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Yuri G. Zarhin

In this paper absolutely irreducible integral A—adic
representations of the Galois groups of number fields are studied . We
assume that the representations satisfy the "Weil — Riemann conjecture"
with weight n and prove that their dimension is bounded above by a
constant, depending only on 7 and the rank of the corresponding A—adic
Lie algebras . As an application we obtain that the dimension of an Abelian
variety is bounded above by the rank of its endomorphism ring times
a certain constant, depending only on the semisimple rank of the
corresponding Fadic Lie algebra .
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very happy to be able to thank the Max—Planck—Institut fir Mathematik for
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0. Preliminaries .

Let K be a number field of finite degree over the field Q
of rational numbers, K{a) the algebraic closure of K and
G(K):= Gal(K(a)/K) the Galois group of K.If K‘c K(a) isa
finite algebraic extension of K, then its Galois group G(K*) =
= Gal(K{a)/K*) is an open subgroup of finite index in G(K).

Let E be a number field of finite degree over Q and let

9 = Op be the ring of integers of E . Let A be a non—zero prime
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ideal in O and [= {)) be the characteristic of the finite
residue field O/A . Welet E, be the completion of E in A and
regard Ey asa finite algebraic extension of the field Q I of

adic numbers.

0.1. A—adic representations. Recall (Serre {6 ] ) that a
A—adic representation of G(K) is a continuous homomorphism

p: G(K) - Aut(V)
where V is a finite—dimensional vector space over E A\ The
dimension of p is the dimension dim(V) of the corresponding
representation space V . The kernel Ker(p) is a closed invariant
subgroup of G(K) . We write K(p) for the subfield of all
Ker(p)—invariants in K{a) . Clearly, K(p) is (possibly infinite)
Galois extension of K.

To each K' corresponds the A—adic representation

p: G(K) =+ Aut(V)

.which is the restriction of p to G(K*). Clearly, Ker(p*) =
= Ker(p) n G(K*) and K(p*) is the compositum K K{p) of K*
and K(p) .

Since the group Aut(V) of all E j—linear automorphisms of V
lies in the group Athl(V) ofall Q [linear automorphisms of V,

it is clear that p also may be regarded as l-adic representation
p: G(K) = Aut (V)
Q
of dimension dileV = [E, : Q] dim(V) .
Recall that p is called absolutely irreducible if it is

irreducible and the centralizer



Definition. p is called infinitisemally absolutely irreducible

if it 13 absolutely irreducible and for all finite algebraic
eztensions K* of K the A—adic representations p* of G(K')
are also absolutely irreducibl'e.

In order to justify this definition we need the notion of

Fadic Lie algebra attached to A—adic representation .

0.2. [-adic Lie groups and Lie algebras. Since G(K) is a
compact group, its image Im(p) is a closed compact subgroup of
Aut(V) .(Clearly, the compact group Im(p) is isomorphic to the
profinite Galois group Gal(K{(p)/K) .) This implies that Im(p) is
a compact Q-Lie subgroup of Aut(V) but not necessarily E,—Lie
subgroup . We may define its Lie algebra Lie(Im(p)) whichis a
Q-Lie subalgebra of End(V) but not necessarily E y—Lie
subalgebra . Clearly, Im(p‘) is an open subgroup of finite index in
Im(p) and, therefore , Lie(Im(p)) = Lie(Im(p*)) for all finite
algebraic extensions K* of K.
Now, one may easily check that p infinitisemally absolutely
irreducible if and only if the natural representation of Lie(Im(p))
in V is "absolutely irreducible", i. e., there is no non—trivial
Lie(Im(p))—invariant E,—vector subspaces in V and the centralizer
of Lie(Im(p)) in End(V) coincides with E 3
Further, p always assumed to be infinitisemally absolutely
irreducible . In this case one may check that Lie(Im(p)) is a reductive Q Lie
algebra and its centeris a Q vector subspace of E, id . Here id: V4V is the

identity map. Indeed, let B be a non—zero Lie(Im(p))—invariant Q-vector



subspace of V such that the natural representation of Lie(Im(p)) in B is
irreducible . Clearly,

V=3eB (ecE,).
and the simple Lie(Im(p))—module eB is isomorphicto B forall ee E, \ {0} .
This implies that the representation of Lie(Im(p)) in the Q-vector space V is
isomorphic to the quotient of the direct sum of [E )G Q l] copies of the simple
Lie(Im(p))—module B. This implies , in turn , that the Q-vector space V is also
isotype representation of Lie(Im(p)) . In particular, it is semisimple and , therefore ,
Lie(Im(p)) is reductive .

