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On the singular values of Weber modular functions

NORIKO YUI AND DON ZAGIER

Introduction. Singular moduli, the values of the elliptic modular function of level one
7(7) at imaginary quadratic arguments 7 in the upper half complex plane §, were studied
extensively by many mathematicians in the early part of this century [11, 10, 2]. Their
most important application is to explicit class field theory: if K = Q(\/&) 18 an imaginary
quadratic field of discriminant d, then the numbers j(r), where 7 ranges over the SL,(Z)-
inequivalent points in § satisfying a quadratic equation of discriminant d, are the roots of
a computable polynomial Hy(X) € Z[X], the class polynomial. Since each root generates
the class field of K" when adjoined to K, this gives an explicit way to construct the class
fields of K. There are other applications, e.g. to the problems of primality testing/proving
[1] and to the study of representability of primes by quadratic forms z2 + ny? [5].

A drawback of the polynomials H;(X), however, is that they have coefficients of astro-
nomical size, even for quite modest discriminants d, e.g., H_s5(X) is

X4 4 375%29-134219X% — 375%23.101-32087.X2 + 3°57112101-110641.X — 3125611329%413

In this paper we shall look at the class equations obtained by using the Weber function
f(7) of level 48 and index 72 instead of the modular invariant j(r) of level 1. We will
concentrate on the case of discriminants d congruent to 1 modulo 8 and not divisible by 3
(although other discriminants will also be considered), since the results are optimal here:
the values of f at suitable points 7 € £ of discriminant d generate the same fields as before
but are the roots of a polynomial W;(X) having far smaller coefficients than Hy(X), e.g.
for d = —55 we have simply W_ss(X) = X* + X? —2X — 1.

The paper has two aims. The first is to give an efficient procedure for calculating the
roots of the Weber class polynomials Wy(X). To do this, we have to discover the rule
for picking out of each SL;(Z)-equivalence class of points 7 € H of discriminant d one
I-equivalence class (where I' C SLz(Z) is the subgroup of index 72 under which f(7) is
invariant) in such a way that the corresponding values of f(7) are the roots of Wy(X).
The second, and more important, is to give analogues for the Weber function of the results
of Gross-Zagier [7] on the norms of the differences of singular moduli j(7), i.e., on the
disciminants and resultants of the class polynomials Hy(X). The result of [7], following
earlier work of Deuring [6], was that the norms in question are highly factorizable and that
there is a closed formula for their decomposition into prime powers. The corresponding



numbers for the Weber polynomials are far smaller—for instance, the discriminant of the
polynomial H_g5 given above is

—37852011519%23920%23724124753% ~ —4.7 x 10°!,

while that of W_s5(X) is only —5%11 = —275 —but the rule for finding their prime factors
and the exponents to which they occur turns out to be considerably more complicated.
More precisely, the formnula given in [7] for the prime factorization of norms of differences
7(11) — j(72) involved a certain arithmetic function F(m) which takes on prime power
values; we will find that F(m) decomposes naturally into the product of 8 more complicated
functions §.(m), indexed by the divisors r of 24, which can be used in a similar way to
describe the norms of differences of singular values of f(7)". The formulas we give are
empirical observations, based on (extensive) numerical computations. Detailed proofs are
being worked out by Alan Laing at the University of Maryland as part of his doctoral
thesis.

1. The Weber functions and Weber class equations. For 7 € §) (upper half-plane)
we set ¢ = €2™7 and more generally ¢* = €2™¢7 (a € Q). The classical Weber functions
are defined by

foy=c® [[a+¢ %), fA(r)=q¢ *H(l—q" 1), folr)=V2qH H(1+4")

n=1 n=1

The 8th powers of these functions are cubic over j1/3 (f%, —f} and f2 are the roots of
X3 — 13X —16 = 0) and their 24th powers are cubic over j (f%4, — f2* and —f2% are the
roots of the equation (z — 16)* — zj = 0), where 7 = j(7) is the elliptlc modular function
and j1/3 the cube root of j which is asymptotic to ¢!/3 at infinity. In particular, SL,(Z)
preserves the set of functions {f, fi, f2} up to permutation and multiplication by 48th
roots of unity. The action of the generators of SLy(Z) on these functions is given by

fr+1) 0 ¢H 0 £(7) f(=1/7) 100 f(r)
Alr+1) | =1{¢t 0 0 A0y}, LAY =10 0 111 A7) ],
fa(T +1) 0 0 ¢*/) \fal7) fa(=1/7) 0 1 0/ \fa(7)

where ( = (43 = €*™/18. We will continue to use the classical notations f, fi, f2, but

mention that a more uniform and less arbitrary notation for the Weber functions would be
foy(my=h(n),  foy(r)=falr),  fou(r)=C(f(r),

since: (i) the functions f§ are conjugate over C(j!/®) and the functions fE* over C(j);

