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0.Introduction.

Let K be a field, K a separable closure, and W a smooth, projective, geometrically
integral K-variety. The “Griffiths group”in codimension r, Gr" (W) := nullhomologous
cycles modulo algebraic equivalence, 1s an important but mysterious invariant associated
to W. So far the study of Gr"(Wgk) ® Q has led to much interesting work on the
Abel-Jacobi map and some fascinating conjectures in the case [K : Q] < co. Yet an
understanding of the structure of this vector space does not seem close at hand. One
missing ingredient is a cycle class map which is known to be injective. For Gr2(Wx )yors
such a map exists thanks to the work of Merkuriev and Suslin [M-8,§18] and of Bloch
[B12] (at least if we ignore p-torsion in characteristic p > 0). This fact combined with
the important role played by torsion in the Chow group of codimension one cycles
motivates the study of Gr"(Wg )iors-

As next to nothing is known about Gr"(Wj )ors, our main task will be to produce
some non-zero elements. When ' = C this is not so simple as one might hope. In
this paper we produce a few elements of small order for some rather special projective
varieties. This shows at least that the torsion subgroup of the Griffiths group is not
always zero. Qur first examples involve the quotient of a complete intersection by a
finite group acting freely. The torsion cycles which we construct are Chern classes of
vector bundles arising from representations of the fundamental group. In §3 we show
that the torsion in the Griffiths group of simply connected varieties can also be non-
zero. In fact we find two-torsion for some rather special hypersurfaces, Wg C P4".
The idea here is to begin with a cycle, 7, on a hypersurface, Vo C chm'H, with 1solated
singularities. We arrange that the homology class of 7 is 2-torsion and then restrict to
the smooth hyperplane section, We.

Although our experience is that torsion in the Griffiths group for varieties over C is
difficult to find, we have no compelling evidence that it is always finite or usually zero.
When K is a finite field, it seems to be easier to produce torsion elements. In §4 we
consider the case W = E3 with E an elliptic curve. By considering essentially only a
single cycle, we find that the order of

(Gr* (B} )iors) P4 Fr/F9)

partially supported by an NSF Postdoctoral Fellowship and by the Max-Planck-Institut fuer Mathemathikl

Typeset by ApsS-TgX



is not bounded when p varies through all primes and Ep, varies through the various
reductions of a certain elliptic curve over Q. The method here is inspired by Bloch’s
paper [BI1]. We hope that it will be developed further to give more information about
Gr? (E%’ Vors-

The first section is devoted to summarizing important points concerning the torsion
in the Chow group of a smooth projective variety over an algebraicly closed field. Most
of the results have appeared elsewhere although (1.3.2) appears to be new.

The various techniques used here to show that a given nullhomologous cycle z is not
algebraicly equivalent to zero have the following in common: The variety W is regarded
as a fiber in a family over a positive dimensional base. The cycle z is the specialization
of a global cycle Z which is actually the more tractible object. From its properties we
deduce what we know about 2. This approach was introduced in the original paper
on the Griffiths’ group [Gri] and is motivated by the difficulty in directly evaluating
the existing cycle class maps at z. Such an indirect method is however not without
its disadvantages. An attempt to study Gr"(W) without invoking auxillary families is
made in [Sch2].

I wish to thank Spencer Bloch for helpful discussions pertaining to §4 and Uwe
Jannsen for explaining relationships between certain cycle class maps. The material
in (3.2) and (3.3) was worked out at MPI in 1990. The results of §4 achieved their
present form during a visit to the University of Chicago in 1989. Much of the work
was done during the special year in arithmetic algebraic geometry at MSRI (1986-87).
I thank these institutions for their hospitality and the NSF and MPI for support.

1. Notations and Preliminaries. We shall adopt the following notations:

K is a field. K is a separable closure of K

Gk = Gal(K/K)

Wy = a smooth, projective, geometrically integral K-variety

I = a prime not equal to the charachteristic of K

Z"(Wg) = the group of codimension r algebraic cycles on Wy

CH™(Wg) = CHyipmw)-r(Wk) codimension r algebraic cycles modulo rational e-
quivalence [Fu,§1]

NS(Wg) = Neron-Severi group of Wy [Mi,p. 215]

HY(Gk,N) = lim HYGg,N/I™). Here N will always be a finitely generated Z,
module. Thus this group may be identified with continuous crossed homomorphisms
modulo coboundaries where N is given the usual l-adic topology [Tal,2.2).

Given an abelian group A,

A[m] = denotes the kernel of multiplication by m

A= lim A[l"]

—_—

1A = fﬂl A[l"] denotes the Tate module of A.

(1.1) Subquotients of the Chow group. In this subsection we recall definitions and
important facts about torsion in the Chow group of a smooth, projective variety over an

algebraicly closed field. To begin we recall from [Mi,V1.9] the existence of the classical
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cycle class map

cly, : CH'(Wg) — H(Wg, Zi(r)).
Define

;b
CH"(Wi)hom = Ker [CH" (W) » CH' (Wg) — [[ E* (Wi, Zu(r)) ]
l#charK

The torsion subgroup of CH" (Wi )pom will be denoted T"(W). Write CH™(Wk )aig
for the subgroup of CH"(Wg )som generated by all subgroups

FmCHl (CK)hom C CHr(WK)homa

where Ck is a non-singular projective curve over K and I' C C x i W is an integral
codimension r subscheme flat over C. As usual Iy denotes the map on Chow groups
induced by the correspondence I' [Fu,§16]. The torsion subgroup of CH" (Wi )aig is
denoted T, (Wk).

LEMMA 1.1.1. CH"(Wg)ay ® Z; and Ty, (Wg); are divisible groups.

Proor: Evidently CH"(Wg )ai, is generated by Pic® of smooth curves over K. A
finite, etale morphism of irreducible varieties over a separably closed field is surjective
on rational points. Applying this to multiplication by ! on Pic® yields that CH™(Wg )aig
is an l-divisible group. Its torsion subgroup must also be [-divisble. The lemma follows
easily.

The Griffiths group in codimension r is defined by
Gr'(Wg) = CH (Wi )hom/CH " (Wg )aig-

LEMMA 1.1.2. Forl # char(K)

(1) Gré(Wg) ~0
(2) Gri(Wg)® 2y ~ 0

ProoF: The first assertion is straight foward from the definition. When K = C,
Gr'(Wg) = 0 by the exponential sequence. To treat the general case recall that a
representability result of Grothendieck [Gr,4.2] implies CHY (W )hom =~ CH (Wi )arg X
F, where F is a finite abelian group. By the Kummer sequence, each element y €
CHY(Wg )nom is divisible by arbitrarily high powers of [ in CH!(Wg). To show that it
is actually divisible in CHY(Wg )hom recall that NS(Wg) = CHY (Wi )/CH (Wg)atg is
finitely generated [Mi,V.3.25). If z,, € CH}(Wg) satisfies [z, = y and if I" annihilates
NS(Wg, then there is 2}, € CH' (Wi )aiy such that I"z], =y. Thus CHY (W )hom is
I-divisible, whence F; = 0.



LEMMA 1.1.3. There is an exact sequence

0= To,(Wg)i = T"(Wg )i = Gr"(Wg )i — 0.

lg

PROOF: One need only check surjectivity of the right hand map. Recall that T7, Wik
is a divisible group. The result now follows from the short exact sequence

0 CH (Wg)atg > CH (Wi )hom — Gr'(Wg) — 0

by taking the kernel-cokernel sequence for multiplication by [ and passing to the direct
limit.
For varieties of dimension d > 3 and non-negative Kodaira dimension the prospect

of computing CH (Wi )hom for 2 < r < d — 1 has appeared remote. The following
remarkable result of Soulé is perhaps a first step in this direction.

THEOREM 1.1.4. [So,Thm 3] Let K be a finite field and W a product of curves.Then
forr € {1,d,d— 1}, the natural inclusion T"(Wg) —» CH"(Wg )}rom Is an isomorphism.

THEOREM 1.1.5. If K C L is an extension of algebraicly closed fields, the induced maps
CH"(Wg) — CH" (W) and T"(Wg )i — TT(Wy) are isomorphisms.

PROOF: The first result is proved in [Le]. The second is an immediate consequence of
the functoriality of the cycle class map and base change theorems in étale cohomology

[Mi, VI }.

(1.2) Cycle class maps. Write D](Wg) for H* Y (Wg, Qu(r))/H* Y (Wg, Zi(r))
which is the maximal divisible subgroup of H>"~1(Wg, Qi/Z,(r)) and is the kernel of
the coboundary map [C-S-S, 1.2 (13)]

H Y (Wi, Qu/Zi(r)) — H"(Wg, Z(r)).

In this subsection we recall briefly the existence of three natural cycle class maps
T"(Wg) — Dj(Wg). We also state without proof some of their properties and the
relationships between them.

DEFINITION 1.2.1: Bloch [B12] has defined a cycle class map
AT CH (Wg)tors — H ™' (Wg, Qu/Zi(r)).
Restriction to T7(Wy ) gives a map, also denoted A7,
AT T (Wg) — Di(Wk).

THEOREM 1.2.2.
(1) M agrees with the usual map from Kummer theory.
(2) The restriction of \? to CH%(Wg); is injective.
(3) X° is functorial with respect to correspondences.
(4) When K = C, A" may be identified with the Abel-Jacobi map restricted to
T"(Wg) followed by projection to the I-primary subgroup of the torsion in the
intermediate Jacobian.



PRoOF: For (1), (3), and (4) see [Bl12]. The second assertion is [M-S,18.4].

DEFINITION 1.2.3: A second map
a”: T"(Wg) - Di(Wg)
is constructed in [Ra,§2] (see also [B11,§1] and {J2,89]). One begins with the cycle class

map [Gr-D] .
ncliy, : CH' (W) = H¥ (Wi, Z/1(r)).

The image of CH"(Wgk )hom lies in the kernel of the restriction homomorphism
H* (Wi, Z/1"(r)) —» H(Wg, Z/1"(r))°*.
Thus the Hochschild-Serre spectral sequence gives rise to a map
nClwy 0t CH (Wi )hom — HY Gk, H" {(Wg, Z/1"(r))).
Passing to the limit gives a map

liye,0: CH (W)hom — lim H' (G, H" 1 (Wg, Z/1"(r))) = HY Gy, H¥ Y (Wi, Zi(r))).

