EXCEPTIONAL DEL PEZZO HYPERSURFACES

IVAN CHELTSOV, JIHUN PARK, CONSTANTIN SHRAMOV

ABSTRACT. We classify weakly exceptional quasismooth well-formed del Pezzo weighted hyper-
surfaces in P(a1, a2, a3, as), and we compute their global log canonical thresholds.
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Part 1. Introduction
1.1. BACKGROUND

The multiplicity of a nonzero polynomial f € C[zy,---,2,] at a point P € C" is the non-
negative integer m such that f € m% \ m5*! where mp is the maximal ideal of polynomials
vanishing at the point P in C[z1,--- , z,]. It can be also defined by derivatives. The multiplicity

of f at the point P is the number
omf

m|
aml Zlamz 29 6mn Zn

multp(f) = min { (P) # 0} .

On the other hand, we have a similar invariant that is defined by integrations. This invariant,
which is called the complex singularity exponent of f at the point P, is given by



cp(f) =sup {c ‘ |f|7¢ is locally L? near the point P € C”} .
It is hard to calculate it in general. However for some cases there are easy ways to calculate
it.

Example 1.1.1. Let f be a polynomial in C[z1, z3]. Suppose that the polynomial defines an
irreducible curve passing through the origin O in C2. We then have

1 1
co(f) = min <1, — + ) ,
mon
where (m,n) is the first pair of Puiseux exponents of f (see [32]). In particular, we have
1 1
11 e+
c ST 52 (kal + kag)) = min [ —, —, mi m2 ,
O(l 2 1 2 ny no k+%+%

where n1, no, m1, mo, k are non-negative integers.

Example 1.1.2. Let my,...,m, be positive integers. Then
n n n
1 1 1 1
inl1 — ) = mi | o> M) =min (| —, —,...,— ] .
o (125 ) oo () 2o (T <o (35

Let X be a variety! with at most log canonical singularities (see [28]), let Z C X be a closed
subvariety, and let D be an effective Q-Cartier Q-divisor on the variety X. Then the number

Ict (X, D) = sup {/\ €eQ ‘ the log pair (X, )\D) is log canonical along Z} €eQU { + oo}

is called a log canonical threshold of the divisor D along Z. It follows from [28] that for a
polynomial f in n variables over C

leto (T, (£ = 0)) = co(¥),

so that the log canonical threshold lctz (X, D) is an algebraic counterpart of the complex singu-
larity exponent co(f). We can define the log canonical threshold of D on X by

letx (X, D) = inf {letp(X, D) | P e X}
= sup {)\ eQ ‘ the log pair (X, )\D) is log canonical} ,
and, for simplicity, we put lct(X, D) = letx (X, D).
Example 1.1.3. Suppose that X = P? and D € |Op2(3)|. Then

1if D is a smooth curve,

1if D is a curve with ordinary double points,

5 if D is a curve with one cuspidal point,

3

— if D consists of a conic and a line that are tangent,
let(X, D) = { 4

2
3 if D consists of three lines intersecting at one point,

1
3 if Supp (D) consists of two lines,

1
3 if Supp (D) consists of one line.

Now we suppose that X is a Fano variety with at most log terminal singularities (see [24]).

LAll varieties are assumed to be complex, algebraic, projective and normal unless otherwise stated.



Definition 1.1.4. The global log canonical threshold of the Fano variety X is the number
defined by

lct (X) = inf {lct (X, D) ‘ D is an effective Q-divisor on X such that D ~q —KX} .

The number lct(X) is an algebraic counterpart of the a-invariant of Tian (see [15], [48]).
The group Pic(X) is torsion free because X is rationally connected (see [53]). Therefore, we
have

et (X) — sup {)\ cQ the log pair <X, )\D) is log canonical } '

for every effective Q-divisor D = —Kx

It immediately follows from Definition 1.1.4 that

the log pair (X, ED) is log canonical for
n

lct(X) =supeeeQ
every divisor D € ‘ —nK X| and every n € N

Example 1.1.5. Suppose that P(ag, a1,...,a,) is a well-formed weighted projective space (see
[23]). Then

__ G0

Do Ti

Example 1.1.6. Let X be a smooth hypersurface in P" of degree m < n. The paper [6] shows
that

lct(IP’(ao,al, . ,an)> =

1
n+1—m
if m < n. For the case m = n > 2 it also shows that

lct (X) =

1
1——<let(X) <1

n
and that let(X) =1 — % if X contains a cone of dimension n — 2. Meanwhile, the papers [14]
and [41] show that
(1ifn > 6,
22
25
1>1et(X) =< 16
21
3

Zifn =3,
k4177,

if n =25,

if n =4,

if X is general.

Example 1.1.7. Let X be a smooth hypersurface in the weighted projective space P(1"1, d)
of degree 2d > 4. Then

1
let(X) = ———
) =y
in the case when d < n (see [8, Proposition 20]). Suppose that d = n. Then the inequalities
2n —1

<let(X) <1

hold (see [14]). But lct(X) = 1 if X is general and n > 3. Furthermore for the case n = 3 the
papers [14] and [41] prove that
543 13 33 7 33 8 9 11 13 15 17 19 21 29
1Ct(X) € T 759079798 0’ T 15 T TR T3 AR’ 55’ an?
6°50°15°38°8°38°9"10°12" 14716 18" 20" 22" 30
and all these values can be attained. For instance, if the hypersurface X is given by

w? = 2% 4 8 + 28 + 15 4+ 2222t € P(1,1,1,1,3) = Proj ((C[m,y,z,t,w]),

where wt(z) = wt(y) = wt(z) = wt(t) = 1 and wt(w) = 3, then lct(X) =1 (see [14]).



Example 1.1.8. Let X be a rational homogeneous space such that —Kx ~ rD and
Pic(X) = Z[D],
where D is an ample Cartier divisor and r € Z~g. Then let(X) = L (see [22]).

r

Example 1.1.9. Let X be a quasismooth well-formed (see [23]) hypersurface in
P(1,a1,az,as,aq) of degree Zle a; with terminal singularities (see [28]), where a; < ... <
ays. Then

e there are exactly 95 possibilities for the quadruple (a1, az, as, as) (see [23], [26]),

o if X C P(1,a1,a9,as,as) is general, then it follows from [7], [9], [10] and [14] that

(16
21 ifa; =as =a3 =a4 =1,
7
§ if (a17a27a37a4) = (1) 17 172)7
4
PRI 20D i (0, a0,05,00) = (1,1,2,2),
6
? if (a17a27a37a4) == (17 17273>7
1 in the remaining cases,

e the global log canonical threshold of the hypersurface
w? =3+ 2% 4918 4218 ¢ IP’(l, 1,2,6, 9) 2 Proj ((C [a:,y, z,t, w])
is equal to 1L (see [7]), where wt(z) = wt(y) = 1, wt(2) = 2, wt(t) = 6, wt(w) = 9.

Example 1.1.10. Let X be a singular cubic surface in P? such that X has at most canonical
singularities. The possible singularities of X are listed in [5]. It follows from [12] that

'% if Sing(X) = {A;},
S i Sing(X) 2 {A4), Sing(X) = {Ds} or Sing(X) 2 {As, Az},
let(X) = { ©if Sing(X) 2 {45} or Sing(X) = {5},
o i Sing(X) = (B},
1 ..
(5 In the remaining cases.

So far we have not seen any single variety whose global log canonical threshold is irrational.
In general, it is unknown whether lct(X) is a rational number or not? (cf. Question 1 in [50]).
However, we expect more than this as follows.

Conjecture 1.1.11. There is an effective Q-divisor D ~g —Kx on the variety X such that
lct(X) = lct(X, D) € Q.
The following definition is due to [46] (cf. [25], [31], [34], [40]).

Definition 1.1.12. The variety X is exceptional (resp. weakly exceptional, strongly excep-
tional) if for every effective Q-divisor D on the variety X such that D = —Kx, the pair (X, D)
is log terminal (resp. let(X) > 1, let(X) > 1).
It is easy to see the implications
strongly exceptional = exceptional = weakly exceptional.
However, if Conjecture 1.1.11 holds for X, then we see that X is exceptional if and only if X is
strongly exceptional.

2Even for a del Pezzo surfaces with log terminal singularities the rationality of the global log canonical threshold
is unknown.



Exceptional del Pezzo surfaces, which are called del Pezzo surfaces without tigers in [29], lie
in finitely many families (see [46], [40]). We expect that strongly exceptional Fano varieties with
quotient singularities enjoy very interesting geometrical properties (cf. [44, Theorem 3.3], [38,
Theorem 1]).

The global log canonical threshold plays important roles both in birational geometry and in
complex geometry.

Example 1.1.13. Let X1,..., X, be threefolds satisfying hypotheses of Example 1.1.9. Then

the threefolds X7, ..., X, are non-rational (see [16]),
for every i = 1,...,r, there is no rational dominant map p: X; --+ Y such that
— general fiber of the map p is rationally connected,
— the inequality dim(Y) > 1 holds,
there is no non-biregular birational map p: X; --+ Y such that
— the variety Y has terminal Q-factorial singularities,
— the equality rk Pic(Y) = 1 holds.

e the structures of the groups Bir(X3),...,Bir(X,) are completely described in [16] and
[13],
o if the equality lct(X;) = lct(X2) = ... = lct(X;) = 1 holds, then

— the variety X; x ... x X, is non-rational and

Bir(Xl SR XT> - <ﬁBir(Xi), Aut<X1 XX X>>
i=1

— for every dominant map p: X1 X ... X X,. --» Y whose general fiber is rationally
connected, there is a subset {iy,... it} C {1,...,7} and a commutative diagram
Xy X.o..xX,——-"——-=X;x...x X,
!
™ ~ -
Xilx---XXik ———————— : —————————:iY,

where £ and o are birational maps, and 7 is a projection (see [7], [41]).
The following result was proved in [17], [37], [48] (see [15, Appendix A]).

Theorem 1.1.14. Suppose that X is a Fano variety with at most quotient singularities. Then
X admits an orbifold Kahler-Einstein metric if
dim (X )
dim(X) +1°
Examples 1.1.6, 1.1.7 and 1.1.9 are good examples to which we may apply Theorem 1.1.14.

There are many known obstructions for the existence of orbifold Kahler—Einstein metrics on
Fano varieties with quotient singularities (see [18], [20], [33], [36], [43], [51]).

lct (X) >

Example 1.1.15. Let X be a quasismooth hypersurface in P(ay, . .., an) of degree d < Y7  a;,
where ag < ... < a,. Suppose that X is well-formed and has a Kéhler—Einstein metric. Then

d(ial—d> <nnlﬁ‘[aia
i=0 =0

and """ 5 a; < d+ nag by [21] (see [2], [47]).

The problem of existence of Kahler—Einstein metrics on smooth del Pezzo surfaces is com-
pletely solved by [49].

Theorem 1.1.16. If X is a smooth del Pezzo surface, then the following conditions are equiv-
alent:

e the automorphism group Aut(X) is reductive;
e the surface X admits a Kahler—Einstein metric;
e the surface X is not a blow up of P? at one or two points.



Acknowledgments. The first author is grateful to the Max Plank Institute for Mathematics
at Bonn for the hospitality and excellent working condit. The first and the third authors has been
supported by the EPSRC grant EP/E048412/1. The second author has been supported by the
Korea Research Foundation Grant funded by the Korean Government (KRF-2007-412-J02302).

1.2. NOTATION

We reserve the following notation that will be used throughout the paper:

e P(ag,a1,as,as) denotes the weighted projective space Proj(C [:c,y,z,t]) with weights
wt(x) = ag, wt(y) = a1, wt(z) = aa, wt(t) = a3, where we always assume ag < a1 <
as < as.

e O, is the point in P(ag, a1, az, a3) defined by y = z =t = 0. The points O,, O, and O,
are defined in the similar way.

e X denotes a quasismooth and well-formed hypersurface in P(ag, a1, az2,a3) (see Defini-
tions 6.3 and 6.9 in [23], respectively).

e C, is the curve on X cut by the equation x = 0. The curves Cy, C; and C; are defined
by the similar way.

o L, is the one-dimensional strata on P(ag, a1, az,a3) defined by x =y = 0 and the other
one-dimensional stratum are labeled in the same way.

e Let D be a divisor on X and P € X. Choose an orbifold chart 7 : U — U for some
neighborhood P € U C X. We put multp(D) = multp(7*D) and refer to this quantity
as the multiplicity of D at P.

1.3. RESULTS

Let X be a hypersurface in P = P(ag, a1, az,as) of degree d. Then X is given by a quasiho-
mogeneous polynomial equation f(z,y,z,t) = 0 of degree d. The quasihomogeneous equation

f(m,y,z,t) =0cCCx Spec((C[x,y,z,t]),

defines an isolated quasihomogeneous singularity (V,O) with the Milnor number H?:O(% - 1),

where O is the origin of C*. It follows from the adjunction formula that

3
Kx ~q OP(aO,al,az,as) (d - Z ai)’
=0

and it follows from [19], [28, Proposition 8.14], [42] that the following conditions are equivalent:
the inequality d < E?:o a; — 1 holds;

the surface X is a del Pezzo surface;

the singularity (V, O) is rational;

the singularity (V, O) is canonical.

Blowing up C* at the origin O with weights (ag, a1, as,a3), we get a purely log terminal blow
up of the singularity (V,O) (see [30], [39]). The paper [39] shows that the following conditions
are equivalent:

e the surface X is exceptional (weakly exceptional, respectively);
e the singularity (V,0) is exceptional® (weakly exceptional, respectively).
From now on we suppose that d < Z?:o a; — 1. Then X is a del Pezzo surface. Put I =

S22 ,a; — d. The set of possible values of (ag,a1,as,as,d) can be obtained from [52]. The list
of possible values of (ag, a1, a2, as,d) with 2I < 3ag can be found in [4]. If the equality I = 1
holds, then it follows from [27] that

e cither the surface X is smooth and
(a()?al?a/Q; a3) € {(17 17 17 1)7 (17 17 17 2)7 (17 17 273) }7

e or the surface X is singular and
— either (agp,a1,a2,a3) = (2,2n+1,2n+ 1,4n + 1), where n € Z~y,

3For notions of exceptional and weakly exceptional singularities see [39, Definition 4.1], [46], [25].



— or the quadruple (ag, a1, az,as) lies in the set
((1,2,3,5),(1,3,5,7),(1,3,5,8),(2,3,5,9)
(3,3,5,5), (3,5,7,11),(3,5,7,14), (3,5, 11, 18)
(5,14,17,21), (5,19, 27,31), (5,19,27,50), (7,11, 27, 37)
(7,11,27,44), (9,15,17,20), (9, 15,23, 23), (11, 29, 39, 49)
(11,49,69,128), (13,23, 35,57), (13,35, 81,128)

The global log canonical thresholds of such del Pezzo surfaces have been considered either
implicitly or explicitly in [1], [3], [11], [17], [27]. For example, the papers [1], [3], [17] and [27]
gives us lower bounds for global log canonical thresholds of singular del Pezzo surfaces with
I=1.

Theorem 1.3.1. Suppose that I =1 and X is singular. Then

(1 if (ao,al,ag,ag) = (2,2n+ 1,2n+1,4n + 1), where n > 2,
33
% if (a07a17a27a3) = (2737375)7
% if (0{],(11,&2,(13) = (1727375)1
1 if (ag,al,ag,ag) = (1,3,5,7) and X is general,
% if (ao,al,ag,ag) = (1,3,5,8) and X is general,
1 if (a07a17a27a3) = (2337579)7
1 if (a07a17a27a3) = (3737575)7
;% if (ao,al,ag,ag) = (3,5,7,11),
Z if (ao,a1,a2,a3) = (3,5,7,14),
%% if (ao,a1,a2,a3) = (3,5,11,18),
5 if (ag,a1,a2,a3) = (5,14,17,21),
let(X) > { 2
g if (ao,al,ag,ag) == (5, 19, 27,31),
;Z if (ag,a1,a2,a3) = (5,19,27,50),
g if (ag,al,ag,ag) = (7,11,27, 37),
%g? if (a0, a1,a2,a3) = (7,11,27,44),
g% if (a0, a1,a2,a3) = (9,15,17,20),
3 if (ag,a1,a2,a3) = (9,15,23,23),
429
ﬁ if (ao,al,ag,ag) = (11,29739,49),
759
36 if (ao,a1,a2,a3) = (11,49,69,128),
455
ﬁ if (ao,al,ag,ag) = (13,23,35,57),
1053
56 if (ao,a1,a2,a3) = (13,35,81,128).

Meanwhile, the paper [11] deals with the exact values log the global log canonical thresholds
of smooth del Pezzo surfaces with I = 1.



Theorem 1.3.2. Suppose that I =1 and X is smooth. Then

if (ao,al,ag,ag) = (1, 1,2,3) and | — K x| contains no cuspidal curves,
if (ao,al,ag,ag) = (1, 1,2,3) and | — Kx| contains a cuspidal curve,

if (ao,al,ag,ag) = (1, 1, 1,2) and | — K x| contains no tacnodal curves,
lct (X) =

if (ao,al,ag,ag) = (1, 1, 1,2) and | — Kx| contains a tacnodal curve,

if X is a cubic in P? with no Eckardt points,

WINER|Wk|lwWwoto| ot —

if either X is a cubic in P? with an Eckardt point.

A singular del Pezzo hypersurface X must satisfy exclusively one of the following properties:
(1) 2I > 3aop ;
(2) 21 < 3ag and

(ao,al,ag,ag,d) = (I—k,[+kz,a,a+k;,2a+k—|—[)

for some Z~o>a>1+kand I >k € Zxo;
(3) 21 < 3ag but

(ao,al,ag,ag,d) #* (I—k,[+k,a,a+k,2a+k—|—[)

forany Z~o>a > I+ k and I > k € Zxyo.

For the first two cases it is easy to see lct(X, é()’z) < % and hence let(X) < % (for instance,
see [4]). All the values of (ag, a1, az,as,d) whose hypersurface X satisfies the last condition are
listed in Table 4 (see [4]).

We already know the global log canonical thresholds of smooth del Pezzo surfaces. For del
Pezzo surfaces corresponding to the first two conditions, their global log canonical thresholds are
relatively too small to enjoy the condition of Theorem 1.1.14. However, the global log canonical
thresholds of del Pezzo surfaces corresponding to the last condition have not been investigated
sufficiently. In the present paper we compute all of them and then we obtain the following result.

Theorem 1.3.3. Let X be a del Pezzo surface that appears in Table 4. Then

let(X) = min {lct (X, alocz) et (X, aIle)’ et (X, QIQC)} .

In particular, we obtain the value of lct(X) for every quintuple (ag,a1,as,as,d) listed in
Table 4. As a result, we obtain the following corollaries.

Corollary 1.3.4. Suppose that I = 1. Then X is exceptional if and only if Kg( < %5

Corollary 1.3.5. The following assertions are equivalent:

e the surface X is exceptional;
o let(X)>1;



e the quintuple (ag, a1, ag, a3, d) lies in the set
((2,3,5,9,18),(3,3,5,5,15), (3,5, 7, 11,25), (3,5, 7, 14, 28)

3,5,11,18,36), (5, 14,17, 21, 56), (5, 19, 27, 31, 81), (5, 19, 27, 50, 100)
7,11,27,37,81), (7, 11,27, 44, 88), (9, 15, 17, 20, 20), (9, 15, 23, 23, 69)

11,29, 39,49, 127), (11,49, 69, 128, 256), (13, 23, 35, 57, 127)

13,35, 81, 128, 256), (3,4, 5, 10, 20), (3, 4, 10, 15, 30), (5, 13, 19, 22, 57)

5,13, 19,35, 70), (6,9, 10,13, 36), (7,8, 19, 25, 57), (7,8, 19, 32, 64)
9,12,13,16,48), (9,12, 19,19, 57), (9, 19, 24, 31, 81), (10, 19, 35, 43, 105)
11,21,28,47,105), (11, 25,32, 41, 107), (11, 25, 34, 43,111), (11, 43, 61, 113, 226)
13,18, 45,61, 135), (13, 20,29, 47, 107), (13, 20, 31,49, 111), (13, 31, 71, 113, 226)
14,17,29,41,99), (5,7,11,13,33), (5,7, 11, 20, 40), (11, 21, 29, 37, 95)
11,37,53,98,196), (13,17, 27,41, 95), (13, 27, 61,98, 196), 15, 19, 43, 74, 148)
9,11,12,17,45), (10,13, 25, 31, 75), (11, 17, 20, 27, 71), (11, 17, 24, 31, 79)
13,14,19,29,71), (13, 14, 23, 33,79), (13, 23, 51, 83, 166), (11, 13, 19, 25, 63)
11,31,45,83,83), (11, 25, 37, 68, 136), (13, 19, 41, 68, 136)

11,19, 29,53,106), (13, 15, 31, 53, 106), (11, 13, 21, 38, 76)

e N N e e e N N e e e e e

Corollary 1.3.6. The following assertions are equivalent:

e the surface X is weakly exceptional and not exceptional;

o lct(X) = 1;

e one of the following holds

— the quintuple (ag, a1, az, as,d) lies in the set

(2,2n+1,2n+ 1,4n +1,8n+4),(4,2n + 3,2n+ 3,4n + 4,8n + 12) )
(3,3n+1,6n+ 1,97+ 3,18n +6),(3,3n + 1,6n + 1,9n,18n + 3)
(3,3n,3n+1,3n+1,9n+3),(3,3n + 1,3n + 2,3n + 2,9n + 6)
(4,2n+1,4n 4+ 2,6n + 1,12n + 6), (6,6n + 3,6n + 5,6n + 5, 18n + 15)
(6,6n +5,12n + 8,18n + 9, 36n + 24)
(6,6n + 5,12n + 8,18n + 15, 36n + 30) ’
(8,4n +5,4n + 7,4n + 9, 12n + 23)
(9,3n +8,3n + 11,6n + 13,12n + 35)
(1,3,5,8,16),(2,3,4,7,14), (3,7,8,13,29)
(3,10,11,19,41),(5,6,8,9,24), (5,6, 8,15, 30)

where n € Z~q,
— (ag,a1,a9,as,d) = (1,2,3,5,10) and C, has an ordinary double point,
— (ag,a1,a9,as,d) = (1,3,5,7,15) and the defining equation of X contains yzt,
— (ag,a1,a9,as,d) = (2,3,4,5,12) and the defining equation of X contains yzt.

Corollary 1.3.7. The del Pezzo surface X has an orbifold Kéhler-Einstein metric unless one
of the following holds

e the quintuple (ag, a1, ag, a3, d) lies in the set
(7,10,15,19,45), (7,18, 27, 37,81), (7,15, 19, 32, 64)
(7,19, 25,41,82), (7,26, 39, 55, 117) :

(ap,a1,a2,as,d) = (1,3,5,7,15) and the defining equation of X does not contain yzt,
(ap,a1,a2,as,d) = (2,3,4,5,12) and the defining equation of X does not contain yzt.

Theorem 1.3.3 shows that Conjecture 1.1.11 holds for del Pezzo surfaces described in Table 4.



1.4. PRELIMINARIES

Let Y be a variety with log terminal singularities. Let us consider an effective Q-Cartier
Q-divisor

T

By = Z a; B;

i=1
on Y, where B; is a prime Weil divisor. Let m: Y — Y be a birational morphism of a smooth

variety Y. Put
,
By = Z a;Bi,
i=1

where B; is the proper transform of the divisor B; on the variety Y. Then

n

Ky + By =7* (Ky + By) +) aE;,

=1

where ¢; € Q and E; is an exceptional divisor of the morphism 7. Suppose that the divisor

T n
Z B; + Z E;
i—1 i—1

is simple normal crossing and put
n
BY =By — ) ks
i=1

The singularities of (Y, By) are log canonical (resp. log terminal) if a; < 1 (resp. a; < 1) and
cj = —1 (resp. ¢; > —1) for every i = 1,...,r and j = 1,...,n. The locus of log canonical
singularities of the pair (Y, By ), denoted by LCS(Y, By ), is defined by the set

res(visy) = (U B U U (B ] e

a; 21 c<—1

A proper irreducible subvariety Z C Y is said to be a center of log canonical singularities of the
log pair (Y, By) if either Z = B; with a; > 1 or Z = 7(E;) with ¢; < —1 for some choice of the
birational morphism 7: ¥ — Y. The set of all centers of log canonical singularities of (Y, By)
is denoted by LCS(Y, By). Every member of LCS(Y, By) is contained in LCS(Y, By). We see
that the set LCS(Y, By) is empty, equivalently the set LCS(Y, By) is empty, if and only if the
log pair (Y, By) is log terminal.

Let H be a base point free linear system on Y and let H be a sufficiently general divisor in
the linear system H. For an irreducible proper subvariety W of Y put

m
Wi = ;
I
=1
where Z; C H is an irreducible subvariety. It follows that the subvariety W belongs to
LCS(Y, By) if and only if the set {Z1,...,Zy} is contained in LCS(H, By‘H) (cf. Theo-
rem 1.4.5).
Example 1.4.1. Let a: V — Y be the blow up at a smooth point O € Y. Then
By = o (By) — multo (By)E
where multo(By) € Q and E is the exceptional divisor of the blow up «. Then
multp (By) >1
if the log pair (Y, By) is not log canonical at the point O. Put
BY = By + (multo(By) — dim(Y) + 1) E,
and suppose that multo(By) > dim(Y) — 1. Then O € LCS(Y, By) if and only if



e cither £ € LCS(V, BY) (equivalently, multo(By) > dim(Y))
e or there is a subvariety Z C E such that Z € LCS(V, BY).

The locus LCS(Y, By) C Y can be equipped with a scheme structure (see [37], [45]). The
ideal sheaf defined by

I(Y,By) fm(’)y(z ) Ei — Z a; )

is called the multiplier ideal sheaf of (Y, By). The subscheme L(Y, By) corresponding to the
multiplier ideal sheaf Z(Y, By) is called the subscheme of log canonical singularities of (Y, By).
It follows from the construction of the subscheme L(Y, By ) that

Supp (E(Y, By)) — LCS (Y, By) cv.
The following result is called the Nadel-Shokurov vanishing theorem (see [37], [45]).
Theorem 1.4.2. Let H be a nef and big Q-divisor on Y such that
Ky +By+H=D

for some Cartier divisor D on the variety Y. Then for every ¢ > 1
Hi (Y, I(Y,By) @ OY(D)> —0.

Proof. Tt follows from the Kawamata—Viehweg vanishing theorem (see [28]) that

n s

Rir. (W*OY(KY +By + H) ® 0 (> [ei]Ei — ZLaiJBZ-)) —0
i=1 i=1
for every ¢ > 0. It follows from the equality of sheaves

7. (7" Oy (Ky + By + H) Oy ( Z ¢ Ei — Z ai)Bi)) = T(Y, By) & Oy (D)
and from the degeneration of a local—to—global spectral sequence that

Hi<Y,I(Y, By) ®Oy(D)> — " (?,W*OY(KYBY +H)® Oy Z e Bi — ZLal |B;) )
=1
for every 7 > 0. But for ¢« > 0, the cohomology group

T

H (Y,W*Oy(KyBy +H)® Oy(Z(CﬂEi - ZL%JE‘))

i=1 i=1
is trivial by the Kawamata—Viehweg vanishing theorem (see [28]). O

For every Cartier divisor D on the variety Y, let us consider the exact sequence of sheaves
0 — Z(Y,By) ® Oy (D) — Oy (D) — Oy, (D) — 0.
We have the corresponding exact sequence of cohomology groups
H(Y,0y (D)) — H(L(Y, By), Oy p,) (D)) — H'(Y,Z(Y, By) ® Oy (D)).
Theorem 1.4.3. Suppose that —(Ky + By ) is nef and big. Then LCS(Y, By ) is connected.
Proof. Put D = 0. Then it follows from Theorem 1.4.2 that the sequence
C=H° (Y, Oy) . HO (L(Y, By),Ory. BY)) . H! (Y,I(Y, By)) —0
is exact. Thus, the locus
LCS(Y, By) - Supp(E(Y, By))

is connected. O

One can generalize Theorem 1.4.3 in the following way (see [45, Lemma 5.7]).



Theorem 1.4.4. Let ¢: Y — Z be a morphism. Then the set
LCS (Y, BY)
is connected in a neighborhood of every fiber of the morphism v o 7: Y — Z in the case when

e the morphism 1 is surjective and has connected fibers,
e the divisor —(Ky + By) is nef and big with respect to .

Let us consider one important application of Theorem 1.4.4.

Theorem 1.4.5. Suppose that B; is a Cartier divisor, a; = 1, and B; has at most log terminal
singularities. Then the following assertions are equivalent:

e the log pair (Y, By) is log canonical in a neighborhood of the divisor By;
e the singularities of the log pair (B1,Y ;_,a;B;|p,) are log canonical.

Proof. Suppose that the singularities of the log pair (Y, By) are not log canonical in a neigh-
borhood of the divisor By C Y. Let us show that (B1,Y ;_, a;B;|p,) is not log canonical.
In the case when a,, > 1 and B, N B # & for some m > 2, the log pair

T
(Bl, ZaiBi Bl)
i—2

is not log canonical. Thus, we may assume that a; < 1 for every i. Then

(Y, B + i )\CLZBZ>
=2

is not log canonical as well for some rational number A < 1. Then

T (s n
Ky +Bi+» XaB; =" (Ky +Bi+) )\aiBZ-) +) diE;
i=2 i=2 i=1
for some rational numbers dy, ..., d,. It follows from Theorem 1.4.4 that
BiNE,# o
and the inequality di < —1 holds for some k. But

)

B1

r r
KBI + Z )\CLZBZ B = ¢* <K31 + Z Aa; B;
=2 =2

Bl) + ;diEi

where ¢: By — Bj is a birational morphism that is induced by .
Thus, the log pair (B1,Y ;5 Aa;B;|p,) is not log terminal. Then the log pair

T
(Bl, > a;B; B1)
i=2

is not log canonical. The rest of the proof is similar (see the proof of [28, Theorem 7.5]). O

The simplest application of Theorem 1.4.5 is a non-obvious result.

Lemma 1.4.6. Suppose that dim(Y) = 2 and a3 < 1. Then

r
(Zale) By >1
=2

whenever (Y, By) is not log canonical at a point O € By such that O ¢ Sing(Y') U Sing(Bj).

Proof. Suppose that (Y, By) is not log canonical at a point O € B;. By Theorem 1.4.5, the pair
(B1,>.;_5a;B;|p,) is not log canonical at the point O. Therefore,

r r
(2;%31) - B > multo(z;aiBi B1> > 1
1= 1=

if O ¢ Sing(Y) U Sing(B1). 0




Let P be a point in Y. Let us consider an effective divisor

T
A= Z&‘ZBZ ~Q By,
i=1
where ¢; is a non-negative rational number. Suppose that
e the divisor A is a Q-Cartier divisor,
e the log pair (Y, A) is log canonical at the point P € X.

Remark 1.4.7. Suppose that (Y, By) is not log canonical in the point P € Y. Put

a:min{cg 5,-750},

where « is well defined, because there is ; £ 0. Then « < 1, the log pair

T
a; — Qg;
(y, S o Bz-)
=1

is not log canonical in the point P € Y, the equivalence

r
a; — Qg;
—— B, ~g Bx ~g A

holds, and at least one irreducible component of the divisor Supp(A) is not contained in

'
a; — ag;
Supp <Z HB,») )
— 11—«

Suppose that X is a hypersurface in P(ag, a1, az, as) of degree d.

Lemma 1.4.8. Let C' be a reduced and irreducible curve on X and D be an ample effective
Q-divisor on X. Suppose that for a given positive rational number A we have AmultcD < 1. If
A(C - D — (mult¢D)C?) < 1, then the pair (X, AD) is log canonical at each smooth point P of
C not in Sing(X). Furthermore, if the point P of C' is a singular point of X of type X(a,b) and
rA(C - D — (multcD)C?) < 1, then the pair (X, AD) is log canonical at P.

Proof. We may write D = mC + €0, where Q is an effective divisor whose support does not
contain the curve C. Suppose that the pair (X, \D) is not log canonical at a smooth point P
of C not in Sing(X). Since Am < 1, the pair (X,C + AQ2) is not log canonical at the point P.
Then by Lemma 1.4.6 we obtain an absurd inequality

1<AQ-C=XC-(D-m(C) < 1.
Also, if the point P is a singular point of X, then we have

}</\Q~C’:)\C'(D—m0)<
"

S|

This proves the second statement. 0
Let D be an effective Q-divisor on X such that
D ~q OP(ao,al,fIz,%) (1)

Lemma 1.4.9. Let [ be a positive integer such that the linear system

OIP’(ao, ai,az,as) (l) ‘

contains effective divisors that are given by the vanishing of
e at least two different monomials of the form z%y?,

e at least two different monomials of the form 2729,

e at least two different monomials of the form xz#t",
where «, 3,7, d, i, v are non-negative integers. Let P be a point in X \ (Sing(X) U C;). Then
ld



Proof. The required assertion follows from [1, Lemma 3.3]. O
Let ¢: X --» P(agp, a1, a2) be a projection.

Lemma 1.4.10. Let [ be a positive integer such that the linear system

OIP’(ao, ai,az,as) (l) ‘

contains effective divisors that are given by the vanishing of

e at least two different monomials of the form z%y?,

e at least two different monomials of the form 2729,

where «, 3,7, 0 are non-negative integers. Let P be a point in X \ (Sing(X) U Cy). Then

ld

multp (D) < ———
apaiasas

in the case when P is not contained in any curve that is contracted by .
Proof. Arguing as in the proof of [1, Corollary 3.4], we obtain the required assertion. O
The following result is [4, Corollary 5.3] (cf. [27, Proposition 11]).
Lemma 1.4.11. Suppose that X is given by a quasihomogeneous equation
f(x,y, z,t) =0cC P(ao, ai, as, ag) 2 Proj ((C [:c, 1, z,t]),

where wt(z) = ag, wt(y) = a1, wt(z) = ag, wt(t) = ag. Then

apal
dar ’
let (X) > a;;” if £(0,0,2,1) # 0,
apas .
f £(0,0,0,¢) #0
dI 1 f( ) ) ) ) # b
Lemma 1.4.12. Suppose that C, is irreducible and reduced, and C, ¢ Supp(D). Then
ai1ag
let(X,D) > { .4
if £(0,0,0,t) # 0.
Proof. Arguing as in the proof of [27, Proposition 11], we obtain the required assertion. O

Thus, using Remark 1.4.7, we obtain the following result.

Corollary 1.4.13. Suppose that C, is irreducible and reduced, and d < Z?:o a;. Then

ai1as I
— 1 X, —
(%7 e (x e )

lct(X) =
min [ =2, let ( X, —C if £(0,0,0,t) A0
l[ Y ) 0 T A ) Y

where I = Z?:o a; — d.

Part 2. Infinite series
2.1. INFINITE SERIES WITH [ =1

Lemma 2.1.1. Suppose that (ag, a1, az,a3,d) = (2,2n+1,2n+ 1,4n+ 1,8n + 4) for n € Z~y.
Then let(X) = 1.



Proof. The surface X is singular at the point Oy, which is a singular point of type +1 (1,1) on
the surface X. But X has also 4 singular points Oy, O, 03, Oy, which are cut out on X by the
equations x =t = 0. Then O; is a singular point of type 1,2n) on the surface X.

The curve C, is reducible. Namely, we have

Cyp=L1+ Lo+ L3+ Ly,

2n+1 (

where L; is an irreducible reduced smooth rational curves such that
1
2n+1)4n+1)’

and L1 N Ly N L3N Ly = Oy. Then L; - Lj = 1/(4n + 1) for i # j. The subadjunction formula
implies that

—Kx L=

1 1 I 6n + 1
2n+1)(4n+1) 2n+1 4n+1  (2n+1)(4n+1)

Note that let(X, Cy) = 1/2, which implies that lct(X) < 1. Suppose that let(X) < 1. Then
there is a Q-effective divisor D = —Kx such that the log pair (X, D) is not log canonical at
some point P € X.

Suppose that P &€ C,. Then P is a smooth point of the surface X. Then

(An+2)(8n +4) 4
1 <multp(D) < = <1
multp (D) < 22n+2)2(An+1) dn+1
by Lemma 1.4.10. We see that P € C,. It follows from Remark 1.4.7 that we may assume that
L; ¢ Supp(D) for some i =1,... 4.
Suppose that P = O;. Then

Li-Li =

1 multo, (D) 1
= Ky -Li=D-L; > > ,
(2n+ 1)(4n + 1) X Y a1 dn+1
which is a contradiction. Thus, we see that P # O;. Then either P = Oy, or P € X \ Sing(X).
Without loss of generality, we may assume that P € L;. Put D = mL; + €0, where () is an
effective Q-divisor such that L; ¢ Supp(2). If m # 0, then

1 m
—Kx-Li=D-L;=(mL; +Q Ly -L; =
Cn+1)(@dn+1) % (mly+9) Li > mly - Li = 2o
which implies that m < 1/(2k 4+ 1). Then it follows from Lemma 1.4.6 that
1if P#0
Lem®+D) _ p o p—0. s 11 7 O,
= — —m . — .
Cn+1)(dn+1) X o ! if P =0,
2n+1
which implies, in particular, that m > 4n/(6n+1). But we already proved that m < 1/(2k+1).
The obtained contradiction completes the proof. O

2.2. INFINITE SERIES WITH [ = 2

Lemma 2.2.1. Suppose that (ag, a1, a2,a3,d) = (4,2n + 3,2n + 3,4n + 4,8n + 12) for n > 1.
Then lct(X) = 1.

Proof. The only singularities of X are a singular point O; of index 4n + 4, two singular points
O%,, i = 1,2, of index 4 on the stratum y = 2z = 0, and four singular points O!,, i = 1,...,4, of
index 2n + 3 on the stratum z =¢ = 0.

The curve C, is reduced and splits into four irreducible components Ly, ..., Ly (L; passing
through O}_) that intersect at O;. One can easily see that lct(X,C;) = 1/2, which implies
let(X) < 1.

Suppose that lct(X) < 1. Then there is an effective Q-divisor D ~g —Kx such that the log
pair (X, D) is not log canonical at some point P € X.

yz’



Suppose that P = O;. By Remark 1.4.7 we may assume that one of the curves L; (say, L)
is not contained in Supp (D). One has
1 —L..D> multp(Lq)multp(D) - 1 - 1
(2n+2)(2n + 3) dn + 4 dn+4 " (2n+2)(2n+3)
for all n > 1, which is a contradiction.
Suppose that P = OL,. By a coordinate change we may assume that P = O,. The curve Cj
is reduced and splits into four irreducible components L7, ..., L} (L; passing through Oy ) that

intersect at O,. One can easily see that the log pair (X, % . ﬁct) is log canonical at least for
n > 1 since multp(C;) = 4. By Remark 1.4.7 we may assume that one of the curves L] (say,
L) is not contained in Supp (D). One has

!/
1 _ D> multp (L) )multp(D) - 1 - 1
2(2n+3)

4 47 2(2n+ 3)
for all n > 1, which is a contradiction. The point O], is excluded in a similar way.
Suppose that P = O;Z. Put D = plL1 + 2, where Q is an effective divisor such that L ¢
Supp (2). We claim that

1

2n + 3
Indeed, if the inequality fails, by Remark 1.4.7 we may assume that one of the curves Lo, L3
and Ly (say, L9) is not contained in Supp (D). Then

1
a =ply-La<D-Ly=

TS

dn+4 2(n+1)(2n + 3)’
which is a contradiction. Note that
L% _ 6n +5 .
4(n+1)(2n +3)
By Lemma 1.4.6 one has
1 Q. L — 2+ (6n+5)u 1

<
4n+1)2n+3) 2n+3
for all n > 1, which is a contradiction. The points O%,, i = 2,3, 4, are excluded in a similar way.
So are the smooth points on C,, which are excluded by this argument for n = 1 as well.
Hence P is a smooth point of X \ C,. Applying Lemma 1.4.10 (which is possible since the

projection of X from O, has finite fibers outside C,), we see that

2-4(n +1)(8n + 12)
1 < multp(D) < 22n+3)(2n+3) - 4(n+1)

for n > 1, because H°(P, Op(8n + 12)) contains z2"*3, y* and 2*. The obtained contradiction
completes the proof. O

— <
2n+3

<1

Lemma 2.2.2. Suppose that (ag, a1, a2,as,d) = (3,4,7,12,24). Then lct(X) = 1.
Proof. The surface X can be defined by the quasihomogeneous equation
2+ 3t + a2’ + it + a1y’ + e’y + e323y% 2 + e4a;4y3 + esa® =0,

where ¢; € C. The surface X is singular at the point O,. It is also singular at two points P;
and P, that are cut out on X by the equations y = z = 0. It is also singular at two points Q)1
and Q5 that are cut out on X by the equations x = z = 0.

The curve C, is reducible. We have C, = L1 + Lo, where L; and Lo are irreducible and
reduced curves such that Q1 € L1 and 3 € Ly. We have

-9 3
1 1 2 2 28 1 2 7’

and L1 N Ly = O;. The curve Cj is irreducible and

2 2
1 =1Ict <X, 3Cy> < Ict (X, 4Cy> = 2,



which implies, in particular, that let(X) < 1.

Suppose that lct(X) < 1. Then there is a Q-effective divisor D = —Kx such that the pair
(X, D) is not log canonical at some point P. By Remark 1.4.7, we may assume that the support
of the divisor D does not contain the curve C,. Similarly, without loss of generality we may
assume that Lo € Supp(D).

Since HY(P,Op(21)) contains z7, z3y® and 23, it follows from Lemma 1.4.10 that P €
Sing(X) U Cy.

Suppose that P = P;. Then

4 multp(D) 1

TR A R

which is a contradiction. We see that P # P;. Similarly, we see that P # P». Then P € C,.
Suppose that P € Ls. Then

1if P # O, and P # Qo,

1 if P=0
— =D-L 1 zs
14 2=

N

if P = Q27

which is a contradiction. The obtained contradiction shows that P & L.
We see that P # O, and P € Li. Put D = mLj + ), where § is an effective Q-divisor such
that Ly ¢ Supp(f2). Then

1 3
iZ:LILQ:@m4+QyL2>mh-hzrgi
which implies that m < 1/6. Then it follows from Lemma 1.4.6 that
:(—Kx—le)-L1:Q~L1> 1.
28 Z if P= Q17

which implies that m > 5/9. But we already proved that m < 1/6. The obtained contradiction
completes the proof. O

Lemma 2.2.3. Suppose that (ag,a1,a2,a3,d) = (3,3n+ 1,6n + 1,9n + 3,18n + 6) for n > 2.
Then let(X) = 1.

Proof. The only singularities of X are a singular point O, of index 6n + 1, two singular points
Oz, @ = 1,2, of index 3 on the stratum y = z = 0, and two singular points Oy, i = 1,2, of index
3n + 1 on the stratum z = 2z = 0.

The curve C, is reduced and splits into two components L and Lo that intersect at O,. It is
easy to see that let(X, Cy) = 2/3, which implies let(X) < 1.

The curve Cy is reduced and splits into two components L) and L5 that intersect at O,. It is
easy to see that the log pair (X, % . %ﬂCy) is log terminal.

Suppose that lct(X) < 1. Then there is an effective Q-divisor D ~g —Kx such that the log
pair (X, D) is not log canonical at some point P € X.

Note that
3 3—-9

and L? = o .

6n + 1 (Bn+1)(6n+1)

Suppose that P = O,. Put D = ply + Q, where Ly ¢ Supp (). If p > 0, then by
Remark 1.4.7 one can assume that L ¢ Supp (D), and hence

2 3u

GrrDent) 2 22 Garnent 1)

Ly-Ly=(Ly-Lo)o, =

so that
2

<
PS36nT 1)



Since (X, D) is not log canonical at O, by Theorem 1.4.5 one has
1 24 pu(9n —3) 4
1l S T T BurD6n+1)  Brt D(6n+ 1)
which is impossible for all n > 1. The points P = O € L; and the smooth points P € C,, are

excluded in a similar way.
Suppose that P = O}, € L}. Note that

3 1 —2(3 1
0. = L na (g = 2002,

6n + 1 3(6n+1)
Put D = pL} + Q, where L] ¢ Supp (). If 1 > 0, then by Remark 1.4.7 one can assume that
L, ¢ Supp (D), and hence

Ly~ Ly = (Ly - Ly)

2
< 0.
PS36nT 1)
Since (X, D) is not log canonical at O,, by Theorem 1.4.5 one has
1 <q. 24 2u(3n+1) o 10

1=

n+1 36n+1) " 9(6n+1)

which is impossible for all n > 1. The point P = 02, € L} is excluded in a similar way.
Hence P is a smooth point of X \ Cj. Applymg Lemma 1.4.10 (which is possible since the
projection of X from O, has finite fibers), we see that
2(18n + 6)?
3(3n+1)(6n+1)(9n + 3)

for all n > 2, because HY(P, Op(18n+6)) contains x6"+2 45 and 23x. The obtained contradiction
completes the proof. O

1 <multp(D) < <1

Lemma 2.2.4. Suppose that (ag,a;,az,as,d) = (3,3n+1,6n+1,9n,18n+ 3) for n > 1. Then
let(X) = 1.