Since it is more convenient to work with E /\—Lie algebras, let us

define E, Lie(Im(p)) as the E,—Lie subalgebra of End(V) spanned
by Lie(Im(p)) . Clearly, the natural representation of ‘
E, Lie(Im(p)) in V is faithful and absolutely irreducible . In
particular, E, Lie(Im(p)) is a reductive E j—Lie algebra . Let us
split E, Lie(Im(p)) into the direct sum

E, Lie(Im(p)) =c e g
ofiits center ¢ and a semisimple E y—Lie algebra g - The absolute
irreducibility implies that either ¢ = {0} or ¢ =E ) id . In both
cases the natural representation of g ) in V is absolutely
irreducible . In addition , E, Lie(Im(p)) is an algebraic E j~Lie subalgebra of
End(V) .

0.3. Ranks of semisimple Lie algebras . Let r be the rank of
the semisimple E A—Lie algebra g o Clearly, r does not exceed
the rank 7 of the semisimple part of the reductive Q t—Lie algebra
Lie(Im(p)) . Notice, that if r=10, then g = {0} and the

absolute irreducibility of the gp———module V implies that



dim(V) = 1. Further, we will assume that g, $#{0},i.e,r>0.
The aim of this paper is to give upper bounds for dim(V) in terms
of r for certain class of A—adic representations described in the

next subsection.

0.4. Integral A—adic representations of weight n . Let us
fix a positive integer n.

Definition. A—adic representation p is called E—integral of
weight n if for all but finitely many places v of K the
following conditions hold:

a) p is unramified at v ;

b)let Fr_¢€Im(p) bea Frobenius element attached to v
(defined up to conjugacy [6,5]) and let

Pv(t) =det (1 -t Fr;"l, V) be its characteristic poynomial.

Then all the coefficients of P_ liein E and evenin O.

¢) (the Weil — Riemann conjecture). All (complex) reciprocal roots of

P_ and their conjugate over Q have absolute value q(v)"’/ 2
where ¢(v) is the number of elements of the residue field v)
at v.

Clearly, if p is E—integral of weight n, then p‘ are also E—integral
of weight n for all finite algebraic extensions K* of K.

Remark. The Weil — Riemann conjecture easily implies that
Lie(Im(p)) is not semisimple, i. e. E 5 Lie(Im(p)) = E,id @ g, Indeed , the
determinant det (Frv_l, V) of Frv_l is an algebraic integer € E A* ,
which is not a root of 1, since its (any) archimedean absolute value is equal
to ov)" dim(V)/2 # 1. Notice that det (Frv_l, V) isa A—adic unit ,

*
because the image of the determinant map Im(p) -+ E , Oughtstobea



compact subgroup . On the other hand, the logarithm map
log: Im(p) - Lie(Im(p))
for the compact Hadic Lie group Im(p) is also defined [1] . One may easily
check that
tr (log u ) =log (det(u, V) ) € E, forall ueIm(p)c Aut(V).
Here tr: End(V)- € E, is the trace map . Now, if we put
fr, = log (Frv_l) = —log(Fr ), then
tr(fr,) = log (det(Fr ™, V) 40,
i. e. Lie(Im(p)) contains an operator with non—zero trace .(Henniart [4]
even proved that Lie(Im(p)) contains scalar operators Q;id .)

Our main result is the following assertion .