. 4_ 212 A(MT)
(i) fe(r)* = (et +d)12 A(r)

function and M = ((: d) any 2 x 2 integral matrix of determinant 2 with M¢{ = 0

where A(t) = ¢[[(1 — q™)** is the classical discriminant

(mod 2); and (iii) the transformation law becomes fg(yr) = Afe (1) for any v € SLo(2),
where 7€' = £ (mod 2) and A is a 24th root of unity.
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We now define the Weber class invariants which we want to study. Consider d such that
d <0, d=1 (mod 8), d#0 (mod 3). (1)

i.e., d is the discriminant of an order O in an imaginary quadratic field in which 2 splits and
3 is unramified. Let Pic(O) denote the group of ideal classes of O. We will represent its
elements by SL,(Z)-equivalence classes [Q] of primitive positive definite quadratic forms
Q = [a,b,c] of discriminant b* ~ 4ac = d. To each Q is associated the number 79 =
(—=b + V/d)/2a which is the unique root in $ of Q(r,1) = 0. From the transformation
formulas just given it is clear that the number f¢(rg)?*, where £ is the unique vector in F2
with Q(€) # 0 (mod 2), depends only on the class [Q]. We now define a certain 24th root
of (the negative of) this number with the same invariance property.

PROPOSITION. Let d be a discrimninant satisfying (1). For Q = [«, b, c] a quadratic form of
discriminant d, define

Cb(a—c—ac’)f(-,-Q) if 2|a, 2|c,
FQ) = { eq¢Ma—e=e fi(ro) if2la, e,
ey Cb(u—c+“2‘=)f2(rq) if 2fa, 2|c,
where €4 = (—=1)\4=V/8 and ¢ = *™/*8, Then:

(1) f(Q) depends only on the SLy(Z)-equivalence class [Q] of Q.
(i) f(Q) € QU(mq))

By (i), we can write f(|Q]) for f(Q). We call the h(d) numbers f(A), A € Pic(0),
the Weber singular moduli or Weber class inveriants for the discriminant d. The minimal
polynomial of f(Ap), where Ay € Pic(O) is the principal class (corresponding to the form
Qo = [1,1,(1 — d)/4]), will be denoted Wy(X) and called the Weber polynomial for the
discriminant d. It follows from (ii) of the proposition that the roots of Wy(X), i.e. the
conjugates of f(Ay), are up to sign the numbers f(A). Indeed, we know that each j(rg) is
a conjugate of j(rq, ), so the corresponding conjugate of f(Q) is a real root of the equation
(X* - 1) = j(rg,) X**. But this equation has only two real roots £f(Qo) (since as a
cubic in X 24 it has negative discriminant and hence only one real root, and a real number
has only two real 24th roots). Based on the study of a large number of examples, we
conjecture that the f(.4) themselves, and not merely their squares, are conjugates of one
another (the choice of sign in the definition of f(Q) was based on these examples). The
truth of this conjecture could be verified by carefully working out the statement of the
Shimura reciprocity law in this situation, but we have not done this. If it i1s true, then we

have
WaX)y= [] (x-f). (27)
A€Pic(0)
PROOF OF THE PROPOSITION: To prove (1), we must check the invariance under the gen-
erators of SLy(Z). Let Q = [a,b,¢c], @* = {c,—D, a], so that 7g« = —1/7g. Then, using the
transformation formulas for the Weber functions under 7 — —1/7, we find

C—b(c—a—a’t:)f(TQ) if 2|(l, 2|C,
f@") = { ea¢™Mem* D fi(rg) if 2]a, 2,
€4 C—b(c—a—uﬂc)f.z(rq) if 2fa, 2|c,