Proof. The only singularities of X are a singular point O, of index 3n + 1, a singular point O;
of index 9n, and two singular points O%,, i = 1,2, of index 3 on the stratum y = z = 0.
The curve Cy, is reduced and irreducible and has the only singularity (of multiplicity 3) at Oy.
It is easy to see that lct(X, Cy) = 2/3, which implies lct(X) < 1.
The curve Cy, is quasismooth. It is easy to see that the log pair (X '3 3n3+10 ) is log terminal.
Suppose that lct(X) < 1. Then there is an effective Q-divisor D ~g —Kx such that the log
pair (X, D) is not log canonical at some point P € X. By Remark 1.4.7 we may assume that
neither C, nor C, is contained in Supp (D).
Suppose that P = O;. One has
2 _C, D> multp(Cy)multp(D) - 3 - 2 7
3n(3n+1) In In = 3n(3n+1)
for all n > 1, which is a contradiction.
Suppose that P = Oy. One has

2 —C. D> multp(Cy)multp(D) S 1 S 2
(3n+1) 3n 3n "~ 3n(3n+1)
for all n > 1, which is a contradiction. The smooth points on C; are excluded in a similar way.
Suppose that P = O},. One has

2 ltp(D 1 2
Q—:Cy-D>mu D) > =
n

n+1 3n+1  9n
for all n > 1, which is a contradiction.
Hence P is a smooth point of X \ C,. Applying Lemma 1.4.10 (which is possible since the
projection of X from O, has finite fibers outside of Cy), we see that
2(18n + 3)2
3B3n+1)(6n+1)-9n

1 <multp(D) < <1




for all n > 2, because H°(P, Op(18n + 3)) contains x67F1, 323" and 23.
Thus, we see that P is a smooth point of X \ C, and n = 1. Applying Lemma 1.4.10, we see
that

< 24 <1
T 3-4-7-9 ’

because H° (PP, Op(12)) contains z*, y> and xt. The obtained contradiction completes the proof.
O

1 < multp(D)

Lemma 2.2.5. Suppose that (ag, a1, az,as3,d) = (3,3,4,4,12). Then lct(X) = 1.

Proof. The surface X can be defined by the quasihomogeneous equation
4 3
[T(iz + Biy) = [J(vz + 6it),
i=1 i=1
where (g, 8;) € Pt 3 (v, 6;).
Let P; be a point in X that is given by z =t = oz + B;y = 0, where ¢ = 1,...,4. Then F; is
a singular point of X of type %(1, 1).
Let Q; be a point in X that is given by x =y = 1,2 + d;t = 0, where ¢ = 1,...,3. Then Q); is
a singular point of X of type %(1, 1).
Let L;; be a curve in X that is given by o;x + By = vjz + ;t = 0, where ¢ = 1,...,4 and
j=1,...,3. Then

Li1 + Lio + L3 Lyj + Loj + Lgj + Lu
~Q
3 4
and L;; N Lix N L;zg = P; and Llj N sz N ng N L4j = Qj- We have

1
~g —=K
Q 2 X

2 2
let (X, (Lo + Lo+ Lig)) — et (X, Ly + Loy + Ly + L4j)> =1,

which implies that lct(X) < 3/2. We have L;; - Ly = 1/3 and Lj; - Ly; = 1/4 if k # j. But
L} = —5/12.

Suppose that lct(X) < 1. Then there is a Q-effective divisor D = —Kx such that the pair
(X, D) is not log canonical at some point P. For every i = 1,ldots,4, we may assume that
the support of the divisor D does not contain at least one curve among L;1, Lo, L;3. For every
j =1,...,3, we may assume that the support of the divisor D does not contain at least one
curve among L1j> ng, ng, L4j.

Suppose that lct(X) < 1. Then there is an effective Q-divisor D ~g —Kx such that the log
pair (X, D) is not log canonical at some point P € X.

Suppose that P = P;. If Ly € Supp (D), then

é:D'le . mult:(D) y i y é’
which implies that P # P;. Similarly, we see that P ¢ Sing(X).
Suppose that P € Li;. Put D = pulq1 + , where €2 is an effective divisor such that L1, ¢
Supp (). If > 0, then p < 1/2, because either L1y - > 0 or L3 - > 0 in the case when

@ > 0. Thus, by Lemma 1.4.6 one has
2+5u
12 7
which implies that m > 1/2. But we know that p < 1/2. Thus, we see that P ¢ Li;. Similarly,

we see that
4 3
rpel Ly
i=1j=1

There is a unique curve C C X such that P € C and C is cut out on X by Az + puy = 0,
where (A, 1) € P'. Then C is irreducible and quasismooth. Thus, we may assume that C' is not
contained in the support of D. Then

1
5:D.C>multp(D) > 1,

1<Q- L =




which is a contradiction. The obtained contradiction completes the proof. O

Lemma 2.2.6. Suppose that (ag, a1,a2,as,d) = (3,3n,3n+1,3n+ 1,9n + 3) for n > 2. Then
let(X) = 1.

Proof. The only singularities of X are a singular point O, of index 3n, three singular points
O;y, i =1,2,3, of index 3 on the stratum 2 = ¢ = 0, and three singular points O, i = 1,2,3,
of index 3n + 1 on the stratum x = y = 0.

The curve C, is reduced and splits into three irreducible components Ly, Lo and Ls (L;
passing through O,) that intersect at O,. One can easily check that let(X,C,) = 2/3, which
implies let(X) < 1.

The curve C,, is quasismooth. One can easily see that the log pair (X, %«%Cy) is log terminal.

Suppose that lct(X) < 1. Then there is an effective Q-divisor D ~g —Kx such that the log
pair (X, D) is not log canonical at some point P € X.

Suppose that P = O,. By Remark 1.4.7 we may assume that one of the curves L; (say, L1)
is not contained in Supp (D). One has

2 mult p(Lq)multp(D) 1 2
3n(Bn+1) Li-D = 3n - 3n - 3n(3n+1)
for all n > 1, which is a contradiction.

Suppose that P = Ol,. Put D = uLy + Q, where  is an effective divisor such that L; ¢
Supp (2). We claim that

2
3n+1
Indeed, if the inequality fails, by Remark 1.4.7 we may assume that one of the curves Lo and
L3 (say, L2) is not contained in Supp (D). Then

n<

I 2
—=uly-Lo<D-Ly=———,
3n N 2 3n(3n+1)
which is a contradiction. Note that
6n —1
o bn-t
3n(3n+1)
By Lemma 1.4.6 one has
1 2 —
cQ.L = + (6n—1)u 1
3n+1 3n(3n+1) 3n+1

for all n > 2, which is a contradiction. The points O?, and O3, are excluded in a similar way.
So are the smooth points on C, which are excluded by this argument for n = 1 as well.

Suppose that P = O;y. By Remark 1.4.7 we may assume that Cy, is not contained in Supp (D).
One has

2 multp(Cy)multp(D) 1 2
=C,-D> Y > - >
3n+1 Y 3 37 3n+1

for all n > 2, which is a contradiction. The points Ogy and Ofcy are excluded in a similar way.
Hence P is a smooth point of X \ C,. Applying Lemma 1.4.10 (which is possible since the
projection of X from O, has finite fibers), we see that

2(9n+3) - 12n
1 < multp(D) <
multp(D) 3-3n(3n+1)(3n+1)

for n > 2, because H°(P, Op(12n)) contains z4", y* and 232", The obtained contradiction
completes the proof. O

<1

Lemma 2.2.7. Suppose that (ag,a1,a9,a3,d) = (3,3n + 1,3n + 2,3n + 2,9n + 6) for n > 1.
Then let(X) = 1.

Proof. The only singularities of X are a singular point O, of index 3n + 1, and three singular
points O, i = 1,2, 3, of index 3n + 2 on the stratum x =y = 0.



The curve C,, is reduced and reducible. We have C', = L1+ Lo+ L3, where L; is an irreducible
curve such that OY, € L;. Then Ly N Ly N Ly = O,. One can easily see that lct(X, Cy) = 2/3,
which implies let(X) < 1.

Suppose that lct(X) < 1. Then there is an effective Q-divisor D ~g —Kx such that the log
pair (X, D) is not log canonical at some point P € X. By Remark 1.4.7 we may assume that
L; is not contained in Supp (D).

Suppose that P € Li. Then

. 1
2 =Li-D> T O > ! > 2
GutD@nt2) 77 D) o T 302 T Bat )30+ 2)
3n+2 z
for all n > 1, which is a contradiction. Thus, we see that P & Ly. In particular, we see that

P #0O,.
Suppose that P € Lo. Put D = plo 4 2, where € is an effective divisor such that Lo ¢
Supp (2). Then

w 2
—pLly - Ly<D-L = ,
3n 41 e YT Bt DB+ 2)
which implies that u < 2/(3n + 2). Note that the inequality
6n +1
LY =—

(Bn+1)(3n+2)
holds. Therefore, by Lemma 1.4.6 one has

1if P # 0%,
=Q-Ly> 1

if P = 0?2

32 =

which implies that n = 1 and P = 0%, because u < 2/(3n + 2).
Let Rs be a unique curve in the pencil |Op(3n + 2)|x| that passes through the point OZ2,.

Then Re = Ly + Z5, where Z5 is an irreducible reduced curve that is singular at the point Ogt.

Moreover, the log pair (X, 2(La + Ry) is log canonical at the point O%. By Remark 1.4.7, we
may assume that Ry Z Supp (D). Then

g < multp(D)multp(Rz) <D Ry— g
5 5 5
which is a contradiction. Thus, we see that P ¢ Lo. Similarly, we see that P & Ls.

Hence P is a smooth point of X \ C,. Applying Lemma 1.4.10, we see that
2(9n +6) - 3(3n + 2)
3(3n+1)(3n+2)(3n +2)
for n > 2, because because H(P, Op(3(3n + 2))) contains 23”2, 33z and 23. Therefore, we see

that n = 1.

Let Rp be a unique curve in the pencil |Op(5)|x| that passes through the point P. The log
pair (X, %Rp) is log terminal at the point P. By Remark 1.4.7, we may assume that Supp (D)
does not contain at least one irreducible component of Rp. Note that either Rp is irreducible
or O% € Rp for some k = 1,2,3.

Suppose that Rp is irreducible. Then

24+ (6n+1)p
(Bn+1)(3n +2)

1 <multp(D) < <1

1
1<multP(D)<D-RP:§<1

which is contradiction. Thus, we see that O’;t € Rp. Then Rp = Ly + Z, where Z is an
irreducible curve such that P € Z. We have

-7 3 2
Ly - Ly=—, Ly Z=—-, Z-Z=-—.
k k 20’ k 5’ 5
Put D =mZ + A, where A is an effective divisor such that Z ¢ Supp (A). If m > 0, then
3m 1

M Ly Z <DLy = —,
5k LT



which implies that p < 1/6. Therefore, by Lemma 1.4.6 one has
2—-2m
)
which is a contradiction. The obtained contradiction completes the proof. O

=A-Z>1

Lemma 2.2.8. Suppose that (ag, ai,az,as3,d) = (4,2n+1,4n+2,6n+1,12n+6) for n € Z~.
Then let(X) = 1.

Proof. The only singularities of X are a singular point O, of index 4, a singular point O; of
index 6n+ 1, a singular point O, of index 2 on the stratum y = ¢t = 0, and three singular points
O;Z, i=1,2,3, of index 2n + 1 on the stratum x = ¢ = 0.

The curve C, is reduced and splits into three irreducible components Ly, Lo and L3 (L;
passing through O} ) that intersect at O;. One can easily see that lct(X,C,) = 1/2, which
implies let(X) < 1.

The curve Cy is quasismooth. One can easily see that the log pair (X ,% . ﬁCy) is log
terminal.

Suppose that Ict(X) < 1. Then there is an effective Q-divisor D ~g —Kx such that the log
pair (X, D) is not log canonical at some point P € X.

Suppose that P = O;. By Remark 1.4.7 we may assume that one of the curves L; (say, L)
is not contained in Supp (D). One has

2 _L..D> multp(Ly)multp(D) - 1 - 2
(2n+1)(6n+1) 6n + 1 6n+1" (2n+1)(6n+1)
for all n > 1, which is a contradiction.

Suppose that P = O;Z. Put D = ulLy + Q, where € is an effective divisor such that L; ¢
Supp (2). We claim that

1
2n+1
Indeed, if the inequality fails, by Remark 1.4.7 we may assume that one of the curves Ly and
L3 (say, L2) is not contained in Supp (D). Then

2 2
K =puly- Ly <D-Ly=

u<

6n +1 (2n+1)(6n+1)’
which is a contradiction. Note that
2= sn .
(2n+1)(6n+1)
By Lemma 1.4.6 one has
2+ 8np 2 1
<Q-L; = < <
2+ 1 YT en+D)6n+1) C@n+1)2 2n+1

for all n > 1, which is a contradiction. The points ng and O;’Z are excluded in a similar way,

and so are the smooth points on Cj.
Suppose that P = O,. By Remark 1.4.7 we may assume that Cy is not contained in Supp (D).

One has
3 multp(Cy)multp(D) 1 3
=C,-D> Y -
bnt1 Y 1 17 6n+1
for all n > 2, which is a contradiction. The point O, is excluded in a similar way.
Hence P is a smooth point of X \ C,. Applying Lemma 1.4.10 (which is possible since the

projection of X from O, has finite fibers outside C,), we see that
2(12n+6) - 12n
2(2n+1)(4n+2)(6n+1)

for n > 2, because H°(P, Op(12n)) contains 23", y*2"~! and 222" ~!. The obtained contradiction
completes the proof. O

1 <multp(D) < <1




2.3. INFINITE SERIES WITH [ = 4

Lemma 2.3.1. Suppose that (ag, a1, a2, as,d) = (6,6n + 3,6n + 5,6n + 5,18n + 15) for n > 1.
Then let(X) = 1.

Proof. The only singularities of X are a singular point O, of index 6, a singular point O, of
index 6n+ 3, a singular point O, of index 3 on the stratum z = ¢ = 0, and three singular points
O, i=1,2,3, of index 6n + 5 on the stratum x = y = 0.

The curve C, is reduced and splits into three irreducible components Ly, Lo and L3 (L;
passing through O,) that intersect at O,. One can easily check that let(X,C,) = 2/3, which
implies let(X) < 1.

The curve Cy is reduced and splits into three irreducible components L}, L and Ly (L
passing through O%,) that intersect at O,. One can easily see that the log pair (X '3 B Jr36’ )
is log terminal.

Suppose that lct(X) < 1. Then there is an effective Q-divisor D ~g —Kx such that the log
pair (X, D) is not log canonical at some point P € X. By Remark 1.4.7 we may assume that
Ly and L are not contained in Supp (D).

Suppose that P = O,. Then

4 _ D> multp(L} )multp(D) - 1 - 4
6(6n + 5) 6 6~ 6(6n+5)
for all n > 1, which is a contradiction.
Suppose that P = Ogy. Let R be a general curve in the pencil |Op(6n + 5)|x|. Then

multp(D) ~ 4(18n +15) - (6n +5)
3 gD'R_ﬁmn+$wn+@mn+®

for all n > 1, which is a contradiction. Thus, we see that P # Oy,.
Suppose that P € L. Then

1
5 < <1
3

1ﬁp¢ozmdp¢0w

=L1-D>{ G a ys > >
(6n+3)(6n+5) 6”+3 6n+5 " (6n+3)(6n-+5)
multp(D) P _ Ol
6n +5 i
for all n > 1, which is a contradiction. Thus, we see that P & Ly. In particular, we see that

P #0,.
Suppose that P € Ls. Put D = ulLy + €2, where € is an effective divisor such that Lo ¢
Supp (2). Then

o 4
=uly-Lo<D-L
6nt3 LS E M T G 8)(6n+ 5)’
which implies that u < 4/(6n + 5). Note that the inequality
9 12n 4+ 4

12— _
2 (6n + 3)(6n 4 5)
holds. Therefore, by Lemma 1.4.6 one has
1if P # 0%,
=Q- Ly > 1
6n + 5
which implies that n = 1 and P = O, because u < 4/(6n + 5).

Let Ry be a unique curve in the pencil |Op(6n + 5)|x| that passes through the point Ozt.
Then Ry = Lo + Z5, where Zg is an irreducible reduced curve that is singular at the point O
Moreover, the log pair (X, +x (L2 + Rs) is log canonical at the point O%. By Remark 1.4.7, we
may assume that Ry Z Supp (D). Then

2 multp(D)multp(R2)
il <D -Ry=—
T 11 271

44+ (12n+4)u
(6n+ 3)(6n +5)

if P =072,




which is a contradiction. Thus, we see that P ¢ Lo. Similarly, we see that P ¢ Ls.
Hence P is a smooth point of X \ C,. Applying Lemma 1.4.10, we see that

4(18n + 15) - 6(6n + 5)
6(6n + 3)(6n + 5)(6n + 5)

for n > 2, because H(P, Op(6(6n + 5)) contains z5"° 4922 and 2°. Therefore, we see that
n=1.

Let Rp be a unique curve in the pencil |Op(11)|x| that passes through the point P. The log
pair (X, %Rp) is log terminal at the point P. By Remark 1.4.7, we may assume that Supp (D)
does not contain at least one irreducible component of Rp. Note that either Rp is irreducible
or OF, € Rp for some k = 1,2, 3.

Suppose that Rp is irreducible. Then

1 < multp(D) < <1

2
1<multp(D)<D-Rp:§<1

which is contradiction. Thus, we see that O’;t € Rp. Then Rp = L + Z, where Z is an
irreducible curve such that P € Z. We have

—16 3 5
Ly - Ly=—— Ly - Z=—,7-7Z=—.
BOERT g9 T 11’ 22
Put D =mZ + A, where A is an effective divisor such that Z ¢ Supp (A). If m > 0, then
3m 4
e —mly-Z<D- L= —,
T £ 99
which implies that p < 4/27. Therefore, by Lemma 1.4.6 one has
4 —5m
=A-Z>1
22 >
which is a contradiction. The obtained contradiction completes the proof. O

Lemma 2.3.2. Suppose that (ag, a1, a2, as,d) = (6,6n+5,12n+8,18n+9,36n+24) for n € Z~y.
Then lct(X) = 1.

Proof. The only singularities of X are a singular point O, of index 6n + 5, a singular point O;
of index 18n 4 9, and a singular point Oy of index 3 on the stratum y = z = 0.

The curve C, is reduced and irreducible and has the only singularity (of multiplicity 3) at Oy.
It is easy to see that lct(X, Cy) = 2/3, which implies let(X) < 1.

The curve C), is quasismooth. It is easy to see that the log pair (X, % . ﬁCy) is log terminal.

Suppose that lct(X) < 1. Then there is an effective Q-divisor D ~g —Kx such that the log
pair (X, D) is not log canonical at some point P € X. By Remark 1.4.7 we may assume that
neither C, nor C, is contained in Supp (D).

Suppose that P = O;. One has
4 _C, D> multp(Cy)multp(D) - 3 S 4 7

(6n + 3)(6n + 5) 18n +9 18n+9 = (6n+3)(6n+5)

which is a contradiction.

Suppose that P = O,. One has

4 _C, D> multp(Cy)multp(D) - 1 - 4 7
(6n + 3)(6n + 5) 6n +5 6n+5 " (6n+3)(6n+5)
which is a contradiction. The smooth points on C, are excluded in a similar way.
Suppose that P = O;. One has
2 multp(D) 1 2
= Cy- D> > = >
3(6n + 3) Y

3 37 3(6n+3)’
which is a contradiction.
Hence P is a smooth point of X \ C,. Applying Lemma 1.4.10 (which is possible since the
projection of X from O, has finite fibers), we see that

4(36n + 24)(36n + 30)
6(6n +5)(12n + 8)(18n + 9)

1 <multp(D) <

<1,



because H°(P, Op(36n +30)) contains z5"*5, 4® and 23z. The obtained contradiction completes
the proof. O

Lemma 2.3.3. Suppose that (ag,a1,a2,a3,d) = (6,6n + 5,12n + 8,18n + 15,36n + 30) for
n € Zso. Then lct(X) = 1.

Proof. The only singularities of X are a singular point O, of index 12n + 8, a singular point O,
of index 2 on the stratum y =t = 0, a singular point O, of index 3 on the stratum y = z = 0,
and two singular points O;t, i1 =1,2, of index 6n + 5 on the stratum z = 2z = 0.

The curve C, is reduced and splits into two irreducible components L and Ly (L; passing
through O;t) that are tangent to order 2 at (the preimage of) the point O,. One can easily
check that let(X, Cy) = 2/3, which implies let(X) < 1.

The curve Cy is quasismooth. It is easy to see that the log pair (X, % . %C’y) is log terminal.

Suppose that lct(X) < 1. Then there is an effective Q-divisor D ~g —Kx such that the log
pair (X, D) is not log canonical at some point P € X.

Suppose that P = O,. By Remark 1.4.7 we may assume that one of the curves L; and Lo
(say, L1) is not contained in Supp (D). One has

1 B D> multp(L;)multp(D) 1 - 1
Bn+2)(6n+5) 77 12n + 8 12n+8 ~ (3n+42)(6n +5)’

which is a contradiction.
Suppose that P = O,;. By Remark 1.4.7 we may assume that Cy is not contained in Supp (D).
One has
1 multp(D) 1 1
——=Cy,-D > > = ,
3(3n + 2) Y 3 33(3n+2)
which is a contradiction. The point O, is excluded in a similar way.

Suppose that P = O;t. Put D = puly + Q, where 2 is an effective divisor such that L ¢
Supp (2). We claim that

4
3(6n+5)

Indeed, if the inequality fails, by Remark 1.4.7 we may assume that Lo is not contained in
Supp (D). Then

u<

12318 =ubi LS DLy = (3n+2)1(6n+5)’
which is a contradiction. Note that
L% _ 18n +9 '
(12n + 8)(6n + 5)
By Lemma 1.4.6 one has
1 cQ. L — 44 (18n+9)u 1

6n +5 (12n+8)(6n+5)  6n+5’

which is a contradiction. The points Ogt and the smooth points on C, are excluded in a similar
way.

Hence P is a smooth point of X \ C,. Applying Lemma 1.4.10 (which is possible since the
projection of X from O, has finite fibers), we see that

4(36n + 30)(3(12n + 8) + 6)

1< Itp(D) <
maltp(D) S g6 5)(12n + 8)(18n 1 15)

<1,

because H°(P, Op(3(12n + 8) + 6)) contains x'?"*9, 46 and 23z. The obtained contradiction
completes the proof. O



2.4. INFINITE SERIES WITH [ = 6

Lemma 2.4.1. Suppose that (ag, a1, a2,as,d) = (8,4n +5,4n 4+ 7,4n + 9,12n + 13) for n > 2.
Then let(X) = 1.

Proof. The surface X can be given by the equation
2t +yt? + xyd + 2" =0,

and the only singularities of X are O, Oy, O and O;.

The curve C,, is reduced and splits into a union of the stratum L,; and a residual curve M,
intersecting at O,. One can easily see that lct(X, C;) = 3/4, which implies lct(X) < 1.

The curve Cy is reduced and splits into a union of the stratum L,. and a residual curve M,
intersecting at O;. One can easily see that lct(X, Cy) = g‘n—ﬁ, and hence the log pair (X, 4”6+ 2Cy)
is log canonical for n > 1.

The curve C is reduced and splits into a union of the stratum L, . and a residual curve M,
intersecting at O,. One can easily see that lct(X, C,) = 2/3, and hence the log pair (X, 4”6?"7 C.)
is log terminal for n > 1.

The curve C; is reduced and splits into a union of the stratum L,; and a residual curve

M, intersecting at O,. One can easily see that lct(X,C;) = 52(2:1), and hence the log pair
(X, #29.C,) is log terminal for n > 1.
One has the following intersection numbers.
6 2 3
L. -D= Liv M.——2 ..M —=—2>
2 _ 8n + 6
T (4n+5)dn+ 7))

12 18

M, -D= M- D=_— "~

v (4n+5)(4n+9)" "' 8(4n +17)’
8n + 2 4n — 3

M? = — M2=__—""°
e (4n+5)(4n+9) ! 8(4n+17)’
6 n+2 1
v 8(4n+9)" ¥ T An4+ 97T T 4
2 . dn+11
v 8(4n +9)’

6 2 12

M, D - (n+2) M. D= 12

(An+T7)(4n +9) 8(4n + 5)
M2 2n +4 M2 dn +1

Y (An+7)(4n+9)" 7 8(4n +5)’
Suppose that lct(X) < 1. Then there is an effective Q-divisor D ~g —Kx such that the log

pair (X, D) is not log canonical at some point P € X.
Suppose that P = O,. Assume that L,, ¢ Supp (D). Then

6 1
——— =L, - D> —,
8(4n + 9) vz 8
which is a contradiction for all n > 1. Hence L,, C Supp (D). By Remark 1.4.7 we may assume
that M, ¢ Supp (D). Put D = pLy, + Q, where L, ¢ Supp (2). By Theorem 1.4.5 one has

1 6+ (4n + 11)p
2 <Ly, = ——7—,
g8 < 4 8(4n +9)
and hence p > (4n + 3)(4n + 11). On the other hand,
6(n + 2) multp, (D) — u pu(n +2) 1—p
— D-M, > uL,. - M : > :
(4n + 7)(4n +9) y 2 PRy My 8 nr9 8

which is a contradiction for n > 1, because p > (4n + 3)(4n + 11).



Suppose that P = O,. Assume that L;; ¢ Supp (D). Then

6 1

=Ly-D>——,

(4n+5)(4n+7) 7 dn+5

which is a contradiction for all n > 1. Hence L,; C Supp (D), and by Remark 1.4.7 we may
assume that M, ¢ Supp (D). Put D = uL, + 2, where Ly ¢ Supp (€2). Then

12 21
—D-M, < ,
(4n +5)(4n +9) T T 4n+5
which gives u < 6/(4n +9). By Theorem 1.4.5 one has
64 (8 6
cq.1, - 0t@nto)n

dn +5 (4n +5)(4n +7)’

which is a contradiction for n > 2.
Suppose that P = O,. Assume that L,z ¢ Supp (D). Then

6
(dn +5)(4n+17)

which is a contradiction for n > 1. Hence L,y C Supp (D), and by Remark 1.4.7 we may assume
that M, ¢ Supp (D) 2 M;. Then p < 6/(4n + 9) as above, and by Theorem 1.4.5 one has

1 1
cQ. L, - 6+ (8n+6)u < 8 ’
dn+7 (An+5)(An+7) = (4n+T7)(4n+9)

which is a contradiction for n > 3. If n = 2, then

18 M,-D> multo, (D)multo, (M) _ 3multo, (D) S i,
8-15 17 17 17
which is a contradiction.
Suppose that P = O;. Assume that M, ¢ Supp (D). Then
12
(4n +5)(4n +9)
which is a contradiction for n > 2. Hence M, C Supp (D), and by Remark 1.4.7 we may assume
that Ly ¢ Supp (D). Put D = uM, + Q, where M, ¢ Supp (2). Then
6 21
=Ly-D< ,
(4n+5)(4n+17) An+5

which implies that u < 3/(4n + 7). By Theorem 1.4.5 one has
1 Q. M, — 12+ (8n+2)u < 18 ’
dn+9 (An+5)(4n+9) = An+T7)(4n+9)
which is a contradiction for n > 2.
Suppose that P is a smooth point on L. Assume that L,y ¢ Supp (D). Then
6
(An+5)(4n+7)
which is a contradiction for all n > 1. Hence L,; C Supp (D), and by Remark 1.4.7 we may
assume that M, ¢ Supp (D). Put D = uL, + 2, where Ly ¢ Supp (€2). Then
6+ (8n+6)u o 18
(4n +5)dn+7) = (4n+T7)(4n +9)
by Theorem 1.4.5, because u < 6/(4n + 9), which is a contradiction for all n > 1.
Suppose that P is a smooth point on M,. Assume that M, ¢ Supp (D). Then
12
(4n +5)(4n +9)

=Lyu-D>

An+ 7’

=M, -D>

dn +9’

=Ly -D>1,

1< Q- Ly =

:MZL"D>]"



which is a contradiction for all n > 1. Hence M, C Supp (D). By Remark 1.4.7 we may assume
that Ly ¢ Supp (D). Put D = uM, + Q, where M, ¢ Supp (2). By Theorem 1.4.5 one has
124+ (8n+2)u o 18
(4n +5)(4n+9) = (An+T7)(4n+9)’
which is a contradiction for all n > 1, because pu < 3/(4n + 7).
Suppose that P is a smooth point on L,,. Assume that L,, ¢ Supp (D). Then
_6
8(4n +9)
which is a contradiction for all n > 1. Hence L,, C Supp (D). By Remark 1.4.7 we may assume
that My, ¢ Supp (D). Put D = puL,, + Q, where L,, ¢ Supp (€2). By Theorem 1.4.5 one has
6+(@n+1)p _ 3
8(4n+9) " 214n+7)’
which is a contradiction for all n > 1, because pu < 6/(4n + 7).
Suppose that P is a smooth point on M,,. Assume that M, ¢ Supp (D). Then
6(n+2)
(An+T7)(4n +9)

which is a contradiction for all n > 1. Hence M, C Supp (D), and by Remark 1.4.7 we may
assume that L,, ¢ Supp (D). Put D = pM, + Q, where M, ¢ Supp (€2). Then

1<Q-M, =

=L,.-D>1,

1<Q- L, =

=M, -D>1,

L — Lyz - D < M’
8(4n +9) in+9
which implies that p < 6/(8n + 16). By Theorem 1.4.5 one has
Lo, 122G 6(24n + 34)

(4n +5)(4n+9) = 8(n+2)(4n +5)(4n+9)’
which is a contradiction for all n > 1.
Hence P is a smooth point of X \ (C, UC,). Applying Lemma 1.4.10 (which is possible since

the projection of X from O; has finite fibers outside L,,) we see that

6(12n + 23) - 8(4n + 7) -
8(4n +5)(4n + 7)(4n +9) ’
for n > 3, because H'(P, Op(8(4n + 7))) contains 2%"+4, 4822 and 28. Arguing as in the end of
the proof of Lemma 2.4.3, we see that n # 2. g

Lemma 2.4.2. Suppose that (ag, a1, as,as3,d) = (8,9,11,13,35). Then lct(X) = 1.

1 <multp(D) <

Proof. We have I = 6. Let us use the notations and assumptions of the proof of Lemma 2.4.1,
where n = 2. Then it follows from the proof of Lemma 2.4.3 that either P = O, or Oy.
Suppose that P = O,. Then L,; C Supp(D), since otherwise we have
6 1 6

——— =D L

911 SRS TG I TR
which is a contradiction. We may assume that M, ¢ Supp(D) by Remark 1.4.7. Put

D = mLy + cM, + €,

where m > 0 and ¢ > 0, and (2 is an effective Q-divisor such that L,; ¢ Supp(Q2) A M,. Then

18 3m  multo (D)—m _ m+1
——— =D -M; = (mL M, + Q) - My > — z ,
8- 11 0= (o +eMy+9) - My > 5 33 11
which implies that m < 1/4. Then it follows from Lemma 1.4.6 that
6+ 14m 1
which implies that m > 3/14. On the other hand, if ¢ > 0, then
6 3c

WZDLyZ:(mLIt_'_CMy_'_Q)Lyz}i



which implies that ¢ < 1/4.
Let m: X — X be a weighted blow up of O, with weights (3,2), let E' be the exceptional
curve of m, let Q, L,y and M, be the proper transforms of €2, L,; and M,, respectively. Then

6 = 3 - 2 _
Kg EW*(Kx)—ﬁE, Ly =7 (Lgt) — = —F, QEW*(Q)—%E.
where a is a positive rational number a. -

The curve E contains two singular points Q2 and Q3 of X such that Q)9 is a singular point of

type 3(1,1), and Q3 is a singular point of type 3(1,2). Then

Emt ? Q3 € My %/ Q? € Emty
and Ly N M, = @. The log pull back of the log pair (X, D) is the log pair

- = - _ 6 3 2
(X, O+ mLg + M, + +a+11m+ CE> ,
which must have non-log canonical singularity at some point Q € E. We have
18""60_@_1:@.]%>0<Q.Ewt:w_i_ﬂ7
11-13 11 33 9-11 1 22

hence a < (12+28m)/9 < 19/9, because m < 1/4. Then 6 + a+ 3m +2¢ < 11, because ¢ < 1/4.
Suppose that Q # Q2 and Q # Q3. Then Q & L, U M By Lemma 1.4.6, we have
a 2
5.3~ 11E =0-E>1,
which implies that @ > 6, which is impossible, because a < 19/9.
Therefore, we see that either ) = Q)2 or Q) = Q3.
Suppose that @ = Q2. Then Q & My. Hence, it follows from Lemma 1.4.6 that

6+ 14 6 3 2 - 6 3 2 - 1
6+ldm ¢ a 6+at3m+ C:<Q+ +a+3m+ CE)-LH>2,

9-11 11 22 22 11

which implies that m > 68/55. But m < 1/4, which is a contradiction.
Thus, we see that @ = Q3. Then Q € L, and it follows from Lemma 1.4.6 that
184+6c m a 64+a+3m+2c -~ 6+a+3m+2c — 1
L= 0O E) - M >Z
1113 11 33" 33 ( * 11 > Ay
which implies that ¢ > 1/4. But ¢ < 1/4. The obtained contradiction shows that P # O,.
We see that P = O;. Then L,. ¢ Supp(D), since otherwise we have
6 1 6
- _ —D-.L SO
8-13 7137813
which is a contradiction. By Remark 1.4.7, we may assume that M, ¢ Supp(D). Put
D =mL,, + cM; + €,

where m > 0 and ¢ > 0, and 2 is an effective Q-divisor such that L,. ¢ Supp(§2) 7 M,. Then

8 3m  multp,(D)—m _ 2m+1
=D -M, = (mL M, +Q)- M, > — ¢
11-13 v = (mly: + Mo Q) - My > 5+ 13 13
which implies that m < 7/22. Then it follows from Lemma 1.4.6 that
6+ 15m 1
W:(_KX_mLyz)LyZ:(Q+CM$)LyZ>T37
which implies that m > 2/15. On the other hand, if ¢ > 0, then
6 3¢
ﬁ :Dth — (mLyz+CMz+Q) ‘Lyt — (CMLE+Q) 'Lyt P> ﬁa

which implies that ¢ < 3/11.
Let m: X — X be a weighted blow up of O, with weights (5,2), let £/ be the exceptional
curve of m, let Q, L. and M, be the proper transforms of €, L,. and M,, respectively. Then

6 _ 2 _ 5 _ a
2B, Ly, =n(Ly.) — —E, M,=n"(M,) - —FE, Q=n*)——
35 Lyz =7 (Lye) — 33 ™ (M) = 13 ™) - 13

Ky =m"(Kx)+ E,



where a is a positive rational number. -
The curve E contains two singular points 5 and ()2 of X such that ()5 is a singular point of
type (1 1), and Q2 is a singular point of type %(1, 1). Then
[_fyz % Q2 € Maz %QS € Lyz»
and Eyz N M, = @. The log pull back of the log pair (X, D) is the log pair

- - - 6 2 5
<X, QO+ mLy. + M, + +a+13m+ CE> ,
which must have non-log canonical singularity at some point @) € E. Then
124+ 10c m a - ~ = 6 + 15m c a

S 0 M 20 L= S D
9-13 13 26 Y 8-13 13 65

which implies that 30 + 75m > 40c + 8a and 24 + 20c > 18m + 9a. In particular, we see that
a < 36/11. Then 6 4 a + 2m + 5¢ < 13, because ¢ < 3/1} and m < 7/22.
Suppose that @ # Q2 and Q # Q5. Then @ € L. U M,. By Lemma 1.4.6, we have
a  a
10 13
which implies that a > 10, which is impossible, because a < 36/11. Therefore, we see that either

Q=Q2o0r Q=05 ~
Suppose that @ = Q2. Then @ &€ L,.. Hence, it follows from Lemma 1.4.6 that

124+ 10c m a 6+ a—+2m + 5c _ 64+a+2m+5c _ 1
S — = E .MZL'>

=0-E>1,

Q
9-13 13 26 * 26 * 13

which implies that ¢ > 3/5. But ¢ < 3/11, which is a contradiction.
Thus, we see that Q = Q5. Then Q ¢ M,, and it follows from Lemma 1.4.6 that

1 2 _ 2 _ 1 _ _
6; 15;)m+6—25m <Q+6+a+ m+5cE> 'Lyz>g<(Q+mLyz) E———i—m

[\]

13 10 57

which implies that m > 2 /7 and a 4+ 2m > 2. But we have no contradiction here.

Let 9: X — X be a ‘weighted blow up of @5 with weights (1,1), let G be the exceptional
curve of 1, let €, Lyz, M, and E be the proper transforms of €, L., M, and E, respectively.
Then

Ky = 0" (Kx) = 3G, L = 0"(L,e) - :G, B=4"(B) -~ 3G, 0 =0"(Q) - 6,

ol o

where b is a positive rational number.

The surface is smooth along G. The log pull back of (X, D) is the log pair

6+ a-+2m+5c ~
13

where 0 = 3m/13 + ¢/13 + a/65 + b/5 + 9/13. Then the log pull back of the log pair (X, D) is
not log canonical at some point O € G. We have

a b Q>0<l, o0"Bm_ ¢ _a b

<X, G+ iy, + e, + P+ ea)

10 5 = b
which implies that 30 + 75m > 4 — ¢+ 8a 4+ 104b and a > 2b. The system of inequalities
30 4+ 75m = 40c + 8a + 104b,
3m+c+a/5+13b/5+9 > 13,
7/22 = m

is inconsistent. Thus, we see that 6 < 1.
Suppose that O ¢ E'U L,,. Then it follows from Lemma 1.4.6 that

b ~
b:—gG2:Q~G>1,



which implies that b > 1. But the system of inequalities
30 + 75m = 40c 4 8a + 104b,
a>=2b>1,
3/11 > ¢
24 + 120 18m + 9a,

is inconsistent. Therefore, we see that O & EU i}yz. Note that E N INLyz = Q.
Suppose that O € Ly.. Then it follows from Lemma 1.4.6 that

b+m=(Q+mLy.) G>1<(Q+0G) L. =
which implies that b+ m > 1 and m > 2/3. But m < 7/22, which is a contradiction.
Thus, we see that O € E. Hence, it follows from Lemma 1.4.6 that
6+ a+2m+ 5¢ ~ 6+a+2m—|—5c ~ ~ a b
—(0+ 1< (Q E=2_7
3 < 3 ) G>1<(Q+6G) T

which implies that which implies that 130a + 845m + 1820c¢ > 1312. Applying Lemma 1.4.6
again, we see that

b+

65 b :@Q. >£_1495m_ 65c  65a
3213-14 32 462 14784 1056 14784’
which implies that 13b + a + 2m + 5¢ > 7 and 3a + 2¢ 4 6m > 8.
Let ¢: X — X be a blow up of the point O, let F' be the exceptional curve of ¢, let (2, Lyz,
M,, E and G be the proper transforms of 2, L,., M,, E and G, respectively. Then

K¢ =9"(Kg)+F, quﬁ*(G)—F, Ezqﬁ*(E)—F, QE¢*(Q)—dF,

where d is a positive rational number. The log pull back of (X, D) is the log pair

6+ a+2m+5c
13
where v = d+5m/13+6a/65+6¢/134b/5+2/13. Then the log pull back of the log pair (X, D)
is not log canonical at some point A € F'. We have
a b A oA
TO_g_d E-Q>0<G-Q=b—d,
which implies that b > d and a > 2b + 10d. The system of inequalities
30 4+ 75m = 40c + 8a + 1040,
13d + 5m + 6a/5 + 6¢ + 13b/5 > 11
b>d,
7/22 = m

<X, Q4 mL,. + cM, + E+9G+I/F>

is inconsistent. Thus,Awe see that v < 1.
Suppose that A ¢ EUG. Then t follows from Lemma 1.4.6 that

d=Q-F>1,
which is impossible, because the system of inequalities
(30 + 75m > 40c + 8a + 104b,
24 + 20c > 18m + Ya,
a > 2b+ 10d,
7/22 = m
b>d>1,

is inconsistent. Thus, we see that A € EUG. Note that ENG = 2.



Suppose that A € E. Then it follows from Lemma 1.4.6 that
a b A .
which implies that 5a + 10m + 12¢ > 22. But the system of inequalities
5a 4+ 10m + 12¢ > 22,
24 4+ 12¢ > 18m + 9a,

3/11 > c,
is inconsistent. Thus, we see that A & E. Then A € G. By Lemma 1.4.6, we see that
b—d+v=(Q+vF) G>1,

which implies that 6a + 25m + 30c + 78b > 55. But the system of inequalities

6a + 25m + 30c + 78b > 55,

30 4 75m = 40c + 8a + 104b,

7/22 = m,
is inconsistent. The obtained contradiction completes the proof. O

Lemma 2.4.3. Suppose that (ag, a1, a2,a3,d) = (9,3n+8,3n+11,6n+13,12n+35) for n > 1.
Then let(X) = 1.

Proof. The surface X can be given by the equation
2t ylz+at? + 2"y =0,

and the only singularities of X are O, Oy, O, and O;.

The curve C,, is reduced and splits into a union of the stratum L., and a residual curve M,
intersecting at O;. One can easily see that lct(X, Cy) = 2/3, which implies lct(X) < 1.

The curve Cy is reduced and splits into a union of the stratum L,; and a residual curve M,
intersecting at O,. One can easily see that lct(X, Cy) = 3/4, and hence the log pair (X, 2%=2C,)
is log canonical for n > 1.

The curve C, is reduced and splits into a union of the stratum L., and a residual curve
M. intersecting at O,. One can easily see that lct(X,C;) = 2043~ and hence the log pair

In+4>
(X, 221.0,) is log terminal for n > 1.

The curve C; is reduced and splits into a union of the stratum L,; and a residual curve M;
intersecting at O,. One can easily see that lct(X, Cy) = ZZiS, and hence the log pair (X, 82H13C)
is log terminal for n > 1.

One has the following intersection numbers.

