cdot M=5 D \cdot M>0 .
\end{gathered}
$$

By Lemma 1.4.8 the inequality $D \cdot M<\frac{16}{33}$ gives us a contradiction. Therefore, $P=O_{t}$.
We write $D=a L_{y z}+b R_{x}+\Delta$, where Δ is an effective divisor whose support contains neither $L_{y z}$ nor R_{x}. Note that we already assumed that the support of D does not contain both $L_{y z}$ and R_{y}. If the support of D contains R_{y}, then it does not contain $L_{y z}$. However, the inequality $31 D \cdot L_{y z}=\frac{4}{11}<\frac{16}{33}$ shows that $P \neq O_{t}$. Therefore, the support of D does not contain the curve R_{y}. The inequality $D \cdot L_{x t} \geq b R_{x} \cdot L_{x t}$ implies $b \leqslant \frac{1}{12}$. On the other hand, we have

$$
\frac{5}{6 \cdot 31}=D \cdot R_{y} \geq \frac{5 a}{31}+\frac{b}{31}+\frac{\text { mult }_{O_{t}} D-a-b}{31}>\frac{4 a+\frac{16}{33}}{31}
$$

and hence $a<\frac{23}{4 \cdot 66}$.
We now consider the weighted blow up $\pi: \bar{X} \rightarrow X$ at the point O_{t} with weight (11,24). Its exceptional divisor F passes through two singular points Q_{11} of type $\frac{1}{11}(1,1)$ and Q_{24} of type $\frac{1}{24}(13,7)$. We have

$$
K_{\bar{X}}=\pi^{*}\left(K_{X}\right)+\frac{4}{31} F, \quad \bar{L}_{y z}=\pi^{*}\left(L_{y z}\right)-\frac{24}{31} F, \quad \bar{R}_{x}=\pi^{*}\left(R_{x}\right)-\frac{11}{31} F, \quad \bar{R}_{y}=\pi^{*}\left(R_{y}\right)-\frac{24}{31} F,
$$

where $\bar{L}_{y z}, \bar{R}_{x}$ and \bar{R}_{y} are the proper transforms of $L_{y z}, R_{x}$ and R_{y} by π, respectively. Also, we have a non-negative rational number c such that

$$
\bar{\Delta}=\pi^{*}(\Delta)-\frac{c}{31} F
$$

where $\bar{\Delta}$ is the proper transform of Δ by π. From
$0 \leqslant \bar{\Delta} \cdot \bar{R}_{y}=\Delta \cdot R_{y}-\frac{c}{11 \cdot 31}=\left(D-a L_{y z}-b R_{x}\right) \cdot R_{y}-\frac{c}{11 \cdot 31}=\frac{5}{6 \cdot 31}-\frac{5 a}{31}-\frac{b}{31}-\frac{c}{11 \cdot 31}$ we obtain $55 a+11 b+c \leqslant \frac{55}{6}$. Also from
$0 \leqslant \bar{\Delta} \cdot \bar{L}_{y z}=\Delta \cdot L_{y z}-\frac{c}{11 \cdot 31}=\left(D-a L_{y z}-b R_{x}\right) \cdot L_{y z}-\frac{c}{11 \cdot 31}=\frac{4}{11 \cdot 31}+\frac{38 a}{11 \cdot 31}-\frac{b}{31}-\frac{c}{11 \cdot 31}$
we get $11 b+c \leqslant 4+38 a$. Combining this with the previous inequality, we get

$$
\frac{55(11 b+c-4)}{38}+11 b+c \leqslant \frac{55}{6} \Rightarrow\left(1+\frac{55}{38}\right) c \leqslant \frac{55}{6}+\frac{4 \cdot 55}{38} \Rightarrow c \leqslant \frac{55}{9} .
$$

Now we consider the log pull-back of the divisor $K_{X}+\frac{33}{16} D$ by π

$$
\pi^{*}\left(K_{X}+\frac{33}{16} D\right)=K_{\bar{X}}+\frac{33 a}{16} \bar{L}_{y z}+\frac{33 b}{16} \bar{R}_{x}+\frac{33}{16} \bar{\Delta}+\theta_{1} F,
$$

where

$$
\theta_{1}=\frac{1}{16 \cdot 31}(24 \cdot 33 a+11 \cdot 33 b+33 c-64)<\frac{2843}{12 \cdot 16 \cdot 31} .
$$

There must be a point Q in F at which the pair

$$
\left(\bar{X}, \frac{33 a}{16} \bar{L}_{y z}+\frac{33 b}{16} \bar{R}_{x}+\frac{33}{16} \bar{\Delta}+\theta_{1} F\right)
$$

is not \log canonical. Note that $F \cap \bar{R}_{y}=F \cap \bar{L}_{y z}=\left\{Q_{11}\right\}$ and $F \cap \bar{R}_{x}=\left\{Q_{24}\right\}$. Therefore, the pair

$$
\left(\bar{X}, \frac{33 a}{16} \bar{L}_{y z}+\frac{33 b}{16} \bar{R}_{x}+\frac{33}{16} \bar{\Delta}+F\right)
$$

is not \log canonical at the point Q. If the point Q is a smooth point of \bar{X} then we obtain an absurd inequality

$$
1>\frac{55}{6 \cdot 128}>\frac{c}{128}=\frac{33}{16} \bar{\Delta} \cdot F>1 .
$$

In order to apply Lemma 1.4.6, we must first check that $\theta_{1} \geqslant 0$. Suppose that $\theta_{1} \leqslant 0$. Then $24 a+11 b+c \leqslant 64 / 33$, and the log pair

$$
\left(\bar{X}, \frac{33 a}{16} \bar{L}_{y z}+\frac{33 b}{16} \bar{R}_{x}+\frac{33}{16} \bar{\Delta}\right)
$$

is not \log canonical at the point Q as well. Then

$$
\frac{4}{11 \cdot 24}>\frac{33(24 a+11 b+c)}{11 \cdot 24 \cdot 16}=\left(\frac{33 a}{16} \bar{L}_{y z}+\frac{33 b}{16} \bar{R}_{x}+\frac{33}{16} \bar{\Delta}\right) \cdot F>\left\{\begin{array}{l}
1 \text { if } Q_{24} \neq Q \neq Q_{11} \\
\frac{1}{11} \text { if } Q=Q_{11} \\
\frac{1}{24} \text { if } Q=Q_{24}
\end{array}\right.
$$

which is absurd. Thus, we see that $\theta_{1}>0$.
Suppose that $Q=Q_{11}$. Then we also obtain a contradictory inequality

$$
\frac{1}{11}<\frac{33 a}{16} \bar{L}_{y z} \cdot F+\frac{33}{16} \bar{\Delta} \cdot F=\frac{33 a}{11 \cdot 16}+\frac{33 c}{11 \cdot 16 \cdot 24}<\frac{33 \cdot 23}{4 \cdot 11 \cdot 16 \cdot 66}+\frac{33 \cdot 55}{6 \cdot 11 \cdot 16 \cdot 24}<\frac{1}{11},
$$

which implies that $Q \neq Q_{11}$. Therefore, we see that $Q=Q_{24}$.
Let $\phi: \tilde{X} \rightarrow \bar{X}$ be the weighted blow up at the point Q_{24} with weight (13,7). The exceptional divisor G of the morphism ϕ contains two singular points Q_{13} and Q_{7} of \tilde{X}. The point Q_{13} is of type $\frac{1}{13}(11,6)$ and the point Q_{7} is of type $\frac{1}{7}(1,3)$. We have

$$
K_{\tilde{X}}=\phi^{*}\left(K_{\bar{X}}\right)-\frac{1}{6} G, \quad \tilde{R}_{x}=\phi^{*}\left(\bar{R}_{x}\right)-\frac{13}{24} G, \quad \tilde{F}=\phi^{*}(F)-\frac{7}{24} G, \quad \tilde{\Delta}=\phi^{*}(\bar{\Delta})-\frac{d}{24} G,
$$

where d is a positive rational number. Then

$$
\frac{c}{11 \cdot 24}-\frac{d}{13 \cdot 24}=\tilde{\Delta} \cdot \tilde{F} \geqslant 0 \leqslant \tilde{\Delta} \cdot \tilde{R}_{x}=\frac{8}{17 \cdot 31}-\frac{a}{31}+\frac{40 b}{17 \cdot 31}-\frac{c}{24 \cdot 31}-\frac{d}{7 \cdot 24}
$$

which implies that $1344+6720 b \geqslant 2856 a+119 c+527 d$ and $13 c \geqslant 11 d$.

The \log pull-back of $\left(X, \frac{33}{16} D\right)$ via $\phi \circ \pi$ is

$$
\left(\tilde{X}, \frac{33 a}{16} \tilde{L}_{y z}+\frac{33 b}{16} \tilde{R}_{x}+\frac{33}{16} \tilde{\Delta}+\theta_{1} \tilde{F}+\theta_{2} G\right),
$$

which is not \log canonical at some point O in G, where $\theta_{2}=231 a / 496+165 b / 124+77 c / 3968+$ $11 d / 128+4 / 31$. Then $\theta_{2}<1$, because the system of inequalities

$$
\left\{\begin{array}{l}
\theta_{2} \geqslant 1 \\
1344+6720 b \geqslant 2856 a+119 c+527 d \\
13 c-11 d \geqslant 0 \\
4+38 a \geqslant 11 b+c>=0 \\
55 a+11 b+c \leqslant 55 / 6 \\
a \leqslant 23 / 264 \\
b \leqslant 1 / 12
\end{array}\right.
$$

is inconsistent. Note that $\tilde{R}_{x} \cap G=\left\{Q_{7}\right\}$ and $\tilde{F} \cap G=\left\{Q_{13}\right\}$. But $\bar{L}_{y z}$ does not pass through the point Q_{24}.

Suppose that $O \neq Q_{7}$ and $O \neq Q_{13}$. Applying Lemma 1.4.6, we get

$$
1<\frac{33}{16} \tilde{\Delta} \cdot G=\frac{33 d}{16 \cdot 7 \cdot 13},
$$

which gives $d>3536 / 33$. Hence, we obtain the system of inequalities

$$
\left\{\begin{array}{l}
d>3536 / 33 \\
1344+6720 b \geqslant 2856 a+119 c+527 d \\
13 c-11 d \geqslant 0 \\
4+38 a \geqslant 11 b+c>=0 \\
55 a+11 b+c \leqslant 55 / 6 \\
a \leqslant 23 / 264 \\
b \leqslant 1 / 12
\end{array}\right.
$$

which is inconsistent. Thus, we see that either $O=Q_{7}$ or $O=Q_{13}$.
Suppose that $O=Q_{7}$. Applying Lemma 1.4.6, we get
$\frac{33}{16}\left(\frac{8+40 b}{17 \cdot 31}-\frac{a}{31}-\frac{c}{24 \cdot 31}-\frac{d}{7 \cdot 24}\right)+\frac{\theta_{2}}{7}=\left(\frac{33}{16} \tilde{\Delta}+\theta_{2} G\right) \cdot \tilde{R}_{x}>\frac{1}{7}<\frac{33}{16}\left(\tilde{\Delta}+b \tilde{R}_{x}\right) \cdot G=\frac{33}{16}\left(\frac{d}{7 \cdot 13}+\frac{b}{7}\right)$,
which gives $b>458 / 1705$ and $33 d+429 b>208$. But $b \leqslant 1 / 12$, which is a contradiction. Thus, we see that $O \neq Q_{7}$.

Therefore, we see that $O=Q_{13}$. Applying Lemma 1.4.6, we get
$\frac{33}{16}\left(\frac{c}{11 \cdot 24}-\frac{d}{13 \cdot 24}\right)+\frac{\theta_{2}}{13}=\left(\frac{33}{16} \tilde{\Delta}+\theta_{2} G\right) \cdot \tilde{F}>\frac{1}{13}<\left(\frac{33}{16} \tilde{\Delta}+\theta_{1} \tilde{F}\right) \cdot G=\frac{33 d}{16 \cdot 7 \cdot 13}+\frac{\theta_{1}}{13}$, which leads to a contradiction, because $4+38 a \geqslant 11 b+c$ and $a \leqslant 23 / 264$.
Lemma 3.4.7. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(11,31,45,83,166)$. Then $\operatorname{lct}(X)=55 / 24$.
Proof. The surface X can be defined by the quasihomogeneous equation

$$
t^{2}+y z^{3}+x y^{5}+x^{11} z=0
$$

the surface X is singular at the point O_{x}, O_{y} and O_{z}. The curves C_{x} and C_{y} are irreducible. We have

$$
\frac{55}{24}=\operatorname{lct}\left(X, \frac{4}{11} C_{x}\right)<\operatorname{lct}\left(X, \frac{4}{31} C_{y}\right)=\frac{13 \cdot 31}{88},
$$

which implies, in particular, that $\operatorname{lct}(X) \leqslant 55 / 24$.
Suppose that $\operatorname{lct}(X)<55 / 24$. Then there is a \mathbb{Q}-effective divisor $D \equiv-K_{X}$ such that the pair $\left(X, \frac{55}{24} D\right)$ is not \log canonical at some point P. By Remark 1.4.7, we may assume that the support of the divisor D does not contain the curves C_{x} and C_{y}.

Since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(495)\right)$ contains $x^{45}, y^{11} x^{14}$ and z^{11}, it follows from Lemma 1.4.10 that $P \in$ $\operatorname{Sing}(X) \cup C_{x}$.

Suppose that $P \in C_{x}$. Then

$$
\frac{4}{31 \cdot 45}=D \cdot C_{x} \geqslant\left\{\begin{array}{l}
\frac{\operatorname{mult}_{P}(D)}{31} \text { if } P=O_{y} \\
\frac{\operatorname{mult}_{P}(D)}{45} \text { if } P=O_{z} \\
\operatorname{mult}_{P}(D) \text { if } P \neq O_{y} \text { and } P \neq O_{z}
\end{array}\right.
$$

which is impossible, because mult $P(D)>24 / 55$. Thus, we see that $P=O_{x}$. Then

$$
\frac{4}{11 \cdot 45}=D \cdot C_{y} \geqslant \frac{\operatorname{mult}_{P}(D)}{13}>\frac{24}{55 \cdot 11}>\frac{4}{11 \cdot 45}
$$

which is a contradiction. Thus, we see that $\operatorname{lct}(X)=55 / 24$.
Lemma 3.4.8. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(13,14,19,29,71)$. Then $\operatorname{lct}(X)=65 / 36$.
Proof. We may assume that the surface X is defined by the quasihomogeneous equation

$$
t y^{3}+y z^{3}+x t^{2}+x^{4} z=0
$$

The surface X is singular at the points $O_{x}, O_{y}, O_{z}, O_{t}$. Each of the divisors C_{x}, C_{y}, C_{z}, and C_{t} consists of two irreducible and reduced components. The divisor C_{x} (resp. C_{y}, C_{z}, C_{t}) consists of $L_{x y}=\{x=y=0\}$ (resp. $L_{x y}=\{x=y=0\}, L_{z t}=\{z=t=0\}, L_{z t}=\{z=t=0\}$) and $R_{x}=\left\{x=z^{3}+t y^{2}=0\right\}$ (resp. $R_{y}=\left\{y=x^{3} z+t^{2}=0\right\}, R_{z}=\left\{z=y^{3}+x t=0\right\}$, $\left.R_{t}=\left\{t=x^{4}+y z^{2}=0\right\}\right)$. Also, we see that

$$
L_{x y} \cap R_{x}=\left\{O_{t}\right\}, L_{x y} \cap R_{y}=\left\{O_{z}\right\}, L_{z t} \cap R_{z}=\left\{O_{x}\right\}, L_{z t} \cap R_{t}=\left\{O_{y}\right\} .
$$

We can easily see that

$$
\operatorname{lct}\left(X, \frac{13}{4} C_{x}\right)=\frac{65}{36}<\operatorname{lct}\left(X, \frac{14}{4} C_{y}\right), \quad \operatorname{lct}\left(X, \frac{19}{4} C_{z}\right), \quad \operatorname{lct}\left(X, \frac{29}{4} C_{t}\right) .
$$

Therefore, $\operatorname{lct}(X) \geqslant \frac{65}{36}$. Suppose $\operatorname{lct}(X)<\frac{65}{36}$. Then, there is an effective \mathbb{Q}-divisor $D \equiv-K_{X}$ such that the \log pair $\left(X, \frac{65}{36} D\right)$ is not \log canonical at some point $P \in X$.

The intersection numbers among the divisors $D, L_{x y}, L_{z t}, R_{x}, R_{y}, R_{z}, R_{t}$ are as follows:

$$
\begin{gathered}
D \cdot L_{x y}=\frac{4}{19 \cdot 29}, \quad D \cdot R_{x}=\frac{6}{7 \cdot 29}, \quad D \cdot R_{y}=\frac{8}{13 \cdot 19}, \\
D \cdot L_{z t}=\frac{2}{7 \cdot 13}, \quad D \cdot R_{z}=\frac{12}{13 \cdot 29}, \quad D \cdot R_{t}=\frac{8}{7 \cdot 19}, \\
L_{x y} \cdot R_{x}=\frac{3}{29}, \quad L_{x y} \cdot R_{y}=\frac{2}{19}, \quad L_{z t} \cdot R_{z}=\frac{3}{13}, \quad L_{z t} \cdot R_{t}=\frac{2}{7}, \\
L_{x y}^{2}=-\frac{44}{19 \cdot 29}, \quad R_{x}^{2}=-\frac{3}{14 \cdot 29}, \quad R_{y}^{2}=\frac{2}{13 \cdot 19}, \\
L_{z t}^{2}=-\frac{23}{13 \cdot 14}, \quad R_{z}^{2}=-\frac{30}{13 \cdot 29}, \quad R_{t}^{2}=\frac{20}{7 \cdot 19} .
\end{gathered}
$$

By Remark 1.4.7 we may assume that the support of D does not contain at least one component of each divisor $C_{x}, C_{y}, C_{z}, C_{t}$. The inequalities

$$
13 D \cdot L_{z t}=\frac{2}{7}<\frac{36}{65}, \quad 13 D \cdot R_{z}=\frac{12}{29}<\frac{36}{65}
$$

imply $P \neq O_{x}$. The inequalities

$$
14 D \cdot L_{z t}=\frac{4}{13}<\frac{36}{65}, \quad 7 D \cdot R_{t}=\frac{8}{19}<\frac{36}{65}
$$

imply $P \neq O_{y}$. Note that the curve R_{t} is singular at the point O_{y}. The inequalities

$$
19 D \cdot L_{x y}=\frac{4}{29}<\frac{36}{65}, \quad \frac{19}{2} D \cdot R_{y}=\frac{4}{13}<\frac{36}{65}
$$

imply $P \neq O_{z}$. The curve R_{y} is singular at O_{z}. The inequalities

$$
29 D \cdot L_{x y}=\frac{4}{19}<\frac{36}{65}, \quad \frac{29}{2} D \cdot R_{x}=\frac{3}{7}<\frac{36}{65}
$$

imply $P \neq O_{t}$. The curve R_{x} is singular at the point O_{t}.
We write $D=a_{1} L_{x y}+a_{2} L_{z t}+a_{3} R_{x}+a_{4} R_{y}+a_{5} R_{z}+a_{6} R_{t}+\Omega$, where Ω is an effective divisor whose support contains none of the curves $L_{x y}, L_{z t}, R_{x}, R_{y}, R_{z}, R_{t}$. Since the pair $\left(X, \frac{65}{36} D\right)$ is \log canonical at the points $O_{x}, O_{y}, O_{z}, O_{t}$, the numbers a_{i} are at most $\frac{36}{65}$. Then by Lemma 1.4.8 the following inequalities enable us to conclude that the point P must be located in the outside of $C_{x} \cup C_{y} \cup C_{z} \cup C_{t}$:

$$
\begin{aligned}
& \frac{65}{36} D \cdot L_{x y}-L_{x y}^{2}=\frac{461}{9 \cdot 19 \cdot 29}<1, \quad \frac{65}{36} D \cdot R_{x}-R_{x}^{2}=\frac{74}{6 \cdot 7 \cdot 29}<1, \\
& \frac{65}{36} D \cdot L_{z t}-L_{z t}^{2}=\frac{249}{7 \cdot 13 \cdot 18}<1, \quad \frac{65}{36} D \cdot R_{z}-R_{z}^{2}=\frac{155}{3 \cdot 13 \cdot 18}<1, \\
& \frac{65}{36} D \cdot R_{y}-R_{y}^{2} \geqslant \frac{65}{36} D \cdot R_{y}=\frac{65}{13 \cdot 18 \cdot 19}<1, \quad \frac{65}{36} D \cdot R_{t}-R_{t}^{2}<1 .
\end{aligned}
$$

We consider the pencil \mathcal{L} defined by $\lambda t x+\mu y^{3}=0,[\lambda: \mu] \in \mathbb{P}^{1}$. The base locus of the pencil consists of the curve $L_{x y}$ and the point O_{x}. Let E be the unique divisor in \mathcal{L} that passes through the point P. Since $P \notin C_{x} \cup C_{y} \cup C_{z} \cup C_{t}$, the divisor E is defined by the equation $t x=\alpha y^{3}$, where $\alpha \neq 0$.

Suppose that $\alpha \neq-1$. Then the curve E is isomorphic to the curve defined by the equations $t x=y^{3}$ and $x t^{2}+y z^{3}+x^{4} z=0$. Since the curve E is isomorphic to a general curve in \mathcal{L}, it is smooth at the point P. The affine piece of E defined by $t \neq 0$ is the curve given by $y\left(y^{2}+y^{11} z+z^{3}\right)=0$. Therefore, the divisor E consists of two irreducible and reduced curves $L_{x y}$ and C. We have the intersection numbers

$$
D \cdot C=D \cdot E-D \cdot L_{x y}=\frac{800}{13 \cdot 19 \cdot 29}, \quad C \cdot L_{x y}=E \cdot L_{x y}-L_{x y}^{2}=\frac{86}{19 \cdot 29} .
$$

Also, we see

$$
C^{2}=E \cdot C-C \cdot L_{x y} \geq E \cdot C-C_{x} \cdot C>0 .
$$

By Lemma 1.4 .8 the inequality $D \cdot C<\frac{36}{65}$ gives us a contradiction.
Suppose that $\alpha=-1$. Then divisor E consists of three irreducible and reduced curves $L_{x y}$, R_{z}, and M. Note that the curve M is different from the curves R_{x} and $L_{z t}$. Also, it is smooth at the point P. We have

$$
\begin{gathered}
D \cdot M=D \cdot E-D \cdot L_{x y}-D \cdot R_{z}=\frac{572}{13 \cdot 19 \cdot 29} \\
M^{2}=E \cdot M-L_{x y} \cdot M-R_{z} \cdot M \geq E \cdot M-C_{x} \cdot M-C_{z} \cdot M=\frac{5}{2} D \cdot M>0
\end{gathered}
$$

By Lemma 1.4.8 the inequality $D \cdot M<36 / 65$ gives us a contradiction.
Lemma 3.4.9. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(13,14,23,33,79)$. Then $\operatorname{lct}(X)=65 / 32$.
Proof. The surface X can be defined by the quasihomogeneous equation

$$
z^{2} t+y^{4} z+x t^{2}+x^{5} y=0
$$

and X is singular at O_{x}, O_{y}, O_{z} and O_{t}. We have

$$
\operatorname{lct}\left(X, \frac{4}{13} C_{x}\right)=\frac{65}{32}<\operatorname{lct}\left(X, \frac{4}{13} C_{x}\right)=\frac{21}{8}<\operatorname{lct}\left(X, \frac{5}{25} C_{t}\right)=\frac{33}{10}<\operatorname{lct}\left(X, \frac{4}{23} C_{z}\right)=\frac{69}{20},
$$

which implies, in particular, that $\operatorname{lct}(X) \leqslant 65 / 32$.
The curve C_{x} is reducible. We have $C_{x}=L_{x z}+M_{x}$, where $L_{x z}$ and M_{x} are irreducible reduced curves such that $L_{x z}$ is given by $x=z=0$, and M_{x} is given by $x=t z+y^{4}=0$. Then

$$
L_{x z} \cdot L_{x z}=\frac{-43}{14 \cdot 33}, M_{x} \cdot M_{x}=\frac{-40}{23 \cdot 33}, L_{x z} \cdot M_{x}=\frac{4}{33}, D \cdot L_{x z}=\frac{4}{14 \cdot 33}, D \cdot M_{x}=\frac{16}{23 \cdot 33},
$$

and $L_{x z} \cap M_{x}=O_{t}$. The curves $L_{x z}$ and M_{x} are smooth.

