Low-dimensional Representations of $\operatorname{Aut}\left(F_{2}\right)$

Dragomir Ž. Doković and
Vladimir P. Platonov

University of Waterloo
Department of Pure Mathematics
Waterloo, Ontario, Canada N2L 3G1
CANADA
Max-Planck-Institut
für Mathematik
Gottfried-Claren-Str. 26
53225 Bonn
GERMANY

.

Low-dimensional Representations of $\operatorname{Aut}\left(F_{2}\right)$

Dragomir Ž. Đoković * and Vladimir P. Platonov ${ }^{\dagger}$

Max Planck Institute of Mathematics, and
University of Waterloo, Department of Pure Mathematics.

[^0]
1 Introduction

Let $F_{2}=\langle x, y\rangle$ be the free group of rank 2 with generators x and y. We will denote the automorphism group $\operatorname{Aut}\left(F_{2}\right)$ by Φ_{2}. There is a well known open problem concerning the linearity of this group : Is it true that Φ_{2} has a faithful linear representation? Magnus and Tretkoff [9] have conjectured that there is no such representation over any field. In the case of free groups of rank ≥ 3, the automorphism group is not linear [6].

The above conjecture is closely connected with the old problem of linearity of the braid groups (see [1, 4]). It was proved in [4] that if B_{4}, the braid group on four strings, has a faithful representation of degree m, then Φ_{2} has a faithful representation of degree $2 m$. For a very recent account of representations of braid groups see [2].

We consider a more general problem of describing all representations of Φ_{2} of degree n for small n. Very little is known about this problem : we know only the paper [3] where it is proved that Φ_{2} has no faithful 3-dimensional representations over any field of characteristic 0 .

We shall now recall some facts about the structure of Φ_{2}. For $a \in F_{2}$ let f_{a} be the inner automorphism of F_{2} defined by a, i.e., $(z) f_{a}=a^{-1} z a$ for all $z \in F_{2}$. (In order to conform with the usage in [8], we write f_{a} on the right hand side of the element to which it is applied.) Since F_{2} has trivial center, the homomorphism $a \mapsto f_{a}$ is injective, and we use it to identify F_{2} with its image in Φ_{2}.

It is well known [8, p. 169] that Φ_{2} is generated by the following three elements :

$$
\begin{aligned}
P: x \mapsto y, & y \mapsto x ; \\
U: x \mapsto x y, & y \mapsto y ; \\
\sigma: x \mapsto x^{-1}, & y \mapsto y ;
\end{aligned}
$$

and has a presentation consisting of the following relations:

$$
\begin{equation*}
P^{2}=\sigma^{2}=(\sigma P)^{4}=(P \sigma P U)^{2}=(U P \sigma)^{3}=1, \quad(U \sigma)^{2}=(\sigma U)^{2} \tag{1}
\end{equation*}
$$

Let $\rho: \Phi_{\mathbf{2}} \rightarrow \mathrm{GL}(V)$ be a linear representation, where V is an n-dimensional vector space over K. We can construct new representations :

$$
\begin{equation*}
P \rightarrow \epsilon_{1} \rho(P), \quad U \rightarrow \epsilon_{2} \rho(U), \quad \sigma \rightarrow \epsilon_{3} \rho(\sigma) \tag{2}
\end{equation*}
$$

where $\epsilon_{i}= \pm 1$ and $\epsilon_{1} \epsilon_{2} \epsilon_{3}=1$.
We say that a representation ρ^{\prime} of Φ_{2} is weakly equivalent to the representation ρ if ρ^{\prime} is equivalent to one of the representations (2) or their dual representations.

Our main result can be stated as follows.
Theorem. Consider indecomposable representations ρ of Φ_{2} of degree $n \leq 4$, over an algebraically closed field K, such that $\rho\left(F_{2}\right) \neq 1$. There are no such representations if
$n \leq 2$. If $\rho\left(\Phi_{2}\right)$ is infinite then, up to weak equivalence, there exist for $n=3$ only one such representation, and for $n=4$ two if char $K \neq 2,3$, one if char $K=3$, and none if char $K=2$. All the representations mentioned above are reducible, and are listed in the last section. If $\rho\left(\Phi_{2}\right)$ is finite, ρ factorizes through the natural homomorphism $\Phi_{2} \rightarrow \Gamma_{i}$, where Γ_{i} are some finite groups of small orders defined in Lemma 2.

Corollary. Φ_{2} has no faithful representation of degree $n \leq 4$ over any field.
If $\rho\left(F_{2}\right)=1$, then ρ factorizes through the natural homomorphism $\Phi_{2} \rightarrow \Phi_{2} / F_{2} \simeq$ $\mathrm{GL}(2, \mathrm{Z})$. It is easy to show that there exist infinitely many nonequivalent idecomposable 4-dimensional representations of GL($2, \mathrm{Z}$).

From our theorem it follows that for $n \leq 4$ there are only finitely many nonequivalent n-dimensional representations of Φ_{2} such that $\rho\left(F_{2}\right) \neq 1$, and in all these cases $\rho\left(F_{2}\right)$ is a solvable group. On the other hand, already for $n=6$ there exists a one-parameter family of irreducible nonequivalent representations of Φ_{2} such that $\rho\left(F_{2}\right)$ contains a free non-Abelian subgroup. Hence it is impossible to extend our theorem to dimensions $n \geq 6$. This also explains why the proof of our theorem involves a lot of computations.

We indicate briefly how to construct the family mentioned above. For that purpose we make use of the braid group B_{4} and the well known 3-dimensional Bürau representation β_{t} depending on a parameter t. This can be modified to obtain a one-parameter family of 3-dimensional representations β_{t}^{*} of B_{4} / Z_{4}, where Z_{4} is the center of B_{4}. We recall that there is an embedding $B_{4} / Z_{4} \rightarrow \Phi_{2}$ (see [4]) such that the image of B_{4} / Z_{4} in Φ_{2} has index 2. The representations β_{t}^{*} induce 6-dimensional representations of Φ_{2} having the properties stated above. The claim about the existence of free non-Abelian subgroups follows from [10].

For $n \geq 6$ it would be interesting to describe the character variety of n-dimensional representations of Φ_{2}. For the case of braid group B_{4}, the character variety of 3-dimensional representations was recently described by Formanek [5].

In the last section of our paper we describe also some new 4-dimensional representations of B_{4}. Two of them are at the same time indecomposable and reducible. It would be interesting to find some applications of these representations.

By using our identification of F_{2} with a subgroup of Φ_{2}, we have $y=(\sigma U)^{2}$ and $x=P y P$. Furthermore we have:

$$
\begin{equation*}
U^{-1} x U=x y, \quad U y=y U, \quad \sigma y=y \sigma, \quad \sigma x \sigma=x^{-1} \tag{3}
\end{equation*}
$$

The elements U and y generate a free Abelian group of rank 2. We introduce the element $\omega=P \sigma P$, which satisfies :

$$
\begin{equation*}
\omega^{2}=1, \quad \sigma \omega=\omega \sigma, \quad \omega U \omega=U^{-1}, \quad \omega y \omega=y^{-1} \tag{4}
\end{equation*}
$$

The subgroup $D_{4}=\langle P, \sigma\rangle$ of Φ_{2} is a dihedral group of order 8 . We shall use some elementary facts about the representations of D_{4} over fields of characteristic $\neq 2$.
V. P. Platonov is grateful to the Max Planck Institute of Mathematics (Bonn) for the support and the hospitality during the preparation of this paper.

2 Some general facts and lemmas

In this section we recall some general facts about Φ_{2} and its representations. We prove two lemmas concerning some particular factor groups of Φ_{2}. The proof of the theorem proper will begin in the next section.

In our proof we shall use the following simple fact : Any two primitive elements of F_{2} are conjugate in Φ_{2}. Recall that $a \in F_{2}$ is called primitive if there exists $b \in F_{2}$ such that $\{a, b\}$ is a free basis of F_{2}. In order to prove the above fact, let a and b be primitive elements of F_{2}. Then it is clear that there exists $\phi \in \Phi_{2}$ such that $(a) \phi=b$. This implies that $\phi^{-1} \circ f_{a} \circ \phi=f_{b}$, and, by using our identification, we obtain $\phi^{-1} \cdot a \cdot \phi=b$. Thus our claim is proved.

In particular, the elements x and $x y$ are conjugate in Φ_{2}. So $x y=z^{-1} x z$ for some $z \in \Phi_{2}$. This shows that y is a commutator in Φ_{2}, and consequently F_{2} is contained in the commutator subgroup of $\boldsymbol{\Phi}_{2}$.

Given a linear representation $\rho: \Phi_{2} \rightarrow \mathrm{GL}(V)$, for the sake of simplicity, we shall refer to the eigenvalues, trace, determinant, ... of $\rho(y)$ as the eigenvalues, trace, determinant, \ldots of y, and similarly for other elements of Φ_{2}. Since F_{2} is contained in the commutator subgroup of Φ_{2}, we have

$$
\begin{equation*}
\operatorname{det}(y)=1 \tag{5}
\end{equation*}
$$

Now assume that $\rho\left(F_{2}\right) \neq 1$, or equivalently, that $\rho(y) \neq 1$. Under this hypothesis we claim that $\rho(y)$ is not a scalar operator. Indeed, if $\rho(y)$ were a scalar, then we would have $\rho(x)=\rho(y)$ and $\rho\left(x y^{-1}\right)=1$. This is impossible since y and $x y^{-1}$ are conjugate in Φ_{2} and $\rho(y) \neq 1$.

Lemma 1. Denote by Γ the quotient group of Φ_{2} obtained by adding the new defining relation $\left[U,(P \sigma)^{2}\right]=1$ to the presentation (1). Then the image of F_{2} in Γ is trivial.

Proof. Since $(P \sigma)^{2}=\sigma \omega=\omega \sigma$ and $\omega U \omega=U^{-1}$, we have $\sigma \omega U \omega \sigma U^{-1}=y^{-1}$. Hence, in Γ we have $y=1$, and consequently also $x=1$.