3



so f(Q*) and f(Q) are the same if a or ¢ is odd and differ by a factor ¢44(*+¢) if both are
even. But in the latter case abc(a + ¢) is always divisible by 48 (e/2, ¢/2 and (a + ¢)/2
cannot all be odd, and b? — 4ac # 0 (mod 3) implies that at least one of a,b,¢,a + c is
divisible by 3). Similarly, if we take Q* = [a,b — 2a,¢ — b + a], with g = 79 + 1, then
using the transformation formulas for the Weber functions under 7 +— 7 + 1 we find that
the desired equality f(Q*) = f(Q) is equivalent to the congruences

(b-2a)(b—c—alc=b+a)®)—1+3(d—1) =b(a—c— ac?) (mod 48) if 2|a,
(b—2a){(b—c+a*(c—b+a))+2=0b(a —c+a’c) (mod 48) if 2a,

and these can be checked by case-by-case analysis. This proves (i).

Now the SLjy(Z)-invariance lets us give an alternate definition of f(A): choose a rep-
resentative Q@ = [a,],¢] for A with («,6) = 1 (this is possible because a primitive form
represents numbers prime to any fixed modulus) and with b = —a (mod 24) (this can be
done by changing b by a suitable multiple of 2a, since b is odd). Then since a*> =1 (mod 24)
we find

f(A) = a7 folrg) = ea V2/ f(27q — 1),

where we have used the identity fo(r) = (v2/f(27 —1). But w = 2rg — 1 is a root of
the quadratic equation Aw? + 2Bw + C = 0 with A (= a) and C (= a + b+ ¢) both odd,
B (= a + b) divisible by 24, and AC — B? (= |d|) congruent to 7 modulo 8 and to +1
modulo 3, and for such a number Weber showed that V2 f(w) is in the same field as the
J-invariant ([11], §127; see also [3], [9] for more modern discussions). This proves (ii).

2. Examples of Weber class equations, their discriminants and resultants.
As we just saw, we could have defined the Weber invariants f(A) as eq vV2/f(27g — 1),
where @ = [a, b, c] is any form in A with (a,6) = 1 and 24|a + b, rather than by the more
complicated formulas in the proposition. The advantage of the definition we gave is that
f(A) can be computed using the root of eny representative @, so we can assume @ is
reduced (|b] € a < ¢). Then rg lies in the standard fundamental domain of SL;(Z) and

the Weber functions converge at worst like power series in e~™v3 x 0.004, so that a few
terms of the product expansion give f(Q) as a complex number to high accuracy. Then
Wa(X) can be computed using (27), where the roots f(.A} have been computed to sufficient
accuracy to recognize each coefficient of Wy as a rational integer. This is much faster than
the method used in [8] of computing only one real root to high accuracy and then finding
its minimal polynomial by the “LLL” algorithm. Similarly, to compute the discriminant
of a Weber class polynomial Wy, or the resultant of two such polynomials Wy, and Wy,,
we compute the product of the differences of the roots as complex numbers to sufficient
precision and then round to the nearest integer. The fact that we do in fact get integers
to high accuracy provides at the same time a verification of the validity of formula (27).
In this section we tabulate some of our numerical data which provides the basis for the
conjectural formulas given in §§3-5. We calculated the polynomial Wy and their discrimi-
nants for all d satisfying (1) with |d| < 2000. Table 1 gives the results for a few values of
d in the range —500 < d < 0. Instead of writing out all the powers in Wy(X), we give just
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|d| h(d)  Wa(z) Disc(Wy)
7 1 1,1 1

23 3 1,-1,0,1 —23

31 3 1,0,1,—1 —31

47 5 1,2,2,1,0,—1 47?

55 4 1,1,0,—2,—1 —5%11

71 7 1,—-1,-1,1,-1,-1,2,1 —713

79 5 1,—1,1,—2,3,—1 792

95 8 1,—1,0,1,—2,—1,2,2,— —5%172193

103 5 1,-2,3,—3,1,1 1032

119 10 1,1,2,4,5,7,9,8,5,4,1 74175192

127 5 1,—1,-2,1,3,—1 1272

143 10 1,—3,6,—6,3,3,—9,13, —12,6,—1 5211413°

167 11 1,—1,5,—4,10,—6,11,—7,9, —4,2,1 —17%167°

175 6 1,1,0,0,0,—4,1 345572

191 13 1,—2,0,4,—5,1,5,—11,19, —22, 16, —10,6, —1 744121918

215 14 1,2,0,—6,—3,8,13, —4, —16, —7, 13,11, —4, —6, —1 511132192438

239 15 1,—4 4,4, —5,—13,20,4, —15, —13,27, —4, —8, —2,6, —1 —132192139%2397

247 6 1,— 7, —4,—1 32133192

311 19 1, - 1 2 —5,8, —14,13, —10, —1,9, —18,25, —10, —4,38,  —17*19223%1032.
—42,37,—16,4,1 211%311°