The curve C_{y} is reducible. We have $C_{y}=L_{y t}+M_{y}$, where $L_{y t}$ and M_{y} are irreducible curves such that $L_{y t}$ is given by $y=t=0$, and M_{y} is given by $y=x t+z^{2}=0$. Then

$$
L_{y t} \cdot L_{y t}=\frac{-32}{13 \cdot 23}, M_{y} \cdot M_{y}=\frac{-38}{13 \cdot 33}, \quad L_{y t} \cdot M_{y}=\frac{2}{13}, \quad D \cdot L_{y t}=\frac{4}{13 \cdot 23}, \quad D \cdot M_{y}=\frac{8}{13 \cdot 33},
$$

and $L_{y z} \cap M_{y}=O_{x}$. We have $M_{y} \cdot M_{x}=L_{x z} \cdot M_{y}=1 / 33, M_{x} \cdot L_{y t}=1 / 23$ and $L_{x z} \cdot L_{y t}=0$.
The curve C_{z} is reducible. We have $C_{z}=L_{x z}+M_{z}$, where M_{z} is an irreducible curve that is given by the equations $z=t^{2}+x^{4} x=0$. We have

$$
M_{z} \cdot M_{z}=\frac{20}{13 \cdot 14}, \quad L_{x z} \cdot M_{z}=\frac{2}{14}, D \cdot M_{z}=\frac{46}{13 \cdot 14}
$$

and $M_{z} \cap L_{x z}=O_{y}$. The only singular point of the curve M_{z} is O_{y}.
The curve C_{t} is reducible. We have $C_{t}=L_{y t}+M_{t}$, where M_{t} is an irreducible curve that is given by the equations $t=y^{3} z+x^{5}=0$. We have

$$
M_{t} \cdot M_{t}=\frac{95}{14 \cdot 13}, L_{y t} \cdot M_{t}=\frac{5}{23}, D \cdot M_{t}=\frac{20}{14 \cdot 23},
$$

and $M_{t} \cap L_{y t}=O_{z}$. The only singular point of the curve M_{t} is O_{z}
We suppose that $\operatorname{lct}(X)<65 / 8$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the \log pair $\left(X, \frac{65}{32} D\right)$ is not \log canonical at some point $P \in X$. Let us derive a contradiction.

Suppose that $P \notin C_{x} \cup C_{y} \cup C_{z} \cup C_{t}$. Then there is a unique curve $Z_{\alpha} \subset X$ that is cut out by

$$
x t+\alpha z^{2}=0
$$

such that $P \in Z$, where $0 \neq \alpha \in \mathbb{C}$. The curve Z_{α} is reduced. But it is always reducible. Indeed, one can easily check that

$$
Z_{\alpha}=C_{\alpha}+L_{x z}
$$

where C_{α} is a reduced curve whose support contains no $L_{x y}$. Let us prove that C_{α} is irreducible if $\alpha \neq 1$.

The open subset $Z_{\alpha} \backslash\left(Z_{\alpha} \cap C_{x}\right)$ of the curve Z_{α} is a \mathbb{Z}_{13}-quotient of the affine curve

$$
t+\alpha z^{2}=0=z^{2} t+y^{4} z+t^{2}+y=0 \subset \mathbb{C}^{3} \cong \operatorname{Spec}(\mathbb{C}[y, z, t])
$$

which is isomorphic to a plane affine curve that is given by the equation

$$
\alpha(\alpha-1) z^{4}+y^{4} z+y=0 \subset \mathbb{C}^{2} \cong \operatorname{Spec}(\mathbb{C}[y, z])
$$

which implies that the curve C_{α} is irreducible and $\operatorname{mult}_{P}\left(C_{\alpha}\right) \leqslant 3$ if $\alpha \neq 1$.
The case $\alpha=1$ is special. Namely, if $\alpha=1$, then

$$
C_{1}=R_{1}+M_{y}
$$

where R_{1} is a reduced curve whose support contains no C_{1}. Arguing as in the case $\alpha \neq 1$, we see that R_{1} is irreducible and R_{1} is smooth at the point P.

By Remark 1.4.7, we may assume that $\operatorname{Supp}(D)$ does not contain at least one irreducible components of the curve Z_{α}.

Suppose that $\alpha \neq 1$. Then elementary calculations imply that

$$
C_{\alpha} \cdot L_{x z}=\frac{2}{14}, C_{\alpha} \cdot C_{\alpha}=\frac{20}{13 \cdot 14}, D \cdot C_{\alpha}=\frac{8}{13 \cdot 14},
$$

and we can put $D=\epsilon C_{\alpha}+\Delta_{\alpha}$, where Δ_{α} is an effective \mathbb{Q}-divisor such that $C_{\alpha} \not \subset \operatorname{Supp}\left(\Delta_{\alpha}\right)$. If $\epsilon \neq 0$, then

$$
\frac{4}{13 \cdot 33}=D \cdot L_{x z}=\left(\epsilon C_{\alpha}+\Delta_{\alpha}\right) \cdot L_{x z} \geqslant \epsilon C_{\alpha} \cdot L_{x z}=\frac{2 \epsilon}{14},
$$

which implies that $\epsilon \leqslant 2 / 33$. On the other hand, we see that
$\frac{8}{13 \cdot 14}=D \cdot C_{\alpha}=\epsilon C_{\alpha}^{2}+\Delta_{\alpha} \cdot C_{\alpha} \geqslant \epsilon C^{2}+\operatorname{mult}_{P}\left(\Delta_{\alpha}\right)=\epsilon C^{2}+\operatorname{mult}_{P}(D)-\epsilon \operatorname{mult}_{P}\left(C_{\alpha}\right)>\epsilon C^{2}+\frac{32}{65}-3 \epsilon$,
which is impossible, because $\epsilon \leqslant 2 / 33$.
Thus, we see that $\alpha=1$. We have

$$
R_{1} \cdot L_{x z}=\frac{52}{14 \cdot 33}, \quad R_{1} \cdot R_{1}=\frac{-398}{3003}, M_{y} \cdot R_{1}=\frac{71}{13 \cdot 33}, D \cdot R_{1}=\frac{152}{13 \cdot 14 \cdot 33},
$$

and we can put $D=\epsilon_{1} R_{1}+\Xi_{1}$, where Ξ_{1} is an effective \mathbb{Q}-divisor such that $R_{1} \not \subset \operatorname{Supp}\left(\Xi_{1}\right)$. Then $\epsilon_{1} \leqslant 8 / 71$, because either $\epsilon_{1}=0$, or $L_{x z} \cdot \Xi_{1} \geqslant 0$ or $M_{y} \cdot \Xi_{1} \geqslant 0$. By Lemma 1.4.6, we see that

$$
\frac{152+796 \epsilon_{1}}{13 \cdot 14 \cdot 33}=\Xi_{1} \cdot R_{1}>\frac{32}{65}
$$

which implies that $\epsilon_{1}>3506 / 995$. But $\epsilon_{1} \leqslant 8 / 71$. The obtained contradiction shows that $P \in C_{x} \cup C_{y} \cup C_{z} \cup C_{t}$.

It follows from Remark 1.4.7 that we may assume that $\operatorname{Supp}(D)$ does not contains are least one irreducible component of the curves $C_{x}, C_{y}, C_{z}, C_{t}$.

Suppose that $P \in M_{x} \backslash\left(O_{t} \cup O_{y}\right)$. Put $D=e M_{x}+\Upsilon$, where Υ is an effective \mathbb{Q}-divisor such that $M_{x} \not \subset \operatorname{Supp}(\Upsilon)$. If $e \neq 0$, then

$$
\frac{4}{13 \cdot 33}=D \cdot L_{x z}=\left(e M_{x}+\Upsilon\right) \cdot L_{x z} \geqslant e L_{x z} \cdot M_{x}=\frac{4 e}{33},
$$

which implies that $e \leqslant 1 / 14$. Then it follows from Lemma 1.4.6 that

$$
\frac{16+40 e}{23 \cdot 33}=\left(-K_{X}-e M_{x}\right) \cdot M_{x}=\Upsilon \cdot M_{x}>\frac{32}{65}
$$

because $P \notin \operatorname{Sing}(X)$. Thus, we see that $e>2906 / 325$, which is impossible, because $e \leqslant 1 / 14$.
Thus, we see that $P \notin M_{x} \backslash\left(O_{y} \cup O_{t}\right)$. Similarly, we see that

$$
P \notin M_{y} \cup M_{z} \cup M_{z} \cup M_{t} \backslash\left(O_{x} \cup O_{y} \cup O_{z} \cup O_{t}\right) .
$$

Suppose that $P \in L_{y t}$. Put $D=\delta L_{y t}+\Theta$, where Θ is an effective \mathbb{Q}-divisor whose support does not contain the curve $L_{y t}$. If $\delta \neq 0$, then

$$
\frac{8}{13 \cdot 33}=D \cdot M_{y}=\left(\delta L_{y t}+\Theta\right) \cdot M_{y} \geqslant \delta L_{y t} \cdot M_{y}=\frac{2 \delta}{13},
$$

which implies that $\delta \leqslant 4 / 33$. Then it follows from Lemma 1.4.6 that

$$
\frac{4+32 \delta}{13 \cdot 23}=\left(-K_{X}-\delta L_{y z}\right) \cdot L_{y z}=\Theta \cdot L_{y z}>\left\{\begin{array}{l}
\frac{32}{65} \text { if } P \neq O_{x} \text { and } P \neq O_{z} \\
\frac{32}{65 \cdot 13} \text { if } P=O_{x} \\
\frac{32}{65 \cdot 23} \text { if } P=O_{z}
\end{array}\right.
$$

which implies that $P=O_{z}$ and $\delta>3 / 40$. Then $M_{t} \not \subset \operatorname{Supp}(D)$. Hence, we have

$$
\frac{20}{14 \cdot 23}=D \cdot M_{t} \geqslant \frac{\operatorname{mult}_{O_{z}}(D) \operatorname{mult}_{O_{z}}\left(M_{t}\right)}{23}=\frac{3 \operatorname{mult}_{O_{z}}(D)}{23}>\frac{3 \cdot 32}{65 \cdot 23},
$$

which is a contradiction. The obtained contradiction shows that $P \notin L_{y t}$.
We see that $P \in L_{x t}$. Arguing as above we see that $P=O_{t}$. Then

$$
\frac{4}{14 \cdot 33}=D \cdot L_{x z}>\frac{32}{65 \cdot 33}>\frac{4}{14 \cdot 33}
$$

whenever $L_{x z} \not \subset \operatorname{Supp}(D)$. Thus, we see that $L_{x z} \subset \operatorname{Supp}(D)$. Then $M_{x} \not \subset \operatorname{Supp}(D)$. Put

$$
D=m L_{x z}+c M_{y}+\Omega
$$

where $m>0$ and $c \geqslant 0$, and Ω is an effective \mathbb{Q}-divisor such that $L_{x z} \not \subset \operatorname{Supp}(\Omega) \not \supset M_{y}$. Then

$$
\frac{16}{23 \cdot 33}=D \cdot M_{x}=\left(m L_{x z}+c M_{y}+\Omega\right) \cdot M_{x} \geqslant \frac{4 m}{33}+\frac{c}{33}+\frac{\operatorname{mult}_{O_{t}}(D)-m-c}{33}>\frac{3 m+\frac{32}{65}}{33}
$$

which implies that $m<304 / 4485$. Then it follows from Lemma 1.4.6 that

$$
\frac{4+43 m}{14 \cdot 33}=\left(-K_{X}-m L_{x z}\right) \cdot L_{x z}=\left(\Omega+c M_{y}\right) \cdot L_{x z}>\frac{32}{65 \cdot 33}
$$

which implies that $m>88 / 2795$. On the other hand, if $c>0$, then

$$
\frac{4}{13 \cdot 23}=D \cdot L_{y t}=\left(m L_{x z}+c M_{y}+\Omega\right) \cdot L_{y t} \geqslant \frac{2 c}{13},
$$

which implies that $c \leqslant 2 / 23$. We will see later that $c>0$.

Let $\pi: \bar{X} \rightarrow X$ be a weighted blow up of O_{t} with weights $(14,23)$, let E be the exceptional curve of π, let $\bar{\Omega}, \bar{L}_{x z}, \bar{M}_{y}, \bar{M}_{x}$ be the proper transforms of $\Omega, L_{x z}, M_{y}, M_{x}$, respectively. Then

$$
K_{\bar{X}} \equiv \pi^{*}\left(K_{X}\right)+\frac{4}{33} E, \bar{L}_{x z} \equiv \pi^{*}\left(L_{x z}\right)-\frac{23}{33} E, \bar{M}_{y} \equiv \pi^{*}\left(M_{y}\right)-\frac{14}{33} E, \bar{M}_{x} \equiv \pi^{*}\left(M_{x}\right)-\frac{23}{33} E,
$$

and there is a positive rational number a such that

$$
\bar{\Omega} \equiv \pi^{*}(\Omega)-\frac{a}{33} E .
$$

The curve E contains two singular points Q_{14} and Q_{23} of \bar{X} such that Q_{14} is a singular point of type $\frac{1}{14}(13,1)$, and Q_{19} is a singular point of type $\frac{1}{23}(13,14)$. Then

$$
\bar{L}_{x z} \cup \bar{M}_{x} \not \supset Q_{23} \in \bar{M}_{y} \not \nexists Q_{14}=\bar{L}_{x z} \cap \bar{M}_{x}
$$

and $\bar{L}_{x z} \cap \bar{M}_{y}=\varnothing$. The log pull back of the \log pair $\left(X, \frac{65}{32} D\right)$ is the log pair

$$
\left(\bar{X}, \frac{65}{32} \bar{\Omega}+\frac{65 m}{32} \bar{L}_{x z}+\frac{65 c}{32} \bar{M}_{y}+\left(\frac{1495 m}{1056}+\frac{455 c}{528}+\frac{65 a}{1056}-\frac{4}{33}\right) E\right),
$$

which must have non-log canonical singularity at some point $Q \in E$. We have

$$
0 \leqslant \bar{L}_{x z} \cdot \bar{\Omega}=\frac{4+43 m-14 c-a}{14 \cdot 33}
$$

which gives $a+14 c \leqslant 4+43 m$. Then $a<31012 / 4485$, because $m<304 / 4485$. We have

$$
\left(\frac{1495 m}{1056}+\frac{455 c}{528}+\frac{65 a}{1056}-\frac{4}{33}\right)<1,
$$

because $a+14 c \leqslant 4+43 m, c \leqslant 2 / 23$ and $304 / 4485>m>88 / 2795$.
The log pull back of $\left(X, \frac{13}{8} D\right)$ has effective boundary if and only if the inequality

$$
23 m+14 c+a \leqslant \frac{128}{65}
$$

holds. On the other hand, if $23 m+14 c+a \leqslant 128 / 65$, then the \log pair

$$
\left(\bar{X}, \frac{65}{32} \bar{\Omega}+\frac{65 m}{32} \bar{L}_{x z}+\frac{65 c}{32} \bar{M}_{y}\right)
$$

is not \log canonical at the point Q as well. Thus, if $23 m+14 c+a \leqslant 128 / 65$, then

$$
\frac{128}{65 \cdot 14 \cdot 23} \geqslant \frac{a+23 m+14 c}{14 \cdot 23}=\left(\bar{\Omega}+m \bar{L}_{y z}+c \bar{M}_{x}\right) \cdot E>\left\{\begin{array}{l}
\frac{32}{65} \text { if } Q_{14} \neq Q \neq Q_{23}, \\
\frac{32}{65 \cdot 14} \text { if } Q=Q_{14}, \\
\frac{32}{65 \cdot 23} \text { if } Q=Q_{23},
\end{array}\right.
$$

which is absurd. Thus, the boundary of the \log pull back of the \log pair $\left(X, \frac{65}{32} D\right)$ is effective.
Suppose that $Q \neq Q_{14}$ and $Q \neq Q_{23}$. Then $Q \notin \bar{L}_{x z} \cup \bar{M}_{y}$. By Lemma 1.4.6, we have

$$
\frac{a}{14 \cdot 23}=-\frac{a}{33} E^{2}=\bar{\Omega} \cdot E>\frac{65}{32},
$$

which implies that $a>10304 / 65$, which is impossible, because $a<31012 / 4485$.
Therefore, we see that either $Q=Q_{14}$ or $Q=Q_{23}$.
Suppose that $Q=Q_{11}$. Then $Q \notin \bar{M}_{y}$. Hence, it follows from Lemma 1.4.6 that

$$
\left(\frac{65}{32} \bar{\Omega}+\left(\frac{1495 m}{1056}+\frac{455 c}{528}+\frac{65 a}{1056}-\frac{4}{33}\right) E\right) \cdot \bar{L}_{x z}>\frac{1}{14},
$$

but $\bar{L}_{x z} \cdot E=1 / 14$ and $\bar{L}_{x z} \cdot \bar{M}_{y}=0$. Moreover, we have

$$
\bar{\Omega} \cdot \bar{L}_{x z}=\left(\bar{\Omega}+c \bar{M}_{y}\right) \cdot \bar{L}_{x z}=\left(D-m L_{x z}\right) \cdot L_{x z}-\frac{a+14 c}{14 \cdot 33}=\frac{4+43 m-14 c-a}{14 \cdot 25},
$$

which immediately implies that $m>66 / 325$. But $m<304 / 4485$, which is a contradiction.

Thus, we see that $Q=Q_{23}$. Then $Q \notin \bar{L}_{x z}$, and it follows from Lemma 1.4.6 that

$$
\left(\frac{65}{32} \bar{\Omega}+\left(\frac{1495 m}{1056}+\frac{455 c}{528}+\frac{65 a}{1056}-\frac{4}{33}\right) E\right) \cdot \bar{M}_{y}>\frac{1}{23}
$$

but we have $\bar{M}_{y} \cdot E=1 / 23$. Applying Lemma 1.4.6 one more time, we see that

$$
\left(\frac{65}{32} \bar{\Omega}+\frac{65 c}{32} \bar{M}_{y}\right) \cdot E>\frac{1}{23},
$$

which gives $a+14 c>448 / 65$. On the other hand, we know that
$0 \leqslant \bar{\Omega} \cdot \bar{M}_{y}=\Omega \cdot M_{y}-\frac{a}{33 \cdot 23}=D \cdot M_{y}-m L_{x z} \cdot M_{y}-c M_{y} \cdot M_{y}-\frac{a}{33 \cdot 23}=\frac{8+38 c-13 m}{13 \cdot 33}-\frac{a}{33 \cdot 23}$,
which implies that $184+874 c \geqslant 299 m+13 a$ and $c>1 / 20$. But we have no contradiction here.
Let $\psi: \tilde{X} \rightarrow \bar{X}$ be a weighted blow up of Q_{23} with weights $(13,14)$, let G be the exceptional curve of ψ, let $\tilde{\Omega}, \tilde{L}_{x z}, \tilde{M}_{y}, \tilde{E}$ be the proper transforms of $\Omega, L_{x z}, M_{y}, E$, respectively. Then

$$
K_{\tilde{X}} \equiv \psi^{*}\left(K_{\bar{X}}\right)+\frac{4}{23} G, \tilde{M}_{y} \equiv \psi^{*}\left(\bar{M}_{y}\right)-\frac{14}{23} G, \tilde{E} \equiv \psi^{*}(E)-\frac{13}{23} G, \tilde{\Omega} \equiv \psi^{*}(\bar{\Omega})-\frac{b}{23} G,
$$

where b is a positive rational number.
The curve G contains two singular points O_{13} and O_{14} of \tilde{X} such that O_{13} is a singular point of type $\frac{1}{13}(1,3)$, and O_{14} is a singular point of type $\frac{1}{14}(1,9)$. Then

$$
\tilde{E} \not \supset O_{13} \in \tilde{M}_{y} \not \nexists O_{14} \in \tilde{E},
$$

where $\tilde{E} \cap \tilde{M}_{y}=\varnothing$. The \log pull back of the \log pair $\left(X, \frac{65}{32} D\right)$ is the \log pair

$$
\left(\tilde{X}, \frac{65}{32} \tilde{\Omega}+\frac{65 m}{32} \tilde{L}_{x z}+\frac{65 c}{32} \tilde{M}_{y}+\left(\frac{1495 m}{1056}+\frac{455 c}{528}+\frac{65 a}{1056}-\frac{4}{33}\right) \tilde{E}+\theta G\right),
$$

which must have non-log canonical singularity at some point $O \in G$, where

$$
\theta=\frac{845 m}{1056}+\frac{455 c}{264}+\frac{845 a}{24288}+\frac{65 b}{736}-\frac{8}{33} .
$$

Let us show that $0<\theta<1$. Obviously, we have

$$
0 \leqslant \tilde{M}_{y} \cdot \tilde{\Omega}=\bar{\Omega} \cdot \bar{M}_{y}-\frac{b}{13 \cdot 23}=\frac{8+38 c}{13 \cdot 33}-\frac{a+23 m}{23 \cdot 33}-\frac{b}{13 \cdot 23},
$$

which gives $184+874 c \geqslant 299 m+13 a+33 b$. Similarly, we have

$$
0 \leqslant \tilde{M}_{y} \cdot \tilde{E}=\bar{\Omega} \cdot E-\frac{b}{14 \cdot 23}=\frac{a}{13 \cdot 23}-\frac{b}{14 \cdot 23},
$$

which implies that $a \geqslant b$. So far, we obtained the system of inequalities

$$
\left\{\begin{array}{l}
4+43 m \geqslant a+14 c, \\
184+874 c \geqslant 299 m+13 a+33 b, \\
184+874 c \geqslant 299 m+13 a, \\
304 / 4485>m>88 / 2795, \\
2 / 23 \geqslant c>1 / 20, \\
a+14 c>448 / 65, \\
31012 / 4485>a \geqslant b,
\end{array}\right.
$$

which is still consistent, but it implies that $\theta<1$. If $\theta \leqslant 0$, then the \log pair

$$
\left(\tilde{X}, \frac{65}{32} \tilde{\Omega}+\frac{65 m}{32} \tilde{L}_{x z}+\frac{65 c}{32} \tilde{M}_{y}+\left(\frac{1495 m}{1056}+\frac{455 c}{528}+\frac{65 a}{1056}-\frac{4}{33}\right) \tilde{E}\right),
$$

is not \log canonical at the point O as well. Thus, if $\theta \leqslant 0$, then

$$
\frac{4}{13 \cdot 14} \geqslant \frac{4}{13 \cdot 14}+\theta \frac{23}{13 \cdot 14}=\left(\frac{65}{32} \tilde{\Omega}+\frac{65 m}{32} \tilde{L}_{x z}+\frac{65 c}{32} \tilde{M}_{y}+\left(\frac{1495 m}{1056}+\frac{455 c}{528}+\frac{65 a}{1056}-\frac{4}{33}\right) \tilde{E}\right) \cdot G>\frac{1}{14},
$$

which is absurd. Hence, we see that $1>\theta>0$.