In the next lemma and its proof we denote by C_{k} a cyclic group of order k, by Q the quaternion group of order 8 , by S_{k} the symmetric group of degree k, and by $E\left(2^{k}\right)$ an elementary Abelian group of order 2^{k}.

Lemma 2. By adding new relations to the presentation (1), we obtain some finite quotient groups as follows :
(i) relation $U^{2}=1$, quotient group $\Gamma_{1} \simeq C_{2} \times S_{4}$;
(ii) relation $[U, \sigma]=1$, quotient group $\Gamma_{2} \simeq C_{2} \times S_{4}$;
(iii) relations $U^{4}=(\sigma U)^{4}=1$, quotient group $\Gamma_{3} \simeq E(64) \rtimes S_{3}$;
(iv) relations $U^{4}=\left[P,(\sigma U)^{4}\right]=1$, quotient group $\Gamma_{4} \simeq(Q \# Q) \rtimes S_{4}$;
where \# denotes the central product. In particular Γ_{1} and Γ_{2} have order $48, \Gamma_{3}$ order 384, and Γ_{4} order 768.

Proof. It is straightforward to check that there exist surjective homomorphisms f : $\Gamma_{1} \rightarrow\{ \pm 1\} \times S_{4}$ and $g: \Gamma_{2} \rightarrow\{ \pm 1\} \times S_{4}$ given by :

$$
f(U)=(-1,(13)), \quad f(P)=(1,(23)), \quad f(\sigma)=(-1,(12)(34)) ;
$$

and

$$
g(U)=(-1,(1234)), \quad g(P)=(1,(23)), \quad g(\sigma)=(-1,(13)(24))
$$

To prove (i) and (ii) it suffices to show that $\left|\Gamma_{1}\right| \leq 48$ and $\left|\Gamma_{2}\right| \leq 48$, respectively. Let Γ be the common factor group of Γ_{1} and Γ_{2} obtained from the presentation of Φ_{2} by adding the relations $U^{2}=1$ and $\sigma U=U \sigma$. These relations are equivalent to $U^{2}=1,(\sigma U)^{2}=1$, and so we have $\Gamma_{1} /\langle x, y\rangle \simeq \Gamma \simeq \Gamma_{2} /\langle x, y\rangle$.

In Γ we have $1=(U P \sigma)^{3}=U P U \sigma P \sigma U P \sigma=U P U P U \omega \sigma P \sigma=(U P)^{3} \omega$. Thus $(U P)^{\circledR}=1$, and since $\omega=P \sigma P$, we have $\sigma \in\langle U, P\rangle$. It follows that $|\Gamma| \leq 12$.

In Γ_{1} we have $x=U^{-2} x U^{2}=U^{-1} x y U=U^{-1} x U y=x y^{2}$, and so $y^{2}=1$. It follows that $|\langle x, y\rangle| \leq 4$, and so $\left|\Gamma_{1}\right| \leq 48$. Thus (i) is proved.

In Γ_{2} we have $y=(\sigma U)^{2}=U^{2}$ and $y^{-1} x y=U^{-2} x U^{2}=U^{-1} x U y=x y^{2}$. Hence $y x y=x$, and by conjugating by P we obtain $x y x=y$. So $x^{2}=y^{-2}$. As $x y x^{-1}=y^{-1}$, by conjugating the equality $x^{2}=y^{-2}$ by x, we obtain $x^{2}=y^{2}$, and so $x^{4}=1$. If $x^{2} \neq 1$ in Γ_{2}, then $\langle x, y\rangle=Q$ is the quaternion group. If $(P \sigma)^{2} \neq 1$, as Γ has no elements of order 4, we have $(P \sigma)^{2}=x^{2}$. It follows that $(P \sigma)^{2}$ is central in Γ_{2}, and Lemma 1 gives a contradiction. We conclude that $x^{2}=1$ in Γ_{2}, and so $\left|\Gamma_{2}\right| \leq 48$. Hence (ii) holds.

We now prove (iv). Let $G=\left(Q \# Q^{\prime}\right) \rtimes S_{4}$ where Q^{\prime} is another copy of Q. We have $Q=\{ \pm 1, \pm i, \pm j, \pm k\}$, where $1, i, j, k$ are the quaternionic units, and analogously $Q^{\prime}=\left\{ \pm 1, \pm i^{\prime}, \pm j^{\prime}, \pm k^{\prime}\right\}$. We now describe the action of S_{4} on $Q \# Q^{\prime}$. First of all, both Q and Q^{\prime} are normal in G. The normal 4-group, say V, of S_{4} acts trivially on Q, while the subgroup S_{3} acts as follows:

$$
\begin{aligned}
(12): & i \rightarrow j, \quad j \rightarrow i \\
(123): & i \rightarrow-j, \quad j \rightarrow k
\end{aligned}
$$

The alternating subgroup A_{4} acts trivially on Q^{\prime} and the odd permutations interchange i^{\prime} and j^{\prime}. It is now straightforward to verify that there is a surjective homomorphism $h: \Gamma_{4} \rightarrow G$ such that :

$$
h(U)=\left(k j^{\prime},(1432)\right), \quad h(P)=(1,(12)), \quad h(\sigma)=\left(j j^{\prime},(13)(24)\right) .
$$

In order to prove (iv), it suffices to show that $\left|\Gamma_{4}\right| \leq 768$. In Γ_{4} we have $x=U^{-4} x U^{4}=$ $x y^{4}$, and so $x^{4}=y^{4}=1$. As $y=(\sigma U)^{2}, P$ and y^{2} commute in Γ_{4}, and so $x^{2}=y^{2}$ and $|\langle x, y\rangle| \leq 8$. Let Δ be the factor group $\Gamma_{4} /\langle x, y\rangle$. Clearly $\Delta \simeq \mathrm{GL}_{2}(\mathbf{Z}) / N$, where N is the normal closure in $\mathrm{GL}_{\mathbf{3}}(\mathrm{Z})$ of $\left(\begin{array}{ll}1 & 0 \\ 4 & 1\end{array}\right)$. The image of N in the modular group $\mathrm{SL}_{2}(\mathrm{Z}) /\{ \pm 1\}$ is the unique normal subgroup of level 4 , and so it has index 24 . For these
facts we refer the reader to [11, Chapter VIII]. Hence the index of N in $\mathrm{SL}_{2}(\mathbf{Z})$ is at most 48 , and in $\mathrm{GL}_{2}(\mathrm{Z})$ at most 96. It follows that $\left|\Gamma_{4}\right| \leq 96 \cdot 8=768$ and (iv) is proved.

We have shown above that h is an isomorphism. Since $\Gamma_{3}=\Gamma_{4} / P$ where P is the normal closure of $y^{2}=(\sigma U)^{4}$ in Γ_{4}, and $h(y)^{2}=(-1,1)$, (iii) follows from (iv).

This lemma was proved first by using GAP, the symbolic computation package [7]. Subsequently we have constructed the homomorphisms f, g, h and succeded to eliminate the reliance on GAP in our proof.

3 Representations of degree 2 and 3

For $n=1$ the assertion of the theorem is obvious. In this section we prove the assertion of the theorem when $n=2$ or 3 and char $K \neq 2$.

Let $n=2$. Since $\rho\left(F_{2}\right) \neq 1$, Lemma 1 implies that $\rho(P \sigma)^{2} \neq 1$, and so the restriction of ρ to D_{4} is faithful. Hence we may assume that

$$
\rho(\sigma)=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right), \quad \rho(P)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

Since $\sigma y=y \sigma$ and $\operatorname{det}(y)=1$, we have

$$
\rho(y)=\left(\begin{array}{cc}
\lambda & 0 \\
0 & \lambda^{-1}
\end{array}\right) .
$$

As $x=P y P$, we have $\rho(x y)=1$. Since y and $x y$ are conjugate, we obtain that $\lambda=1$, a contradiction.

Now let $n=3$. By Lemma $1, V$ is a sum of two irreducible D_{4}-modules : a 2dimensional and a 1-dimensional. Up to weak equivalence, we may assume that

$$
\rho(\sigma)=\left(\begin{array}{ccc}
-1 & 0 & 0 \tag{6}\\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad \rho(P)=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

As $\sigma y=y \sigma$, we have

$$
\rho(y)=\left(\begin{array}{lll}
a & 0 & 0 \\
0 & b & c \\
0 & d & e
\end{array}\right)
$$

From $(\omega y)^{2}=1$, we obtain that $c(b-e)=d(b-e)=0$ and $b^{2}=e^{2}=c d+1$.
If $b \neq e$, then $c=d=0, b=-e= \pm 1$. As $\operatorname{det}(y)=1$, we have $a=-1$. From $\rho(y)=\operatorname{diag}(-1, b,-b)$ and $\rho(x)=\rho(P y P)=\operatorname{diag}(b,-1,-b)$, we obtain that $\rho(x y)=$ $\operatorname{diag}(-b,-b, 1)$. As $\rho(x y) \neq 1$, we must have $b=1$. By using the fact that y and U commute, we have

$$
\rho(U)=\left(\begin{array}{ccc}
\alpha & 0 & \beta \\
0 & \gamma & 0 \\
\delta & 0 & \epsilon
\end{array}\right)
$$

The eqation $U x y=x U$ implies that $\alpha=\epsilon=0$. Since $y=(\sigma U)^{2}$, we must have $\beta \delta=\gamma^{2}=1$. Hence $\rho\left(U^{2}\right)=1$, and so Lemma 2 applies.

If $b=e$, then $\operatorname{det}(y)=1$ implies that $a=1$. Hence

$$
\rho(y)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & b & c \\
0 & d & b
\end{array}\right), \quad \rho(x)=\left(\begin{array}{ccc}
b & 0 & c \\
0 & 1 & 0 \\
d & 0 & b
\end{array}\right) .
$$

Since $x y$ and y are conjugate, we have $\operatorname{tr}(x y)=\operatorname{tr}(y)=1+2 b$. This gives $b^{2}=1$, and so $c d=0$. By replacing ρ by its dual (if necessary) we may assume that $d=0$.