6 3 2

Ly. D= My = ——— L. M, =
12 Inld
T2 (3n+8)(6n + 13)’
(3n 4+ 11)(6n + 13) 9(3n +8)
M2 In +6 2_ _ 3n+5
- (3n+11)(6n +13)" 2 9(3n +8)’
6 2 n+3 5 3n+ 14
Ly D=——— Ly -My=> Ly M= -— [} =
vt 9(Bn+ 11)7 7Y TV T g T T 3 1Y 9(3n + 11)]
12 6(n+3
My'D:77Mt'D: (n+ ) ;
9(6n + 13) (3n +8)(3n + 11)
MQZ_M Mt?:_ 1

Y 9(6n + 13)’ (3n+8)(3n +11)°



Now we suppose that lct(X) < 1. Then there is an effective Q-divisor D ~g —Kx such that
the log pair (X, D) is not log canonical at some point P € X.
Suppose that P = O,. Assume that L,; ¢ Supp (D). Then
6 1
—— =Ly -D>—,
9B3n+11) ¥ 9
which is a contradiction for all n > 1. Hence L,; C Supp (D). By Remark 1.4.7 we may assume
that M, ¢ Supp (D). Put D = pLy + Q, where Ly ¢ Supp (€2). By Theorem 1.4.5 one has

1 6+ (3n+14)u
S O A G e S
9 YT 9(3n + 11)
and hence p > (3n +5)/(3n + 14). On the other hand,
12 multo, (D) —p _ 20 1—p 6n + 19
DMy > Ly M, + 20 TR 2N > ,
9(6n + 13) y 2 pibye My + 9 0 "9 T oBnr1d)

which is a contradiction for n > 1.
Suppose that P = Oy,. Assume that L,, ¢ Supp (D). Then

6
(3n + 8)(6n + 13)

which is a contradiction for all n > 1. Hence L,, C Supp (D), and by Remark 1.4.7 we may
assume that M,, M, ¢ Supp (D). Put D = uL,, + 2, where L,, ¢ Supp (£2). Then
18
—D-M, < 37M’
(3n + 11)(6n + 13) 6n + 13
which implies that u < 6/(3n + 11). By Theorem 1.4.5 one has
6+ (9n + 15)u
< Q- Ly, = ,
3n+8 2 (3n +8)(6n + 13)
which contradicts the inequality p < 6/(3n + 11) for n > 1.
Suppose that P = O,. Assume that Ly ¢ Supp (D). Then
6 1
—— =Ly - D>——,
9B3n+11) ¥ 3n+ 11
which is a contradiction for n > 1. Hence L,; C Supp (D). By Remark 1.4.7 we may assume
that M; ¢ Supp (D). Put D = puL,; + €2, where L,; ¢ Supp (£2). Then

1
=Ly, D>_———
xrz 3n+87

6 3 It D) — Ito, (M, 3) 2(1-—
(n+3) th-D>uLyt-Mt+<mu 0.)(D) — pmulto, (My) _ p(n+3)  2( u)’
(3n +8)(3n + 11) 3n + 11 3n+11 ' 3n+ 11
which implies that g < 2/((3n + 8)(n + 1)) for n > 1. By Theorem 1.4.5 one has
6 3n+ 14 3n+ 14 1
D Lpy=—p—o 4 QL. >—
9(3n + 11) T T D Ao Te T DR T

which gives p > 3/(3n + 14), which is impossible for n > 1.
Suppose that P = O;. Assume that L,, ¢ Supp (D). Then

6 1
=Ly, -D>—r,
(3n+8)(6n+13) 7 6n + 13

which is a contradiction for all n > 1. Hence L,, C Supp (D). By Remark 1.4.7 we may assume
that M, ¢ Supp (D). Put D = pL,, + 2, where L,, ¢ Supp (2). Then

18 multo,(D) —p _ 1+4+2pu
=D My 2 pLy, - My - > )
(3n + 11)(6n + 13) a T et 13 6n + 13

but arguing as above, we get > (6n+ 7)/(9n + 15), which is a contradiction for n > 1.
Suppose that P is a smooth point on L,,. Assume that L, ¢ Supp (D). Then

= L,. D> 1,
(3n + 8)(6n + 13) =



which is a contradiction for all n > 1. Hence L., C Supp (D), and by Remark 1.4.7 we may
assume that M, ¢ Supp (D). Put D = uL,, + 2, where L,, ¢ Supp (2). Then
6+ (3n+3)u o 6(6n + 14)
(3n+8)(6n+13) ~ (3n+8)(3n+11)(6n + 13)’
by Theorem 1.4.5, because p < 6/(3n + 11). Thus, we have a contradiction here for all n > 1.
Suppose that P is a smooth point on M,. Assume that M, ¢ Supp (D). Then
18
(3n+ 11)(6n + 13)
which is a contradiction for all n > 1. Hence M, C Supp (D), and by Remark 1.4.7 we may
assume that L, ¢ Supp (D). Put D = uM, + 2, where M, ¢ Supp (2). Then
3n+11
3(3n + 8)
as above. On the other hand, by Theorem 1.4.5 one has
18+ (In+6)u
(3n+ 11)(6n + 13)°
which is a contradiction for all n > 1. Hence P ¢ C,. Similarly, we see that P ¢ C, U C, U Cj.
Applying Lemma 1.4.10, we see that n < 3, because H*(P, Op(9(3n + 11))) contains 23" +11,

y?2% and 2°. Thus, either n =4 or n = 3.
There is a unique curve Z, C X that is cut out by

1<Q- Ly, =

:Mx'D>1>

n<

1<Q-M, =

zt+az? =0

such that P € Z, where 0 £ o € C. The curve Z, is always reducible. Indeed, one can easily
check that Z, = C, + L., where C, is a reduced curve whose support contains no L.
The open subset Z,, \ (Z, N C,) of the curve Z, is a Zg-quotient of the affine curve

t+a2=0=22t+yP24+t2+y=0CcC> = Spec((C[y,z,tD,
which is isomorphic to a plane affine quartic curve that is given by the equation
ala—1) +y+yz=0c C? Spec((C[y,z]),

which implies that the curve C, is irreducible and multp(C,) < 3 if a # 1.

The case o = 1 is special. Namely, if & = 1, then C7 = Ry + M, where R; is a reduced curve
whose support does not contain the curve C7. Arguing as in the case a # 1, we see that Ry is
irreducible and R; is smooth at the point P.

By Remark 1.4.7, we may assume that Supp(D) does not contain at least one irreducible
components of the curve Z,.

Suppose that o # 1. Then elementary calculations imply that

9n + 25 144(n + 2)% + 237(n + 2) + 67

B - 6(24n + 61)
Corlo: = Gy g)6n +13) %=~ 9@+ 8)(6n + 13) 9(8n + 8)(6n + 13)

and we can put D = eC, + =, where Z is an effective Q-divisor such that C, ¢ Supp(E). Then
6 9In + 25
=D Lyy=eCyLys +E- Ly, > ,
(3n + 8)(6n + 13) w2 = o Bae b 20 Lae 2 Ry 60 1 13)
if € > 0. Thus, we see that ¢ < 6/(9n + 25). But
6(24n + 61)
9(3n + 8)(6n + 13)

7D'Coz:

=D -C,

=eC2+2-C,

> ¢C? + multp =)

= 602 + multp (D) — emultp (Ca)
> eC? 4+ 1 — 3¢,



which implies that 6/(9n+25) > € > (162(n+2)? —9(n+2) —60)/(342(n+2)2 +168(n+2) — 13).
The latter is impossible for n > 1.
Thus, we see that o = 1. Then elementary calculations imply that

6n + 17 6(n+2)2+13(n+2)+3

Ry Ly, = , B Ry = )
! (Bn+8)(6n+13)" (3n + 8)(6n + 13)

M, - 1_2n+57D. = 6(2n + 5) 7
6n + 13 (3n + 8)(6n + 13)
and we can put D = €1 Ry + =1, where Z; is an effective Q-divisor such that R; ¢ Supp(Z1).
Now we obtain the inequality €; < 1, because either ¢; = 0, or Ly, -Z1 > 0 or M, -=Z; > 0. By
Lemma 1.4.6, we see that
6(2n+5) — e1(6(n +2)* + 13(n + 2) + 3)
(3n + 8)(6n + 13)

which is impossible for n > 1. The obtained contradiction completes the proof. O

=21 Ry > 1,

Part 3. Sporadic cases
3.1. SPORADIC CASES WITH I =1

Lemma 3.1.1. Suppose that (ag, a1, as,as,d) = (1,2,3,5,10). Then
lct (X) = {
Proof. The curve C, is reduced and irreducible. Moreover, we have

let(X,Cy) = {

Let D be an arbitrary effective Q-divisor D ~g —Kx such that C, ¢ Supp(D), and the log
pair (X, D) is not log canonical at some point P € X. Then P € C, by Lemma 1.4.10. Then

1 if C; has an ordinary double point,
7/10 if C, has a non-ordinary double point.

1 if the curve C; has an ordinary double point at the point O,,
7/10 if the curve C, has a non-ordinary double point at the point O,.

1 multp(D)multp(Cx) if P+#0,, 1if P # O,,

3 mu“P(D);nultP (Cs) ¢ p_ 0. % if P =0,
because the curve C, is singular at the point O,. The obtained contradiction completes the
proof due to Remark 1.4.7. U

Lemma 3.1.2. Suppose that (ag, a1, az,as,d) = (1,3,5,7,15). Then

| 1if f(z,y,2,t) contains yzt,
t =
¢ ( ) 8/15 if f(z,y,z,t) does not contain yzt,

Proof. The curve C,, is reduced and irreducible. Moreover, we have

let(X,Cr) = {

Let D be an arbitrary effective Q-divisor D ~g —Kx such that C, ¢ Supp(D), and the log
pair (X, D) is not log canonical at some point P € X. Then P € C, by Lemma 1.4.10. Hence,
we have

1if f(z,y,2,t) contains yzt,
8/15 if f(z,y, z,t) does not contain yzt,

. multp (D) if P # Oy, 1if P # Oy,
s=D-Cp > Itp(D >4 1.
7 mu ,.;3( )lfP:Ot, ?lfP:Ot,
which is a contradiction. The obtained contradiction completes the proof due to Remark 1.4.7.

[l
Lemma 3.1.3. Suppose that (ag, a1, az,a3,d) = (1,3,5,8,16). Then lct(X) = 1.



Proof. We have d = 16. The surface X is singular at the point O, which is a singular point of
type %(1, 1) on the surface X. The surface X is singular at the point O,, which is a singular
point of type %(1, 1) on the surface X.

It follows from the quasismoothness of X that the curve C; is reduced. Then C is reducible.
Namely, we have C,, = L; + Lo, where Ly and L4 are irreducible reduced smooth rational curves
such that )

_KX'le_KX'LZZTE)a
and L1 N Ly = Oy U O,. Then
7
Ly-Ly=Ly-Ly= B
and Ly - Ly = 8/15. Moreover, we have lct(X,C,) = 1.

Let D be an arbitrary effective Q-divisor D ~gp —Kx such that the log pair (X, D) is not log
canonical at some point P € X. Suppose that Supp(D) does not contain the curve L;. Then
P € C, by Lemma 1.4.10.

Suppose that P € L1. Then

multp(D) | 1
?’j()lfpzoy, i P=0,,
1
—=D-L1 > ltp(D 1.
15 ! mug()ifp:oz, = i P=0,
multp (D) if P # O, and P # O, Lif P # Oy and P # O,
which is a contradiction. Thus, we see that P € Ly and P € X \ Sing(X). Put
D = mLQ + Q,
where ( is an effective Q-divisor such that Ls ¢ Supp(£2). Then
1 m8
= =D Ly=(mLy+Q) L1 >mLy - Ly = ——
5 2(m2+)1m12 15
which implies that m < 1/8. Thus, it follows from Lemma 1.4.6 that
147
+15m — (= Kx—mLy) Ly =Q-Ly > 1,
which implies that m > 2. But m < 1/8. The obtained contradiction completes the proof due
to Remark 1.4.7. O

Lemma 3.1.4. Suppose that (ag,a1,a2,a3) = (2,3,5,9,18). Then

2 if Cy has a tacknodal point,
lct (X) = . .
11/6 if Cy has no tacknodal points.

Proof. We have d = 18. The surface X is singular at the point O,, which is a singular point of
type %(1, 2) on the surface X. The surface X also has 2 singular points O; and Oz, which are
cut out on X by the equations x = z = (0. The points O; and O; are singular points of type
£(1,1) on the surface X.

The curves C, and Cy are irreducible, Ict(X, C;) = 1, and

3
1 if Cy has a tacknodal singularity at the point O,

11
18

If Cy has a tacknodal point, put e = 2. Otherwise put e = 11/6. Then lct(X) < e. Suppose
that lct(X) < e. Then there is a Q-effective divisor D = — K x such that the log pair (X, eD) is
not log canonical at some point P € X. Then it follows from Remark 1.4.7 that we may assume
that the support of the divisor D does not contain the curves C, and C,.

Suppose that P ¢ C, UCy. Then P € X \ Sing(X) and there is a unique curve C' in the pencil
| — 5K x| such that P € C. The curve C is a hypersurface in P(1,2, 3) of degree 6 such that the
natural projection

lct (X , Cy) =
if Cy has a non-tacknodal singularity at the point O,

C —P(1,2) = P!



is a double cover. Thus, we have multp(C) < 2. In particular, the log pair (X, £C) is log
canonical. Thus, it follows from Remark 1.4.7 that we may assume that the support of the
divisor D does not contain one of the irreducible components of the curve C'. Then

1 1
in the case when C' is irreducible (but possibly non-reduced). Therefore, the curve C' must be

reducible and reduced. Then

C=Cy+ Oy,
where C7 and Cy are irreducible and reduced smooth rational curves such that
7
01.01:02.02:_6
and C7 - Cy = 2 on the surface X. Without loss of generality we may assume that P € Ry. Put
D =mR; + Q,
where (2 is an effective Q-divisor such that Ry ¢ Supp(Q2). If m # 0, then Ry ¢ Supp(Q2) and
1
EZD-RQI (le—i-Q) Ry > mRy - Ry = 2m,
which implies that m < 1/6. Thus, it follows from Lemma 1.4.6 that
1+7m 1 1

6 :(*KX*le)'Rlzg'R1>g2§

which implies, in particular, that m > 2/7. But m < 1/6. The obtained contradiction implies
that P € C, U C,.
Suppose that P € C,.. Then

multp(D) if P € X \ Sing(X), %ﬁpexxsmgxx
BZDC{E) flfP:O:LOI'P202,> éifP:O1OrP:OQ,
multp(D) $P O 1 £
5 1 — Uz, E it P= OZa
which implies that P = O,. Then
1 _D.Cy> multp(D)multp(C’y) _ 2mu1tp(D) - 3 > 1’
5 5 5 5¢ © 5

which is a contradiction. Thus, we see that P ¢ C,. Then P € Cy and P € X \ Sing(X), which

implies that
1 1.1
g:DCy2multP(D) > 22 5,

which is a contradiction. The obtained contradiction completes the proof. O
Lemma 3.1.5. Suppose that (ag,ai,a2,a3) = (3,3,5,5,15). Then lct(X) = 2.

Proof. We have d = 15. The surface X has 5 singular points Oq,...,Os of type %(1, 1), which
are cut out on X by the equations z = ¢ = 0. The surface X has 3 singular points @1, Q2, @3 of
type %(1, 1), which are cut out on X by the equations x = y = 0. The surface X is exceptional
by [25].
Let C; be a curve in the pencil | — 3K x| such that O; € C;, where i = 1,...,5. Then
C; =LY + Ly + L,
where L; is an irreducible reduced smooth rational curve such that

; 1
Ky It = —
X j 15)
and Q; € L; Then Li N LyN LY = O; and L; - Li = 1/3if j # k. It follows from the
subadjunction formula that
7

Ly Ly=Ly-Ly=L5 Ly = ——.
1 1 2 2 3 3 15



Note that lct(X, C;) = 2/3, which implies that lct(X) < 2. Suppose that lct(X) < 2. Then
there is a Q-effective divisor D = —Kx such that the log pair (X,2D) is not log canonical at
some point P € X.

Suppose that P ¢ C; UCyUC3UCyUCs. Then P € X \ Sing(X) and there is a unique curve
C € | — 3Kx]| such that P € C. Then C is different from the curves Ci,...,C5, which implies
that C is irreducible and (X, C) is log canonical. Thus, it follows from Remark 1.4.7 that we
may assume that C' ¢ Supp(D). Then

1 1
R =D-C> multp(D) > 2
because (X,2D) is not log canonical at the point P. The obtained contradiction implies that
PeCiUCyuUC3UCyUCs. Without loss of generality, we may assume that P € Cf.

It follows from Remark 1.4.7 that we may assume that L} ¢ Supp(D) for some i = 1,2, 3.

Suppose that P = O;7. Then

i _D.I'> multol(D) - 1
15 ! 3 6’
because (X,2D) is not log canonical at the point P. The obtained contradiction implies that
P # 0.

Without loss of generality, we may assume that P € Li. Then either P = Qq, or P €
X \ Sing(X).

Suppose that P = Q1. Let Z be a curve in the pencil | — 5K x| such that @Q; € Z. Then

Z =714+ Zs+ Z3s+ Zy+ Zs,

where Z; is an irreducible reduced smooth rational curve such that

1

T57

and O; € Z;. Then Z1NZyNZ3sNZyNZs = Q1 and let(X, Z) = 2/5. Thus, it follows from
Remark 1.4.7 that we may assume that Z; ¢ Supp(D) for some k = 1,...,5. Then

1 Ito, (D 1
7:D'Zk>7mqu()>7’

15 5 10
because (X,2D) is not log canonical at the point P. The obtained contradiction implies that

P # Q1.
Thus, we see that P € L{ and P € X \ Sing(X). Put
D =mLy +Q,
where ) is an effective Q-divisor such that L} ¢ Supp(Q). If m # 0, then
1
1—5:D-L}: (mLi+Q) - L} >mL;L21:%,
which implies that m < 1/5. Then it follows from Lemma 1.4.6 that
1+7Tm
15
which implies that m > 13/14. But m < 1/5. The obtained contradiction completes the
proof. O

Lemma 3.1.6. Suppose that (ag,a1,as,a3,d) = (3,5,7,11,25). Then lct(X) = 21/10.

Ky -Z; =

:(—KX—mLD.L}:Q.Lb%,

Proof. By the quasismoothness of X, the curve C, = X N {x = 0} is irreducible and reduced.
It is easy to see that let(X, %C’w) = 21/10, which implies that lctX < 21/10.

Suppose that letX < 21/10. Then there is a Q-effective divisor D = —Kx such that the log
pair (X, %D) is not log canonical at some point P € X. We may assume that the support of D
does not contain the curve C'; by Remark 1.4.7.

Since H°(P, Op(21)) contains x7, 2233, 23, we have

10 21 .25 10
it ltp(D) < ——— 27~ =
o1 <multp(D) S 5y < g



in the case when P € X \ C, or P # O,. Thus, we see that either P € C,, U O,.
Since C'; is smooth outside of the singular locus of X, we have

multp(D)multp(Cy) if P € X \ Sing(X), % if P € X \ Sing(X),
5 mult p(D)multp(Cy) . _
—=D-Cp> 7 itP=0s, - %ifp:oz’
= Uy, — it P =
o 531 i O,

in the case when P € C,. Therefore, we see that P = O,.
Since the curve C is irreducible and the log pair (X, %Cy) is log canonical at the point O,
we may assume that the support of D does not contain the curve C,. Then

10 multp, (D) 25 10
— < — LD Cy= <
63 3 Y7231 T 63
which is a contradiction. The obtained contradiction completes the proof. O

Lemma 3.1.7. Suppose that (ag, a1, a2,a3) = (3,5,7,14,28). Then lct(X) = 9/4.

Proof. We have d = 28. The surface X is singular at the point O, which is a singular point of
type %(1, 1) on the surface X. The surface X is singular at the point O,, which is a singular
point of type é(l, 2) on the surface X. But X has also 2 singular points O; and Os, which are
cut out on X by the equations z = y = 0. The points O; and O3 are singular points of type
1(3,5) on the surface X.

We have C, = L1 + Lo, where L; is an irreducible reduced smooth rational curve such that

1
K Li= g
and L; N Ly = Oy. Then Ly - Ly = 2/5 and
11
Li-Li=Ly Ly=——.
111 2 Lo 35

Without loss of generality, we may assume that Oy € L; and Os € L.

Note that lct(X,C,) = 3/4, which implies that lct(X) < 9/4. Suppose that lct(X) < 9/4.
Then there is a Q-effective divisor D = — K x such that the log pair (X, %D) is not log canonical
at some point P € X.

Suppose that P ¢ C, and P € X \ Sing(X). Then

588

by Lemma 1.4.10, because H°(P, Op(21)) contains 27,23, 2%¢y>. On the other hand, we have
multp(D) > 4/9 > 588/1470, because (X, 9D) is not log canonical at the point P. We see that
either P € C, or P = O,.

It follows from Remark 1.4.7 that we may assume that L; ¢ Supp(D) for some i = 1,2.
Similarly, we may assume that Cy, ¢ Supp(D), because (X, %Cy) is log canonical and the curve
Cy is irreducible.

Suppose that P = O,. Then

2 multp, 4
ﬁ_D-Cy> 3 (D) 77
which is a contradiction. Thus, we see that P # O,. Then P € C,.
Suppose that P = O,. Then
1 multo, (D) _ 4
- Dbz
which is a contradiction. Thus, we see that P # O,,.
Without loss of generality, we may assume that P € Li. Put D = mLj + , where Q is an

effective Q-divisor such that Ly ¢ Supp(Q2). If m # 0, then

1 2
5 =D-Li=(mLi+Q) L >mLi - L= ",



which implies that m < 1/14. Then it follows from Lemma 1.4.6 that

— 'f P#0
1411 ! 1
S Ky —mLy) Ly =Q-Ly >4 9
35 4 ifP=0
1
63
which implies that m > 1/9. But m < 1/14. The obtained contradiction completes the proof.

]
Lemma 3.1.8. Suppose that (ag, a1, as,as,d) = P(3,5,11,18,36). Then lct(X) = 21/10.

Proof. The surface X is singular at the points O, and O,. It is also singular at two points P;
and P on the curve defined by y = z = 0. By the quasismoothness of X, the curve C, is
irreducible and reduced. It is easy to see that lct(X, %CJ;) = 21/10. Also, the curve Cy is always
irreducible and the pair (X, 2[;C,) is log canonical.
We see that letX < 21/10. Suppose that lctX < 21/10. Then there is a Q-effective divi-
sor D = —Ky such that the pair (X, %éD) is not log canonical at some point P € X. By
Remark 1.4.7, we may assume that the support of D contain neither the curve C; nor C,.

If Pe Cpand P € X \ Sing(X), then

10 36 10
i < multp( ) D Cx m <
which is a contradiction. Since H°(P, Op(39)) contains '3, 2335, :I:2z3 we have
10 36 -39 10
— tp(D) L ———— < —
g1 < multr(D) S 5 g
in the case when P ¢ C; and P € X \ Sing(X). Thus, we see that P € Sing(X). Then
10 _ multo, (D) _ 3- 36 10
T D=2
105 < 5 * T 3.5-11-18 < 105
in the case when P = O,. Similarly, we have
10 lto, (D 1
10 _ mu o.( ) <D.C,— 3-36 0
231 21 - 3-5-11- 18 231
in the case when P = O,. Thus, we see that P = P;. Then
10 multp.(D) 5-36 10
63 3 Y 3.5-11-18 63
which is a contradiction. The obtained contradiction completes the proof. 0

Lemma 3.1.9. Suppose that (ag, a1, a2,a3) = (5,14,17,21,56). Then let(X) = 25/8.

Proof We have d = 56. The surface X is singular at the point O,, which is a singular point of
type (2 1) on the surface X, the surface X is singular at the point O, which is a singular point
of type T L(7, 2) on the surface X, the surface X is singular at the point O, which is a smgular
point of type 57 L (5,17) on the surface X. The surface X also one singular point O of type % (5 3)
such that the points O and O; are cut out on the surface X by the equations z = z = 0.

The curves C, and C, are reducible. Namely, we have C, = L + Z; and C, = L + Z,,, where
L, Z, and Z, are irreducible curves such that the curve L is cut out on X by the equations
x =y = 0. Easy calculations imply that

L-L:—37 LZI—2 Ly Ty 9,L-Zy:1,Zy-Zy:g,
357’ 17’ 119 7 35
the curve Z, is singular at the point O, the curve Z,, is singular at the point O;. Moreover, we
have Z, N L = O, and Z, N L = Oy.

We have Ict(X, C;) = 5/8 and Ict(X, Cy) = 3/7, which implies that lct(X) < 25/8. Suppose
that let(X) < 25/8. Then there is a Q-effective divisor D = —Kx such that the log pair
(X, %D) is not log canonical at some point P € X. Then it follows from Remark 1.4.7 that
we may assume that the support of the divisor D does not contain either the curve L, or both
curves Z, and Z,.



Suppose that P ¢ C,, UCy. Then P € X \ Sing(X) and

340 8
< — —
multp(D) < 3570 < 9%

by Lemma 1.4.10, because the natural projection X --» IP(5,14,17) is a finite morphism outside
of the curve Cy, and H?(P, Op(85)) contains monomials z17, 2%, 23y5. On the other hand, we
have multp(D) > 8/25, because (X, 22D) is not log canonical at the point P. Thus, we see that
PeC,udl,.

Suppose that P € L. Put D = mL + €, where 2 is an effective Q-divisor such that L ¢
Supp(€2). If m # 0, then

1 2m
which implies that m < 1/14. Then it follows from Lemma 1.4.6 that
8
— if P=
525 ' 1= O
1+3™m 8
————=(—-Kx-mL)-L=Q-L — if P=
7 L Kxoml) 7 @ TP =0s

%ifP;éOz and P # Oy,

which implies, in particular, that m > 3/25. But m < 1/14. The obtained contradiction implies
that P & L.

Suppose that P € Z,. Put D = aZ, + Y, where T is an effective Q-divisor such that
Z ¢ Supp(Y). If a # 0, then

1 2a
- D-L={(aZy+7)-L>aL-Z, = -2
357 (Ze+T) - L>a 17
which implies that a < 1/42. Then it follows from Lemma 1.4.6 that
8 .
1 — if P=0,
;sa = (~Kx —aZ) Z, =T Z,>{ 17
% if P#0,

which is impossible, because a < 1/42. Thus, we see that P ¢ C,.
Suppose that P = O,. The curve C, is irreducible and (X, %C’Z) is log canonical. Thus, it
follows from the Remark 1.4.7 that we may assume that C, ¢ Supp(D). Then

4 O multp, (D) N i’
105 5 125
which is a contradiction. Hence, we see that P # O,.

We see that P € Z, and P € X \Sing(X). Put D = bZ,+A, where A is an effective Q-divisor
such that Z, ¢ Supp(A). If b # 0, then

i:D-L:(bZﬁA)-L;bL.Zy:?

357
which implies that b < 1/51. Then it follows from Lemma 1.4.6 that
1+9b 8
—=(—-Kx-bZ,)) - Z,=A-Z, > —
35 ( X y) Yy Y 25
which is impossible, because b < 1/51. The obtained contradiction completes the proof. O

Lemma 3.1.10. Suppose that (ag, a1, az,as,d) = (5,19,27,31,81). Then lct(X) = 25/6.

Proof. By the quasismoothness of X, the curve C, is irreducible and reduced. Moreover, the
curve C, is smooth outside of the singular locus of the surface X. It is easy to see that
let(X, 1C,) = 25/6. Hence, we have lct(X) < 25/6.

Suppose that let(X) < %. Then there is a Q-effective divisor D = —Kx such that the pair
(X, %D) is not log canonical at some point P € X. We may assume that the support of D does
not contain the curve C, by Remark 1.4.7.



Suppose that P € C, UO,. Then
6 190 - 81 6
— Itp(D) K —————7 < =
25 < mutr(D) S T a5
by Lemma 1.4.10, because H°(P, Op(190)) contains 23, 1z, y1°. Thus, we see that P € C,UO,.
Suppose that P € X \ Sing(X). Then P € C, and

6 81 6
2 ltp(D) <D -Cp= — <
g5 < multr(D) Co= 199731 < %
because (X, 22D) is not log canonical at the point P € X.
We see that P € Sing(X). Suppose that P = O,. Then

6 multo, (D) 5-81 6
e T DO
a5 19 " 5.19.27-31 475
which is a contradiction. Hence, we see that P # O,. Suppose that P = O;. Then
6 multo, (D) 5-81 6
— < —————<D-Cr=—77—77— < —
775 = 31 * T 5.19.27-31 ~ 775

which is a contradiction. Hence, we see that P = O,.
Since the curve Cy is irreducible and the log pair (X, %gCy) is log canonical at the point O,
we may assume that the support of D does not contain the curve Cy by Remark 1.4.7. Then

6 multo, (D) 19 - 81 6
_ — =7 <D- - - - —
125< 5 Cy 5-19-27.31<125

which is a contradiction. The obtained contradiction completes the proof. O
Lemma 3.1.11. Suppose that (ag, a1, a2, as,d) = (5,19,27,50,100). Then lct(X) = 25/6.

Proof. By the quasismoothness of X, the curve C; is irreducible and reduced. It is easy to
see that let(X, 1Cy) = 25/6, which implies that lct(X) < 25/6. Suppose that let(X) < 25/6.
Then it follows from Remark 1.4.7 that there is a Q-effective divisor D = —Kx such that
Cy ¢ Supp(D), and the pair (X, %D) is not log canonical at some point P € X.

Suppose that P € X \ Sing(X) and P ¢ C;. Then

6 270100 6

— < tp(D) L ————— < —

o5 < multr(D) S 559975750 < 25
by Lemma 1.4.10, because H°(P, Op(270)) contains %4, 26519 210, Thus, we see that either
P € Sing(X) or P € C;.

Suppose that P € X \ Sing(X) and P € C,. Then

6 100 6
2 tp(D) <D Cp=— <
55 < multp(D) Co = 1979750 <

because C, ¢ Supp(D). Thus, we see that P € Sing(X).
Note that X is singular at O, and O.. The surface X is also singular at two points Py and

P on the curve defined by y = z = 0.
Suppose that P = Oy. Then it follows from C, ¢ Supp(D) that

6  multp, (D) 5-100 6
< — LD Oy < —,
475 = 19 Co 5.19-27-50 ~ 475
which is a contradiction. Suppose that P = O,. Then
6  multo, (D) 5-100 6
D =<
675 = 21 Co =5 192750 < 675

which is a contradiction. Thus, we see that P = P;.
The curve C. is irreducible, and the log pair (X, 22-C,) is log canonical. By Remark 1.4.7,

1 6.27 %
we may assume that the support of D does not contain the curve C,. Then
6 multp, (D) 27 -100 6
— B ep.o, =" <
125 © 5 *T5.19.27.50 © 125
which is a contradiction. O

Lemma 3.1.12. Suppose that (ag, a1, a2, as,d) = (7,11,27,37,81). Then lct(X) = 49/12.



Proof. The curve C,, is irreducible and reduced, because X is quasismooth. It is easy to see that
let(X, 1C,) = 49/12, which implies that let(X) < 49/12.

Suppose that lct(X) < 49/12. By Remark 1.4.7, there is a Q-effective divisor D = —Kx
such that the support of D does not contain the curve C,, and the log pair (X, %D) is not log
canonical at some point P € X.

Since H°(P, Op(189)) contains z%7, 20y" 27, it follows from Lemma 1.4.10 that

12 < multp(D) < 189 - 81 < 12
a9 = PSS T o737 T 49
in the case when P € X \ Sing(X) and P € X \ Cy. On the other hand, we have
12 81 12

JR— < ' =~ 11.97.9~ 49
o <multp(D) < D-C, 11-27-37 < 49

if P € X\ Sing(X) and P € C,. Thus, we see that P € Sing(X).
Either multo, (D) > 12/49, multo, (D) > 12/49 or multp,(D) > 12/49. In the former case
we have

12 multg, (D) 781 12
e O DO
539< 11 ¢ 7‘11-27-37<539
which is a contradiction. If multp, (D) > 12/49, then
36 multo, (D)multp, (Cy) 7-81 12
< D r = )
1813 © 37 Co= 3712737 ~ 1313

which is a contradiction. Therefore, we must have multp, (D) > 12/49. Since the curve Cy is
irreducible and the log pair (X, %Cy) is log canonical at the point O,, we may assume that
the support of D does not contain the curve Cy. Then, we obtain

12 multp, (D) 11-81 12
343 7 Yoo7.11-27-37 343
which is a contradiction. O

Lemma 3.1.13. Suppose that (ag, a1, a2,as) = (7,11,27,44,88). Then lct(X) = 35/8.

Proof. We have d = 88. The surface X is singular at the point O,, which is a singular point of
type %(3, 1) on the surface X. The surface X is singular at the point O,, which is a singular
point of type %(11, 17) on the surface X. The surface X has 2 singular points O; and Oy of
type ﬁ(?, 5) that are cut out on the surface X by the equations z = z = 0.

The curve C, is irreducible. Namely, we have C, = Ly + Lo, where L and Lo are smooth
irreducible rational curves such that O; € L and Oy € Ly. Then

2

5
Ly Ly =Ly Lo=—— L1 Ly = —
1 1 2 2 s L1 2 277
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and L1 N Ly = O,.

We have lct(X, C,) = 5/8, which implies that lct(X) < 35/8. Suppose that let(X) < 35/8.
Then there is a Q-effective divisor D = — K x such that the log pair (X, %D) is not log canonical
at some point P € X. Then it follows from Remark 1.4.7 that we may assume that L; ¢ Supp(D)
for some ¢ =1, 2.

Suppose that P ¢ C, and P # O,. Then

2 8
Itp(D) < — < —
multp (D) < 17 < g5
by Lemma 1.4.10, because H°(P, Op(189)) contains monomials 227, 27, 2'6y”. Thus, we see that
P e CpUO,.
Suppose that P = O,. Then

which is a contradiction. Thus, we see that P # O,.



Suppose that P = O,. The curve C), is irreducible and (X, %Cy) is log canonical. Thus, we
may assume that Cy, ¢ Supp(D) by Remark 1.4.7. Then

2 multo, (D)multo, (Cy)  2multe, (D) 16
—=D-Cy> — —
189 7 7 245
which is a contradiction. Hence, we see that P # O,. In particular, we see that P € C.
Without loss of generality we may assume that P € L;. Put

D = le + Q,
where € is an effective Q-divisor such that L; ¢ Supp(2). If m # 0, then
1 2m
597 =D Li= (mL1 + Q) ‘Lizmly - Li= o
which implies that m < 1/22. Then it follows from Lemma 1.4.6 that
8
— ifP=0
1+15 ' b
%:(—Kx—le)'leﬂ-L1> 2875
% lf P # 01,

which implies, in particular, that m > 191/375. But m < 1/22, which is a contradiction. The
obtained contradiction completes the proof. ]

Lemma 3.1.14. Suppose that (ag, a1, az,as,d) = (9,15,17,20,60). Then lct(X) = 21/4.
Proof. We may assume that the surface X is defined by the quasihomogeneous equation

23 +axdy +yt 2 =0,
Note that X is singular at O, and O,. It is also singular at a point P; on the curve defined by
z =1t =0 and at a point P, on the curve defined by x = z = 0. The point P; is different from

the point O,.
The curves C,, Cy, and C; are irreducible. We have

21 2-15 6-17
R , let(X, 150 ) = 5 , let(X, 70 L) = T
which implies, in particular, that let(X) < 21/4.

Suppose that let(X) < 21/4. Then there is a Q-effective divisor D = —Kx such that the
pair (X, 24—1D) is not log canonical at some point P. By Remark 1.4.7, we may assume that the
support of D contains none of the curves C,, Cy, C..

Suppose that P € C, and P ¢ Sing(X). Then

let(X, écgg)

4 60 4
— ltp(D D -Cp=—7—
o < mte(D) < 151720
which is a contradiction. Suppose that P € C,, and P ¢ Sing(X). Then
4 60 4
= 1 2
51 <multp(D) < D-Cy, = 9 17 20
which is a contradiction. Suppose that P € C, and P ¢ Sing(X). Then
60 4

4
= 1t D.C,=—2 =
o7 <Multp(D) < D-Cs = oy < o

which is a contradiction. Suppose that P = O,. Then

4 9-15-60 4
— < multp, (D) < 9D - Cy_

21 9-15-17-20
which is a contradiction. Suppose that P = O,. Then
4 17 17-9-60 4
lto, (D)< —D-C, =
51 < multo.(D) < 5D+ G = 557 50 <

which is a contradiction. Suppose that P = P;. Then

3-17-60 4

1
ltp (D) <3D-C, = > 20
<multp (D) < 3D - Ce = o= < o7

21



which is a contradiction. Suppose that P = P». Then
4 5-9-60 4
— Itp, (D) < 5D - = < —.
g1 <multn(D) S 5D-Co = o705 < g
which is a contradiction. Thus, there is a point @ € X \ Sing(X) such that P ¢ C, UCy U C,
and multg (D) > 4/21.
Let £ be the pencil on X that is cut out by the pencil

23+ paty =0,
where [\ : ] € P!, Then the base locus of the pencil £ consists of the points P» and O,.

Let C be the unique curve in £ that passes through the point ). Then C' is cut out on X by
an equation

zty = a2,
where « is a non-zero constant. The curve C is smooth outside of the points P, and O, by the
Bertini theorem, because C' is isomorphic to a general curve in the pencil £ unless « = —1. In
the case when o = —1, the curve C is smooth outside the points P» and O, as well.

We claim that the curve C' is irreducible. If so, then we may assume that the support of D
does not contain the curve C' and hence we obtain
% <multg(D)<D-C =
which is a contradiction.

For the irreducibility of the curve C, we may consider the curve C as a surface in A* defined
by the equations t3 + y* + (1 + a)zz® = 0 and 2%y = az®. Then the surface is isomorphic to
the surface in A* defined by the equations t3 + y* 4+ Bz2® = 0 and z*y = 23, where 8 = 1
or 0. Then, we consider the surface in P* defined by the equations t3w + y* + fzz® = 0 and
xty = 23w?. We then take the affine piece defined by ¢ # 1. Then, the affine piece is isomorphic
to the surface defined by the equation xty + z3(y* + Bx23)2 = 0 in A3. If 3 = 1, the surface
is irreducible. If 8 = 0, then it has an extra component defined by y = 0. However, this
component originates from the hyperplane w = 0 in P4, Therefore, the surface in A* defined by
the equations t + y* = 0 and z*y = 23 is also irreducible. 0
Lemma 3.1.15. Suppose that (ag, a1, az,as,d) = (9,15,23,23,69). Then lct(X) = 6.

Proof. We may assume that the surface X is defined by the quasihomogeneous equation

2t(z —t) + xy* + 2% =0,
which implies that X is singular at three distinct points O, Oy, P on the curve defined by
z =t = 0. Also, the surface X is singular at three distinct points O,, O, @1 on the curve
defined by =z =y = 0.

Note that lct(X, %Cx) = 6, which implies that lct(X) < 6. Suppose that lct(X) < 6. Then
there is a Q-effective divisor D = — K x such that the pair (X,6D) is not log canonical at some
point P € X.

The curve C, consists of three distinct curves Ly = {x = z = 0}, Ly = {x = ¢t = 0} and
L3 = {x = z —t = 0} that intersect altogether at the point O,. Similarly, the curve C, consists
of three curves L) = {y =z =0}, L, = {y =t =0} and L; = {y = z — ¢t = 0} that intersect
altogether at the point O,.

The pairs (X, ng) and (X, %C’y) are log canonical. By Remark 1.4.7, we may assume that
the support of D does not contain at least one component, say L}, of Cy. Also, we may assume
that the support of D does not contain at least one component, say L1, of C,,. Then

, 9.23-15 1 15-23-9
multo, (D) S 9D - I = 550353 <6~ 91523 - 23
which imply that P # O, and P # O,.

The curve C, consists of three distinct curves L, L] and C = {z = y3 + 2° = 0}. It is easy
to see let(X, 2—1302) = 8. Therefore, we may assume that the support of D does not contain at
least one component of C', by Remark 1.4.7. Then the equalities

1 1 , 1 1 1D-C 1 1

-~ «_~ D.I = —
15-23 - 6.23’ 159235623 3 9.23 < 6.23

51-60 <i
9-15-17-20 21’

= 15D - Ly > multp, (D),

DI



show that multp, (D) < 1/6. Thus, we see that P # O;. By the same way, one can show that
P # O, and P # Q.

Suppose that P = P;. Put D = mC + ), where () is an effective Q-divisor such that
C ¢ Supp(f2). Then m < 1/6, because (X,6D) is log canonical at O,. We have

5+3 8 1
(L L'Yy="""="—- " Cy==
Crllatl) =" =55 C-C: =3
which implies that C? = C - (C, — L1 — L}) = —1/69. Hence, it follows from Lemma 1.4.6 that
1 1+m 7 1
—<Q-C=D-C—-mC*= <
36 M T 3356323 7360

which is absurd. Thus, we see that P is a smooth point of the surface X.

Suppose that P is not contained in C, UCy U {z —t = 0}. Let E be the unique curve on
X such that E is given by the equation z = At and P € E, where ) is a non-zero constant
different from 1. Then F is quasismooth and hence irreducible. Therefore, we may assume that
the support of D does not contain the curve E. Then

23 -69 < 1
9-15-23-23 6’
which is a contradiction. Thus, we see that P € C, UC; U {z —t = 0}.

Suppose that P € L. Put D = aly + A, where A is an effective Q-divisor, whose support
does not contain the curve L;. Then a < 1/6. Hence, it follows from Lemma 1.4.6 that

6-(1437a) _6+37
< <
345 345

because L7 = —37/345. Thus, we see that P ¢ Ly. Similarly, we see that P ¢ L} and P ¢ C.
Thus, we see that P ¢ C,. By the same way, one can see that P is not contained in the curves
Cy and {z —t = 0}. The obtained contradiction completes the proof. O

multp(D) < D-E =

1<6Q-Ly =6(D-L; —alLi) =

L,

Lemma 3.1.16. Suppose that (ag, a1, az,as,d) = (11,29, 39,49, 127). Then lct(X) = 33/4.
Proof. The hypersurface X is unique, it can be given by the equation
22t + yt2 + xy4 + 282 = 0,

and the singularities of X consist of a singular point of type 1/11(7,5) at O, a singular point of
type 1/29(1,2) at Oy, a singular point of type 1/39(11,29) at O, and a singular point of type
1/49(11,39) at O;.

The curve C, is reduced and reducible. We have C, = L,; + M,, where L,; and M, are
irreducible curves such that L,; is given by the equations x = ¢t = 0, and M, is given by the
equations z = 2% + yt = 0. Note that O, € C, and C, is smooth outside of the point O,. We
have lct(X,1/11C5) = 33/4, which implies that let(X) < 33/4.

The curve Cj is reduced and reducible. We have Cy = L,. + M,, where L,, and M, are
irreducible curves such that L,. is given by the equations y = z = 0, and M, is given by the
equations y = 2% + 2t = 0. The only singular point of the curve Cy is Oy. It is easy to see that
the log pair (X, :%55C,) is log terminal.

The curve C is reduced and reducible. We have C, = L, + M, where M, is an irreducible
curve that is given by the equations z = 2 + zy3 = 0. The only singular point of C., is O,. It
is easy to see that the log pair (X, %Cz) is log terminal.

The curve Cy is reduced and reducible. We have Cy = Ly + M;, where M; is an irreducible
curve that is given by the equations t = y* + 272 = 0. The only singular point of C; is O,. It is
easy to see that the log pair (X, %Ct) is log terminal.

Suppose that lct(X) < 33/4. Then there is an effective Q-divisor D ~g —Kx such that the
log pair (X,33/4D) is not log canonical at some point P € X.

Suppose tat P = O,. Let us show that this assumption leads to a contradiction. One has

127 1 2

Co D= oo g Lot D= 55 Moo D= o—,
29 -39 .49 29 - 39 29 - 49



and we may assume that either L, Z Supp(D) or M, € Supp(D) by Remark 1.4.7. If L, ¢
Supp(D), then

1 multo, (D) 4 1
=Ly -D> 2 ,
29 - 39 o 29 >29-33>29-39
which is a contradiction. Thus, we see that M, C Supp (D). Then
2 multp, (D) 4 2
=M, - D> K > )
29 - 49 ‘ 29 29-33 7 29-49

which gives a contradiction. Thus, we see that P # O,.
Suppose that P = O,. Let us show that this assumption leads to a contradiction. One has

127 1 2
.D=—-" L. -D=—_ M, -D=_—"__
C: 11-29-49" 7% 11-49" 7 11-29°
and we may assume that either L,, Z Supp(D) or M, Z Supp(D) by Remark 1.4.7. If L. ¢
Supp(D), then
1 multp, (D) 4 1
——=Ly,-D> - )
11-49 7% 11 “11-33 7 11-49
which is a contradiction. Thus, we see that M, C Supp (D). Then
2 M. D> multo, (D)multo, (M) - 2 4 - 2 ’
11-29 11 11 33" 11-29
because M, is singular at the point O,. The obtained contradiction shows that P # O,.
Suppose that P = O,. Let us show that this assumption leads to a contradiction. One has

127 4
“1i-20-300 M P = 0
and we may assume that either L,y € Supp(D) or My € Supp(D) by Remark 1.4.7. If L,y €
Supp(D), then

Ci-D

1 multo, (D) 4 1
——— =Ly -D> - > > ,
29 - 39 o 39 39-33 7 29-39
which is a contradiction. Thus, we see that M; C Supp (D). Then
4 1 D)mul M 4 4 4
:Mt~D>mutOZ( Jmulto, ( t)>7_7> ’
11-39 39 39 33 11-39

because M, is singular at the point O,. The obtained contradiction shows that P # Oy.
Suppose that P = O;. Let us show that this assumption leads to a contradiction. By
Remark 1.4.7 we may assume that either Ly  Supp (D) or My € Supp (D). Note that

M, - Ly = 2/29,
which implies that M2 = —76/1421 and L2, = —67/1131. Put
D = uM, + Q,
where 2 is an effective Q-divisor such that M, ¢ Supp (2). If x> 0, then
2 1
=My Ly <DLy = ————
29N Mg xt xt 29 . 39
which implies that u < 1/78. Then
1 4 24 76p 1 4
— —<Q-M,=D M, —uM? = — . —
19 335 Ve v HMe = 59709 S 1933

by Lemma 1.4.6. The obtained contradiction shows that P # O;.

Therefore, we see that P is a smooth point of the surface X.