Suppose that $O \neq O_{13}$ and $O \neq O_{14}$. Then $O \notin \tilde{E} \cup \tilde{M}_{x}$, and it follows from Lemma 1.4.6 that

$$
\frac{b}{13 \cdot 14}=-\frac{b}{23} G^{2}=\tilde{\Omega} \cdot G>\frac{32}{65},
$$

which implies that $b>448 / 5$. But $31012 / 4485>a \geqslant b$, which is a contradiction.
Therefore, we see that either $O=O_{13}$ or $O=O_{14}$.
Suppose that $O=O_{13}$. Then $O \notin \tilde{E}$, and it follows from Lemma 1.4.6 that

$$
\frac{8+38 c-13 m}{13 \cdot 33}-\frac{a}{33 \cdot 23}-\frac{b}{13 \cdot 23}=\bar{\Omega} \cdot \bar{M}_{y}-\frac{b}{13 \cdot 23}=\tilde{\Omega} \cdot \tilde{M}_{y}>\frac{32(1-\theta)}{13 \cdot 65},
$$

which implies that $c>12 / 65$. But $c<2 / 23$, which is a contradiction.
Thus, we see that $O=O_{14}$. Then $O \notin \tilde{M}_{y}$. Hence, it follows from Lemma 1.4.6 that

$$
\frac{a-b}{14 \cdot 23}=\tilde{\Omega} \cdot \tilde{E}>\frac{32(1-\theta)}{14 \cdot 65},
$$

which implies that $130 a+845 m+1820 c>1312$. Applying Lemma 1.4.6 again, we see that

$$
\frac{65}{32} \frac{b}{13 \cdot 14}=\frac{65}{32} \tilde{\Omega} \cdot G>\frac{37}{462}-\frac{1495 m}{14784}-\frac{65 c}{1056}-\frac{65 a}{14784},
$$

which implies that $1495 m+910 c+65 a+165 b \geqslant 1184$. Thus, we obtain the system of inequalities

$$
\left\{\begin{array}{l}
130 a+845 m+1820 c>1312, \\
1495 m+910 c+65 a+165 b \geqslant 1184 \\
4+43 m \geqslant a+14 c \\
184+874 c \geqslant 299 m+13 a+33 b \\
184+874 c \geqslant 299 m+13 a \\
304 / 4485>m>88 / 2795 \\
2 / 23 \geqslant c>1 / 20 \\
a+14 c>448 / 65 \\
31012 / 4485>a \geqslant b
\end{array}\right.
$$

which is, unfortunately, consistent. So, we must blow up the point O_{14}.
Let $\phi: \hat{X} \rightarrow \tilde{X}$ be a weighted blow up of O_{14} with weights $(1,9)$, let F be the exceptional curve of ϕ, let $\hat{\Omega}, \hat{L}_{x z}, \hat{M}_{y}, \hat{E}$ and \hat{G} be the proper transforms of $\Omega, L_{x z}, M_{y}$ and E, Grespectively. Then

$$
K_{\hat{X}} \equiv \phi^{*}\left(K_{\tilde{X}}\right)-\frac{8}{14} F, \hat{G} \equiv \phi^{*}(G)-\frac{9}{14} F, \hat{E} \equiv \phi^{*}(\tilde{E})-\frac{1}{14} F, \hat{\Omega} \equiv \phi^{*}(\tilde{\Omega})-\frac{d}{14} F,
$$

where d is a positive rational number.
The curve F contains one singular point A_{9} of the surface \hat{X} such that A_{9} is a singular point of type $\frac{1}{9}(1,4)$. Then $\hat{G} \not \nexists A_{9} \in \hat{E}$ and $\hat{E} \cap \hat{G}=\varnothing$. The log pull back of $\left(X, \frac{65}{32} D\right)$ is the log pair

$$
\left(\hat{X}, \frac{65}{32} \hat{\Omega}+\frac{65 m}{32} \hat{L}_{x z}+\frac{65 c}{32} \hat{M}_{y}+\left(\frac{1495 m}{1056}+\frac{455 c}{528}+\frac{65 a}{1056}-\frac{4}{33}\right) \hat{E}+\theta \hat{G}+\nu F\right),
$$

which must have a non-log canonical singularity at some point $A \in F$, where

$$
\nu=\frac{65 m}{168}+\frac{65 c}{96}+\frac{65 a}{3864}+\frac{325 b}{10304}+\frac{d}{14}+\frac{4}{21} .
$$

Obviously, the inequality $\nu>0$ holds. Let us show that $\nu<1$. Indeed, we have

$$
\frac{a-b}{14 \cdot 23}-\frac{d}{9 \cdot 14}=\hat{E} \cdot \hat{\Omega} \geqslant 0 \leqslant \hat{G} \cdot \hat{\Omega}=\frac{b}{13 \cdot 14}-\frac{d}{14},
$$

which implies that $b \geqslant 13 d$ and $9(a-b) \geqslant 23 d$. Thus, we obtain the system of inequalities

$$
\left\{\begin{array}{l}
130 a+845 m+1820 c>1312 \\
1495 m+910 c+65 a+165 b \geqslant 1184 \\
4+43 m \geqslant a+14 c \\
184+874 c \geqslant 299 m+13 a+33 b \\
184+874 c \geqslant 299 m+13 a \\
304 / 4485>m>88 / 2795 \\
2 / 23 \geqslant c>1 / 20 \\
a+14 c>448 / 65 \\
31012 / 4485>a \geqslant b \geqslant 13 d \\
9(a-b) \geqslant 23 d
\end{array}\right.
$$

which is consistent, but it implies that $\nu<1$.
Suppose that $A \neq A_{9}$ and $A \notin \hat{G}$. Then $A \notin \hat{E} \cup \hat{G}$, and it follows from Lemma 1.4.6 that

$$
\frac{d}{9}=\hat{\Omega} \cdot F>\frac{32}{65},
$$

which is impossible, because $31012 / 4485>a \geqslant b \geqslant 13 d$. We see that either $A=A_{9}$ or $A \in \hat{G}$.
Suppose that $A \in \hat{G}$. Then it follows from Lemma 1.4.6 that

$$
\frac{65 d}{32 \cdot 9}+\theta=\left(\frac{65}{32} \hat{\Omega}+\theta \hat{G}\right) \cdot F>1
$$

because $A \notin \hat{E}$. Applying Lemma 1.4.6 again, we see that the inequality

$$
\frac{65}{32}\left(\frac{b}{13 \cdot 14}-\frac{d}{14}\right)+\nu=\left(\frac{65}{32} \hat{\Omega}+\nu F\right) \cdot \hat{G}>1
$$

holds. Therefore, we obtain the system of inequalities

$$
\left\{\begin{array}{l}
1320 b+11960 m+20930 c+520 a>16192+2277 d, \\
16445 d+58305 m+125580 c+2535 a+6435 b>90528, \\
130 a+845 m+1820 c>1312, \\
1495 m+910 c+65 a+165 b \geqslant 1184, \\
4+43 m \geqslant a+14 c, \\
184+874 c \geqslant 299 m+13 a+33 b, \\
184+874 c \geqslant 299 m+13 a, \\
304 / 4485>m>88 / 2795, \\
2 / 23 \geqslant c>1 / 20, \\
a+14 c>448 / 65, \\
31012 / 4485>a \geqslant b \geqslant 13 d, \\
9(a-b) \geqslant 23 d,
\end{array}\right.
$$

which is inconsistent. Hence, we see that $A=A_{9}$. By Lemma 1.4.6, we have

$$
\frac{65}{32}\left(\frac{a-b}{14 \cdot 23}-\frac{d}{9 \cdot 14}\right)+\frac{\nu}{9}=\left(\frac{65}{32} \hat{\Omega}+\nu F\right) \cdot \hat{E}>\frac{1}{9},
$$

because A is not contained in \hat{G}. Applying Lemma 1.4.6 once again, we see that the inequality

$$
\frac{65 d}{32 \cdot 9}+\frac{1}{9}\left(\frac{1495 m}{1056}+\frac{455 c}{528}+\frac{65 a}{1056}-\frac{4}{33}\right)=\left(\frac{65}{32} \hat{\Omega}+\left(\frac{1495 m}{1056}+\frac{455 c}{528}+\frac{65 a}{1056}-\frac{4}{33}\right) \hat{E}\right) \cdot F>\frac{1}{9}
$$

holds. Therefore, we obtain the system of inequalities

$$
\left\{\begin{array}{l}
2145 d+1495 m+910 c+65 a>1184, \\
2275 a+11960 m+20930 c>25024+2277 d+780 b \\
130 a+845 m+1820 c>1312 \\
1495 m+910 c+65 a+165 b \geqslant 1184, \\
4+43 m \geqslant a+14 c \\
184+874 c \geqslant 299 m+13 a+33 b, \\
184+874 c \geqslant 299 m+13 a \\
304 / 4485>m>88 / 2795 \\
2 / 23 \geqslant c>1 / 20 \\
a+14 c>448 / 65 \\
31012 / 4485>a \geqslant b \geqslant 13 d \\
9(a-b) \geqslant 23 d
\end{array}\right.
$$

which is inconsistent. The obtained contradiction completes the proof.
Lemma 3.4.10. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(13,23,51,83,166)$. Then lct $(X)=91 / 40$.
Proof. The surface X can be defined by the quasihomogeneous equation

$$
t^{2}+y^{5} z+x z^{3}+x^{11} y=0,
$$

the surface X is singular at the point O_{x}, O_{y} and O_{z}. The curves C_{x} and C_{y} are irreducible. We have

$$
\frac{91}{40}=\operatorname{lct}\left(X, \frac{4}{13} C_{x}\right)<\operatorname{lct}\left(X, \frac{4}{23} C_{y}\right)=\frac{115}{24},
$$

which implies, in particular, that $\operatorname{lct}(X) \leqslant 91 / 40$.
Suppose that $\operatorname{lct}(X)<91 / 40$. Then there is a \mathbb{Q}-effective divisor $D \equiv-K_{X}$ such that the pair $\left(X, \frac{91}{40} D\right)$ is not \log canonical at some point P. By Remark 1.4.7, we may assume that the support of the divisor D does not contain the curves C_{x} and C_{y}.

Since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(663)\right)$ contains $x^{51}, y^{13} x^{28}, y^{26} x^{5}$ and z^{13}, it follows from Lemma 1.4.10 that $P \in \operatorname{Sing}(X) \cup C_{x}$.

Suppose that $P \in C_{x}$. Then

$$
\frac{8}{27 \cdot 51}=D \cdot C_{x} \geqslant\left\{\begin{array}{l}
\frac{\operatorname{mult}_{P}(D)}{23} \text { if } P=O_{y} \\
\frac{\operatorname{mult}_{P}(D)}{51} \text { if } P=O_{z}, \\
\operatorname{mult}_{P}(D) \text { if } P \neq O_{y} \text { and } P \neq O_{z},
\end{array}\right.
$$

which is impossible, because $\operatorname{mult}_{P}(D)>40 / 91$. Thus, we see that $P=O_{x}$. Then

$$
\frac{8}{13 \cdot 51}=D \cdot C_{y} \geqslant \frac{\operatorname{mult}_{P}(D)}{13}>\frac{40}{91 \cdot 13}>\frac{8}{13 \cdot 51}
$$

which is a contradiction. Thus, we see that $\operatorname{lct}(X)=91 / 40$.

3.5. Sporadic cases with $I=5$

Lemma 3.5.1. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(11,13,19,25,63)$. Then $\operatorname{lct}(X)=13 / 8$.
Proof. The surface X can be defined by the quasihomogeneous equation

$$
z^{2} t+y t^{2}+x y^{4}+x^{4} z=0
$$

and X is singular at O_{x}, O_{y}, O_{z} and O_{t}. We have

$$
\operatorname{lct}\left(X, \frac{5}{13} C_{y}\right)=\frac{13}{18}<\operatorname{lct}\left(X, \frac{5}{11} C_{x}\right)=\frac{33}{20}<\operatorname{lct}\left(X, \frac{5}{19} C_{z}\right)=\frac{57}{25}<\operatorname{lct}\left(X, \frac{5}{25} C_{t}\right)=\frac{25}{11},
$$

which implies, in particular, that $\operatorname{lct}(X) \leqslant 13 / 8$.

The curve C_{x} is reducible. We have $C_{x}=L_{x t}+M_{x}$, where $L_{x t}$ and M_{x} are irreducible curves such that $L_{x t}$ is given by $x=t=0$, and M_{x} is given by $x=z^{2}+y t=0$. Then

$$
L_{x t} \cdot L_{x t}=\frac{-27}{13 \cdot 19}, M_{x} \cdot M_{x}=\frac{-28}{13 \cdot 25}, L_{x t} \cdot M_{x}=\frac{2}{13}, D \cdot L_{x t}=\frac{5}{13 \cdot 19}, D \cdot M_{x}=\frac{10}{13 \cdot 25},
$$

and $O_{y} \in C_{x}$. Note that C_{x} is smooth outside of the point O_{y}.
The curve C_{y} is reducible. We have $C_{y}=L_{y z}+M_{y}$, where $L_{y z}$ and M_{y} are irreducible curves such that $L_{y z}$ is given by $y=z=0$, and M_{y} is given by $y=x^{4}+z t=0$.

$$
L_{y z} \cdot L_{y z}=\frac{-31}{11 \cdot 25}, M_{y} \cdot M_{y}=\frac{-24}{19 \cdot 25}, \quad L_{y z} \cdot M_{y}=\frac{4}{25}, D \cdot L_{y z}=\frac{5}{11 \cdot 25}, D \cdot M_{y}=\frac{20}{19 \cdot 25},
$$

and the only singular point of the curve C_{y} is O_{t}. We have $M_{y} \cdot M_{x}=31 / 475$ and $L_{x t} \cdot L_{y z}=0$.
The curve C_{z} is reducible. We have $C_{z}=L_{y z}+M_{z}$, where M_{z} is an irreducible curve that is given by the equations $z=t^{2}+x y^{4}=0$. The only singular point of C_{z} is O_{x}. We have

$$
L_{y z} \cdot L_{x t}=0, M_{z} \cdot M_{z}=\frac{12}{11 \cdot 13}, L_{y z} \cdot M_{z}=\frac{2}{11}, D \cdot M_{z}=\frac{10}{11 \cdot 13} .
$$

The curve C_{t} is reducible. We have $C_{t}=L_{x t}+M_{t}$, where M_{t} is an irreducible curve that is given by the equations $t=y^{4}+x^{3} z=0$. The only singular point of C_{t} is O_{z}. We have

$$
M_{t} \cdot M_{t}=\frac{56}{11 \cdot 19}, L_{x t} \cdot M_{t}=\frac{4}{19}, D \cdot M_{t}=\frac{20}{11 \cdot 19} .
$$

We suppose that $\operatorname{lct}(X)<13 / 8$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the log pair $\left(X, \frac{13}{8} D\right)$ is not \log canonical at some point $P \in X$. Let us derive a contradiction.

Suppose that $P \notin C_{x} \cup C_{y} \cup C_{z} \cup C_{t}$. Then there is a unique curve $Z \subset X$ that is cut out by

$$
\alpha y t^{2}=x^{4} z
$$

such that $P \in Z$, where $0 \neq \alpha \in \mathbb{C}$. The curve Z is reducible. Indeed, we have

$$
L_{x t} \subset \operatorname{Supp}(Z) \supset L_{y z},
$$

and we can write $Z=C+p L_{x t}+q L_{y z}$, where $p \in \mathbb{Z}_{>0} \ni q$, and C is a curve on X whose support does not contains the curves $L_{x t}$ and $L_{y z}$. Let us prove that C is irreducible and find p and q.

The open subset $Z \backslash\left(Z \cap C_{x}\right)$ of the curve Z is a \mathbb{Z}_{11}-quotient of the affine curve

$$
\alpha y t^{2}-z=z^{2} t+y t^{2}+y^{4}+z=0 \subset \mathbb{C}^{3} \cong \operatorname{Spec}(\mathbb{C}[y, z, t]),
$$

which is isomorphic to an affine septic curve $R_{x} \subset \mathbb{C}^{2}$ that is given by the equation

$$
\alpha^{2} y\left(t^{5}+y^{3}+(1+\alpha) t^{2}\right)=0 \subset \mathbb{C}^{2} \cong \operatorname{Spec}(\mathbb{C}[y, z])
$$

which implies that the curve C is irreducible, the inequality $\operatorname{mult}_{P}(C) \leqslant 6$ and the equality

$$
q=\left\{\begin{array}{l}
1 \text { if } \alpha \neq-1, \\
2 \text { if } \alpha=-1,
\end{array}\right.
$$

hold. But $p=2$, because the subset $Z \backslash\left(Z \cap C_{y}\right)$ is a \mathbb{Z}_{13}-quotient of the curve

$$
t^{2}-\frac{z x^{4}}{\alpha}=z^{2} t+x+\frac{\alpha+1}{\alpha} x^{4} z=0 \subset \mathbb{C}^{3} \cong \operatorname{Spec}(\mathbb{C}[x, z, t])
$$

Therefore, we see that $P \in C$ and we have the following possibilities:

- the inequality $\alpha \neq-1$ holds, $p=2 \neq q=1$ and

$$
C \cdot L_{x t}=\frac{117}{247}, C \cdot L_{y z}=\frac{94}{275}, C \cdot C=\frac{8636}{5225}, D \cdot C=\frac{244}{1045} ;
$$

- the equality $\alpha=-1$ holds, $p=q=2$ and

$$
C \cdot L_{x t}=\frac{117}{247}, C \cdot L_{y z}=\frac{5}{11}, C \cdot C=\frac{179}{209}, D \cdot C=\frac{45}{209} .
$$

We see that C is irreducible and $\operatorname{mult}_{P}(C) \leqslant 6$. Then the log pair

$$
\left(X, \frac{13}{8 \cdot 63}\left(C+p L_{x t}+q L_{y z}\right)\right)
$$

must be \log canonical at the point P. By Remark 1.4.7, we may assume that $\operatorname{Supp}(D)$ does not contain at least one curve among the curves $C, L_{x t}$ and $L_{y z}$. Put

$$
D=\epsilon C+\Xi,
$$

where Ξ is an effective \mathbb{Q}-divisor such that $C \not \subset \operatorname{Supp}(\Xi)$. Now we obtain the inequality $\epsilon \leqslant 5 / 94$, because either $\epsilon=0$, or $L_{x t} \cdot \Xi \geqslant 0$, or $L_{z y} \cdot \Xi \geqslant 0$. On the other hand, we see that

$$
D \cdot C=\epsilon C^{2}+\Xi \cdot C \geqslant \epsilon C^{2}+\operatorname{mult}_{P}(\Xi)=\epsilon C^{2}+\operatorname{mult}_{P}(D)-\epsilon \operatorname{mult}_{P}(C)>\epsilon C^{2}+\frac{8}{13}-6 \epsilon
$$

which implies that $\epsilon>2594 / 40755$. But $\epsilon \leqslant 5 / 94$. Thus, we see that $P \in C_{x} \cup C_{y} \cup C_{z} \cup C_{t}$.
It follows from Remark 1.4.7 that we may assume that $\operatorname{Supp}(D)$ does not contains are least one irreducible component of the curves $C_{x}, C_{y}, C_{z}, C_{t}$.