If $b=-1$, then $U y=y U$ implies that $\rho(\sigma)$ and $\rho(U)$ commute, and Lemma 2 applies.
If $b=1$, then $c \neq 0$ and we may assume that $c=1$. Since $U y=y U$, we have

$$
\rho(y)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right), \quad \rho(U)=\left(\begin{array}{ccc}
\alpha & 0 & \beta \\
\gamma & \delta & \epsilon \\
0 & 0 & \delta
\end{array}\right) .
$$

The equation $(\omega U)^{2}=1$ implies that $\beta=0, \delta=\alpha$, and $\alpha^{2}=1$. The equation $U x y=x U$ implies that $\alpha=1$ and $\gamma=-1$. Since $y=(\sigma U)^{2}$, we must have $\epsilon=1 / 2$. Thus we obtain

$$
\rho(U)=\left(\begin{array}{ccc}
1 & 0 & 0 \tag{7}\\
-1 & 1 & 1 / 2 \\
0 & 0 & 1
\end{array}\right)
$$

The equations (6) and (7) define an indecomposable representation of Φ_{2}. Obviously this representation is reducible.

4 Representations of degree 4

In this section we begin the proof of the theorem when $n=4$ and char $K \neq 2$. This part of the proof will be completed in the next three sections.

We claim that the eigenvalues of y can be written as

$$
\begin{equation*}
\lambda, \lambda^{-1}, \mu, \mu^{-1} \tag{8}
\end{equation*}
$$

for some $\lambda, \mu \in K^{*}$. If all eigenvalues of y are ± 1, this follows from (5). If y has an eigenvalue $\lambda \neq \pm 1$, then $\omega y \omega=y^{-1}$ implies that λ^{-1} is also an eigenvalue of y. Since $\lambda^{-1} \neq \lambda$, (5) implies that the remaining two eigenvalues of y can be written as μ, μ^{-1}. This proves our claim.

By replacing ρ with a weakly equivalent representation, if necessary, we may assume that

$$
\begin{equation*}
\operatorname{tr}(\sigma)=0,2 . \tag{9}
\end{equation*}
$$

We shall denote by V^{+}resp. V^{-}the eigenspace of σ for eigenvalue +1 resp. -1 . Since ω and y commute with σ, these subspaces are invariant under ω and y. We shall denote by $\rho(\omega)^{+}$and $\rho(y)^{+}$the restrictions of $\rho(\omega)$ and $\rho(y)$ to V^{+}, respectively.

We conclude this section with two lemmas.
Lemma 3. Let ρ be a 4-dimensional representation of Φ_{2} and assume that char $K \neq 2$. If $\operatorname{tr}(\sigma)=2$, then all eigenvalues of y are ± 1.

Proof. We shall assume that y has an eigenvalue $\lambda \neq \pm 1$ and obtain a contradiction. As $\operatorname{tr}(\sigma)=2, \operatorname{dim} V^{+}=3$ and $\operatorname{dim} V^{-}=1$. If $e_{4} \in V^{-}, e_{4} \neq 0$, then e_{4} is an eigenvector of y. Say $y\left(e_{4}\right)=\mu e_{4}$. Since $\omega y \omega=y^{-1}$ and V^{-}is ω-invariant, we conclude that $\mu= \pm 1$.

It follows that $\rho(y)^{+}$has three distinct eigenvalues λ, λ^{-1}, and μ. Let e_{1} and e_{3} be eigenvectors of $\rho(y)^{+}$belonging to λ and μ, respectively. Set $e_{2}=\omega\left(e_{1}\right)$. Then

$$
y\left(e_{2}\right)=y \omega\left(e_{1}\right)=\omega y^{-1}\left(e_{1}\right)=\lambda^{-1} \omega\left(e_{1}\right)=\lambda^{-1} e_{2}
$$

and so $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ is a basis of V.
Since $\rho(\omega)^{+} \rho(y)^{+} \rho(\omega)^{+}=\rho\left(y^{-1}\right)^{+}$, the subspace $K e_{3}$ is ω-invariant. From $P \sigma P=\omega$ we deduce that $\operatorname{tr}(\omega)=2$, and so

$$
\omega\left(e_{1}\right)=e_{2}, \omega\left(e_{2}\right)=e_{1}, \omega\left(e_{3}\right)=e_{3}, \omega\left(e_{4}\right)=e_{4} .
$$

By identifying linear operators with their matrices with respect to this basis, we have

$$
\rho(\sigma)=\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right), \rho(\omega)=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \rho(y)=\left(\begin{array}{llll}
\lambda & 0 & 0 & 0 \\
0 & \lambda^{-1} & 0 & 0 \\
0 & 0 & \mu & 0 \\
0 & 0 & 0 & \mu
\end{array}\right) .
$$

As U and y commute,

$$
\rho(U)=\left(\begin{array}{cccc}
\alpha & 0 & 0 & 0 \\
0 & \beta & 0 & 0 \\
0 & 0 & u & v \\
0 & 0 & w & z
\end{array}\right)
$$

The equality $(\omega U)^{2}=1$ implies that $\alpha \beta=1$ and

$$
\begin{equation*}
u^{2}=z^{2}=1-v w, \quad v(u+z)=w(u+z)=0 . \tag{10}
\end{equation*}
$$

The equality $y=(\sigma U)^{2}$ implies that $\alpha^{2}=\lambda$ and

$$
\begin{equation*}
u^{2}=z^{2}=\mu+v w, \quad v(u-z)=w(u-z)=0 . \tag{11}
\end{equation*}
$$

If $\mu=1$, the above equations imply $v=w=0$. Hence $\rho(\sigma)$ and $\rho(U)$ commute, and Lemma 2 implies that $\rho(y)^{2}=1$. This contradicts the assumption that $\lambda \neq \pm 1$.

If $\mu=-1$, then (10) and (11) imply that $u=z=0$ and $v w=1$. By conjugating by the diagonal matrix $\operatorname{diag}(1,1,1, w)$, we may assume that $v=w=1$. Thus

$$
\rho(U)=\left(\begin{array}{llll}
\alpha & 0 & 0 & 0 \\
0 & \alpha^{-1} & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Since $P \sigma P=\omega$ and $P^{\mathbf{2}}=1$, we must have

$$
\rho(P)=\left(\begin{array}{rrrr}
a & a & b & c \\
a & a & b & -c \\
d & d & e & 0 \\
f & -f & 0 & 0
\end{array}\right)
$$

where

$$
2 c f=1, \quad b(2 a+e)=d(2 a+e)=0, \quad e^{2}=4 a^{2}=1-2 b d
$$

By conjugating by $\operatorname{diag}(1,1, f, f)$, we may assume that $c=1 / 2$ and $f=1$.
If $b=d=0$, then the $(1,4)$ entries in $\rho(U P \sigma))^{3}=1$ give $a e\left(\alpha^{2}-1\right)=0$. As $\alpha^{2} \neq 1$, we have $a e=0$. Since $e^{2}=4 a^{2}$, we have $a=e=0$. As $\rho(P)$ is nonsingular, we have a contradiction.

If $b \neq 0$ or $d \neq 0$, then $e=-2 a$ and by comparing the $(4,3)$ entries in $\rho(U P \sigma))^{3}=1$, we obtain that $a\left(\alpha^{2}-1\right)=0$, and so $a=0$. By comparing (4,4) entries, we obtain a contradiction.

Lemma 4. Let ρ be a 4-dimensional representation of Φ_{2} and assume that char $K \neq 2$. Then the Jordan canonical form of $\rho(y)$ contains no Jordan blocks of size 3.

Proof. Assume that $\rho(y)$ has a Jordan block of size 3. Then $\operatorname{tr}(\sigma) \neq 0$, and so by (9) we have $\operatorname{tr}(\sigma)=2$. We can choose a basis of V such that

$$
\rho(\sigma)=\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right), \quad \rho(y)=\left(\begin{array}{rrrr}
\lambda & 1 & 0 & 0 \\
0 & \lambda & 1 & 0 \\
0 & 0 & \lambda & 0 \\
0 & 0 & 0 & \mu
\end{array}\right)
$$

As $\omega y \omega=y^{-1}$, we have $\lambda^{2}=1$. Since $\operatorname{det}(y)=1$, we have $\lambda=\mu$.
Since $\omega \sigma=\sigma \omega, \rho(\omega)=A \oplus B$ with A of size 3 and $B=(\pm 1)$. Since $\omega y \omega=y^{-1}$, we have $A \neq 1$ and $\operatorname{tr}(\omega)=\operatorname{tr}(\sigma)=2$ implies that $B=(1)$. By using $\omega y \omega=y^{-1}$ again, we conclude that $\rho(\omega)$ is upper triangular and that it has the form

$$
\rho(\omega)=\left(\begin{array}{cccc}
1 & u & u(u-\lambda) / 2 & 0 \\
0 & -1 & \lambda-u & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

By conjugating with a suitable matrix which commutes with $\rho(\sigma)$ and $\rho(y)$, we may assume that $u=0$.

Since U and y commute, we have

$$
\rho(U)=\left(\begin{array}{cccc}
a & b & c & d \\
0 & a & b & 0 \\
0 & 0 & a & 0 \\
0 & 0 & e & f
\end{array}\right), \quad \rho(\omega U)=\left(\begin{array}{cccc}
a & b & c & d \\
0 & -a & \lambda a-b & 0 \\
0 & 0 & a & 0 \\
0 & 0 & e & f
\end{array}\right) .
$$

From $(\omega U)^{2}=1$ we obtain that $d(a+f)=e(a+f)=0$, and from $y=(\sigma U)^{2}$ that $d(a-f)=e(a-f)=0$. Since $a+f$ or $a-f$ is not zero, it follows that $d=e=0$. Hence $\rho(U)$ and $\rho(\sigma)$ commute and, by Lemma $2, \rho\left(\Phi_{2}\right)$ is finite. As $\rho(y)$ has infinite order, we have a contradiction.

We now divide the proof into three cases, which will be treated separately in the next three sections.