Suppose that P € L. Put D = el + A, where A is an effective Q-divisor such that
Lay ¢ Supp (A). Then € < 4/33, because (X, 22D) is log canonical at the point Oy € Lg. Thus,
it follows from Lemma 1.4.6 that
14 67¢ 4

29 -39 < 33’

4
£<A-th:D-th—eL§t:

which is a contradiction. We see that P & L.



Suppose that P € M,. Put D = wM, + Y, where T is an effective Q-divisor such that
M, ¢ Supp(Y). Then w < 4/33, because (X, 23D) is log canonical at the point O, € M,.
Hence, it follows from Lemma 1.4.6 that

4
£<T-MI:D-Mz—wM§:
which is a contradiction. We see that P ¢ M.

We see that P is a smooth point of X such that P is not contained in C,. Then it follows

from Lemma 1.4.9 that

2 4 76w 4

2049 33’

LI— (D)<—539'127 -4
33 PRI 11293949 ~ 33

because HO(P, Op(190)) contains 220y!!, 249, 219211 and #''. The obtained contradiction com-
pletes the proof. O

Lemma 3.1.17. Suppose that (ag, a1, az,as,d) = (11, 49,69, 128,256). Then lct(X) = 55/6.

Proof. By the quasismoothness of X, the curve C, is irreducible and reduced. Moreover, it is
easy to see that let(X, £C,) = 55/6, which implies that let(X) < 55/6.

Suppose that lct(X) < 55/6. By Remark 1.4.7, there is an effective Qdivisor D = —Kx such
that C, ¢ Supp(D), and the log pair (X, %D) is not log canonical at some point P € X.

Suppose that P € X \ Sing(X) and P € X \ C,. Then
6 759 - 256 6
— Itp(D) < —
55 < multr(D) < 7705769 . 128 < 55
by Lemma 1.4.10, because H°(P, Op(759)) contains 2%, 220y, 21, But
6 256 6
— tp(D)SXD-Cp=— ——— < —
55 < multr(D) * T 19-69-128 ~ 55
if P € X \ Sing(X) and P € C,. Thus, we see that P € Sing(X).
Suppose that P = O,. Then

6 49 -11 - 256 6
L 1 D <4 D. = e
Be < multp, (D) 9D - Cy 11-49-69-128 = 95

which is a contradiction. Suppose that P = O,. Then

6 69 -11-256 6
= 1 D) <69D-C, = 55’
B < multp, (D) < 69D - C. 11-49-69-128 < 95

which is a contradiction. Therefore, we see that P = O,.
Since the curve Cy is irreducible and the log pair (X, %C’y) is log canonical at the point O,,
we may assume that the support of D does not contain the curve Cy due to Remark 1.4.7. Then

6 11-49 - 256 6
— Ito, (D) < 11D -C, = —,
55 < multo. (D) =T 19 69-128 < 55
which is a contradiction. The obtained contradiction completes the proof. O

Lemma 3.1.18. Suppose that (ag, a1, as,as,d) = (13,23,35,57,127). Then lct(X) = 65/8.

Proof. The only singularities of X are a singular point of type 1/13(9,5) at O, a singular point

of type 1/23(13,11) at O,, a singular point of type 1/35(13,23) at O, and a singular point of

type 1/57(23,35) at O;. Note that the hypersurface X is unique and can is given by an equation
22t + y4z + at? 4+ 28y = 0.

The curve C, is reduced and reducible. We have C, = L,, + M,, where L,, and M, are
irreducible curves such that L, is given by the equations x = z = 0, and M, is given by the
equations x = zt + y* = 0. Note that the only singular point of the curve C, is the point
O, € Cy. The inequality lct(X, Cy) = 5/8 holds, which implies that lct(X) < 65/8.

The curve Cy is reduced and reducible. We have C, = L,; + M,, where L,; and M, are
irreducible curves such that L,; is given by the equations y = ¢t = 0, and M, is given by the
equations y = z? + ot = 0. The only singular point of Cy is O;. It is easy to see that the log
pair (X, £:C,) is log terminal.



The curve C, is reduced and reducible. We have C, = L., + M,, where M, is an irreducible
curve that is given by the equations z = t2 + 27y = 0. The only singular point of C, is Oy. It
is easy to see that the log pair (X, %Cz) is log terminal.

The curve C; is reduced and reducible. We have Cy = L,; + My, where M; is an irreducible
curve that is given by the equations t = 3%z 4+ 2% = 0. The only singular point of C; is O,. It is
easy to see that the log pair (X, %C’t) is log terminal.

Suppose that lct(X) < 65/8. Then there is an effective Q-divisor D ~g —Kx such that the
log pair (X,65/8D) is not log canonical at some point P € X.

Suppose that P = Oy. Then L,, C Supp (D), because

1 multo, (D) 8 1
=L,.-D> — > > ;
23 - 57 57 57-65 2357
if Ly, € Supp (D). By Remark 1.4.7 we may assume that M, Z Supp (D). Then
4 M, D> multp, (D) S 8 - 4 ,
3557 Y 57-65  35-57

which is a contradiction. Thus, we see that P # O;.
Suppose that P = O,. Then L, C Supp (D), because

1 multo,_ (D) 8 1
——=Lyu-D> = > > ,
13-35 vt 35 3565 13-35
if Ly Z Supp (D). By Remark 1.4.7 we may assume that M;  Supp (D). Then
1 D 1 M, 24
8 :Mt-D>mUtOz( Jmulto_ ( t)> S 8 ’
23-35 35 35-65  23-35

because M; is singular at O;. The obtained contradiction shows that P # O,.
Suppose that P = O,. Then L,. C Supp (D), because
1 Ito, (D 1
:Lsz>mu Oy( ) 5 > 5
23 - 57 23 23-65 ° 23-57
if L,  Supp (D). By Remark 1.4.7 we may assume that M, Z Supp (D). Then
2 _ M..D> multo, (D)multo, (M) 16 - 2 7
13-23 23 23-65 ° 13-23
because M. is singular at O,. The obtained contradiction shows that P # O,.
Suppose that P = O,. Then L,; C Supp (D), because

1 multo, (D) 8 1
=L, -D> @ ,
13-35 v 13 1365 13-35
if Ly € Supp (D). By Remark 1.4.7 we may assume that M, Z Supp (D). Then
2 multo, (D) 8 2
=M,-D> @ > ,
1357 Y 13 “ 1365 1357

which is a contradiction. Thus, we see that P # O,.
Therefore, we see that P is a smooth point of the surface X. Note that

s 9 . 88
vE23.57 7 3557
Suppose that P € L,,. Put D = puL,, + ), where Q is an effective Q-divisor such that
L. ¢ Supp (). Then p < 8/65, because the log pair (X, %D) is log canonical at the point

O, € L;,. Hence, it follows from Lemma 1.4.6 that

65 65 65 1+79
1< 20 Los = 2(D- Low — ) = 3 2';57“
which is a contradiction. We see that P & L.
Suppose that P € M,. Put D = eM, + A, where A is an effective Q-divisor such that
M, ¢ Supp (A). Then e < 8/65, because the log pair (X, %D) is log canonical at the point

O; € M. So, it follows from Lemma 1.4.6 that
1< Pa =B, —enrzy = B 218
8 8 8 35-57

<1,

<1,



which is a contradiction. We see that P & C,.
Applying Lemma 1.4.9, we see that

8 < ltp(D) < 741 - 127 < 8

— < mu <— = <

65 F 13-23-35-57 65

because HO(P,Op(741)) contains z!ly?6 x34y'3 257 222213 13, The obtained contradiction
completes the proof. O

Lemma 3.1.19. Suppose that (ag, a1, az,as,d) = (13,35,81,128,256). Then lct(X) = 91/10.

Proof. The only singularities of X are a singular point of type 1/13(3,11) at O, a singular
point of type 1/35(13,23) at O,, and a singular point of type 1/81(35,47) at O,. In fact, the
hypersurface X is unique and can be given by an equation

2+t + a2+ 2Ty =0.

The curve C; is reduced and irreducible. One can easily check that lct(X, Cy) = 7/10, which
implies let(X) < 91/10.

The curve Cjy is reduced and irreducible. The only singular point of Cy is O,. Moreover,
elementary calculations imply that the log pair (X, %Cy) is log terminal.

Suppose that let(X) < 91/10. Then there is an effective Q-divisor D ~gp —Kx such that the
log pair (X, %D) is not log canonical at some point P € X. By Remark 1.4.7 we may assume
neither C, nor C, is contained in Supp (D).

Suppose that P = O,. Then

2 C..D> mult p(Cy)multp(D) _ 2multp(D) 2 10 S 2 7
35-81 81 81 81 91 ~ 35-81
which is a contradiction. Suppose that P = O,. Then
2 multp(D) 1 10 2
=0, D> > > :
35-81 * 35 35 91 35-81
which is a contradiction. Suppose that P = O,. Then
2 multp(Cy)multp(D) 2 10 2
=C,-D> Bl SO
381 13 “ 13791~ 13-81

which is a contradiction. Hence, we see that P ¢ Sing(X).
We see that P is a smooth point of the surface X. Suppose that P € C,. Then

2 10 2
—— =Cy-D>multp(D) > — > ———,
35-81 " multp(D) > 57> 3575
which is a contradiction. Thus, we see that P & C.
Applying Lemma 1.4.10, we see that

multp(D) < 1053 - 256 < E
PRI~ 13735.81-128 91’

because HO(P, Op(1053)) contains 28!, 2'1y? and z!3. The obtained contradiction completes
the proof. 0

3.2. SPORADIC CASES WITH [ = 2

Lemma 3.2.1. Suppose that (ag, a1, a2,a3,d) = (2,3,4,5,12). Then lct(X) = 1 if X contains
the term yzt. And lct(X) = 55 if it contains no yzt.

Proof. We may assume that X is defined by the quasihomogenous equation
2(z — 2% (2 — ex?) + y* + xt® + ayzt + bry®z + ca’yt + day?,

where € (# 0,1), a, b, ¢, d are constants. Note that X is singular at the point O; and three
points @1 =[1:0:0:0],Q2=[1:0:1:0],Q3=[1:0:¢€:0].

First, we consider the case where a = 0. The curve C, is irreducible and reduced. Also we
have lct(X, Cp) = 15. Suppose that let(X) < % Then there is an effective Q-divisor D = —Kx



such that the log pair (X, 12D) is not log canonical at some point P € X. Since H(P, Op(6))

contains 23, y%, and rz, Lemma 1.4.10 implies that for a smooth point O € X \ C,
2:-12-6 < 12
2-3-4-5 7
Therefore, the point P cannot be a smooth point in X \ C,. Since the curve C, is irreducible
we may assume that the support of D does not contain the curve C,. The inequality

) 5-2-2-12 12

°D.C,= 22 =

3 - 3-2-3-4- 5 7
implies that the point P is located in the outside of C,, i.e., the point P must be one of the
point @1, @2, @3. The curve Cy is quasismooth. Therefore, we may assume that the support of

D does not contain the curve Cy. Then the inequality

2.2-3-12 12

multpD <

gives us a contradiction.

From now we consider the case where a # 0. In this case,the curve C; is also irreducible and
reduced. However, we have lct(X, C,) = 1. Suppose that lct(X) < 1. Then there is an effective
Q-divisor D = —Kx such that the log pair (X, D) is not log canonical at some point P € X.

Since 5 5.2.2.12
gD Co=gga e =1
Co=5 5315

the point P is located in the out51de of C,.

The curve C, is irreducible and the log pair (X, %Cz) is log canonical. Therefore, we may
assume that the support of D does not contain the curve C,. The curve C, is singular at the
point Q1. The inequality

2-4-12
muthlD>D-CZ—72.3_4.5 <1
implies that P cannot be the point Q1. We consider the curves C,_,2 defined by z = z? and
C,_.,2 defined by z = ex?. Then by coordinate changes we can see they have the same properties
as that of C,. Moreover, we can see that the point P can be neither Q)2 nor (J3. Therefore, the
point P must be located in the outside of C, UC, UC,_ 2 UC,_,2.

Let £ be the pencil on X defined by A\x? + puz = 0, where [A : ] € P1. Let C the curve in £
that passes through the point P. Then it is cut by z = ax?, where a # 0,1, €. The curve C is
isomorphic to the curve in P(2,3,5) defined by

2% 4+ yt + ot + Bayt = 0,
where 3 is a constant. We can easily see that the curve C is irreducible. Since
2-4-12
D 0—2.3'4.5<1
it is enough to show that (X, %C) is log canonical. If B # (22, where ( is a forth root of
unity, then the curve C is quasismooth and hence the pair is log canonical at the point P. If
B = (2v/2, then the curve C is singular at [1 : —(%y/2]. However, elementary calculation
shows the pair (X, 1C) is log canonical. O

Lemma 3.2.2. Suppose that (ag, a1, as,as,d) = (2,3,4,7,14). Then lct(X) = 1.
Proof. We may assume that X is defined by the quasihomogenous equation
t? — 2% + 2(z — (12®) (2 — Boa®) (2 — Ba?) + exy® (v — 72°)

where € (# 0), (1, (2, O3, v are constants. Note that X is singular at the points O,, O, and
three points Q1 = [1:0: 61 : 0], Q2 =[1:0: 52 :0], Q3 =[1:0: F3:0]. The constants
061, B2 and (3 are distinct since X is quasismooth. The curve C, consists of two irreducible
reduced curves C_ and C+ However the curves Cy and C, are irreducible. We can easily see
that let(X, Cp) = 1, let(X, 2C,) = 2 and let(X, 1C.) > 1

Suppose that let(X) < 1 Then there is an effective Q-divisor D = — K x such that the log
pair (X, D) is not log canonical at some point P € X. Since H°(P, Op(6)) contains 23, y? and



zz, Lemma 1.4.10 implies that the point P is either a singular point of X or a point of C,.
Furthermore, since Cy is irreducible and hence we may assume that the support of D does not
contain the curve C the equality

2:3.2.14

2.3.-4.5

implies that P # @Q; for each ¢ = 1,2, 3. In particular, the point must belong to C.
We have the following intersection numbers:

1 7T 9 9 )
CI-C,:C};-CJF:E, CL-C+:E,C_:C’+:—E.
We may assume that the support of D cannot contain both C_ and C. If D does not contain

the curve C, then we obtain

20, - D =

2
multo, D, multp,D > 4D -C, = 3 < 1.

On the other hand, if D does not contain the curve C_, then we obtain
2
multo, D, multo,D > 4D -C_ = 3 <1.

Therefore, the point P must be in C; \ Sing(X).

We write D = mCy + (2, where the support of €2 does not contain the curve C;. Then m > %
since D - C_ > mCy - C_. Then we see C - D —mC? < 1. By the same way, we also obtain
C_-D —mC? < 1. Then Lemma 1.4.8 completes the proof. O

Lemma 3.2.3. Suppose that (ag,a;,az,as,d) = (3,4,5,10,20). Then lct(X) = 3/2.
Proof. The surface X can be defined by the quasihomogeneous equation
2 =24+ y5 + 202+ elxySz + 62x2y22 + ety =0,
where ¢; € C. Note that X is singular at the point O,. Note that X is also singular at a point
O that is cut out on X by the equations x = z = 0, and X is also singular at points P; and P,

that are cut out on X by the equations x = y = 0.
The curves C,, Cy and C; are irreducible. Moreover, we have

; = let (X, §C$) < let(X, %CZ) = £ < let (X, ZC’y) =2,
which implies, in particular, that let(X) < 3/2.

Suppose that lct(X) < 3/2. Then there is a Q-effective divisor D = —Kx such that the
pair (X, %D) is not log canonical at some point P. By Remark 1.4.7, we may assume that the
support of the divisor D does not contain the curves C;, Cy, and C..

Suppose that P ¢ C, UC, U C,. Then there is a unique (possibly reducible or non-reduced)
curve Z C X that is cut out by

ay? = zx
such that P € Z, where 0 #£ o € C. There is a natural double cover w: Z — C, where C' is a
curve in P(3,4,5) that is given by the equations

ay? =z C IP’(3,4, 5) = Proj ((C [:c, z,y]),

where wt(z) = 3, wt(y) = 4 and wt(z) = 5. The curve C is quasismooth, and w(P) is a
smooth point of P(3,4,5). Thus, we see that multp(Z) < 2, the curve Z consists of at most 2
components, each component of Z is a smooth rational curve.

We may assume that Supp (D) does not contain at least one irreducible component of Z.
Thus, if Z is irreducible, then

2= D0 > miltp(Dpmiltp(C) > 2 >

which is a contradiction. So, we see that C' = C7 + C5, where C7 and Cy are smooth irreducible

rational curves. Then A A
Cl-Clng-ng—g, Cl~C2:§.



Without loss of generality we may assume that P € C;. Put D = §C7 + Q, where 2 is an
effective Q-divisor such that C; ¢ Supp(2). If § # 0, then

4:D.c2:(501+Q)-02>501-02:?,

15
which implies that ¢ < 1/5. Then it follows from Lemma 1.4.6 that
4440 2
= (“Ex—001) G =0-Cr >

which implies that 6 > 3/2. But 6 < 1/5. The obtained contradiction show that P € C,UC,UC..
Suppose that P € C, and P ¢ Sing(X). Then

1 2 1
g:D-Cszultp(D)>§>5,
which is a contradiction. Suppose that P € Cy, and P ¢ Sing(X). Then
4 2 4
—=D-Cy >2multp(D) > - > —,
15 Cy > multp(D) > 5> 75
which is a contradiction. Suppose that P € C, and P ¢ Sing(X). Then
1 2 1
§:D-Cz>multp(D)2§>§,

which is a contradiction. Thus we see that P € Sing(X).
Suppose that P = O,. The curve C, is singular at the point O,. Thus, we have

1 multp(D)multp(C,) _ 4 1
—=D- C 2 2 = > P
3 ? 3 9" 3
which is a contradiction. Suppose that P = O. Then
1 multp(D) _ 1 1
-—=D- = S =
5 Ca 2 375

which is a contradiction. Hence, without loss of generality we may assume that P = P;. Note
that Cm N Cy = {Pl, PQ}

Let m: X — X be a weighted blow up of the point P; with weights (3,4), let E be the
exceptional curve of 7, let D, C;, and C,, be the proper transforms of D, C, and Cy, respectively.
Then

3 4

2 4 - _
K¢ =7n"(Kx)+ 5E, Cp=7"(Cy) — gE, Cy =7 (Cy) — gE, D =7*(D) — %E,

where a is a positive rational. The curve F contains two singular points Q3 and 4 of the surface
1

X such that Q3 is a singular point of type 3(1,1), and Q4 is a singular point of type %(1, 1).
Then
Cr #Q3€Cy #QueCy,
and the intersection C; N C'y consists of the single point that dominates the point Ps.
The log pull back of the log pair (X, %D) is the log pair

_3_ 32_9
X. =D+ -2 E
(30 % %)

which is not log canonical at some point Q € E. We have E? = 5/12. Then

_ _ a _ 3a 1 a
0<C,-D=C,-D——-FE-Cp=Cp-D+ —E?>=—- — —,
¢ ¢ 5 A AT 5 20
which implies that a < 4. Hence, we see that
3a
X _2 4
2 <-<1
5 5 ’
which implies that the log pull back of the log pair (X, %D) is log canonical in a punctured

neighborhood of the point Q.




Note that the log pull back of the the log pair (X, %D) is effective if and only if @ > 4/3. On
the other hand, if @ < 4/3, then the log pair (X, %D) is not log canonical at @) as well, which
implies that

SHQ#Qsand Q£ Qs
a

a 21
— =_E’=D-FE Z2ifQ =

21

20 =

57 Q = Qq,
which implies, in particular, that a > 2, which is a contradiction. Hence, we see that a > 4/3
and the log pull back of the the log pair (X, %D) is always effective. Then

9 3a _ 72 _
multp(D)><1— 2 ): 5 1

3 5 15
Suppose that Q # Q3 and @ # Q4. Then it follows from Lemma 1.4.6 that

_ 2
2 _%p2_p.E> 2,
12 5 3
which is a contradiction. Therefore, we see that either QQ = Q3 or Q = Q4.
Suppose that @ = Q4. Then

1 a - . _multg (D) T73-a
———=D-Cy > 4 3
5 20 ’ 4 20
which immediately leads to a contradiction. Thus, we see that Q = Q3. Then
4 a _ . multg,(D) _ 73—a
— - =D (>R i,
15 15 Y 3 T
which immediately leads to a contradiction. O

Lemma 3.2.4. Suppose that (ag, a1, as,as3,d) = (3,4,6,7,18). Then lct(X) = 1.
Proof. The surface X can be defined by the the quasihomogenous equation
Py + v’z + (2 = fra?)(z — Boa?) (2 - Baa?)

where 31, 32, 33 are distinct nonzero constants. Note that X is singular at the points Oy, O;
and three points Py = [1:0: 5, :0], P, =[1:0:02:0], Ps=1[1:0: f3:0] and one point
Q=[0:-1:1:0].

The curve Cy is reducible. We have C, = L1+ Lo+ L3, where L; is an irreducible and reduced
curve such that P, € L;. We have

8 2
L1-L1=L2'L2=L3'L3=—ﬁ, Ll'L2=L1'L3=L2'L3=;,

and L1 N Lo N Ly = Of. The curve C, is irreducible and

2 2 3
1 =Ict (X, 4C’y> < lct <X, 301,) =5

which implies, in particular, that let(X) < 1.
Suppose that lct(X) < 1. Then there is a Q-effective divisor D = —Kx such that the pair
(X, D) is not log canonical at some point P. By Remark 1.4.7, we may assume that the support
of the divisor D does not contain the curve C,. Similarly, we may assume that Ly € Supp(D)
for some k=1, 2, 3.
Since HY(P, Op(12)) contains z*, y* and 22, it follows from Lemma 1.4.10 that P € C, U C,,.
Suppose that P = O;. Then
2 multp (D)

2D Ly>
21 k 7

which is a contradiction. Thus, we see that P # O;.

>1>
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Suppose that P € C,. Then
1if P# Oy and P # Q,

3
2 _D.C,
14 ”

if P=0,,

if P=0Q,

DO = | =

because P # O;. The obtained contradiction shows that P & C,.
Without loss of generality we may assume that P € Li. Put D = mL; + , where Q is an
effective Q-divisor such that L; ¢ Supp(2). If m # 0, then

2 2
—:D-Lk:(mL1+Q)-Lk>mL1-Lk:7m,

21
which implies that m < 1/3. Then it follows from Lemma 1.4.6 that
1it P# P
2+ 8m '
=(—-Kx—-—mL;)- L1 =Q-L
21 ( X ml) 1 1> %ifP:Pl,
which implies that m > 5/8. But we already proved that m < 1/3. The obtained contradiction
completes the proof. O

Lemma 3.2.5. Suppose that (ag, a1, az,as,d) = (3,4,10,15,30). Then lct(X) = 3/2.
Proof. The surface X can be defined by the quasihomogeneous equation

2 =23+ y5z + 210+ elaUZy,z2 + 621’2y6 + 63£L'4y22 + 64:v6y3,
where ¢; € C. The surface X is singular at the point O,. Note that X is also singular at a point
0> that is cut out on X by the equations x = t = 0, the surface X is also singular at a point
Os that is cut out on X by the equations x = y = 0, and X is also singular at points P; and P»

that are cut out on X by the equations y = z = 0.
The curves C, and Cj are irreducible. Moreover, we have

3 2 2
5 = lct (X, 3Cx> > let <X, 4Cy> - 2,

which implies, in particular, that let(X) < 3/2.

Suppose that lct(X) < 3/2. Then there is a Q-effective divisor D = —Kx such that the
pair (X, %D) is not log canonical at some point P. By Remark 1.4.7, we may assume that the
support of the divisor D does not contain the curves C, and C,.

Since H°(P, Op(20)) contains y°, y2x?, 22, it follows from Lemma 1.4.10 that P € Sing(X) U
C

y-
Suppose that P € C, and P ¢ Sing(X). Then
2 2 2
2 - D-Cyzmultp(D)> 2> =
15 y 2 multp(D) > 3> 35
which is a contradiction. Suppose that P = P;. Then
2 2 2
2 —D-C,>multp(D) > = > =
15 Cy 2 multp(D) > g > 35

which is a contradiction. Similarly, we see that P # P;.
Thus, we see that P € C; N Sing(X). Then

multp (D
1 multp (D) 2. 1
10 C . it P=0,, >4 35 P =0y >
2
multp (D) it P =0 G if P = O3,

which is a contradiction. Thus, we see that lct(X) = 3/2. O



Lemma 3.2.6. Suppose that (ag,ai,az,as,d) = (3,7,8,13,29). Then lct(X) = 1.
Proof. The surface X can be given by the equation
2t + 132+ at? + 272 + ey + eyt + e22°y? =0,

where ¢; € C. The surface X is singular at the point O, Oy, O, and O;.

The curves C} is reducible. Namely, we have C,, = L + Z, where L and Z are irreducible
curves such that the curve L is cut out on X by the equations x = z = 0. Easy calculations
imply that

18 3 15

L L=—L-Z=—,2 Z=——,
91 13 104

the curve Z contains the points O.and Oy, the curve L contains the points O, and Oy, and
LN Z = 0. We have lct(X, C;) = 2/3, which implies that lct(X) < 1.

Suppose that lct(X) < 1. Then there is a Q-effective divisor D = — K x such that the log pair
(X, D) is not log canonical at some point P € X. Then it follows from Remark 1.4.7 that we
may assume that the support of the divisor D does not contain either the curve L or the curve
Z.

The curve Cy, is irreducible and (X, 2C) is log canonical. Thus, it follows from Remark 1.4.7
that we may assume that the support of the divisor D does not contain the curve Cy as well.

Suppose that P ¢ C, UCy. Then P € X \ Sing(X) and

91
1 <multp(D) < 05 <1
by Lemma 1.4.10, because the natural projection X --» P(3,7,8) is a finite morphism outside of

the curve C,,, and HO(P, Op(24)) contains monomials 2%, 23, zy®. Thus, we see that P € C,UC,,.
Suppose that P € Cy and P ¢ Sing(X). Then

29

1 Itp(D) < D-C,=— <1,
< multp(D) v = 156 <
which is a contradiction. Suppose that P = O,. Then
1 multo, (D) 29 1
z z <D -C,=— <=,
3% 3 Y7 156 < 3
which is a contradiction. Thus, we see that P € C,.
Suppose that P = Oy and L ¢ Supp(D). Then
1 1 D 2 1
1 _ multo,(D) <D L=-<—,
13 13 91 13
which is a contradiction. Suppose that P = O; and M ¢ Supp(D). Then
1
1 _multo (D) o py oy 3 L
13 13 52 13

which is a contradiction. Thus, we see that P # O;.
Suppose that P € L. Put D = mL + ), where ) is an effective Q-divisor such that L ¢
Supp(Q2). If m # 0, then

i:D.Z:(mL+Q)'Z>mL-Z:3—m,
52 13
which implies that m < 1/4. Then it follows from Lemma 1.4.6 that
1
241 LTy .
ﬂ:(_KX_mL).L:Q,L> 7! Oy,
o lif P # 0,

because P # O,. Therefore, we see that m > 11/18. But m < 1/4. The obtained contradiction
implies that P & L.
Suppose that P € Z. Put D = aZ + T, where T is an effective Q-divisor such that Z ¢
Supp(Y). If a # 0, then
2 3a

QT:D-L:(aZ—i—T)-L)aIwZ:E,



which implies that a < 2/21. Then it follows from Lemma 1.4.6 that

1
1 CifP=0,,
6+ 5“:(—KX—aZ)-Z:T-Z> 8’ ©
104 1if P #£ 0.,

which implies, in particular, that a > 7/15. But a < 2/21. The obtained contradiction completes
the proof. 0

Lemma 3.2.7. Suppose that (ag,a;,az,as,d) = (3,10,11,19,41). Then lct(X) = 1.
Proof. The surface X can be defined by the quasihomogeneous equation
22t + y3z + 2t? + 2102 + 61x3yz2 + 62w4yt + 63$7y2 =0,

where ¢; € C. The surface X is singular at the point O, Oy and O..

The curve C, is reducible. We have C,, = L., + Z,, where L., and Z, are irreducible and
reduced curves such that L., is given by the equations z = 2z = 0, and Z, is given by the
equations = tz + y> = 0. Then

—27 —21 3
= 7 Ze=— LTy = —
10-19” 7% 7 11-190 T 7F

19’
and L, N Z; = Oy. The curve Cy is irreducible and

e (20 <r(x.26) =5
which implies, in particular, that let(X) < 1.

Suppose that let(X) < 1. Then there is a Q-effective divisor D = —Kx such that the
pair (X, D) is not log canonical at some point P. By Remark 1.4.7, we may assume that the
support of the divisor D does not contain the curve Cy. Similarly, we may assume that either
L. Z Supp(D), or Z, Z Supp(D).

Since H°(P, Op(60)) contains 220, 3® and 2°22, it follows from Lemma 1.4.10 that P €
Sing(X) U C;.

Suppose that P = Oy. If L., Z Supp(D), then

Lzz : L:pz

1 multp(D) 1 1
— =D Ly,y>— s >~
5-19 v 19 19~ 5-19
which is a contradiction. If Z, Z Supp(D), then
8 multp(D) 1 8
=D -Z,>—— Y/ > ,
11-19 v 19 >19>11-19

which is a contradiction. Thus, we see that P # Oy.
Suppose that P € L,,. Put D = mL,, + €, where €0 is an effective Q-divisor such that
L. ¢ Supp(Q?). If m # 0, then

8
which implies that m < 8/33. Then it follows from Lemma 1.4.6 that
Lif P # O,
:(_KX_erz)'Lmz:Q'sz> 1 .

sm
19’

24 2Tm
190

which implies that m > 17/27. But we already proved that m < 8/33. Thus, we see that
PgL,,.
Suppose that P € Z,. Put D = eZ, + A, where A is an effective Q-divisor such that
Zy ¢ Supp(A). If € # 0, then
2

@:_KXLmz:DLmz:(ﬁzz"f’A)Lzz>€szZa::

3e
19’



which implies that € < 1/15. Then it follows from Lemma 1.4.6 that
1if P+ O,,

8+ 21e
(—Ky—eZ) - Z,=A-Z
19 — (" Ex—cZs)-Zs v f—lifP:Oz,

which implies that ¢ > 11/21. But we already proved that € < 1/15. Thus, we see that P ¢ Z,.
We see that P ¢ C,, and P € Sing(X). Then P = O,. We have

82 multp(D) 1 _ 82
=D-Cy>— L >_>_—
627 Y 3 37 627
which is a contradiction. Thus, we see that lct(X) = 1. O

Lemma 3.2.8. Suppose that (ag,ai,az,as,d) = (5,13,19,22,57). Then lct(X) = 25/12.
Proof. The surface X can be defined by the quasihomogeneous equation
23+ yt2 + :):y4 + a7t + ex5yz =0,

where € € C. The surface X is singular at the points O, O, and O;.
The curves C, and Cj are irreducible. Moreover, we have

25 2 2 65
ﬁ = lct <‘XV7 5CCC> > lct (X, 130y> = i,

which implies, in particular, that let(X) < 25/12.

Suppose that lct(X) < 25/12. Then there is a Q-effective divisor D = —Kx such that the
pair (X, %D) is not log canonical at some point P. By Remark 1.4.7, we may assume that the
support of the divisor D does not contain the curves C, and C),.

Since H(P, Op(110)) contains x%y> x?? and ¢°, it follows from Lemma 1.4.10 that P €
Sing(X) U Cy.

Suppose that P = O,. Then

3 multp(D) 12 3
=D -Cy>—-t>_——>
Y 5 ~ 125~ 55

which is a contradiction. Thii, we see that P € C.. Then
multp (D) P Oy,
3 poces min() L 12 8
143 v TifP:Ot, 25-22 7 143
multp(D) it PZ O, and P & O,
which is a contradiction. Thus, we see that lct(X) = 25/12. O

Lemma 3.2.9. Suppose that (ag, a1, az,as,d) = (5,13,19,35,70). Then lct(X) = 25/12.
Proof. The surface X can be defined by the quasihomogeneous equation
t2 +y2® + ay’ + T ex’y’z =0,

where € € C. The surface X is singular at the points Oy and O.. It is also singular at two points
P, and P, that are cut out on X by the equations y = z = 0.
The curves U, and Cy are irreducible. Moreover, we have

25 2 2 26
2 et (X, 20, ) >t (X, 20, ) = 2,
12 C< ’5C>>C< 13Cy> 7

which implies, in particular, that let(X) < 25/12.

Suppose that lct(X) < 25/12. Then there is a Q-effective divisor D = —Kx such that the
pair (X, %D) is not log canonical at some point P. By Remark 1.4.7, we may assume that the
support of the divisor D does not contain the curves C, and C),.

Since H(P, Op(95)) contains x5y°, 219, 25, it follows from Lemma 1.4.10 that P € Sing(X)U
Cy.



Suppose that P = P;. Then

4 multp, (D) 12 4
—=D-Cy>—21L> _— > —
95 Y 5 “ 125 7 95
which is a contradiction. We see that P # P;. Similarly, we see that P £ P,. Then P € C, and
Itp(D
fgiilﬁpz%,
4 13 12 4
—_ —_D.C, > ltp(D YL
247 v nnl{;()iff’—-Oz, ~ 9510~ 247
multp(D) if PZO, and P ¢ O,
which is a contradiction. Thus, we see that lct(X) = 25/12. O

Lemma 3.2.10. Suppose that (ag, a1, a2, as,d) = (6,9,10,13,36). Then lct(X) = 25/12.
Proof. The surface X can be defined by the quasihomogeneous equation
224yt + a2 4+ 28 +exdy? =0,

where € € C. The surface X is singular at the points O, and Oy. It is also singular at two points
P and P» that are cut out on X by the equations z =t = 0. The surface X is also singular at
two points ()1 and ()2 that are cut out on X by the equations y =t = 0.

The curve C, is reducible. We have C, = C7 + (5, where (7 and Cs are irreducible and
reduced curves on X such that

8 6
01‘01—02'02——@7 Cl‘CQ—Ea

and @1 € C1 Z Q2 € C2 # Q1. The curves C, and Cy are irreducible. Then

25 2 9 2 9 2

which implies, in particular, that let(X) < 25/12.

Suppose that lct(X) < 25/12. Then there is a Q-effective divisor D = —Kx such that the
pair (X, %D) is not log canonical at some point P. By Remark 1.4.7, we may assume that the
support of the divisor D does not contain the curves C, and Cy, and the support of the divisor
D does not contain either Cy or Cs.

Since H(P, Op(30)) contains x%t?, 25, 23, it follows from Lemma 1.4.10 that P € Sing(X) U
CrUC,.

Suppose that P € Cy. Put D = mC; + Q, where () is an effective Q-divisor such that
Cy ¢ Supp(Q2). If m # 0, then

2 6
7:_KX‘02:D'02: (mC1+Q)'CQ>m01'C2:7m7
39 13
which implies that m < 1/9. Then it follows from Lemma 1.4.6 that
12
o IEP# Q1
2 +m8 ! ) 6
tm :(*KX*mcl)'C&:Q'Cl> 25 = —,
39 Plyp_w, ¥
252~ U

which contradicts the inequality m < 1/9. Thus, we see that P ¢ C;. Similarly, we see that
P dC,.
Suppose that P = P;. Then

%:



which is a contradiction. We see that P # P;. Similarly, we see that P # P,. Then P € C, and

mite (D) 5 p o
i:D-C’x> multl;?(D) > 12 >i
65 —13 it P = Ok, 25-13 65
multp(D) if PZ O, and P ¢ Oy,
which is a contradiction. Thus, we see that lct(X) = 25/12. O

Lemma 3.2.11. Suppose that (ag, a1, az,as3,d) = (7,8,19,25,57). Then lct(X) = 49/24.

Proof. The surface X can be defined by the quasihomogeneous equation

B rytt+at? + 2Ty + ex?yB2 =0,
where € € C. The surface X is singular at the point O, Oy and O;. The curves C;, Cy and C,
are irreducible. We have

49 2 2 10 2 19
— =let | X, =C let | X,=Cy | = —<let [ X, =C, | = —
24 C( ’7”5><C<’8y> 3<C< '19 ) 2
which implies, in particular, that let(X) < 49/24.
Suppose that lct(X) < 49/24. Then there is a Q-effective divisor D = —Kx such that the
pair (X, %D) is not log canonical at some point P. By Remark 1.4.7, we may assume that the
support of the divisor D does not contain the curves C, C, and C..

The point P is not contained in the curve P € (', because otherwise we have

multg (D) P — Oy,
3

multp(D) it P # Oy and P # O,
which is impossible, because multp(D) > 24/49. Similarly, we see that P # Cy, U C,. Then
there is a unique curve Z C X that is cut out by
zy? = az®
such that P € Z, where 0 # o € C. We see that C,, ¢ Supp(Z). But the open subset Z\ (ZNC,)
of the curve Z is a Zg-quotient of the affine curve
z—ax® =B ft4 ot 2 +ex?z=0cC C3 Spec((C[:L',z,tD,
which is isomorphic to a plane affine curve that is given by the equation
B+t +at? + 2" +ear” =0 C? Spec(C[m,t]),

which is easily seen to be irreducible. In particular, the curve Z is irreducible and multp(Z) < 14.
Thus, we may assume that Supp(D) does not contain the curve Z by Remark 1.4.7. Then

3 24
2 D Z>multp(D) > =,
10 multy (D) > 45
which is a contradiction. Thus, we see that lct(X) = 49/24. O

Lemma 3.2.12. Suppose that (ag, a1, az,as3,d) = (7,8,19,32,64). Then lct(X) = 35/16.
Proof. The surface X can be defined by the quasihomogeneous equation

2+ ® + a2® + 2¥y + eayz,
where € € C. Note that X is singular at the points O, and O,. The surface X also has two
singular points P; and P» of type %(7, 3) that are cut out on X by the equations x = z = 0.

The curve C, is reducible. We have C,, = C1 + Cs, where C7 and Cy are irreducible reduced
curves such that o5 4

CI'CI:CTCE:_W’ 01'02:E7



and Py € C1, P, € Cy. Then C1 NCy = O,. The curve () is irreducible. We have

2 35 2 10
let (X, 2C, ) =2 <1t (X, 20, ) = =,
c(,7c> 16<c( Scy) .

which implies that lct(X) < 35/16.

Suppose that let(X) < 35/16. Then there is a Q-effective divisor D = —Kx such that the
pair (X, %D) is not log canonical at some point P. By Remark 1.4.7, we may assume that the
support of D does not contain the curve C,. Moreover, we may assume that the support of D
does not contain either the curve C'7 or the curve Cs.

Suppose that P = O,. We know that C; ¢ Supp(D) for some i = 1,2. Then

16 1 multp, (D) 1
[ < R g D . C — —_—
3519 19 4419
which is a contradiction. Therefore, we see that P # O,.
Suppose that P € Cy. Put D = mC) + Q, where () is an effective Q-divisor such that

Cy ¢ Supp(Q). If m # 0, then

1 4m
. = Ky -Cy=D-Cy = Oy > Oy = —
119 Kx -Cy D -0y (mC’1+Q) Cy = mCq - Cy 19°
which implies that m < 1/16. Then it follows from Lemma 1.4.6 that
16
— if P#P
2+25 ' b
T~ (Kxoma)-a=a-a> 3
’ = ifP=Pp,
358

which is impoassible, because m < 1/16. Thus, we see that P ¢ Cj. Similarly, we see that
P ¢ C,.
Suppose that P € C,. Then

A multp (D) if P # O,
g =D Cy 2 lto, (D
719 v 2\ multo, (D)

7

which leads to a contradiction, because multp(D) > 16/35. Thus, we see that P ¢ C,.

Thus, we see that P € X \ Sing(X) and P ¢ C, UC,. But H°(P, Op(64)) contains monomials
y®, 28y, y*t and t2, which is impossible by Lemma 1.4.10. The obtained contradiction completes
the proof. O

if P=0,,

Lemma 3.2.13. Suppose that (ag, a1, az,a3,d) = (9,12,13,16,48). Then lct(X) = 63/24.
Proof. The surface X can be defined by the quasihomogeneous equation
B4yt + 22 + 2ty =0,

the surface X is singular at the point O, and O,. The surface X is also singular at a point Q4

that is cut out on X by the equations z = z = 0. The surface X is also singular at a point Q3

such that Q3 # O, and the points Q3 and @), are cut out on X by the equations z =t = 0.
The curves Cy, Cy, C, and C; are irreducible. We have

63 2 2 2 13 2 16
— =lct | X, = let [ X, — =4 <lct | X, — = —<let | X, — =
o ct< ,96}) < Ct( ,120y> < ct( ,13CZ) 5 < ct( ’160t> 5

which implies, in particular, that let(X) < 63/24.

Suppose that let(X) < 63/24. Then there is a Q-effective divisor D = —Kx such that the
pair (X, %D) is not log canonical at some point P. By Remark 1.4.7, we may assume that the
support of the divisor D does not contain the curves C,, Cy, C, and C;.



The point P is not contained in the curve Cj, because otherwise we have

mult p (D) itpP—o0.,
9 13

multP(D) if P#0, and P # Qy,

which is impossible, because multp(D) > 24/63. Similarly, we see that P # C, UC, UC;. Then
there is a unique curve Z C X that is cut out by

Tt = ayz

such that P € Z, where 0 # a € C. We see that Cy, ¢ Supp(Z). But the open subset Z\ (ZNCy)
of the curve Z is a Zg-quotient of the affine curve

t—ayz=t3+ 9yt + 3 +y=0cC3= Spec((C[y,z,t]),
which is isomorphic to a plane affine quartic curve that is given by the equation
PP+t 4B =0cC? Spec((C[y, z]),

which is easily seen to be irreducible. In particular, the curve Z is irreducible and multp(Z) < 3.
Thus, we may assume that Supp(D) does not contain the curve Z by Remark 1.4.7. Then

25 24
—D-Z>multp(D) > =,
1813 multp (D) > 63
which is a contradiction. Thus, we see that lct(X) = 63/24. O

Lemma 3.2.14. Suppose that (ag, a1, a2, a3, d) = (9,12,19,19,57). Then lct(X) = 3.
Proof. We may assume that the surface X is defined by the quasihomogeneous equation
2t(z —t) + xyt + 2%y = 0,

which implies that X is singular at three distinct points O, O,, Pi on the curve defined by
z =t = 0. Also, the surface X is singular at three distinct points O, Oy, @1 on the curve
defined by x = y = 0, where O, is cut out by x = y = z = 0, the point Oy is cut out by
r=y=t=0,and Q1 iscutout by r=y=2z—t=0.

Note that lct(X, 2C,) = 3, which implies that let(X) < 3. Suppose that lct(X) < 3. Then
there is a Q-effective divisor D = — K x such that the pair (X,3D) is not log canonical at some
point P € X.

The curve C; consists of three distinct curves Ly = {x = z = 0}, Ly = {z =t = 0} and
L3 = {x = z — t = 0} that intersect altogether at the point O,. We have

-29 1
———— Ly Le=1Ly-Ly=Ls-Lys=—
19 - 127 1 2 1 3 3 3 127
and D-Ly = D-Ly = D-L3g = 1/114. Similarly, the curve C, consists of three curves
Li={y=2=0}, Ly ={y=t=0} and L, = {y = z — t = 0} that intersect altogether at the
point O,. We have

Li=L5=1L5=

=18 =18= 20 I Ty=T4 Th=T4 Th= g,
and D-L) =D-Ly=D-L;=2/171.

The pairs (X, $C,) and (X, 5C,) are log canonical. By Remark 1.4.7, we may assume that
the support of D does not contain at least one component of Cy. Also, we may assume that the
support of D does not contain at least one component of C,. Then arguing as in the proof of
Lemma 3.1.15, we see that P # O, and P # O,,.

The curve C, consists of three distinct curves Ly, L) and M., where M, is an irreducible
reduced curve that is cut out by the equations z = ¢ + 2* = 0. The curve C; consists of three
distinct curves Lo, L, and M, where M, is an irreducible reduced curve that is cut out by the
equations t = y3 4+ 2% = 0.



Let C be the curve that is cut out on X by z —¢. Then (' consists of three distinct curves
L3, L% and Mj, where M; is an irreducible reduced curve that is cut out by the equations
z—t=19y>+2*=0. We have

2 2 2 7
let <X, 1902) =lct (X, 190t> = lct (X, 1901> = 57

and D-M, =D -M, = D-M; =2/57. By Remark 1.4.7, we may assume that the support of D
does not contain at least one component of every curve C,, C; and Cy. Arguing as in the proof
of Lemma 3.1.15, we see that P # Oy, P # O, and P # ;.