0.5. Main theorem . There ezists an absolute constant D = D(r,n),
depending only on n and r, enjoying the following properties:

Let p: G(K) - Aut(V) be infinitisemally absolutely
trreducible E—integral A—adic representation of weight n . If
the rank of the semisimple E A—Lie algebra gp ts equalfo r
then dim(V) < D(rn).

Remark . For r = 0 one may put D{0,n) = 1 (see Sect. 0.3).

Corollary of Theorem 0.5. Let p: G(K) - Aut(V) be infinitisemally
absolutely irreducible E—integral A—adic representation of weight n. Let
r’ be the rank of the semisimple part of the reductive Q [-Lt'e algebra
Lie(Im(p)) . Then dim(V) < max {D{jn),0<j<r }. ‘

Indeed, one has only to recall that r < r (Sect. 0.3) and apply
Theorem 0.5.

0.6. Remark . Let C be the algebraic closure of E, ( = algebraic
closure of. Q;)). Let us put



and consider the simple module W over the semisimle C-Lie algebra g of
rank r. In order to prove Theorem 0.5 it suffices to prove that there exists
a positive constant ', depending only on r and n, and such that the
highest weight of the simple g—module W is a sum of no more than D’
fundamental weights. Let us split g into the direct sum

g=epg, (1<i<s)
of simple C-Lie algebras g;- Clearly, s < r and the rank of each 9; does
not exceed r . Then one may decompose W into the tensor product
W=e W, of simple g,-modules W,(1<i<s).

So, in order to prove Theorem 0.5 it suffices to prove that there exists
a positive constant [’, depending only on n and r, and such that for all i
the highest weight of the simple g rmodule Wi is a sum of no more than
D’ fundamental weights .

0.7. Key lemma . Let
f€ E,Lie(Im(p)) = Eyid @ g,C End(V)
be a regular element of the reductive E,~Lie algebra E,Lie(Im(p)) . Since
End(V) ¢ EndC(W) , one may view f as a C-linear operator in W. Let
spec(f) C C be the set of all eigen values of f W~ W. Let Q(f) be the
Q-—vector subspace of C, spanned by spec(f) . Let us assume that there
ezists a finite set A of rational numbers and a finite set M of Q-linear
maps 6: Q(f) - Q ,enjoying the following properties:

1) (spec(f)) c A forall 0C M;

2) the map Q(f) - QM »a = {fa)}, . ps is an embedding.

Then for all i (with 1 < < 8) the highest weight of the simple

g;,~module W 1is a sum of no more than [card(A)-1] fundemental weights .



Here card(A) is the number of elements of A .
We will prove Key Lemma in Section 2 .
So, in order to prove Theorem 0.5 it suffices to prove the existence of

such f, A and M with A, depending onlyon r and n.

1. Proof of Main theorem.

Our proof consists of the following steps..

Step 1. Replacing ,if necesary , K by its suitable finite algebraic
extension K and p by p‘, we may and will assume that K enjoys
the following properties:

1) K is a Galois extension of Q;

2) K contains a subfield, isomorphic to E.

Let us fix a prime number p and a place v of K,
enjoying the following properties:

3) p is unramified in K, v lies above p and the
residue field Kv) at v coincides with the finite prime
field Z/pZ.;

4) p is unramified at v and the characteristic polynomial P (t) of
the corresponding Frobenius element Fr_ liesin 1+ t Oft] and satisfies
the Weil—Riemann conjecture with weight = ;

5) all the eigen values of Frv_l are congruent to 1 modulo P
and the Fadic logarithm fr_:= log (Fr ~") = —log(Fr ) is a regular
element of the reductive Q-Lie algebra Lie(Im(p)) (use Chebotarev
density theorem).

The regularity condition implies that frv is a semisimple
endomorphism of the Q [vector space V and, therefore, is a semisimple

endomorphism of the E y—vector space V. Clearly, frv is also regular in the



reductive reductive E,—Lie algebra Lie(Im(p)) ® QIE ) - Since
E ALie(Im(p)) is isomorphic to the quotient of Lie(Im(p)) @ Q E, fr, is

also regular in E, Lie(Im(p)) .