Suppose that $P \in L_{x t}$. Put $D=\delta L_{x t}+\Theta$, where Θ is an effective \mathbb{Q}-divisor whose support does not contain the curve $L_{x t}$. If $\delta \neq 0$, then

$$
\frac{10}{13 \cdot 25}=D \cdot M_{x}=\left(\delta L_{x t}+\Theta\right) \cdot M_{x} \geqslant \delta L_{x t} \cdot M_{x}=\frac{2 \delta}{13},
$$

which implies that $\delta \leqslant 1 / 5$. Then it follows from Lemma 1.4.6 that

$$
\frac{5+27 \delta}{13 \cdot 19}=\left(-K_{X}-\delta L_{x t}\right) \cdot L_{x t}=\Theta \cdot L_{x t}>\left\{\begin{array}{l}
\frac{8}{13} \text { if } P \notin \operatorname{Sing}(X) \\
\frac{8}{13 \cdot 19} \text { if } P=O_{z} \\
\frac{8}{13 \cdot 13} \text { if } P=O_{y}
\end{array}\right.
$$

which implies that $\delta>3 / 27$. But $\delta \leqslant 1 / 5$. Thus, we see that $P \notin L_{x t}$.
Suppose tat $P \in L_{y z}$ and $P \neq O_{t}$. Arguing as in the previous case, we obtain a contradiction. Suppose that $P \in M_{x}$ and $P \neq O_{t}$. Then P is a smooth point of X, because $P \notin L_{x t}$. Put

$$
D=e M_{x}+\Upsilon
$$

where Υ is an effective \mathbb{Q}-divisor such that $M_{x} \not \subset \operatorname{Supp}(\Upsilon)$. If $e \neq 0$, then

$$
\frac{5}{13 \cdot 19}=D \cdot L_{x t}=\left(e M_{x}+\Upsilon\right) \cdot L_{x t} \geqslant e L_{x t} \cdot M_{x}=\frac{2 e}{13},
$$

which implies that $e \leqslant 5 / 38$. Then it follows from Lemma 1.4.6 that

$$
\frac{10+28 e}{13 \cdot 25}=\left(-K_{X}-e M_{x}\right) \cdot M_{x}=\Upsilon \cdot M_{x}>\frac{8}{13},
$$

which implies that $e>95 / 14$. But $e \leqslant 5 / 38$. Thus, we see that $P \notin M_{x}$ or $P=O_{t}$.
Arguing as above, we see that either $P \notin M_{y}$ or $P=O_{t}$. Then $P \in M_{z} \cup M_{t}$ or $P=O_{t}$.
Suppose that $P \in M_{z}$. Put $D=s M_{z}+\Delta$, where Δ is an effective \mathbb{Q}-divisor whose support does not contain the curve M_{x}. If $s \neq 0$, then

$$
\frac{5}{11 \cdot 25}=D \cdot M_{z}=\left(s M_{z}+\Delta\right) \cdot L_{y z} \geqslant s M_{x} \cdot L_{x t}=\frac{2 s}{11},
$$

which implies that $s \leqslant 1 / 10$. Then it follows from Lemma 1.4.6 that

$$
\frac{10}{11 \cdot 13}=D \cdot M_{x}=s M_{x}^{2}+\Delta \cdot M_{X}>s M_{x}^{2}+\frac{8}{13} \geqslant \frac{8}{13}>\frac{10}{11 \cdot 13},
$$

which is a contradiction. Thus, we see that $P \notin M_{z}$. Similarly, we see that $P \notin M_{t}$.
The obtained contradiction shows that $P=O_{t}$. Then

$$
\frac{5}{11 \cdot 25}=D \cdot L_{y z}>\frac{8}{13 \cdot 25}>\frac{5}{11 \cdot 25}
$$

whenever $L_{y z} \not \subset \operatorname{Supp}(D)$. Thus, we see that $L_{y z} \subset \operatorname{Supp}(D)$. Then $M_{y} \not \subset \operatorname{Supp}(D)$. Put

$$
D=m L_{y z}+c M_{x}+\Omega
$$

where $m>0$ and $c \geqslant 0$, and Ω is an effective \mathbb{Q}-divisor such that $L_{y z} \not \subset \operatorname{Supp}(\Omega) \not \supset M_{x}$. Then

$$
\frac{20}{19 \cdot 25}=D \cdot M_{y}=\left(m L_{y z}+c M_{x}+\Omega\right) \cdot M_{y} \geqslant \frac{4 m}{25}+\frac{\operatorname{mult}_{O_{t}}(D)-m}{25}>\frac{3 m+\frac{8}{13}}{25},
$$

which implies that $m<36 / 247$. Then it follows from Lemma 1.4.6 that

$$
\frac{5+31 m}{11 \cdot 25}=\left(-K_{X}-m L_{y z}\right) \cdot L_{y z}=\left(\Omega+c M_{x}\right) \cdot L_{y z}>\frac{8}{13 \cdot 25},
$$

which implies that $m>23 / 403$. We will see later that $c>0$ as well.
Arguing as above, we see obtain an inconsistent system of inequalities

$$
\left\{\begin{array}{l}
\frac{20}{19 \cdot 25}>\frac{3 m+\frac{1216}{905}}{25}, \\
\frac{5+31 m}{11 \cdot 25}>\frac{1216}{905 \cdot 25}
\end{array}\right.
$$

in the case when $\left(X, \frac{1216}{905} D\right)$ is not \log canonical at O_{t}. We see that $\operatorname{lct}(X) \geqslant 1216 / 905$.
Let $\pi: \bar{X} \rightarrow X$ be a weighted blow up of O_{t} with weights $(11,19)$, let E be the exceptional curve of π, let $\bar{\Omega}, \bar{L}_{y z}, \bar{M}_{x}, \bar{M}_{y}$ be the proper transforms of $\Omega, L_{y z}, M_{x}, M_{y}$, respectively. Then

$$
K_{\bar{X}} \equiv \pi^{*}\left(K_{X}\right)+\frac{5}{25} E, \bar{L}_{y z} \equiv \pi^{*}\left(L_{y z}\right)-\frac{19}{25} E, \bar{M}_{y} \equiv \pi^{*}\left(M_{y}\right)-\frac{19}{25} E, \bar{M}_{x} \equiv \pi^{*}\left(M_{x}\right)-\frac{11}{25} E,
$$

and there is a positive rational number a such that

$$
\bar{\Omega} \equiv \pi^{*}(\Omega)-\frac{a}{25} E .
$$

The curve E contains two singular points Q_{11} and Q_{19} of \bar{X} such that Q_{11} is a singular point of type $\frac{1}{11}(2,3)$, and Q_{19} is a singular point of type $\frac{1}{19}(11,13)$. Then

$$
\bar{L}_{y z} \cup \bar{M}_{y} \not \supset Q_{19} \in \bar{M}_{x} \not \ngtr Q_{11}=\bar{L}_{y z} \cap \bar{M}_{y},
$$

which implies that $\bar{L}_{y z} \cap \bar{M}_{x}=\varnothing$. The log pull back of the \log pair $\left(X, \frac{13}{8} D\right)$ is the \log pair

$$
\left(\bar{X}, \frac{13}{8} \bar{\Omega}+\frac{13 m}{8} \bar{L}_{y z}+\frac{13 c}{8} \bar{M}_{x}+\left(\frac{247 m}{200}+\frac{143 c}{200}+\frac{13 a}{200}-\frac{1}{5}\right) E\right),
$$

which must have non-log canonical singularity at some point $Q \in E$. We have

$$
0 \leqslant \bar{L}_{y z} \cdot \bar{\Omega}=\frac{5}{11 \cdot 25}+\frac{31 m-a-11 c}{11 \cdot 25}
$$

which implies that $a+11 c \leqslant 5+31 m$. But $m<36 / 247$. Hence, we see that $a<2351 / 247$ and

$$
\left(\frac{247 m}{200}+\frac{143 c}{200}+\frac{13 a}{200}-\frac{1}{5}\right)<1
$$

The \log pull back of the the \log pair $\left(X, \frac{13}{8} D\right)$ is effective if and only if the inequality

$$
19 m+11 c+a \geqslant 40 / 13
$$

holds. On the other hand, if $19 m+11 c+a \leqslant 40 / 13$, then the log pair

$$
\left(\bar{X}, \frac{13}{8} \bar{\Omega}+\frac{13 m}{8} \bar{L}_{y z}+\frac{13 c}{8} \bar{M}_{x}\right)
$$

is not \log canonical at the point Q as well. Thus, if $19 m+11 c+a \leqslant 40 / 13$, then

$$
\frac{40}{13 \cdot 11 \cdot 19} \geqslant \frac{a+19 m+11 c}{11 \cdot 19}=\left(\bar{\Omega}+m \bar{L}_{y z}+c \bar{M}_{x}\right) \cdot E>\left\{\begin{array}{l}
\frac{8}{13} \text { if } Q_{19} \neq Q \neq Q_{11} \\
\frac{8}{13} \frac{1}{11} \text { if } Q=Q_{11} \\
\frac{8}{13} \frac{1}{19} \text { if } Q=Q_{19}
\end{array}\right.
$$

which is absurd. Thus, the \log pull back of $\left(X, \frac{13}{8} D\right)$ is effective.

Suppose that $Q \neq Q_{11}$ and $Q \neq Q_{19}$. Then $Q \notin \bar{L}_{y z} \cup \bar{M}_{x}$. By Lemma 1.4.6, we have

$$
\frac{a}{19 \cdot 11}=\frac{a}{25} E^{2}=\bar{\Omega} \cdot E>\frac{8}{13},
$$

because $E^{2}=-25 / 209$. Then $a>1672 / 13$, which is impossible, because $a<2351 / 247$.
Therefore, we see that either $Q=Q_{11}$ or $Q=Q_{19}$.
Suppose that $Q=Q_{11}$. Then $Q \notin \bar{M}_{x}$. Hence, it follows from Lemma 1.4.6 that

$$
\left(\frac{13}{8} \bar{\Omega}+\left(\frac{247 m}{200}+\frac{143 c}{200}+\frac{13 a}{200}-\frac{1}{5}\right) E\right) \cdot \bar{L}_{y z}>\frac{1}{11},
$$

but $\bar{L}_{y z} \cdot E=1 / 11$ and $\bar{L}_{y z} \cdot \bar{M}_{x}=0$. Moreover, we have

$$
\bar{\Omega} \cdot \bar{L}_{y z}=\left(\bar{\Omega}+c \bar{M}_{x}\right) \cdot \bar{L}_{y z}=\left(D-m L_{y z}\right) \cdot L_{y z}-\frac{a+11 c}{25 \cdot 11}=\frac{5+31 m-a-11 c}{11 \cdot 25},
$$

which immediately implies that $m>19 / 130$. But $m<36 / 247$, which is a contradiction.
Thus, we see that $Q=Q_{19}$. Then $Q \notin \bar{L}_{y z}$, and it follows from Lemma 1.4.6 that

$$
\left(\frac{13}{8} \bar{\Omega}+\left(\frac{247 m}{200}+\frac{143 c}{200}+\frac{13 a}{200}-\frac{1}{5}\right) E\right) \cdot \bar{M}_{x}>\frac{1}{19},
$$

but we have $\bar{M}_{x} \cdot E=1 / 19$. Therefore, it follows from the equality
$\bar{\Omega} \cdot \bar{M}_{x}=\Omega \cdot M_{x}-\frac{a}{25 \cdot 19}=D \cdot M_{x}-m L_{y z} \cdot M_{x}-c M_{x} \cdot M_{x}-\frac{a}{25 \cdot 19}=\frac{10-13 m+28 c}{13 \cdot 25}-\frac{a}{25 \cdot 19}$,
which implies that $c>2 / 27$. But $c<5 / 28$. However, we have no contradiction here.
Let $\psi: \tilde{X} \rightarrow \bar{X}$ be a weighted blow up of Q_{19} with weights (11,13), let G be the exceptional curve of ψ, let $\tilde{\Omega}, \tilde{L}_{y z}, \tilde{M}_{x}, \tilde{E}$ be the proper transforms of $\Omega, L_{y z}, M_{x}, E$, respectively. Then

$$
K_{\tilde{X}} \equiv \psi^{*}\left(K_{\bar{X}}\right)+\frac{5}{19} G, \tilde{M}_{x} \equiv \psi^{*}\left(\bar{M}_{x}\right)-\frac{11}{19} G, \tilde{E} \equiv \psi^{*}(E)-\frac{13}{19} G, \tilde{\Omega} \equiv \psi^{*}(\bar{\Omega})-\frac{b}{19} G,
$$

where b is a positive rational number.
The curve G contains two singular points O_{11} and O_{13} of \tilde{X} such that O_{11} is a singular point of type $\frac{1}{11}(2,3)$, and O_{13} is a singular point of type $\frac{1}{13}(1,2)$. Then

$$
\tilde{E} \not \supset O_{13} \in \tilde{M}_{x} \not \nexists O_{11} \in \tilde{E},
$$

where $\tilde{E} \cap \tilde{M}_{x}=\varnothing$. The log pull back of the \log pair $\left(X, \frac{13}{8} D\right)$ is the \log pair

$$
\left(\tilde{X}, \frac{13}{8} \tilde{\Omega}+\frac{13 m}{8} \tilde{L}_{y z}+\frac{13 c}{8} \tilde{M}_{x}+\left(\frac{247 m}{200}+\frac{143 c}{200}+\frac{13 a}{200}-\frac{1}{5}\right) \tilde{E}+\theta G\right),
$$

which must have non-log canonical singularity at some point $O \in G$, where

$$
\theta=\frac{143 c}{100}+\frac{13 b}{152}+\frac{169 a}{3800}+\frac{169 m}{200}-\frac{2}{5} .
$$

Let us show that $\theta<1$. Indeed, we have

$$
0 \leqslant \tilde{M}_{x} \cdot \tilde{\Omega}=\frac{10}{13 \cdot 25}+\frac{28}{13 \cdot 25}-\frac{a+19 m}{19 \cdot 25}-\frac{b}{19 \cdot 13}
$$

which implies that $25 b \leqslant 190+532 c-13(a+19 m)$. Then $\theta<1$, because $c>2 / 27$ and $c<5 / 38$.
Let us show that $\theta>0$. If $\theta \leqslant 0$, then the \log pair

$$
\left(\tilde{X}, \frac{13}{8} \tilde{\Omega}+\frac{13 m}{8} \tilde{L}_{y z}+\frac{13 c}{8} \tilde{M}_{x}+\left(\frac{247 m}{200}+\frac{143 c}{200}+\frac{13 a}{200}-\frac{1}{5}\right) \tilde{E}\right)
$$

is not \log canonical at the point O as well. Thus, if $\theta \leqslant 0$, then

$$
\frac{5}{11 \cdot 13}+\theta \frac{19}{11 \cdot 13}=\left(\frac{13}{8} \tilde{\Omega}+\frac{13 m}{8} \tilde{L}_{y z}+\frac{13 c}{8} \tilde{M}_{x}+\left(\frac{247 m}{200}+\frac{143 c}{200}+\frac{13 a}{200}-\frac{1}{5}\right) \tilde{E}\right) \cdot G>\frac{1}{13},
$$

which implies that $\theta>6 / 19$, which is absurd. Hence, we see that $1>\theta>0$.
Suppose that $O \neq O_{11}$ and $O \neq O_{13}$. Then $O \notin \tilde{E} \cup \tilde{M}_{x}$, and it follows from Lemma 1.4.6 that

$$
\frac{b}{11 \cdot 13}=-\frac{b}{19} G^{2}=\tilde{\Omega} \cdot G>\frac{8}{13},
$$

because $G^{2}=-19 / 143$. Thus, we see that $b>88$. On the other hand, the inequalities

$$
0 \leqslant\left(\tilde{\Omega}+m \tilde{L}_{y z}\right) \cdot \tilde{E}=\frac{a+19 m-b}{11 \cdot 19}
$$

hold. Then $a+19 m \geqslant b>88$. Thus, we obtain the system of inequalities

$$
\left\{\begin{array}{l}
a+19 m \geqslant b>88 \\
25 b \leqslant 190+532 c-13(a+19 m) \\
5 / 38>c>2 / 27
\end{array}\right.
$$

which is inconsistent. Therefore, we see that either $O=O_{11}$ or $O=O_{13}$.
Suppose that $O=O_{13}$. Then $O \notin \tilde{E}$, and it follows from Lemma 1.4.6 that

$$
\frac{190+532 c-25 b-13(a+19 m)}{19 \cdot 13 \cdot 25}=\tilde{\Omega} \cdot \tilde{M}_{x}>\frac{56}{845}-\frac{22 c}{325}-\frac{b}{247}-\frac{a}{475}-\frac{m}{25}
$$

which implies that $c>3 / 13$. But $c<5 / 28$, which is a contradiction.
Thus, we see that $O=O_{11}$. Then $O \notin \tilde{M}_{x}$. Hence, it follows from Lemma 1.4.6 that

$$
\frac{a+19 m-b}{19 \cdot 11}=\left(\tilde{\Omega}+m \tilde{L}_{y z}\right) \cdot \tilde{E}>\frac{56}{715}-\frac{2 c}{25}-\frac{b}{209}-\frac{13 a}{5225}-\frac{13 m}{275}
$$

which implies that $22 c>280 / 13-2(a+19 m)$. Applying Lemma 1.4.6 again, we see that

$$
\frac{b}{11 \cdot 13}=\tilde{\Omega} \cdot G>\frac{48}{65}-\frac{19 m}{25}-\frac{11 c}{25}-\frac{a}{25}
$$

which implies that $13(a+19 m)+143 c+25 b>240$. Note that $\bar{M}_{y} \not \subset \operatorname{Supp}(\bar{\Omega})$. Thus we have

$$
0 \leqslant \bar{\Omega} \cdot \bar{M}_{y}=\Omega \cdot M_{y}-\frac{a+19 m}{25} E \cdot \bar{M}_{x}=\frac{20-31 c}{19 \cdot 25}-\frac{a+19 m}{25 \cdot 11},
$$

which implies that $19(a+19 m) \leqslant 220-341 c$. Similarly, we see that

$$
\frac{20}{19 \cdot 25}-\frac{31 c}{19 \cdot 25}-\frac{4 m}{25}=\left(D-c M x-m L_{y z}\right) \cdot M_{y}=\Omega \cdot M_{y} \geqslant \frac{\operatorname{mult}_{O_{t}}(\Omega)}{25}>\frac{8 / 13-m-c}{25}
$$

which implies that $108 / 13>12 c+57 m$. Thus, we obtain the system of inequalities

$$
\left\{\begin{array}{l}
19(a+19 m) \leqslant 220-341 c \\
25 b \leqslant 190+532 c-13(a+19 m) \\
13(a+19 m)+143 c+25 b>240 \\
22 c>280 / 13-2(a+19 m) \\
108 / 13>12 c+57 m \\
a+11 c \leqslant 5+31 m \\
5 / 38>c>2 / 27
\end{array}\right.
$$

which is, unfortunately, consistent. So, we must blow up the point O_{11}.
Let $\phi: \hat{X} \rightarrow \tilde{X}$ be a weighted blow up of O_{11} with weights $(2,3)$, let F be the exceptional curve of ϕ, let $\hat{\Omega}, \hat{L}_{y z}, \hat{M}_{x}, \hat{E}$ be the proper transforms of $\Omega, L_{y z}, M_{x}, E$, respectively. Then

$$
K_{\hat{X}} \equiv \phi^{*}\left(K_{\tilde{X}}\right)-\frac{6}{11} F, \hat{G} \equiv \phi^{*}(G)-\frac{3}{11} F, \hat{E} \equiv \phi^{*}(\tilde{E})-\frac{2}{11} F, \hat{\Omega} \equiv \phi^{*}(\tilde{\Omega})-\frac{d}{11} F,
$$

where d is a positive rational number. Then $F^{2}=-11 / 6$ and $\hat{\Omega} \cdot F=\frac{d}{6},\left(\hat{\Omega}+m \hat{L}_{y z}\right) \cdot \hat{E}=\frac{a+19 m-b}{11 \cdot 19}-\frac{d}{33}, \hat{\Omega} \cdot \hat{G}=\frac{b}{11 \cdot 13}-\frac{d}{22}, F \cdot \hat{G}=\frac{1}{2}, F \cdot \hat{E}=\frac{1}{3}$.

The curve F contains two singular points A_{2} and A_{3} of the surface \hat{X} such that A_{2} is a singular point of type $\frac{1}{2}(1,1)$, and A_{3} is a singular point of type $\frac{1}{3}(1,2)$. Then

$$
\hat{E} \not \nexists A_{2} \in \hat{G} \not \nexists A_{3} \in \hat{E},
$$

where $\hat{E} \cap \hat{G}=\varnothing$. The \log pull back of the \log pair $\left(X, \frac{13}{8} D\right)$ is the \log pair

$$
\left(\hat{X}, \frac{13}{8} \hat{\Omega}+\frac{13 m}{8} \hat{L}_{y z}+\frac{13 c}{8} \hat{M}_{x}+\left(\frac{247 m}{200}+\frac{143 c}{200}+\frac{13 a}{200}-\frac{1}{5}\right) \hat{E}+\theta \hat{G}+\nu F\right),
$$

which must have non-log canonical singularity at some point $A \in F$, where

$$
\nu=\frac{91 m}{200}+\frac{13 c}{25}+\frac{91 a}{3800}+\frac{39 b}{1672}+\frac{13 d}{88}+\frac{2}{5} .
$$

Obviously, the inequality $\nu>0$ holds. Let us show that $\nu<1$. Indeed, we have

$$
\frac{a+19 m-b}{11 \cdot 19}-\frac{d}{33}=\hat{E} \cdot\left(\hat{\Omega}+m \hat{L}_{y z}\right) \geqslant 0 \leqslant \hat{G} \cdot \hat{\Omega}=\frac{b}{11 \cdot 13}-\frac{d}{22},
$$

which implies that $2 b \geqslant 13 d$ and $3(a+19 m-b) \geqslant 19 d$. But the system of inequalities

$$
\left\{\begin{array}{l}
2 b \geqslant 13 d \\
3(a+19 m-b) \geqslant 19 d, \\
1001(a+19 m)+21736 c+975 b+6175 d \geqslant 25080 \\
19(a+19 m) \leqslant 220-341 c \\
25 b \leqslant 190+532 c-13(a+19 m), \\
13(a+19 m)+143 c+25 b>240, \\
22 c>280 / 13-2(a+19 m), \\
108 / 13>12 c+57 m \\
a+11 c \leqslant 5+31 m \\
5 / 38>c>2 / 27
\end{array}\right.
$$

is inconsistent. Hence, we see that $1>\nu>0$.
Suppose that $A \neq A_{2}$ and $A \neq A_{3}$. Then $A \notin \hat{E} \cup \hat{G}$, and it follows from Lemma 1.4.6 that

$$
\frac{d}{6}=\hat{\Omega} \cdot F>\frac{8}{13},
$$

which implies that $d>48 / 13$. But the system of inequalities

$$
\left\{\begin{array}{l}
d>48 / 13 \\
2 b \geqslant 13 d \\
3(a+19 m-b) \geqslant 19 d \\
19(a+19 m) \leqslant 220-341 c \\
25 b \leqslant 190+532 c-13(a+19 m), \\
13(a+19 m)+143 c+25 b>240, \\
22 c>280 / 13-2(a+19 m), \\
108 / 13>12 c+57 m \\
a+11 c \leqslant 5+31 m \\
5 / 38>c>2 / 27
\end{array}\right.
$$

is inconsistent. Therefore, we see that either $A=A_{2}$ or $A=A_{3}$.
Suppose that $A=A_{2}$. Then it follows from Lemma 1.4.6 that

$$
\frac{13 d}{48}+\frac{1}{2}\left(\frac{143 c}{100}+\frac{13 b}{152}+\frac{169 a}{3800}+\frac{169 m}{200}-\frac{2}{5}\right)=\left(\frac{13}{8} \hat{\Omega}+\theta \hat{G}\right) \cdot F>\frac{1}{2},
$$

because $A \notin \hat{E}$. Applying Lemma 1.4.6 again, we see that the inequality

$$
\frac{13}{48}\left(\frac{b}{11 \cdot 13}-\frac{d}{22}\right)+\frac{1}{2}\left(\frac{91 m}{200}+\frac{13 c}{25}+\frac{91 a}{3800}+\frac{39 b}{1672}+\frac{13 d}{88}+\frac{2}{5}\right)=\left(\frac{13}{8} \hat{\Omega}+\nu F\right) \cdot \hat{G}>\frac{1}{2}
$$

holds. Therefore, we obtain the system of inequalities

$$
\left\{\begin{array}{l}
2 b \geqslant 13 d \\
3(a+19 m-b) \geqslant 19 d \\
16302 c+975 b+507(a+19 m)+6175 d>15960 \\
1976 c+91(a+19 m)+175 b>2280 \\
19(a+19 m) \leqslant 220-341 c \\
25 b \leqslant 190+532 c-13(a+19 m) \\
13(a+19 m)+143 c+25 b>240 \\
22 c>280 / 13-2(a+19 m) \\
108 / 13>12 c+57 m \\
a+11 c \leqslant 5+31 m \\
5 / 38>c>2 / 27
\end{array}\right.
$$

which is inconsistent. Hence, we see that $A=A_{3}$. By Lemma 1.4.6, we have

$$
\frac{13 d}{48}+\frac{1}{3}\left(\frac{247 m}{200}+\frac{143 c}{200}+\frac{13 a}{200}-\frac{1}{5}\right)=\left(\frac{13}{8} \hat{\Omega}+\left(\frac{247 m}{200}+\frac{143 c}{200}+\frac{13 a}{200}-\frac{1}{5}\right) \hat{E}\right) \cdot F>\frac{1}{3}
$$

because A is not contained in \hat{G}. Applying Lemma 1.4.6 again, we see that the inequality

$$
\frac{13}{4}\left(\frac{a+19 m-b}{11 \cdot 19}-\frac{d}{33}\right)+\frac{1}{3}\left(\frac{91 m}{200}+\frac{13 c}{25}+\frac{91 a}{3800}+\frac{39 b}{1672}+\frac{13 d}{88}+\frac{2}{5}\right)=\left(\frac{13}{8} \hat{\Omega}+\nu F\right) \cdot \hat{E}>\frac{1}{3},
$$

holds. Therefore, we obtain the system of inequalities

$$
\left\{\begin{array}{l}
2 b \geqslant 13 d \\
3(a+19 m-b) \geqslant 19 d \\
286 c+26(a+19 m)+325 d>480 \\
143 c+13(a+19 m)>165 \\
19(a+19 m) \leqslant 220-341 c \\
25 b \leqslant 190+532 c-13(a+19 m) \\
13(a+19 m)+143 c+25 b>240 \\
22 c>280 / 13-2(a+19 m) \\
108 / 13>12 c+57 m \\
a+11 c \leqslant 5+31 m \\
5 / 38>c>2 / 27
\end{array}\right.
$$

which is inconsistent. The obtained contradiction completes the proof.
Lemma 3.5.2. Suppose that and $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(11,25,37,68,136)$. Then $\operatorname{lct}(X)=11 / 6$.
Proof. The surface X can be defined by the quasihomogeneous equation

$$
x y^{5}+x^{9} z+y z^{3}+t^{2}=0,
$$

and X is singular at the points O_{x}, O_{y} and O_{z}.
The curves C_{x} and C_{y} are reduced and irreducible. We have

$$
\frac{11}{6}=\operatorname{lct}\left(X, \frac{5}{11} C_{x}\right)<\operatorname{lct}\left(X, \frac{5}{25} C_{y}\right)=\frac{55}{18},
$$

which implies thatlct $(X) \leqslant 11 / 6$.
Suppose that $\operatorname{lct}(X)<11 / 6$. Then there is an effective \mathbb{Q}-divisor $D \equiv-K_{X}$ such that the pair $\left(X, \frac{11}{6} D\right)$ is not \log canonical at some point P. by Remark 1.4.7 we may assume that the support of D does not contain C_{x} and C_{y}.