Suppose that P = P;. We have P, = M, N M; N M, the log pair

3
<X7 E(Mz +Mt +Mz>>

is log canonical at Py, and M, + M; + M, ~ —18Kx. By Remark 1.4.7, we may assume that
the support of D does not contain at least one curve among M,, M; and M;. Without loss of
generality, we may assume that the support of D does not contain the curve M,. Then

2 multp(D) 1
g D M2 3 ~ g
which is a contradiction. Thus, we see that P # P;. Then P ¢ Sing(X).
Arguing Arguing as in the proof of Lemma 3.1.15, we see that P ¢ C, UC; U Cy. Then there
is a quasismooth irreducible curve £ C X such that F is given by the equation z = At and
P € E, where X is a non-zero constant different from 1. By Remark 1.4.7, we may assume that

the support of D does not contain the curve E. Then

1 1
—<multp(D)< D -E=—,
g < multp(D) 18
which is a contradiction. The obtained contradiction completes the proof. O

Lemma 3.2.15. Suppose that (ag, a1, as,as,d) = (9,19,24,31,81). Then lct(X) = 77/30.
Proof. The surface X can be defined by the quasihomogeneous equation

yt? + Pz 4223 +2° =0,
and X is singular at the point Oy, O, and O;. The surface X is also singular at a point ) such
that @ # O, and the points @ and @), are cut out on X by the equations y = ¢ = 0.

The curve C, is reducible. We have C, = L.y, + Z;, where L, and Z, are irreducible and
reduced curves such that L., is given by the equations x = y = 0, and Z, is given by the
equations x = t2 + y%?2 = 0. Then

=53 7 =20 _ 2
24317 T T 190247 T T 9y
and L,y N Z, = O. The curve C, is also reducible. We have C, = L, + Z,, where Z, is an
irreducible and reduced curve that is given by the equations y = 2% + 2% = 0. Then

10 3 2 4 2

Ly L

Zy- Ty = ——— Ty =— D-Zy=—— D-Zy=— DLy = ———
yoTvo3a31 TV 31 Y 3.31’ 19247 9431

and L,y N Z, = O;. The curve C, is irreducible. We see that lct(X) < 3, because

2 2 209 2 22
=lct | X, = let | X, — =— <let | X, — = —,
3 ct( ,90w> < ct< ,210y> 1 < Ct( ,24CZ> 3

Suppose that let(X) < 3. Then there is a Q-effective divisor D = —Kx such that the
pair (X,3D) is not log canonical at some point P. By Remark 1.4.7, we may assume that
C. & Supp(D), and either Ly, Z Supp(D), or Z, Z Supp(D) p Z,.

Since H°(P, Op(171)) contains ¢, x'?, 2326, 2123, it follows from Lemma 1.4.9 that P €
Sing(X) U C, U C,,.

Suppose that P = Oy. If L,,  Supp(D), then

2 multp(D) 1 2
24 .31 e 31 >3-31>24-31




which is a contradiction. If Z, € Supp(D), then
2 _p5og s multp (D)multp(Z,)  3multp(D) 1 2

—D-Z,> > = > :
3-31 Y 31 31 317 3-31
which is a contradiction. Thus, we see that P # O;.
Suppose that P = O,. If Ly, Z Supp(D), then
2 mult p (D) 1 2
=D Ly > > > ,
24-31 Y 24 3-24 7 24-31
which is a contradiction. If Z, Z Supp(D), then
4 _D.Z > multp(D)multp(Zx) _ 2multp(D) - 2 - 4 ’
19-24 24 24 3-24 19-24
which is a contradiction. Thus, we see that P # O,.
Suppose that P = O,. Then

18 _D.C> multp(D)multp(Cz) _ 2multp(D) S 2 S 18 ’
19-31 19 19 3-19° 19-31
which is a contradiction. Thus, we see that P # O,,.
Suppose that P € L,,. Put D = mL,, + Q, where Q is an effective Q-divisor such that
Ly ¢ Supp(€2). If m # 0, then
19?12 =-Kx Zy=D Zy= (mLyy +9Q) - Z, > mLey - Zy = 15
which implies that m < 2/19. Then it follows from Lemma 1.4.6 that

2+ 53m 1
W:(—Kx—mny)Lmy:Qny>§,

which is impossible, because m < 2/19. Thus, we see that P ¢ L.
Suppose that P € Z,. Put D = e¢Z, + A, where A is an effective Q-divisor such that
Zy ¢ Supp(A). If € # 0, then

2 3e
24 - 31 = —Kx Loy =D Loy = (€Zy + A) - Lay >€ny'Zy:ﬁ’
which implies that € < 1/36. Then it follows from Lemma 1.4.6 that
1
_ FIfP#Q,
69 326:(—KX—EZy)-Zy:A-Zx> ;

which is impossible, because € < 1/36. Thus, we see that P ¢ Z,. Then P € Z,.
Put D =67, + Y, where T is an effective Q-divisor such that Z, ¢ Supp(Y). If € # 0, then

. 16
1231 :_KXLzy:Dny: (5Zx+T) ny>5L$ny257
which implies that § < 1/31. Then it follows from Lemma 1.4.6 that
4 + 206 1
= (—-K~—-62.)-Z.=Y-2Z +
19-24 ( X x) x - > 3

which is impossible, because § < 1/31. The obtained contradiction shows that let(X) =3. O
Lemma 3.2.16. Suppose that (ag, a1, as,as,d) = (10,19, 35,43,105). Then lct(X) = 57/14.
Proof. The surface X can be defined by the quasihomogeneous equation

23 4+ yt? + )’ + 7z =0,

and X is singular at the point O, Oy and O;. The surface X is also singular at a point ) such
that @ # O, and the points @ and @), are cut out on X by the equations y =t = 0.



The curve Cy is reducible. We have C, = L,. + Z,, where L,, and Z, are irreducible and
reduced curves such that L,. is given by the equations y = z = 0, and Z, is given by the

equations y = 22 + 27 = 0. Then
—51 —32 T

= — . e — L . Z —_
Y2 10-437 7Y 7Y 10437 TV TV 43
and L,. N Z, = Oy. The curve C; is irreducible and

57 2 2 25
et (X, = let (X, 20, ) = 22,
14 C<’190y><c<’100> 6

which implies, in particular, that lct(X) < 57/14.

Ly.-L

Suppose that lct(X) < 57/14. Then there is a Q-effective divisor D = —Kx such that the
pair (X, 27 D) is not log canonical at some point P. By Remark 1.4.7, we may assume that the

’ 14

support of the divisor D does not contain the curve C,. Similarly, we may assume that either

L,. Z Supp(D), or Z, Z Supp(D).

Since H(P, Op(190)) contains x'9, y1% x52% and z'222, it follows from Lemma 1.4.10 that

P e Sing(X) U C, UC,.
Suppose that P = Oy. If L, Z Supp(D), then

2 < mult p (D) 14 2

— DL, > :
10-43 v 3 5743 10-43
which is a contradiction. If Z, Z Supp(D), then

4 mult p (D)multp (Zy) _ 2multp (D) 28 4

=D Z,>
10 - 43

which is a contradiction. Thus, we see that P # O;.

43 43 >57-43>10~43’

Suppose that P € Ly.. Put D = mL,. + 1, where () is an effective Q-divisor such that

L. ¢ Supp(Q). If m # 0, then

4 m
IWE =—Kx-Zy=D-Z,= (mLy. + Q) ~Zy>mLyz-Zy:E,
which implies that m < 4/70. Then it follows from Lemma 1.4.6 that

14

— ifP#0
24 51m 57 s
T30 Z(—KX—mLyz)'LyZ:Q'Lyz> 14

5710 0 0= O

which is impossible, because m < 4/70. Thus, we see that P ¢ L,..

Suppose that P € Z,. Put D = e¢Z, + A, where A is an effective Q-divisor such that

Zy ¢ Supp(A). If € # 0, then

2 Te
50~ Kx Lyz=D Ly = (eZy,+A) Lyz > €Ly Zy = 3,
which implies that € < 2/70. Then it follows from Lemma 1.4.6 that
14
— ifP#Q
4+ 32 ! ’
T (“Kx—eZ) Zy=D-2,>{ T
430 14
if P=qQ,
575

which is impossible, because € < 2/70. Thus, we see that P ¢ Z,.
We see that P € C, and P € C,. Then have
14
6 ﬁ lf P # Oy,
19-43 14
57-19
which is a contradiction. Thus, we see that lct(X) = 57/14.

if P=0,,

Lemma 3.2.17. Suppose that (ag, a1, az,as,d) = (11,21,28,47,105). Then lct(X) = 77/30.

g



Proof. The surface X can be defined by the quasihomogeneous equation
yB2+ P+t + 272 =0,

and X is singular at the point O,, O, and O;. The surface X is also singular at a point @ such
that @ # O, and the points @ and @), are cut out on X by the equations x =t = 0.

The curve C is reducible. We have C, = L, + Z,, where L;, and Z, are irreducible and
reduced curves such that L, is given by the equations x = y = 0, and Z, is given by the
equations x = 2% + y* = 0. Then

13 _ —10 7 3
984T TN T p oy T T Ty
and Ly, N Z, = O;. The curve Cj is also reducible. We have C, = L, + Z,, where Z, is an
irreducible and reduced curve that is given by the equations y = > + 252 = 0. Then

20 2 4 2 2
— Lyy Zy=— D -Zy=——— D-Zy=—— DLy, = ——
11-28" 7% 7Y 98’ Yo11-28’ Y1147 2847

and L,y N Z, = O,. We see that lct(X) < 77/30, because

% = lct <X, 1216'5,;) < lct (X, ;Cy> = 6.
Suppose that lct(X) < 77/30. Then there is a Q-effective divisor D = —Kx such that the
pair (X, %D) is not log canonical at some point P. By Remark 1.4.7, we may assume that
either L., Z Supp(D), or Z, Z Supp(D) 5 Z,.
Since H°(P, Op(517)) contains z5y?2, 226y, 247 219211 247 11 it follows from Lemma 1.4.9
that P € Sing(X) U C,.

Suppose that P = Oy. If L,y Z Supp(D), then
2 mult p (D) 30 2

war DlwZ T g T wa
which is a contradiction. If Z, Z Supp(D), then
2 _D.Z > multp (D)multp(Z;) _ 3multp (D) L% 2 |
747 47 47 91-47 = 7-47
which is a contradiction. Thus, we see that P # O;.
Suppose that P = O,. If L,, Z Supp(D), then

2 _ mult p(D) 30 2

— D L, > :
98 - 47 v 98~ 7728~ 2847
which is a contradiction. If Z, Z Supp(D), then

4 —D.Z,> multp(D)multp(Zy) _ 2multp(D) - 60 - 4 ’
11-28 28 28 91-28 ° 11-28
which is a contradiction. Thus, we see that P # O,.
Suppose that P € Lg,. Put D = mL,, + Q, where Q is an effective Q-divisor such that
Ly ¢ Supp(€2). If m # 0, then

2 3
— —KxZy=D Zy= (mLy+Q) - Zy >mLyy - Z, = =

Lyy- L

xy °

Zy- 7, =

TAT 477
which implies that m < 2/21. Then it follows from Lemma 1.4.6 that
2+473m 30
W:(—KX—mny)ny:Qny>ﬁ,

which is impossible, because m < 2/21. Thus, we see that P ¢ Ly,.
Suppose that P € Z,. Put D = e¢Z, + A, where A is an effective QQ-divisor such that
Zy ¢ Supp(A). If € # 0, then

2
W:—KXny:DLmy:(GZx—FA)ny>€Lmny:

3e
47’



which implies that € < 1/42. Then it follows from Lemma 1.4.6 that

30 .
241 — it P #Q,
10 (ke eZ) Zo=A-Zo> 1T
747 30 .
77.711"1’3:@,

which is impossible, because € < 1/42. Thus, we see that P ¢ Z,. Then P = O,.
Put D =6Z,+ T, where T is an effective Q-divisor such that Z, ¢ Supp(Y). If € # 0, then

2 26
=—Kx Loyy=D Lyy=(6Zy+7Y) Loy >06Lyy - Zy =

28 -47 28’
which implies that 6 < 1/47. Then it follows from Lemma 1.4.6 that
4 — 200 30
=(—Kx—-02y) - Zy="" -2y > ——
o8~ (~Ix—0%)- 2 YT
which is impossible, because § < 1/47. The obtained contradiction shows that lct(X) = 77/30.

O
Lemma 3.2.18. Suppose that (ag, a1, as,as,d) = (11,25,32,41,107). Then lct(X) = 11/3.

Proof. The surface X can be defined by the quasihomogeneous equation
yt? + %2 + 223 + 2% =0,
and X is singular at the point O, Oy, O, and O;.

The curve C; is reducible. We have C; = Ly + M, where L., and M, are irreducible and
reduced curves such that L., is given by the equations z = y = 0, and M, is given by the
equations = 2 + y?z = 0. Then

—-T71 —28 3
=—\ M,- =——\ Ly M, = —
U32.41 Y Y 250327 T TR 397
and Ly, N M, = O,. The curve Cy is also reducible. We have C, = L, + M,, where M, is an

irreducible and reduced curve that is given by the equations y = 2% + %t = 0. Then
42 3 6 3 2
M, - M, = —— -My=—, D-My=—— D - M,=——, D -Lyy=——
Yo T4 T Y 4 Y1141 11327 3241

and Ly, N M, = O;. The curve C, is also reducible. We have C, = L.; + M., where L,; and
M, are irreducible and reduced curves such that L, is given by the equations z = t = 0, and
M., is given by the equations z = 2% + ty = 0. Then

—34 6 2 12
= — . =— D-L,=—— D-M,=

11-25" 7% 77 957 #1125 7 2541
and L,; N M, = Oy. The curve C}; is also reducible. We have C; = L,; + M;, where M;
is an irreducible and reduced curve that is given by the equations ¢t = 3% + 22 = 0. Then

let(X) < 11/3, because

11 2 50 2 28 2 205 2
oot (X, 20, ) < 2 =let (X, 2 Lot (X, 20 <22 et (X, 20 ).
3 C( ’110><9 C( 25Cy><3 C( 32C><18 C( 41Ct>

Suppose that lct(X) < 11/3. Then there is a Q-effective divisor D = — K x such that the pair
(X, 1—31D) is not log canonical at some point P. By Remark 1.4.7, we may assume that either
Supp(D) does not contain at least one irreducible component of C,, C, C; and C.

Since H°(P, Op(352)) contains z'y!!, 232 and z!!, it follows from Lemma 1.4.9 that P €
Sing(X) U C, U C,,.

Suppose that P = O;. If L,,  Supp(D), then

2 multp (D) 3 2
—D-L,, > > > ;
3241 w 41 11-41 7 32-41
which is a contradiction. If M, € Supp(D), then
6 multp(D)multp(My) B 3multp(D) 9 6

=D-M, > ,
11-41 Y 41 41 “ 11417 1141
which is a contradiction. Thus, we see that P # O;.

Loy L

th : th




Suppose that P = O,. If Ly, Z Supp(D), then

2 multp (D) 3 2
=D-Lyy, > ,
3241 v 32 1132 3241
which is a contradiction. If M, Z Supp(D), then
4 mult p (D) 3 4
——— =D -M, > ,
25 - 32 ‘ 32 1132 25 32
which is a contradiction. Thus, we see that P # O,.
Suppose that P = O,. If L., Z Supp(D), then

2 multp (D) 3 2
—f _D-L,> ,
11-25 # 1 1.1 11-25
which is a contradiction. If M; Z Supp(D), then
6 Itp(D
_pog s ted) 3 6
11-32 11 11-11 11-32

which is a contradiction. Thus, we see that P # O,.
Suppose that P = O,. If L. Z Supp(D), then

— . > > ,
11-25 25 11-25
which is a contradiction. Thus, we see that M, € Supp(D). Put D = €L, + A, where A is an
effective Q-divisor such that L,; ¢ Supp(f2). If € # 0, then

12 multp, (D) — € 3/11—€e 6e 3/11—¢
=DM, = (eLy+A)M, > eLyM,4+——L—"— >ely M, 4+—— = —F——,
2541 S A — Zeba e Ty T %
which implies that € < 9/2255. Then it follows from Lemma 1.4.6 that
2 + 34e 3
=(—Kx—€Ly) Ly=Q-L —_—
11-25 ( X —€ zt) 2t 2t > 11.95°

which implies that € > 1/34. But e < 9/2255. Thus, we see that P # O,. Then P ¢ Sing(X).
Suppose that P € L,,. Put D = mL,, + Q, where Q is an effective Q-divisor such that
Ly ¢ Supp(€2). If m # 0, then

4 2m
55 33 = HKx My =DMy = (mLoy +Q) - My > mLyy - My = =,
which implies that m < 2/25. Then it follows from Lemma 1.4.6 that
24+ 7Im 3
W: (—KX—mny) 'ny:Q'L$y> ﬁ,

which is impossible, because m < 2/25. Thus, we see that P ¢ Ly,.
Suppose that P € M,. Put D = dM, + Y, where T is an effective Q-divisor such that
M, ¢ Supp(Y). If € # 0, then

2 26
55~ KX Loy =D Loy = (6M, +7T) Loy 2 0Lay - My = =,
which implies that 6 < 1/41. Then it follows from Lemma 1.4.6 that
4+ 286 3
=(—Kx—0M,) M,=7"-M, >—
2532~ (I = OMy) - M, TR
which contradicts to § < 1/41. Similarly, we see that P ¢ M,, which is a contradiction. O

Lemma 3.2.19. Suppose that (ag, a1, az,as,d) = (11,25,34,43,111). Then lct(X) = 33/8.
Proof. We may assume that the surface X is defined by the quasihomogeneous equation
t2y +t22 + ;Uy4 +272=0.

The surface X is singular at the points O, O, O, O;. Each of the divisors Cy, Cy, C;, and C;
consists of two irreducible and reduced components. The divisor C, (resp. C,, C, C;) consists
of Lyt = {x =t =0} (vesp. Ly. = {y =2 =0}, Lyz, Lyz) and R, = {x = yt + 22 = 0} (resp.



Ry={y=z2t+2"=0} ,R.={z=2y>+t> =0}, By = {t = y* + 262 = 0} ). Also, we see
that
Ly N Ry ={0y}, Ly2NRy ={0:}, Ly N R, ={0,}, Lyx N Ry = {0 }.
We can easily see that
33

2 2 2 2
let( X, — = — <let(X, — let(X, — let(X, — .
ct( ,HC’x) 3 < let( ,25Cy), ct( ,3402), ct( ,436})

Therefore, lct(X) < 2. Suppose lct(X) < 32. Then, there is an effective Q-divisor D = —Kx
such that the log pair (X, 3—§’D) is not log canonical at some point P € X.
The intersection numbers among the divisors D, Ly, Ly., R:, Ry, R., R; are as follows:

1 4 14

"7 95 * 7 2543’ Y7 3443
2 4 8

D-L,,=—, D-R,=—— Ry =
Yz 11437 z 11257 t 11347
2 7 2 4
th'Rx:%7 Lyz‘Ry:E7 LyZ‘Rz:ﬁ7 th'Rt:?E?
57 64 63
,=——2" _ R2=_ 2 _
ot 217257 z 25437 Y 34437
2 52 2 18 9 64

- ) - ’ R = N
v 11-43° "% 11-25° ' 11-17
By Remark 1.4.7 we may assume that the support of D does not contain at least one component
of each divisor C, Cy, C;, C;. The inequalities

18 408
9D Ly =~ <> 95D R = > 8
g 1= 7 <33 PP Re=g<gg

imply P # O,. The inequalities

2 8 4 8
11D- L=~ <, 1ID-R, = — < —
v2 = 13 < 33 i % <33
imply P # O,. The inequalities
34 8 34 2 8
4D Lyt = —— < —, " D-Ri=— < —
3 =175 33 1P T3

imply P # O,. The curve Ry is singular at the point O,.

We write D = a1Ly + a2Ly. + a3R; + aaRy + asR. + ag Ry 4+ Q, where ) is an effective
divisor whose support contains none of the curves L., L., R;, Ry, R., R;. Since the pair
(X, 3??D) is log canonical at the points O, O,, O, the numbers a; are at most %. Then by
Lemma 1.4.8 the following inequalities enable us to conclude that either the point P is in the
outside of C, UC, UC, UC} or P = Oy:

33 261 33 241

D Ly — L= 1, XD 2=

8 T T T I it St DU T W I

33 161 33 483

®D.R,—R2=—— <1 2D.R-R=_->2 1

8 U B T B A B VU S
33 33 11 33 33 3
“DR,-R*<=D-R,=—-<1, =D -R-R<=D-R=—<1.
8 2 =g 5.25 < 8 b =g EVI

Suppose that P # O;. Then we consider the pencil £ defined by Ayt + uz? = 0, [\ : u] € PL.
The base locus of the pencil consists of the curve L,. and the point Oy. Let E be the unique
divisor in £ that passes through the point P. Since P ¢ C, U Cy U C, U (C, the divisor E is
defined by the equation 2% = ayt, where o # 0.

Suppose that o # —1. Then the curve E is isomorphic to the curve defined by the equations
yt = 22 and t?y + xy* + 272 = 0. Since the curve E is isomorphic to a general curve in L,
it is smooth at the point P. The affine piece of E defined by ¢t # 0 is the curve given by



2(2% + 227 + 27) = 0. Therefore, the divisor E consists of two irreducible and reduced curves

L,. and C. We have the intersection numbers
394

11-25-43°

120

D-C=D-E-D-L,, = Tt

C-Ly=FE-Ly— L. =

Also, we see
C*=E-C—-C-Ly >0.

By Lemma 1.4.8 the inequality D - C < % gives us a contradiction.

Suppose that @ = —1. Then divisor E consists of three irreducible and reduced curves L.,
R,, and M. Note that the curve M is different from the curves R, and L,;. Also, it is smooth
at the point P. We have

14
D-M=D-E—-D-L,,—D-R,=——
v M=y
M?*=E-M—-Ly,-M—R, M>E-M~—Cy-M~C,-M>0.
By Lemma 1.4.8 the inequality D - M < 3% gives us a contradiction. Therefore, P = O;.

Put D = bR, + A, where A is an effective divisor whose support contains neither R,. By
Remark 1.4.7, we may assume that R, ¢ Supp(A) if b > 0. Thus, if b > 0, then

9 2%
=D L, > Ly = =2,
25 - 34 wt 2 OB Lot = 52

which implies that b < 1/34. On the other hand, it follows from Lemma 1.4.6 that
4 + 64a 8

=A-Ry>——,
25 - 43 v 3343
which implies that b > 17/528. But 17/528 > 1/34, which is a contradiction. O

Lemma 3.2.20. Suppose that (ag, a1, az,as,d) = (11,43,61,113,226). Then lct(X) = 55/12.
Proof. The surface X can be defined by the quasihomogeneous equation
2 + yz3 + xy5 + 2%z = 0,

the surface X is singular at the point O, O, and O.. The curves C, and C, are irreducible.

We have
99 2 2 17-43
—=let X, —=C, ) <let | X, =C) | = ——
12 C<’11”> C<’439> 60
which implies, in particular, that let(X) < 55/12.

Suppose that lct(X) < 55/12. Then there is a Q-effective divisor D = —Kx such that the
pair (X, %D) is not log canonical at some point P. By Remark 1.4.7, we may assume that the
support of the divisor D does not contain the curves C, and C),.

Since H(P, Op(671)) contains '8yl 261 and 2!, it follows from Lemma 1.4.10 that P €
Sing(X) U C;.

Suppose that P € C,. Then

multp(D) itp—o0,
A 43
31 DGz mlﬂt(jpl(D)ifP—Oz,

multp (D) if P # Oy and P # O.,
which is impossible, because multp(D) > 12/55. Thus, we see that P = O,. Then

4 multp (D) 12 4
= D . > s
11-61 Cy 11 >55-11>11-61
which is a contradiction. Thus, we see that lct(X) = 55/12. O

Lemma 3.2.21. Suppose that (ag, a1, a2, as,d) = (13,18,45,61,135). Then lct(X) = 91/30.



Proof. The surface X can be defined by the quasihomogeneous equation

23+ y5z + xt? + xgy =0,
and X is singular at the point O, Oy and O;. The surface X is also singular at a point () such
that @ # Oy and the points @ and @, are cut out on X by the equations z =t = 0.

The curve C, is reducible. We have C, = L., + Z,, where L,, and Z, are irreducible and
reduced curves such that L., is given by the equations x = z = 0, and Z, is given by the
equations x = 22 +y5 = 0. Then

=77 -32 5
' g .z —_" [ .7 — =
18-61" 7F T 9.61" T 7T 617
and L, N Z; = O;. The curve Cj is irreducible and

91 2 2 15
— =let | X, — let | X, — = —
30 ct( ,13Cx>< ct< ’180y> o
which implies, in particular, that let(X) < 91/30.
Suppose that let(X) < 91/30. Then there is a Q-effective divisor D = —Kx such that the
pair (X, %D) is not log canonical at some point P. By Remark 1.4.7, we may assume that the
support of the divisor D does not contain the curve C,. Similarly, we may assume that either

Ly» € Supp(D), or Z; Z Supp(D).

Since H°(P, Op(793)) contains 27937, 20926, z43y13 261 216213 413 it follows from
Lemma 1.4.9 that P € Sing(X) U C;.

Suppose that P = Oy. If L,, € Supp(D), then

2 multp (D) 30 2
=D-L,, > ,
18- 61 v 61 ~91-61 ~ 18- 61
which is a contradiction. If Z, Z Supp(D), then
4 PR multp(D)multp(Zx) B 2multp(D) 60 4

861~ %7 61 T 61 9l-61 1861
which is a contradiction. Thus, we see that P # O;.
Suppose that P € L,,. Put D = mL,, + , where 2 is an effective QQ-divisor such that

L. ¢ Supp(Q). If m # 0, then

sz : L:rz =

4 om
1861 =—Kx Zy=D Zy=(mLy. + Q) -ZmeLm-Zx:G—l,
which implies that m < 2/45. Then it follows from Lemma 1.4.6 that
30
— if P#O
2+ 7Tm ' v
T~ (" Kx—mle:) Los = Q- Loz > 9130
it P=0,,

91-18
which is impossible, because m < 2/45. Thus, we see that P & L.
Suppose that P € Z,. Put D = e¢Z, + A, where A is an effective Q-divisor such that
Zy ¢ Supp(A). If € # 0, then

2 D€
561 =—Kx Ly:=D-Ly, = (eZy+A) - Ly > €Ly - Zy = o
which implies that € < 1/45. Then it follows from Lemma 1.4.6 that
30
AP £Q
2+ 32 ! :
T (L Ky —eZy) o= Zy> O]
9-61 30
if P=qQ,
91-9
which is impossible, because € < 1/45. Thus, we see that P ¢ Z,. Then P = O,. We have
6 multp (D) 30 6

=D- P y
13- 61 Cy 13 ~ 91-13° 1361

which is a contradiction. Thus, we see that lct(X) = 91/30. O



Lemma 3.2.22. Suppose that (ag, a1, as,as,d) = (13,20,29,47,107). Then lct(X) = 65/18.

Proof. The surface X can be defined by the quasihomogeneous equation
yz> + 5t +at® + 282 =0,
and X is singular at the point O, Oy, O, and O;.

The curve C; is reducible. We have C = Ly + M, where L., and M, are irreducible and
reduced curves such that L., is given by the equations z = y = 0, and M, is given by the
equations = 23 4+ y?*t = 0. Then
i7Mac' x:ia Ty * x:iv
29 -47 20 - 47 47
and Ly, N M, = O;. The curve Cy is also reducible. We have C, = Ly, + M,, where M,
is an irreducible and reduced curve that is given by the equations y = t*> + 2°2 = 0. and
Lyy N M, = O;. The curve C. is also reducible. We have C, = L.; + M., where L.; and M,
are irreducible and reduced curves such that L,; is given by the equations z =t = 0, and M, is
given by the equations z = y3 + 2t> = 0. Then L.; N M, = O,. The curve C; is also reducible.
We have Cy = L,; + M;, where M; is an irreducible and reduced curve that is given by the
equations ¢ = 2% 4 y22 = 0. Then

2 2 6
D L,=-———_ D L;,=—— D-My=——
W99 .47 713,20 T 9047
4 6 12
D-My=—— D-M,=——, D-M,
13-19 13- 47

T 2029
and the inequality then lct(X) < 65/18 holds, because

65 2 70 2 145 2 82 2
—=lct | X, — — =lct | X, =C — =lct | X, =C —=let | X, —=C} ).
18 Ct<’13c"”><12 Ct(’QO y><18 C<’29 Z><9 C<’47 t)
Suppose that lct(X) < 65/18. Then there is a Q-effective divisor D = —Kx such that the

air (X, % D) is not log canonical at some point P. By Remark 1.4.7, we may assume that
p 18 g

either Supp(D) does not contain at least one irreducible component of C, Cy, C, and C.
Since H(P, Op(377)) contains x%y'3, 229 and 2'3, it follows from Lemma 1.4.9 that P €
Sing(X) U Cy.
Suppose that P = Oy. If L,y Z Supp(D), then
2 mult p (D) 18 2
2947 Pl T T T e T a9 ar
which is a contradiction. If M, Z Supp(D), then

6 Itp(D)multp (M, 2multp (D 36 6
o WD)t (04) _ 2mite(D) 35 6
29 - 47 47 47 65-47 © 29 -47
which is a contradiction. Thus, we see that P # O;.
Suppose that P = O,. If Ly, Z Supp(D), then

6 multp (D) 18 6
2947 P lenZ T 2 a9 7 a9 ar
which is a contradiction. If M, € Supp(D), then
4 — DM, > multp(D)multp(My) _ 2multp(D) - 36 - 4 7
13-29 29 29 65-29 ° 13-29
which is a contradiction. Thus, we see that P # O,.
Suppose that P = Oy. If L,, € Supp(D), then

Itp(D
2 _pp,pmite@) 18 2
13-20 20 65-20 ° 13-20
which is a contradiction. If M; Z Supp(D), then
12 multp(D)multp(Mt) B 2multp(D) 36 12

7:D-M> > ?
2029 t 20 20~ 65-20 2029



which is a contradiction. Thus, we see that P # O,,.
Suppose that P = O,. If L,. Z Supp(D), then

2 multp (D) 18 2
=D -Ly> > > ,
13- 20 # 20 65-13 13- 20
which is a contradiction. If M, Z Supp(D), then
ltp(D
6 _pogy ymlte() 18 6
13-47 13 65-13 ~ 13-47

which is a contradiction. Thus, we see that P # O,. Then P ¢ Sing(X).
Suppose that P € Lg,. Put D = mL,, + Q, where Q is an effective Q-divisor such that
Ly ¢ Supp(€2). If m # 0, then

3 3m
o7 = Kx Me=D- My = (mLgy +Q) - My 2 mLey - My = =,
which implies that m < 1/10. Then it follows from Lemma 1.4.6 that
2+ T74m 18
W:(—Kx—mny)Lmy:Qny>%,

which is impossible, because m < 1/10. Thus, we see that P ¢ Ly,.
Put D = 6M, + Y, where T is an effective Q-divisor such that M, ¢ Supp(Y). If € # 0, then

2 38
=—Kx Loyy=D-Lgy= (0My+7Y) - Layy > 6Ly M, =

29 .47 47’
which implies that § < 2/87. Then it follows from Lemma 1.4.6 that
6 + 216 18
=(—Kx —0M,) M, =" -M, > —
2047~ (" Hx M) M T 65
which contradicts to 6 < 2/87. The obtained contradiction shows that lct(X) = 65/18. O

Lemma 3.2.23. Suppose that (ag, a1, az,as,d) = (13,20,31,49,111). Then lct(X) = 65/16.
Proof. The surface X can be defined by the quasihomogeneous equation

22t + y4z + xt? + 3:7y =0,
and X is singular at the point O, Oy, O, and Oy.

The curve C,, is reducible. We have C, = L,,+ M,, where L,, and M, are irreducible reduced
curves such that L., is given by the equations x = z = 0, and M, is given by the equations
x =y*+ 2t =0. Then

—67 —72 4 2 8
— M, - = — -My=—,D-Ly,=——, D -M,=——
20-49" 7 T 31497 T T 497 2049 Y 31-49°
and L, N M, = O;. The curves Cy, C, and C; are also reducible. We have Cy = Ly;+ M, where
Ly and M, are irreducible reduced curves such that Ly, is given by the equations y = ¢ = 0, and
M, is given by the equations y = 224+axt =0. We have C, = L, + M, and C; = Lyi+ My, where
M., and M are irreducible reduced curves such that M, is given by the equations z =2 +2%y = 0,
and M, is given by the equations t = 27 + zy3 = 0. Then the equalities

2 4 4 14
- D - My=——— D M,=———,D-My=—7-,

13-31 13-49 13-20 20 - 31
holds. We have Ly, N M, = Oy, Ly "M, = Oy and Ly N M; = O,. Then lct(X) < 65/16,
because

65 2 30 2 245 2 62 2
— =lct | X, —=C — =lct | X, =C — =lct | X, —=C| —=lct | X,=C, ).
16 C( 13 :”><4 C< 120 y><28 C< 119 t><7 C( 131 )
Suppose that lct(X) < 65/16. Then there is a Q-effective divisor D = —Kx such that the
pair (X, %D) is not log canonical at some point P. By Remark 1.4.7, we may assume that
either Supp(D) does not contain at least one irreducible component of C, Cy, C, and C.
Since H°(P, Op(403)) contains x'1y'3, 23! and 2!3, it follows from Lemma 1.4.9 that P €

Sing(X) U Cy.

DLy =



Suppose that P = O,. If L,; Z Supp(D), then

2 multp (D) 16 2
—D-Ly > =,
13-31 vt 13 >65-13>13-31
which is a contradiction. If M, € Supp(D), then

4 multp (D) 16 4
—— =D -M, > > > ,
13-49 v 13 65-13 ° 13-49
which is a contradiction. Thus, we see that P # O,.
Suppose that P = O,. If L,. Z Supp(D), then

2 multp (D) 16 2
=D Ly > > > ,
20 - 49 v 20 65-20 ~ 20-49
which is a contradiction. If M, Z Supp(D), then

4 _ DM, > multp(D)multp(Mz) _ 2multp(D) - 32 - 4 ’
13-20 20 20 65-20  13-20
which is a contradiction. Thus, we see that P # O,,.
Suppose that P = O,. If L, Z Supp(D), then

2 < multp (D) 16 2

=D Ly, > > > ,
13- 31 vt 31 65-31 ~ 13-31
which is a contradiction. If My € Supp(D), then
1t p (D) mult p (M, ltp(D
U multp(D)mltp(M) _ Smultp(D) 48 14
20 - 31 20 31 65-20 ~ 20-31

which is a contradiction. Thus, we see that P # O,.

Suppose that P € M, \ O;. Put D = §M, + Y, where T is an effective Q-divisor such that

M, ¢ Supp(Y). If € # 0, then

2 44
which implies that § < 1/40. Then it follows from Lemma 1.4.6 that
8 4726 16
=(—Kx—0M;) M,=7"-M, >—
31 49 — ( Kx —0M) - M, T 55
because P # O,. But 6 < 1/40. Thus, we see that M & M, \ Oy.
We see that P € L, and P # O,. If L, Z Supp(D), then
2 multp (D) 16 2
=D L, > ,
20 - 49 v 19 76549~ 20-49

which is a contradiction. Thus, we see that M, Z Supp(D). Put D = €L,, + A, where A is an

effective Q-divisor such that L., ¢ Supp(€2). Then

8 de
31-49 (cLoz +2) ‘ 49
which implies that € < 2/31. Then it follows from Lemma 1.4.6 that
16
— if P#0O
2 1 ts
0T Ky eLp) Ly = Q- Ly, 5>
20-49 16 it P=0
65-49 "
which implies that € > 38/871 and P = Oy, because € < 2/31. Then
8 multp, (D) — € 16/65 —e  4e

which implies that € < 8/2015. But € > 38/871 > 8/2015, which is a contradiction.

g

Lemma 3.2.24. Suppose that (ag, a1, az,as,d) = (13,31,71,113,226). Then lct(X) = 91/20.

16/65 —

49

)



Proof. The surface X can be defined by the quasihomogeneous equation
t2 + v’z + x2® + x1Py =0,

the surface X is singular at the point O, O, and O.. The curves C, and C, are irreducible.

We have -
91 2 2 1771
20 = lct <X, 13090> < lct <X, 31C'y> =60
which implies, in particular, that let(X) < 91/20.

Suppose that let(X) < 91/20. Then there is a Q-effective divisor D = —Kx such that the
pair (X, %D) is not log canonical at some point P. By Remark 1.4.7, we may assume that the
support of the divisor D does not contain the curves C, and C,.

Since HO(P, Op(923)) contains 27!, y?02%, 13240 and '3, it follows from Lemma 1.4.10 that
P € Sing(X) U C,.

Suppose that P € C,.. Then

multp(D) itp—o0,
A 31
s PGz mult7})1(D)if13—02,

multp(D) if P# O, and P # O,
which is impossible, because multp(D) > 20/91. Thus, we see that P = O,. Then

4 multp (D) 20 4
=D- P )
13- 71 Cy 13 91-13  13-71
which is a contradiction. Thus, we see that lct(X) = 91/20. O

Lemma 3.2.25. Suppose that (ag, a1, a2,as,d) = (14,17,29,41,99). Then lct(X) = 21/4.
Proof. We may assume that the surface X is defined by the quasihomogeneous equation
2y +t22 + 2y’ + 2’2 = 0.

The surface X is singular at the points O, Oy, O, O;. Each of the divisors C;, Cy, C., and C;
consists of two irreducible and reduced components. The divisor C, (resp. Cy, C., Cy) consists
of Ly = {x =t =0} (vesp. Ly. = {y =2z =0}, Ly., Lyt) and R, = {& = yt + z* = 0} (resp.
Ry={y=z2t+2°=0} , R, ={z=ay* +t* =0}, Ry = {t = y° + 2%2 = 0} ). Also, we see
that
Ly N Ry ={0y}, Ly: "Ry ={0¢}, Ly-N R, ={0.}, Lat N Ry = {0}
We can easily see that
2 21 2 2 2
let(X, — = — <let(X, — let(X, — let(X, —C%).
(X, 73 C) = 7 <1etlX, 76, let(X, 55C5), det(X, 5C)

Therefore, let(X) < 2L. Suppose lct(X) < 2L, Then, there is an effective Q-divisor D = —Kx
such that the log pair (X, %D) is not log canonical at some point P € X.
The intersection numbers among the divisors D, Ly¢, Ly., R;, Ry, R., R; are as follows:

D-th:ﬁ, D-Rx:ﬁ, D-Ry:%,
D-Lyzzﬁ, D-RZ:TLN, D-RF%,
Lo Re= o Do Ry= 1o Dye Re= 3, Lap Ri= oo
2 _ 44 5 60
s 17.290 T 17417 TV 29417
) 53 , 12 , 135

- _ R = = .
yz 14-417 "% 7.170 Tt 14.29



By Remark 1.4.7 we may assume that the support of D does not contain at least one component
of each divisor Cy, Cy, C;, C;. The inequalities

2 4
17D-th—@<i, 17D~Rx—ﬁ<ﬁ
imply P # O,. The inequalities
2 4 2 4
14D - -2 = ‘R == « =
Doly=gq=gp ™M HE=xg<y
imply P # O,. The curve R, is singular at the point O,. The inequalities
2 4 29 5 4
29D-th_1—7<ﬁ, ZD‘Rt_%<ﬁ

imply P # O,. The curve R; is singular at the point O,.

We write D = a1Ly + agLy. + a3R; + aaRy + asR. + agRy + Q, where ) is an effective
divisor whose support contains none of the curves L., L., R;, Ry, R., R;. Since the pair
(X, 24—1D) is log canonical at the points O, O, O, the numbers a; are at most %. Then by
Lemma 1.4.8 the following inequalities enable us to conclude that either the point P is in the
outside of C, UC, UC, UC} or P = Oy:

21 109 21 127
D Ly-I%=——""_<1 “pD.L,.—-I1%2=—2"_ 1
4 Tt T 9 799 T g vE et T4
21 75 21 295
D -R,—R>= 1, =“D-R,—R>?=—"__ <1
1 A T T E v T 9T S
21 21 3 21 21 15
“DR.—-R2<=D-R,=—""— <1, =D R-R<=ZD R =-—""<1.
4 ==y T T N t =y t= 199 <

Suppose that P # O;. Then we consider the pencil £ defined by Ayt + uz? = 0, [\ : u] € PL.
The base locus of the pencil consists of the curve L,. and the point O,. Let E be the unique
divisor in £ that passes through the point P. Since P ¢ C, U Cy U C; U (}, the divisor E is
defined by the equation z? = ayt, where o # 0.

Suppose that o # —1. Then the curve E is isomorphic to the curve defined by the equations
yt = 2% and t?y + xy® + 2°2 = 0. Since the curve E is isomorphic to a general curve in L,
it is smooth at the point P. The affine piece of E defined by ¢ # 0 is the curve given by
z(z+22? + %) = 0. Therefore, the divisor E consists of two irreducible and reduced curves L,
and C'. We have the intersection number

181

D-C’—D-E—D~Lyz—77‘17.41.
Also, we see
C*=E-C-C-L;,>E-C—Cy-C>0
since C is different from R,. By Lemma 1.4.8 the inequality D-C' < % gives us a contradiction.
Suppose that @ = —1. Then divisor E consists of three irreducible and reduced curves L.,
R;, and M. Note that the curve M is different from the curves R, and L,;. Also, it is smooth
at the point P. We have

153
D-M=D-F-D-L,—D-Ry=—-—F———
v Bo =
M*<E-M~-Ly, M-~R, - M>E-M~-C,-M~—Cy,-M>0.
By Lemma 1.4.8 the inequality D - M < % gives us a contradiction. Therefore, P = O;.

Put D = aL,. + bR, + A, where A is an effective divisor whose support contains neither L, .
nor R,. Then a > 0, because otherwise
2 4 2
=D Ly, =>multp(D)41 ,
1441 ye =2 multp(D)AL > 502 >

which is a contradiction. Therefore, we may assume that R, Z Supp(A) by Remark 1.4.7.
Similarly, we may assume that L,; € Supp(A) if b > 0.




Let us find upper bounds for a and b. If b > 0, then

2 2b
—D- > . - =
17 - 29 D th = bRx th 177
which implies that b < 1/29. Similarly, we have
10 7a b multo,(D)—a—b 6a+
=D- >4 = ¢ 21
29 -41 vCato 41 T
which implies that a < 47/1827. On the other hand, it follows from Lemma 1.4.6 that
2+ 53a 4/21 -0
=A-L -
1441 2T

which implies that a > 2/159.

Let m: X — X be the weighted blow up of the point O; with weight (9,4), and let F' be the
exceptional curve of the morphism 7. Then F' contains two singular points QJ9 and ()4 such that
Qg is a singular point of type %(1, 1), and Q4 is a singular point of type i(l, 3). Then

. 38 - . 4 _ . 9 _ N 4 — . c

Kg=mn <KX>_EF’ Ly,=m (Lyz)—ﬁF, R,=m (Rx)—ﬁF, R,=m (Ry)—ﬁF, A= (A)_EF’
where Eyz, R,, Ry and A are the proper transforms of Lyz, Ry, Ry and A by 7, respectively,
and c is a non-negative rational number c¢. Note that F'N R; = Q4 and F'N Ly, = Q.

The log pull-back of the log pair (X, % D) by 7 is the log pair

= 2la- 21D - 21
<X’ Lt et 4““) :
which is not log canonical at some point @ € F', where 6; = (21(c + 4a + 9b)/4 + 28)/41. We
have
24+53a b c

14-41 41 9-41 17-41 41 4-41°
which implies that 6; < 1, because b < 1/29. Similarly, we see that

- - 4+ 54b
A Lp>0<A Ry = @ ¢

Suppose that Q € R, U Eyz. Then

21c 21
=—A-F>1
16-9 4 -
by Lemma 1.4.6. Thus, we see that ¢ > 48/7. But the system of inequalities

2+ 53a b c

2 0,
14-41 41 9-41

4 + 54b a c
- > b<1/29,
17 -41 41 4-41 0, /29

c>48/7,

is inconsistent. Thus, we see that @ € R, U l_)yz.
Suppose that @) € M,.. Then QQ = Q4, and it follows from Lemma 1.4.6 that

21 (4+54b  a c 0 (21 _ 1 (21, 21b 21 ¢ b
4(17-41_41_4.41>+4—<4A+91F>'Mm>4<<4A+4Mx>-F_<'+>

which implies that b > 548/7749. But b < 1/29, which is a contradiction.
We see that Q = Q9. Then it follows from Lemma 1.4.6 that

21 (2453a b c 6, (21 _ 1 (21, 2la- 21/ ¢ a
= - Ao (ZA+0,F) L. >-<[ZA —L2~F:—<— 7>,
4(14.41 41 9-41>+9 <4 +61) y>9<<4 T y) 9




which leads to a contradiction, because the system of inequalities

21 ( c + a) S 1

4 \4-9 9 9’

21 (2453a b c n 01 S 1
4 \ 14-41 41 9-41 9" 9’
2+53a b ¢ >0,

14-41 41 9-41

4+ 54b a >0,

17-41 41 4-41
a < 47/1827,

b<1/29,

is inconsistent. The obtained contradiction completes the proof. O

3.3. SPORADIC CASES WITH [ = 3
Lemma 3.3.1. Suppose that (ag, a1, az,as3,d) = (5,7,11,13,33). Then lct(X) = 49/36.
Proof. The surface X can be defined by the quasihomogeneous equation

23+ yt? + J;y4 + 2t + ex’yz =0,
where € € C. Note that X is singular at O,, O, and O;.