Step 2 . Let us fix an embedding of E in K . Now we may and will
assume that E is a subfield of K. Since K is a Galois extension of
Q, the condition 3 of Step 1 implies that p splits completely in K . Since
E is a subfield of K, p also splits completely in E .

Recall that C is the algebraic closure of E A\ Let L be the subfield
of C obtained by adjunction to E of the set R of all eigenvalues of
Frv,_1 . Clearly, it is a finite Galois extension of E and all elements of R
are algebraic integers . For each embedding of L into the field C of

n/2 . Let us

complex numbers all elements of R have absolute value p
denote by I' the multiplicative subgroup of L* generated by R . Since all
elements of R are congruent to 1 modulo 12, I' does not contain roots of 1
different from 1. So, I' is a finitely generated free abelian group . I claim
that the rank 1k(I') of ' does not exceed r+ 1. Indeed, the iadic
logarithm maps R into the set Spec(frv) of all eigen values of the

(Clinear operator £rv: W= W, and , therefore, defines an isomorphism
between T' and the additive subgroup Z(frv) of C, generated by spec(frv) .
Let me recall that frv is a semisimple element of E A\id ® g, c Cid weo
where idW: W~ W is the identity map and g is the semisimple C — Lie
subalgebra of End( W), having the rank r. Now, E. Cartan theory of
modules with highest weight {2] easily implies that the additive subgroup,
generated by all eigen values of each operator from g, has the rank < r.

Since frv is the sum of a scalar operator and an operator from g, the rank

of Z(&v) does not exceed r+ 1.
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Notice,that the Galois group Gal(L/E) acts naturally on T . This
action defines an embedding

Gal(L/E) » Aut(T') » GL(rk(T'),Z) ¢ GL(r+1, Z) .
Since Gal(L/E) is finite, it is isomorphic to a finite subgroup of
GL(r+1,Z). Applying a theorem of Jordan we obtain that there exists a
positive constant D, = 1(1'), depending only on r, such that the order of
Gal(L/E) divides D, i. e. the extension degree [L:E] divides D, .

Step 3. Let O be the ring of integers in L . Conditions 3 and 4 of
Step 1 imply that all elements a of R are algebraic integers in L and for
each embedding of L into C we have

o= pn .
Here o’ is the complex—conjugate of a and, of course, also, an algebraic
integer . This implies that if p’is al prime ideal in DL , not lying above p,
then « is a p’—adic unit for all a € R . Notice, that o' = pn/ a liesin L
and even in ‘DL .

Let S be the set of prime ideals in DL , lying above p. For each p
from S let

*

ordp L -+ Q
be the discrete valuation of L attached to p and normalized by the
condition

ordp(p) =1.
Recall that p completely splits in E . This implies that
ordp(E*) = ordp(Q*) =17,
n= ordp(p") = ordp(a) + ordp(a’) forall ae R.
Since a, o’ are algebraic integers, the rational numbers ordp(a) , ord p(az’)

are non—negative, and, therefore,
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050rdp(a) <n forall aeR.

Since [L:Q] divides D, ,
ordp(L*) ¢ (1/Dy) ordp(E*) = (1/D)) %.

Let usput Ai={ceQ,0<c¢ n, D ce Z } . Clearly, A is a finite set of
rational numbers, consisting of (Dln + 1) elements and depending only on n
and r. We have

ordp(a)EA forall ae R,peS.

Let ord: I = QS be the homomorphism defined by the formula

ord(7) = ford (1) } ¢ g-

Clearly, ord(R) ¢ 45 ¢ Q5.

I claim that ord is an embedding . Indeed, if ord(y) = 0 for some
7€' then 4 is an unitin L . The Weil — Riemann conjecture implies the
equality of all archimedean valuations on the elements of I' . Therefore, the
product formula implies that |9 = 1 for all archimedean valuations on L .
This implies that < is a root of 1. Since I' does not contain non—trivial
rootsof 1 ,vy=1.