5 Case 1: $\lambda \neq \mu, \mu_{-}^{-1}$

Up to weak equivalence, we may assume that $\operatorname{tr}(\sigma)=0,2$.
Subcase 1: $\operatorname{tr}(\sigma)=0$. Both V^{+}and V^{-}have dimension 2. If $\operatorname{det} \rho(y)^{+}=1$, then $\rho(\sigma)$ is a central element of the centralizer of $\rho(y)$ in $\mathrm{GL}(V)$, and in particular it commutes with $\rho(U)$. By Lemma 2, ρ factors through the homomorphism $\boldsymbol{\Phi}_{\mathbf{2}} \rightarrow \Gamma_{\mathbf{2}}$.

Now let $\operatorname{det} \rho(y)^{+} \neq 1$. Then the eigenvalues of $\rho(y)^{+}$are, say, λ and μ, and those of $\rho(y)^{-}$are λ^{-1} and μ^{-1}. Since ω leaves invariant V^{+}and V^{-}and inverts y, it follows that $\lambda=-\mu= \pm 1$ and that $\rho(y)$ and $\rho(\omega)$ commute. By choosing a suitable basis, we may assume that

$$
\rho(\sigma)=\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right), \rho(P)=\left(\begin{array}{rrrr}
r & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & s
\end{array}\right)
$$

where $r, s= \pm 1$. Then $\rho(\omega)$ and $\rho(y)$ have the form

$$
\rho(\omega)=\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right), \quad \rho(y)=\left(\begin{array}{llll}
a & 0 & 0 & 0 \\
0 & -a & 0 & 0 \\
0 & 0 & b & 0 \\
0 & 0 & 0 & -b
\end{array}\right),
$$

where $a, b= \pm 1$. As $\rho(x) \neq \rho(y)$, we have $b=a$. Hence $\rho(\omega y)= \pm 1$. It follows that $\rho(U)=\rho\left(\omega y U(\omega y)^{-1}\right)=\rho(U)^{-1}$. Hence ρ factors through the homomorphism $\Phi_{2} \rightarrow \Gamma_{1}$ of Lemma 2.

Subcase $2: \operatorname{tr}(\sigma)=2$. Now V^{+}has dimension 3 and V^{-}dimension 1. By Lemma 3 , all eigenvalues of y are ± 1, and so $\lambda=-\mu= \pm 1$.

Assume first that $\rho(y)$ is diagonalizable. Then $\rho\left(y^{2}\right)=1$, and $\rho(\sigma), \rho(\omega)$, and $\rho(y)$ commute. We can diagonalize them simultaneously. B ${ }_{V^{\prime}}$ Lemma $1, \rho(\sigma) \neq \rho(\omega)$. Hence we may assume that

$$
\rho(\sigma)=\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right), \rho(\omega)=\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \rho(y)=\left(\begin{array}{cccc}
\epsilon_{1} & 0 & 0 & 0 \\
0 & \epsilon_{2} & 0 & 0 \\
0 & 0 & \epsilon_{3} & 0 \\
0 & 0 & 0 & \epsilon_{4}
\end{array}\right)
$$

where $\epsilon_{i}= \pm 1, \operatorname{det}(y)=1$, and $\operatorname{tr}(y)=0$.
The equations $P^{2}=1$ and $P \sigma P=\omega$ imply that

$$
\rho(P)=\left(\begin{array}{llll}
a & b & 0 & 0 \\
c & d & 0 & 0 \\
0 & 0 & 0 & 1 / e \\
0 & 0 & e & 0
\end{array}\right)
$$

We may assume that $e=1$. Since $x=P y P$ and $\rho(x y) \neq 1$, we must have $\epsilon_{2}=-\epsilon_{1}$ and $\epsilon_{4}=-\epsilon_{3}$.

If $\epsilon_{3}=-\epsilon_{1}$, then

$$
\rho(U)=\left(\begin{array}{llll}
u & 0 & 0 & v \\
0 & f & g & 0 \\
0 & h & i & 0 \\
w & 0 & 0 & z
\end{array}\right)
$$

The equation $U x y=x U$ implies that $i=0$ (and so $g h \neq 0$), $v=w=0$, and $a c=b c=$ $b d=0$. Consequently $b=c=0$. This is impossible since ρ is indecomposable.

If $\epsilon_{3}=\epsilon_{1}$, then

$$
\rho(U)=\left(\begin{array}{llll}
u & 0 & v & 0 \\
0 & f & 0 & g \\
w & 0 & z & 0 \\
0 & h & 0 & i
\end{array}\right)
$$

The equation $U x y=x U$ now implies that $z=0$ (and so $v w \neq 0$) and $a d=b c=0$. This is impossible since $a d-b c= \pm 1$.

Hence $\rho(y)$ is not diagonalizable. By choosing a suitable basis $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ of V and by replacing λ with $-\lambda$, if necessary, we may assume that

$$
\rho(\sigma)=\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right), \rho(y)=\left(\begin{array}{rrrr}
\lambda & 1 & 0 & 0 \\
0 & \lambda & 0 & 0 \\
0 & 0 & -\lambda & 0 \\
0 & 0 & 0 & -\lambda
\end{array}\right) .
$$

Since $\omega y \omega=y^{-1}$, the subspaces $K e_{1}, K e_{1}+K e_{2}$, and $K e_{3}$ are ω-invariant. As $\operatorname{tr}(\omega)=\operatorname{tr}(\sigma)=2, \rho(\omega)$ must have the form :

$$
\left(\begin{array}{rrrr}
-1 & s & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad \text { or } \quad\left(\begin{array}{rrrr}
1 & s & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) .
$$

By replacing ρ with its dual representation, we may assume that $\rho(\omega)$ is given by the first of these two matrices. By replacing e_{2} with $e_{2}+(s / 2) e_{1}$, we may assume that $s=0$.

As U and y commute, we have

$$
\rho(U)=\left(\begin{array}{cccc}
\alpha & \beta & 0 & 0 \\
0 & \alpha & 0 & 0 \\
0 & 0 & a & b \\
0 & 0 & c & d
\end{array}\right)
$$

From $(\omega U)^{2}=1$, we obtain the equations $\alpha^{2}=1, a^{2}=d^{2}=1-b c$, and from $y=(\sigma U)^{2}$ the equations $\lambda=1, \beta=\alpha / 2, a^{2}=d^{2}=b c-1$. It follows that $a=d=0$ and $b c=1$. By conjugating by $\operatorname{diag}(1,1,1, c)$, we may assume that $b=c=1$. Hence

$$
\rho(U)=\left(\begin{array}{cccc}
\alpha & \alpha / 2 & 0 & 0 \\
0 & \alpha & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right), \quad \alpha^{2}=1
$$

Since $P \sigma P=\omega$ and $P^{2}=1, P$ must map the eigenspaces of σ to the corresponding eigenspaces of ω. It follows that

$$
\rho(P)=\left(\begin{array}{cccc}
0 & 0 & 0 & e \\
0 & f & g & 0 \\
0 & h & i & 0 \\
1 / e & 0 & 0 & 0
\end{array}\right)
$$

where

$$
\left(\begin{array}{ll}
f & g \\
h & i
\end{array}\right)^{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

The equation $(U P \sigma)^{3}=1$ implies that $f=\alpha, i=-\alpha, g=0$, and $h=\alpha / 2 e$. By conjugating by $\operatorname{diag}(1,1, e, e)$, we may assume that $e=1$. We compute $\rho(x)$ and find that

$$
\rho(x)=\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & \alpha & 0 & 1
\end{array}\right)
$$

We obtain indeed an indecomposable representation of Φ_{2}. The choices $\alpha=1$ and $\alpha=-1$ give weakly equivalent representations.

6 Case 2: $\lambda=\mu \neq \pm 1$

By Lemma 3, $\operatorname{tr}(\sigma)=0$, and so both V^{+}and V^{-}have dimension 2. Choose $e_{1} \in V^{+}$, $e_{1} \neq 0$, such that $y\left(e_{1}\right)=\lambda e_{1}$. Then the vector $e_{2}=\omega\left(e_{1}\right)$ is in V^{+}and $y\left(e_{2}\right)=\lambda^{-1} e_{2}$. We can choose similarly nonzero vectors e_{3}, e_{4} in V^{-}such that $y\left(e_{3}\right)=\lambda e_{3}, y\left(e_{4}\right)=\lambda^{-1} e_{4}$, and $\omega\left(e_{3}\right)=e_{4}$. With respect to the basis $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ of V, we have

$$
\rho(\sigma)=\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right), \rho(\omega)=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right), \rho(y)=\left(\begin{array}{cccc}
\lambda & 0 & 0 & 0 \\
0 & \lambda^{-1} & 0 & 0 \\
0 & 0 & \lambda & 0 \\
0 & 0 & 0 & \lambda^{-1}
\end{array}\right) .
$$

Since $P \sigma P=\omega$ and $P^{2}=1, P$ must map the eigenspaces of σ to the corresponding eigenspaces of ω. It follows that $\rho(P)$ must have the form :

$$
\rho(P)=\left(\begin{array}{rrrr}
a & c & \alpha & \gamma \\
a & c & -\alpha & -\gamma \\
b & d & \beta & \delta \\
b & d & -\beta & -\delta
\end{array}\right) .
$$

From $P^{2}=1$ it follows that $a=c= \pm 1 / 2, \beta=-\delta= \pm 1 / 2, \alpha=\gamma, b=-d$, and $4 \alpha b=1$. By replacing ρ with a weakly equivalent representation, we may assume that $a=1 / 2$. By conjugating with the diagonal matrix $\operatorname{diag}(1,1,2 b, 2 b)$, we may assume that $b=\alpha=1 / 2$. Hence

$$
\rho(P)=\frac{1}{2}\left(\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & \epsilon & -\epsilon \\
1 & -1 & -\epsilon & \epsilon
\end{array}\right), \quad \epsilon= \pm 1 .
$$

Since U and y commute, we have

$$
\rho(U)=\left(\begin{array}{cccc}
u & 0 & v & 0 \\
0 & u^{\prime} & 0 & v^{\prime} \\
w & 0 & z & 0 \\
0 & w^{\prime} & 0 & z^{\prime}
\end{array}\right)
$$

From $y=(\sigma U)^{2}$ we obtain the equations:

$$
v(u-z)=w(u-z)=0, \quad u^{2}=z^{2}=v w+\lambda,
$$

and from $(\omega U)^{2}=1$ the equality

$$
\left(\begin{array}{cc}
u^{\prime} & v^{\prime} \\
w^{\prime} & z^{\prime}
\end{array}\right)=\left(\begin{array}{ll}
u & v \\
w & z
\end{array}\right)^{-1}
$$

Assume first that $u \neq z$. Then $v=w=0$, and consequently $v^{\prime}=w^{\prime}=0$. Furthermore, we have $u^{\prime}=1 / u, z=-u$, and $z^{\prime}=-1 / u$. By using $x=P y P$ and the equation $U x y=x U$, we obtain $u^{2}=1$. Hence $\lambda=1$, which is a contradiction.