The cohomology group on the right is computed with continuous cochains where H2™~ (W, Z ;(rj
has the inverse limit topology [Tal]. The short exact sequence

0 — H* Y (Wg, Zy(r))/tors — H* ' (Wg, Qi(r)) = D] (Wg) = 0

gives rise to a long exact sequence of continuous Galois cohomology modules [Tal, §2].
The first coboundary map gives a surjection

(1.2.4) Dj(Wg)®% = H (G, H* ™' (Wg, Zi(r))/tors) ors-
Assume now that K is finitely generated over the prime field. Then a specialization
argument involving the Weil conjectures shows that (1.2.4) is in fact an isomorphism.

(C-R, Thm 1.5]. Thus clfy, , gives rise to a map T"(Wk) — D} (Wg)9%. Now pass
to the limit over finite separable extensions K'/K to define

o : T"(Wg) —» Di(Wg).
DEFINITION 1.2.5: There is a third cycle class map [J2,89] (see also [Sch2,§1]). Sup-
pose given a nullhomologous cycle Z € Z"(Wg). Write |Z| for the support of Z and
define
Hiz\(Wg, Z/1"(r))e = Ker [HZ(Wg, Z/1"(r)) = H*"(Wg, Z/1"(r))).
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By purity [Mi,VI1.9.1},
B (W, Z/1M(r) = 0.

There results a short exact sequence of G g-modules,

0 — H* YWk, 2/1"r)) = H Y (W - |2|)k, 2/1"(r)) = Hiz(Wg, Z/1"(r))o = 0.

Write [Z] € lez’"l(WR, Z/1"(r))E% for the fundamental class of Z. Applying the first
coboundary map in the long exact Gy -cohomology sequence associated with this short
exact sequence gives an element ncfy, o(Z) € HY(Gg, H*" 1 (Wg, Z/1"(r))). This class
depends only on the rational equivalence class of Z [B-S-T)]. Taking the inverse limit
yields a map

(126) C;VK,O : CHF(WK)hom - HI(GK:'Hzr-l(WI-(: Z}(T‘)))

The proceedure used above to construct the map a" beginning with cljy, , may be used
to construct a map A" : T"(Wg) — Dj(Wg) beginning with ¢y, .

THEOREM 1.2.7. Themapscliy, o,y 0 CH (Wg)hom = H (Gr, H*""H(Wg, Zi(r)))
as well as a", A", 87 : T"(Wg) — D[(Wy) agree up to sign. Furthermore cy, q is func-
torial with respect to correspondences.

PRoOOF: The homomorphisms cljy, , and cjy, , are compared in [J2,§9]. That A" and
a” should be related is mentioned in [Ra,§2]. I believe that a complete proof will appear
in [J1]. For the functoriality of ¢y, , see [B-S-T,§1].

The cycle class maps may sometimes be used to detect non-trivial elements in the
Griffiths group, Gr"(Wx ). We shall need this observation for two different sorts of
base field. First, consider the case that K C C. Write d for the dimension of W. Let
P e ZYW x g W) and consider the Hodge structure U = P,H2™~1(W(C))(r).

LEMMA 1.2.8. If U contains no non-trivial Hodge substructure, U’, with F*U' = 0,
then the cycle class map A" o P, : T" (W, ); — D[ (Wg) factors through Gr™ (Wi ).

PrROOF: Let Cg be any smooth projective curve and T' € Z"((C x W)g) a cor-
respondence. The map P. o . : HY(Cg,Qi(1)) — H?* 1 (Wg,Qi(r)) is zero by
Hodge theory. This is the map on Tate modules tensored with Q; associated to
P,oT, : Dj(Cg) — Dj(Wg). Thus this map is also zero. By the functoriality of
A with respect to correspondences (1.2.2), A" o P,(T7,,(Wg)) = 0.

Suppose now that K is the algebraic closure of a finite field, K. Write ¢ € G for
the Frobenius element. Let P € Z4W x x W) and define U = P.H*™ ™ (Wg, Qi(r)).

LEMMA 1.2.9. If no eigenvalue of =1 acting on U(—1) is an algebraic integer, then
the map P,oa" : T"(Wg); — Dj(Wg) factors through Gr"(Wg),.

PRrROOF: [Sch2,2.5).

DEFINITION 1.2.10: Let W/K be a smooth projective variety of dimension d. In this

paper P € Z4(W x i W) will be called a transcendental correspondence for codimension
r cycles if P.T;; (Wg )i = 0 for all | # char(K).

6



EXAMPLE 1.2.11: Suppose that r = 2 and the conditions of (1.2.8) or (1.2.9) are
satisfied. Then P is transcendental. In fact this follows from the injectivity of A\? :
T*(Wg )i — D}(Wg) and the compatibility of X' with correspondences.

(1.3) Conjectural description of «"(T;;,(Wg)i). Suppose first that K C C. It
suffices to describe a"(T;;,(Wg)i) C Dj(Wc). Since these are divisible groups it
suffices to describe the Tate module tensored with Qi, m(a™(T5,(Wgh)) ® Qi C
H?2Y(We, Qu(r). Let V ¢ H*~1(Wg, Z(r)) denote the largest Hodge substructure
contained in the —1** level of the Hodge filtration.

CoNJECTURE 1.3.1. m(a"(T],,(Wg)) @ Qi=V ®Qu.

The inclusion C follows from an argument analogous to the proof of (1.2.8). The
opposite inclusion would follow from the ordinary Hodge conjecture for all varieties of
the form C x W¢, where C is a smooth, projective complex curve [Gr2,§2]. Indeed the
polarized Hodge structure V corresponds to an abelian variety which is generated by a
smooth, projective complex curve, C. By the Hodge conjecture there would be a corre-
spondence I' C C' x W such that the image of T, : H'(C, Q(1)) —» H?™"1(Wg, Q(r)) is
Vq- Thus

7(Cua (THC) O QU =V ®Qy,

which would establish the conjecture when K = C. For general K C C note that C
and I are in fact defined over a finitely generated extension field of K. We view this
field as the generic point of a smooth K-variety, B. By passing to a non-empty open
subset of B if necessary we may spread out C to a smooth relative curve C — B and T'
to a subscheme I' C C x Wg which is flat over B. Let 0 € B be a closed point. By the
base change theorems in étale cohomology and the compatibility of the cycle class with
respect to specialization [Fu ], the cycle class clfc ,w) . (Fo) € H*(Co x g W, Zi(r))
may be identified with ¢lfg, y (T) € H*((C x W)g,Zi(r)). Since the map, Ty,
(respectively T'.) induced by the correspondence I'y (respectively I'}) on cohomology
depends only on the cohomology class ¢lic .y  (T'o) (respectively clfc, y (T)),

1i(Tosa (T (Cog))) @ Qi =V @ Q

as desired.

Now suppose that K is a finite field with ¢ elements. Let ¢ € G be the Frobenius.
Write Vg, C H* ™~} (W, Qi(r)) for the largest G k-submodule such that the eigenvalues
of ¢'IIVQ!(_1) are algebraic integers.

PROPOSITION 1.3.2. Suppose

(1) ¢! acts semi-simply on Vgq,,
(2) The Tate conjecture holds for all varieties of the form C x W where C/K is a
smooth projective curve.

Then i(a™(T5y(Wie)) @ Qu = V.
ProoF: By Deligne’s Theorem [De] the eigenvalues of ¢~ acting on Vg,(—1) are
algebraic integers, which have absolute value ¢'/? for any complex embedding. By
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(1) and the theorem of Honda and Tate [Ta2, Thm.l], there is an abelian variety
A/K such that Vg, is isomorphic to a Gg-submodule of H'(Ag, Qi(1)). Let C/K be
the normalization of a curve Cx C Ak which generates A as an abelain variety. By
pullback Vq, becomes a direct summand of the semi-simple G k-module H'(Cg, Qi(1)).
"Projection to this summand gives an element

pr € Homg,(H'(Cg, Qi(1)), Vq,) = (H'(Ck, Qi) ® Vq,)° .

By the Tate conjecture a non-zero multiple of pr is the class of an algebraic cycle
I' Cc Z(C xx W) ® Z;. The image of the map on cohomology, I, H!(C, Qi(1)), is
VQ,. This establishes the inclusion D. The opposite inclusion is clear from the proof of
(1.2.9) and is not dependent on hypotheses (1) and (2).

2.Quotients of complete intersections by fixed point free group actions. In
this section we construct some examples of torsion in the Griffiths group of 1-cycles.
We work with threefolds which are quotients of complete intersections by finite groups
acting freely. The cycles are simply second Chern classes of rank two vector bundles
associated to representations of the finite fundamental group. All varieties in this section
are defined over C.

Let G be an arbitrary finite group and n > 1 an integer. It is possible to find an
n + 1-dimensional complete intersection V C P¥ in a suitably large projective space
where G acts without fixed points [Se3,§20]. Write p: V — V for the canonical quotient
map.
LEMMA 2.1. H,(G,Z) is canonically a direct summand of H;(V,Z) when i < n.
ProoF: [A-H,Proposition 6.6].

Associated to a representation k : G — GL(r, C) we have an algebraic vector bundle
E:=V xgCronV. The Chern classes of E in either the Chow ring or the cohomology
are annihilated by p* hence by p. o p* which is multiplication by |G|. Of course E is

obtained by pulling back a universal vector bundle £ on the classifying space BG. To
show that these torsion classes do not always vanish we give two elementary examples:

(1) G~ Z/m,r =2,k corresponds to a direct sum of two primitive characters. Then
€ ~ L ® L, is a direct sum of line bundles. Since H****(BG, Z) ~ Z[t]/mt [Br,
p-114 Ex.3], c2(€) = c1(L1) - e1(L2) is a generator of H*(BG,Z) ~ Z/m.

(2) G is the binary icosohedral group, r = 2, & is the standard representation in
SU(2). Let B' denote the quotient of EG by a Sylow-5- subgroup of G. The
restriction of & to such a subgroup splits as the direct sum of a primitive chatacter
and its complex conjugate. By (1), c2(€§pr) € H*(B',Z) is non-zero. Now
functoriality of Chern classes implies that c;(€) € H*(BG, Z) is non-zero.