319 10 1,5,11,14,10,2,1,5,9,6, —1 3811120°

335 18  1,5,14, 25, 33,42, 64, 102, 144, 171, 179, 174, 163, 144, 106, 5911217241%678732%.
55,20,4, —1 12721392

367 9 1,—-2,—1,6,—2,0,2,~3,9, ~1 351923674

383 17 1,—1,—1,—1,0,1,13,7,11,4,1,7,23,31,42,24,6, —1 5611413%592892 3838

407 16 1,—1,2,—1,9,2,15,0,12,0,4, —19, —17, —33, —4, —10, —1 —5%1173784118329721992

431 21  1,3,6,9,9, —4,—10, —36, —30, — 14, —2, 66,41, 83, 44, 131031243%73%1072-
10,21, —40,16, —15,12, —1 -3312431%0

455 20 1,—6,15, —23,26, —16, —15, 57, —73, 30, 76, — 194, 246, 514714112131443%732.
—191, 38, 129, —200, 142, —50, 6, 1 9721312

479 25 1,3,9,22,41,60,66,47,6, —48, —82, —76,11, 138, 280, 13%17%31%41479% 1132
336, 317, 205, 144, 109, 126, 104, 76, 23, 10, —1 2832379247912

Table 1: Some Weber class polynomials and their discriminants

h(d) and the coefficients of X* in Wy(X) (h(d) > i > 0); thus the fifth entry of the table
means that W_g5(X) is X* + X% — 2X — 1, with discriminant —275 = —5211.

The discussion of these numbers will be postponed to §5; here we make only the obser-
vations that in Table 1 the sign of the discriminant of Wy(z) is given by

+ if h=1lor2 (mod4)
- if h=0or3 (mod 4).

and that the primes dividing the discriminant of Wy are bounded above by |d|, with the
power of |d] ( if |d| is prime) being (h(d) - 1)/2.
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In Table 2 we give the resultant of Wy, and Wy, for various pairs of discriminants dy,
d;. The last five entries, marked off by a line, give some examples where (d;, d2) # 1,
while the discriminants marked with an asterisk are not fundamental. We give only the
absolute values since the sign of the resultant is easily computable and not very interesting
(for instance, if d; and d are prime then the sign depends only on d; and d; modulo 16 if
d; = dz + 8 (mod 16) and on sgn(d; — dz) if d; = da (mod 16)).

|dy]  Id2|  h(d1) h(dr) —Resultant(Wy, , Wy, )i
71 119 7 10 23%s23
151 295 7 g 38179211
119 215 10 14 19°23%1531
143 239 7 15 13-43%107-139%22131
167 335 11 18 5%17%79-331-379-499-739
*175 239 6 15 19%41-59%2411
191 407 13 16 7%11-31%41473.83-4003-4507
215 479 14 25  13%17219%29447%691-877%1051-2179
247 431 6 21 7%599.1427-2963-6491
287 367 14 9 5729226325003
311 191 19 13 11*19%20%31571%2011
319 383 10 17 11%13%16321847-6947
%343 431 7 21 132131-181%2251-3947-8627-8699
407 287 16 14 5%7%139-149%179%2787-811-1231
431 263 21 13 7'1%167-257%409-6172787-883
455 431 20 21 7%47271%113%131-181-199-239%251-35921291-1699- 2111212211
479 359 25 19 13%19231.43%6731132157-227-239%761%977%1163
55 95 4 8 232
*175 287 6 14 5-592419-2099
247 455 6 20 5211%247%4931-7019
287 %343 14 7 5%31%259-61%4451
319 407 10 16 7%89211321151-3659

Table 2: Resultants of Weber class polynomials

This time we make the following observations: First, the primes dividing the resultant of
Wy, and Wy, are bounded by d,d;/16. Looking more carefully, we find that if p is such a
prime, then p divides some positive integer m of the form (dydy — 22)/16 satisfying m # 1
(mod 3) and either m = 7 (mod 8) or m = 4 (mod 16) or m = 0 (mod 32). Refinements
of these observations will lead in §3 to a complete conjectural formula for the resultants.