Hence, we must have $u=z$, and so $u^{\prime}=z^{\prime}$. It follows that

$$
\rho(U)=\left(\begin{array}{cccc}
u & 0 & v & 0 \\
0 & u / \lambda & 0 & -v / \lambda \\
w & 0 & u & 0 \\
0 & -w / \lambda & 0 & u / \lambda
\end{array}\right), \quad \lambda=u^{2}-v w .
$$

If $\epsilon=1$, by equating the (3,1)-entries of the matrices $\rho(U x y)$ and $\rho(x U)$, we obtain the equation $\lambda^{2}(u+w)=u-w$. Similarly, the (4,2)-entries give the equation $\lambda^{2}(u-w)=u+w$. Hence $\lambda^{4}=1$. As $\lambda \neq \pm 1$, we must have $\lambda^{2}=-1$. It follows that $u=0$ and $w=-\lambda / v$. By equating the (1,1)-entries of the above mentioned matrices, we obtain that $v=0$, which is impossible.

So we have $\epsilon=-1$. The equation $\rho(U x y)=\rho(x U)$ now implies that $\lambda^{2}=-1$ and $w=-v$. The relation $(U P \sigma)^{3}=1$ implies that

$$
\begin{gathered}
4 u^{2}(u-v)=\lambda(3 u-v)+\lambda-1 \\
4 u^{2}(u+v)=\lambda(3 u+v)
\end{gathered}
$$

By taking into account that $u^{2}+v^{2}=\lambda$, we obtain only one solution : $u=v=-(1+\lambda) / 2$. In this case we indeed obtain an indecomposable representation of Φ_{2}. Since $\rho(U)^{4}=1$ and $\rho\left(y^{2}\right)=-1, \rho$ factorizes through the homomorphism $\Phi_{2} \rightarrow \Gamma_{4}$ of Lemma 2 .

7 Case 3 : $\lambda=\mu= \pm 1$

Recall that D_{4} has (up to equivalence) only one 2-dimensional irreducible module and four 1 -dimensional ones. Assume that V, as a D_{4}-module, is a direct sum of two irreducible 2-dimensional modules. On an irreducible 2-dimensional D_{4}-module the element $(P \sigma)^{2}$ acts as minus the identity operator and so $\rho(P \sigma)^{2}$ lies in the center of $\mathrm{GL}(V)$. By Lemma $1, \rho\left(F_{2}\right)=1$ and we have a contradiction. The same argument applies when V is a sum of four 1-dimensional D_{4}-modules. Thus we may assume that V is a direct sum of one 2-dimensional irreducible D_{4}-module and two 1-dimensional modules.

Subcase 1: $\operatorname{tr}(\sigma)=0$. U_{P} to weak equivalence, we may assume that (with respect to a suitable basis of V)

$$
\rho(\sigma)=\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right), \rho(P)=\left(\begin{array}{rrrr}
r & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

where $r= \pm 1$. As $\omega=P \sigma P$ and $y \sigma=\sigma y$, we have

$$
\rho(\omega)=\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right), \quad \rho(y)=\left(\begin{array}{cccc}
\alpha^{\prime} & \beta^{\prime} & 0 & 0 \\
\gamma^{\prime} & \delta^{\prime} & 0 & 0 \\
0 & 0 & \alpha & \beta \\
0 & 0 & \gamma & \delta
\end{array}\right) .
$$

Since all eigenvalues of y are equal $\lambda= \pm 1$, we have $\alpha+\delta=2 \lambda$ and $\alpha \delta-\beta \gamma=1$. Since $\omega y \omega=y^{-1}$, it follows that $\alpha=\delta=\lambda$ and $\beta \gamma=0$. Similarily $\alpha^{\prime}=\delta^{\prime}=\lambda$ and $\beta^{\prime} \gamma^{\prime}=0$.

Up to weak equivalence, we have the following four possibilities :
(i) $\beta^{\prime} \neq 0, \gamma^{\prime}=\beta=\gamma=0$;
(ii) $\beta^{\prime} \neq 0, \gamma^{\prime}=\beta=0, \gamma \neq 0$;
(iii) $\beta^{\prime} \neq 0, \beta \neq 0, \gamma^{\prime}=\gamma=0$;
(iv) $\beta^{\prime}=\gamma^{\prime}=\gamma=0, \beta \neq 0$.

In fact, by using some elementary considerations, one can show that (i) and (iv) are weakly equivalent. Furthermore, by conjugating by a suitable diagonal matrix which commutes with $\rho(P)$, we may assume that the nonzero parameters among β^{\prime}, β, and γ are all equal to 1 . We now consider each of the first three possibilities separately.
(i) We have

$$
\rho(y)=\left(\begin{array}{cccc}
\lambda & 1 & 0 & 0 \\
0 & \lambda & 0 & 0 \\
0 & 0 & \lambda & 0 \\
0 & 0 & 0 & \lambda
\end{array}\right), \quad \rho(U)=\left(\begin{array}{cccc}
a & b & c & d \\
0 & a & 0 & 0 \\
0 & e & g & h \\
0 & f & i & j
\end{array}\right) .
$$

The relation $U x y=x U$ implies that $\lambda=1, h=0, g=a$, and $e=r a$. The relation $y=(\sigma U)^{2}$ implies that $a^{2}=j^{2}=1, d i=0,(a+j) i=0$, and $(a-j) f=a i r$. The relation $(P \sigma P U)^{2}=1$ implies that $c=0,(a-j) i=0,2 a b=1$, and $(a+j) f=a i r$. It follows that $i=f=0$. Finally the relation $(U P \sigma)^{3}=1$ implies that $j=-1, a=r$, and $d=0$. Since $d=h=f=i=0, \rho$ is decomposable, contrary to the hypothesis.
(ii) We have

$$
\rho(y)=\left(\begin{array}{cccc}
\lambda & 1 & 0 & 0 \\
0 & \lambda & 0 & 0 \\
0 & 0 & \lambda & 0 \\
0 & 0 & 1 & \lambda
\end{array}\right), \quad \rho(U)=\left(\begin{array}{cccc}
a & b & e & f \\
0 & a & f & 0 \\
g & h & c & 0 \\
h & 0 & d & c
\end{array}\right) .
$$

From $\rho(U x y)=\rho(x U)$, by equating $(4,4)$ and $(2,3)$ entries, we find that $c(1-\lambda)=0$ and $f(1-\lambda)=0$. As c and f cannot both be 0 , we infer that $\lambda=1$. From $(3,2)$ entries we obtain $g=0$. The entries $(1,2),(1,3),(4,2)$, and $(4,3)$ provide the equations $a+f=r h$, $c-a=r f, a=c+h$, and $f=c+r h$, respectively. These equations imply that $c=-a$, $h=2 a, f=-2 a r$, and $a(4 r-1)=0$. As $r= \pm 1$, we obtain $a=0$, which is impossible since $\rho(U)$ is invertible.
(iii) We have

$$
\rho(y)=\left(\begin{array}{cccc}
\lambda & 1 & 0 & 0 \\
0 & \lambda & 0 & 0 \\
0 & 0 & \lambda & 1 \\
0 & 0 & 0 & \lambda
\end{array}\right), \quad \rho(U)=\left(\begin{array}{cccc}
a & b & c & d \\
0 & a & 0 & c \\
e & f & g & h \\
0 & e & 0 & g
\end{array}\right) .
$$

From $U x y=x U$ we obtain $a(1-\lambda)=e$ and $e(1-\lambda)=0$. As a and e are not both zero, we must have $\lambda=1$. Taking this into account, the same relation implies that $e=0$, $g=a, f-a, r=-1$, and $h=a-b-c$. The relation $y=(\sigma U)^{2}$ implies that $a^{2}=1$ and $a=2 b+c$. From $(P \sigma P U)^{2}=1$ we obtain that $c=0$, and so $h=a-b$. From $(U P \sigma)^{3}=1$ we find that $a=-1, b=-1 / 2$, and $3 d=1 / 4$. In particular char $K \neq 3$. Thus $\rho(U)$ is uniquely determined and all the defining relations are satisfied. One can easily check that this representation of Φ_{2} is indeed indecomposable.

Subcase 2: $\operatorname{tr}(\sigma)=2$. By choosing a suitable basis of V, we have

$$
\begin{aligned}
& \rho(\sigma)=\left(\begin{array}{rrrr}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \rho(P)=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & r
\end{array}\right), \\
& \rho(\omega)=\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \quad \rho(y)=\left(\begin{array}{llll}
\lambda & 0 & 0 & 0 \\
0 & a & b & c \\
0 & d & e & f \\
0 & g & h & i
\end{array}\right),
\end{aligned}
$$

where $\alpha, \beta, \lambda= \pm 1$.
By Lemma 4, $\rho(y)$ has no Jordan blocks of size 3, and so $(\rho(y)-\lambda)^{2}=0$. From this equality and $\rho(\omega y)^{2}=1$ we obtain that $\rho(\omega y \omega)=2 \lambda-\rho(y)$. Hence we have $a=e=i=\lambda$ and $f=h=0$. Now the equation $(\rho(y)-\lambda)^{2}=0$ implies that $b d=c d=b g=c g=0$. Hence $\rho(y)$ has one of the forms:

$$
\left(\begin{array}{cccc}
\lambda & 0 & 0 & 0 \\
0 & \lambda & b & c \\
0 & 0 & \lambda & 0 \\
0 & 0 & 0 & \lambda
\end{array}\right), \quad\left(\begin{array}{cccc}
\lambda & 0 & 0 & 0 \\
0 & \lambda & 0 & 0 \\
0 & d & \lambda & 0 \\
0 & g & 0 & \lambda
\end{array}\right)
$$

By replacing ρ by its dual, we may assume that $\rho(y)$ has the form given by the first of these two matrices. At least one of b and c is not 0 . By conjugating by a suitable diagonal matrix, which commutes with $\rho(P)$, we may assume that b and c are either 0 or 1 . Hence there are three possibilities to consider :
(i) $b=1, c=0$;
(ii) $b=0, c=1$;
(iii) $b=c=1$.