To see how these Chern classes look when pulled back to V use the universal coefficient
theorem which says that the pull back map on H*()iors is given by

Ext(Hy(BG, Z),Z) — Ext(Hy(V, Z), Z).

This map is injective when n' > 3 by (2.1).



Suppose now that n = 3 and that W C V is a non-singular very ample divisor. In
either of the cases (1) or (2) above we have HY(W, Z)ioys = 0. In fact using Poincaré
duality, the Lefschetz hyperplane theorem, and [A-H,Proposition 6.6] one gets the first
three isomorphisms in

H4(VV, Z)tora A H2(W, z)tora = H2(V'; Z)tora = HQ(BGa Z) ~ (.

The last isomorphism is well known for cyclic groups. In the case of the binary icoshedral
group it is an easy consequence of the famous fact that $3/G is a homology sphere. In
either case it is clear that the codimension two cycle c;(Ejw ) is homologous to zero on
the hyperplane section W.

PROPOSITION 2.2. With notation as above, the image of the torsion cycle c;(Ejw)
under the Abel-Jacobi homomorphism is not zero.

PRrROOF: Fixm > 0such that c;(E) € H*(V, Z)[m]. Via the coboundary map associated
to the coefficient sequence

0nZ-DZ—Z/m—0

and the fact that H*(V,Z) ~ Hy(V, Z)tors = 0, co( E) gets identified with an element of
H3(V,Z/m). This element is easliy seen to coincide with A?(c2(E)), where A? is the cycle
class map introduced by Bloch [BI2,3.7]. Write ¢y : W — V for the inclusion. By the
Lefschetz hyperplane theorem [Mi,V1.7] restriction i3y, )\, : H*(V,Z/m) — H*(W, Z/m)
is injective. By [B12,3.5], i";V/V(/\Q(cz(E))) = Az(i'ﬁwv(q(E))). Furthermore

’\2 : (CH2(W)hom)tors — H3(VV) Q)/Ha(W; Z)

may be identified with the Abel-Jacobi map [B12,3.7]. The proposition follows.

By fixing the degree, d >> 0, of the hypersurface W to be sufficiently large we arrange
F3H3(W) # 0. Let M denote the parameter space for smooth degree d hypersurface
sections of V. For t € M, W, denotes the corresponding hypersurface.

COROLLARY 2.4. For a sufficiently general choice of t € M, ¢3(Ejw, ) is not algebraicly
equivalent to zero.

PRrOOF: There is a natural action of m (M, 1) on H3(W;,, Q) which is known to be
irreducible by Lefschetz theory. By a standard argument (cf. eg. the paragraphs prior
to (3.2.2)) there is a countable union of proper analytic subsets of M with the property
that for any t in the complement, the largest Hodge substructure Hq C H*(W,, Q) of
pure Hodge type (2,1) + (1,2) is zero. Since the Abel-Jacobi image of ca(E|w,) is not
zero, cz(Ejw,) is not algebraicly equivalent to zero by applying (1.2.8) with P = Id.

VARIANT 2.5. Suppose that V in is defined over a number field K. Then (2.4) holds
for infinitely many W defined over K.

PROOF: Let U C PJ parametrize the smooth fibers in a Lefschetz pencil of V' which
is defined over K. According to Terasoma [Te] there is an infinite set of rational

9



points u € U(K) with the property that the image of the decomposition group Gz x C
1 (Uk, @) in Aut(H¥*(Wy %, Qi(2)) contains the image of the monodromy representation
m(Ug,a) = Aut(H*(W; g, Qi(2))). The latter is known to be an open subgroup of
the group of all linear transformations preserving the intersection form [Te]. Thus
if [L: K] < oo, H*(W; g, Qu(2)) is an irreducible G, -module. Given a curve C
and a correspondence I' C C x W, j defined over L, the image ', H!(Cg, Qi(1)) C
H*(W; &, Qu(2)) is a G, -submodule. By hypothesis F*H*(Wy(C), C) # 0, so this
sub-module is proper and hence zero. As in the proof of (1.2.8) we conclude that

I, :D{(Cg) = D}(W; )

is 0. As C and I are arbitrary, \*T2 (W g )i = 0 follows from the compatibility of A?

with correspondences. Thus c2(E|w,) is not algebraicly equivalent to zero even after
extending scalars to K.

3. Special hypersurfaces in P4™. In this section we prove

THEOREM 3.0. There exist smooth hypersurfaces W C PE* (m > 2) for which
Gr™(W)[2] # 0.

PLAN OF PROOF: The argument is inspired by Griffiths’ original construction of non-
trivial elements in the Griffiths group [Gri]. There are three steps.

(1) Construct a hypersurface V C PE**! with isolated singularities and a cycle class
T € CH,,(V)[2] whose homology class in Ha,,(V, Z)(2] is not zero.
(2) Deduce from (1), that if W C V is a smooth hyperplane section, then the Abel-
Jacobi image of the restricted cycle, A™ (i, 7) € J™(W)[2], is not zero.
(3) For a general choice of V' and a general hyperplane section W, the largest Hodge
substructure of H2™~1(W) having pure Hodge type (m,m ~ 1)+ (m — 1,m) is
0.
The theorem follows from these three steps by applying (1.2.8) with P = Id. Perhaps
the third step deserves special comment. We use an argument based on infinitesimal
variation of Hodge structure. This technique is however poorly suited for dealing with
families of varieties with small parameter space. Thus the argument is complicated
and the statement of the final result (3.3.4) contains restrictive hypotheses, which one
might hope to eventually eliminate. A possible alternative approach is mentioned in

(3.4.3). As this paper goes to press, I have learned from S. Mueller-Stach of a method
for establishing (3) when W is a hypersurface section of large degree [Mue).

3.1 Certain singular hypersurfaces V ¢ P?™%1, Fix a positive, even, integer d and
consider a subset {g_m,...,gm} C Clzo, ..., Tam+1] of homogeneous polynomials having
positive degrees d—p, ..., dn such that d;+d-; = d for all 7,0 € ¢ < m. The hypersurface
VCP:= P%"‘“ defined by

(3.1.1) g+ >, gig-i=0
1<i<m
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is singular along the locus R defined by the ideal (g_y,, ..., gm). By choosing sufficiently
general g; 's we arrange that S = V,;,, consists entirely of isolated ordinary double
points (3.4.1). (One can of course arrange that R = S, but for present purposes it is
not necessary to exclude the possiblity S — R # 0.) Assume furthermore that d; = 0
mod 2 for some : > 0. Consider the codimension m subvariety Z C V (respectively Y C
P) defined by the homogeneous ideal (go, ..., gm) (respectively (g1,...,9m)). Under the
pullback map defined by intersection theory j* : CH™(P) - CHp(V),7*Y = 2Z. Let
L C P— S be a codimension m linear space which meets V properly. Set r = d;...dm /2.
Set 7 = Z — 3*rL. Then

2(r) = j*(Y —2rL) =0 € CHp(V) ~ CH™(V — S).

PROPOSITION 3.1.2. The cohomology class ¢(Z — j*rL) € H*™(V — §)[2] is not zero.

NOTE: Homology and cohomology groups in this subsection have Z coeflicients unless
the contrary is specificly indicated. The familiar cycle class map to cohomology with Z
coefficients will be denoted by c.

PROOF: Write oy : V — V for the blow up of V along S. Set E = o,'(S). Recall
that E ~ l,csE, with E, C P?™ a smooth quadric hypersurface and NE/OIE. s
Op(—-1)|g,- The map -c](NE/g,) : CH™ Y(E) - CH™(E) has image 2CH™(E). An
analogous statement holds for cohomology. We need

LEMMA 3.1.3. There is a commutative diagram

CH™V — §) —— CH™E)/2CH™(E)

e| E

H?™(V — §) —— H*™(E)/2H?™(E).
PROOF: Use the localization sequence
0 —— CH™VE) —— CH™(V) —— CH™(V —=§) —— 0
(3.1.4) i;’:l"’l

CH™(E)

and the formula z'}'g/f, Olg e = C1 (NE/;,) to define the map e. There is an analogous

diagram of cohomology groups which gives rise to €. Compatibility with cycle class
maps is clear so (3.1.3) follows.

To verify e(Z —3*rL) # 0, observe that the hypotheses on the singularities of V imply
that g_m, ..., gm arelocal coordinates on P at each s € R. The ¢;’s become homogeneous
coordinates on the exceptional P2™’s in the blow up of P along S. The strict transform

of Z meets E, in the linear space go = ... = ¢gp, = 0, which is a generator of CH™(E,).
Hence (3.1.2).

11



PROPOSITION 3.1.5. Ife(z) # 0 for z € CH™(V — S)[2], then
v —s(2) € CH™(W)pom is not zero.

PROOF: Consider the composition

CH™(V — S)[2] —» HX™(V — §,Z)[2] ~ H*™ YV — S, Z2/2)
(3.1.6) s

—— H*™ (W, 2/2) ~ J™(W)[2],

in which the second map is the inverse of the coboundary in the long exact cohomology

2

sequence associated to the coefficient sequence Z — Z — Z/2. We claim that 1}, V=5
is injective. Indeed, H*™~1(V — S, W;Z/2) maps onto the kernel. By duality (relative
Alexander duality for the pair (V — S, W) in V [Gr-H,27.6])

HX™ YV - S, W;2/2) ~ Hypys(V — W, E; Z/2) > Hypo (V — W, Z/2),

which is zero, since V — W is affine of dimension 2m [Hamm)].

It remains to show that (3.1.6) takes z to the Abel-Jacobi image of v —s(2) Tt is
convenient to know that Hj,41(V) ~ 0. For this, consider V; a nearby smooth hyper-
surface and S C V; the collection of vanishing 2m-spheres for V. Then Hom41(V) ~
Hym+1(Vy, S) ~ 0 follows from the known homology of Vi (cf. [Cl,p. 119-120}). It
follows that the definition of the cycle class map A, : CHnR(V)[2] = Hom+1(V,Z/2)
given in [B12,3.7] makes sense inspite of the singularities of V. By duality we get a
map A" : CH™(V — §)[2] ~ CH,(V)[2] = H*™Y(V - §,Z/2), which is easily seen to
coincide with the composition of the first two maps in (3.1.6).