Since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(407)\right)$ contains x^{37}, z^{11} and $x^{12} y^{11}$, we see that $P \in \operatorname{Sing}(X) \cup C_{x}$ by Lemma 1.4.10.

Suppose that $P \in C_{x}$. Then

$$
\frac{10}{25 \cdot 37}=D \cdot C_{x} \geqslant\left\{\begin{array}{l}
\frac{\operatorname{mult}_{P}(D)}{25} \text { if } P=O_{y}, \\
\frac{\operatorname{mult}_{P}(D)}{37} \text { if } P=O_{z}, \\
\operatorname{mult}_{P}(D) \text { if } P \neq O_{y} \text { and } P \neq O_{z},
\end{array}\right.
$$

which is impossible, because $\operatorname{mult}_{P}(D)>6 / 11$. Thus, we see that $P=O_{x}$. Then

$$
\frac{10}{11 \cdot 37}=D \cdot C_{y} \geqslant \frac{\operatorname{mult}_{P}(D)}{11}>\frac{6}{121}>\frac{10}{11 \cdot 37},
$$

which is a contradiction. Thus, we see that $\operatorname{lct}(X)=11 / 6$.
Lemma 3.5.3. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(13,19,41,68,136)$. Then $\operatorname{lct}(X)=91 / 50$.
Proof. The surface X is defined by the quasihomogeneous equation

$$
x^{9} y+x z^{3}+y^{5} z+t^{2}=0,
$$

and X is singular at the points O_{x}, O_{y} and O_{z}.
The curves C_{x} and C_{y} are reduced and irreducible. Then

$$
\frac{91}{50}=\operatorname{lct}\left(X, \frac{5}{13} C_{x}\right)<\operatorname{lct}\left(X, \frac{5}{19} C_{y}\right)=\frac{19}{6},
$$

which implies that $\operatorname{lct}(X) \leqslant \frac{50}{91}$.
Suppose that $\operatorname{lct}(X)<91 / 50$. Then there is an effective \mathbb{Q}-divisor $D \equiv-K_{X}$ such that the pair $\left(X, \frac{91}{50} D\right)$ is not \log canonical at some point P. By Remark 1.4.7 we may assume that the support of D does not contain C_{x} and C_{y}.

Since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(533)\right)$ contains x^{41}, z^{13} and $x^{3} y^{26}$, we see that $P \in \operatorname{Sing}(X) \cup C_{x}$ by Lemma 1.4.10.

Suppose that $P \in C_{x}$. Then

$$
\frac{10}{19 \cdot 41}=D \cdot C_{x} \geqslant\left\{\begin{array}{l}
\frac{\operatorname{mult}_{P}(D)}{19} \text { if } P=O_{y} \\
\frac{\operatorname{mult}_{P}(D)}{41} \text { if } P=O_{z} \\
\operatorname{mult}_{P}(D) \text { if } P \neq O_{y} \text { and } P \neq O_{z}
\end{array}\right.
$$

which is impossible, because $\operatorname{mult}_{P}(D)>50 / 91$. We see that $P=O_{x}$. Then

$$
\frac{10}{13 \cdot 41}=D \cdot C_{y} \geqslant \frac{\operatorname{mult}_{P}(D)}{13}>\frac{50}{91 \cdot 13}>\frac{10}{13 \cdot 41}
$$

which is a contradiction. Thus, we see that $\operatorname{lct}(X)=91 / 50$.

3.6. Sporadic cases with $I=6$

Lemma 3.6.1. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(5,7,8,9,23)$. Then $\operatorname{lct}(X)=5 / 8$.
Proof. The surface X can be defined by the quasihomogeneous equation

$$
y z^{2}+y^{2} t+x t^{2}+x^{3} z=0
$$

and X is singular at O_{x}, O_{y}, O_{z} and O_{t}. We have

$$
\operatorname{lct}\left(X, \frac{6}{5} C_{x}\right)=\frac{5}{8}<\operatorname{lct}\left(X, \frac{6}{7} C_{y}\right)=\frac{7}{9}<\operatorname{lct}\left(X, \frac{6}{8} C_{z}\right)=\frac{6}{7}<\operatorname{lct}\left(X, \frac{6}{9} C_{t}\right)=1 \text {, }
$$

which implies, in particular, that $\operatorname{lct}(X) \leqslant 5 / 8$.
The curve C_{x} is reducible. We have $C_{x}=L_{x y}+M_{x}$, where $L_{x y}$ and M_{x} are irreducible curves such that $L_{x y}$ is given by $x=y=0$, and M_{x} is given by $x=z^{2}+y t=0$. Then

$$
L_{x y} \cdot L_{x y}=\frac{-11}{8 \cdot 9}, M_{x} \cdot M_{x}=\frac{-4}{7 \cdot 9}, L_{x y} \cdot M_{x}=\frac{2}{9}, D \cdot L_{x y}=\frac{6}{8 \cdot 9}, D \cdot M_{x}=\frac{12}{7 \cdot 9},
$$

and $L_{x y} \cap M_{x}=O_{t}$. Note that C_{x} is smooth outside of the point O_{t}.
The curve C_{y} is reducible. We have $C_{y}=L_{x y}+M_{y}$, where M_{y} is an irreducible curve such that M_{y} is given by $y=t^{2}+x^{2} z=0$. Then

$$
M_{y} \cdot M_{y}=\frac{1}{5}, \quad L_{x y} \cdot M_{y}=\frac{1}{4}, D \cdot M_{y}=\frac{3}{10},
$$

and $L_{x y} \cap M_{y}=O_{z}$. The only singular point of the curve C_{y} is O_{z}.
The curve C_{z} is reducible. We have $C_{z}=L_{z t}+M_{z}$, where $L_{z t}$ and M_{z} are irreducible curves such that $L_{z t}$ is given by $x=y=0$, and M_{z} is given by $z=t x+y^{2}=0$. Then

$$
L_{z t} \cdot L_{z t}=\frac{-6}{35}, M_{z} \cdot M_{z}=\frac{-2}{45}, L_{z t} \cdot M_{z}=\frac{2}{5}, D \cdot L_{z t}=\frac{6}{35}, D \cdot M_{z}=\frac{4}{15},
$$

and $L_{z t} \cap M_{z}=O_{x}$. The only singular point of C_{z} is O_{x}. We have $L_{x y} \cdot L_{z t}=0$ and $L_{x y} \cdot M_{z}=1 / 9$.
The curve C_{t} is reducible. We have $C_{t}=L_{z t}+M_{t}$, where M_{t} is an irreducible curve that is given by the equations $t=x^{3}+z^{2} y=0$. Then

$$
M_{t} \cdot M_{t}=\frac{3}{7 \cdot 8}, L_{z t} \cdot M_{t}=\frac{3}{7}, D \cdot M_{t}=\frac{9}{28},
$$

and $L_{z t} \cap M_{t}=O_{y}$. The only singular point of C_{t} is O_{y}.
We suppose that $\operatorname{lct}(X)<5 / 8$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the \log pair $\left(X, \frac{5}{8} D\right)$ is not \log canonical at some point $P \in X$. Let us derive a contradiction.

Suppose that $P \notin C_{x} \cup C_{y} \cup C_{z} \cup C_{t}$. Then there is a unique curve $Z_{\alpha} \subset X$ that is cut out by

$$
x t+\alpha y^{2}=0
$$

such that $P \in Z$, where $0 \neq \alpha \in \mathbb{C}$. The curve Z_{α} is reduced. But it is always reducible. Indeed, one can easily check that

$$
Z_{\alpha}=C_{\alpha}+L_{x y}
$$

where C_{α} is a reduced curve whose support contains no $L_{x y}$. Let us prove that C_{α} is irreducible if $\alpha \neq 1$.

The open subset $Z_{\alpha} \backslash\left(Z_{\alpha} \cap C_{x}\right)$ of the curve Z_{α} is a \mathbb{Z}_{5}-quotient of the affine curve

$$
t+\alpha y^{2}=0=y z^{2}+y^{2} t+t^{2}+z=0 \subset \mathbb{C}^{3} \cong \operatorname{Spec}(\mathbb{C}[y, z, t])
$$

which is isomorphic to a plane affine curve that is given by the equation

$$
y\left(\alpha(\alpha-1) y^{4}+z+z^{2} y\right)=0 \subset \mathbb{C}^{2} \cong \operatorname{Spec}(\mathbb{C}[y, z])
$$

which implies that the curve C_{α} is irreducible and $\operatorname{mult}_{P}\left(C_{\alpha}\right) \leqslant 3$ if $\alpha \neq 1$.
The case $\alpha=1$ is special. Namely, if $\alpha=1$, then

$$
C_{1}=R_{1}+M_{z},
$$

where R_{1} is a reduced curve whose support contains no C_{1}. Arguing as in the case $\alpha \neq 1$, we see that R_{1} is irreducible and R_{1} is smooth at the point P.

By Remark 1.4.7, we may assume that $\operatorname{Supp}(D)$ does not contain at least one irreducible components of the curve Z_{α}.

Suppose that $\alpha \neq 1$. Then elementary calculations imply that

$$
C_{\alpha} \cdot L_{x y}=\frac{25}{8 \cdot 9}, C_{\alpha} \cdot C_{\alpha}=\frac{449}{360}, D \cdot C_{\alpha}=\frac{41 \cdot 6}{360}
$$

and we can put $D=\epsilon C_{\alpha}+\Xi$, where Ξ is an effective \mathbb{Q}-divisor such that $C_{\alpha} \not \subset \operatorname{Supp}(\Xi)$. Now we obtain the inequality $\epsilon \leqslant 6 / 25$, because either $\epsilon=0$, or $L_{x y} \cdot \Xi \geqslant 0$. On the other hand, we see that
$\frac{41 \cdot 6}{360}=D \cdot C_{\alpha}=\epsilon C_{\alpha}^{2}+\Xi \cdot C_{\alpha} \geqslant \epsilon C_{\alpha}^{2}+\operatorname{mult}_{P}(\Xi)=\epsilon C_{\alpha}^{2}+\operatorname{mult}_{P}(D)-\epsilon \operatorname{mult}_{P}\left(C_{\alpha}\right)>\epsilon C_{\alpha}^{2}+\frac{5}{8}-3 \epsilon$,
which is impossible, because $\epsilon \leqslant 6 / 25$.
Thus, we see that $\alpha=1$. Then elementary calculations imply that

$$
R_{1} \cdot L_{x y}=\frac{17}{8 \cdot 9}, R_{1} \cdot R_{1}=\frac{13}{8 \cdot 9}, M_{z} \cdot R_{1}=\frac{28}{45}, D \cdot R_{1}=\frac{30}{8 \cdot 9}
$$

and we can put $D=\epsilon_{1} R_{1}+\Xi_{1}$, where Ξ_{1} is an effective \mathbb{Q}-divisor such that $R_{1} \not \subset \operatorname{Supp}\left(\Xi_{1}\right)$. Now we obtain the inequality $\epsilon_{1} \leqslant 12 / 25$, because either $\epsilon_{1}=0$, or $L_{x y} \cdot \Xi_{1} \geqslant 0$ or $M_{z} \cdot \Xi_{1} \geqslant 0$. By Lemma 1.4.6, we see that

$$
\frac{30-13 \epsilon_{1}}{72}=\Xi_{1} \cdot R_{1}>\frac{5}{8},
$$

which is impossible, because $\epsilon_{1} \leqslant 12 / 25$. Thus, we see that $P \in C_{x} \cup C_{y} \cup C_{z} \cup C_{t}$.
It follows from Remark 1.4.7 that we may assume that $\operatorname{Supp}(D)$ does not contains are least one irreducible component of the curves $C_{x}, C_{y}, C_{z}, C_{t}$.

Suppose that $P=O_{z}$. If $L_{y z} \not \subset \operatorname{Supp}(D)$, then

$$
\frac{1}{12}=D \cdot L_{y z} \geqslant \frac{\operatorname{mult}_{P}(D)}{8}>\frac{1}{5},
$$

which is a contradiction. If $M_{y} \not \subset \operatorname{Supp}(D)$, then

$$
\frac{3}{10}=D \cdot M_{y} \geqslant \frac{\operatorname{mult}_{P}(D) \operatorname{mult}_{P}\left(M_{y}\right)}{8}=\frac{2 \operatorname{mult}_{P}(D)}{8}>\frac{2}{5},
$$

which is a contradiction. Thus, we see that $P \neq O_{z}$. Similarly, we see that $P \neq O_{x}$ and $P \neq O_{y}$.
Suppose that $P \in L_{x y}$. Put $D=\delta L_{x y}+\Theta$, where Θ is an effective \mathbb{Q}-divisor whose support does not contain the curve $L_{x y}$. If $\delta \neq 0$, then

$$
\frac{4}{21}=D \cdot M_{x}=\left(\delta L_{x y}+\Theta\right) \cdot M_{x} \geqslant \delta L_{x y} \cdot M_{x}=\frac{2 \delta}{9}
$$

which implies that $\delta \leqslant 6 / 7$. Then it follows from Lemma 1.4.6 that

$$
\frac{6+11 \delta}{72}=\left(-K_{X}-\delta L_{x y}\right) \cdot L_{x y}=\Theta \cdot L_{x y}>\left\{\begin{array}{l}
\frac{8}{5} \text { if } P \neq O_{t} \\
\frac{8}{45} \text { if } P=O_{t}
\end{array}\right.
$$

which implies that $\delta>34 / 55$ and $P=O_{t}$, because $\delta \leqslant 6 / 7$. Then

$$
\frac{4}{21}=D \cdot M_{x}=\left(\delta L_{x y}+\Theta\right) \cdot M_{x} \geqslant \delta L_{x y} \cdot M_{x}+\frac{\operatorname{mult}_{P}(D)-\delta}{9}>\frac{2 \delta}{9}+\frac{8 / 5-\delta}{9}
$$

which implies that $\delta<4 / 35$. But $\delta>34 / 35$. Thus, we see that $P \neq L_{x y}$. Then $P \notin \operatorname{Sing}(X)$.
Suppose that $P \in M_{x}$. Put $D=e M_{x}+\Upsilon$, where Υ is an effective \mathbb{Q}-divisor such that $M_{x} \not \subset \operatorname{Supp}(\Upsilon)$. If $e \neq 0$, then

$$
\frac{6}{72}=D \cdot L_{x y}=\left(e M_{x}+\Upsilon\right) \cdot L_{x y} \geqslant e L_{x y} \cdot M_{x}=\frac{2 e}{9},
$$

which implies that $e \leqslant 3 / 8$. Then it follows from Lemma 1.4.6 that

$$
\frac{4+4 e}{21}=\left(-K_{X}-e M_{x}\right) \cdot M_{x}=\Upsilon \cdot M_{x}>\frac{8}{5}
$$

which is impossible, because $e \leqslant 3 / 8$. Thus, we see that $P \notin M_{x}$. Similarly, we see that $P \notin L_{z t} \cup M_{y} \cup M_{z} \cup M_{t}$, which is a contradiction.
Lemma 3.6.2. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(7,10,15,19,45)$. Then $\operatorname{lct}(X)=35 / 54$.
Proof. The surface X can be defined by the quasihomogeneous equation

$$
z^{3}+y^{3} z+x t^{2}+x^{5} y=0
$$

the surface X is singular at the point O_{x}, O_{y}, O_{t}. The surface X is also singular at a point Q such that $Q \neq O_{y}$ and O_{y} and Q are cut out on X by the equations $x=t=0$.

The curve C_{x} is reducible. We have $C_{x}=L_{x z}+Z_{x}$, where $L_{x z}$ and Z_{x} are irreducible and reduced curves such that $L_{x z}$ is given by the equations $x=z=0$, and Z_{x} is given by the equations $x=z^{2}+y^{3}=0$. Then

$$
L_{x z} \cdot L_{x z}=\frac{-23}{10 \cdot 19}, Z_{x} \cdot Z_{x}=\frac{-16}{10 \cdot 19}, L_{x z} \cdot Z_{x}=\frac{3}{19},
$$

and $L_{x z} \cap Z_{x}=O_{t}$. The curve C_{y} is irreducible and

$$
\frac{35}{54}=\operatorname{lct}\left(X, \frac{6}{7} C_{x}\right)<\operatorname{lct}\left(X, \frac{6}{10} C_{y}\right)=\frac{25}{18}
$$

which implies, in particular, that $\operatorname{lct}(X) \leqslant 35 / 54$.
Suppose that $\operatorname{lct}(X)<35 / 54$. Then there is a \mathbb{Q}-effective divisor $D \equiv-K_{X}$ such that the pair $\left(X, \frac{35}{54} D\right)$ is not \log canonical at some point P. By Remark 1.4.7, we may assume that the support of the divisor D does not contain the curve C_{y}. Similarly, we may assume that either $L_{x z} \nsubseteq \operatorname{Supp}(D)$, or $Z_{x} \nsubseteq \operatorname{Supp}(D)$.

Since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(105)\right)$ contains $x^{15}, y^{7} x^{5}$ and z^{7}, it follows from Lemma 1.4.10 that $P \in$ $\operatorname{Sing}(X) \cup C_{x}$.

Suppose that $P=O_{t}$. If $L_{x z} \nsubseteq \operatorname{Supp}(D)$, then

$$
\frac{6}{10 \cdot 19}=D \cdot L_{x z} \geqslant \frac{\operatorname{mult}_{P}(D)}{19}>\frac{54}{35 \cdot 19}>\frac{6}{10 \cdot 19},
$$

which is a contradiction. If $Z_{x} \nsubseteq \operatorname{Supp}(D)$, then

$$
\frac{12}{10 \cdot 19}=D \cdot Z_{x} \geqslant \frac{\operatorname{mult}_{P}(D) \operatorname{mult}_{P}\left(Z_{x}\right)}{15}>\frac{54 \cdot 2}{35 \cdot 19}>\frac{12}{10 \cdot 19},
$$

which is a contradiction. Thus, we see that $P \neq O_{t}$.
Suppose that $P \in L_{x z}$. Put $D=m L_{x z}+\Omega$, where Ω is an effective \mathbb{Q}-divisor such that $L_{x z} \not \subset \operatorname{Supp}(\Omega)$. If $m \neq 0$, then

$$
\frac{12}{10 \cdot 19}=-K_{X} \cdot Z_{x}=D \cdot Z_{x}=\left(m L_{x z}+\Omega\right) \cdot Z_{x} \geqslant m L_{x z} \cdot Z_{x}=\frac{3 m}{19},
$$

which implies that $m \leqslant 2 / 5$. Then it follows from Lemma 1.4.6 that

$$
\frac{6+23 m}{10 \cdot 19}=\left(-K_{X}-m L_{x z}\right) \cdot L_{x z}=\Omega \cdot L_{x z}>\left\{\begin{array}{l}
\frac{54}{35} \text { if } P \neq O_{y} \\
\frac{54}{35} \frac{1}{10} \text { if } P=O_{y}
\end{array}\right.
$$

which is impossible, because $m \leqslant 2 / 5$. Thus, we see that $P \notin L_{x z}$.
Suppose that $P \in Z_{x}$. Put $D=\epsilon Z_{x}+\Delta$, where Δ is an effective \mathbb{Q}-divisor such that $Z_{x} \not \subset \operatorname{Supp}(\Delta)$. If $\epsilon \neq 0$, then

$$
\frac{6}{10 \cdot 19}=-K_{X} \cdot L_{x z}=D \cdot L_{x z}=\left(\epsilon Z_{x}+\Delta\right) \cdot L_{x z} \geqslant \epsilon L_{x z} \cdot Z_{x}=\frac{3 \epsilon}{19}
$$

which implies that $m \leqslant 1 / 5$. Then it follows from Lemma 1.4.6 that

$$
\frac{6+16 \epsilon}{10 \cdot 19}=\left(-K_{X}-\epsilon Z_{x}\right) \cdot Z_{x}=\Delta \cdot Z_{x}>\left\{\begin{array}{l}
\frac{54}{35} \text { if } P \neq Q \\
\frac{54}{35} \frac{1}{5} \text { if } P=Q
\end{array}\right.
$$

which is impossible, because $\epsilon \leqslant 1 / 5$. Thus, we see that $P \notin Z_{x}$.
We see that $P \notin C_{x}$ and $P \in \operatorname{Sing}(X)$. Then $P=O_{x}$. We have

$$
\frac{18}{7 \cdot 19}=D \cdot C_{y} \geqslant \frac{\operatorname{mult}_{P}(D)}{7}>\frac{54}{35 \cdot 7}>\frac{18}{7 \cdot 19},
$$

which is a contradiction. Thus, we see that $\operatorname{lct}(X)=35 / 54$.
Lemma 3.6.3. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(11,19,29,53,106)$. Then $\operatorname{lct}(X)=55 / 36$.
Proof. We may assume that the surface X is defined by the quasihomogeneous equation

$$
x^{7} z+x y^{5}+y z^{3}+t^{2}=0
$$

Note that X is singular at O_{x}, O_{y} and O_{z}. The curves C_{x} and C_{y} are irreducible. It is easy to see

$$
\operatorname{lct}\left(X, \frac{6}{11} C_{x}\right)=\frac{55}{36}<\operatorname{lct}\left(X, \frac{6}{19} C_{y}\right)=\frac{57}{28} .
$$

Suppose that $\operatorname{lct}(X)<\frac{55}{36}$. Then there is an effective \mathbb{Q}-divisor $D \equiv-K_{X}$ such that the pair $\left(X, \frac{55}{36} D\right)$ is not \log canonical.