Furthermore, if $\boldsymbol{r}=1$ in $\rho(P)$ then, without any loss of generality, it suffices to consider the possibility (i) only. This can be achieved by conjugation by a matrix which commutes with $\rho(\sigma)$ and $\rho(P)$. We analyze each of these possibilities separately.
(i) Since y and U commute, we have

$$
\rho(y)=\left(\begin{array}{cccc}
\lambda & 0 & 0 & 0 \\
0 & \lambda & 1 & 0 \\
0 & 0 & \lambda & 0 \\
0 & 0 & 0 & \lambda
\end{array}\right), \quad \rho(U)=\left(\begin{array}{llll}
a & 0 & b & c \\
d & e & f & g \\
0 & 0 & e & 0 \\
h & 0 & i & j
\end{array}\right)
$$

where we are now reusing the letters $a-j$ in a different role.
From $U x y=x U$ we obtain first $e(1-\lambda)=0$, and so $\lambda=1$, and then $e=a, d=-a$, and $h=0$. From $y=(\sigma U)^{2}$ we find that $a^{2}=j^{2}=1, c(a-j)=0, i(a+j)=0$, $g(a+j)+a c=0$, and $a b+2 a f+g i=1$. From $(P \sigma P U)^{2}=1$ we obtain from $(1,4)$ entries that $c(a+j)=0$. Since $a \neq 0$, this equation when combined with $c(a-j)=0$ gives $c=0$. From (2,4) entries we obtain $g(a-j)=0$. When combined with $g(a+j)=0$, we conclude that $g=0$. From $(1,3)$ entries we obtain that $b=0$. One of the previous equations now gives $f=1 / 2 a$. Next we exploit the relation $(U P \sigma)^{3}=1$. From (1,1) entries we obtain $a^{3}=1$. Since $a^{2}=1$, it follows that $a=1$. From (4,3) entries we obtain $i(2 r+j)=0$. As $j^{2}=r^{2}=1$, it follows that $i=0$. Since $c=g=h=i=0, \rho$ is decomposable, and so we have a contradiction.
(ii) We have $r=-1$ and

$$
\rho(y)=\left(\begin{array}{cccc}
\lambda & 0 & 0 & 0 \\
0 & \lambda & 0 & 1 \\
0 & 0 & \lambda & 0 \\
0 & 0 & 0 & \lambda
\end{array}\right), \quad \rho(U)=\left(\begin{array}{cccc}
a & 0 & b & c \\
d & e & f & g \\
h & 0 & i & j \\
0 & 0 & 0 & e
\end{array}\right)
$$

From $U x y=x U$ we obtain first from (2,2) entries the equation $e(1-\lambda)=0$, and so $\lambda=1$. Next from (3,4) entries we obtain $h=0$, from (1,4) entries $e=a$, and from (2,4) entries $d=a$. From $(\sigma U)^{2}=(U \sigma)^{2}$ by comparing (1,3) entries we obtain $b(a-i)=0$. Next we use the relation $(P \sigma P U)^{2}=1$. From diagonal entries we find that $a^{2}=i^{2}=1$. From $(1,3)$ entries we obtain $b(a+i)=0$. By combining this equation with $b(a-i)=0$, we conclude that $b=0$. From $(1,4)$ entries we find that $c=0$. Finally we use the relation $(U P \sigma)^{3}=1$. From diagonal entries we find that $a^{3}=-1$ and $i^{3}=1$. As $a^{2}=i^{2}=1$, we have $a=-1$ and $i=1$. Now from (1,4) entries we find that $f=0$, and from (3,4) entries $j=0$. Since $b=f=h=j=0, \rho$ is decomposable and so we have a contradiction.
(iii) We have $r=-1$ and

$$
\rho(y)=\left(\begin{array}{cccc}
\lambda & 0 & 0 & 0 \\
0 & \lambda & 1 & 1 \\
0 & 0 & \lambda & 0 \\
0 & 0 & 0 & \lambda
\end{array}\right), \quad \rho(U)=\left(\begin{array}{cccc}
a & 0 & b & c \\
d & e & f & g \\
h & 0 & i & j \\
-h & 0 & e-i & e-j
\end{array}\right),
$$

From $U x y=x U$ we obtain first from (2,2) entries the equation $e(1-\lambda)=0$, and so $\lambda=1$. Now the $(2,3)$ entries give $e=-d$, while $(2,4)$ entries give $e=d$. We infer that $e=0$, which is a contradiction.

8 Characteristic 2 case

Let $n=2$ and assume only that ρ is nontrivial. Since $(\omega U)^{2}=1$ and $\omega^{2}=1$, it follows that $\operatorname{det}(U)=1$. Let λ and λ^{-1} be the eigenvalues of U. Since $(P \sigma)^{4}=1, \rho(P \sigma)$ is unipotent. As $n=2$, we have $\rho(P \sigma)^{2}=1$. Hence $\rho(P)$ and $\rho(\sigma)$ commute, and so $\rho(\sigma)=\rho(\omega)$.

Assume first that $\lambda \neq 1$. Since $\omega U \omega=U^{-1}$, we can choose a basis of V such that

$$
\rho(U)=\left(\begin{array}{cc}
\lambda & 0 \\
0 & \lambda^{-1}
\end{array}\right), \quad \rho(\sigma)=\rho(\omega)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

Since $P^{2}=1$, and $\rho(P)$ commutes with $\rho(\sigma)$, we must have

$$
\rho(P)=\left(\begin{array}{cc}
a & a+1 \\
a+1 & a
\end{array}\right)
$$

for some $a \in K$. By examining the equation $\rho(U P \sigma)^{3}=1$, one can show that $a=0$ and $\lambda^{2}+\lambda+1=0$, i.e., λ is a primitive cube root of 1 . Hence we have an indecomposable representations of Φ_{2} such that $\rho\left(\Phi_{2}\right) \simeq S_{3}$.

Assume now that $\lambda=1$. If $\rho(U)=1$, then also $\rho(P)=\rho(\sigma)$ and $\rho\left(\Phi_{2}\right) \simeq C_{2}$. Thus we may assume that

$$
\rho(\sigma)=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) .
$$

Now let $\rho(U) \neq 1$. If $\rho(\sigma) \neq 1$, we can choose a basis of V such that

$$
\rho(\sigma)=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \quad \rho(P)=\left(\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right), \quad \rho(U)=\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right), \quad b \neq 0,
$$

because both $\rho(P)$ and $\rho(U)$ commute with $\rho(\sigma)$. From $(U P \sigma)^{3}=1$ we conclude that $a+b=1$. Hence we obtain a 1-parameter family of non-equivalent indecomposable representation of Φ_{2} with $\rho\left(\Phi_{2}\right) \simeq C_{2} \times C_{2}$. If $\rho(\sigma)=1$, then $\rho(U P)^{3}=1$ implies that either, say,

$$
\rho(U)=\rho(P)=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

or $\rho(U P)$ has order 3 , in which case we may assume that

$$
\rho(U)=\left(\begin{array}{cc}
0 & \lambda \\
\lambda^{-1} & 0
\end{array}\right), \quad \rho(P)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

where λ is a primitive cube root of 1 . Hence we obtain another indecomposable representation of Φ_{2} with $\rho\left(\Phi_{2}\right) \simeq S_{3}$, which is not equivalent to the previous one.

In all of the representaiton mentioned above we have $\rho(y)=\rho(\sigma U)^{2}=1$, and so $\rho\left(F_{2}\right)=1$. In particular the assertion of the theorem holds if $n=2$.

Now let $n=3$ and assume that ρ is indecomposable and $\rho\left(F_{2}\right) \neq 1$. Since $\omega U \omega=U^{-1}$, the eigenvalues of U are λ, λ^{-1}, and 1 .

If $\rho(y)$ is diagonalizable, then $\rho(y) \neq 1$ implies that y has three distinct eigenvalues. As $y \sigma=\sigma y, \rho(\sigma)$ is diagonalizable. Since $\rho(\sigma)$ is also unipotent, we obtain $\rho(\sigma)=1$, a contradiction.

Hence $\rho(y)$ is not diagonalizable, and so must be unipotent. Since $y U=U y$, it follows that $\lambda=1$, i.e., $\rho(U)$ is unipotent. Consequently $\rho(U)^{4}=1$. Since $y=(\sigma U)^{2}$ and $\rho(y)$ is unipotent, we conclude that $\rho(y)^{2}=1$. Hence ρ factorizes through the homomorphism $\Phi_{2} \rightarrow \Gamma_{3}$.

Finally let $n=4$. We assume, as in the statement of the theorem, that ρ is indecomposable and that $\rho\left(F_{2}\right) \neq 1$. The eigenvalues of y have the form $\lambda, \lambda^{-1}, \mu, \mu^{-1}$. We divide the proof into three subcases.

Subcase 1 : $\lambda=\mu=1$. Since $\rho(y)$ is unipotent and $y=(\sigma U)^{2}, \rho(\sigma U)$ is also unipotent. As $n=4$, we conclude that $\rho(y)^{2}=1$. Since x, y, and $x y$ are conjugate in Φ_{2}, we have also $\rho(x)^{2}=\rho(x y)^{2}=1$. As $\rho\left(F_{2}\right) \neq 1$, we conclude that $\rho\left(F_{2}\right)$ is a four-group. The subspace $W \subset V$ consisting of all vectors v such that $\rho(x)(v)=\rho(y)(v)=v$ has dimension 1,2 , or 3 . Since F_{2} is normal in Φ_{2}, W is Φ_{2}-invariant.