LEMMA 3.1.7. The following diagram commutes

2
Swiv—

CHa(V)[2] ——— CHpmey(W)[2)

/\m,V—SJv Am—l,“’l

Ne(W)

Hym41(V,2/2) —— Hym—a(W,Z/2).

SKETCH OF PROOF: The vertical maps are the cycle class maps defined in [B12,p. 116].
The commutativity is then proved as in [B12, 3.5]. One must however carry through

the various steps in the language of homology (not cohomology) due to the singularites
of V.

By duality the bottom row in (3.1.7) may be identified with the map i;V/V—S in

(3.1.6). 1t is well known that H*™(W,Z) ~ Z. Thus CH™(W)[2] C CH™(W )om. By
[B12,3.7], Ajn—1,w may be identified with the Abel-Jacobi map on C H,,_1(W)[2]. Now
(3.1.5) follows.
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3.2 Infinitesimal variation of Hodge structure. Now that it has been verified that
the Abel-Jacobi map sends 13, /,,_ (Z —j*rL) to a non-zero element in the intermediate
Jacobian, J™(W), one can hope to apply Hodge theoretic techniques to show that for a
general choice of V and W, i;V/V-S(Z — 3*rL) is not algebraicly equivalent to zero. By
(1.2.8) it would suffice to show that among all possible V’s there is one with a smooth
hypersurface section W for which H?™~1(W) has no non-zero Hodge substructure of
pure type (m,m — 1) + (m — 1,m). Roughly speaking, we wish to show that the
hypersurfaces under consideration, although quite special, nonetheless exhibit generic
Hodge structures. This is tricky and we shall only pursue it in the case that W is the
hyperplane section 2,41 = 0 of the varying hypersurface V.
Consider the map

{pam : M 1= H PHD(P2m1 O(di)) = PHO(P2m’ O(d)),

—-m<i<m

(3.2.1) Eprm((Aemy s hm)) = Hi=hi + > hih_;.
1<i<m

The subset M C M consisting of those o= (h—m,.y ) such that W = W'F
defined by (3.2.1) is non-singular and ZT C WT defined by the ideal (ho, ..., h—mm) has
codimension m is open and dense. One may note that a general point of M corresponds
to a hyperplane section of a variety V defined by (3.1.1).

Pullback the universal degree d hypersurface via {p2m to obtain a smooth family
T : W — M with a cycle Z C W flat over M. Furthermore, 7 := (Z — rz';‘wp,mL)
gives a non-zero 2-torsion section of the relative intermediate Jacobian (3.1.5).

Base change 7 to the universal cover M of M and consider the variation of Hodge
structure associated to the resulting family # : W — M. The condition that a section
of the constant sheaf H2™ 1 (W,Z)® Z ~ R*™~17,Z be in the (m — 1)-st level of the
Hodge filtration is an analytic condition on points in M. As M is not the union of a
countable number of proper analytic subsets, the only way for (R*™~1x,Z) 4 to admit
a non-trivial Hodge substructure of pure type (m — 1,m)+ (m,m — 1) for all p € M,
is for H2™~1(W, Z) to admit a sublattice Hy satisfying Hz C F‘{""l for all i€ M. In
other words, for all &, F"*' must be contained in the orthogonal complement of Hz
under the cup product pairing. The largest such sublattice, Hz, would be invariant
under the action of m;(M) and would give rise to a subvariation of Hodge structure
H, C R*™ 7,7

If the action of (M) on H*™~1(W, Z) were irreducible, we would have Hz = 0 or
H?m™=Y(W,Z). When F‘-:“"'] # 0, the second possibility is ruled out. Unfortunately, we
do not presently know if the monodromy representation is irreducible. We thus resort
to the method of infinitesimal variation of Hodge structure to bound the rank of Hz.
This involves studying the map

(322) TTM Q H"l+1.m—2(W) N Hm,m—l(w)
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constructed by composing the Kodaira-Spencer map T_h,M — HY (W, Tw) with the
cup product on cochomology. This map coincides with the derivative of the variation

of Hodge substructure Hy ¢ R?™!#%,Z at the point ® [Do,82]. Thus the image of
(3.2.2) is contained in Hy. If (3.2.2) turns out to be surjective, then we have succeeded
in showing Hz = 0. We thus turn now to computing the image of (3.2.2).

The computation of (3.2.2) is based on the interpretation of the differential of the
period map of a projective hypersurface in terms of multiplication in the Jacobian ring.
It would take up too much space to summarize this by now standard technique here. We
refer instead to [Do,§2] and references therein for background material. Write h for the
graded ideal (h_s, ..., by ). The homogenous elements of degree a in a graded module
M will be denoted by M,. An identification of hy with T¢pam (T_h.M) is obtained by
differentiating

(3.2.3) (ho +tho) + 3 (ki +thi)(hoi +th_y)
—m<i<m

with respect to t. Write J C C[zo,..., Tom] for the ideal generated by the partial
derivatives of H, and set A = Clx,,...,23m,]/J. Observe that J C h and that (3.2.3)
identifies hy/J4 with the image of the Kodaira Spencer map TT{M — HY (W, Tw). Set

ta = (2m — a)d — (2m + 1). Via residues one obtains an identification

(3.2.4) H&2m=1=0(Wy ~ 4,
such that multiplication in A
(3.2.5) hy/Jax Ay, — Ay,

gets identified with a modified form of (3.2.2) in which T_h; M has been replaced by its
image in H(W, Tw) [Do,§2].

LEMMA 3.2.6. Suppose H™*1™=2(W) # 0 (ie. tyyy > 0). Then the image of (3.2.5)
is hy [Ji,, # As,,. In particular (3.2.2) is not surjective.

PROOF: Since all generators of h have degree less than d, the image of (3.2.5)is h,_ /J;
unless H™+1m=2(W) = 0 (ie. unless tp41 < 0). Since W is non-singular, Ay, ..., b
is a regular sequence in C[z,,...,Z2m]. The dimension of (C[z,, ..., Zz2m]/h) is com-
putable from the Koszul complex of this regular sequence. It is zero exactly when
t> > o cicm(di=1)=(m+1/2)d—-(2m +1). Ast,, does not satisfy this inequality,
hy,, /J:,, # A, follows from the short exact sequence

0 — htm/']tm —_ Atm — (C[.’Bo, --':IZm]/h)tm — 0

We may summarize (3.2.6) by saying that an understanding of the maps among the
vector spaces FPH*™~1(W, C)/FPT! H?™~ (W, C) arrising from infinitesimal variation
of Hodge structure, is not by itself sufficient to show H, = 0. In the next section we

will choose with considerable care a point € M so that the Hodge structure of the
fiber H 2"‘_1(’[/15"?) may be understood in detail. This additional information will, in

certain cases allow us to conclude Hy = 0.
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3.3 A hypersurface with many automorphisms. For d = 0 mod 2 consider the
non-singular hypersurface W,,, C P?™ defined by the polynomial

(3.3.1) H, = :r:g + m‘f + a:la:g_l + a:ga:g_I + i Tom—n mg;].

One can write Hy, in the form (3.2.1) by choosing

(332) ho = :L'glz, hl = $](Il + 172), h.._] = Z (—1)i$f—2_’i1¢;
0<i<d—2

and for z > 1, h; = z9i_1,h_; = zg.-_gmgi___zl + mgi_l. Set Dy, = d(d—1)*™"! fix a
primitive D,,-root of unity (p, and observe that H,, is fixed by the action of

. 1—-d Im-—1 1—d 2m-2 1—=d)2m-3
UD,, =< Ym >, where Tm =dzag.(1,(§3m ) s J(Dm ) ) 1(5|m ) a-"aCDm)'

Thanks to the work of Shioda [Sh1], [Sh2], [Sh3], the hypersurfaces (3.3.1) are among
the few for which one can explicitly describe the Hodge structure on the middle coho-

mology. Using the explicit description of the image of the differential of the period map
(3.2.2) we will show

PROPOSITION 3.3.3. Let Hq,m denote the largest rational Hodge substructure of H2™~1(W,,)
of pure type (m, m—1)+(m—1, m) which is orthogonal to the image of (3.2.2) under the
cup product pairing. If d — 1 is prime, d > min.{4m,18}, and m > 1, then Hq,m = 0.
COROLLARY 3.3.4. Suppose that d satisfies the hypotheses of (3.3.3). If d; = 2,d; =1

for ¢ > 1, then the hypersurface W defined by a general polynomial H of the form
(3.2.1) satifies Gr™(W)[2] # 0.

PROOF OF 3.3.4: The algebraic cycle TT is two torsion for rational equivalence and has
non-trivial image in the intermediate Jacobian J"‘(WT). By (3.3.3) Hzm_l(W_h..) has

no non-zero Hodge substructure of pure type (m,m —1)+ (m —1,m) for a general =

M. Now apply (1.2.8) with P = Id to conclude that for such an ?, T_h, € Gr"‘(W_h.)[Z]

is non-zero.

ProOOF OF 3.3.3: We will explicitly describe the largest rational Hodge substructure
U C H?™=Y(W,,) of pure type (m,m — 1)+ (m —1,m) as a direct sum of pairwise non-
isomorphic irreducible Hodge structures U;. For each of these U; we shall verify that the
image of (3.2.2) is not contained in U;-. The proposition will then follow immediately.

Begin with the disection of the Hodge structure H2™~'(W,,). This is done by in-
duction on m with the help of the following correspondence. The hyperplane section
defined by z2m—1 = 0 is the cone, Cy,, over Wy, with vertex p,, = (0: ... : 0: 1).
Using the notation ~ for the blow up at p,,, we describe a correspondence, f,,

P =~ q ~ o
Wm—l — Cm —r Wm — Wm,
where p is the projection, ¢ is the desingularization of C,,, and o is the blow up of W,
at pm. This induces a map Fpa : H2"“3(Wm_1) — H™~=Y(W,,). Define the composed

correspondence 5 = B 0...0 f; : Wi — W,,. To simplify notation we will frequently
write [, for Bma.
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LEMMA 3.3.5.

(1) B. is injective.