One may extend ord by Q-linearity to an embedding

reQ-q°,
which we will also denote by ord .

Step 4 . Let Q(f.l‘v) be the Q—vector subspace of C, spanned by
Spec(frv) . We have
spec(fr )  Z(fr ) c Q(fr,) .
The [adic logarithm defines the isomorphism
log: T - Z(ftv) ,
which can be extended by Q-linearity to an isomorphism
[eQ-Q(f,),
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which we will also denote by log . Clearly, the Q-—vector space
Hom(Q(fr,),Q) is generated by maps

ordplog_l :Q(ir)~TeQ-Q (peS).

Notice, that

ordp log_l(spec(ﬁ'v)) = ordp(R) cA forall peS.

Now, I claim that the highest weight of each simple grmodule W,
is the sum of no more than n D, fundamental weights. Indeed, one has only
to apply Lemma 0.7 to the regular element f = frv , the set
M= { ord, log " (spec(fr,) : Q(fr,) + Q) p€ S}
of homomorphisms Q(frv) -Q and A .

2. Proof of Key Lemma .

We start the proof with the following remarks. First, we have natural
embeddings
Eyideg,c (E,ide gp) sEA C=Cidyegc EndCW.
Since f is regular in the reductive E y—Lie algebra E | ide 9, it remains
regular in the reductive C-Lie algebra Cid w®9. We have

f=cid+If (1<i<s)
with c€e C, f:’ € g, - Since f is regular, all fi are non—zero semisimple
elements of g, . Let spec(f) ¢ C be the set of all eigen values of the
(C—linear operator f' W, - Wi (recall that Wi is the faithful simple
g;module) . If « € spec(f;) then we write mult{a) for the multiplicity of
the eigen value a of the operator f:.. Clearly ,

z mult (e) = dim( W) .

a € spec(f)
Since g, is the (semi)simple subalgebra of End(W)) , the trace
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tr(f,W): =% mult {a) & =0.

aESpec(fi)
We have
spec(f) = ¢ + I, spec(f)) =
={c+Eiai}aiEBpec(fi),lgigs}.

Claim . For all i there ezists ¢ € Q(f) such that
spec(f;) € ¢, + spec(}) .

In particular, spec(f) ¢ Q(f) .
We will prove Claim at the end of this Section .

Proof of Key Lemma (modulo Claim) . We will identify g, with its
image in End(W,) . Let Q(f;) be the Q—vector subspace of C spanned by
spec(f;) . Clearly , Q(f)) ¢ Q(f) . To each homomorphism ¢: Q(f) - C
corresponds a C-linear operator f;(‘p) Wi" Wi called a replica of f and
defined as follows [10].

Each eigen vector z € Wi of f is also an eigen vector of fi( ¢) and

fi('p)z= wa)z if fr=az (a€spec(f)c Q(f))

Clearly , the set spec( f'.(‘o)) of the all eigen values of fi(‘o) coincides
with ¢(spec(f})) .

Since g, is simple , it is an algebraic Lie subalgebra of End( Wz.)
and,therefore , contains all the replicas of their elements [10] . This implies
that

fi(w) € g; C End(W))
for all ¢. Clearly , fi(‘p) is a semisimple element of 9;-

Since Q(f) ¢ Q(/) , one may attach to each homomorphism

% :Q(f) » C its restriction ¥": Q( f;) » C and consider the corresponding
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replica

) e g, c Ena(w) .

Clearly, fi("bj) # 0 if and only if the restriction of ¥ to Q(f)) does not
vanish identically . We have
spec(£(¥)) = w(spec( 1)) = Wspec() ¢ Uc; + spec(f) ) =

= ¥(c) + Wspec()) ={¥(c) + Wa) , a € spec() }

Now, let us choose a homomorphism & Q(f) - Q C C such that
€ M and the restriction of # to Q(f;) does not vanish identically . Then

%) e g, c End(W))
is a non—zero semisimple operator and
spec(fi(g’)) C &c,) + Ospec(f)) C Bc)) + A.