We choose a basis of W and extend it to a basis of V. With respect to such a basis we have

$$
\rho=\left(\begin{array}{cc}
\rho^{\prime} & * \\
0 & \rho^{\prime \prime}
\end{array}\right)
$$

where ρ^{\prime} (resp. $\rho^{\prime \prime}$) is the representation of Φ_{2} on W (resp. V / W) induced by ρ.
If $\rho(U)$ is unipotent, then $\rho\left(U^{4}\right)=1$ and so ρ factorizes through the homomorphism $\Phi_{2} \rightarrow \Gamma_{3}$. From now, untill the end of this subcase, we shall assume that $\rho(U)$ is not unipotent.

If U has an eigenvalue 1 , then we'may assume that

$$
\rho(U)=\left(\begin{array}{cccc}
1 & \alpha & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \beta & 0 \\
0 & 0 & 0 & \beta^{-1}
\end{array}\right), \quad \beta \neq 1
$$

with respect to some basis $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$. Since $y U=U y, \rho(y)^{2}=1$, and $\rho(y) \neq 1$, we have

$$
\rho(y)=\left(\begin{array}{llll}
1 & \gamma & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \quad \gamma \neq 0
$$

Hence $\beta \cdot \sigma U \sigma\left(e_{3}\right)=(\sigma U)^{2}\left(e_{3}\right)=y\left(e_{3}\right)$, i.e., $U \sigma\left(e_{3}\right)=\beta^{-1} \sigma\left(e_{3}\right)$. This implies that $\sigma\left(e_{3}\right)=a e_{4}$ for some $a \in K^{*}$. As $\sigma^{2}=1$ and $\sigma y=y \sigma$, we infer that

$$
\rho(\sigma)=\left(\begin{array}{cccc}
1 & \delta & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & a^{-1} \\
0 & 0 & a & 0
\end{array}\right)
$$

An easy computation shows that $\rho(\sigma U)^{2}=1$. As $y=(\sigma U)^{2}$ and $\rho(y) \neq 1$, we have a contradiction.

Now assume that U has no eigenvalue 1. This implies that $\operatorname{dim}(W)=2$ and that $\rho^{\prime}\left(\Phi_{2}\right)$ and $\rho^{\prime \prime}\left(\Phi_{2}\right)$ are both isomorphic to S_{3}. For these representations we have $\rho^{\prime}(P \sigma)=$ $\rho^{\prime \prime}(P \sigma)=1$, and consequently $\rho(P \sigma)^{2}=1$. Now Lemma 1 gives a contradiction.

Subcase 2: $\left\{\lambda, \lambda^{-1}\right\} \neq\left\{\mu, \mu^{-1}\right\}$. If $\lambda, \mu \neq 1$, then $y \sigma=\sigma y$ and $\sigma^{2}=1$ imply that $\rho(\sigma)=1$, a contradiction. Now let, say, $\mu=1$. If $\rho(y)$ is not diagonalizable, its centralizer in $\mathrm{GL}(V)$ is Abelian. Hence $\rho(\sigma)$ and $\rho(U)$ commute. By Lemma 2, ρ factorizes through the homomorphism $\Phi_{2} \rightarrow \Gamma_{2}$. We now assume that $\rho(y)$ is diagonalizable. Since σ and y commute, σ leaves invariant the eigenspaces of y. Consequently we can choose a basis of V such that

$$
\rho(y)=\left(\begin{array}{cccc}
\lambda & 0 & 0 & 0 \\
0 & \lambda^{-1} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \quad \rho(\sigma)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Since $\omega y \omega=y^{-1}$ and $\omega=P \sigma P$, we may also assume that

$$
\rho(\omega)=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Since $U y=y U$, we have

$$
\rho(U)=\left(\begin{array}{cccc}
\alpha & 0 & 0 & 0 \\
0 & \beta & 0 & 0 \\
0 & 0 & a & b \\
0 & 0 & c & d
\end{array}\right)
$$

From $y=(\sigma U)^{2}$ we obtain

$$
\alpha^{2}=\lambda, \quad \beta=\alpha^{-1}, \quad c=a+d, \quad a d+b c=1,
$$

and from $(\omega U)^{2}=1$ we obtain that $a+d=0$. Consequently $c=0, d=a=1$. Thus $\rho(\sigma)$ and $\rho(U)$ commute and we can apply Lemma 2.

Subcase 3 : $\lambda=\mu \neq 1$. Both eigenspaces of y have the same dimension. If $\rho(y)$ is not diagonalizable, then the centralizer of $\rho(y)$ in $\operatorname{GL}(V)$ is Abelian and we can use Lemma 2 once again. Now let $\rho(y)$ be diagonalizable. Then both eigenspaces of y have dimension 2, and ω interchanges these eigenspaces. It follows that $1+\omega$ has rank 2 . Since $\omega=P \sigma P, 1+\sigma$ also has rank 2. As y and σ commute, we can choose a basis of V such that

$$
\rho(y)=\left(\begin{array}{cccc}
\lambda & 0 & 0 & 0 \tag{12}\\
0 & \lambda & 0 & 0 \\
0 & 0 & \lambda^{-1} & 0 \\
0 & 0 & 0 & \lambda^{-1}
\end{array}\right), \quad \rho(\sigma)=\left(\begin{array}{cccc}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Since ω inverts y and commutes with σ, we must have

$$
\rho(\omega)=\left(\begin{array}{cccc}
0 & 0 & a^{\prime} & b^{\prime} \\
0 & 0 & 0 & a^{\prime} \\
c^{\prime} & d^{\prime} & 0 & 0 \\
0 & c^{\prime} & 0 & 0
\end{array}\right), \quad a^{\prime} d^{\prime}=b^{\prime} c^{\prime}, \quad a^{\prime} c^{\prime}=1
$$

By conjugating $\rho(\omega)$ by a suitable matrix which commutes with $\rho(y)$ and $\rho(\sigma)$, we may assume that $a^{\prime}=c^{\prime}=1$ and $b^{\prime}=d^{\prime}=0$, i.e.,

$$
\rho(\omega)=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \tag{13}\\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

Since $U y=y U$, we have

$$
\rho(U)=\left(\begin{array}{cccc}
u^{\prime} & \boldsymbol{v}^{\prime} & 0 & 0 \\
\boldsymbol{z}^{\prime} & w^{\prime} & 0 & 0 \\
0 & 0 & \boldsymbol{u} & \boldsymbol{v} \\
0 & 0 & \boldsymbol{z} & \boldsymbol{w}
\end{array}\right)
$$

From $y=(\sigma U)^{2}$ we obtain the equations

$$
u^{2}+z^{2}+z(v+w)=w^{2}+z(v+w)=\lambda^{-1}
$$

and so $z=u+w$ and

$$
\lambda^{-1}=u v+v w+w u
$$

The equation $(\omega U)^{2}=1$ gives

$$
\left(\begin{array}{cc}
u^{\prime} & v^{\prime} \\
z^{\prime} & w^{\prime}
\end{array}\right)=\left(\begin{array}{cc}
u & v \\
z & w
\end{array}\right)^{-1},
$$

and so

$$
\rho(U)=\left(\begin{array}{cccc}
\lambda w & \lambda v & 0 & 0 \tag{14}\\
\lambda(u+w) & \lambda u & 0 & 0 \\
0 & 0 & u & v \\
0 & 0 & u+w & w
\end{array}\right) .
$$

The matrix

$$
P_{0}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right)
$$

satisfies the equation $\rho(\omega) P_{0}=P_{0} \rho(\sigma)$. Since $\rho(P)$ satisfies the same equation, the matrix $P_{0}^{-1} \rho(P)$ commutes with σ. Consequently $\rho(P)$ has the form

$$
\rho(P)=P_{0} \cdot\left(\begin{array}{cccc}
a & b & c & d \\
0 & a & 0 & c \\
\alpha & \beta & \gamma & \delta \\
0 & \alpha & 0 & \gamma
\end{array}\right)=\left(\begin{array}{cccc}
a & b & c & d \\
\alpha & \beta & \gamma & \delta \\
a & a+b & c & c+d \\
\alpha & \alpha+\beta & \gamma & \gamma+\delta
\end{array}\right)
$$

Since $P^{2}=1$, we have the equations:

$$
\begin{array}{r}
a(a+c)+\alpha(b+d)=1, \quad \alpha(a+c)=1 \\
\alpha(a+\beta+\delta)=a \gamma, \quad \alpha(\alpha+\gamma)=0 \\
d(\alpha+\gamma)+\gamma(c+\delta)+\delta(\beta+\delta)=0, \quad \delta(\alpha+\gamma)+\gamma^{2}=1 \tag{17}
\end{array}
$$

The second equations of (15),(16), and (17) imply that $\alpha=\gamma=1$. The second equation of (15) and the first equations of (16) and (17) give $c=\beta=\delta=1+a$. From the first equation in (15) we now obtain that $d=1+a+b$. Thus

$$
\rho(P)=\left(\begin{array}{cccc}
a & b & 1+a & 1+a+b \\
1 & 1+a & 1 & 1+a \\
a & a+b & 1+a & b \\
1 & a & 1 & a
\end{array}\right)
$$

By conjugating by the matrix

$$
\left(\begin{array}{llll}
1 & a & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & a \\
0 & 0 & 0 & 1
\end{array}\right)
$$

we may assume that

$$
\rho(P)=\left(\begin{array}{cccc}
0 & t & 1 & 1+t \\
1 & 1 & 1 & 1 \\
0 & t & 1 & t \\
1 & 0 & 1 & 0
\end{array}\right)
$$

where $t=a+b+a^{2}$. Although $\rho(U)$ will change under this conjugation, it will still have the form (14). By using this expression for $\rho(P)$, we find that

$$
\rho(x)=\left(\begin{array}{cccc}
\lambda^{-1}+r t & r t & r t & r t \\
r & \lambda+r t & 0 & r t \\
r t & r t & \lambda^{-1}+r t & r t \\
0 & r t & r & \lambda+r t
\end{array}\right)
$$

where

$$
r=\lambda+\lambda^{-1}
$$

By equating the diagonal entries of the matrices $\rho(x U)$ and $\rho(U x y)$, we obtain the equations

$$
\begin{aligned}
& (v+w t) \lambda^{3}+u t \lambda^{2}+(v+w+w t) \lambda+w+u t=0 \\
& (u+w t) \lambda^{3}+(u+v+u t) \lambda^{2}+w t \lambda+v+u t=0 \\
& w t \lambda^{3}+(v+u t) \lambda^{2}+(u+w t) \lambda+u+v+u t=0 \\
& (v+w+w t) \lambda^{3}+(w+u t) \lambda^{2}+(v+w t) \lambda+u t=0 .
\end{aligned}
$$

By adding the first two equations, we obtain

$$
(\lambda+1) \cdot\left[v+w+(u+v) \lambda^{2}\right]=0
$$

and by adding the last two, we obtain

$$
(\lambda+1) \cdot\left[u+v+(v+w) \lambda^{2}\right]=0
$$

Since $\lambda \neq 1$, we have

$$
u+v=\lambda^{-2}(v+w)=\lambda^{2}(v+w)
$$

and so $u=v=w$. By (12) and (14), $\rho(\sigma)$ and $\rho(U)$ commute and so, by Lemma 2, $\rho(y)^{2}=1$. This gives $\lambda=1$, a contradiction.