3. The prime factorization of the resultants. Let Q; and @2 be quadratic forms
of (the same or different) discriminants d; and d; satisfying (1). Because of the relation

HQ) = (f(Q)** —16)*/ f(Q)**, we see that any prime dividing f(Q;) — f(Q2) also divides
7(Q1)—7(Q2). Hence to find the formula for the factorization of the norm of f(Q1)— f(Q2),
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we start with the result of [7] on the factorization of M (j(@Q1) — 7(Q2)). This involves an
arithmetic function § (depending on d; and dy) whose definition we first recall.

Suppose that d; and dz are fixed negative discriminants. For convenience we exclude the
values —3 and —4 (later d; and d; will be assumed to satisfy (1)). We also assume that d;
and d; are coprime. Then for a prime p such that (i‘fl) # —1 we define

6(%{(%}) if pidy
U@ it

(note that this is well-defined and always equal to £1). For a positive integer n all of
whose prime factors satisfy (.fhpiz) # —1 we extend ¢ multiplicatively, i.e., we define e(n) =

len e(p)°rdr(™ | where ord,(n) denotes the power of p dividing n. Finally, if m is such
that e(m) is defined and equal to —1, we set

F(m) = H nt(™),

nn'=m
n,n’'>0

An easy proposition, proved in [7], is that F(m) is always a prime power:
F(m) = pla+1)(bi+1)--(b,+1) (3)
if m has the form

m = getiplin L pltrgit gl (e(0) = e(pi) = -1, e(qi) =1 for all §)

(1.e., if there is a unique prime £ with €(€) = —1 and orde(m) odd) and F(m) = 1 otherwise
(1.e., if there are three or more such primes; note that there are always an odd number of
them since e(m) = —1). The main result of [7] is the formula

NG@) - @) = [Ts (227 (40)

where the product is taken over all z such that 22 < djd; and that 2?2 = did, (mod 4).
Note that each of the integers m = (dyd, — z?)/4 satisfies e(m) = —1, so that F(m) is
defined. If d; and d; are both odd, the formula can be simplified to

. . (l](lz - Iz
NG@)-i@) =+ [ s(2272). (4b)

The formula implies that any prime p dividing the norm has the following properties:
() () #1 and () # 1

(i) p divides a positive integer of the form iﬁ'f—’z, and in particular p < d;ds/4;
(iii) p < d1d/8 if d; and d; are both congruent to 1 modulo 8.
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We now want to find a similar type of formula for the norm of f(Q:) — f(Q2), i.e.,
for the resultant of the Weber polynomials Wy, and Wy,. Since this norm divides that
of 7(Q1) — 7(Q-2), as already mentioned, we know that only primes satisfying (i)-(iii) can
occur. Looking at Table 2 in the previous section, we find that this is true and that in fact
(iii) can be strengthened to p < d;dz/16. However, even after studying this table (and a
much larger collection of numerical results of which it is only an excerpt) in detail it was not
obvious what the exact rule was for deciding which primes occurred and to which powers.
To find this rule, we first split the problem into a series of simpler ones by passing, not
from j directly to f, which satisfies an algebraic equation of degree 72 over j, but first to
the cubic extension C(f*) of C(j) and then step by step to the (24/r)th degree extension
C(f") of this, where r ranges over the divisors of 24.

The first step is easy. Looking at a number of examples of fa.ctorlzatmns of the norm of
F(Q1)** - f(Q2)**, we find that, just as for f, the prime divisors are always bounded by
dydz /16 and that the only numbers m = (d;d; — z?)/4 which contribute prime factors are
those divisible by 4 (note that m is always even since d; and dz are 1 modulo 8 and z is
even). This suggests the formula

N(F(Q1)™ = . (d‘dz - "”2) , (52)

>0

where the product extends over all z between 0 and /d,d; for which d;d; — z? is divisible
by 16, and this formula indeed turns out to be correct experimentally in all cases. To prove
it, one would have to repeat the analysis in [7] with SLy(Z) replaced by the group I'¢(2).