In particular, f'.(a’) has , at most, card(A) different eigen values .

Let me recall that if a linear irreducible simple Lie algebra contains a
non—zero semisimple operator with exactly m different eigen values , then
the highest weight of the corresponding irreducible representation is the sum
of no more than (m—1) fundamental weights ([11] , Th. 2.2 ).

Applying this assertion to a non—zero semisimple element f'( ) of
linear irreducible simple Lie algebra g, C End(W,) we obtain that the
highest weight of the simple g, module W, is the sum of no more than

[card(A)—1] fundamental weights .QED.

Proof of Claim . First let us assume that s=1,i.e.,g= 9 is
simple and W= W1 . Then fl = f— cidWE 8, and
¢= tr(f,W)/dim( W)
where tr(f,W) is the trace of f W- W . This implies that ¢ € Q(f) and
spec(f;) = (—c) + spec(f) .
One has only to put cE==—c.



Now, let us assume that s> 1. For each j let us choose an eigen
value ﬂje Spec(fj) (1<j¢s). Then for each o€ spec(f)

c+a+ z#iﬁje spec(f) .
So , if we put ci=—(c+2#.ﬁ.) , then & € ¢, + spec(f) , i.e.

i’y
spec(f;) C ¢; + spec(f) .
One has only to check that ¢, € Q(f) . But we may write the following
explicit formula (recall that the trace of fi vanishes and the sum of
multiplicities of all eigen values of f; is equal to dim(W)).
e;=—(%, ¢ spec(fi) multt(a) (c+ a+ zj#iﬂj) )Y dim(Wi) .
This formula implies that ¢; isa linear combination of eigen values

c+ a4+ 2#‘- ﬁj of f with rational coefficients , i. e. c; € Q(/). QED.

3. Applications to Abelian varieties.
Let X be an Abelian variety defined over K .Let T{X) be the
Tate Z [—module of X and

VI(X) =T{X)e ZlQl'

15

It is well-known that V I(X) is the Q [-vector space of dimension 2 dim X .

There is a natural /-adic representation [6 ,5]

p; G(K) - Aut V(X).
A theorem of Faltings {3] asserts that p; is semisimple and the centralizer
of G(K) in End V{X) coincides with End ;.X® Q ;-Here End g X is the
ring of all K—endomorphisms of X . This implies that the Q[—Lie algebra

Lie(Im(pl) is reductive , its natural representation in V{X) is semisimple

and the centralizer of Lie(Im(pI)) in End V{X) coincides with End X e Q '

Here End X is the ring of all endomorphisms of X (over K{(a) ). Recall
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that the ring End X is a free abelian group of finite rank . We write
tk(End X) for the rank of End X .

Let us split the reductive Q- Lie algebra Lie(Im(p,) into the direct
sum

Lie(Im(pz) =¢®g
of its center ¢, and a semisimple Q- Lie algebra g;. Let (X) be the rank
of g;. The results of [7] combined with the theorem of Faltings imply that
r(X) does not depend on 1.

3.1. Theorem . Let us put
H= H(r(X)) = max {D(j,1) , 0 < j < r(X) }
where D are as in Theorem 0.5 . Then
dim(X) < Hrk(End X)/2 .
In particular , the dimension of X is bounded above by rk(End X)

times certain constant , depending only on n(X) .

Example. If n(X) =0 then X is of CM—type and

dim X € rk(End X)/2 .

Remark. If r{X) = 1 then results of [9] imply that

dim X < rk(End X) .

Remark . One may deduce from several conjectures [8](e. g., the
conjecture of Mumford — Tate or a conjecture of Serre {12] ) that dim X

does not exceed 2701 rk(End X) .