(2) Assumed > 4m and d—1 is prime. Write A for the augmentation representation
of Z/d and B, for the “primitive ” representation of Z/(d — 1)!™~1 (ie. the
Q-irreducible representation which over C decomposes as the direct sum of all
primitive characters, each occurring with multiplicity 1). Then Coker(f.) is
isomorphic to A ® B,, as a representation of < 7,, >.

(8) For d as in (2) any non-zero Hodge substructure, U, of Coker(f.) satisfies
FIm=176 #0.

(4) For d as in (2) and m > 2 the largest rational Hodge substructure, U C
H?™=1(W,_,) of Hodge type (m,m — 1) + (m — 1,m) is n.(H'(W))).

PRroOF: (1) Write E,, C C, for the exceptional divisor and L,, C C,. for the strict
transform of a hyperplane section of C,,. Observe that Ném [Wo 2 O¢ (Lym — dEy,).
From the excess intersection formula ¢*g.(n) = n-e;(Ng /W, ) We deduce that p,¢*q.p*

is multiplication by 1 — d on H?>™~3(W,,—1). The injectivity follows since o induces an
isomorphism on odd dimensional cohomology.

(2) F™UIETY W) ~ FPRHP™(PY™ — W) ~ Clzo, vy T2m]d—2m~1Em,
where, &, = ( Z (—1)im;dzo...ag...dzgm)/ﬂm.
0<i<2m
Now vm, acts on £, by multiplication by (7, , where a = (2 ~ d) ZO(j(m—l(d —~1)4.

Since @ = 1 mod (d — 1) all characters of the group < & > which appear in the
decomposition of the representation F?™~1H?™~1(W,,) are primitive. Observe that

(d_])i‘m—l : . 3 d—2m—1—a° agp asm :
" acts by multiplication by (p on ry°..x;2". Since d—2m -1 2>
- 2m=1 .
d/2 — 1, and a = 2m mod d every non-trivial character of < '75,‘3 h > (or its

inverse) appears with positive multiplicity in F2™~1H z’f‘_l (W) This shows that
AQ® B, C Coker(B.). Now dim.(A® B;) = (d—2)(d—1)*~1. The well known formula
for the betti number of a smooth degree d hypersurface gives

W (W) = (d - 2) Y (d=1)P1= 3 dim(A® B)).

1<j<m 1<5<m

Induction on m shows dim.(Coker(fma)) = dim.(A® By,).

(3) If F*™~1Ug = 0, the same holds when U is replaced by the smallest v,,-stable
Hodge substructure containing it. But if U is a non-zero subrepresentation of A ® By,
which is defined over Q then we have seen in the proof of (2) that F2™~1Ug # 0.

(4) This follows from (1), (2), and (3) by induction on m.

Let J (respectively J') denote the Jacobian ideal of H,, (respectively Hp—1), A =
C[:Bo, ceny xzm]/.], and A' - C[:Bo, evey :Ezm...z]/J’. Also define

_ d-2_d-2 _d-2 m—1
Um = Ty Tg Tom Em/Hm .
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LEMMA 3.3.6.
(1) For m > 2 the natural isomorphism H™™ 1 (W,,) ~ A, (,/H™"! [Do,§2],
gives rise to B, (H™ V™= 3(W,,_)) ~ Azm_l)d_(Zm_])mgf{m/Hn";“l.
(2) Similarly we get the identification of n.(H"*(W)) with

C[:Co, :B],Zg]d_sl/m.

PROOF: (1) Let k = AHA=DTE and write Cay = Cf)(:.—d),m-z

d — 1-st root of unity. By (3.3.5(2))

which is a primitive

ﬂ*(Hm—],m—Z(W _1)) — Hm,m—l_l(wm)<n>'

Observe that z3°...252" ¢, /H™ ™! is an eigenvector for & with eigenvalue (327", This
will be invariant when as,, = d— 2 mod (d — 1). The surjectivity of

(Clzo, -wax2m—2](m—1)d—(2m—-l)$g;2/de—2m—1)Em/H;,’:_l — (Ay, b /HI1)<H>
follows from z3,;,—1 :cg;f, mg;ﬂ(d”l) € J. Use again the fact z9,,— :z:g,'nz € J to see that
the obvious map

A'm—l)d—(2m—1)zg;12 - (C[IO’ sees $2m-2](m—])d—(2m—1)$g;2/']md—2m—])

is well defined and an isomorphism. As the dimension of this space is A™~ 1™~ 2(W,,,_;),
(1) follows.

(2) Recall that Jy—3 = 0 and that 8, is injective. Now (2) follows from (1) by
induction on m.

LEMMA 3.3.7. With d as in (3.3.3) the irreducible Hodge substructures of H'(W;)
are precisely the Q[ym]-irreducible submodules of H'(W1,Q). Furthermore, no two
irreducible Hodge substructures are isomorphic.

PROOF: The proof is based on Aoki’s detailed analysis of the factors of the Jacobians

of Fermat curves. Indeed, the degree Dy Fermat curve, X : yé) '+ yf) ' 4 yr? ' =0, maps

! ! 2o = ySy;'. We write the character of uh,/Aup, C
ag,,ay,,032

Aut(X) corresponding to a monomial y3°yy'y;* of degree 0 mod D, as (ap,a1,az) €
(Z/Dy )3. View H! (W1) as a Hodge substructure of H! (X). The element

to W, via 9 = yg_ , T = yf—

2 2y T 2h 716 € Clzo, 31, Tolaaly = FHY(P? — Wy) > F'HY (W)

corresponds to the character a(d — 1,1,—d) € (Z/D;)* where a = (d — 1)b; — b,.
As we run through monomials in zg,z;,z2 of degree d ~ 3, a and —a run through
Z/Dy—(dZ/D,U{(d—1)Z/D,), each element being hit once. The irreducible Q[Z/D;}-
submodules of H!(W;, Q) are in bijective correspondence with the divisors d' of d with
d > 1 viad — H(d') = the “primitive”representation of Z/d'(d —1). In Aoki’s

17



language the Hodge substructure H(d') C H!(X) is denoted by the unordered 3-tuple
{d—1,1,—d} of elements of Z/d'(d—1). By [Ao,Thm 0.2] H(d') is an irreducible Hodge
structure. (It is at this point that the hypothesis that the prime (d — 1) > 17 enters.
One must be sure that d'(d — 1) is not in Aoki’s exceptional set £).

It remains to check that the Hodge structures assigned to distinct divisors d' of d are
non-isomorphic. Associate to each d' the unordered tuple {(d/d')(d—-1), (d/d"), —d(d/d")}
of elements in Z/D; and apply [Ao,Thm 0.1].

CONTINUATION OF THE PROOF OF 3.3.3: Write n’ for the intersection of the image of
(3.2.2) with U™™~1 = n, H"?(W);). By (3.2.6) and (3.3.6) we have the identification

!
n' = hy,, N Clzg, 2y, T2)d—3Vm.

Write n for the C[< 7,, >]-submodule of H™™~1(W,,) generated by n'. Consider the
ideal I = (:rgjz,:cf,:clmg) C Clzo, 21, 22].

LEMMA 3.3.8. Ij.3v,, C n.

PROOF: Set (p, = C}z)n;—z' Then ~,, operates on zy, x;, %2, vy, by multiplication

with 1, C})Td, ¢py, Clz;:d respectively. Now xf,‘” and z2 + z,z2 € h. For each monomial
f € Clzo, 1, z2]a—s5 thereis b € Z/D, such that +y,, operates on z? fv,,, by multiplication

by CEI and on z;z; fv,, by multiplication by C;’)’td. The element

D i —(b+d
E Cpf"?{fn, (respectively Z CDE ):%tn)
e2/Dr t€2/D,

of the group ring C[< <¥m >] annihilates zz2 fvy, (respectively z2 fvn,) and multi-
plies z? fv,, (respectively z1z2fvm) by D;. Since (z? + z122)fvm € 1', 2} fv, and
123 fvm € n. The lemma follows.

As {z1z37%7 . 0 < j < d/2} is a basis for (C[:co,:cl,mg]/(:zf,mla:g,mglz))d_g, the
codimension of n C U™™~! is at most d/2. Note that when d' # 2, dim(H(d")) =
#(d")(d — 2) > d, where ¢ is Euler’s function. Thus n,H(d')*? ¢ U™ '™ has dimen-
sion > d/2, whence n ¢ (n.H(d'))t. As < 4,» > is in the orthogonal group for the
intersection form, n' ¢ (n.H(d'))*.

The same argument works with a little modification in the case d’ = 2. Indeed, a
simple computation shows that the subspace of H1:9(W),

ng := span{mg:cg_a_jfl (05 <df2-1)},

is contained in H(2)*. Thus n’ C (n.H(2))* implies n C (7, H(2))*, which implies
n+ 7.1y C (7.H(2))t, which contradicts dim(H(2))%! = (d — 2)/2 > 1 since n+ 7.nq
has codimension one in U™ ™=, This completes the proof of (3.3.3).
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LEMMA 3.3.9. The cycle TT (W as in (3.3.2)) on the hypersurface W,, may be seen
to have non-trivial Abel-Jacobi 1mage by direct computation. The class of TT in
Gr™(Wp)[2] is zero.

PROOF: The first statement in the lemma offers an alternative way to establish item (2)
in the proof of 3.0 in a limited number of cases. I have emphasized the methodological
approach of §3.1, since the present lemma is based on the fortunate accident that the
variety H,, = 0 is remarkably easy to analyze.

Begin with the second assertion of the lemma. Note that the codimension m—1 linear
space I3 = Ts = ... = Tom-1 = 0 cuts W, in the cone,K,, , over W, with vertex P™?
defined by z¢g = z; = 29 = 23 = 25 = ...22;m—1 = 0. The cycle Z_, on W, consists
of the two rulings in K, over the points ¢ = (0:0:1),g2 = (0: =1 : 1) of W} each
taken with multiplicity d/2. As a linear space section Y. /psz we may choose the
ruling over ¢; taken with multiplicity d. Thus TT = Z_h. — iy, fp:mL is the difference

of the rulings over ¢; and ¢, taken with multiplicity d/2. Write E for the exceptional
divisor of the P™~!-bundle over W, K m, obtained by blowing up K, along the vertex.
The obvious intersection computation shows that the strict transform of ’T_h. in K, is
numerically and hence algebraicly equivalent to zero. This proves the second assertion.