To go further, we observe that the polynomial X4 —1 factorizes as [],,4 ¢-(X), where
¢r(X) denotes the rth cyclotomic polynomial. We can write this in the homogeneous form

X _yH = II24 2-(X,Y) with the ®.(X, Y) (r = 2°3%|24) given by the table

a=0 a=1 o =2 a=3
=0 X-Y X+Y X?+Y°? Xt4 Y1
B=1 X2+ XY +Y? | X2 -XY+Y? | X' -X?Y24+Y4 | X3 - XY'4Y?

This factorization suggests that the function § should have a corresponding decomposition
as Hr|24 &r in such a way that the norm of each ®,.(f(Q1), f(@2)) is given a formula like
(52) but with § replaced by §,.

We have to give a formula for the arithmetic functions §,. By looking at a large number
of numerical examples, we found the following description. If F(m) = 1, then we set
3-(m) = 1 for each r. Otherwise by equation (3) we have F(m) = £(™ for some prime ¢,
where y(m) = [}, v(p, m) with

ord,(m)+1 ife(p) = +1
y(p,m) = 1 if e(p) = —1, ordy(m) even,
3(ordy(m) +1) if e(p) = -1, ord,(m) odd (i.e. p=£).

8



In this case we define F,(m) by

Fe(m) =€y (m) = va(2,m)76(3,m) [[ v(p,m)
p>3

where r has again been written as 2°3# with 0 < « < 3, 0 < # < 1 and the numbers
Ya(2,m) and v5(3,m) are given by the following two tables:

a=0 =1 a=2 a=3
m= 3 (mod 8) 1 0 0 0
m = 7 (mod 8) 0 1 0 0
m= 1 (mod 4) 0 0 1 0
m= 2 (mod 4) 0 0 0 2
m =12 (mod 16) 1 0 0 2
m = 4 (mod 16) 0 1 0 2
m = 8 (mod 16) 0 0 2 2
m =16 (mod 32) 1 0 2 2
m= 0 (mod 32) |orda(m)—5| 2 2 2

Table 3: Values of v,(2,m)

g=0 fB=1
(%) =-(%), m =2 (mod 3) 1 0
(#)=-(%),  m=1(mod3) 0 1
(%L) =(i31) =41, m=1 (mod 3) 1 0
(B) =(%) =41, m=0(mod3) |ords(m)—1| 2
(%) =(%) = -1, ords(m) even 1 0
(%) =(%) =-1, ords(m) 0dd Lordg(m) | 1

Table 4: Values of v3(3,m)

Then the following conjectural formula fits all cases we looked at. (In particular, cases with
ordz(m) up to 11 were checked numerically to test the last line of Table 3.)



CONJECTURAL DECOMPOSITION LAW FOR N (f(Q1)" — f(Q2)"). Let dy and dy be coprime
fundamental discriminants satisfying (1). For each divisor r of 24 we have

iHsr (c11(12 - ) | (620)

N(2.(f(Q1), £(Q2)))
or equivalently

M@ - f@)) = «[[[T5 (2255 (6b)

where z runs over integers between 0 and \/d,d; for which 2? = dydy (mod 16) and the
functions §,(m) for m € N with e(m) = —1 and r a divisor of 24 are defined as above.

Remarks. 1. It is easily checked that the congruence conditions on m in Table 3 cover all
possibilities. Similarly, since numbers m of the forms (djd; — 22)/16 are always congruent
to 1 or 2 modulo 3 if (dy /3) # (d2/3) and to 0 or 1 modulo 3 if (d;/3) = (d2/3), the entries
in Table 4 also cover all cases.

2. Adding the ent1ieq in each row of Tables 3 and 4 and comparing with the definition of

v(p,m), we see that E Ya(2,m) = v(2,m), E 18(3,m) = ¥(3,m) in all cases and hence

a=0

Z vr(m) = y(m), Hg,.(m) = F(m).

r|24 r|24

Therefore the formula given is compatible with equation (57).

3. Since the entries in the last column in Table 3 are all even, the formula given implies
that the norms of ®3(f(Q1), f(@2)) and P24(f(@Q1), f(Q2)) are always perfect squares.