The curves C, and Cj are irreducible. Moreover, we have

25 3 3 49
— =let(X, =C, let(X, -Cy) = —

which implies, in particular, that let(X) < 49/36.
Suppose that lct(X) < 49/36. Then there is a Q-effective divisor D = —Kx such that the
pair (X, %D) is not log canonical at some point P. By Remark 1.4.7, we may assume that the

support of D does not contain the curves C, and C).
Suppose that P € Cy and P ¢ Sing(X). Then

36 9 36
— Itp(D) <D -Cp = — < —,
49<mutp( ) C, 91<49
which is a contradiction. Suppose that P € Cy and P ¢ Sing(X). Then
36 9 36
— tp(D)<D-Cy=— < —,
19 < multr(D) Y765 " 19
which is a contradiction. Suppose that P = O,. Then
361  multp, (D) 9 361
o« — LD Cy=— < —=,
195 5 Y765 " 195
which is a contradiction. Suppose that P = O;. Then
36 3 - 3multe, (D) _ multo, (D)multo, (Cy) <D-C, = 9 - §i7
4913 13 13 65 4913
which is a contradiction. Suppose that P = O,. Then
361 multp, (D) 9 361
77<79<DC = — < —=,
497 7 P91 T 497

which is a contradiction. Thus, we see that P € X \ Sing(X) and P ¢ C, U C,,.
Let £ be the pencil on X that is cut out by the pencil

e+ py® =0,

where [\ : u] € PL. Then the base locus of the pencil £ consists of the point O;.
Let C be the unique curve in £ that passes through the point P. Suppose that C' is irreducible
and reduced. Then multp(C') < 3, because C' is a triple cover of the curve

e’ 4y’ =0C IP’(E), 7, 13) = Proj <(C [m,y,t])



such that A # 0 and p # 0. In particular, the log pair (X, %C’) is log canonical. Thus, we may

assume that the support of D does not contain the curve C' and hence we obtain
10 9 10
e kp(D)<D-C=— < —
13 < multr(D) =B w

which is a contradiction. Thus, to conclude the proof we must prove that C' is irreducible and
reduced.
Let S € C* be an affine subscheme that is given by the equations

v —ax' =24yt fayt + ot tedyz=0c Ct Spec((C[:):,y,z,tD,

where € € C and a € C* such that a # 0. To conclude the proof, it is enough to prove that the
subscheme S is an irreducible. For simplicity, we treat S as a surface in c*.
Let S C P* be a natural compactification of the surface S C C* that is given by the equations

7Pw? — oz’ = B’ + gtto® + 5t + 7 + ex3yz = 0 € P* = Proj ((C 2,9, 2,1, w]),
and let H be a surface in P* that is given by the equations Z = w = 0. Then
Supp(S) = Supp(S") U H,

where S’ is another compactification of the affine surface S. Then S is irreducible <= S’ is
irreducible.

Let T be be a hyperplane in P* that is given by the equation § = 0. Then the intersection
TN S is one-dimensional. Consider an affine open subset U = P4\ T c P4 Put &' =UN S,
S=UnNS and H=UnNH. Then S is irreducible <= &’ is irreducible.

The surface S can be given by the equations

@02 — T = B L PP+ d i ey =0c Ci spec(c[:z,z,t“,w]),

where H is given by £ = w = 0. Therefore, the surface S is isomorphic to an affine hypersurface
B 4ol R4 d i e =0c 03 Spec(C [, zﬂ)

where H is given by # = 0. Thus, we see that the surface S’ is a hypersurface in C? that is
given by the zeroes of the polynomial

f(#,2,1) = %83 + % 4+ 1 + 231 + ei?s,

which implies that S is irreducible <= the polynomial f(, %,f) is irreducible. But elementary
calculations imply that the polynomial f(i, %,7) is irreducible. O

Lemma 3.3.2. Suppose that (ag, a1, az,as,d) = (5,7,11,20,40). Then lct(X) = 25/18.
Proof. The surface X can be defined by the quasihomogeneous equation
2 + yz3 + xy5 + 2zt + 28 + 6x3y2z,
where € € C. Note that X is singular at the points O, and O.. The surface X also has two
singular points P; and P» of type %(2, 1) that are cut out on X by the equations y = z = 0.

The curve C, is irreducible. We have

3 25
let(X, -Cy) = —,
(X, 5C0) = 75
which implies that lct(X) < 49/36. The curve Cy is reducible. We have C, = C1 + Co, where

C1 and (5 are irreducible reduced curves such that

13 4
C1-C —02'02——%, 01'02—ﬁ,
and P € Cq, P, € Cy. Then C1NCoy = 0,.

Suppose that let(X) < 25/18. Then there is a Q-effective divisor D = —Kx such that the

pair (X, %D) is not log canonical at some point P. By Remark 1.4.7, we may assume that the



support of D does not contain the curve C,. Moreover, we may assume that the support of D
does not contain either the curve C'1 or the curve C5, because

3 35 25

let(X, 2C,) = =2 > 22,

X7 =51~ 15
Suppose that P € C,. Then

. . 1
18 181 6 multp (D) if P € X\ Sing(X), % if P e X\ Sing(X),
_ _— I . >
%y DGz multo,(D) ~3 181,
7 - Yy %? if P= Oy,

which is a contradiction. Thus, we see that P & C,.
Suppose that P = O,. We know that C; ¢ Supp(D) for some i = 1,2. Then
18 1 multo_ (D) 3 18 1
11~ 1 S YT s
which is a contradiction. Therefore, we see that P # O,.
Suppose that P € Cy. Put D = mC; + , where 2 is an effective Q-divisor such that
Cy ¢ Supp(Q2). If m # 0, then

3 4
= =—Kx-Cy=D-Cp= (mCi+9Q)-Cy>mC;-Cp = 77,
which implies that m < 3/20. Then it follows from Lemma 1.4.6 that
18
—itP#P
3 13 1 1s
277;: (~Kx-mC) C1=0-C >4 2
——if P= P,
255

because P # O,. Thus, we see that m > 123/325, which is impossible, because m < 3/20.
Thus, we see that P € X \ Sing(X) and P ¢ C, U Cy. Then
240 18
<o < ==
385 25
by Lemma 1.4.10, because the natural projection X --» IP(5,7,20) is a finite morphism outside
of the curve Cyy, and H°(P, Op(40)) contains monomials %, zy°, 2*t. The obtained contradiction
completes the proof. O

Lemma 3.3.3. Suppose that (ag,ay,as,as,d) = (11,21,29,37,95). Then lct(X) = 11/4.

18
25 < multp (D)

Proof. We may assume that the surface X is defined by the quasihomogeneous equation
t2y +t22 + xy4 + 252 = 0.

The surface X is singular at the points O, O, O., O;. Each of the divisors Cy, Cy, C;, and C;
consists of two irreducible and reduced components. The divisor C, (resp. C,, C, C;) consists
of Ly = {x =t =0} (resp. Ly, = {y =2 =0}, Ly, Ly) and R, = {x = yt + 2% = 0} (resp.
Ry={y=z2t+25=0} ,R,={z=a2+t2 =0}, Ry = {t = y* + 2°2 = 0} ). Also, we see
that

Lyt N Ry ={0y}, Ly2NRy ={0:}, Ly N R, ={0,}, Lyx N Ry ={0.}.
We can easily see that

3 11 3 3 3
let(X, — = — <let(X, — let(X, — let(X, —C%).
Ct( Y 1101') 4 < Ct( 721031)7 Ct( 72902)7 Ct( 737Ct)

Therefore, lct(X) < %. Suppose lct(X) < %. Then, there is an effective Q-divisor D = —Kx
such that the log pair (X, 1%D) is not log canonical at some point P € X.
The intersection numbers among the divisors D, Ly¢, Ly., R:, Ry, R, R; are as follows:

1 2 18
D-Ly=-—— D-Ri=-——, D-Ry=—,
LT 729 7.37 v 929.37

3 2 12

2  D-.R =
. R =29



LiUt'Rll?:ﬁ? Lyz'Ry:§7 Lyz'Rz:ﬁ, L$t'Rt:2797
ot 21-29° @ 21.37" W 50 .37’
2 45 2 16 9 104

= - = — R = .
v 11-377 "% 11-217 "t 11-29
By Remark 1.4.7 we may assume that the support of D does not contain at least one component
of each divisor Cy, Cy, C;, C;. The inequalities

3 4 6
21D - Ly = — < —, 17D- =—< —
= o9 <qp NP He=gr <y
imply P # O,. The inequalities
3 4 11 1 4
UD-L.=2 <« “D.R —>< -
A TR Rl AT
imply P # O,. The curve R, is singular at the point O,. The inequalities
1 4 29 3 4
29D - Lypy=-<—, —D-R=—<—
Wla=g<qp FP =<4

imply P # O,. The curve Ry is singular at the point O,.

We write D = a1Ly + asLy. + a3R; + asRy + asR. + agRy + Q, where ) is an effective
divisor whose support contains none of the curves L., L., R;, Ry, R., R;. Since the pair
(X, %D) is log canonical at the points O, O,, O, the numbers a; are at most %. Then by
Lemma 1.4.8 the following inequalities enable us to conclude that either the point P is in the
outside of C, UC, UC, UC} or P = Oy:

221 214

11 11
D Ly—-L1?=—"" <1, —=D-L,—-L%=—""_<1
4 e PR T 4 = 1137 S
11 137 11 195
"D R,~R2=_—°>" <1, DR, —R:=_—"__ <1
PP e fe=ggm g <t PR Ry =g < b
11 11 1 11 11 3
—D-R,—R*<—=D-R,=—<1, —D-R—-R}*<—D R =—<1.
(DR -RI< D Ro= <1 D R-R< D R=g <

Suppose that P # O;. Then we consider the pencil £ defined by Ayt + uz? = 0, [\ : u] € P
The base locus of the pencil consists of the curve L,. and the point O,. Let E be the unique
divisor in £ that passes through the point P. Since P ¢ C, U Cy U C, U (C, the divisor E is
defined by the equation 22 = ayt, where o # 0.

Suppose that o« # —1. Then the curve F is isomorphic to the curve defined by the equations
yt = 22 and t?y + xy* + 252 = 0. Since the curve E is isomorphic to a general curve in L,
it is smooth at the point P. The affine piece of E defined by t # 0 is the curve given by
2(z+ 22" + 2%) = 0. Therefore, the divisor E consists of two irreducible and reduced curves L,
and C'. We have the intersection number

1
D-C=D.-E-D-L, — —%

7-11-37
Also, we see
C?=FE-C-C-L,,>E-C—-C,-C>0

since C' is different from R,. By Lemma 1.4.8 the inequality D-C < % gives us a contradiction.

Suppose that a = —1. Then divisor E consists of three irreducible and reduced curves L.,
R, and M. Note that the curve M is different from the curves R, and L,;. Also, it is smooth
at the point P. We have

D-M:D~E—D-Lyz—D-R$:%,

M*=E-M—-Ly,-M—R, - M>E-M—Cy-M—Cy-M>0.
By Lemma 1.4.8 the inequality D - M < % gives us a contradiction. Therefore, P = O;.



Put D = alL,, + bR, + A, where A is an effective divisor whose support contains neither L,,
nor R,. Then a > 0, because otherwise

3 4 3
—D-L,. => multp(D ,
11-37 yz =2 multp(D)37 > 50 > o0

which is a contradiction. Therefore, we may assume that R, Z Supp(A) by Remark 1.4.7.
Similarly, we may assume that L,; Z Supp(A) if b > 0.
Let us find upper bounds for a and b. If b > 0, then

3 2b
_° _D. > . - =
21.99 D L:ct = bRx L:ct 217
which implies that b < 3/42. Similarly, we have
18 6a b multo,(D)—a—b ba+
=D Ry, > — + — ¢ 11
29 - 37 T 37 T
which implies that a < 82/1595. On the other hand, it follows from Lemma 1.4.6 that
3+ 45a 4/11 -0
=A-L -
11-37 N T
which implies that a > 1/45. Similarly, we see that
6+ 52b 4/11 —a
=A-R _—
21- 37 O T

which implies that b > 9/286.

Let m: X — X be the weighted blow up of the point O; with weight (13,4), and let F' be the
exceptional curve of the morphism #w. Then F' contains two singular points ()13 and )4 such
that Q13 is a singular point of type %(1, 2), and @4 is a singular point of type %(1, 3). Then

. 20 . . 4 . 13 c
where Eyz, R, and A are the proper transforms of L., R, and A by 7, respectively, and c is a
non-negative rational number c.
The log pull-back of the log pair (X, %D) by 7 is the log pair

F,

= 1lla - 116 - 11
<X’ oy Lt et 4““) :
which is not log canonical at some point @) € F, where 6; = (11(c + 4a + 13b)/4 + 20)/37). We

have

3 +4b5a b c 6+ 52b a c

11-37 37 13-37 21-37 37 437
which implies that 6; < 1, because b < 3/42. Note that F N R, = Q4 and F'N Ly, = Q13.

Suppose that Q € R, U Eyz. Then

=A-L,>0<A R, =

11c 11 -
=—A-F>1
16-13 4 =
by Lemma 1.4.6. Thus, we see that ¢ > 208/11. But the system of inequalities
34+45a b c

20,
11-37 37 1337

6 + 52b a c
- — — =0, < 3/42,
21-37 37 4-37 0 b<3/

¢ > 208/11,

is inconsistent. Thus, we see that Q € R, U Eyz.
Suppose that @) € M,. Then @) = @4, and it follows from Lemma 1.4.6 that

11 /(64+520 «a c 01 11 - — 1 11 115 - 11 c b
4<21.37 T3 4.37>+4— <4A+91F>'Mw o <4A+4Mw>‘F— T <4.13+4)
which implies that b > 1164/5291. But b < 3/42, which is a contradiction.




We see that @@ = Q13. Then it follows from Lemma 1.4.6 that

11 (3+45a b c 0, (11 _ 1 11,  1la- 11
= B A (ZA+ o F) Ly > — <A+ =21 'F:—(
4 (11-37 37 13-37>+13 (4 0 > Y713 <4 T yz) s\ 3™

Let ¢: X — X be the weighted blow up at the point Q13 with weight (1,2). Let G be the
exceptional divisor of the morphism ¢. Then G contains one singular point Q2 of the surface X

that is a singular point of type 2(1 1). Let Lyz7 R, A and F be the proper transforms of Ly,
R, A and F by ¢, respectively. We have

, 10, - . 2 - 1« x  d
Ky =¢"(Kx) = 3G Lys = 6"(Lys) = 135G, F = ¢"(F) = 3G, A= ¢"(8) - G,

where d is a positive rational number. The log pull-back of the log pair (X, %D) via ¢ o 7 is

_1la-  11b- 11, . -
(X, T“Lyz Rt A 01F+92G> ,

where 6y = 33a/74 4+ 11¢/1924 + 11b/148 + 11d/52 + 30/37. This log pair is not log canonical
at some point O € G. We have

c _L:A.F>O<A.jyzzw_i_L_i

13-4 13-2 11-37 37 13-37 13’
which implies that 2 < 1, because the system of inequalities
0y > 1
34+45a b c d

L -2,
11-37 37 13-37 13

a < 82/1595,

is inconsistent. Note that F NG = Q2 and @2 & Eyz.
Suppose that O € F'U L,,. Applying Lemma 1.4.6, we get

11d
1 —A G =
< 12
which gives d > 8/11. Hence, we obtain the system of inequalities
(3+45a b c d

T 207
21 -37 37 4-37
c d
- ——= =0,
13-4 13-2
d>8/11,
b < 3/42,

which is inconsistent. Thus, we see that O € F U f/yz.
Suppose that O € Ly.. Applying Lemma 1.4.6, we get

C

a

13

11 /3+445a b ¢ d 11 < 3 11: lla- 33 (d
(edtae 0 ¢ 4, (LA Fy. > 1 Ay 225 )= (%1 a),
4 (11.37 37 13.37 13>+92 <4 +92G) vz > <( T )G 16<2+“>

which gives a > 25/11. But a < 82/1595, which is a contradiction. Thus, we see that O ¢ f/yz.
We see that O € F. Then (Q = Q3. Applying Lemma 1.4.6, we get

11/ ¢ d \ 6 (11 R A L S S A
4<4'13 5. 13>+ —<A+92G>-F>2<<A+91F>-G—4.2—|— 5

Let &: X — X be the Welghted blow up at the point Q2 with weights (1,1), let H be the

exceptional divisor of &, let Lyz, R,, A, G, and F be the proper transforms of Ly., R;, A, G
and F by &, respectively. Then X is smooth along H. We have
1 A 1

SH, G=8(G) = 5H, F=¢(F)-126G, A=¢'(A) - 3G,

@

Ky =&(Kx) -

[\

)



where e is a positive rational number. The log pull-back of the log pair (X, %D) via ¢ o 7 is

o 1la,  1lb. 11: . ~ .~
(X, TaLyz + Rt AL OF 16,6+ 93H> ,
where 03 = (61 + 05 + 11e/4)/2 = 55a/148 + T7b/148 + 77¢/1924 + 11d/104 + 11/8e + 25/37.

This log pair is not log canonical at some point A € G. We have

c 4 ¢_Afpso<Ah-a=92¢
13-4 13-2 2 2
which implies that 03 < 1, because the system of inequalities
93 2 ]-7
3+45a7£7 c 7£20’
11-37 37 13-37 13
d>e,
a < 82/1595,
is inconsistent. Note that F NG =o.
Suppose that O € F UG. Applying Lemma 1.4.6, we get
11 4 11le
1< —A-H=—
4 4’
which gives e > 4/11. Hence, we obtain the system of inequalities
3+45a7£7 c 7i>0’

11-37 37 13-37 13
6 + 52b a c

21-37 _§_4-37/0’
c d
- —— >0,
13-4 13-2 2

which is inconsistent. AThus, we see that O € F U G.
Suppose that O € F. Applying Lemma 1.4.6, we get

11 c d e 11 . . 11 - .

which leads to a contradiction, because the system of inequalities

11 d
( i ——€>+03>1,

4

- 2 O,
21-37 37 4-37
b < 3/42,
is inconsistent. Thus, we see that O € F'UG. Then
11e 11 - 11 . ~ 11 /d e
74'92— <4A+92G> CH>1< (4A+03H) -G = = <2_2) + 65,

by Lemma 1.4.6. Thus, we obtain the system of inequalities
11 /d e
—(z_Z 02> 1
1 (2 2> +03 > 1,
34+45a b c d

L - 20,
11-37 37 1337 13

a < 82/1595,

is inconsistent. The obtained contradiction completes the proof. O

Lemma 3.3.4. Suppose that (ag, a1, as,as3,d) = (11,37,53,98,196). Then lct(X) = 55/18.



Proof. The surface X can be defined by the quasihomogeneous equation
2+ oy +ay’ + 2132 =0,

the surface X is singular at the point O,, O, and O,. The curves C, and C) are irreducible.

We have
55 3 3 37-5
— =let | X, — let | X, — = —
8 ¢ < ’110"”) < ( ’37Cy> 26
which implies, in particular, that let(X) < 55/18.

Suppose that lct(X) < 55/18. Then there is a Q-effective divisor D = —Kx such that the
pair (X, 53—5D) is not log canonical at some point P. By Remark 1.4.7, we may assume that the
support of the divisor D does not contain the curves C, and C),.

Since H(P, Op(583)) contains %3, y'tx16 and 2!, it follows from Lemma 1.4.10 that P €
Sing(X) U Cy.

Suppose that P € C,. Then

multP(D) P Oy’
; 37
5753 D G2 Hmlt;g(D)ifP:Oz,

multp(D) if P# O, and P # O,
which is impossible, because multp(D) > 18/55. Thus, we see that P = O,. Then

6 multp (D) 18 6
=D- = )
11-53 Cy 11 Z 5511 11-53
which is a contradiction. Thus, we see that lct(X) = 55/18. O

Lemma 3.3.5. Suppose that (ag, a1, a2, as,d) = (13,17,27,41,95). Then lct(X) = 65/24.
Proof. The surface X can be defined by the quasihomogeneous equation

2t +ytz + xt? + 25y = 0,
and X is singular at the point O, Oy, O, and Oy.

The curve C; is reducible. We have C, = L, + M,, where L., and M, are irreducible and
reduced curves such that L., is given by the equations x = z = 0, and M, is given by the
equations = = y* 4+ 2t = 0. Then

—55 —56 4 12 3
=—\ M, = — . =— D-My=——,D-L,, =
TEUATe41 T T 21417 T T 41 2741 1T 41
and Ly, N M, = O;. The curve Cj is also reducible. We have C, = L,; + M,, where L,; and
M, are irreducible and reduced curves such that L,; is given by the equations y =t = 0, and
M, is given by the equations y = 22 + 2t = 0. Then
=37 —48 2 6 3

Ly - Myp=—— M,- = — . =— D-My=——, D -Ly=——

VO T g YT T g4 Y Y T 1y Y1341 v 3o
and L,; N My, = O;. The curve C, is also reducible. We have C, = L;, + M, where M, is an
irreducible and reduced curve that is given by the equations z = t? + 2%y = 0. Then

2 —55 1 6
—, Ly M, = ——, Ly, - M,=—, D-M, =
A T S R N F13-17

and L,, N M, = Oy. The curve C; is also reducible. We have C; = Ly + M;, where M; is an
irreducible and reduced curve that is given by the equations t = % + 2y = 0. Then

6 168 18
ytm T g LT g o tT 1397

and Ly, N My = O,. We have lct(X) < 65/24, because

65 3 51 3 41 3 21 3
2 et (X, 20, ) <22 =t [ X, = oot (X, = 2ot (X, —C. ).
o ct( ,130><12 ct( 17C'y)< 3 ct( 41C’t>< 1 ct( 27C’>

Ly, - L




Suppose that lct(X) < 65/24. Then there is a Q-effective divisor D = —Kx such that the
pair (X, %D) is not log canonical at some point P. By Remark 1.4.7, we may assume that
either Supp(D) does not contain at least one irreducible component of C, Cy, C, and C.

Suppose that P & C,, UC, UC,UC;. Then there is a unique curve Z, C X that is cut out by

xt+az2=0

such that P € Z, where 0 # o € C. The curve Z, is reduced. But it is always reducible. Indeed,
taking into account the geometry of the open subset Z, \ (Z, N C}), one can easily check that

Za = Ca +Lmz

for any a # 0, where C, is a curve whose support contains no L,,. Let us prove that C, is
reduced and irreducible if o # 1.
The open subset Z, \ (Z, N C;) of the curve Z, is a Zji3-quotient of the affine curve

t+a?=22t+y' 24+ +y=0CcC3 = SpeC(C[Z/,Z,tD,
which is isomorphic to a plane affine quartic curve that is given by the equation
ala -1 +ytz+y=0c C? = Spec((C[y, z]),

which implies that the curve C,, is and irreducible reduced curve and multp(C,) < 3 if o # 1.
The case a = 1 is special. Namely, if o = 1, then

Ci=R; + M,,

where R;p is a curve whose support contains no Cj. Arguing as in the case a # 1, we see that
R; is an irreducible reduced curve that is smooth at the point P.

By Remark 1.4.7, we may assume that Supp(D) does not contain at least one irreducible
components of the curve Z,.

Suppose that o # 1. Then elementary calculations imply that

109, _ 8141 531
17-417 7% 7 T 13.17-410 7 T T 131741

and we can put D = eC, + A,, where A, is an effective Q-divisor such that C, ¢ Supp(A,).
If € # 0, then

Ca : L;Bz =

3 109¢
741 = 0 Lo = (Gt D) L > eC L = 100,
which implies that € < 3/109. On the other hand, we see that
531 9 9 9 5 24
IFRTATES D-Cy = eCE+A,-Cy = eC+multp (Aa) = eC*+multp (D)—emultp (C’a) > e +%—3e,

which is impossible, because € < 3/109.

Thus, we see that o« = 1. We have

92 3177 197 429

- RRi=—"""" MR =" D.R=_ "
T arear M T ey Y T 3 RS ER TRV
and we can put D = € Ry + =1, where Z; is an effective Q-divisor such that R; ¢ Supp(Z1).
Then €; < 3/91, because either € =0, or Ly, - =1 > 0 or M, - =; > 0. By Lemma 1.4.6, we see
that

Ry-L

429 — 31771 _ R > 24
13-17-41 V7 6y
which is a contradiction. The obtained contradiction shows that P € C,, UCy, U C, U C}.
Suppose that P = Oy. If L., € Supp(D), then
3 multp (D) 3 24
2 _ _D.L,. > 7
1741 v 41 Z 1141 6541
which is a contradiction. Thus, we see that L,, Z Supp(D) D M,. Put D = wL,, + ¥, where
U is an effective Q-divisor such that L,, ¢ Supp(¥), and w > 0. Then
12 multp, (D) —w 3/11 —w 4w 24/65 —w
e = DMy = (0Lt 0) M, > L Mt PO 2 s gy ST e 2B




which implies that w44/585. Then it follows from Lemma 1.4.6 that

3+ 55w
1741 :(_KX_Wsz)'L:Ez:\IJ'LxZ>65'41a

which is impossible, because w44 /585. Thus, we see that P # O;. Note, that applying similar
arguments to O, = M; N Ly, we do not see that P # O..

Suppose that P = O,. Put D = eM, + A, where A is an effective Q-divisor such that
M, ¢ Supp(Q2). If € # 0, then

24

3
which implies that € < 3/68. Then it follows from Lemma 1.4.6 that
12 + 56¢ 22
o7 . 41 = (_KX_GLZZ) “Lgy =8 Ly, > 65927’

which implies that € > 51/910. But € < 3/68 < 51/910. Thus, we see that P # O,.
Suppose that P = O,. If L. Z Supp(D), then

3 multp (D) 24 3
=D Ly, > :
17-41 v 17~ 65.17  17-41
which is a contradiction. If M, € Supp(D),
ltp(D lto, (M) 2multp (D
6 DM > mu p( )mu Oy( Z) mu p( ) o 48 - 6 7
13-17 17 17 65-17 = 13-17

which is a contradiction. Thus, we see that P # O,. Similarly, we see that P # O, = M, N L,..
Then P ¢ Sing(X).

Suppose that P € Ly,. Put D = mL,, + Q, where € is an effective Q-divisor such that
L., ¢ Supp(QQ). If m # 0, then

12 4m
5~ Kx Me=D-M; = (mLa + Q) - My = mLy, - My = R
which implies that m < 3/27. Then it follows from Lemma 1.4.6 that
3+ 55m 24
W: (_KX_mez) Lmz:QLmz> &7
which is impossible, because m < 3/27. Thus, we see that P ¢ L,,. Similarly, we see that

P & Ly.
Suppose that P € M,. Put D = dM, + Y, where T is an effective Q-divisor such that
M, ¢ Supp(Y). If € # 0, then

3 46
T =—KxLy.=D Ly, = (0My+7Y) - Ly. >5sz-Mw:ﬁ,
which implies that 6 < 3/68. Then it follows from Lemma 1.4.6 that
12 4 560 24
——— = (—Kx—0M;) M, =7 -M, >—
oo~ Kx o) Mo * 7 65
which is impossible, because ¢ < 3/68. Similarly, we see that P ¢ M, U M, U M;, which is a
contradiction. O

Lemma 3.3.6. Suppose that (ag, a1, as,as3,d) = (13,27,61,98,196). Then lct(X) = 91/30.
Proof. The surface X can be defined by the quasihomogeneous equation
2+ 90z + 222 4+ 23y =0,

the surface X is singular at the point O,, O, and O,. The curves C, and Cy are irreducible.

We have
91 15

3 3
et (X, 2 et [ X, —C, ) = =2
30 Ct( ’13C“”> < Ct( ’27Cy> 2

which implies, in particular, that let(X) < 91/30.



Suppose that lct(X) < 91/30. Then there is a Q-effective divisor D = —Kx such that the
pair (X, %D) is not log canonical at some point P. By Remark 1.4.7, we may assume that the
support of the divisor D does not contain the curves C, and C,.

Since H°(P, Op(793)) contains 2%, y?0z7 413234 and 2'3, it follows from Lemma 1.4.10 that
P € Sing(X) U C;.

Suppose that P € C,. Then

multp (D) itp—0,
9 27
g PG D)y p o,

multp (D) if P # O, and P # O.,

which is impossible, because mult p(D) > 30/91. Thus, we see that P = O,. Then

6 multp (D) 30 6
=D- P )
13- 61 Cy 13 9113 13-61
which is a contradiction. Thus, we see that lct(X) = 91/30. O

Lemma 3.3.7. Suppose that (ag, a1, az,as,d) = (15,19,43,74,148). Then lct(X) = 57/14.
Proof. The surface X can be defined by the quasihomogeneous equation
t2 + yz3 + a:y7 +272 =0,

the surface X is singular at the point O,, O, and O, the curves C, and Cy are irreducible, and

25 3 3 o7
2 o (x,30) e (056) =
which implies, in particular, that let(X) < 57/14.

Suppose that let(X) < 57/14. Then there is a Q-effective divisor D = —Kx such that the
pair (X, %D) is not log canonical at some point P. By Remark 1.4.7, we may assume that the
support of the divisor D does not contain the curves C, and Cj,.

Since HO(P, Op(645)) contains z*3, 35224, 43025 and 29, it follows from Lemma 1.4.10 that
P € Sing(X) U C;.

Suppose that P € C,.. Then

multp (D) itp—o0,
6 19
9.a3 D G2 WifP:Oz7

multp(D) if P# O, and P # O,
which implies that P = O, because multp(D) > 14/57. Then

6 _ . > multp (D) multp (Cy) 28 _ 6 |
15-43 43 57-43 ° 15-43
because multp(Cy) = 2. Thus, we see that P = O,. Then
6 multp (D) 14 6
=D-C, > > > )
15 - 43 Y 15 57-15 7 15-43
which is a contradiction. Thus, we see that lct(X) = 57/14. O

3.4. SPORADIC CASES WITH I =4

Lemma 3.4.1. Suppose that (ag, a1, az,as3,d) = (5,6,8,9,24). Then lct(X) = 1.



Proof. The surface X can be defined by the quasihomogeneous equation
22+ yt2 + y4 + ex2yz + 23t = 0,

where € € C. The surface X is singular at the point O, and O;. The surface X is also singular
at a point ()9 that is cut out on X by the equations x = ¢t = 0. The surface X is also singular
at a point Q3 such that Q)3 # O, and the points @3 and @; are cut out on X by the equations
r=2z2=0.

The curves C,, Cy, C, and C; are irreducible. We have

4 4 4 ) 4
Ict (X, QCt) >1=Ict (X, 6Cy> <lct <)(7 5Cz> = Z < lct <X, 80Z> = 27

which implies, in particular, that let(X) < 1.

Suppose that lct(X) < 1. Then there is a Q-effective divisor D = —Kx such that the pair
(X, D) is not log canonical at some point P. By Remark 1.4.7, we may assume that the support
of the divisor D does not contain the curves C,, Cy, C, and C;.

Suppose that P € C,. Then

multp (D) itpP=o0,
12

T =D-Cy> multP(D)I;ultOt(Cy) if P =0,

multp (D) if P # O, and P # O,

which is impossible, because multp(D) > 1 and multp,(Cy) = 3.
We see that P # O;. Suppose that P € C;. Then

multg(mifp:@,
2
iop.c> rrmlt;v@ifp:@g,

multp(D) if P# Q9 and P # Q3,

which is impossible, because multp(D) > 1. Thus, we see that P ¢ Sing(X).
Let us show that P ¢ C,. Suppose that P € C,. Then
16

T =D.-C,> multp(D) > 1,

which is a contradiction. Similarly, we see that P & C;.
We see that P ¢ C, UC, UC, UC;. Then there is a unique curve Z C X that is cut out by

Tt = ayz

such that P € Z, where 0 # a € C. We see that Cy, ¢ Supp(Z). But the open subset Z\ (ZNCy)
of the curve Z is a Zs-quotient of the affine curve

t—ayz =224yt +yt teyz+t=0CC? = Spec((C[y,z,t]),
which is isomorphic to a plane affine quintic curve R, C C? that is given by the equation
BB+t (e+a)yz=0c C? = SpeC(C [y, z]),

which is easily seen to be irreducible. In particular, the curve Z is irreducible.
The inequality multp(Z) < 3 holds, because quintic R, is singular at the origin. Thus, we
may assume that Supp(D) does not contain the curve Z by Remark 1.4.7. Then

28
T D-Z> multp(D) > 1,
which is a contradiction. The obtained contradiction completes the proof. O

Lemma 3.4.2. Suppose that (ag, a1, az,as,d) = (5,6,8,15,30). Then lct(X) = 1.



Proof. The surface X can be defined by the quasihomogeneous equation

2 4 y28 4 + 2222 + 23+ 25 =0,
and X is singular at the point O,. The surface X is also singular at points P; and P, that are
cut out on X by the equations y = z = 0. The surface X is also singular at a point Q3 that is
cut out on X by the equations x = z = 0. The surface X is also singular at a point Q)2 such
that Q2 # O, and the points Q3 and @, are cut out on X by the equations x =t = 0.

The curve Cy is reducible. We have Cy = Li + Lo, where Ly and Lo are irreducible and
reduced curves such that P, € Ly and P, € L. Then

-9 3
1 1 2 2 40° 1 2 ]’

and L1 N Ly = O,. The curve C, is irreducible and

4 4 )
1=lct <X, 6Cy> < lct <X7 SCJ:> = 17

which implies, in particular, that let(X) < 1.

Suppose that lct(X) < 1. Then there is a Q-effective divisor D = —Kx such that the pair
(X, D) is not log canonical at some point P. By Remark 1.4.7, we may assume that the support
of the divisor D does not contain the curve C,. Similarly, without loss of generality we may
assume that Ly € Supp(D).

Since H°(P, Op(30)) contains y°, yz3 and ¢2, it follows from Lemma 1.4.10 that P € Sing(X)U
Cy.
Suppose that P € L;. Then

1if P# P; and P # O,

1 if P=P
—=D-L; > 1 15
10 !

it P=0,,

| = O] =

which is a contradiction. Thus, we see that P ¢ Lq. In particular, we see that P # Ok.
Suppose that P € Lo. Put D = mLo + Q, where € is an effective Q-divisor such that
Ly ¢ Supp(€2). Then

1 3
—:—KX-L1=D-Zx:(mL2+Q)'L1>mL2-L1:?m,

10
which implies that m < 4/15. Then it follows from Lemma 1.4.6 that
1if P # Ps,
2+9m
=(—Kx —mLy) - Ly=8Q:Ly >
- (TEx—mba)-Ls ? éﬁP:&,

which implies that m > 4/9. But m < 4/15. Thus, we see that P & L;.
Therefore, we see that either P = (3 or P = (J3. Then

Itp(D
1 = P( )lfP:Q27
6 mult p (D) .
—— it P=0Q3,
3
which is a contradiction. Thus, we see that lct(X) = 1. O

Lemma 3.4.3. Suppose that (ag, a1, az,as,d) = (9,11,12,17,45). Then lct(X) = 77/60.
Proof. We may assume that the surface X is defined by the quasihomogeneous equation
Py +ydz+azd +2°=0.

Note that it is singular at the point Oy, O, O, and the point @ = [1:0: —1: 0]. The curve C,
consists of two irreducible and reduced curves Ly, = {z =y = 0} and R, = {z = t* + y?2 = 0}.



The curve Cy, also consists of two irreducible and reduced curves L, and R, = {y = z3+a* = 0}.
The curve C, and C; are irreducible and reduced. We have
et (X, ) = 0 < let(X, 20,), 1et(X, L), 1et(X, —=Cy).
11760 9T 12777 17
Suppose that let(X) < %. Then there is an effective Q-divisor D = — K x such that the pair
(X, %D) is not canonical at some point P. By Remark 1.4.7 we may assume that the support
of D contains neither C, nor C;. The inequalities

4-12-45 60

D-C=gimnm <
4.17-45 60

D.C,—=_ >t P
R TR T

imply P ¢ C, UCy \ Sing(X). Moreover, we have

11 10 60
to,D<—D-C,= 2 < >
multo, ;D C= <7
5 60

< o= 22
multgD < 3D - C 11 < o

and hence P can be neither the point O, nor the point Q.
We can see that

1 2 11 1
L, - D=—— R, -D=— R, - D=——, Ly, -R,=>
i 17-3> ¢ 337 Y 9.17 T T g
3 15 1 13
Ly Ry=—, 2 =—" R2=—_— R =_"°" |
R T A 4.17 °* 337 Y 4.9.17

By Remark 1.4.7 we may assume that the support of D does not contain both L., and R,. If
the support of D does not contain L,, then

4 60
Ito,D < 12D - Ly = — < —.
mutto ARV AN
If the support of D does not contain R, then
8 60
Ito,D < 12D - = — < —.
multo, R, 11 < 7

Therefore, P cannot be O,.
Also, we may assume that the support of D does not contain both L., and R,,. If the support
of D does not contain L, then

60

1
multo,D < 17D - Ly, = 3 < 2

If the support of D does not contain R, then

17 11 60

Therefore, P cannot be Oy.
By Remark 1.4.7 we may assume that the support of D does not contain both L., and R,.
If we write D = nL,, + A, where A does not contain the curve L,,, then we can see n <

since D - Ry > nlRy - Lyy. By Lemma 1.4.8 the inequality

7 7-14
—(Lyy-D—mL2) < ——mr <1
60 v mlay) S 5317
implies that the point P cannot belong to the curve L,,. By the same method, we see the point
P must be outside of R,.

If we write D = mR, + 2, where {2 does not contain the curve R, then we can see 0 < m <
since D - Lyy > mRy - Lyy. By Lemma 1.4.8 the inequality

77 9 77

implies that the point P cannot belong to the curve R,,.

4
1

1
9



Now we consider the pencil £ on X cut by At? 4+ uy?z = 0. The base locus of the pencil
consists of three points O, O, and (). Let I’ be the member in £ defined by t2 4+ 4?2 = 0. The
divisor F' consists of two irreducible and reduced curves R, and F = {t? + y?z =z + 23 = 0}.
The Jacobian criterion shows us that the curve E is smooth in the outside of the base points.

Also we have

1 4 4-14
F-D:—O R,-E=—, E-D 8 2 _

33’ 11 T3 T T3
We write D = [E + T, where I" does not contain the curve E. Since (X, %D) is log canonical at

the point Oy, the non-negative number [ is at most %. By Lemma 1.4.8, the inequality shows
7

77
—(E-D—IE>)< —E-D<1
60" )< %o <

implies that the point P cannot belong to the curve F.

So far we have seen that the point P must lie in the outside of C, UC, UC, UC; U E. In
particular, it is a smooth point. There is a unique member C' in £ which passes through the
point P. Then the curve C is cut by t?> = ay?z where « is a constant different from 0 and —1.
The curve C is isomorphic to the curve defined by 3%z + 222 + 2° = 0 and 2 = 3%2. The curve
C is smooth in the outside of the base points by the Bertini theorem, since it is isomorphic to
a general curve in the pencil £. We claim that the curve C is irreducible. If so then we may
assume that the support of D does not contain the curve C' hand hence we obtain

10 60
multpD < C-D = 33 < -
This is a contradiction.

For the irreducibility of the curve C, we may consider the curve C as a surface in A* defined by
the equations y3z+xz2°+2° = 0 and t> = y?z. Then, we consider the surface in P* defined by the
equations y3zw 4 z23w 4 2° = 0 and t?w = y?z. We then take the affine piece defined by ¢ # 0.
Then, the affine piece is isomorphic to the surface defined by the equation y3zw + zz3w +2° = 0
and w = y?z in A%. Tt is isomorphic the irreducible hypersurface y°2% + xy?2° + 2° = 0 in A3.
Therefore, the curve C' must be irreducible.

O

Lemma 3.4.4. Suppose that and (ag, a1, az,as,d) = (10, 13,25,31,75). Then lct(X) = 91/60.
Proof. We may assume that the surface X is defined by the quasihomogeneous equation
Py + 23 +ay’ + 22 =0.

It has singular points at O, Oy, Oy and @ = [—1:0:1:0]. The curve C, and C; are irreducible
and reduced. The curve Cy consists of two irreducible reduced curves L,. = {y = z = 0} and
R, = {y = 2* + 2° = 0}. The curve C, consists of two irreducible reduced curves L,, and
R, = {y =t> + zy* = 0}. It is easy to see that

4 91 4 4 4
let(X, =Cy) = — <let(X, —C,) <lct(X, —=C,) < let(X, —C%).
X, 50) = g <1t g5 C) <1et(X, 3502) <let(X, 37 C)
Also, we have the following intersection numbers:
12 6 2 4 4
¢, - D=—— C-D=——, L, D=——, R,-D=—+ R, -D=——
‘ 13-317 " 5-137 7% 5-317 Y 5-317 °F 5-13
2 1 7 3 12
L, - Rj=——., L, -R,—-., I =———  R—-__°"  RZ__"° |
ve By =g Ly o=, Ly 10.30 5300 T 53
Suppose that let(X) < 2. Then, there is an effective Q-divisor D = —Kx such that the
log pair (X, %D) is not log canonical at some point P € X. Since the curves C, and C; are
irreducible we may assume that the support of D contains none of them. The inequalities
60 60
13D - — D- —
3 C, < 01’ 5 C; < 91

show that the point P must be in the outside of C, U C; \ {Oy, O¢}.



By Remark 1.4.7, we may assume that the support of D cannot contain both L,. and R,,. If
the support of D does not contain L, ., then the inequality

2 60
1D-L,, == < —
3 v =5 <91

shows that the point P cannot be O;. On the other hand, if the support of D does not contain
R, then the inequality

31 2 60

PP =5<g
shows that the point P cannot be O;. We use the same method for R, + L, . so that we can see
the point P cannot be O,.

We write D = mR, + ), where () is an effective Q-divisor whose support does not contain
the curve R,. Then we see m < % since the support of D cannot contain both L,. and R, and
D-L,.>mRy-Ly,. Since R,-D — mRZQI < %, Lemma 1.4.8 implies that the point P is located
in the outside of R,. Using the same argument for L,. , we can also see that the point P is
located in the outside of L,,. Also, the same method shows that the point P is located in the
outside of R, Consequently, the point P must lie in the outside of C;; UC\y U C, U Cy.

Now we consider the pencil £ on X cut by M? + uxy* = 0. The base locus of the pencil
consists of three points O, Oy, and (). Let F' be the member in £ defined by t24+zy* = 0. The
divisor F' consists of two irreducible and reduced curves R, and E = {t? + xy* = 2% + 2° = 0}.
The Jacobian criterion shows us that the curve E is smooth in the outside of Sing(X'). Also we

have

12 2 8 2
5-13’ R

13’ 5-13° © 513
We write D = [E +T, where I' does not contain the curve E. Since (X, 2 D) is log canonical at

the point Oy, the non-negative number [ is at most %. By Lemma 1.4.8, the inequality shows
91 9 91
6()(E D-1E) < 60
implies that the point P cannot belong to the curve F.

So far we have seen that the point P must lie in the outside of C, UC, UC, UC; U E. In
particular, it is a smooth point. There is a unique member C' in £ which passes through the
point P. Then the curve C is cut by t? = axy® where « is a constant different from 0 and —1.
The curve C is isomorphic to the curve defined by zy® + 23 + 2%z = 0 and t? = xy*. The curve
C is smooth in the outside of the base points by the Bertini theorem, since it is isomorphic to
a general curve in the pencil £. We claim that the curve C is irreducible. If so then we may
assume that the support of D does not contain the curve C' and hence we obtain

12 <@
5-13 91

F-D

E-D<1

multpD < C-D =

This is a contradiction.