In effect we have just shown that the cycle T_h. may be described as n.((d/2)(q1 — ¢2))-
It is apparent from the proof of (3.3.5(1)) that p.q*c*o.q.p* is multiplication by the
odd number (1 — d) on the intermediate Jacobian J™ ' (W,,~1). Iterating gives that
n* o 1, acts by multiplication by (1 — d)™~! on J}(W;). To show that the Abel-Jacobi
image of TT is not zero, it suffices to show (1 — d)™~1(d/2)(q; — q2) is not zero in
J1(W).

Since the canonical quotient map

Wy = C =< 2471 s \w,

is totally ramified at the points p; € C below g;, we conclude that the cycle, (d/2)(q; —
q2), is the pull back of the cycle, (p1 — p2), and that the pullback map on Jacobians is
injective. But C is the a double cover of < 'yf_l > \W; ~ P! branched at d > 4 distinct
points (including the two points p; and p;). Thus p; — p2 gives rise to a non-trivial two
torsion point of J'(C), whence (1 — d)™~1(d/2)(q1 — ¢2) is not zero in J}(W;).
3.4 Further remarks and open problems.
REMARK 3.4.1: We prove the assertions about the singularities of (3.1.1) when the ¢;’s
are in general position. We may assume that d; < d_; for : > 0. By general position we
arrange that the subscheme of P, Z (respectively R), defined by the ideal (go,..., gm)
(respectively g := (¢9-m,---,gm)) is non-singular of codimension m + 1 (respectively
2m 4+ 1). A general member, G, of the linear system |TgZz(d)] C |Z3(d)| = (g%)4
[Sch1,2.4] has only ordinary double points and is non-singular away from R {Sch1,2.5].
We may assume that the sequence dy, ..., d,, is decreasing. Let n > 0 be maximal such

that d,, = d/2. Write
G = Q(g—n;--~)gn)+ Z qiP—i

n41<i<m
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with p_; € g4_, and @ a non-degerate quadratic form. A linear transformation brings
the quadratic form into the normal form Q = y3 + 3, i<, ¥i¥—i- Thus G has the form
(3.1.1) as desired. :

OPEN PROBLEM 3.4.2: Suppose that a hypersurface V' C P2?™ has only ordinary
double point singularities. It would be interesting to compute the two torsion group
H3(V,Z)tors, and if the degree of V is even, to relate it to Hypm4o(X,Z) where X
is the double cover of P?™*! branched along V. It would also be interesting to know
if H2m(V,Z)tors is generated by the image of CHp,(V)[2]. Related questions may be
posed in the context of double covers of P2™ branched along a nodal hypersurface X.

OPEN PROBLEM 3.4.3: It would be interesting to know if the monodromy representa-
tion in the middle cohomology with Q-coefficients for a general pencil of hypersurface
sections on an even dimensional nodal hypersurface V C P2™*! is irreducible. If so,
this would immediately yield stronger results than obtained in §3.2-3.3.

OPEN PROBLEM 3.4.4: The question of whether or not Gr™ (W), = 0 for a sufficient-
ly general hypersurface W C P4" of large degree is especially interesting in light of the
results of M. Green [Gre]. Unfortunately, I have no results about general hypersurfaces.

4. Varieties over flnite fields.

The purpose of this section is to produce examples of smooth, projective varieties
Wr,, over finite fields F,, with Gr"(Wg )i # 0. The idea is to begin with a variety
W defined over a global field K and a cycle zx € Z"(Wg )pom. Suppose that the cycle
class

i o(zx) € H (G, H " (Wi, Zy(r)))
defined in (1.2.6) has infinite order. Let v be a place of good reduction and let z,
denote the specialization of zx to the fiber Wg,. Under certain hypotheses we verify
that there is a set of places V, having positive Dirichlet density, for which v € V implies
Ciy, n,O(Z”) # 0. By bringing correspondences into play and applying (1.2.9) we find
examples where the class z, € Gr"(Wg ) ® Z; does not vanish. We will concentrate on
the case that W is a threefold self-product of an elliptic curve and r = 2. In this case

GTT(WFU) RZ ~ Gr"(Wl.?y )1 (1.1.4).

(4.1) Specialization. Fix a smooth, projective, geometrically integral variety W over
a global field K. Let ! be a prime, ! # char(K). Let S denote a finite set of places of
K which includes all places of bad reduction of Wi as well as any places which divide
I and any archimedian places. Denote by O, the local ring of K at a place v € S and
by We, a smooth model of W over O,. A codimension r subvariety 20 C Wg has
closure 2 C Wp, flat over O, with special fiber z, C Wy also of codimension r. Thus
there is a specialization map sp: Z"(Wg) — Z2"(Wr,). It is compatible with rational
equivalence [Fu] and with the cycle class map to cohomology [Gr-D,2.3.8]. Furthermore
if K, denotes the completion of K at v there is a canonical map [Sel,II1.1]

&« H (G, "™ (Wi, Zu(r))) — H' (G, , B ™ (Wg, Zu(r))).

Write I, for the inertia group of K,. Since v ¢ S, H'(I,, H* Y (Wg, Zi(7)))% ~ 0
[BI1,81]. By the inflation restriction sequence the natural injection

ﬂ . H] (GF» ’ ngwl (WF,s ZI(T))) - HI(GKP ) H‘zr_l(wﬁ’s zf(r)))
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is an isomorphism. Define v, = 71 o,.

We now turn to the compatibility between the cycle class map and specialization.
In the examples of this section W is always an Abelian variety. Hence the following
statement will suffice for our purposes.

PROPOSITION 4.1.1. Suppose that W, /O, is an Abelian scheme of relative dimension
d > 2r. Let P be a cycle on Wo, X0, Wo, which is a linear combination of graphs of
Abelian scheme endomorphisms. Let zx € Z"(Wk)rom be a cycle with the property
that the closure in Wo, of each irreducible component of the support of zg is smooth
over Spec O,. Then 7V(chK,0(P*zK)) = c{vrv’o(P..z,).

ProOOF: [B-S-T, Prop. 3.7]

It is often the case that ¢y, o(Puzi) € H'(Gk, H*~'(Wg, Zi(r))) has infinite order.
The following lemma shows that cfy, (P.z.) is a torsion class.

LEMMA 4.1.2. H'(Gy,, H*~1(Wg,, Z((r)) is a finite group.

PROOF: Write ¢ € Gy, for the Frobenius element. H'(Gy,, H* ' (Wg, ,Zi(r)) =~
H™Y(Wg ,Zi(r)/(¢ — 1)H* =1 (Wg,, Zi(r). By the Riemann hypothesis (¢ — 1) acts
invertibly on H?"~1(Wg ,Zi(r) ® Qi. The assertion follows.

Set Ng = P,HY ' (Wg, Zy(r)) and Np, = P,H?™ (W, , Z(r)).

PROPOSITION 4.1.3. Suppose that the image of the Galois representation p : Gg —
Aut(Ng) contains an open subgroup of the homotheties. Fix an integer m > 0. If
f € H'(Gk, Ng) has infinite order, then the set of places v ¢ S, for which I™~,(f) €
HY(Gr,, N, ) does not vanish, contains a subset of positive Dirichlet density.

PROOF: For each positive integer, n, write K,, for the fixed field of the kernel of the
Galois representation, p, : Gxg — Aut(Ng/I"Ng). Define f,, to be the image of f
under the map H'(Gk,Ng) — HY(Gk,Ng/I"). Define L, to be the fixed field of
Ker(fnlox,)-

LEMMA 4.1.4. L,/K is Galois.

ProoF: From the exact sequence
(4.1.5) 0— HI(GK"/K,NR/I") — HY(Gg,Ng/1™) = Hom(Gk, , Ng JI*)CKn1x,

we see that for v € Gk and ¢ € Gk, we have f,(yov~') = vfn(o). The assertion
follows.

Given a place v of K, unramified in L, /K, write Frob, C G,k for the Frobenius
conjugacy class. Suppose that v splits completely in K,. Now I™ f, (o) is either 0 for all
o € Frob, or is non-zero for all ¢ € Frob,. In the latter case we write {"™ f,(Frob,) # 0.
Let V, denote the set of places v of K which satisfy

(1) v does not divide {

(2) Wk has good reduction at v

(3) v is unramified in L,
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(4) v splits completely in K,
(5) Any Frobenius element, Frob,, at a place u of L, above v satisfies I™ f,(Frob, ) #
0.

LEMMA 4.1.6. Assume that the image of p contains an open subgroup of the homoth-
eties. Then for large n, the set, V,,, has positive Dirichlet density.

PROOF: We may ignore the first three conditions in the definition of V,, since they
exclude only finitely many places. By the Tchebotarev density theorem applied to the
extension L, /K, it would suffice to show that for large n the image of I™ f,, under the
right hand arrow in (4.1.5) is not zero. By hypothesis there is u € Z}, a positive integer
ng, and a homothety n € im(p) with n—Id = ul™ Id. For each n > 1 there is an element
on of the center of Gk, /k with pn(oa) = 7 mod I"End(Ny). A standard lemma in
group cohomology now implies 7 — Id € Endg,(Ng) annihilates H'(Gg, sk, Ng /I™)
[La,V Thm. 5.1]. Hence multiplication by I"° annihilates H'(Gx, /x, N /I"). Since f
has infinite order, the image, f,, of (f mod I™*) under the inclusion H'(Gg, Ng)/I" —
HY(Gg,Ng/!™) is not annihilated by the homothety I™*™° when n >> 0. By applying
the endomorphism, multiplication by I™*"°| to the exact sequence (4.1.5), one deduces
that I™ fulGy, # 0 for large n.

Define the subgroup of cohomology unramified away from S by

H'(Gx, Nic/I")s = Ker : H'(Gie, Ng/I") = [[ H'(L, Nie/I™).
vgSs

Write S, for the places of K,, over S and u for a place of K,, over v.

LEMMA 4.1.7.

(1) Theimageof H'(Gk,Ng)/I® — H(Gk, N /1) is contained in HY (G, Ng /1")s.
(2) There is a commutative diagram

HY(Gg,Ng)/I" —— HYGk,Ng/I")s —— Hom(Gg,,Ng/1™)s,

(4.1.8) 7.1 a,l a,,l

HI(GF,,NFU)/I" _— H](GF,,NF_,/I") —_— Hom(GFp,pr/l“).