For a smooth point $P \in X \backslash C_{x}$ and an effective \mathbb{Q}-divisor $D \equiv-K_{X}$, we have

$$
\operatorname{mult}_{P} D \leqslant \frac{6 \cdot 319 \cdot 106}{11 \cdot 19 \cdot 29 \cdot 53}<\frac{36}{55}
$$

since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(319)\right)$ contains $x^{29}, z^{11}, x^{10} y^{11}$. Therefore, either there is a point $P \in C_{x}$ such that mult ${ }_{P} D>\frac{36}{55}$ or we have mult $O_{x} D>\frac{36}{55}$. Since the pairs $\left(X, \frac{6 \cdot 55}{11 \cdot 36} C_{x}\right)$ and $\left(X, \frac{6 \cdot 55}{19 \cdot 36} C_{y}\right)$ are \log canonical and the curves C_{x} and C_{y} are irreducible, we may assume that the support of D does not contain the curves C_{x} and C_{y}. Then we can obtain

$$
\text { mult }_{O_{x}} D \leqslant 11 C_{y} \cdot D \leqslant \frac{11 \cdot 19 \cdot 106 \cdot 6}{11 \cdot 19 \cdot 29 \cdot 53}<\frac{36}{55}
$$

and for any point $P \in C_{x}$

$$
\operatorname{mult}_{P} D \leqslant 29 C_{x} \cdot D \leqslant \frac{29 \cdot 11 \cdot 106 \cdot 6}{11 \cdot 19 \cdot 29 \cdot 53}<\frac{36}{55}
$$

Therefore, $\operatorname{lct}(X)=\frac{55}{36}$.
Lemma 3.6.4. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(13,15,31,53,106)$. Then $\operatorname{lct}(X)=45 / 28$.
Proof. The surface X can be defined by the quasihomogeneous equation

$$
x^{7} z+x y^{5}+y z^{3}+t^{2}=0
$$

and X is singular at the points O_{x}, O_{y} and O_{z}.
The curves C_{x} and C_{y} are reduced and irreducible. We have

$$
\frac{45}{28}=\operatorname{lct}\left(X, \frac{6}{15} C_{y}\right)<\operatorname{lct}\left(X, \frac{6}{13} C_{x}\right)=\frac{65}{36}
$$

which implies thatlct $(X) \leqslant 45 / 28$.
Suppose that $\operatorname{lct}(X)<45 / 28$. Then there is an effective \mathbb{Q}-divisor $D \equiv-K_{X}$ such that the pair $\left(X, \frac{45}{28} D\right)$ is not \log canonical at some point P. by Remark 1.4 .7 we may assume that the support of D does not contain C_{x} and C_{y}.

Since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(403)\right)$ contains $x^{31}, z^{13}, x y^{26}$, we see that $P \in \operatorname{Sing}(X) \cup C_{x}$ by Lemma 1.4.10.
Suppose that $P \in C_{x}$. Then

$$
\frac{12}{14 \cdot 31}=D \cdot C_{x} \geqslant\left\{\begin{array}{l}
\frac{\operatorname{mult}_{P}(D)}{15} \text { if } P=O_{y} \\
\frac{\operatorname{mult}_{P}(D)}{31} \text { if } P=O_{z} \\
\operatorname{mult}_{P}(D) \text { if } P \neq O_{y} \text { and } P \neq O_{z}
\end{array}\right.
$$

which implies that $P=O_{z}$, because $\operatorname{mult}_{P}(D)>28 / 45$. Then

$$
\frac{12}{13 \cdot 31}=D \cdot C_{y} \geqslant \frac{\operatorname{mult}_{P}(D) \operatorname{mult}_{P}\left(C_{y}\right)}{31}>\frac{56}{45 \cdot 30}>\frac{12}{13 \cdot 31}
$$

because $\operatorname{mult}_{P}\left(C_{y}\right)=2$. Thus, we see that $P=O_{x}$. Then

$$
\frac{12}{13 \cdot 31}=D \cdot C_{y} \geqslant \frac{\operatorname{mult}_{P}(D)}{13}>\frac{28}{45 \cdot 13}>\frac{12}{13 \cdot 31}
$$

which is a contradiction. Thus, we see that $\operatorname{lct}(X)=45 / 28$.

3.7. SpORADIC CASES WITH $I=7$

Lemma 3.7.1. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(11,13,21,38,76)$. Then $\operatorname{lct}(X)=13 / 10$.
Proof. We may assume that the surface X is defined by the quasihomogeneous equation

$$
t^{2}+y z^{3}+x y^{5}+x^{5} z=0
$$

Note that X is singular at O_{x}, O_{y} and O_{z}.
The curves C_{x} and C_{y} are irreducible. We have

$$
\frac{55}{42}=\operatorname{lct}\left(X, \frac{7}{11} C_{x}\right)>\operatorname{lct}\left(X, \frac{7}{13} C_{y}\right)=\frac{13}{10}
$$

which implies, in particular, that $\operatorname{lct}(X) \leqslant 13 / 10$.

Suppose that $\operatorname{lct}(X)<13 / 10$. Then there is a \mathbb{Q}-effective divisor $D \equiv-K_{X}$ such that the pair $\left(X, \frac{13}{10} D\right)$ is not \log canonical at some point P. By Remark 1.4.7, we may assume that the support of D does not contain the curves C_{x} and C_{y}.

Suppose that $P \in C_{x}$ and $P \notin \operatorname{Sing}(X)$. Then

$$
\frac{10}{13}<\operatorname{mult}_{P}(D) \leqslant D \cdot C_{x}=\frac{2}{39}<\frac{10}{13},
$$

which is a contradiction. Suppose that $P \in C_{y}$ and $P \notin \operatorname{Sing}(X)$. Then

$$
\frac{10}{13}<\operatorname{mult}_{P}(D) \leqslant D \cdot C_{y}=\frac{2}{33}<\frac{10}{13},
$$

which is a contradiction. Suppose that $P=O_{x}$. Then

$$
\frac{10}{13} \frac{1}{11}<\frac{\operatorname{mult}_{O_{x}}(D)}{11} \leqslant D \cdot C_{y}=\frac{2}{33}<\frac{10}{13} \frac{1}{11},
$$

which is a contradiction. Suppose that $P=O_{z}$. Then

$$
\frac{10}{13} \frac{2}{21}<\frac{2 \text { mult }_{O_{z}}(D)}{21}=\frac{\text { mult }_{O_{z}}(D) \text { mult }_{O_{z}}\left(C_{y}\right)}{21} \leqslant D \cdot C_{y}=\frac{2}{33}<\frac{10}{13} \frac{2}{21},
$$

which is a contradiction. Suppose that $P=O_{y}$. Then

$$
\frac{10}{13} \frac{1}{13}<\frac{\operatorname{mult}_{O_{y}}(D)}{13} \leqslant D \cdot C_{x}=\frac{2}{39}<\frac{10}{13} \frac{1}{13},
$$

which is a contradiction. Thus, we see that $P \in X \backslash \operatorname{Sing}(X)$ and $P \notin C_{x} \cup C_{y}$.
Let \mathcal{L} be the pencil on X that is cut out by the pencil

$$
\lambda x^{13}+\mu y^{11}=0,
$$

where $[\lambda: \mu] \in \mathbb{P}^{1}$. Then the base locus of the pencil \mathcal{L} consists of the point O_{z}.
Let C be the unique curve in \mathcal{L} that passes through the point P. Arguing as in the proof of Lemma 3.3.1, we see that the curve C is irreducible. On the other hand, the curve C is a double cover of the curve

$$
\lambda x^{13}+\mu y^{11}=0 \subset \mathbb{P}(11,13,21) \cong \operatorname{Proj}(\mathbb{C}[x, y, z])
$$

such that $\lambda \neq 0$ and $\mu \neq 0$. Thus, the inequality mult $_{P}(C) \leqslant 2$ holds. In particular, the log pair $\left(X, \frac{7}{110} C\right)$ is \log canonical. Thus, we may assume that the support of D does not contain the curve C and hence we obtain

$$
\frac{10}{13}<\operatorname{mult}_{P}(D) \leqslant D \cdot C=\frac{2}{3}<\frac{10}{13},
$$

which is a contradiction.

3.8. Sporadic cases with $I=8$

Lemma 3.8.1. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(7,11,13,23,46)$. Then $\operatorname{lct}(X)=35 / 48$.
Proof. The surface X can be defined by the quasihomogeneous equation

$$
t^{2}+y^{3} z+x z^{3}+x^{5} y=0
$$

the surface X is singular at the point O_{x}, O_{y} and O_{z}.
The curves C_{x}, C_{y} and C_{z} are irreducible. We have

$$
\frac{35}{48}=\operatorname{lct}\left(X, \frac{8}{7} C_{x}\right)<\operatorname{lct}\left(X, \frac{8}{13} C_{z}\right)=\frac{91}{80}<\operatorname{lct}\left(X, \frac{8}{11} C_{y}\right)=\frac{55}{48},
$$

which implies, in particular, that $\operatorname{lct}(X) \leqslant 35 / 48$.
Suppose that $\operatorname{lct}(X)<35 / 48$. Then there is a \mathbb{Q}-effective divisor $D \equiv-K_{X}$ such that the pair $\left(X, \frac{35}{48} D\right)$ is not \log canonical at some point P. By Remark 1.4.7, we may assume that the support of the divisor D does not contain the curves C_{x}, C_{y} and C_{z}.

Suppose that $P \in C_{x}$. Then

$$
\frac{16}{11 \cdot 13}=D \cdot C_{x} \geqslant\left\{\begin{array}{l}
\frac{\operatorname{mult}_{P}(D)}{11} \text { if } P=O_{y} \\
\frac{\operatorname{mult}_{P}(D) \operatorname{mult}_{O_{z}}\left(C_{x}\right)}{13} \text { if } P=O_{z} \\
\operatorname{mult}_{P}(D) \text { if } P \neq O_{x} \text { and } P \neq O_{z}
\end{array}\right.
$$

which is impossible, because $\operatorname{mult}_{P}(D)>48 / 35$ and $\operatorname{mult}_{O_{z}}\left(C_{x}\right)=2$.
We see that $P \neq O_{z}$. Suppose that $P \in C_{y}$. Then

$$
\frac{16}{7 \cdot 13}=D \cdot C_{y} \geqslant\left\{\begin{array}{l}
\frac{\operatorname{mult}_{P}(D)}{7} \text { if } P=O_{x} \\
\operatorname{mult}_{P}(D) \text { if } P \neq O_{x}
\end{array}\right.
$$

which is impossible, because $\operatorname{mult}_{P}(D)>48 / 35$. Thus, we see that $P \in C_{y}$. Then $P \notin \operatorname{Sing}(X)$.
Let us show that $P \notin C_{z}$. Suppose that $P \in C_{z}$. Then

$$
\frac{16}{7 \cdot 11}=D \cdot C_{z} \geqslant \operatorname{mult}_{P}(D)>\frac{48}{35}
$$

which is a contradiction. Thus, we see that $P \notin C_{z}$.
We see that $P \notin C_{x} \cup C_{y} \cup C_{z}$. Then there is a unique curve $Z \subset X$ that is cut out by

$$
x^{4} y=\alpha z^{3}
$$

such that $P \in Z$, where $0 \neq \alpha \in \mathbb{C}$. We see that $C_{x} \not \subset \operatorname{Supp}(Z)$. But the open subset $Z \backslash\left(Z \cap C_{x}\right)$ of the curve Z is a \mathbb{Z}_{7}-quotient of the affine curve

$$
y-\alpha z^{3}=t^{2}+y^{3} z+z^{3}+y=0 \subset \mathbb{C}^{3} \cong \operatorname{Spec}(\mathbb{C}[y, z, t]),
$$

which is isomorphic to a plane affine curve $R_{x} \subset \mathbb{C}^{2}$ that is given by the equation

$$
t^{2}+\alpha^{3} z^{10}+(1+\alpha) z^{3}=0 \subset \mathbb{C}^{2} \cong \operatorname{Spec}(\mathbb{C}[y, z])
$$

which is irreducible if $\alpha \neq-1$. We see that Z is irreducible if $\alpha \neq-1$.
It follows from the equation of the curve R_{x} that the \log pair $\left(X, \frac{35}{48} Z\right)$ is \log canonical at the point P. By Remark 1.4.7, we may assume that $\operatorname{Supp}(D)$ does not contain at least one irreducible component of the curve Z.

Suppose that $\alpha \neq-1$. Then $Z \nsubseteq \operatorname{Supp}(D)$ and

$$
\frac{48}{77}=D \cdot Z \geqslant \operatorname{mult}_{P}(D)>\frac{48}{35},
$$

which is a contradiction. Thus, we see that $\alpha=-1$.
We have $Z=Z_{1}+Z_{2}$, where Z_{1} and Z_{2} are irreducible reduced curves such that

$$
Z_{1} \cdot Z_{1}=Z_{1} \cdot Z_{1}=\frac{742}{77}, Z_{1} \cdot Z_{2}=\frac{10}{7}+\frac{12}{11}=\frac{194}{77}
$$

and $Z_{1} \cap Z_{2}=O_{x} \cup O_{y}$. We may assume that $P \in Z_{1}$.
Put $D=m Z_{1}+\Omega$, where Ω is an effective \mathbb{Q}-divisor such that $Z_{1} \not \subset \operatorname{Supp}(\Omega)$. If $m \neq 0$, then

$$
\frac{24}{77}=-K_{X} \cdot Z_{2}=D \cdot Z_{2}=\left(m Z_{1}+\Omega\right) \cdot Z_{2} \geqslant m Z_{1} \cdot Z_{2}=\frac{194 m}{77},
$$

which implies that $m \leqslant 12 / 97$. Then it follows from Lemma 1.4.6 that

$$
\frac{24-742 m}{77}=\left(-K_{X}-m Z_{1}\right) \cdot Z_{1}=\Omega \cdot Z_{1}>\frac{48}{35}
$$

which is a contradiction. The obtained contradiction completes the proof.
Lemma 3.8.2. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(7,18,27,37,81)$. Then $\operatorname{lct}(X)=35 / 72$.

Proof. The surface X can be defined by the quasihomogeneous equation

$$
z^{3}+y^{3} z+x t^{2}+x^{9} y=0
$$

the surface X is singular at the point O_{x}, O_{y}, O_{t}. The surface X is also singular at a point Q such that $Q \neq O_{y}$ and O_{y} and Q are cut out on X by the equations $x=t=0$.

The curve C_{x} is reducible. We have $C_{x}=L_{x z}+Z_{x}$, where $L_{x z}$ and Z_{x} are irreducible and reduced curves such that $L_{x z}$ is given by the equations $x=z=0$, and Z_{x} is given by the equations $x=z^{2}+y^{3}=0$. Then

$$
L_{x z} \cdot L_{x z}=\frac{-47}{18 \cdot 37}, Z_{x} \cdot Z_{x}=\frac{-40}{18 \cdot 37}, L_{x z} \cdot Z_{x}=\frac{3}{37},
$$

and $L_{x z} \cap Z_{x}=O_{t}$. The curve C_{y} is irreducible and

$$
\frac{35}{72}=\operatorname{lct}\left(X, \frac{8}{7} C_{x}\right)<\operatorname{lct}\left(X, \frac{8}{18} C_{y}\right)=\frac{15}{8}
$$

which implies, in particular, that $\operatorname{lct}(X) \leqslant 35 / 72$.
Suppose that $\operatorname{lct}(X)<35 / 78$. Then there is a \mathbb{Q}-effective divisor $D \equiv-K_{X}$ such that the pair $\left(X, \frac{35}{72} D\right)$ is not \log canonical at some point P. By Remark 1.4.7, we may assume that the support of the divisor D does not contain the curve C_{y}. Similarly, we may assume that either $L_{x z} \nsubseteq \operatorname{Supp}(D)$, or $Z_{x} \nsubseteq \operatorname{Supp}(D)$.

Since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(189)\right)$ contains $x^{27}, y^{7} x^{9}$ and z^{7}, it follows from Lemma 1.4.10 that $P \in$ $\operatorname{Sing}(X) \cup C_{x}$.

Suppose that $P=O_{t}$. If $L_{x z} \nsubseteq \operatorname{Supp}(D)$, then

$$
\frac{8}{18 \cdot 37}=D \cdot L_{x z} \geqslant \frac{\operatorname{mult}_{P}(D)}{37}>\frac{72}{35 \cdot 37}>\frac{8}{18 \cdot 37},
$$

which is a contradiction. If $Z_{x} \nsubseteq \operatorname{Supp}(D)$, then

$$
\frac{16}{18 \cdot 37}=D \cdot Z_{x} \geqslant \frac{\operatorname{mult}_{P}(D)}{37}>\frac{72}{35 \cdot 37}>\frac{16}{18 \cdot 37},
$$

which is a contradiction. Thus, we see that $P \neq O_{t}$.
Suppose that $P \in L_{x z}$. Put $D=m L_{x z}+\Omega$, where Ω is an effective \mathbb{Q}-divisor such that $L_{x z} \not \subset \operatorname{Supp}(\Omega)$. If $m \neq 0$, then

$$
\frac{16}{18 \cdot 37}=-K_{X} \cdot Z_{x}=D \cdot Z_{x}=\left(m L_{x z}+\Omega\right) \cdot Z_{x} \geqslant m L_{x z} \cdot Z_{x}=\frac{3 m}{37},
$$

which implies that $m \leqslant 8 / 27$. Then it follows from Lemma 1.4.6 that

$$
\frac{8+47 m}{18 \cdot 37}=\left(-K_{X}-m L_{x z}\right) \cdot L_{x z}=\Omega \cdot L_{x z}>\left\{\begin{array}{l}
\frac{72}{35} \text { if } P \neq O_{y}, \\
\frac{72}{35} \frac{1}{18} \text { if } P=O_{y}
\end{array}\right.
$$

which is impossible, because $m \leqslant 8 / 27$. Thus, we see that $P \notin L_{x z}$.
Suppose that $P \in Z_{x}$. Put $D=\epsilon Z_{x}+\Delta$, where Δ is an effective \mathbb{Q}-divisor such that $Z_{x} \not \subset \operatorname{Supp}(\Delta)$. If $\epsilon \neq 0$, then

$$
\frac{8}{18 \cdot 37}=-K_{X} \cdot L_{x z}=D \cdot L_{x z}=\left(\epsilon Z_{x}+\Delta\right) \cdot L_{x z} \geqslant \epsilon L_{x z} \cdot Z_{x}=\frac{3 \epsilon}{37},
$$

which implies that $m \leqslant 4 / 27$. Then it follows from Lemma 1.4.6 that

$$
\frac{16+40 \epsilon}{18 \cdot 37}=\left(-K_{X}-\epsilon Z_{x}\right) \cdot Z_{x}=\Delta \cdot Z_{x}>\left\{\begin{array}{l}
\frac{72}{35} \text { if } P \neq Q \\
\frac{72}{35} \frac{1}{9} \text { if } P=Q
\end{array}\right.
$$

which is impossible, because $\epsilon \leqslant 5 / 27$. Thus, we see that $P \notin Z_{x}$.
We see that $P \notin C_{x}$ and $P \in \operatorname{Sing}(X)$. Then $P=O_{x}$. We have

$$
\frac{24}{7 \cdot 37}=D \cdot C_{y} \geqslant \frac{\operatorname{mult}_{P}(D)}{7}>\frac{72}{35 \cdot 7}>\frac{24}{7 \cdot 37},
$$

which is a contradiction. Thus, we see that $\operatorname{lct}(X)=35 / 72$.

Lemma 3.9.1. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(7,15,19,32,64)$. Then $\operatorname{lct}(X)=35 / 54$.
Proof. The surface X can be defined by the quasihomogeneous equation

$$
t^{2}+y^{3} z+x z^{3}+x^{7} y=0
$$

the surface X is singular at the point O_{x}, O_{y} and O_{z}, the curves C_{x} and C_{y} are irreducible, and

$$
\frac{35}{54}=\operatorname{lct}\left(X, \frac{9}{7} C_{x}\right)<\operatorname{lct}\left(X, \frac{9}{15} C_{y}\right)=\frac{25}{18},
$$

which implies, in particular, that $\operatorname{lct}(X) \leqslant 35 / 54$.
Suppose that $\operatorname{lct}(X)<35 / 2$. Then there is a \mathbb{Q}-effective divisor $D \equiv-K_{X}$ such that the pair $\left(X, \frac{35}{18} D\right)$ is not \log canonical at some point P. By Remark 1.4.7, we may assume that the support of the divisor D does not contain the curves C_{x} and C_{y}.

Since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(133)\right)$ contains $x^{10}, y^{7} x^{4}$ and z^{7}, it follows from Lemma 1.4.10 that $P \in$ $\operatorname{Sing}(X) \cup C_{x}$.

Suppose that $P \in C_{x}$. Then

$$
\frac{6}{95}=D \cdot C_{x} \geqslant\left\{\begin{array}{l}
\frac{\operatorname{mult}_{P}(D)}{15} \text { if } P=O_{y}, \\
\frac{\operatorname{mult}_{P}(D)}{19} \text { if } P=O_{z}, \\
\operatorname{mult}_{P}(D) \text { if } P \neq O_{y} \text { and } P \neq O_{z},
\end{array} \quad>\left\{\begin{array}{l}
\frac{54}{35 \cdot 15} \text { if } P=O_{y}, \\
\frac{54}{35 \cdot 19} \text { if } P=O_{z}, \\
\frac{54}{35} \text { if } P \neq O_{y} \text { and } P \neq O_{z},
\end{array} \quad>\frac{6}{95}\right.\right.
$$

which is a contradiction. Thus, we see that $P=O_{x}$. Then

$$
\frac{18}{133}=D \cdot C_{y} \geqslant \frac{\operatorname{mult}_{P}(D)}{7}>\frac{54}{35 \cdot 7}>\frac{18}{133},
$$

which is a contradiction. Thus, we see that $\operatorname{lct}(X)=35 / 54$.

3.10. Sporadic cases with $I=10$

Lemma 3.10.1. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(7,19,25,41,82)$. Then $\operatorname{lct}(X)=7 / 12$.
Proof. The surface X can be defined by the quasihomogeneous equation

$$
t^{2}+y^{3} z+x z^{3}+x^{9} y=0
$$

and X is singular at the points O_{x}, O_{y} and O_{z}.
The curves C_{x} and C_{y} are reducible. We have

$$
\frac{7}{12}=\operatorname{lct}\left(X, \frac{10}{7} C_{x}\right)<\operatorname{lct}\left(X, \frac{10}{19} C_{y}\right)=\frac{19}{12},
$$

which implies, in particular, that $\operatorname{lct}(X) \leqslant 7 / 12$.
Suppose that $\operatorname{lct}(X)<7 / 12$. Then there is a \mathbb{Q}-effective divisor $D \equiv-K_{X}$ such that the pair $\left(X, \frac{7}{12} D\right)$ is not \log canonical at some point P. By Remark 1.4.7, we may assume that the support of the divisor D does not contain the curves C_{x} and C_{y}.