For the irreducibility of the curve C, we may consider the curve C as a surface in A* defined by
the equations zy® + 23 +2°2 = 0 and t2 = zy*. Then, we consider the surface in P* defined by the
equations zy® +w32% + 2%z = 0 and t>w? = xy*. We then take the affine piece defined by y # 0.
Then, the affine piece is isomorphic to the surface defined by the equation = + w323 + 2%z = 0
and t?w3 = x in A*. It is isomorphic the hypersurface defined by t?w? + w323 + t1%!%2 = 0 in
A3. Tt has two irreducible components w = 0 and 2 + 23 4 190122 = 0. The former component
originates from the hyperplane at infinity in P*. Therefore, the curve C must be irreducible. [

Lemma 3.4.5. Suppose that (ag, ai,az,as,d) = (11,17,20,27,71). Then lct(X) = 11/6.
Proof. We may assume that the surface X is defined by the quasihomogeneous equation
Py +ydz+ad +2tt=0.

The surface X is singular at the points O, Oy, O, O;. Each of the divisors C, Cy, C., and C;
consists of two irreducible and reduced components. The divisor C, (resp. Cy, C., C¢) consists
of Lyy={c =y =0} (rtesp. Lyy={r =y =0}, Ly ={2=t=0}, Ly ={z=1t=0})



and R, = {x = y?2 +t2 =0} (vesp. Ry ={y =23t +23 =0}, R, = {z =2t +yt = 0},
= {t =y3 + 222 = 0} ). Also, we see that

Loy N Ry ={0.}, Loy N Ry = {0}, Loy N R. = {0,}, Loy N Ry = {O,}.

We can easily see that

11 1 2 2
let(X, 2 0 )= <let(X, lcy), let(X, Zocz), let(X, 170,5).
Therefore, lct(X) > % Suppose lct(X) < H. Then, there is an effective Q-divisor D = —K

such that the log pair (X, 161 D) is not log canonical at some point P € X.
The intersection numbers among the divisors D, Ly, L.;, R:, Ry, R., R; are as follows:

1 2 4
w597 Re 5-17° Ty 9.11’
4 16 3
SRR TS TA R 1727 Ry 5.11°
1 1 4
Lzy‘Rz_Ey Lmy'Ry:§7 th'Rz:ﬁa th‘Rt:ﬁ)
2 43 2 3 R2_ 2
wo920.277 T 517 7Y 3.117
) 24 ) 28 , 21

AT 0117 P areer Tt T 2011
By Remark 1.4.7 we may assume that the support of D does not contain at least one component
of each divisor Cy, Cy, C., C;. The inequalities

4 6 11 3 6
1D -Ly=—<—, —D- — < —
2= < 2P Tty
imply P # O,. Note that the curve R; is singular at O,. The 1nequahtles
4 6 8 6
20D Ly =—<—, 20D- =—< —
0 w= gy < P =gy
imply P # O,. The inequalities
1 6 27 4
271D - Ly =-<—, —D -R,=—<—
o5 T 1103 Y11 T

imply P # O;. The curve R, is singular at the point Oy.

Since the pair (X, D) is log canonical at the point Oy, multht > & By Lemma 1.4.8
the inequality D - L; — (multy_,D)L?, > D - L,; = 11 = = 17 7 implies P ¢ L. In particular,
P # Oy. We write D = a1Lgy + asRy + azRy + a4 R, + as Ry + 2, where Q) is an effective divisor
whose support contains none of the curves Ly, R;, Ry, R., R;. Since the pair (X, %D) is log
canonical at the points O, Oy, O, Oy, the numbers a; are at most %. Then by Lemma 1.4.8 the

following inequalities enable us to conclude that the point P is in the outside of C,, UC, UC, UCy:

11 11 11
EIILW—L%<1,—ED-&pJﬁ<1,AgDJL—R§<L

11 , 11 11 , 11
oD Ry ~R)>_ DRy <1, DR —R>_D-R<Ll

We consider the pencil £ defined by Aty + pz* = 0, [\ : u] € PL. The base locus of the pencil
consists of the curve L, and the point O,. Let E be the unique divisor in £ that passes through
the point P. Since P ¢ C, U Cy U C, U C}, the divisor E is defined by the equation ty = az?,
where o # 0.

Suppose that o # —1. Then the curve E is isomorphic to the curve defined by the equations
ty = 2% and 2%t + y32 + 23 = 0. Since the curve E is isomorphic to a general curve in L,
it is smooth at the point P. The affine piece of E defined by ¢t # 0 is the curve given by



z(2? + 22 + 23) = 0. Therefore, the divisor E consists of two irreducible and reduced curves
L., and C. We have the intersection numbers

267 87
D-C=D-E—D -Lyy=—"— Lyy=E Ly, —L?, = .
¢ w =57y O Lew T 9027
Also, we see
10269
2
=FE-C—-C -Lyy=——"—.
¢ OO ley= 75027
By Lemma 1.4.8 the inequality D - C' < % gives us a contradiction.
Suppose that @ = —1. Then divisor F consists of three irreducible and reduced curves L,

R,, and M. Note that the curve M is different from the curves R, and L,;. Also, it is smooth
at the point P. We have
187
D-M=D-E-D-Lyy,— D -R,=——"—
Y © 51727

MEMLmyMRM>EMCMCM—EDMO

By Lemma 1.4.8 the inequality D - M < ﬁ gives us a contradiction. O
Lemma 3.4.6. Suppose that (ag, a1, az,as,d) = (11,17,24,31,79). Then lct(X) = 33/16.
Proof. We may assume that the surface X is defined by the quasihomogeneous equation

t2y +t2% + xy4 + 252 =0.

The surface X is singular at the points O, Oy, O, O;. Each of the divisors C;, Cy, C., and C;
consists of two irreducible and reduced components. The divisor C, (resp. Cy, C., Cy) consists
of Ly = {x =t =0} (vesp. Ly, = {y =2z =0}, Ly., Lyt) and R, = {& = yt + z* = 0} (resp.
Ry={y=z2t+2°=0} ,R.={z=ay>+t* =0}, Ry = {t = y* + 2%2 = 0} ). Also, we see
that

Ly N Ry ={0y}, Ly "Ry ={0}, Ly.N R, ={0.}, Lu N Ry = {0, }.

We can easily see that

let(X, - cx) 53 Lo, lct(X,%Cz), et (X, ).

16 7 31

Therefore, lct(X) > 32. Suppose lct(X) < 3. Then, there is an effective Q-divisor D = —Kx

such that the log pair (X, 16D) is not log canonical at some point P € X.

The intersection numbers among the divisors D, Ly, Ly., R:, Ry, R., R; are as follows:

< let(X,
( 1

1 8 5
D~Lw:77 D T = T o4 . = o o1
P 617 R = 1731 Ry =531
4 8 2
D'LZ:77 D Z T Ta 1m0 D = 5 14
Y* 7 11-.31 R 11-17 Ry 311
2 5 2 1
th Rx ﬁ7 Lyz Ry 3717 Lyz'Rz—ﬁv th'Rt—ga
) _ 3T o 40 2_ 35
at 17-24> % 17-317 ¥ 24 - 31’
) _ 38 o 14 o _ 10
Yz 11-317 % 11-17 "t 3.11°

By Remark 1.4.7 we may assume that the support of D does not contain at least one component
of each divisor C, Cy, C;, C;. The inequalities

1 16 8 16
17D Ly ==< —, 17D Ry = — < —
7 =5 <3z 1D Ta=g7<33
imply P # O,. The inequalities
4 1 1
11D-Ly2:—<—6 11D - R, 8 6

31 33’ 7 33



imply P # O,. The inequalities
24 16 24 i 16

MD Ly =——" <« — ZD.R, = =
=517 S33 4 111533

imply P # O,. The curve R; is singular at the point O,.

We write D = a1Ly + a2Ly, + a3R; + asRy + asR. + agRy + Q, where ) is an effective
divisor whose support contains none of the curves L., L., R;, Ry, R., R;. Since the pair
(X, ?ED) is log canonical at the points O, O,, O, the numbers a; are at most %. Then by
Lemma 1.4.8 the following inequalities enable us to conclude that either the point P is in the
outside of C, UC, UC, UC} or P = Oy:

33 181 33 113 33 25

“DLy-1%=——"<1 =D. 2o~ 1, ZD. 2 <1
16 A N TP T A T Fo—Fz T 2.17-31 " 16 Ry =1ty = 3.31
33 185 33 5 33 —47
~“DL,—1?=—"<1, =“DR.-R*= —— <1, =DR-R'=_——<1.
16 v et = 131 S0 16 5. 11-17 = 16 L T

Suppose that P # O;. Then we consider the pencil £ defined by Ayt + puz? =0, [\ : u] € PL.
The base locus of the pencil consists of the curve L,. and the point O,. Let E be the unique
divisor in £ that passes through the point P. Since P ¢ C, U Cy U C, U (Cy, the divisor E is
defined by the equation 22 = ayt, where o # 0.

Suppose that o« % —1. Then the curve F is isomorphic to the curve defined by the equations
yt = 22 and t?y + xy* + 252 = 0. Since the curve E is isomorphic to a general curve in L,
it is smooth at the point P. The affine piece of E defined by t # 0 is the curve given by
2(z+ 22" + 2°%) = 0. Therefore, the divisor E consists of two irreducible and reduced curves L,
and C'. We have the intersection numbers

D-C=D-E-D-L,, = 064

2
_ 2 _
o7 O ke =B Ly m Ly = gy

11
Also, we see
02—E C—C Ly >0.

By Lemma 1.4.8 the inequality D - C < 33 gives us a contradiction.

Suppose that o = —1. Then divisor E consists of three irreducible and reduced curves L, .,
R, and M. Note that the curve M is different from the curves R, and L,;. Also, it is smooth
at the point P. We have

4-119
C11-17-31°

M*=E-M~—1Ly,-M—R, M>EM Cy-M~—C,-M=5D-M > 0.

By Lemma 1.4.8 the inequality D - M < glves us a contradiction. Therefore, P = Oy.

We write D = aL,, +bR, + A, where A is an effective divisor whose support contains neither
L. nor R,. Note that we already assumed that the support of D does not contain both L.
and R,. If the support of D contains R,, then it does not contain L, .. However, the inequality
31D-L,, = 11 < 33 6 shows that P # O;. Therefore, the support of D does not contain the curve
R,. The inequality D - Ly > bR, - Ly implies b < 12. On the other hand, we have

D-M=D-E-D-Ly,—D-R, =

5 5a. b multo,D—a—b da+ 30
T TR

and hence a < 4 66

We now consider the weighted blow up 7: X — X at the point O; with weight (11,24). Its
exceptional divisor F' passes through two singular points @11 of type 1—11(1, 1) and Q24 of type
+(13,7). We have
SF Ly=n(L) - g F, Re=n'(R)— o F, By=m"(R) -~ o
where Eyz, R, and Ry are the proper transforms of L., R, and R, by , respectively. Also, we
have a non-negative rational number ¢ such that

KX:F*(K_)()—I— F,

A =1 (A) - S%F,



where A is the proper transform of A by 7. From

C  (D-aly b Byt = O _B_b__c

0<A-Ry=A-R,—

11-31 11-31 6-31 31 31 11-31
we obtain 55a—|—11b+c<%5. Also from
— c c 4 38a b c
0<A-L,,=A-L,,—— =(D—al,,—bR, - _
vz Y 11-31 (D—aly. ) Lye = 11-31  11- 31+11 31 31 11-31

we get 110 + ¢ < 4 + 38a. Combining this with the previous inequality, we get

55(11b + ¢ — 4) 55 55. 55 4.55 55
110 <— = (1 - = < =
tibres g (I+3g)es 5+ 55 €S 7

38
Now we consider the log pull-back of the divisor Kx + D by m
33 33a - b _ _
(K “D)=Kg+ —1L — —A 0, F
where
1 2843

0, = 1631 (24-33a+ 11-33b+ 33¢c —64) <
There must be a point @ in F' at which the pair

12-16-31°

16

is not log canonical. Note that F N R, = F N Ly, = {Q11} and F N R, = {Q24}. Therefore, the
pair

- 33a - 33b - 33 -
X,—L —_— —A+0LF
( ) yz T 16Rx+16 + 01 >

16

is not log canonical at the point Q. If the point @ is a smooth point of X then we obtain an
absurd inequality

(X,s?’aLszr 30p 43 A+F>

95 c 33

6-128 ~ 1R 128 16
In order to apply Lemma 1.4.6, we must first check that 6; > 0. Suppose that 6; < 0. Then

24a + 11b 4 ¢ < 64/33, and the log pair

- 33a - 33b -
X, L, A
<’16 ve RJr16>

is not log canonical at the point ) as well. Then

1> ZA-F>1.

Lif Qos # Q # Q11,
1,
4 33(24a+11b+c):<33a 330 33).F> 1 o=

—L —R, +—=A
11‘24> 11-24-16 16 yZ+16 z+16

- if Q@ = Qaq,

which is absurd. Thus, we see that 6; > 0.
Suppose that Q = Q11 Then we also obtain a contradictory inequality

i<33aL F+ A P 33a n 33c - 33-23 n 3355 <i

11 16 16 11-16  11-16-24 4-11-16-66 6-11-16-24 ~ 11’
which implies that @ # @Q11. Therefore, we see that Q) = Qog4.

Let ¢ : X — X be the weighted blow up at the point Qg4 with weight (13,7). The exceptional
divisor G of the morphism ¢ contains two smgular points Q13 and Q7 of X. The point Qi3 is

of type 13(11 6) and the point Q7 is of type 1(1,3). We have

N ~ = 13 7 ~ . d
Kg=9¢ (KX)—gG, R, = ¢"(Ry) — G F=¢* (F) — ﬂG’ A=¢ (A)_ﬂG’
where d is a positive rational number. Then
11-24 13-24 17-31 31 17-31 24-31 7-24

which implies that 1344 + 67200 > 2856a + 119¢ + 527d and 13c > 11d.



The log pull-back of (X, %D) via ¢ o is

(22500, + R+ 2
which is not log canonical at some point O in G, where 0y = 231a/496 4 165b/124 4 77¢/3968 +
11d/128 +4/31. Then 03 < 1, because the system of inequalities

0y > 1,

1344 4 67200 > 2856a + 119¢ + 527d,

13¢—11d > 0,

4+ 38a > 11b+c¢ >=0,

55a + 11b+ ¢ < 55/6,

a < 23/264,

b<1/12,

A+01F+02G> )

is inconsistent. Note that R, NG = {Q7} and FNG= {Q13}. But Eyz does not pass through

the point Qo4.
Suppose that O # Q7 and O # @Q13. Applying Lemma 1.4.6, we get
33d

16-7-13°

which gives d > 3536/33. Hence, we obtain the system of inequalities

d > 3536/33,

1344 4+ 67206 > 2856a + 119¢ + 527d,

13¢ —11d > 0,

4+438a > 11b+c¢>=0,

55a + 11b + ¢ < 55/6,

a < 23/264,

b<1/12,

which is inconsistent. Thus, we see that either O = Q7 or O = Q13.
Suppose that O = Q7. Applying Lemma 1.4.6, we get

4 ~ - 1 - -
33<8+ L >+02:<?2A+02G>-Rx><33(A+bRx>-G:33< a

33 ~
1< —=A-G=
< 16 G

16\ 17-31 31 24-31 7-24) 7 7 16 16 \7-13

which gives b > 458/1705 and 33d + 429b > 208. But b < 1/12, which is a contradiction. Thus,
we see that O # Q7.
Therefore, we see that O = QQ13. Applying Lemma 1.4.6, we get

33 c d 0 33 ~ 1 33 ~ 33d 01

— — = =A N i g— —A F)l - G=———+—=
16 <1l~24 13‘24>+13 (16 +02G> >13<<16 +o > ¢ 16-7-13+13’
which leads to a contradiction, because 4 + 38a > 110+ ¢ and a < 23/264. O

Lemma 3.4.7. Suppose that (ag, a1, as,as3,d) = (11, 31,45,83,166). Then lct(X) = 55/24.
Proof. The surface X can be defined by the quasihomogeneous equation
2 4 yz3 + $y5 + itz = 0,

the surface X is singular at the point O, O, and O.. The curves C, and C, are irreducible.

¢ ¢ 99 4 4 13-31
R | = = — 220
2 ct (X, HCgC) < lct (X, Sle> R

which implies, in particular, that let(X) < 55/24.

Suppose that let(X) < 55/24. Then there is a Q-effective divisor D = —Kx such that the
pair (X, %D) is not log canonical at some point P. By Remark 1.4.7, we may assume that the
support of the divisor D does not contain the curves C, and C,.

b

7

)



Since H°(P, Op(495)) contains x4, y' a4 and 21!, it follows from Lemma 1.4.10 that P €
Sing(X) U Cy.
Suppose that P € C,. Then

multp(D) itp—o0,
A 31
si.ap DGz nmltfg)(D)ifP:Oz,

multp (D) if P # Oy and P # O.,
which is impossible, because multp(D) > 24/55. Thus, we see that P = O,. Then

4 multp (D) 24 4
=D.-C, > :
11-45 Cy 13 >55-11>11-45
which is a contradiction. Thus, we see that lct(X) = 55/24. O

Lemma 3.4.8. Suppose that (ag, a1, a2, as,d) = (13,14,19,29,71). Then lct(X) = 65/36.
Proof. We may assume that the surface X is defined by the quasihomogeneous equation
tyd +y2 +at® + 2tz =0.

The surface X is singular at the points O, Oy, O, O;. Each of the divisors C;, Cy, C., and C;
consists of two irreducible and reduced components. The divisor C, (resp. Cy, C;, C}) consists
of Lyy ={x =y =0} (resp. Ly ={x =y=0}, Ly ={2=t=0}, L,y = {z =t =0}
and R, = {x = 23+ ty?> = 0} (vesp. Ry ={y=a32+t* =0}, R, = {z = ¢ +at = 0},
Ry = {t = 2% + y22 = 0} ). Also, we see that
Ly N Ry ={0:}, Ly NRy ={0.}, LN R, ={0.}, LN R ={0,}.
We can easily see that
13 65 14 19 29

let(X, —C,) = — < let(X, —C,), let(X,—C,), let(X,—C%).

Ct( "4 3?) 36 < Ct( "4 Cy)7 Ct( 'Y 02)7 Ct( 'Y Ct)
Therefore, lct(X) > 2. Suppose lct(X) < 2. Then, there is an effective Q-divisor D = —K
such that the log pair (X, % D) is not log canonical at some point P € X.

» 36
The intersection numbers among the divisors D, Ly, L.t, R:, Ry, R., R; are as follows:

4 6 8
D Lyy=—— D-R,=—— DR, =——
W 19.29’ v7.297 Y1319’
2 12 8
D-L,=—— D-R.,= D-R = ——
SERAST 7 13.29’ TN
2 3 2
ny'Rw:ﬁa Lzy'Ry:Ea th'Rz:Ea th'Rt:?y
44 3 2
L} =— R = — R? =
zy 19.29° % 14-29° °Y  13.19’
) 23 ) 30 ) 20

2T 3014 T 13297t T 7019
By Remark 1.4.7 we may assume that the support of D does not contain at least one component
of each divisor C, Cy, C;, C;. The inequalities

2 36 12 36
13D - Ly =2 <

—, 13D-R,=— < —
7765 © 29 T 65
imply P # O,. The inequalities
4 36 8 36
4D - Ly=—<—, TD - Ri=-—<—
=13 % 65 ‘719 65
imply P # O,. Note that the curve R; is singular at the point O,. The inequalities
4 36 19 4 36
19D - Lyy=—<—, —D R, =-—<—
w3965 2 WT13%%5



imply P # O.. The curve R, is singular at O,. The inequalities

4 36 29 3 36
29D .- L., =—< 2= Z2pD.R =2 <22
=19 <65 2 v 7<65

imply P # O;. The curve R, is singular at the point O;.

We write D = a1 Ly +aoL.i +azRy +as Ry +as R, + ag Ry + €2, where ( is an effective divisor
whose support contains none of the curves Ly, L.t, Ry, Ry, R., R;. Since the pair (X, %D) is
log canonical at the points O, Oy, O, O, the numbers a; are at most %. Then by Lemma 1.4.8
the following inequalities enable us to conclude that the point P must be located in the outside

of C, UCy UC, UCy:

65 9 461 65 74

DLy, —I1%?=—" <1 —“D-R,—-R’=—" <1
36 Wt 9.19.29 T 36 v T 6.7-29
65 249 65 155
D L,-1*=—"" <1, —D-R,—-R’=—"__ <1
36 =t 4= 71318 7 36 N T3 318
65 65 65 65
~“D-R,—R’>—"-D-Rj=——— <1, —D -R,—R?<1.
36 v 7 36 v=13.18-19 = 36 tT A<

We consider the pencil £ defined by Atz + uy® = 0, [\ : u] € PL. The base locus of the pencil
consists of the curve L., and the point O,. Let E be the unique divisor in £ that passes through
the point P. Since P ¢ C, U Cy U C, U (4, the divisor E is defined by the equation tx = ay’,
where a # 0.

Suppose that o # —1. Then the curve E is isomorphic to the curve defined by the equations
tr = y> and xt? + y23 + 2%z = 0. Since the curve E is isomorphic to a general curve in L,
it is smooth at the point P. The affine piece of E defined by t # 0 is the curve given by
y(y? + y'z + 23) = 0. Therefore, the divisor E consists of two irreducible and reduced curves
L., and C. We have the intersection numbers

800 ) 86

Also, we see
C?=E-C—~C-Lyy>E-C—C,-C>0.
By Lemma 1.4.8 the inequality D - C' < % gives us a contradiction.
Suppose that @ = —1. Then divisor F consists of three irreducible and reduced curves Ly,
R,, and M. Note that the curve M is different from the curves R, and L,;. Also, it is smooth
at the point P. We have

D-M:D~E—D-ny—D-RZ:%,
M2:E-M—ny~M—RZ-MzE-M—C’x-M—CZ»M:gD‘M>O.
By Lemma 1.4.8 the inequality D - M < 36/65 gives us a contradiction. O
Lemma 3.4.9. Suppose that (ag, a1, az,as,d) = (13,14,23,33,79). Then lct(X) = 65/32.
Proof. The surface X can be defined by the quasihomogeneous equation
2t +ytz + xt? + 25y = 0,
and X is singular at O, Oy, O, and O;. We have

4 65 4 21 5 33 4 69
let [ X, =C, )= =<t | X, —=C, | = — <let | X, — =—<let | X,=C, ) =—,
¢ (’13C> 32<‘3< 130> g ¢ ( 25@> 0~ ¢ ( 230) 20

which implies, in particular, that lct(X) < 65/32.

The curve C, is reducible. We have C, = L,, + M,, where L,, and M, are irreducible
reduced curves such that L, is given by 2 = z = 0, and M, is given by x =tz +3* = 0. Then
rz:;ll?)yMz 12;407 Tz * z:ivDLzz:ia Mm:£7

14 - 33 23 - 33 33 14 - 33 23-33
and L., N M, = O;. The curves L., and M, are smooth.

Ly, - L



The curve Cy is reducible. We have Cy = L,; + M,, where L,; and M, are irreducible curves
such that L; is given by y =t = 0, and M, is given by y = xt + 22 =0. Then
—32 —38 2 4 8
= 1300y My My =5Tagy Lo My =30 DL = q3755, DMy = 573,
and Ly, N M, = O,. We have My - My = Ly, - M, =1/33, M, - Lyy =1/23 and L, - Ly = 0.
The curve C, is reducible. We have C, = L., + M., where M, is an irreducible curve that is
given by the equations z = t? + 2z = 0. We have

20 2 46
M, M,=—"— L, - M,=— D-M,=——
2P 13147 T TR 1 13147

and M, N L,. = O,. The only singular point of the curve M, is O,.
The curve C; is reducible. We have C; = L,; + M;, where M; is an irreducible curve that is
given by the equations t = y3z 4+ 2° = 0. We have

B M=o Do =2
14-13 23 14 - 23
and M; N Ly = O.. The only singular point of the curve M; is O,
We suppose that Ict(X) < 65/8. Then there is an effective Q-divisor D ~g —Kx such that
the log pair (X, 8 D) is not log canonical at some point P € X. Let us derive a contradiction.

» 32
Suppose that P ¢ C,, UC, UC,UC};. Then there is a unique curve Z, C X that is cut out by

Ly L

M, - My =

zt+az’> =0

such that P € Z, where 0 # a € C. The curve Z, is reduced. But it is always reducible. Indeed,
one can easily check that
Za = Ca + Lzz
where C,, is a reduced curve whose support contains no L. Let us prove that C, is irreducible
if a £ 1.
The open subset Z, \ (Z, N C;) of the curve Z, is a Zj3-quotient of the affine curve

t+a2=0=22t+y'24+t2+y=0CC3 = SpeC(C[y,Z,tD,
which is isomorphic to a plane affine curve that is given by the equation
ala—D+ylz+y=0cC?® = Spec(@[y, z]),

which implies that the curve C,, is irreducible and multp(Cy) < 3 if av # 1.
The case a = 1 is special. Namely, if = 1, then

Cl =R +My7

where Rj is a reduced curve whose support contains no C. Arguing as in the case o # 1, we
see that R; is irreducible and R; is smooth at the point P.

By Remark 1.4.7, we may assume that Supp(D) does not contain at least one irreducible
components of the curve Z,.

Suppose that « # 1. Then elementary calculations imply that

2 20 8
it C.— =" D. - _°
g0 CoCo=qgqp Do =330

and we can put D = eC, + A,, where A, is an effective Q-divisor such that C, ¢ Supp(A,).
If € # 0, then

Ca ’ La:z =

4
m:D'L:cz:(GCa+Aa)'sz>ECa'L$z:

which implies that € < 2/33. On the other hand, we see that

8 32
314~ DCa= €C2+Aq-Co > €C?+multp(A,) = eC?+multp (D) —emultp (Cy ) > 602—1—%—36,
which is impossible, because € < 2/33.

Thus, we see that o = 1. We have

52 —398 71 152
o Ry = 2% Ri=— D Ry =——"2
14.33 1T T 30037 Y T T 130337 17 13.14-33

2¢
14’

Rl ' Lmz =



and we can put D = € Ry + =1, where E; is an effective Q-divisor such that R; ¢ Supp(Z1).
Then €; < 8/71, because either € =0, or Ly, - =1 > 0 or M, - =; > 0. By Lemma 1.4.6, we see
that
152 4 796€; R 32
13.14.33 M7 6y
which implies that ¢; > 3506/995. But €; < 8/71. The obtained contradiction shows that
PeC,UuC,UC,UC.
It follows from Remark 1.4.7 that we may assume that Supp(D) does not contains are least
one irreducible component of the curves Cy, Cy, C., C;.
Suppose that P € M, \ (O, UOy). Put D = eM, + T, where T is an effective Q-divisor such

that M, ¢ Supp(T). If e # 0, then

4 4e
:Dsz:(eMm+T)sz>eerMw:

[1]

13 - 33 33’
which implies that e < 1/14. Then it follows from Lemma 1.4.6 that
16 + 40e 32
—————=(—Kx—eMy) My=7T-M, > —
2333\ Kx—el) M "7 65

because P ¢ Sing(X). Thus, we see that e > 2906/325, which is impossible, because e < 1/14.
Thus, we see that P & M, \ (O, U O;). Similarly, we see that

P ¢ My UM, UM, UM\ (0,U0,U0,U0,).

Suppose that P € Ly;. Put D = §L,; + ©, where O is an effective Q-divisor whose support
does not contain the curve L,;. If § # 0, then

8 26
533 = DMy = (6Lyr +0) - My > Ly - My = 5,
which implies that 6 < 4/33. Then it follows from Lemma 1.4.6 that
2
%ifP#OxandP;éOz,
4+ 320 32
13 .23 ( X y) Y Y 65131fP 07
32
if P =0,
65.23 1 =0
which implies that P = O, and § > 3/40. Then M; ¢ Supp(D). Hence, we have
20 multo, (D)multo, (M)  3multp, (D) _ 3-32
— D . M 2 z z — z ,
14-23 ‘ 23 23 6523

which is a contradiction. The obtained contradiction shows that P & L.

We see that P € L,;. Arguing as above we see that P = O;. Then
4 32 4

=D-L

14-33 "~ 5533 1433

whenever L,, ¢ Supp(D). Thus, we see that L,, C Supp(D). Then M, ¢ Supp(D). Put
D =mLg, +cMy,+Q,
where m > 0 and ¢ > 0, and 2 is an effective Q-divisor such that L,, ¢ Supp(Q2) A M,. Then

16 4m ¢  multo,(D)—m—c 3m+ 32
D M, = (mLy, +cM, +Q) - My > — + — t 65
23 - 33 (mLyz + My +9) 33 733 33 33

which implies that m < 304/4485. Then it follows from Lemma 1.4.6 that
44 43m 32
— = (- Kx — La:z . sz = (2 My) - sz F oo
a3~ (- Kxomle) (- eMy) - Loz > G753
which implies that m > 88/2795. On the other hand, if ¢ > 0, then
4 2c
55 = DL = (MLgz 4+ cMy + Q) - Ly > 3

which implies that ¢ < 2/23. We will see later that ¢ > 0.



Let 7: X — X be a weighted blow up of O; with weights (14,23), let E' be the exceptional
curve of m, let Q, L., My, M, be the proper transforms of Q, L., M,, M, respectively. Then

23 4 23
QE’ M, =" (M,) — ﬁE’ M, =7n"(M,;) — —=F,

33

and there is a positive rational number a such that

- a

Q=7%(Q) — —=FE.

The curve E contains two singular points Q14 and Q23 of X such that Q14 is a singular point
of type ﬁ(l?), 1), and Q19 is a singular point of type %(13 14). Then
szUM ¥Q23€M ¥Q14— a:zﬂMma

and L., N M, = @. The log pull back of the log pair (X, ggD) is the log pair

- 65~ 6bm - 65¢c - 1495m  455c¢ 65a 4
X, —Q+—0L,.+—M —— | E),
( 732 + 32 + 32 y+< 1056 + 528 + 1056 33> >

which must have non-log canonical singularity at some point ) € E. We have
- - 4443m —1dc—a
< L : Q = ’
0< Lo 14-33

which gives a + 14¢ < 4 + 43m. Then a < 31012/4485, because m < 304/4485. We have

1495m  455c¢ 65a 4
( + + 33> <1,

* 4 T *
Kg=m (KX)—i—ﬁE, Ly, =7"(Ly,) —

1056 528 1056

because a + 14¢ < 4 + 43m, ¢ < 2/23 and 304/4485 > m > 88/2795.
The log pull back of (X, 1?’D) has effective boundary if and only if the inequality
128

23 14 < —
m + 14c + a 65

holds. On the other hand, if 23m + 14¢ + a < 128/65, then the log pair

_ 65m 65¢c -
< Bas sz+32My>

is not log canonical at the point ) as well. Thus, if 23m + 14c + a < 128/65 then

@ if Q14 # Q # Qas,

128 a4+ 23m + 14c _ — _ 39
65- 14 - 23 14-23 ( +mlyz e >\ g5.qa T€ =0
32
O —
65 - 1 Q Q237
which is absurd. Thus, the boundary of the log pull back of the log pair (X , ggD) is effective.

Suppose that Q # Q14 and Q # Q23. Then Q & L, U M,. By Lemma 1.4.6, we have
a ~ 65
Y, _0. g2
14-23 33 ~ 32’

which implies that @ > 10304/65, which is impossible, because a < 31012/4485.
Therefore, we see that either @ = Q14 or Q = Q23.
Suppose that Q@ = Q1. Then @ ¢ M,,. Hence, it follows from Lemma 1.4.6 that

65 Q4 1495m N 455¢ N 65a 4 AN 1
32 1056 528 1056 33 NV
but L, - E =1/14 and L, - My = 0. Moreover, we have

e 4+ 43m — 1de —
QL —(Q+CM) Lm_<Dmem)-me“+ c_~ftdom—ldc—a

14-33 1425 ’
which immediately implies that m > 66/325. But m < 304/4485, which is a contradiction.




Thus, we see that @@ = Q23. Then Q ¢ L., and it follows from Lemma 1.4.6 that

65. (1495m 455 65a 4 g
<Q+< AN a—)E)-My>23,

32 1056 528 1056 33

but we have My - E'=1/23. Applying Lemma 1.4.6 one more time, we see that
65~  65c 1

Q+—M,)-E>—

(32 3 y) 733

which gives a + 14¢ > 448/65. On the other hand, we know that

0<Q-M,=Q M,—

— D-My—mL,.-M,—cM,-M,—

a a  8+38c—13m

a

33.23 33.23 13-33

©33.23

which implies that 184 + 874c > 299m + 13a and ¢ > 1/20. But we have no contradiction here.
Let 0: X — X be a Welghted blow up of Q23 with weights (13,14), let G be the exceptional

curve of ¥, let €, La;z, . E be the proper transforms of Q, L., M,, E, respectively. Then
- _ 14 ~ 13 ~ ~ b
Ks; =y*(Kx —G, M, =v¢*(M,)) — —G, E=¢*(F) - =G, Q=9y*(Q) — —

where b is a positive rational number.

The curve G contains two singular points O3 and O14 of X such that O13 is a singular point

of type %(1, 3), and Oq4 is a singular point of type ﬁ(l, 9). Then
E#Oi3€M,#01,€E,

where E N My = @. The log pull back of the log pair (X, 32D) is the log pair

~ 65~ 65m - 65¢ -~ 1495m  455¢  65a 4
X, —Q+—1L —M E+06
( 3 T gy e T g y+< 1056 ' 528 1056 33) * G>
which must have non-log canonical singularity at some point O € GG, where

845m  455¢  845a ~ 65b 8

1056 | 264 ' 24288 ' 736 33’
Let us show that 0 < § < 1. Obviously, we have

b _ 8+38¢  a+23m b

13-23  13-33  23-33  13-23
which gives 184 + 874c¢ > 299m + 13a + 33b. Similarly, we have

b a b
14-23  13-23  14-23°
which implies that a > b. So far, we obtained the system of inequalities
4+ 43m > a + l4c,

184 4 874¢ > 299m + 13a + 33b,
184 + 874c > 299m + 13a,
304/4485 > m > 88/2795,

2/23 > ¢ > 1/20,

a+ 14c > 448/65,

31012/4485 > a > b,

which is still consistent, but it implies that 8 < 1. If § < 0, then the log pair
65m -~ 65¢c ~ 1495m  455¢  6ba 4\ =
( BQQ gy L gy Myt ( 1056 | 528 1056 33) E> ’
is not log canonical at the point O as well. Thus, if 6 < 0, then
4 > 4 40 23 :<(3’5)~+655>771Exz+6%c~ (1495m+455c+65a
13-14 7 13-14 13-14 32 32 32 1056 528 1056
which is absurd. Hence, we see that 1 > 6 > 0.

0 =

0< M, - Q=0Q- M, —

0< My -E=Q-FE—

4
33

w) 7)o



Suppose that O # O3 and O # O14. Then O € E U M, and it follows from Lemma 1.4.6
that
b b o = 32
~G2=0. e
13-14 23G ¢ > 65’
which implies that b > 448/5. But 31012/4485 > a > b, which is a contradiction.
Therefore, we see that either O = ng or O = O14.
Suppose that O = O13. Then O ¢ E, and it follows from Lemma 1.4.6 that

—-1 _ R 32(1—460
8+38¢—13m a b 5., - b 0T, > ( )7
13-33 33-23 13-23 13-23 13- 65

which implies that ¢ > 12/65. But ¢ < 2/23, which is a contradiction.
Thus, we see that O = O14. Then O ¢ M,,. Hence, it follows from Lemma 1.4.6 that

a—b -~ - 32(1-0)
Q. F>_" 7/
14 - 23 > 14-65
which implies that 130a + 845m + 1820¢ > 1312. Applying Lemma 1.4.6 again, we see that

65 b 7659 a 37 1495m  65c 65a

3213-14 32 7 462 14734 1056 14784’
which implies that 1495m+910c+65a+ 1650 > 1184. Thus, we obtain the system of inequalities

130a + 845m + 1820c > 1312,
1495m + 910c + 65a + 1650 > 1184,
44 43m > a + 14c,
184 + 874c = 299m + 13a + 330,
184 + 874c > 299m + 13a,
304/4485 > m > 88/2795,
2/23 > ¢ > 1/20,
a+ 14c > 448/65,

[ 31012/4485 > a > b,

which is, unfortunately, consistent. So, we must blow up the point O14.

Let ¢: X — X bea welghted blow up of O14 with weights (1,9), let F' be the exceptional curve
of ¢, let Q, L., My, E and G be the proper transforms of €, L,., M, and E, Grespectively.
Then

d

S p ¢ Sp & 7y L —F,
14

)= 1P &) -

where d is a positive rational number.
The curve F contains one singular point Ag of the surface X such that Ag is a singular point
of type §(1,4). Then G # Ag € E and ENG = @. The log pull back of (X, %.D) is the log pair

Q+7L;tz+

32 32 32

5 65,  6om - 65¢c - 1495m n 455¢ n 65a
’ 1056 528 1056 33

4 . N
) E+0G+ VF) ,
which must have a non-log canonical singularity at some point A € F', where

_ 65m  65¢ ~ 65a 325b d 4

168 © 96 ' 3864 ' 10304 | 14
Obviously, the inequality v > 0 holds. Let us show that v < 1. Indeed, we have

ocb 4 _paso<coa=" 2
14-23 9-14 13-14 14




which implies that b > 13d and 9(a — b) > 23d. Thus, we obtain the system of inequalities

( 130a + 845m + 1820c > 1312,
1495m + 910¢ + 65a + 1650 > 1184,
4+43m = a + 14c,
184 + 874c > 299m + 13a + 33D,
184 + 874c > 299m + 13a,
304/4485 > m > 88/2795,
2/23 > ¢ > 1/20,
a+ 14c > 448/65,
31012/4485 > a > b > 13d,

( 9(a — b) > 23d,

which is consistent, but it implies that v <1.
Suppose that A # Ag and A € G. Then A ¢ EF'UG, and it follows from Lemma 1.4.6 that

d A 32
—=Q-F>—
9 65
which is impossible, because 31012/4485 > a > b > 13d. We see that either A = Ag or A € G.
Suppose that A € G. Then it follows from Lemma 1.4.6 that

@4—0— <65Q+0G>-F>1,

because A ¢ E. Applying Lemma 1.4.6 again, we see that the inequality

65 b d 65 N
32(13_14—14>+I/— <3QQ+VF>-G>1,

holds. Therefore, we obtain the system of inequalities

13200 4 11960m + 20930c + 520a > 16192 4 22774,
16445d + 58305m + 125580c¢ + 2535a + 64350 > 90528,
130a + 845m + 1820c > 1312,

1495m 4+ 910c + 65a + 1650 > 1184,

44 43m > a + l4c,

184 4+ 874c = 299m + 13a + 33b,

184 + 874c > 299m + 13a,

304/4485 > m > 88/2795,

2/23 > ¢ > 1/20,

a+ 14c > 448/65,

31012/4485 > a > b > 13d,

9(a — b) > 23d,

which is inconsistent. Hence, we see that A = Ag. By Lemma 1.4.6, we have

65(a-b d\ v (65 .1
Q+vF) B>
32( 23 9.14>+9 (32 +”> )

because A is not contained in G. Applying Lemma 1.4.6 once again, we see that the inequality

65d 1 (1495m  455¢ 650 4 65, (1495m  455c = 65a 4 . 1
= + + == + + - = | E)-F
9\ 1056 ' 528 ' 1056 33 32 1056 ' 528 ' 1056 33

NeJ

>
9

9—1-




holds. Therefore, we obtain the system of inequalities

(2145d + 1495m + 910c + 65a > 1184,

2275a + 11960m + 20930c¢ > 25024 4 2277d 4 780b
130a + 845m + 1820c > 1312,

1495m + 910c + 65a + 1650 > 1184,

4+ 43m = a + l4c,

184 4 874c > 299m + 13a + 33b,

184 + 874c¢ > 299m + 13a,

304/4485 > m > 88/2795,

2/23 > ¢ > 1/20,

a—+ 14c > 448/65,

31012/4485 > a > b > 13d,

L 9(a — b) > 23d,

which is inconsistent. The obtained contradiction completes the proof. O

Lemma 3.4.10. Suppose that (ag, a1, as,as,d) = (13,23,51,83,166). Then lct(X) = 91/40.

Proof. The surface X can be defined by the quasihomogeneous equation
2 + y5z +z2 + azuy =0,

the surface X is singular at the point O,, O, and O,. The curves C, and C are irreducible.

We have 91 4 4 115
0= let (X, 13C'z> < lct <X, 23Cy> = S0
which implies, in particular, that let(X) < 91/40.

Suppose that lct(X) < 91/40. Then there is a Q-effective divisor D = —Kx such that the
pair (X, %D) is not log canonical at some point P. By Remark 1.4.7, we may assume that the
support of the divisor D does not contain the curves C, and C),.

Since H°(P, Op(663)) contains z°!, y13z%, y?62° and 2'3, it follows from Lemma 1.4.10 that
P € Sing(X) U C;.

Suppose that P € C,. Then

milte(D) yop g
. 23
o751 D 2 mw;(D) it P= 0.,

multp(D) if P# O, and P # O,
which is impossible, because multp(D) > 40/91. Thus, we see that P = O,. Then

8 multp (D) 40 8
=D -Cy= )
1351 v 13 91-13 ~ 13-51
which is a contradiction. Thus, we see that lct(X) = 91/40. O

3.5. SPORADIC CASES WITH I =5
Lemma 3.5.1. Suppose that (ag,ay,as,as,d) = (11,13,19,25,63). Then lct(X) = 13/8.
Proof. The surface X can be defined by the quasihomogeneous equation
22+ yt? + xy4 + a2tz =0,
and X is singular at O, Oy, O, and O;. We have

5 13 5 33 5 57 5 25
let (X, 20y ) = 2 <let (X, 20, ) =22 <let (X, 20, ) = 2L <let (X, 20y ) = 22,
C< ’13Cy> 18<C( ’11C> 20<C< 190> 25<C< 25Ct> 11

which implies, in particular, that let(X) < 13/8.



The curve C}, is reducible. We have C,, = L, + M,, where L,; and M, are irreducible curves
such that L, is given by 2 =t = 0, and M, is given by z = 22 + yt = 0. Then
—27 —28 2 5 10
=—\ M, - = — . =— D-L
S E T e A E T A

and O, € C;. Note that C, is smooth outside of the point O,.
The curve Cy is reducible. We have Cy = L,. + M,,, where L,, and M, are irreducible curves
such that L, is given by y = z = 0, and M, is given by y = 4+ 2t = 0.
-31 —24 4 5 20
- M. . - . - = L= —" D.M, = ——"
Y2 q1-257 Y Y 19.257 YR TTY 957 Y1125 Y 19.25’
and the only singular point of the curve Cy is O;. We have M, - M, = 31/475 and Ly - Ly, = 0.
The curve C, is reducible. We have C, = L. + M., where M, is an irreducible curve that is
given by the equations z = t2 + zy* = 0. The only singular point of C. is O,. We have
12 2 10
Ly, Ly=0 M, M,=—— . = — M, = .
yz xt ) z z 11_137 yz z 117 z 11-13
The curve C} is reducible. We have Cy = L, + M,;, where M, is an irreducible curve that is
given by the equations t = y* + 23z = 0. The only singular point of C; is O.. We have

56 4 20
7th'Mt:77D'Mt:7.
11-19 19 11-19

We suppose that lct(X) < 13/8. Then there is an effective Q-divisor D ~qg —Kx such that

the log pair (X, 1%”D) is not log canonical at some point P € X. Let us derive a contradiction.