3.2. Proof of Theorem 3.1. In the course of the proof we may and will
assume that all endomorphisms of X are defined over K and X is

absolutely simple . Then EndoX = End X ® Q is a division algebra of finite
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dimension over Q. Let us fix a maximal commutative Q-subalgebra E in
EndoX . Then E is a number field, coinciding with its centralizer in
EndoX ; the degree [E:Q] divides rk(End X) . In particular,
[E:Q] < tk(End X) .
In addition, [E:Q] divides 2 dim X and the natural embedding
E GQ Q- EndoX@Q Q;=End X8 Q;C End VI(X)
provides V t(X) with the structure of a free E ®Q Qmodule of rank
2 dim X /[E:Q] [5] .
Let O be the ring of integers in E . There is a natural splitting
E oQ Q =@ E A
where A runs through the set of dividing | prime ideals in O . Clearly,
[B:Q] = B[[E,:Q) -
Since V{X) is the free E ®Q Q-module of rank 2 dim X /[E:Q] , there is
a natural splitting
V{X)=eV,
where V, = E, V{(X) is the E y~vector space of dimension
2 dim X/[E:Q} . Clearly, each V, is G(K)—invariant and p, is the direct
sum of the corresponding A—adic representations
Py G(K) - AutE,\VA .
One may easily check , using the theorem of Faltings, that each p ) 8
absolutely irreducible and even infinitisemally absolutely irreducible A-adic
representation (see [9 ], Sect. 0.11.1) .
Let us split the reductive Q- Lie algebra Lie(Im(p /\) into the direct
sum
Lie(Im(p,) = ¢, ® g,
of its center )\ and a semisimple Q[— Lie algebra g 3 Let rA’ be the
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rank of g 3

Claim . r,* < 7(X) .

In order to prove this inequality it suffices to construct a surjective
homomorphism g 17 8 of semisimple Q r Lie algebras . In turn, in order
to construct such a homomorphism it suffices to construct a surjective
homomorphism

¢;®g;= Lie(Im(p) + ¢, @ g, = Lie(Im(p,)
of reductive Q r Lie algebras and take its restriction to g g But it is very
easy to constuct the latter homomorphism . One has only to consider the
surjective homomorphism Im(pl) - Im(p /\) of Q- Lie groups, induced
by the projection map ‘VI(X) 4V A\ and take the corresponding
homomorphism of the Q [ Lie algebras .

It is well known [6,5] that for all but finitely many places v of K
the following conditions hold:

1) p is unramified at v ;

2) the characteristic polynomial

det(t id — Fr ,V, )
lies in O[t] ; all its (complex) roots and their conjugate over Q have

absolute value q(v)l/ 2

(a theorem of A. Weil ) .
In order to obtain E—integral A—adic representation of weight 1 let
us consider the dual E A—vector space

*
VA = HomEA(V/\ , E). )
and the isomorphism
*
T AutE/\(V,\) - AutE’\(V/\ )

* *
defined by the formula (u) = (u ) 1 Where . is the adjoint of .

- - *
Clearly, dim g. ¥V, = dimgp V y

A A
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Let us consider the dual A—adic representation

by =10y G(K) - Autg, (V) ~ AutEA(V)‘*).

Clearly p; is E'}—integra.l A—adic representation of weight 1. One may
easily check that p A* is also infinitisemally absolutely irreducible . Notice
that 7 induces an isomorphism Im(pA) 8 Im(p)‘*) of Q- Lie groups,
which , in turn , induces an isomorphism

Lie(Im(p,)) » Lie(Im(p, ))

of the corresponding Q r Lie algebras . This implies that the rank of the
semisimple part of the Q- Lie algebra Lie(Im(p )\*)) is also equal to r,’
and, therefore,does not exceed 7(X) .

Applying Corollary of Theorem 0.5 to infinitisemally absolutely
irreducible E—integral A—adic representation p ,\* of weight 1 we obtain
that

d"mEAVA* < max {D(j,1),0¢5< 1y}

Since r,’ < n(X) and dimEAV)‘* = dimE,\V/\ .
dileVA =[E, : Q] dijAV/\ <[Ey : Q) max{D(j1),0< j< (X)} =
= [E)« : Ql] H.

Summing up over A we obtain that
2dim X = dileVl(X) =3 dileV_A(X) CHE[E) : Q)=

= H[E: Q] < Hrk(End X) .
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