Proor: (1) [Ra,§1].
(2) The map 9, 1s defined as the composition of the restriction map

HYGg,Ng/1™)s — [Ker : H'(Gg,,Ng/1") = HY(I,,Ng /I™)]
with the inverse of the tautological isomorphism,
Bn: H'(Gr,,Ng, /I") — [Ker : H'(Gk,,Ng/1") = H'(I,, Ng /1™)).
The map 9, is defined analgously. It is clear that the diagram commutes.
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To prove the proposition it suffices to show that the image of I™+,(f) in Hom(GF,, N¢, /1")
is not zero for each v € V. Now Frob, € G, /K, is an element in the conjugacy class
Frob, C Gk, k- By the definition of V,, I™ fa(Frob,) # 0. The existence of an ele-
ment ¢ € Gk, which maps to the Frobenius in G, gives a splitting, s, of the canonical
map Gk, — Gp,. Thus foos =19,. Now I™ f . (Frob,) # 0 implies I"™ f,08 = 4,(I™ f,)
is not zero. By (4.1.8) I™v,(f) # 0.

(4.2) The threefold product of a CM elliptic curve. Consider the smooth plane
curves over Z[1/2],

E: 23z = 2 + 7072,
C:ty+tl+15=0,

the threefold W = E3, and the map o : C — W defined by
oty s ty : tg) = [(—tat? : 124, 1 83), (—tot2 : 13ty : £3), (=12 : t2ty : £3)].

View E as an abelian scheme with neutral element (0: 1 : 0) and let « € Aut(W) denote
inversion in the obvious group law. Define z = p(C) — t.p(C). For any separably closed
field, L, of characteristic not equal to 2, the cycle z;, on W is homologous to zero. This
situation (actually a slight variant) was studied by Bloch [Bl1]. From his results we
shall deduce

PROPOSITION 4.2.1. Let ! € {3,5,7,11,17}. Fix an arbitrary positive integer m. The
set of places p of Q for which the class ™z, € _GrZ(WFP hi does not vanish contains a
set of positive Dirichlet density.

PROOF: The first step is to construct an approriate self-correspondence of W. Consider
the automorphism ¢ € A"t(Ez[1/2,¢ZT]) given by (zo : 21 : z2) = (=29 : V—1z) : z2).
Define op = (:%,1,1) and a1 = (3,42,7) € Aut(W). Set

P= Z olob

(a,b)EZ/4xZ[4

and Ni, = P.H3(E},Z(2)) for any separably closed field L of characteristic different
from 2.

LEMMA 4.2.2.
(1) P is defined over Z[1/2).
(2) P2 =16P € Z[Z/4 x Z/4].
(3) P.z =16z.

(4) If p=1 mod 4, Pp, € Z*(Wr, x Wg,) is transcendental for codimension 2
cycles in the sense of (1.2.10).

PrOOF: (1) and (2) are evident. The third assertion follows from Po: = ¢ 0o P and
pod; = gjop, where §; € Aut(Cz[I/Q,\/j]) is defined for j € {0,1} by t;05; =
(\/:T)E‘jt,'.
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To prove (4) we note that the curve E has complex multiplication from Z[/—1] and
good reduction away from 2. By the theory of complex multiplication [La2,§10], if
p =1 mod 4, E has good, ordinary reduction. Write 4, and %, for the eigenvalues of
Frob;! € Gq acting on H'(Eg_, Qi). Now 7, and 7, generate distinct principal ideals
of Z[v/—1] into which the prime p splits. One checks easily that 75/p and 7} /p are the
eigenvalues for Frob,! acting on Ne, ® Qi(—1). Since these are not algebraic integers,
(4) follows from (1.2.11).

LEMMA 4.2.3. Forle {3,5,7,11,17}, c%‘,q'o(P*zQ) € H'(Gq, Ng) is not zero.

PROOF: By (4.1.1) it suffices to check that C%Vp,,o(P*ZP) # 0 for a prime p of good
reduction. It is simplest to do this when p = —1 mod 4, since in this case Ep, is super-
singular and Py, is not transcendental for codimension 2 cycles. Write 7 € End(EF,)
for the Frobenius endomorphism, define A : E%p — E’%P by h(a,b) = (a,7a,b), and
write prg : E%‘P — Ep, for projection on the second factor. It would suffice to show
that pry, o h*(C%V,P,O(P*zp)) # 0. By (4.2.2 (3)) one may replace P,z, by z,. By the
functoriality of the cycle class map one is reduced to computing c},;yp,o(prg.. o h*(zp)).

To show that this is non-zero we need only show that the class of pry. o h*(zp) in
Albg(F,) ® Z; does not vanish [B-S-T,1.9(7)]. Since z, is defined over the prime field
and since a supersingular elliptic curve over F, has p 4 1 rational points this class
will vanish unless !|(p + 1). Note that the prime { = 3,5,7,11, respectivley 17 divides
p+ 1 when p = 11,19, 83,43, respectively 67. In these cases computations of Bloch
[BI1, p.103] and Top [B-S-T, ] show that the class of pry, o h*(zp) in Albg(F,) ® Z; is

non-zero.

REMARK 4.2.4: When p = 1 mod 4 the argument in the previous lemma cannot be
pushed through because the map pra, o h*: Np — H? (Eg,, Zi(1)) is zero.

For the remainder of §4.2 K = Q(v/-1).
LEMMA 4.2.5. Forl> 2, HY(Gk,Ng)tors = 0.

Proor: The exact sequence
0= Ng > NgQQ —1NK®Q1/Z;—>O,

gives rise to a surjective map (Ngz @ Q1/Z)¢* — HY (G, Nz )iors. For any finite place
wof K

(Ng ® Qi/Z1)°% C (Ng ® Qu/Zi) 0.

Consider the case that g = ¢Z[+/=1], where ¢ = —~1 mod 4 is a rational prime. Then
Frob, acts by multiplication by the scalar —q on H'(Eg, Zi(1)) because Ey,_ is super-
singular. The action of Frobyon Ng is by multiplication by —g¢° /Ng g = —¢. Thus
(NK’ ® Q[/Zl)Fmba =0 for ] ¢ {2, 3} and (NR' ® Q[/Z;)Fmb"' =0 forl ¢ {2, 7}.

In order to apply (4.1.3) we note that the image of p: Gx — Aut(Ng) contains an
open subgroup of the homotheties. Indeed, this follows from the fact that the image
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of k contains an open subgroup of the homotheties [Se4,§4.5). As a by-product we see
that Ng" ~ 0. The inflation-restriction sequence then implies that the restriction map

H'Y(Gq,Ng) —» H'(Gk,Ng)

is injective. By (4.2.3) and (4.2.5) the cycle class Sy o(Pazx) € H'Gk,Ng) has
infinite order. Now (4.1.1) and (4.1.3) imply that there is a set of places , V, of K, having
positive Dirichlet density, with the property that I™c}y, (P.z,) € H'(Gr,, N¢, ) does
not vanish for any v € V. Write U, for the set of rational primes, r =1 mod 4, which
lie below V. The places Vy C V lying above U, consists of the unramified places of V
of degree one. This subset has positive Dirichlet density, since the set of all primes of
K of degree greater than one has Dirichlet density zero [Co,819]. Thus the subset of
rational primes, Uy, also has positive Dirichlet density.

Pullback gives an obvious isomorphism of pairs (z,, Wr,) ~ (z,, Wg, ). By Soulé’s
theorem (1.1.4), 2, gives a class in T?(Wg_). As P, is transcendental by (4.2.2), the non-
vanishing of Imc%Vrr'o(P..zr) implies that the class ™z, € Gr?(Wp, ) does not vanish
for any r € Up. This proves (4.2.1).

(4.3) The threefold product of an elliptic curve without CM. It is natural to ask
if the method of §4.2 extends to the case that E does not have complex multiplication.
In this section we show that this is indeed the case. Unfortunately, there is no longer a
useful, globally defined correspondence which is transcendental for codimension 2 cycles
on E%'. Consequently, the technical problems become more involved. Inspite of this,
the non-CM case is important, because most elliptic curves over global fields fall into
this class.

Let E/K be an elliptic curve over a global field. Let | > 3 be a prime distinct
from the characteristic of K. Assume that the image of the Galois representation
k: Gg — Aut(Eg[l*®]) ~ GL(2,Z,) is an open subgroup. This will be the case if K
is a number field and Eg does not have complex multiplication [Se2], or if K is the
function field of a curve over a finite field and the j-invariant of E is transcendental.
Suppose that zx is a nullhomologous 1-cycle on W = E% whose support is a union
of smooth curves. Under certain additional hypotheses we shall show that there is a
set of places, V, having positive Dirichlet density, for which the specialization z, is not
algberaicly equivalent to zero for any v € V.

A preliminary step is to eliminate certain ‘uninteresting submotives’of H3*(W). This
is done with a globally defined correspondence P € Z*(E3, x E%;). The construction of
P is in part inspired by some work of B. Gross. P will have the following properties:

(1) P is a linear combination of Abelain scheme endomorphisms;

(2) PoP =3P;

(3) P.H3(E%,Z;) ~ Sym*HY(Eg,Z)).

The construction of P is as follows. For each subset T C {1,2,3} let pr : E3 —
EIT! denote the projection obtained by omitting the factors not in T. For example,
13(z1,T2,23) = (%1,73). py : E® — Spec(K) is the structure map. Define inclusions
gr : EITl — E® using the neutral element e to fill in the missing coordinate. For
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example, ¢13(zy,z2) = (21,e,22). Let Pr denote the graph of the morphism g7 o pr :
W — W, and define

P'= Py — Py = Py = Pj3 + P{ + P, + P; — Py
as a 3-cycle on W x W. Then P’ gives rise to the endomorphism (g323 © p123)s — (g12 ©
P12)s — .-+ (gp © pp)« of Z.(W) respectively H (W, Z(-)).

Denote by 7 : W — W the map (z1,22,23) — (z2,23,21). Define two new self-
correspondences of W by

P'=Td+7+7°
P=P'oP.
It is clear from the construction that P specializes well to places of K where Ex has
good reduction. The properties of P listed above are straight foward to verify [B-S-T,
2.3].