Since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(175)\right)$ contains $x^{25}, x^{6} y^{7}$ and z^{7}, it follows from Lemma 1.4.10 that $P \in$ $\operatorname{Sing}(X) \cup C_{x}$.

Suppose that $P \in C_{x}$. Then

$$
\frac{4}{95}=D \cdot C_{x} \geqslant\left\{\begin{array}{l}
\frac{12}{7} \text { if } P \neq O_{y} \text { and } P \neq O_{z} \\
\frac{12}{7} \frac{1}{19} \text { if } P=O_{y} \\
\frac{12}{7} \frac{1}{25} \text { if } P=O_{z}
\end{array}\right.
$$

which is a contradiction. Thus, we see that $P \notin C_{x}$. Then $P=O_{x}$. We have

$$
\frac{4}{35}=D \cdot C_{x} \geqslant \frac{\operatorname{mult}_{P}(D)}{7}>\frac{12}{49}
$$

which is a contradiction. Thus, we see that $\operatorname{lct}(X)=7 / 12$.
Lemma 3.10.2. Suppose that $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(7,26,39,55,117)$. Then $\operatorname{lct}(X)=7 / 18$.
Proof. The surface X can be defined by the quasihomogeneous equation

$$
z^{3}+y^{3} z+x t^{2}+x^{13} y=0,
$$

the surface X is singular at the point O_{x}, O_{y}, O_{t}. The surface X is also singular at a point Q such that $Q \neq O_{y}$ and O_{y} and Q are cut out on X by the equations $x=t=0$.

The curve C_{x} is reducible. We have $C_{x}=L_{x z}+Z_{x}$, where $L_{x z}$ and Z_{x} are irreducible and reduced curves such that $L_{x z}$ is given by the equations $x=z=0$, and Z_{x} is given by the equations $x=z^{2}+y^{3}=0$. Then

$$
L_{x z} \cdot L_{x z}=\frac{-71}{26 \cdot 55}, Z_{x} \cdot Z_{x}=\frac{-32}{13 \cdot 55}, L_{x z} \cdot Z_{x}=\frac{3}{55},
$$

and $L_{x z} \cap Z_{x}=O_{t}$. The curve C_{y} is irreducible and

$$
\frac{7}{18}=\operatorname{lct}\left(X, \frac{10}{7} C_{x}\right)<\operatorname{lct}\left(X, \frac{10}{26} C_{y}\right)=\frac{13}{6},
$$

which implies, in particular, that $\operatorname{lct}(X) \leqslant 7 / 18$.
Suppose that $\operatorname{lct}(X)<7 / 18$. Then there is a \mathbb{Q}-effective divisor $D \equiv-K_{X}$ such that the pair $\left(X, \frac{7}{18} D\right)$ is not \log canonical at some point P. By Remark 1.4.7, we may assume that the support of the divisor D does not contain the curve C_{y}. Similarly, we may assume that either $L_{x z} \nsubseteq \operatorname{Supp}(D)$, or $Z_{x} \nsubseteq \operatorname{Supp}(D)$.

Since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(273)\right)$ contains $x^{39}, y^{7} x^{13}$ and z^{7}, it follows from Lemma 1.4.10 that $P \in$ $\operatorname{Sing}(X) \cup C_{x}$.

Suppose that $P=O_{t}$. If $L_{x z} \nsubseteq \operatorname{Supp}(D)$, then

$$
\frac{2}{11 \cdot 26}=D \cdot L_{x z} \geqslant \frac{\operatorname{mult}_{P}(D)}{55}>\frac{18}{7 \cdot 55}>\frac{2}{11 \cdot 26},
$$

which is a contradiction. If $Z_{x} \nsubseteq \operatorname{Supp}(D)$, then

$$
\frac{20}{26 \cdot 55}=D \cdot Z_{x} \geqslant \frac{\operatorname{mult}_{P}(D)}{55}>\frac{18}{7 \cdot 55}>\frac{20}{26 \cdot 55},
$$

which is a contradiction. Thus, we see that $P \neq O_{t}$.
Suppose that $P \in L_{x z}$. Put $D=m L_{x z}+\Omega$, where Ω is an effective \mathbb{Q}-divisor such that $L_{x z} \not \subset \operatorname{Supp}(\Omega)$. If $m \neq 0$, then

$$
\frac{20}{26 \cdot 55}=-K_{X} \cdot Z_{x}=D \cdot Z_{x}=\left(m L_{x z}+\Omega\right) \cdot Z_{x} \geqslant m L_{x z} \cdot Z_{x}=\frac{3 m}{55},
$$

which implies that $m \leqslant 10 / 39$. Then it follows from Lemma 1.4.6 that

$$
\frac{10+71 m}{26 \cdot 55}=\left(-K_{X}-m L_{x z}\right) \cdot L_{x z}=\Omega \cdot L_{x z}>\left\{\begin{array}{l}
\frac{18}{7} \text { if } P \neq O_{y} \\
\frac{18}{7} \frac{1}{26} \text { if } P=O_{y}
\end{array}\right.
$$

which implies that $m>920 / 497$. But we already proved that $m \leqslant 10 / 39$. Thus, we see that $P \notin L_{x z}$.

Suppose that $P \in Z_{x}$. Put $D=\epsilon Z_{x}+\Delta$, where Δ is an effective \mathbb{Q}-divisor such that $Z_{x} \not \subset \operatorname{Supp}(\Delta)$. If $\epsilon \neq 0$, then

$$
\frac{10}{26 \cdot 55}=-K_{X} \cdot L_{x z}=D \cdot L_{x z}=\left(\epsilon Z_{x}+\Delta\right) \cdot L_{x z} \geqslant \epsilon L_{x z} \cdot Z_{x}=\frac{3 \epsilon}{55},
$$

which implies that $m \leqslant 5 / 39$. Then it follows from Lemma 1.4.6 that

$$
\frac{20+32 \epsilon}{13 \cdot 55}=\left(-K_{X}-\epsilon Z_{x}\right) \cdot Z_{x}=\Delta \cdot Z_{x}>\left\{\begin{array}{l}
\frac{18}{7} \text { if } P \neq Q \\
\frac{18}{7} \frac{1}{13} \text { if } P=Q
\end{array}\right.
$$

which is impossible, because $\epsilon \leqslant 5 / 39$. Thus, we see that $P \notin Z_{x}$.

We see that $P \notin C_{x}$ and $P \in \operatorname{Sing}(X)$. Then $P=O_{x}$. We have

$$
\frac{6}{77}=D \cdot C_{y} \geqslant \frac{\operatorname{mult}_{P}(D)}{7}>\frac{18}{49}>\frac{6}{77},
$$

which is a contradiction. Thus, we see that $\operatorname{lct}(X)=7 / 18$.
Part 4. The Big Table

Weight	Degree	K_{X}^{2}	Pic	$\operatorname{lct}(X)$	Monomials in $f(x, y, z, t)$	Singular Points
$(2,2 n+1,2 n+1,4 n+1)$	$8 n+4$	$\frac{2}{(2 n+1)(4 n+1)}$	8	1	$\begin{gathered} y^{4}, y^{3} z, y^{2} z^{2}, y z^{3}, z^{4}, x t^{2}, x^{n} y t, x^{n} z t, \\ x^{2 n+1} y^{2}, x^{2 n+1} y z, x^{2 n+1} z^{2} \end{gathered}$	$\begin{array}{\|l\|} \hline O_{t}=\frac{1}{4 n+1}(1,1) \\ O_{y} O_{z}=4 \times \frac{1}{2 n+1}(1,2 n) \\ \hline \end{array}$
(1, 2, 3, 5)	10	$\frac{1}{3}$	9	$\begin{aligned} & \frac{7}{7}_{10}{ }^{\mathrm{b}} \end{aligned}$	$t^{2}, y z t, y^{2} z^{2}, y^{5}, x z^{3}, x y^{2} t, x y^{3} z, x^{2} z t$, $x^{2} y z^{2}, x^{2} y^{4}, x^{3} y t, x^{3} y^{2} z, x^{4} z^{2}, x^{4} y^{3}$, $x^{5} t, x^{5} y z, x^{6} y^{2}, x^{7} z, x^{8} y, x^{10}$	$O_{z}=\frac{1}{3}(1,1)$
$(1,3,5,7)$	15	$\frac{1}{7}$	9	$\begin{aligned} & 1^{c}{ }^{\mathrm{c}}{ }^{15}{ }^{\text {d }} \end{aligned}$	$z^{3}, y z t, y^{5}, x t^{2}, x y^{3} z, x^{2} y z^{2}, x^{2} y^{2} t$, $x^{3} z t, x^{3} y^{4}, x^{4} y^{2} z, x^{5} z^{2}, x^{5} y t, x^{6} y^{3}$ $x^{7} y z, x^{8} t, x^{9} y^{2}, x^{10} z, x^{12} y, x^{15}$	$O_{t}=\frac{1}{7}(3,5)$
$(1,3,5,8)$	16	$\frac{2}{15}$	10	1	$\begin{aligned} & t^{2}, y z t, y^{2} z^{2}, x z^{3}, x y^{5}, x^{2} y^{2} t, x^{2} y^{3} z, \\ & x^{3} z t, x^{3} y z^{2}, x^{4} y^{4}, x^{5} y t, x^{5} y^{2} z, x^{6} z^{2}, \\ & x^{7} y^{3}, x^{8} t, x^{8} y z, x^{10} y^{2}, x^{11} z, x^{13} y, x^{16} \end{aligned}$	$\begin{aligned} & O_{y}=\frac{1}{3}(1,1) \\ & O_{z}=\frac{1}{5}(1,1) \end{aligned}$
(2, 3, 5, 9)	18	$\frac{1}{15}$	7	$\begin{aligned} & 2^{\mathrm{e}} \\ & \frac{11^{\mathrm{f}}}{6} \\ & \hline \end{aligned}$	$\begin{aligned} & t^{2}, y z^{3}, y^{3} t, y^{6}, x y^{2} z^{2}, x^{2} z t, x^{2} y^{3} z, \\ & x^{3} y t, x^{3} y^{4}, x^{4} z^{2}, x^{5} y z, x^{6} y^{2}, x^{9} \end{aligned}$	$\begin{aligned} & O_{z}=\frac{1}{5}(1,2) \\ & O_{y} O_{t}=2 \times \frac{1}{3}(1,1) \end{aligned}$
$(3,3,5,5)$	15	$\frac{1}{15}$	5	2	$\begin{gathered} t^{3}, z t^{2}, z^{2} t, z^{3}, y^{5}, x y^{4}, x^{2} y^{3}, x^{3} y^{2} \\ x^{4} y, x^{5} \end{gathered}$	$\begin{aligned} & O_{x} O_{y}=5 \times \frac{1}{3}(1,1) \\ & O_{z} O_{t}=3 \times \frac{1}{5}(1,1) \\ & \hline \end{aligned}$
$(3,5,7,11)$	25	$\frac{5}{231}$	5	$\frac{21}{10}$	$\begin{gathered} z^{2} t, y^{5}, x t^{2}, x y^{3} z, x^{2} y z^{2}, x^{3} y t, x^{5} y^{2} \\ x^{6} z \end{gathered}$	$\begin{aligned} & \hline O_{x}=\frac{1}{3}(1,1) \\ & O_{z}=\frac{1}{7}(3,5) \\ & O_{t}=\frac{1}{11}(5,7) \\ & \hline \end{aligned}$
(3, 5, 7, 14)	28	$\frac{2}{105}$	6	$\frac{9}{4}$	$\begin{gathered} t^{2}, z^{2} t, z^{4}, x y^{5}, x^{2} y^{3} z, x^{3} y t, x^{3} y z^{2} \\ x^{6} y^{2}, x^{7} z \end{gathered}$	$\begin{aligned} & O_{x}=\frac{1}{3}(1,1) \\ & O_{y}=\frac{1}{5}(1,2) \\ & O_{z} O_{t}=2 \times \frac{1}{7}(3,5) \end{aligned}$
$(3,5,11,18)$	36	$\frac{2}{165}$	6	$\frac{21}{10}$	$\begin{gathered} t^{2}, y^{5} z, x z^{3}, x y^{3} t, x^{2} y^{6}, x^{3} y z^{2}, x^{5} y^{2} z \\ x^{6} t, x^{7} y^{3}, x^{12} \end{gathered}$	$\begin{aligned} & O_{y}=\frac{1}{5}(1,1) \\ & O_{z}=\frac{1}{11}(5,7) \\ & O_{z} O_{t}=2 \times \frac{1}{3}(1,1) \\ & \hline \end{aligned}$

a: if C_{x} has an ordinary double point, b: if C_{x} has a non-ordinary double point, c: if the defining equation of X contains $y z t$, d: if the defining equation of X does not contain $y z t$, e: if C_{y} has a tacknodal double point, f: if C_{y} has no tacknodal points.
Log del Pezzo surface with $I=1$

Weight	Degree	K_{X}^{2}	Pic	$\operatorname{lct}(X)$	Monomials in $f(x, y, z, t)$	Singular Points
$(5,14,17,21)$	56	$\frac{4}{1785}$	4	$\frac{25}{8}$	$y t^{2}, y^{4}, x z^{3}, x^{5} y z, x^{7} t$	$\begin{aligned} & O_{x}=\frac{1}{5}(2,1) \\ & O_{z}=\frac{1}{17}(7,2) \\ & O_{t}=\frac{1}{21}(5,17) \\ & O_{y} O_{t}=1 \times \frac{1}{7}(5,3) \end{aligned}$
$(5,19,27,31)$	81	$\frac{3}{2945}$	3	$\frac{25}{6}$	$z^{3}, y t^{2}, x y^{4}, x^{7} y z, x^{10} t$	$\begin{aligned} & O_{x}=\frac{1}{5}(2,1) \\ & O_{y}=\frac{1}{19}(2,3) \\ & O_{t}=\frac{1}{31}(5,27) \end{aligned}$
($5,19,27,50$)	100	$\frac{2}{2565}$	4	$\frac{25}{6}$	$t^{2}, y z^{3}, x y^{5}, x^{7} y^{2} z, x^{10} t, x^{20}$	$\begin{aligned} & O_{y}=\frac{1}{19}(2,3) \\ & O_{z}=\frac{1}{27}(5,23) \\ & O_{x} O_{t}=2 \times \frac{1}{5}(2,1) \\ & \hline \end{aligned}$
(7,11, 27, 37)	81	$\frac{3}{2849}$	3	$\frac{49}{12}$	$z^{3}, y^{4} t, x t^{2}, x^{3} y^{3} z, x^{10} y$	$\begin{aligned} & O_{x}=\frac{1}{7}(3,1) \\ & O_{y}=\frac{1}{11}(7,5) \\ & O_{t}=\frac{1}{37}(11,27) \end{aligned}$
$(7,11,27,44)$	88	$\frac{2}{2079}$	4	$\frac{35}{8}$	$t^{2}, y^{4} t, y^{8}, x z^{3}, x^{4} y^{3} z, x^{11} y$	$\begin{aligned} & O_{x}=\frac{1}{7}(3,1) \\ & O_{z}=\frac{1}{27}(11,17) \\ & O_{y} O_{t}=2 \times \frac{1}{11}(7,5) \end{aligned}$
(9, 15, 17, 20)	60	$\frac{1}{765}$	3	$\frac{21}{4}$	$t^{3}, y^{4}, x z^{3}, x^{5} y$	$\begin{aligned} & O_{x}=\frac{1}{9}(4,1) \\ & O_{z}=\frac{1}{17}(5,1) \\ & O_{x} O_{y}=1 \times \frac{1}{3}(1,1) \\ & O_{y} O_{t}=1 \times \frac{1}{5}(2,1) \end{aligned}$
$(9,15,23,23)$	69	$\frac{1}{1035}$	5	6	$t^{3}, z t^{2}, z^{2} t, z^{3}, x y^{4}, x^{6} y$	$\begin{aligned} & O_{x}=\frac{1}{9}(1,1) \\ & O_{y}=\frac{1}{15}(1,1) \\ & O_{x} O_{y}=1 \times \frac{1}{3}(1,1) \\ & O_{z} O_{t}=3 \times \frac{1}{23}(3,5) \\ & \hline \end{aligned}$
(11, 29, 39, 49)	127	$\frac{127}{609609}$	3	$\frac{33}{4}$	$z^{2} t, y t^{2}, x y^{4}, x^{8} z$	$\begin{aligned} & O_{x}=\frac{1}{11}(7,5) \\ & O_{y}=\frac{1}{29}(1,2) \\ & O_{z}=\frac{1}{39}(11,29) \\ & O_{t}=\frac{1}{49}(11,39) \end{aligned}$

Log del Pezzo surface with $I=2$

Weight	Degree	K_{X}^{2}	Pic	$\operatorname{lct}(X)$	Monomials in $f(x, y, z, t)$	Singular Points
$(4,2 n+3,2 n+3,4 n+4)$	$8 n+12$	$\frac{1}{(n+1)(2 n+3)}$	7	1	$\begin{gathered} y^{4}, y^{3} z, y^{2} z^{2}, \underset{x^{2 n+3}}{y z^{3}, z^{4}, x t^{2}, x^{n+2} t,} \\ x^{2}, \end{gathered}$	$\begin{aligned} & O_{t}=\frac{1}{4 n+4}(1,1) \\ & O_{x} O_{t}=2 \times \frac{1}{4}(1,1) \\ & O_{y} O_{z}=4 \times \frac{1}{2 n+3}(4,2 n+1) \\ & \hline \end{aligned}$
$(3,3 n+1,6 n+1,9 n+3)$	$18 n+6$	$\frac{8}{3(3 n+1)(6 n+1)}$	6	1	$\begin{gathered} t^{2}, y^{3} t, y^{6}, x z^{3}, x^{n+1} y z^{2}, x^{2 n+1} y^{2} z, \\ x^{3 n+1} t, x^{3 n+1} y^{3}, x^{6 n+2} \end{gathered}$	$\begin{aligned} & O_{z}=\frac{1}{6 n+1}(3 n+1,3 n+2) \\ & O_{x} O_{t}=2 \times \frac{1}{3}(1,1) \\ & O_{y} O_{t}=2 \times \frac{1}{3 n+1}(1, n) \end{aligned}$
$(3,3 n+1,6 n+1,9 n)$	$18 n+3$	$\frac{4}{9 n(3 n+1)}$	5	1	$\begin{gathered} z^{3}, y^{3} t, x t^{2} x^{n} y z^{2}, x^{2 n} y^{2} z, x^{3 n} y^{3}, \\ x^{3 n+1} t, x^{6 n+1} \end{gathered}$	$\begin{aligned} & O_{y}=\frac{1}{3 n+1}(1, n) \\ & O_{t}=\frac{1}{9 n}(3 n+1,6 n+1) \\ & O_{x} O_{t}=2 \times \frac{1}{3}(1,1) \end{aligned}$
$(3,3 n, 3 n+1,3 n+1)$	$9 n+3$	$\frac{4}{3 n(3 n+1)}$	7	1	$\begin{gathered} t^{3}, z t^{2}, z^{2} t, z^{3}, x y^{3}, x^{n+1} y^{2}, x^{2 n+1} y \\ x^{3 n+1} \end{gathered}$	$\begin{aligned} & O_{y}=\frac{1}{3 n}(1,1) \\ & O_{x} O_{y}=3 \times \frac{1}{3}(1,1) \\ & O_{z} O_{t}=3 \times \frac{1}{3 n+1}(1, n) \\ & \hline \end{aligned}$
$(3,3 n+1,3 n+2,3 n+2)$	$9 n+6$	$\frac{4}{(3 n+1)(3 n+2)}$	5	1	$\begin{gathered} t^{3}, z t^{2}, z^{2} t, z^{3}, x^{3}, x^{n+1} y t, x^{n+1} y z \\ x^{3 n+2} \end{gathered}$	$\begin{aligned} & O_{y}=\frac{1}{3 n+1}(1,1) \\ & O_{z} O_{t}=3 \times \frac{1}{3 n+2}(3,3 n+1) \\ & \hline \end{aligned}$
$(4,2 n+1,4 n+2,6 n+1)$	$12 n+6$	$\frac{3}{(2 n+1)(6 n+1)}$	6	1	$\begin{gathered} z^{3}, y^{2} z^{2}, y^{4} z, y^{6}, x t^{2}, x^{n+1} y t, x^{2 n+1} z, \\ x^{2 n+1} y^{2} \end{gathered}$	$\begin{aligned} & O_{x}=\frac{1}{4}(1,1) \\ & O_{t}=\frac{1}{6 n+1}(1,2) \\ & O_{x} O_{z}=1 \times \frac{1}{2}(1,1) \\ & O_{y} O_{z}=3 \times \frac{1}{2 n+1}(1, n) \\ & \hline \end{aligned}$
(2, 3, 4, 5)	12	$\frac{2}{5}$	5	$\begin{aligned} & 1^{\mathrm{a}} \frac{7}{12}^{\mathrm{b}} \end{aligned}$	$\begin{gathered} z^{3}, y z t, y^{4}, x t^{2}, x y^{2} z, x^{2} z^{2}, x^{2} y t, \\ x^{3} y^{2}, x^{4} z, x^{6} \end{gathered}$	$\begin{aligned} & O_{t}=\frac{1}{5}(3,4) \\ & O_{x} O_{z}=3 \times \frac{1}{2}(1,1) \end{aligned}$
(2, 3, 4, 7)	14	$\frac{1}{3}$	6	1	$\begin{gathered} t^{2}, y z t, y^{2} z^{2}, x z^{3}, x y^{4}, x^{2} y t, x^{2} y^{2} z, \\ x^{3} z^{2}, x^{4} y^{2}, x^{5} z, x^{7} \end{gathered}$	$\begin{aligned} & O_{y}=\frac{1}{3}(1,1) \\ & O_{z}=\frac{1}{4}(1,1) \\ & O_{x} O_{z}=3 \times \frac{1}{2}(1,1) \end{aligned}$

a: if the defining equation of X contains $y z t$, b: if the defining equation of X contains no $y z t$.