This completes the proof of the theorem.

9 Some indecomposable representations of Φ_{2} and B_{4}

In this section we list all, up to weak equivalence, indecomposable representations ρ of Φ_{2} of degree ≤ 4 such that $\rho\left(F_{2}\right) \neq 1$ and $\rho\left(\Phi_{2}\right)$ is infinite. According to the previous section, such reperesentations do not exist if char $K=2$. We also include an interesting example of an indecomposable representation of degree 4 with $\rho\left(\Phi_{2}\right)$ finite.

One can use the above mentioned representations ρ of Φ_{2} in order to construct new representations of B_{4}. Recall that the braid group B_{4} has the following presentation :

$$
B_{4}=\left\langle\sigma_{1}, \sigma_{2}, \sigma_{3}:\left[\sigma_{1}, \sigma_{3}\right]=1, \sigma_{1} \sigma_{2} \sigma_{1}=\sigma_{2} \sigma_{1} \sigma_{2}, \sigma_{2} \sigma_{3} \sigma_{2}=\sigma_{3} \sigma_{2} \sigma_{3}\right\rangle
$$

Furthermore there is a homomorphism $h: B_{4} \rightarrow \Phi_{2}$ given by :

$$
h\left(\sigma_{1}\right)=P U P, \quad h\left(\sigma_{2}\right)=U \sigma U^{-1} P, \quad h\left(\sigma_{3}\right)=P \sigma U^{-1} \sigma P .
$$

For readers convenience, we have also computed the images of σ_{i} 's in each case.
Representation 1. The generators σ, P, and U of Φ_{2} are represented by the matrices

$$
\rho(\sigma)=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad \rho(P)=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right), \quad \rho(U)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 1 / 2 \\
0 & 0 & 1
\end{array}\right) .
$$

It is easy to verify that these matrices satisfy the defining relations (1) of Φ_{2}. A simple computation shows that $x=P y P$ and $y=(\sigma U)^{2}$ are represented by the matrices

$$
\rho(x)=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad \rho(y)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right) .
$$

Hence $\rho\left(F_{2}\right)$ is a free Abelian group of rank 2.
The corresponding representation of B_{4} is determined by :

$$
\sigma_{1} \rightarrow\left(\begin{array}{ccc}
1 & -1 & 1 / 2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad \sigma_{2} \rightarrow\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 2 & 0 \\
0 & 0 & 1
\end{array}\right), \quad \sigma_{3} \rightarrow\left(\begin{array}{ccc}
1 & -1 & -1 / 2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

Representation 2. The second representation ρ is defined by :

$$
\rho(\sigma)=\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right), \rho(P)=\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
1 / 2 & 0 & -1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right), \rho(U)=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 / 2 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right) .
$$

In this case we find that

$$
\rho(x)=\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
1 & 0 & -1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right), \quad \rho(y)=\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right) .
$$

Now $\rho\left(F_{2}\right)$ is a solvable group which is not nilpotent.
For B_{4} we have :
$\sigma_{1} \rightarrow\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 1 / 2 & 0 & -1 & 0 \\ 1 / 2 & -1 & 0 & 0 \\ 1 / 2 & 0 & 0 & 1\end{array}\right), \quad \sigma_{2} \rightarrow\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ -1 / 2 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0\end{array}\right), \quad \sigma_{3} \rightarrow\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ -1 / 2 & 0 & 1 & 0 \\ 1 / 2 & 1 & 0 & 0 \\ -1 / 2 & 0 & 0 & 1\end{array}\right)$.

Representation 3. If characteristic of K is not 2 or 3, then we have a representation ρ defined by :

$$
\rho(\sigma)=\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right), \rho(P)=\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & -1
\end{array}\right), \rho(U)=\left(\begin{array}{cccc}
1 & 1 / 2 & 0 & 1 / 12 \\
0 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 / 2 \\
0 & 0 & 0 & 1
\end{array}\right) .
$$

In this case we have

$$
\rho(x)=\left(\begin{array}{rrrr}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \quad \rho(y)=\left(\begin{array}{rrrr}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

In this case $\rho\left(F_{2}\right)$ is a non-Abelian unipotent group.
The corresponding representation of B_{4} is given by :

$$
\begin{gathered}
\sigma_{1} \rightarrow\left(\begin{array}{cccc}
1 & 0 & 1 / 2 & -1 / 12 \\
0 & 1 & 1 & -1 / 2 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \sigma_{2} \rightarrow\left(\begin{array}{cccc}
1 & 0 & 0 & 1 / 16 \\
0 & 0 & 1 & 0 \\
0 & -1 & 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \\
\\
\\
\sigma_{3} \rightarrow\left(\begin{array}{cccc}
1 & 0 & -1 / 2 & -1 / 12 \\
0 & 1 & 1 & 1 / 2 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) .
\end{gathered}
$$

All three representations above of Φ_{2} and B_{4} are at the same time indecomposable and reducible.

Representation 4. This representation ρ is defined by :

$$
\rho(\sigma)=\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right), \quad \rho(P)=\frac{1}{2}\left(\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1 \\
1 & -1 & 1 & -1
\end{array}\right),
$$

$$
\rho(U)=\frac{1}{2}\left(\begin{array}{cccc}
-1-i & 0 & -1-i & 0 \\
0 & -1+i & 0 & 1-i \\
1+i & 0 & -1-i & 0 \\
0 & -1+i & 0 & -1+i
\end{array}\right),
$$

where $i^{2}=-1$. One can show that $\rho\left(\Phi_{2}\right) \simeq(Q \# Q) \rtimes S_{3}$, a quotient of the group Γ_{4} defined in Lemma 2. The images of x and y generate one of the two quaternion groups Q. The basic vectors are common eigenvectors of σ and y and, up to scalar multiples, there are no other common eigenvectors. Since P does not preserve these eigenspaces, ρ has no 1-dimensional invariant subspace. As $\rho\left(F_{2}\right) \neq 1, \rho$ cannot be direct sum of two 2-dimensional representations. Hence ρ is irreducible.

In this case the representation of B_{4} is given by :

$$
\begin{gathered}
\sigma_{1} \rightarrow \frac{1}{2}\left(\begin{array}{rrrr}
-1 & i & 1 & -i \\
-i & -1 & -i & -1 \\
-1 & -i & -1 & -i \\
-i & 1 & i & -1
\end{array}\right), \sigma_{2} \rightarrow \frac{1}{2}\left(\begin{array}{rrrr}
-1 & 1 & 1 & -1 \\
1 & -1 & 1 & -1 \\
-1 & -1 & -1 & -1 \\
1 & 1 & -1 & -1
\end{array}\right), \\
\sigma_{3} \rightarrow \frac{1}{2}\left(\begin{array}{rrrr}
-1 & -i & 1 & i \\
i & -1 & i & -1 \\
-1 & i & -1 & i \\
i & 1 & -i & -1
\end{array}\right) .
\end{gathered}
$$

References

[1] J. S. Birman, Braids, links, and 3-manifolds, Annals of Math. Studies, No. 82, Princeton University Press, 1974.
[2] J. S. Birman, D. D. Long, and J. A. Moody, Finite-dimensional representations of Artin's braid group, in The Mathematical Legacy of Wilhelm Magnus : Groups, Geometry, and Special Functions, Contemporary Mathematics 169(1994), 123-132.
[3] M. D. Burrow, A complete survey of the representations of degree 3 of the automorphism group of the free group of rank 2, Arch. Math. 38(1982), 208-216.
[4] J. L. Dyer, E. Formanek, and E. K. Grossman, On the linearity of the automorphism group of free groups, Arch. Math. 38(1982), 404-409.
[5] E. Formanek, Braid group representations of low degree, Preprint 181, Penn State University, 1994.
[6] E. Formanek and C. Procesi, The automorphism group of a free group is not linear, J. Algebra 149(1992), 494-499.
[7] GAP, Lehrstuhl D für Mathematik RWTH Aachen, Version 3, Release 3, November 1993.
[8] W. Magnus, A. Karrass, and D. Solitar, Combinatorial group theory : Presentations of groups in terms of generators and relations, Interscience, New York, 1966.
[9] W. Magnus and C. Tretkoff, Representations of automorphism groups of free groups, in Word Problems II, S. I. Adian, W. W. Boone, and G. Higman, Eds., NorthHolland, 1980, 255-259.
[10] S. Moran, Matrix representations for the braid group B_{4}, Arch. Math. 34(1980), 496-501.
[11] M. Newman, Integral matrices, Academic Press, New York-London, 1972.

[^0]: *Supported in part by the NSERC Grant A-5285.
 ${ }^{\text {' Supported in part by an NSERC grant. }}$