Suppose that P ¢ C, U C, UC, UC;. Then there is a unique curve Z C X that is cut out by

Ly - L

ot = o gy D Me :
13-19 13- 25

Ly.-L

M- M; =

ayt2 =2tz

such that P € Z, where 0 # a € C. The curve Z is reducible. Indeed, we have
Ly C SuPp(Z) 2 Lyz:

and we can write Z = C'+pLyt+qLy., where p € Z~o 3 ¢, and C'is a curve on X whose support
does not contains the curves L,; and L,.. Let us prove that C is irreducible and find p and g.
The open subset Z \ (Z N C,) of the curve Z is a Zj1-quotient of the affine curve

ayt? —z =2t +yt’ +yt 2 =0Cc = Spec((C[y,z,t]),
which is isomorphic to an affine septic curve R, C C? that is given by the equation
a2y<t5 + 3 + (1 + oz)t2> =0CC?= Spec((C[y,z]),

which implies that the curve C' is irreducible, the inequality multp(C') < 6 and the equality
Lif a # —1,
q_{Zﬁa:—L
hold. But p = 2, because the subset Z \ (Z N Cy) is a Zj3-quotient of the curve

ZIE4

1
2t z2t—|—x+ ix‘lz =0C (3 Spec(((:[x,z,t]).
« «

Therefore, we see that P € C' and we have the following possibilities:
e the inequality o # —1 holds, p=2# ¢ =1 and

117 94 8636 244
L, = = L = O = 0= 7.
Cloe =g O L= 575 O 0= 555 PO = q0a5°
e the equality o = —1 holds, p = ¢ = 2 and
117 5 179 45
Cth—m,CLyz—ﬁ,CC—ﬁ,DC—%



We see that C is irreducible and multp(C') < 6. Then the log pair

13
<X7 8 63 <C+pth+qu2)>

must be log canonical at the point P. By Remark 1.4.7, we may assume that Supp(D) does not
contain at least one curve among the curves C', Ly and L,.. Put

D=eC+=,

where = is an effective Q-divisor such that C' ¢ Supp(Z). Now we obtain the inequality ¢ < 5/94,
because either € =0, or Ly - Z > 0, or L, - = > 0. On the other hand, we see that
D-C=eC?>+EZ-C>eC?+ multP(E) =eC? + multp(D) — emultp(C) > eC? + 1% — be,
which implies that € > 2594/40755. But € < 5/94. Thus, we see that P € C, UC, UC, U Cy.
It follows from Remark 1.4.7 that we may assume that Supp(D) does not contains are least
one irreducible component of the curves Cy, Cy, C;, C;.
Suppose that P € L. Put D = §L,; + O, where © is an effective Q-divisor whose support
does not contain the curve L,;. If § # 0, then
10
13- 25
which implies that 6 < 1/5. Then it follows from Lemma 1.4.6 that

26
13’

=DM, = (6Lyt +©) - My > Ly - My, =

8 . .
3 if P ¢ Sing(X),
8

13-19
8

13-13
which implies that 6 > 3/27. But 6 < 1/5. Thus, we see that P & L.

Suppose tat P € L,, and P # O;. Arguing as in the previous case, we obtain a contradiction.
Suppose that P € M, and P # O;. Then P is a smooth point of X, because P ¢ L,;. Put

D=eM,+ T,

where T is an effective Q-divisor such that M, ¢ Supp(Y). If e # 0, then

) 2e

13-19 13’

which implies that e < 5/38. Then it follows from Lemma 1.4.6 that

10 + 28e 8

1325 13’
which implies that e > 95/14. But e < 5/38. Thus, we see that P ¢ M, or P = O.
Arguing as above, we see that either P & M, or P = O;. Then P € M, U M; or P = Oy.

Suppose that P € M,. Put D = sM, + A, Where A is an effective Q-divisor whose support
does not contain the curve M,. If s # 0, then

54279
13-19

— (= Kx —0Lyt) Loy = O Ly >

it P=0,,

if P=0,,

:DLa;t:(eMx‘i‘T)La;t}@thMa;:

=(-Kx—eM;) -My=7-M, >

> 2s
which implies that s < 1 / 10. Then it follows from Lemma 1.4.6 that
10 9 "

8
=D M,=sM>+A-M M2+ —>— > ——
11-13 v =8Mg + x> sMe+ 932937 97 13

which is a contradiction. Thus, we see that P ¢ M,. Similarly, we see that P ¢ M;.
The obtained contradiction shows that P = O;. Then
5 8 5
2 _D.L
11-25 v* 71325 ~ 1125
whenever L,. ¢ Supp(D). Thus, we see that L,, C Supp(D). Then M, ¢ Supp(D). Put

D =mL,, + cM; + §Q,




where m > 0 and ¢ > 0, and (2 is an effective Q-divisor such that L,, ¢ Supp(2) 2 M,. Then

20 4m  multo, (D) —m _ 3m+ &
=DM, = (mL M, +Q) - My, > — L 1
19-25 (mLys Mo+ 2) - My > 5 25 S
which implies that m < 36/247. Then it follows from Lemma 1.4.6 that
5+ 31m 8
11-25 :(_KX_mLyz)‘Lyz:(Q+CMx)'Lyz>13'257

which implies that m > 23/403. We will see later that ¢ > 0 as well.
Arguing as above, we see obtain an inconsistent system of inequalities
1216
20 > 3m + 905
19-25 25 ’
5+ 31lm S 1216
11-25 905 - 25’

in the case when (X, 121 D) is not log canonical at O;. We see that let(X) > 1216/905.

_ » 7905
Let 7: X — X be a weighted blow up of Oy with weights (11,19), let £ be the exceptional

curve of , let , I}yz, M, M, be the proper transforms of €2, L,., M,, M,, respectively. Then

) 5 - . 9 19 . 11
Ky =m"(Kx) + 52 B Lys =" (Ly) = 5o B, My =*(My) = -, My =n*(My) — - E,

and there is a positive rational number a such that

Q=7"(Q) - %E.

The curve E contains two singular points Q11 and Q19 of X such that Qi; is a singular point
of type 11—1(2, 3), and Q19 is a singular point of type %(11, 13). Then
Eyz U My ; Q19 € Mz ; Qll = I:yz ﬂMyﬁ
which implies that Eyz N M, = @. The log pull back of the log pair (X, 1—E?D) is the log pair

13mi +&M+ 247m+1430+137a 1
g Y2 g ® 200 200 200 5 ’

which must have non-log canonical singularity at some point ) € E. We have
) 3lm —a—1lc
11-25 + 11-25 ’
which implies that a + 11c¢ < 5 + 31m. But m < 36/247. Hence, we see that a < 2351/247 and

<247m 143¢  13a 1>
< 1.

_ 13 _
X,—0
(x50

0< Ly, Q2=

200 200 200 5
The log pull back of the the log pair (X, %D) is effective if and only if the inequality
19m + 11lc+a > 40/13
holds. On the other hand, if 19m + 11¢ + a < 40/13, then the log pair

<5<, B B, 1830M)
is not log canonical at the point @ as well. Thus, if 19m + 11c¢ + a < 40/13, then
S QuAQ#Qu.
13'111(1)-19 z a+1?771;116 - <Q+mZyZ+CMx> ke 1%% Q= Gn,
S iQ= Q.

which is absurd. Thus, the log pull back of (X, %D) is effective.



Suppose that Q # Q11 and Q # Q19. Then Q & L,. U M,. By Lemma 1.4.6, we have
¢ _Yp2_0.E> E,
19-11 25 13

because E? = —25/209. Then a > 1672/13, which is impossible, because a < 2351/247.
Therefore, we see that either @ = Q11 or Q = Q19.
Suppose that Q = @Q11. Then Q € M,. Hence, it follows from Lemma 1.4.6 that

13 - 247Tm  143¢  13a 1 _ 1
—Q+ [ = —— — | E) Ly, > —,
<8 +< 200 " 200 ' 200 5) > RN

but Ly, - E =1/11 and Ly, - M, = 0. Moreover, we have

0 ] 7 11 54+3lm—a—11
Q‘LyZ:<Q+0Mx)'Lyz=(D—mLyz).Lyz_a+ ¢ _ o+slm—a c

2511 11-25 ’
which immediately implies that m > 19/130. But m < 36/247, which is a contradiction.
Thus, we see that @@ = Q19. Then Q ¢ L., and it follows from Lemma 1.4.6 that

13 - 24Tm  143¢  13a 1 _ 1
0 ik = _VE) M. > —
(8 +<200+200+200 5> ) z>19’
but we have M, - E = 1/19. Therefore, it follows from the equality
a a 10 — 13m + 28¢ a
—— =D-M,—mL,, - M, —cM, M, — = —
2519 T Myt M T e e T o5 19 13- 25 2519’
which implies that ¢ > 2 /27. But ¢ < 5/28. However, we have no contradiction here.
Let ¢¥: X — ~X’ be a weighted blow up of Q19 with weights (11,13), let G be the exceptional
curve of v, let Q, L,., M., E be the proper transforms of €2, L., M, F, respectively. Then

— IR (T o ~f*__E ~:*_E ~:*__£

Q-M,=Q-M,—

where b is a positive rational number. 3
The curve G contains two singular points O11 and O3 of X such that Oq; is a singular point
of type 11—1(2, 3), and Oq3 is a singular point of type 11—3(1, 2). Then

E#Oi3€ M, 301 €E,
where E N M, = @. The log pull back of the log pair (X, %D) is the log pair

~ 13~ 13m - 13¢ ~ 24Tm  143¢  13a 1\ -
<X,8Q+8Lyz+8Mx+ <200+ 200 +200—5>E+9G>,
which must have non-log canonical singularity at some point O € G, where
143¢  13b  169a 169m 2
100 152 13800 ~ 200 5
Let us show that # < 1. Indeed, we have
10 28 a+ 19m b
13.25  13-25 19.25 19.13’
which implies that 256 < 190+ 532¢ —13(a+19m). Then 6 < 1, because ¢ > 2/27 and ¢ < 5/38.
Let us show that 6 > 0. If § < 0, then the log pair

~ 13~ 13m - 13¢c ~ 24Tm  143¢  13a 1\ =
X, Q0+ ——L,, +—M, — — - )E
(’8 Ty ety x+<200+200+200 5) )

is not log canonical at the point O as well. Thus, if 8 < 0, then
5 19 13~ 13m - 13c -~ 24tm  143c¢  13a 1)\ = 1

0 = =04 —L —M, —_— ———|E|-G>—
TRSERTESE (8 Ty ety 1’+<200+200+200 5> ) 13’

which implies that # > 6/19, which is absurd. Hence,Nwe see that 1 > 60 > 0.
Suppose that O # 011 and O # O13. Then O € E U M., and it follows from Lemma 1.4.6
that

0< M, -Q=

b b o = 8
11-13__EG ' 13




because G? = —19/143. Thus, we see that b > 88. On the other hand, the inequalities
a+19m —1b
C11-19
hold. Then a + 19m > b > 88. Thus, we obtain the system of inequalities
a—+19m > b > 88,
25b < 190 + 532¢ — 13(a + 19m),
5/38 > ¢ > 2/27,
which is inconsistent. Therefore, we see that either O = 011 or O = Oq3.
Suppose that O = O13. Then O ¢ F, and it follows from Lemma 1.4.6 that
190 + 532¢ — 25b — 13(a + 19m) _ Q.11 56 22¢ b a m
19-13-25 845 325 247 475 25’
which implies that ¢ > 3/13. But ¢ < 5/ 28, which is a contradiction.
Thus, we see that O = Oq1. Then O € M,.. Hence, it follows from Lemma 1.4.6 that
a+19m —b ~ ~ 56 2c b 13a 13m
19-1 (Q+mLyz> B> 5~ % 20 5035 275
which implies that 22¢ > 280/13 — 2(a + 19m). Applying Lemma 1.4.6 again, we see that

0< (Q+mly.)- B =

which implies that 13(a + 19m) + 143c + 25b > 240. Note that M, ¢ Supp (Q). Thus we have
a+19m - 20—-31lc a+19m

0<Q-M,=Q-M,———F-M, = _ 7
v Y 25 T 19.25 2511

which implies that 19(a + 19m) < 220 — 341c. Similarly, we see that

20 3lc dm multp, (2) _ 8/13—m —c¢
_ _ — _ _ . —-QO. >
0.5 10.25 25 _\(PeMromly)- My =Q-M, > == > 25 )

which implies that 108/13 > 12¢ + 57m. Thus, we obtain the system of inequalities
19(a + 19m) < 220 — 341c,

25b < 190 + 532¢ — 13(a + 19m),

13(a + 19m) + 143c + 25b > 240,

22¢ > 280/13 — 2(a + 19m),

108/13 > 12¢ + 57m,

a+1le <5+ 31m,

5/38 > ¢ > 2/27,

which is, unfortunately, consistent. So, we must blow up the point O1;.
Let ¢: X — X be a welghted blow up of O;; with weights (2,3), let F' be the exceptional
curve of ¢, let Q, Lyz7 M,, E be the proper transforms of , L., M, E, respectively. Then

\

6 A 3 - . 2 A ~ d
Ky =0¢"(Kg)— —F = ¢* ——F E=¢"(F)— —F, Q=9¢*(Q) — —F
where d is a positive rational number. Then F? = —11/6 and
A d 7/ . . a+19m —b d -~ x b d o1 .1
0. F=2 (Q L )-Ezi——, e Y P G=Z F-E==:.
6 miy 11-19 33 G 11-13 22 ¢ 2 3

The curve F contains two singular points Ay and As of the surface X such that A, is a singular
point of type (1 1), and Ajz is a singular point of type %(1, 2). Then
E%AQEG’%A?,EEA',
where £ NG = @. The log pull back of the log pair (X, 1—83D) is the log pair
s 13,  13m . 13¢ ~ 247Tm  143¢  13a 1)\ - A
X, —Q L —M —_— — —— | E+0G+vF
< g T g ey <200+200+200 5>+ +”>’




which must have non-log canonical singularity at some point A € F', where

91m  13c = 9la 39b 13d 2

500 T 25 " 3300 T 1672 T 88 5

Obviously, the inequality v > 0 holds. Let us show that v < 1. Indeed, we have

b d
11-13 22’

a+19m —b d . N - A 4
[ — . > < . —
11-19 33 F (Q+mLyz)/0\G &

which implies that 2b > 13d and 3(a + 19m — b) > 19d. But the system of inequalities

(20 > 13d,

3(a+19m —b) > 19d,

1001(a 4+ 19m) + 21736¢ + 975b 4+ 6175d > 25080,
19(a + 19m) < 220 — 341c,

25b < 190 + 532¢ — 13(a + 19m),

13(a + 19m) + 143c 4 25b > 240,

22¢ > 280/13 — 2(a + 19m),

108/13 > 12¢ + 57m,

a+1lle <5+ 31lm,

5/38 > ¢ > 2/27,

\

is inconsistent. Hence, we see that 1 > v > 0. o
Suppose that A # As and A # As. Then A ¢ E'UG, and it follows from Lemma 1.4.6 that

d - 8
SO0 F>=2
6 >137

which implies that d > 48/13. But the system of inequalities

d > 48/13,

2b > 13d,

3(a+ 19m —b) > 19d,

19(a + 19m) < 220 — 341,

256 < 190 + 532¢ — 13(a + 19m),
13(a + 19m) + 143c + 25b > 240,
22¢ > 280/13 — 2(a + 19m),
108/13 > 12¢ + 57m,

a+1lc <5+ 31m,

5/38 > ¢ > 2/27,

is inconsistent. Therefore, we see that either A = A, or A = Ag.
Suppose that A = As. Then it follows from Lemma 1.4.6 that

13d 1 1430+173)l)+169a+169m 2\ (134
100 152 3800 200 5)

A 1

because A ¢ E. Applying Lemma 1.4.6 again, we see that the inequality

B b dy, Lotm dc, 9o, 3%  13d, 23 _ (13, p).¢> 2
48 \11-13 22/ "2\ 200 ' 25 3800 1672 8 ' 5) \'8 2’




holds. Therefore, we obtain the system of inequalities

2b > 13d,

3(a+19m —b) > 19d,

16302¢ + 975b 4 507(a + 19m) + 6175d > 15960,
1976¢ + 91(a + 19m) + 175b > 2280,

19(a + 19m) < 220 — 341c,

25b < 190 + 532¢ — 13(a + 19m),

13(a + 19m) + 143c + 25b > 240,

22¢ > 280/13 — 2(a + 19m),

108/13 > 12¢ + 57m,

a+1le <54 31m,

5/38 > ¢ > 2/27,

which is inconsistent. Hence, we see that A = A3. By Lemma 1.4.6, we have

13d 1<247m 43¢ 13a 1>_<13Q <247m 143¢ | 13a 1>E>
S\

8 3

500 T 200 200 5

1
F> 2,
3

200 200 200 5
because A is not contained in G. Applying Lemma 1.4.6 again, we see that the inequality
13 (a+19m_b—d>+1 <91m+136+ Ila +3%+13d+2> = <13§2+VF)-E> L
4 11-19 33 3\ 200 25 3800 1672 88 5 8 3
holds. Therefore, we obtain the system of inequalities
(2b > 13d,

3(a+19m — b) > 19d,

286¢ + 26(a + 19m) + 325d > 480,

143¢ + 13(a + 19m) > 165,

19(a + 19m) < 220 — 341c,

25b < 190 + 532¢ — 13(a + 19m),

13(a + 19m) 4 143c + 25b > 240,

22¢ > 280/13 — 2(a + 19m),

108/13 > 12¢ + 57m,

a4+ 1le <54 31m,
[ 5/38 > ¢ >2/27,

which is inconsistent. The obtained contradiction completes the proof. O

Lemma 3.5.2. Suppose that and (ag, a1, a2, as,d) = (11,25,37,68,136). Then lct(X) = 11/6.
Proof. The surface X can be defined by the quasihomogeneous equation
oy’ + 224y +t2 =0,

and X is singular at the points O, O, and O..
The curves C, and Cy are reduced and irreducible. We have

11 5 5 55
—=lct | X,—=C, let | X, — = —,
5 ct( ,HC>< ct< 25Cy> 1R

which implies thatlet(X) < 11/6.

Suppose that lct(X) < 11/6. Then there is an effective Q-divisor D = —Kx such that the
pair (X, %D) is not log canonical at some point P. by Remark 1.4.7 we may assume that the
support of D does not contain C, and Cj,.

Since HO(P, Op(407)) contains z37, z!'' and z'2y'!, we see that P € Sing(X) U C, by
Lemma 1.4.10.



Suppose that P € C,. Then

multp(D) itp—o0,
10 25
537 D Ce? Hmlt;?(D)ifP_Oz,

multp (D) if P # Oy and P # O.,
which is impossible, because multp(D) > 6/11. Thus, we see that P = O,. Then

10 multp(D) 6 10
-D.-C, >\ 5 7 ’
11-37 C 11 121 11.37
which is a contradiction. Thus, we see that lct(X) = 11/6. O

Lemma 3.5.3. Suppose that (ag, a1, as,as,d) = (13,19,41,68,136). Then lct(X) = 91/50.

Proof. The surface X is defined by the quasihomogeneous equation
:):gy + 28+ y5z +t2=0,

and X is singular at the points O, O, and O..
The curves C and Cy are reduced and irreducible. Then

91 ) ) 19

— =lct | X, =C let(X, —=C,) = —

50 C(’13 x><c(’19 V=5
which implies that let(X) < 2.

Suppose that let(X) < 91/50. Then there is an effective Q-divisor D = —Kx such that the
pair (X, %D) is not log canonical at some point P. By Remark 1.4.7 we may assume that the
support of D does not contain C; and Cj,.

Since HY(P, Op(533)) contains z*', 2!3 and 233?6, we see that P € Sing(X) U C, by
Lemma 1.4.10.

Suppose that P € C,.. Then

Hmltlpg(l?)ifp:Oy,
10
941 D2 mmzw) it P= 0.,

multp(D) if P# O, and P # O,
which is impossible, because multp(D) > 50/91. We see that P = O,. Then

10 multp (D) 50 10
=D.C, > :
13-41 “ 13 91-13 1341
which is a contradiction. Thus, we see that lct(X) = 91/50. O

3.6. SPORADIC CASES WITH [ =6
Lemma 3.6.1. Suppose that (ag, a1, as,as3,d) = (5,7,8,9,23). Then lct(X) = 5/8.
Proof. The surface X can be defined by the quasihomogeneous equation
yz? +y*t+at? + 232 =0,
and X is singular at Oz, Oy, O, and O;. We have
let <X, EC;L) = g < lct <X, :Cy> = g < lct (X, SCZ> = g < lct (X, SC}) =1,

which implies, in particular, that lct(X) < 5/8.
The curve Cy is reducible. We have C, = Ly + M, where L, and M, are irreducible curves
such that L, is given by x =y = 0, and M, is given by x = 22 +yt = 0. Then
—11 —4 2 6 12

Lmy'ny:ﬁy Msz:ﬁa Lzy'Mrzga D'Lwy:ﬂa DMQ;:779,



and L;, N M; = O;. Note that C, is smooth outside of the point O;.
The curve Cy is reducible. We have Cy = Ly, + M,, where M, is an irreducible curve such
that M, is given by y = t2 + 222 = 0. Then

1 1 3
My-My:g’ ny‘My:Z’D.My:E7

and L;, N M, = O.. The only singular point of the curve Cj is O..

The curve C, is reducible. We have C, = L,; + M, where L,; and M, are irreducible curves
such that L; is given by # = y = 0, and M, is given by z = tx 4+ y?> = 0. Then

L L= 8, Mo M= 2, Ly Mo= 2, DeLu= o DM, = -,

and L.;NM, = O,. The only singular point of C, is O,. We have Ly-L.; = 0 and Ly,-M, = 1/9.

The curve C4 is reducible. We have Cy = L,; + M;, where M, is an irreducible curve that is
given by the equations t = 2 + 2%y = 0. Then

My My= 2o Ly My=2, D M=o

and L.; N M; = Oy. The only singular point of C; is O,,.

We suppose that lct(X) < 5/8. Then there is an effective Q-divisor D ~g —Kx such that
the log pair (X, %D) is not log canonical at some point P € X. Let us derive a contradiction.

Suppose that P ¢ C, UC, UC,UC;. Then there is a unique curve Z, C X that is cut out by

ot + ay® =0

such that P € Z, where 0 # a € C. The curve Z, is reduced. But it is always reducible. Indeed,
one can easily check that
Lo = Ca + L:py
where C,, is a reduced curve whose support contains no L. Let us prove that C, is irreducible
if a # 1.
The open subset Z, \ (Z, N Cy) of the curve Z, is a Zs-quotient of the affine curve

ttay=0=9y2 +t+t°+2=0CcC> = Spec((C[y,z,t]),
which is isomorphic to a plane affine curve that is given by the equation
y(a(a — Dyt + 2+ 22y> =0cCcC?= Spec((C[y, z]),

which implies that the curve C,, is irreducible and multp(C,) < 3 if av # 1.
The case a = 1 is special. Namely, if o = 1, then

Cy =Ry + M,

where R; is a reduced curve whose support contains no €. Arguing as in the case o # 1, we
see that R; is irreducible and R; is smooth at the point P.

By Remark 1.4.7, we may assume that Supp(D) does not contain at least one irreducible
components of the curve Z,.

Suppose that o # 1. Then elementary calculations imply that

25 449 41-6

5.9 CoCo= gy D-Ca =355
and we can put D = €C, + =, where = is an effective Q-divisor such that C, ¢ Supp(Z). Now
we obtain the inequality e < 6/25, because either e = 0, or L, - = > 0. On the other hand, we
see that

41 -6

360 D-Co = €Ci+E-Co 2 C)+multp (E> = €C? tmultp (D) _€mu1tP(Ca) > eCo%‘Fg_?)e,

which is impossible, because € < 6/25.
Thus, we see that & = 1. Then elementary calculations imply that

17 13 28 30
By Loy = o750 B Fa= o5, M- By = 75, D By = 275,

Co - Ly =



and we can put D = € Ry + =1, where E; is an effective Q-divisor such that R; ¢ Supp(Z1).
Now we obtain the inequality €; < 12/25, because either € =0, or Ly, -=; > 0 or M, -Z; > 0.
By Lemma 1.4.6, we see that

30— 131 _ R 5

T Ty
which is impossible, because €; < 12/25. Thus, we see that P € C, UC, UC, U Cy.

It follows from Remark 1.4.7 that we may assume that Supp(D) does not contains are least

one irreducible component of the curves Cy, Cy, C, C;.

Suppose that P = O,. If L, ¢ Supp(D), then

1 multp(D) 1
—=D Ly,>—F—F—> _,
12 v 8 ”5
which is a contradiction. If M, ¢ Supp(D), then
1% _ DM, > multP(D)rgnultp(My) _ 2mul‘;p(D) - %,

which is a contradiction. Thus, we see that P # O,. Similarly, we see that P # O, and P # O,,.
Suppose that P € L,,. Put D = 6L, + O, where © is an effective Q-divisor whose support
does not contain the curve L,,. If § # 0, then

4 26
—:D'Mx:(5ny+@)‘Mx>5ny'Mx:§,

21
which implies that 6 < 6/7. Then it follows from Lemma 1.4.6 that
8.
11 —if P 75 Ot,
S Ky bLuy) Lay=0 Ly > 0
& Sip-0
577
which implies that 6 > 34/55 and P = Oy, because § < 6/7. Then
4 ltp(D)—0 _ 26 8/5-6
g7 =DM, = (5ny+®)-Mm>5ny-Mx+mupé)>9+ /9 :

which implies that 6 < 4/35. But § > 34/35. Thus, we see that P # L,,. Then P ¢ Sing(X).
Suppose that P € M,. Put D = eM, + YT, where Y is an effective Q-divisor such that
M, ¢ Supp(Y). If e # 0, then

%:D-Lwy: (eMx—i-T) 'Lwy>eL$y-Mx:%,
which implies that e < 3/8. Then it follows from Lemma 1.4.6 that
4;46 = (~ Ky —eM,) My ="M, > %
which is impossible, because e < 3/8. Thus, we see that P ¢ M,. Similarly, we see that
P& L,;UM,UDM,U M, which is a contradiction. O

Lemma 3.6.2. Suppose that (ag, a1, az,as,d) = (7,10,15,19,45). Then lct(X) = 35/54.
Proof. The surface X can be defined by the quasihomogeneous equation

P4 ydr 4+ at? + 2%y =0,
the surface X is singular at the point O, Oy, O;. The surface X is also singular at a point @
such that @) # O, and O, and @ are cut out on X by the equations z =t = 0.

The curve C, is reducible. We have C, = L., + Z,, where L., and Z, are irreducible and
reduced curves such that L., is given by the equations x = z = 0, and Z, is given by the
equations z = 22 +y3 = 0. Then

—23 —16 3
gz - I .7 -
10-197 7% 7 10.197 T

19’
and L, N Z; = Oy. The curve Cj is irreducible and

35 6 6 25
— =lct | X, =C, let | X, — = —
1 ct< ,7C>< ct( 1OCy)



which implies, in particular, that lct(X) < 35/54.

Suppose that lct(X) < 35/54. Then there is a Q-effective divisor D = —Kx such that the
pair (X, giD) is not log canonical at some point P. By Remark 1.4.7, we may assume that the
support of the divisor D does not contain the curve Cy. Similarly, we may assume that either

L. Z Supp(D), or Z, € Supp(D).
Since HO(P, Op(105)) contains x'°, y7z° and 27, it follows from Lemma 1.4.10 that P €
Sing(X) U C;.
Suppose that P = Oy. If L,, Z Supp(D), then
6 multp (D) 54 6
=D-L,. > ,
10-19 v 19  ~35-19 10-19
which is a contradiction. If Z, Z Supp(D), then
12 D.Z.> multp (D)multp(Z,)  54-2 - 12 7
10-19 15 35-19 © 10-19
which is a contradiction. Thus, we see that P # O;.

Suppose that P € Ly,. Put D = mL,, + Q, where € is an effective Q-divisor such that
L. ¢ Supp(QQ). If m # 0, then

12 3m
010~ KxZe=D-Zp= (mla:+ Q) Zp 2 mLez - Zp = o,
which implies that m < 2/5. Then it follows from Lemma 1.4.6 that
54
— if P#0
6 +23m 1 Y
7:(_KX_msz)'Lzz:Q'sz> 35
10-19 54 1
—— it P=0,,
3510

which is impossible, because m < 2/5. Thus, we see that P ¢ L.
Suppose that P € Z,. Put D = eZ, + A, where A is an effective QQ-divisor such that
Zy ¢ Supp(A). If € # 0, then
6
10-19
which implies that m < 1/5. Then it follows from Lemma 1.4.6 that

o EP7#Q
6+ 166 B 351 v
010 =(—Kx —€Zy) Zy=A-Zy >

e
19’

541
Pl po
355 @

which is impossible, because € < 1/5. Thus, we see that P ¢ Z,.
We see that P ¢ C,, and P € Sing(X). Then P = O,. We have

18 >multp(D)> 54 18
7 3577 7-19

which is a contradiction. Thus, we see that lct(X) = 35/54. O
Lemma 3.6.3. Suppose that (ag, a1, as,as,d) = (11,19,29,53,106). Then lct(X) = 55/36.

Proof. We may assume that the surface X is defined by the quasihomogeneous equation
x4 zy® + y23 +t2=0.

Note that X is singular at Oy, O, and O,. The curves C, and Cj are irreducible. It is easy to

see
95 o7

36 lct(X C’y) %
Suppose that let(X) < 36 Then there is an effective Q divisor D = —Kx such that the pair
(X, 82D) is not log canonical.
For a smooth point P € X \ C, and an effective Q-divisor D = —Kx, we have
6-319 - 106 36
11-19.29.53 ~ 55

lct(X EC )=

multpD <



since H(P, Op(319)) contains 229, 21, 21011, Therefore, either there is a point P € Cy such
that multpD > 2% or we have multp, D > 28. Smce the pairs (X, £22.C,) and (X, $22.C,) are
log canonical and the curves C, and C, are irreducible, we may assume that the support of D
does not contain the curves C, and C'y. Then we can obtain
11-19-106-6 36
Ito. D<11C, DL —————— < —
RO, y 11-19-29-53 ~ 55
and for any point P € C;
29-11-106-6 < 36
11-19-29-53 ~ 55°

Therefore, let(X) = 22. O
Lemma 3.6.4. Suppose that (ag, a1, as,as,d) = (13,15,31,53,106). Then lct(X) = 45/28.

multpD < 29C, - D <

Proof. The surface X can be defined by the quasihomogeneous equation
z' 2+ zy” + y23 +t2=0,

and X is singular at the points O, Oy and O..
The curves C, and Cy are reduced and irreducible. We have

45 6 6 65
O (x00) <a(x fe) -8
which implies thatlet(X) < 45/28.

Suppose that let(X) < 45/28. Then there is an effective Q-divisor D = —Kx such that the
pair (X, %gD) is not log canonical at some point P. by Remark 1.4.7 we may assume that the
support of D does not contain C, and Cj,.

Since HO(P, Op(403)) contains 23!, 2'3, 2y%6, we see that P € Sing(X)UC, by Lemma 1.4.10.

Suppose that P € C,.. Then

ltp(D
miltr(D) o p o,
0 15
—D.C, > ltp(D
14-31 @ Hm;l()ifP:Oz,

multP(D) it P# Oy, and P # O,
which implies that P = O, because multp(D) > 28/45. Then
12 multp (D) multp(Cy) 56 12
=D -Cy> )
13-31 4 31 >45-30>13-31
because multp(Cy) = 2. Thus, we see that P = O,. Then
12 multp (D) 28 12
-D.-C, > :
13- 31 Cy 13~ 45-13 13-31
which is a contradiction. Thus, we see that lct(X) = 45/28. O

3.7. SPORADIC CASES WITH [ =7
Lemma 3.7.1. Suppose that (ag, a1, az,as,d) = (11,13,21,38,76). Then lct(X) = 13/10.
Proof. We may assume that the surface X is defined by the quasihomogeneous equation
t2 + yz3 + :ry5 +2%2=0.

Note that X is singular at O, Oy and O..
The curves U, and Cy are irreducible. We have
55 7 7 13
=1
o) ct(X C)>lct(X 130) o

which implies, in particular, that let(X ) < 13/10.



Suppose that lct(X) < 13/10. Then there is a Q-effective divisor D = —Kx such that the
pair (X, %D) is not log canonical at some point P. By Remark 1.4.7, we may assume that the
support of D does not contain the curves C, and C,,.

Suppose that P € C, and P ¢ Sing(X). Then

10 2 10
— <multp(D) <D -Cp = — < —,
13 < multr(D) * 739 13
which is a contradiction. Suppose that P € Cy and P ¢ Sing(X). Then
10 2 10
— <multp(D) <D -Cy=— < —,
13 < multr(D) Y7335 13
which is a contradiction. Suppose that P = O,. Then
101 multo, (D) 2 101
I =2 <D . —
311 11 @Y= B
which is a contradiction. Suppose that P = O,. Then
10 2 - 2multp, (D) _ multo, (D)multo, (Cy) <D-C, = 2 - 937
1321 21 21 33 1321
which is a contradiction. Suppose that P = O,. Then
10 1 multo, (D) 2 10 1
L« T DO e <
1313 13 39 1313

which is a contradiction. Thus, we see that P € X \ Sing(X) and P ¢ C, U C,,.
Let £ be the pencil on X that is cut out by the pencil
Azt + py't =0,

where [\ : ] € PL. Then the base locus of the pencil £ consists of the point O,.

Let C be the unique curve in £ that passes through the point P. Arguing as in the proof of
Lemma 3.3.1, we see that the curve C is irreducible. On the other hand, the curve C' is a double
cover of the curve

Az + py't =0 C P(11,13,21) = Proj (C [y, ZD

such that A # 0 and g # 0. Thus, the inequality multp(C) < 2 holds. In particular, the log
pair (X, %C’) is log canonical. Thus, we may assume that the support of D does not contain
the curve C' and hence we obtain

10 2 10
= tp(D) <D -C=2< —,
13<mutp( ) C 3 <13

which is a contradiction. O

3.8. SPORADIC CASES WITH [ =38
Lemma 3.8.1. Suppose that (ag,ay,as,as,d) = (7,11,13,23,46). Then lct(X) = 35/48.
Proof. The surface X can be defined by the quasihomogeneous equation
2+ 32+ 222+ 2y =0,

the surface X is singular at the point O,, Oy and O..
The curves C,, Cy and C; are irreducible. We have

35 8 8 91 8 55
—=let | X, =0, | <let [ X, =C, | = =<t | X, =C) | = —
48 C<’7x> C<’13Z> 80 C(’11 y) 48"
which implies, in particular, that let(X) < 35/48.

Suppose that let(X) < 35/48. Then there is a Q-effective divisor D = —Kx such that the
pair (X, %D) is not log canonical at some point P. By Remark 1.4.7, we may assume that the
support of the divisor D does not contain the curves C,, Cy, and C..



Suppose that P € C,. Then

multhl(m ey
16
113~ D-C,> multp(D)Eultoz (Cm) itP=o0.

multp(D) if P # O, and P # O,

which is impossible, because multp(D) > 48/35 and multp, (Cy) = 2.
We see that P # O,. Suppose that P € C,. Then

multp(D) ) B
2 _pog — if P =0y,
multp (D) if P # Oy,

which is impossible, because multp(D) > 48/35. Thus, we see that P € Cy. Then P ¢ Sing(X).
Let us show that P ¢ C,. Suppose that P € C,. Then

16
which is a contradiction. Thus, we see that P ¢ C..
We see that P ¢ C,, UC, U C,. Then there is a unique curve Z C X that is cut out by

48
35’

zty = az?

such that P € Z, where 0 # «a € C. We see that C,, ¢ Supp(Z). But the open subset Z\ (ZNC,,)
of the curve Z is a Zr7-quotient of the affine curve
y—a =’ 4yl 4+ B +y=0cC= Spec((C[y,z,t]),
which is isomorphic to a plane affine curve R, C C? that is given by the equation
2+ +(1+a)2=0cC? Spec(@[y, z]),

which is irreducible if o # —1. We see that Z is irreducible if o # —1.
It follows from the equation of the curve R, that the log pair (X, %Z ) is log canonical at
the point P. By Remark 1.4.7, we may assume that Supp(D) does not contain at least one
irreducible component of the curve Z.
Suppose that a # —1. Then Z ¢ Supp(D) and

48 48

— =D -Z >multp(D —,

77 multp (D) > o

which is a contradiction. Thus, we see that a = —1.
We have Z = Z; + Z5, where Z; and Z, are irreducible reduced curves such that

742 10 12 194
i I1 =71 - 1= —. Z1- Loy = — T
141 A= s A L2 = + 11 e

and Z1 N Z3 = O, U Oy. We may assume that P € Z;.
Put D = mZ; +Q, where Q is an effective Q-divisor such that Z; ¢ Supp(£2). If m # 0, then

24 194
7:_KX.ZQZD.ZQZ(leJrQ).ZQ}le.Z?:im’
77 77
which implies that m < 12/97. Then it follows from Lemma 1.4.6 that
24 — 742m 48
————— = (—-Kx—mZ4) - Z1 =071 > —
77 ( X —m 1) 1 1 35’
which is a contradiction. The obtained contradiction completes the proof. O

Lemma 3.8.2. Suppose that (ag,ay,as,as,d) = (7,18,27,37,81). Then lct(X) = 35/72.



Proof. The surface X can be defined by the quasihomogeneous equation

B4z 4t + 2% =0,
the surface X is singular at the point O, Oy, O;. The surface X is also singular at a point @)
such that @ # O, and O, and @ are cut out on X by the equations z =t = 0.

The curve C, is reducible. We have C, = L., + Z,, where L,, and Z, are irreducible and
reduced curves such that L., is given by the equations x = z = 0, and Z, is given by the
equations x = 22 + y3 = 0. Then

—47 —40 3
and L, N Z; = O;. The curve Cy is irreducible and

35 8 8 15
2 e (x,00,) <t (x, 20, ) = 22,
7 C< ’7C><C< 18%) 8

which implies, in particular, that let(X) < 35/72.

Suppose that let(X) < 35/78. Then there is a Q-effective divisor D = —Kx such that the
pair (X, ;’gD) is not log canonical at some point P. By Remark 1.4.7, we may assume that the
support of the divisor D does not contain the curve C,. Similarly, we may assume that either

Ly € Supp(D), or Z,  Supp(D).

Since H°(P, Op(189)) contains 227, y"z® and 27, it follows from Lemma 1.4.10 that P €
Sing(X) U Cy.

Suppose that P = Oy. If L,, € Supp(D), then

8 multp (D) 72 8
13-37 37~ 35.37 1837
which is a contradiction. If Z, Z Supp(D), then
16 multp (D) 72 16
1337 37~ 35.37 1837

which is a contradiction. Thus, we see that P # O,.
Suppose that P € L,,. Put D = mL,, + Q, where 2 is an effective QQ-divisor such that
L. ¢ Supp(Q). If m # 0, then

16 3
—= = —KxZ, =D Z; = (mLy: + ) -Zx>mLxZ-Zx:3—n;,
which implies that m < 8/27. Then it follows from Lemma 1.4.6 that
72
- if P # O,,
8+ 47m !
e  (“ Kx —mLy.) Lye = Q- Ly > 39
18 - 37 721
—— if P=0,,
3518

which is impossible, because m < 8/27. Thus, we see that P & L.
Suppose that P € Z,. Put D = e¢Z, + A, where A is an effective QQ-divisor such that
Zy ¢ Supp(A). If € # 0, then

8 3e
18- 37 X (<Ze+4) ‘ 37
which implies that m < 4/27. Then it follows from Lemma 1.4.6 that
72
1 4 oo if P 7é Qu
W _(ky—ez) Zo=A-Z, 5] B
18- 37 721
——if P=0Q,
359

which is impossible, because € < 5/27. Thus, we see that P ¢ Z,.
We see that P ¢ Cy, and P € Sing(X). Then P = O,. We have

24 _ >multp(D) o A
737

>
7 35-7° 737
which is a contradiction. Thus, we see that lct(X) = 35/72. O



3.9. SPORADIC CASES WITH [ =9
Lemma 3.9.1. Suppose that (ag,ai,az,as,d) = (7,15,19,32,64). Then lct(X) = 35/54.

Proof. The surface X can be defined by the quasihomogeneous equation
P +ydz+a+27y=0,

the surface X is singular at the point O, Oy and O., the curves C, and Cy are irreducible, and

35 9 9 25
1 ct <X, 7Cz> < lct <X, 150y> 13’

which implies, in particular, that let(X) < 35/54.

Suppose that let(X) < 35/2. Then there is a Q-effective divisor D = —Kx such that the
pair (X, i;’—gD) is not log canonical at some point P. By Remark 1.4.7, we may assume that the
support of the divisor D does not contain the curves C, and C),.

Since H°(P, Op(133)) contains z'°, y7z* and 27, it follows from Lemma 1.4.10 that P €
Sing(X) U Cy.

Suppose that P € C,. Then

multp (D 5. _
P( )lfP:Oy, 35151fP—Oy,
6 1o 54 6
—=D-C; > ltp(D > if P = > —
95 v mlpg() ifP=o0,, 3519 11 = 0= 95
54
multp(D) if P # Oy and P # O., 35 P # Oy and P # O,
which is a contradiction. Thus, we see that P = O,. Then
18 multp (D) 54 18
—=D-C, > > —,
133 Y 7 357 133
which is a contradiction. Thus, we see that lct(X) = 35/54. O

3.10. SPORADIC CASES WITH [ = 10
Lemma 3.10.1. Suppose that (ag, a1, az,as,d) = (7,19,25,41,82). Then lct(X) = 7/12.
Proof. The surface X can be defined by the quasihomogeneous equation
P +yz+ a2+ 2% =0,

and X is singular at the points O, Oy and O..

The curves C, and Cy are reducible. We have
7 10 10 19
7= lct (X, 7C’x> < lct <X, 19Cy> =13
which implies, in particular, that let(X) < 7/12.

Suppose that lct(X) < 7/12. Then there is a Q-effective divisor D = —Kx such that the
pair (X, %D) is not log canonical at some point P. By Remark 1.4.7, we may assume that the
support of the divisor D does not contain the curves C, and C).

Since HO(P, Op(175)) contains 22, 287 and 27, it follows from Lemma 1.4.10 that P €
Sing(X) U C;.

Suppose that P € C,.. Then

12
7ifP7éOyandP7éOZ,

4 12 1
95 22\ 71 =0
12 1
—— if P=
75 1= 0x
which is a contradiction. Thus, we see that P ¢ C,. Then P = O,. We have
4 ltp(D 12
4 _p.o 5 muite(D) 12

35 7 49



which is a contradiction. Thus, we see that lct(X) = 7/12. O
Lemma 3.10.2. Suppose that (ag, a1, as,as,d) = (7,26,39,55,117). Then lct(X) = 7/18.
Proof. The surface X can be defined by the quasihomogeneous equation

24Pz 4wt + 2By =0,
the surface X is singular at the point O, Oy, O;. The surface X is also singular at a point @
such that ) # O, and O, and (@) are cut out on X by the equations z =t = 0.

The curve C, is reducible. We have C,, = L., + Z,, where L., and Z, are irreducible and
reduced curves such that L., is given by the equations © = z = 0, and Z, is given by the
equations z = 22 4+ 43 = 0. Then

-71 -32 3
- Zz .z =" I .z -
26-55" ~° T° 13.557 T 7

55’

and L, N Z; = O. The curve Cj is irreducible and
7 10 10 13
—=let | X,—=C, | <let | X,=C, | = —
18 C(’? “3> C<’26y> 6
which implies, in particular, that let(X) < 7/18.

Suppose that let(X) < 7/18. Then there is a Q-effective divisor D = —Kx such that the
pair (X, 1= D) is not log canonical at some point P. By Remark 1.4.7, we may assume that the

' 18
support of the divisor D does not contain the curve Cy. Similarly, we may assume that either

L. & Supp(D), or Zy Z Supp(D).

Since HO(P, Op(273)) contains z3°, y’z'3 and 27, it follows from Lemma 1.4.10 that P €
Sing(X) U Cy.

Suppose that P = Oy. If L,, € Supp(D), then

2 mult p (D) 18 2
—D-L,. > > > ;
11-26 “ 55 7-55 7 11-26
which is a contradiction. If Z, Z Supp(D), then
20 multp (D 18 20
D Zy>—2F (D) > > ,
26 - 55 55 7-55 " 26-55

which is a contradiction. Thus, we see that P # O;.
Suppose that P € L,,. Put D = mL,, + €, where () is an effective Q-divisor such that
L. ¢ Supp(Q?). If m # 0, then

20 3m
which implies that m < 10/39. Then it follows from Lemma 1.4.6 that
18
—ifP#£0
104 71 ! Y
MZ(—KX—WLM)‘LMZQ‘LM> 7
26 - 55 181 .
76 1P =00

which implies that m > 920/497. But we already proved that m < 10/39. Thus, we see that
PdL,,.

Suppose that P € Z,. Put D = e¢Z, + A, where A is an effective Q-divisor such that
Z, ¢ Supp(A). If € # 0, then

10 3e
26 - 55 X (¢Za+4) ‘ 55
which implies that m < 5/39. Then it follows from Lemma 1.4.6 that
18
WA Ky el) Zo=A-Zy >4 T
13-55 181 itP=0Q
7 13 -

which is impossible, because € < 5/39. Thus, we see that P ¢ Z,.



We see that P ¢ Cy and P € Sing(X). Then P = O,. We have
6 multp(D) 18 6
Oy >N T2 2
7 4T
which is a contradiction. Thus, we see that lct(X) = 7/18.
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