	$z_{L} x{ }^{6} 7 x{ }_{8}{ }_{8} z{ }^{\prime}{ }_{9} R$	$\frac{0 \varepsilon}{L L}$	\＆	$\frac{6198}{9}$	901	（ $2 \dagger^{{f8d83addc-8893-4fa3-8a37-cfebf87bdefd}} \downarrow \mathrm{Z}^{\prime} 6 \mathrm{~L} \times 6$ ）
		§	g	$\frac{\mathrm{LLL}}{\mathrm{I}}$	29	
		$\frac{\square 7}{89}$	\＆	$\frac{4 \mathrm{LI}}{\mathrm{I}}$	87	
		$\frac{91}{9 ¢}$	■	$\frac{\varepsilon \in I}{L}$	¢9	（ $78 \times 6 \mathrm{I} \times 8 \times 2$ ）
		$\frac{\square Z}{6 \dagger}$	§	$\frac{0999}{L 9}$	29	（97＇6I＇8＇2）
		（X） ¢ $^{\text {¢ }}$	ग！${ }^{\text {d }}$	${ }_{2}^{X} Y$	әәл．̊əП	

Log del Pezzo surface with $I=2$

荷	7∞	\％｜x	ㄴำ익	디용	ㅂำ은	团	あ12	নid
\％	∞	∞	～	∞	∞	∞	ヘ	∞
思			－${ }^{\text {P\％}}$	，縉		椷	富	䀎罭
	$\stackrel{\text { ® }}{ }$	\exists	ฝั	号	$\stackrel{\text { ® }}{ }$	\exists	¢ัจำ	8
					$\begin{gathered} \text { E } \\ \text { N } \\ \text { N } \\ \text { N } \\ \underset{\sim}{2} \end{gathered}$		$\begin{aligned} & \underset{\exists}{\underset{\sim}{2}} \\ & \underset{\sim}{7} \\ & \underset{\sim}{\theta} \end{aligned}$	

Log del Pezzo surface with $I=3$

Weight	Degree	K_{X}^{2}	Pic	$\operatorname{lct}(X)$	Monomials in $f(x, y, z, t)$	Singular Points
(5,7,11, 13)	33	$\frac{27}{455}$	3	$\frac{49}{36}$	$t^{2} y, z^{3}, x y^{4}, x^{3} y z, x^{4} t$	$\begin{aligned} & O_{x}=\frac{1}{5}(2,1) \\ & O_{y}=\frac{1}{7}(2,3) \\ & O_{t}=\frac{1}{13}(5,11) \end{aligned}$
(5, 7, 11, 20)	40	$\frac{18}{385}$	4	$\frac{25}{18}$	$t^{2}, y z^{3}, x y^{5}, x^{3} y^{2} z, x^{4} t, x^{8}$	$\begin{aligned} & O_{y}=\frac{1}{7}(2,3) \\ & O_{z}=\frac{1}{11}(1,4) \\ & O_{x} O_{t}=2 \times \frac{1}{5}(2,1) \end{aligned}$
$(11,21,29,37)$	95	$\frac{285}{82621}$	3	$\frac{11}{4}$	$t^{2} y, z^{2} t, x y^{4}, x^{6} z$	$\begin{aligned} & \hline O_{x}=\frac{1}{11}(5,2) \\ & O_{y}=\frac{1}{21}(1,2) \\ & O_{z}=\frac{1}{29}(11,21) \\ & O_{t}=\frac{1}{37}(11,29) \\ & \hline \end{aligned}$
$(11,37,53,98)$	196	$\frac{18}{21571}$	2	$\frac{55}{18}$	$t^{2}, y z^{3}, x y^{5}, x^{13} z$	$\begin{aligned} & O_{x}=\frac{1}{11}(2,5) \\ & O_{y}=\frac{1}{37}(2,3) \\ & O_{z}=\frac{1}{5,3}(11,45) \end{aligned}$
$(13,17,27,41)$	95	$\frac{95}{27183}$	3	$\frac{65}{24}$	$z^{2} t, y^{4} z, x t^{2}, x^{6} y$	$\begin{aligned} & O_{x}=\frac{1}{13}(1,2) \\ & O_{y}=\frac{1}{17}(13,7) \\ & O_{z}=\frac{1}{27}(13,17) \\ & O_{t}=\frac{1}{41}(17,27) \end{aligned}$
$(13,27,61,98)$	196	$\frac{2}{2379}$	2	$\frac{91}{30}$	$t^{2}, y^{5} z, x z^{3}, x^{13} y$	$\begin{aligned} & O_{x}=\frac{1}{13}(9,7) \\ & O_{y}=\frac{1}{27}(13,17) \\ & O_{z}=\frac{1}{61}(1,1) \end{aligned}$
$(15,19,43,74)$	148	$\frac{18}{12255}$	2	$\frac{57}{14}$	$t^{2}, y z^{3}, x y^{7}, x^{7} z$	$\begin{aligned} & O_{x}=\frac{1}{15}(2,7) \\ & O_{y}=\frac{1}{19}(5,17) \\ & O_{z}=\frac{1}{43}(15,31) \end{aligned}$

Log del Pezzo surface with $I=4$

Weight	Degree	K_{X}^{2}	Pic	$\operatorname{lct}(X)$	Monomials in $f(x, y, z, t)$	Singular Points
$(6,6 n+3,6 n+5,6 n+5)$	$18 n+15$	$\frac{8}{(6 n+3)(6 n+5)}$	5	1	$t^{3}, z t^{2}, z^{2} t, z^{3}, x y^{3}, x^{2 n+2} y$	$\begin{aligned} & O_{x}=\frac{1}{6}(1,1) \\ & O_{y}=\frac{1}{6 n+3}(1,1) \\ & O_{x} O_{y}=1 \times \frac{1}{3}(1,1) \\ & O_{z} O_{t}=3 \times \frac{1}{6 n+5}(2,2 n+1) \end{aligned}$
$(6,6 n+5,12 n+8,18 n+9)$	$36 n+24$	$\frac{8}{3(6 n+3)(6 n+5)}$	3	1	$z^{3}, y^{3} t, x t^{2}, x^{2 n+1} y^{2} z, x^{6 n+4}$	$\begin{aligned} & O_{y}=\frac{1}{6 n+5}(2,2 n+1) \\ & O_{t}=\frac{1}{18 n+9}(6 n+5,12 n+ \\ & 8) \\ & O_{x} O_{t}=1 \times \frac{1}{3}(1,1) \\ & \hline \end{aligned}$
$(6,6 n+5,12 n+8,18 n+15)$	$36 n+30$	$\frac{4}{3(3 n+2)(6 n+5)}$	4	1	$t^{2}, y^{3} t, y^{6}, x z^{3}, x^{2 n+2} y^{2} z, x^{6 n+5}$	$\begin{aligned} & O_{z}=\frac{1}{12 n+8}(1,3) \\ & O_{x} O_{z}=1 \times \frac{1}{2}(1,1) \\ & O_{x} O_{t}=1 \times \frac{1}{3}(1,1) \\ & O_{y} O_{t}=2 \times \frac{1}{6 n+5}(2,2 n+1) \\ & \hline \end{aligned}$
$(5,6,8,9)$	24	$\frac{8}{45}$	3	1	$t^{2} y, y^{4}, z^{3}, x^{2} y z, x^{3} t$	$\begin{aligned} & \hline O_{x}=\frac{1}{5}(1,3) \\ & O_{t}=\frac{1}{9}(5,8) \\ & O_{y} O_{z}=1 \times \frac{1}{2}(1,1) \\ & O_{y} O_{t}=1 \times \frac{1}{3}(1,1) \\ & \hline \end{aligned}$
($5,6,8,15$)	30	$\frac{2}{15}$	4	1	$t^{2}, y^{5}, y z^{3}, x^{2} y^{2} z, x^{3} t, x^{6}$	$\begin{aligned} & O_{z}=\frac{1}{8}(5,7) \\ & O_{x} O_{t}=2 \times \frac{1}{5}(1,3) \\ & O_{y} O_{t}=1 \times \frac{1}{3}(1,1) \\ & O_{y} O_{z}=1 \times \frac{1}{2}(1,1) \\ & \hline \end{aligned}$
(9, 11, 12, 17)	45	$\frac{20}{561}$	3	$\frac{77}{60}$	$t^{2} y, y^{3} z, x z^{3}, x^{5}$	$\begin{aligned} & \hline O_{y}=\frac{1}{11}(3,2) \\ & O_{z}=\frac{1}{12}(11,5) \\ & O_{t}=\frac{1}{17}(3,4) \\ & O_{x} O_{z}=1 \times \frac{1}{3}(1,1) \\ & \hline \end{aligned}$
$(10,13,25,31)$	75	$\frac{24}{2015}$	3	$\frac{91}{60}$	$t^{2} y, z^{3}, x y^{5}, x^{5} z$	$\begin{aligned} & O_{x}=\frac{1}{10}(3,1) \\ & O_{y}=\frac{1}{13}(12,5) \\ & O_{t}=\frac{1}{31}(2,5) \\ & O_{x} O_{z}=1 \times \frac{1}{5}(3,1) \\ & \hline \end{aligned}$
$(11,17,20,27)$	71	$\frac{284}{25245}$	3	$\frac{11}{6}$	$t^{2} y, y^{3} z, x z^{3}, x^{4} t$	$\begin{aligned} & O_{x}=\frac{1}{11}(2,3) \\ & O_{y}=\frac{1}{17}(11,10) \\ & O_{z}=\frac{1}{20}(17,7) \\ & O_{t}=\frac{1}{27}(11,20) \\ & \hline \end{aligned}$

Log del Pezzo surface with $I=5$

	$\kappa_{6} x{ }^{\prime}{ }_{8} z x{ }^{\prime} z_{\mathrm{g}} \chi^{\prime}{ }_{6}{ }^{7}$	$\frac{09}{16}$	ζ	$\frac{27101}{09}$	98I	($89 \times$ 'Lt 6 LI ' $¢ \mathrm{~L}$)
	$z_{6} x{ }_{9}{ }_{9} x^{\prime}{ }_{8}{ }_{8} \chi^{\prime}{ }_{7}{ }^{7}$	$\frac{9}{\mathrm{LI}}$	\checkmark	$\frac{980 Z}{71}$	98I	($89 \times 28^{\prime} \mathrm{g} \mathrm{Z}^{\prime} \mathrm{LI}$)
		$\frac{8}{8 \tau}$	¢	$\frac{412 Z}{89}$	¢9	(97'6I'eI'tI)
squ!̣od xe[n.su!	$\left(7^{6} z^{6} h^{6} x\right) f$ u! ste!	(X) ¢ $^{\text {¢ }}$	ग! ${ }^{\text {d }}$	${ }_{8}^{X} Y$	әәı.̊ə ${ }^{\text {¢ }}$	74.8!9 М

Log del Pezzo surface with $I=6$

Weight	Degree	K_{X}^{2}	Pic	$\operatorname{lct}(X)$	Monomials in $f(x, y, z, t)$	Singular Points
$(8,4 n+5,4 n+7,4 n+9)$	$12 n+23$	$\frac{9(12 n+23)}{2(4 n+5)(4 n+7)(4 n+9)}$	3	1	$z^{2} t, y t^{2}, x y^{3}, x^{n+2} z$	$\begin{aligned} & O_{x}=\frac{1}{8}(4 n+5,4 n+9) \\ & O_{y}=\frac{1}{4 n+5}(1,2) \\ & O_{z}=\frac{1}{4 n+7}(8,4 n+5) \\ & O_{t}=\frac{1}{4 n+9}(8,4 n+7) \\ & \hline \end{aligned}$
$(9,3 n+8,3 n+11,6 n+13)$	$12 n+35$	$\frac{4(12 n+35)}{(3 n+8)(3 n+11)(6 n+13)}$	3	1	$z^{2} t, y^{3} z, x t^{2}, x^{n+3} y$	$\begin{aligned} & O_{x}=\frac{1}{9}(3 n+11,6 n+13) \\ & O_{y}=\frac{1}{3 n+8}(9,6 n+13) \\ & O_{z}=\frac{1}{3 n+11}(9,3 n+8) \\ & O_{t}=\frac{1}{6 n+13}(3 n+8,3 n+ \\ & 11) \end{aligned}$
$(5,7,8,9)$	23	$\frac{23}{70}$	3	$\frac{5}{8}$	$y^{2} t, x^{3} z, x t^{2}, y z^{2}$	$\begin{aligned} & O_{x}=\frac{1}{5}(1,2) \\ & O_{y}=\frac{1}{7}(5,1) \\ & O_{z}=\frac{1}{8}(5,1) \\ & O_{t}=\frac{1}{9}(7,8) \end{aligned}$
$(7,10,15,19)$	45	$\frac{36}{665}$	3	$\frac{35}{54}$	$z^{3}, y^{3} z, x t^{2}, x^{5} y$	$\begin{aligned} & O_{x}=\frac{1}{7}(1,5) \\ & O_{y}=\frac{1}{10}(7,9) \\ & O_{t}=\frac{1}{19}(2,3) \\ & O_{y} O_{z}=1 \times \frac{1}{5}(1,2) \end{aligned}$
$(11,19,29,53)$	106	$\frac{72}{6061}$	2	$\frac{55}{36}$	$t^{2}, y z^{3}, x y^{5}, x^{7} z$	$\begin{aligned} & O_{x}=\frac{1}{11}(8,9) \\ & O_{y}=\frac{1}{19}(2,3) \\ & O_{z}=\frac{1}{29}(11,24) \end{aligned}$
$(13,15,31,53)$	106	$\frac{24}{2015}$	2	$\frac{45}{28}$	$t^{2}, y^{5} z, x z^{3}, x^{7} y$	$\begin{aligned} & O_{x}=\frac{1}{13}(5,1) \\ & O_{y}=\frac{1}{15}(13,8) \\ & O_{z}=\frac{1}{31}(15,22) \end{aligned}$

Log del Pezzo surface with $I=7$

Weight	Degree	K_{X}^{2}	Pic	$\operatorname{lct}(X)$	Monomials in $f(x, y, z, t)$	Singular Points
$(11,13,21,38)$	76	$\frac{14}{429}$	2	$\frac{13}{10}$	$t^{2}, y z^{3}, x y^{5}, x^{5} z$	$O_{x}=\frac{1}{11}(2,5)$
$O_{y}=\frac{1}{13}(2,3)$						
$O_{z}=\frac{1}{21}(11,17)$						

Log del Pezzo surface with $I=8$						
Weight	Degree	K_{X}^{2}	Pic	$\operatorname{lct}(X)$	Monomials in $f(x, y, z, t)$	Singular Points
(7,11, 13, 23)	46	$\frac{128}{1001}$	2	$\frac{35}{48}$	$t^{2}, y^{3} z, x z^{3}, x^{5} y$	$\begin{aligned} O_{x} & =\frac{1}{7}(3,1) \\ O_{y} & =\frac{1}{11}(7,1) \\ O_{z} & =\frac{1}{13}(11,10) \end{aligned}$
(7, 18, 27, 37)	81	$\frac{32}{777}$	3	$\frac{35}{72}$	$y^{3} z, z^{3}, x t^{2}, x^{9} y$	$\begin{aligned} & O_{x}=\frac{1}{7}(3,1) \\ & O_{y}=\frac{1}{18}(7,1) \\ & O_{t}=\frac{1}{37}(2,3) \\ & O_{y} O_{z}=1 \times \frac{1}{9}(7,1) \end{aligned}$

Log del Pezzo surface with $I=9$
Weight
$(7,15,19,32)$
Weight
$(7,19,25,41)$

References

[1] C. Araujo, Kähler-Einstein metrics for some quasi-smooth log del Pezzo surfaces Transactions of the American Mathematical Society 354 (2002), 4303-3312
[2] C. Boyer, Sasakian geometry: the recent work of Krzysztof Galicki arXiv:0806.0373 (2008)
[3] C. Boyer, K. Galicki, M. Nakamaye, Sasakian-Einstein structures on 9\# ($\left.S^{2} \times S^{3}\right)$ Transactions of the American Mathematical Society 354 (2002), 2983-2996
[4] C. Boyer, K. Galicki, M. Nakamaye, On the geometry of Sasakian-Einstein 5-manifolds Mathematische Annalen 325 (2003), 485-524
[5] J. W. Bruce, C. T. C. Wall, On the classification of cubic surfaces Journal of the London Mathematical Society 19 (1979), 245-256
[6] I. Cheltsov, Log canonical thresholds on hypersurfaces Sbornik: Mathematics 192 (2001), 1241-1257
[7] I. Cheltsov, Fano varieties with many selfmaps Advances in Mathematics 217 (2008), 97-124
[8] I. Cheltsov, Double spaces with isolated singularities Sbornik: Mathematics 199 (2008), 291-306
[9] I. Cheltsov, Log canonical thresholds and Kähler-Einstein metrics on Fano threefold hypersurfaces Izvestiya: Mathematics, to appear
[10] I. Cheltsov, Extremal metrics on two Fano varieties Sbornik: Mathematics, to appear
[11] I. Cheltsov, Log canonical thresholds of del Pezzo surfaces Geometric and Functional Analysis, to appear
[12] I. Cheltsov, On singular cubic surfaces arXiv:0706.2666 (2007)
[13] I. Cheltsov, J. Park, Weighted Fano threefold hypersurfaces Journal für die Reine und Angewandte Mathematik, 600 (2006), 81-116
[14] I. Cheltsov, J. Park, J. Won, Log canonical thresholds of certain Fano hypersurfaces arXiv:math.AG/0706.0751 (2007)
[15] I. Cheltsov, C. Shramov, Log canonical thresholds of smooth Fano threefolds. With an appendix by Jean-Pierre Demailly arXiv:0806.2107 (2008)
[16] A. Corti, A. Pukhlikov, M. Reid, Fano 3-fold hypersurfaces L.M.S. Lecture Note Series 281 (2000), 175-258
[17] J.-P. Demailly, J. Kollár, Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds Annales Scientifiques de l'École Normale Supérieure 34 (2001), 525-556
[18] S. Donaldson, Scalar curvature and stability of toric varieties Journal of Differential Geometry 62 (2002), 289-349
[19] R. Elkik, Rationalitè des singularitès canoniques Inventiones Mathematicae 64 (1981), 1-6
[20] A. Futaki, An obstruction to the existence of Einstein-Kähler metrics Inventiones Mathematicae 73 (1983), 437-443
[21] J. Gauntlett, D. Martelli, J. Sparks, S.-T. Yau, Obstructions to the existence of Sasaki-Einstein metrics arXiv:hep-th/0607080 (2006)
[22] J.-M. Hwang, Log canonical thresholds of divisors on Fano manifolds of Picard rank 1 Compositio Mathematica 143 (2007), 89-94
[23] A. R. Iano-Fletcher, Working with weighted complete intersections L.M.S. Lecture Note Series 281 (2000), 101-173
[24] V. Iskovskikh, Yu. Prokhorov, Fano varieties Encyclopaedia of Mathematical Sciences 47 (1999) Springer, Berlin
[25] S. Ishii, Yu. Prokhorov, Hypersurface exceptional singularities International Journal of Mathematics 12 (2001), 661-687
[26] J. Johnson, J. Kollár, Fano hypersurfaces in weighted projective 4-spaces Experimental Mathematics 10 (2001), 151-158
[27] J. Johnson, J. Kollár, Kähler-Einstein metrics on log del Pezzo surfaces in weighted projective 3-spaces Annales de l'Institut Fourier 51 (2001), 69-79
[28] J. Kollár, Singularities of pairs Proceedings of Symposia in Pure Mathematics 62 (1997), 221-287
[29] S. Keel, J. McKernan, Rational curves on quasi-projective surfaces Memoirs of the American Mathematical Society 669 (1999)
[30] S. Kudryavtsev, On purely log terminal blow ups
Mathematical Notes 69 (2002), 814-819
[31] S. Kudryavtsev, Classification of three-dimensional exceptional log-canonical hypersurface singularities. I Izvestiya: Mathematics 66 (2002), 949-1034
[32] T. Kuwata, On log canonical thresholds of reducible plane curves American Journal of Mathematics 121 (1999), 701-721
[33] M. Lübke, Stability of Einstein-Hermitian vector bundles Manuscripta Mathematica 42 (1983), 245-257
[34] D. Markushevich, Yu. Prokhorov, Exceptional quotient singularities American Journal of Mathematics 121 (1999), 1179-1189
[35] H. Matsumura, P. Monsky, On the automorphisms of hypersurfaces Journal of Mathematics of Kyoto University 3 (1964), 347-361
[36] Y. Matsushima, Sur la structure du groupe d’homéomorphismes analytiques d'une certaine variété kählérienne Nagoya Mathematical Journal 11 (1957), 145-150
[37] A. Nadel, Multiplier ideal sheaves and Kähler-Einstein metrics of positive scalar curvature Annals of Mathematics 132 (1990), 549-596
[38] D. Phong, N. Sesum, J. Sturm, Multiplier ideal sheaves and the Kähler-Ricci flow Communications in Analysis and Geometry 15 (2007), 613-632
[39] Yu. Prokhorov, Blow-ups of canonical singularities arXiv:math/9810097 (1998)
[40] Yu. Prokhorov, Lectures on complements on log surfaces MSJ Memoirs 10 (2001)
[41] A. Pukhlikov, Birational geometry of Fano direct products Izvestiya: Mathematics 69 (2005), 1225-1255
[42] M. Reid, Canonical 3-folds Journes de Gèometrie Algèbrique d'Angers (1980), 273-310
[43] J. Ross, R. Thomas, An obstruction to the existence of constant scalar curvature Kähler metrics Journal of Differential Geometry 72 (2006), 429-466
[44] Y. Rubinstein, Some discretizations of geometric evolution equations and the Ricci iteration on the space of Kähler metrics Advances in Mathematics 218 (2008), 1526-1565
[45] V. Shokurov, Three-fold log flips Russian Academy of Sciences, Izvestiya Mathematics 40 (1993), 95-202
[46] V.Shokurov, Complements on surfaces Journal of Mathematical Sciences 102 (2000), 3876-3932
[47] J. Sparks, New results in Sasaki-Einstein geometry arXiv:math/0701518 (2007)
[48] G. Tian, On Kähler-Einstein metrics on certain Kähler manifolds with $c_{1}(M)>0$ Inventiones Mathematicae 89 (1987), 225-246
[49] G. Tian, On Calabi's conjecture for complex surfaces with positive first Chern class Inventiones Mathematicae 101 (1990), 101-172
[50] G. Tian, On a set of polarized Kähler metrics on algebraic manifolds Journal of Differential Geometry 32 (1990), 99-130
[51] G. Tian, Kähler-Einstein metrics with positive scalar curvature Inventiones Mathematicae 130 (1997), 1-37
[52] S. S.-T. Yau, Y. Yu, Classification of 3-dimensional isolated rational hypersurface singularities with \mathbb{C}^{*}-action arXiv:math/0303302 (2003)
[53] Q. Zhang, Rational connectedness of $\log \mathbb{Q}$-Fano varietiess Journal fur die Reine und Angewandte Mathematik 590 (2006), 131-142

Ivan Cheltsov
School of Mathematics, The University of Edinburgh, Edinburgh, EH9 3JZ, UK; cheltsov@yahoo.com
Jihun Park
Department of Mathematics, POSTECH, Pohang, Kyungbuk 790-784, Korea; wlog@postech.ac.kr
Constantin Shramov
School of Mathematics, The University of Edinburgh, Edinburgh, EH9 3JZ, UK; shramov@mccme.ru

[^0]: ${ }^{1}$ All varieties are assumed to be complex, algebraic, projective and normal unless otherwise stated.

[^1]: ${ }^{2}$ Even for a del Pezzo surfaces with log terminal singularities the rationality of the global log canonical threshold is unknown.

[^2]: ${ }^{3}$ For notions of exceptional and weakly exceptional singularities see [39, Definition 4.1], [46], [25].