Set Ng = Sym3H'(Eg,Z;)(2). The action of Gk on Ng factors through s : Gx —
Aut(HY(Eg,Zy)) ~ GL(2,Z;). The relevant action of GL(2, Z,) is by twisting the third
symmetric power representation with the character det™2. Set f = c%VKlO(P.zK) €
HY(Gg,Ng).

PROPOSITION 4.3.1. If f has infinite order, then the set of places, v of K, where the
specialization, I™ P,z,, is not algebraicly equivalent to zero contains a subset of positive
Dirichlet density.

PROOF: Let K, denote the fixed field of the kernel of the Galois representation, «,, :
Gk — Aut(H'(Eg,Z/1™)), and let L, denote the fixed field of the kernel of f,|g, €
Hom(Gg, , N/I™)Cxaix_ Write V, for the set of places ¥ of K which satisfy

(1) v does not divide {

(2) Ek has good reduction at v

(8) v is unramified in L,

(4) v splits completely in K,

(5) Any Frobenius element, Frob,, at a place u of L, above v satisfies {™ f,,(Frob, ) #

0.

For n large, V,, has positive Dirichlet density (4.1.6). It follows from (4.1.3) and (4.1.1)
that v € V,, implies c%vao(l’"P,z,) # 0. Consequently, I™ P, z, is not rationally equiv-
alent to zero. It is more difficult to discribe a set of places, V), C V,, having positive
Dirichlet density, with the property that I"™ P,z, is not algebraicly equivalent to zero
for any v € V). In order to do this we begin with a cohomological lemma in the style
of Bashmakov [Ba)].

Write K, for the fixed field of Ker(x) and Ly, for the union of the L,’s. A choice

of continuous crossed homomorphism f € Z!(Gg, Ng) representing f gives rise to a
continuous homomorphism to the semi-direct product,

¢: Gk — Ng - GL(2,Z4), 9(9) = (F(9), =(9)),
where the action of GL(2, Z;) on Ng has been discribed above. Changing the choice of
f by a coboundary amounts to composing ¢ with conjugation by an element of Ng.
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LEMMA 4.3.2. The image of ¢ is open.

PROOF: Since Gk is compact, the image is closed. It suffices to show that the image
has finite index. By hypothesis, the image of « has finite index. Thus there is a positive
integer ng and an element g of the center of Gk, /x With the property that 5 = x(g) is
a homothety and the valuation of 5 — Id is ng. A lemma in group cohomology shows
that n — Id annihilates H'(Gx_ /k, Ng) [La,V Thm 5.1]. By the inflation-restriction
sequence, the kernel of

HY(Gk,Ng) = Hom(Gk,,, Ng)CKe1x

is annihilated by n—Id, and hence by multiplication by I*°. Thus f|g, € Hom(Gk,,, Ng)Cx=ix
has infinite order. Consequently f(Gk,.) C Ng is a non-torsion G /x-submodule.
Now Ng ® Qq is an irreducible module for any finite index subgroup of GL(2,Z;). In
particular Ng ® Qq is an irreducible G, /x-module. Thus f(Gk,)® Qi = Ng ® Qi
Hence Ng/f(Gk,, ) is annihilated by I" for some positive integer 7. The lemma follows.
The fact that the image of ¢ is large should give us enough freedom to choose places v
of K where f(Frob,) is not annihilated by a transcendental correspondence on Wg,. To
realize this idea requires some rather intricate considerations to which we now proceed.
For n > r consider the map induced by ¢,

®2n,r: Gr,, /1, — [Ker: Ng /™ GL(2,Z/1*") = Ng /" - GL(2,Z/I")].
By the lemma, it is an isomorphism if r is sufficently large. Note also that the map
Konn : GK,, /K, — [Ker: GL(2, Z/1*™) = GL(2,Z/1™)]

is an isomorphism for n sufficiently large.

We now fix a positive integer m as in the statement of the proposition and integers
n and r for which k2, » and @2, , are isomorphisms and n > r + m.

Given ( € Gk, Kk, define a matrix { € M3(Z/1") by the equation

kon(¢™Y) = Id = ¢l - Id

in My(Z/1?"). Write £ — £ for the anti-involution of My(Z/I") characterized by ¢ =
det(€)Id and € + € = tr(€)Id. In terms of matrices the involution is given by

a b - d -b

¢ d —c a ]
Since | > 3 and K3, 5 is an isomorphism, we may and will chose { € G, /K, so that
£, — £,& + £ are units. Define N = Sym3(Z?). We view ¢ as an endomorphism of

N/I* = Sym3((Z/1")?) by the third symmetric power of the matrix {. Define d =
EEt=E+&6b=€ + € in Z/I". The endomorphisms

Q=€ -dtt+d® and Q=€=b+d
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of N/I™ give rise to a splitting
N/I" ~ Ker @, & Ker Q,,

(see (4.3.7) below).

Now choose § € I"N/I?"N such that the image of ™8 in I"N/I®N is a non-zero
element of ["Ker Q2. As ¢2n » is an isomorphism, there is a unique o € G, /1, with
p2n,r(0) = (6, {).

DEFINITION 4.3.3: Let V] denote the set of all places of K which satisfy

(1) v is unramified in Lg,/K

(2) The Frobenius conjugacy class Frob, C Gy, /k contains ¢
(38) v does not divide !

(4) v is a place of good reduction for Ex

(5) The elliptic curve E, is not supersingular.

LEMMA 4.3.4. V] has positive Dirichlet density.

PRrROOF: (1), (3) and (4) exclude only finitely many places. (5) excludes only a set of
Dirichlet density 0 [Se2,IV-13 exer.1]. By Tchebotarev’s theorem the set of places for
which (2) holds has positive Dirichlet denstiy.

The proof of (4.3.1) reduces to the following asserton.

PROPOSITION 4.3.5. Let | > 3 and let m, n, and v be as above. If v € V, then the
class I™P,z, € Gr?(Wg, )i is non-zero.

PROOF: Let v € V;. We may identify 0 € Gy,,/r, with the Frobenius element at
a place of Ly, above v. Define R = End(Ep ) ~ End(Ep,). Write » € R for the
geometric Frobenius. Modulo [*® we may identify = with k2,(c~'). Since ¢ maps
to the neutral element in G/, there exists { € R with 7 — 1 = £I". Now o was

constructed so that £, &, € + £, € — € have invertible images in R/I.
The graph of the diagonal action of { on E%, denoted T'¢ € Z*(Ef. x Ef ), gives rise

to an endomorphism of Sym*HY(Eg,Z;) C Ha(E%v,Qz). Define integers d = €€, =
€+ E&,b= ¢+ €. Consider the action of

(4.3.6) Q1 =T;—diT¢ +d°A, Q=T;-t¢+d’A € CH*(E} x E})
on Ng, := Sym*H'(Ey_,Z)(2). Define N; = Ker Q; C Ng,.

LEMMA 4.3.7.

(1) @1|n, € End(N2) and Q2|n, € End(Ny) are invertible endomorphisms.
(2) Ng, @ N1 ® Ns.

PROOF: Note that £ ® 1 acts on H'(Eg,Z1)® R ~ R® R by (¢, §__) Thus I's @ 1
acts on Np @ R ~ Sym%(H'(Eg,,Z;) ® R)(2) ~ R® by (£3,£%¢,££%,8%). Now @,
respectively (J2, act on Ny, @ R ~ R%% by

6 0@ 0 @ 36 respectively 0 @ —€266 @ —££%6 @ 0,
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where § = (£ +&)(€ — £)?. One may make the identifications Ny @ R ~ 0@ R® RP0 and
N:®@R~R®000® R Now (2) follows since R is faithfully flat over Z. Furthermore
(1) is a consequence of &,£ + €, and € — € all being units in R ® Z;.

LEMMA 4.3.8. Q0P € CH?‘(E%" X E%y) is a transcendental correspondence for codi-
mension 2 cycles.

PROOF: Write ¢ € Gp, for the Frobenius automorphism. The action of 7 and ¢!
on H'(Eg, ,Q) coincide [Mi,VI13.5]. The action of ¢! is affected by Tate twists;
the action of 7 is not. Set F = R® Q. The action of the torus F* on H'(Eg, Q) is
described by the two characters 1, 1 corresponding to the distinct field homomorphisms
F — Q. The induced action of F* on Np, ® Q; commutes with Q;. The F* action
on Ny ® Q; is the sum of weight spaces for the characters ¢® and 3. Since E is
not supersingular, ¥(7) + ¢(7) is an integer prime to p = char(F,) [Wa,§4.1]. Thus
¥(r) and hence ¥(7)® may be viewed as algebraic integers not divisble by p. Write
p* = Npjqm. The eigenvalues of ¢! acting on No(—1) ® Qu, ¥(7)%/p* and ()3 /pF,
are not algebraic integers. The lemma follows from (1.2.11).

In order to prove (4.3.5) we shall show that I"‘Ql.(c%Vn (P.z,)) € H(Gr,, Ng, ) does
not vanish when v € V). By (4.1.1) it suffices to show I™Q1.7,(f) # 0. Since ¢ is a

Frobenius element at a place above v one reduces, as in the last paragraph of the proof
of (4.1.8), to showing I™Q, f,(¢) # 0. We deduce f,(¢) = 6 from

won,r(0) = (fr(0), K2n(a)) = (6,() and f"lGK,. = fn.

By construction, I™8 € I"*™N,/I"N, is not zero. Since (), acts invertibly on Nj,
I"™Q1fn(o) # 0, as required.
EXAMPLE 4.3.9: Consider the elliptic curve

E,: zy® = (a® — 4)7° + (2a® — 4a)2*z + (a® — 4)z2?
with
(a — 120 — 12)?
(a+2)*(a+1)
Set W, = E2. By generalizing the construction of zq in §4.2 Top [Top] constructs a
cycle z, € Z3(Wo)hom- In [B-S-T] it is shown that there are infinitely many values
for a € Q such that ¢}y ((P.z.) € H'(Gq, H*(W,q,Z(2))) has infinite order. Fur-

thermore E, has complex multiplication only for finite, known set of values of a [Top,
Lemma 3.4.1]. This gives many examples where the hypotheses of (4.3.1) hold.

7(Ea) = —16
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