4. The entries in the last row of Table 4, corresponding to the case when € = 3, are half-
integers. Therefore y(m) can be a half-integer in this case. However, this happens if and
only if m has the form 3y? for some y > 0, since the formulas for v(p, m) and 7,(2, m) imply
that these numbers are even if ord,(m) (resp. ordz(m)) is odd. Thus F,(m) is an integer
multiple of V/3 if m = 3y® and an integer otherwise. Since the number of representations
of dyd; as z° 4+ 48y* under our assumptions on d; and ds is always even, the formula stated
always ylelds an integral value for N(®,(f(Q1), f(Q2))), as it should.

5. The case r = 1 of the conjecture gives the resultant of the Weber polynomials Wy,
and Wy, (up to sign), as given in Table 2.

Example. Take d; = —71, d; = —~119, with class numbers 7 and 10, respectively. Here
the absolute value of the norm of f(Q,) — f(Q.) is 232523 (first entry of Table 2), while

that of f(Q1)** — f(Q2)** is
722112813%417%231947359%712113%163%2572433-523 ~ 8.1 x 10128,

Table 5 gives the data needed to compute these numbers (or more generally the norm of
¢, (f(Q1), f(Q2)) for each divisor r of 24). The table shows the prime factorizations of the
numbers m = (d;dy — z?)/16 = (8449 — 22)/16, the underlined prime factor being ¢, and
gives the values of §,(m) (r|24) and of their product F(m).
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z m 51 32 $4 Sa 53 e Si12  G24 S
1 24311 1 1 1 112 1 11t 1 1110
7 3.52.7 1 1 1 1 1 1 78 1 78
9 523 523 1 1 1 1 1 1 1 523
15 2-257 1 1 1 2572 1 1 1 1 2572
17 2-3-5-17 1 1 1 1 1 1 1 178 178
23 3%2.5-11 1 114 1 1 112 1 1 118
25 3-163 1 1 1 1 1 1 1632 1 1632
31 22.3%2.13 1 13 1 132 1 13 1 13 13°
33 2¢.5.23 232 1 1 23t 1 1 1 1 238
39 433 1 1433 1 1 1 1 1 433
41 3% .47 1 47 1 1 1 47 1 1 473
47 2-3-5-13 1 1 1 1 1 1 1 138 138
49 2-3.17 1 1 1 74 1 1 1 74 78
55 3113 1 1 1 1 1132 1 1 1 1132
57 52.13 1 1 133 1 1 1 1 1 133
63 2.5-7 1 ) S S A 1 1 1 1 78
65 28.3.11 1 1 1 1 1 1 1t ot 118
71 371 1 1 1 1 1 1 7?1 712
73 3-5-13 1 1 11 134 1 1 1 134
79 2.3.23 1 1 1 1 1 1 1 234 231
81 259 1 1 1 592 1 1 1 592
87 5-11 1 1 1 1 1 112 1 112
89 3-11 1 1 1 1 1 1 112 1 112

Table 5: Example of a resultant computation

4. Simplification of the formula for the resultant. In the last section we gave a
conjectural formula for the norm of f(Q;)" — f(Q2)", r|24. This formula is complete and
is easy to apply numerically, but has the aesthetic disadvantage that the definition of the
crucial function F,(m) is given in terms of the 48 entries of Tables 3 and 4, which were
found experimentally and for which no unified description was given. In this section we will
find such a unified description by a series of successive simplifications; the form we obtain
finally will still be a little mysterious, but will involve many fewer pieces of experimentally
obtained data.

The formula for the case r = 24, equation (57), was a natural enough analogue of the
known equation (4b) for the level 1 case; all the mystery concerned the splitting of the
arithmetic function § as Hr|24 Sr. This splitting was described by Tables 3 and 4 which
gave an additive decomposition of the number y(p,m) for p = 2 and p = 3. We will look
first at the p = 2 case, which is more complicated but also more homogeneous because we
are always assuming that d; and dz are = 1 (mod 8), whereas they can take on different
values modulo 3.

Recall that for each prime p dividing an integer m for which F(m) is defined, there is a

11



d
well-defined sign e(p) = £1 which is the common value of the Legendre symbols (—1) and
p

(Edl) if these are both non-zero. Pick a quadratic field K in which all p|m with e(p) = +1
split and all p|m with ¢(p) = —1 are inert. (The field X will not matter here and is just a
convenient device for counting ideals. However, in §5, where we consider the case d; = da,
the canonical choice I = Q(v/d; ) will play a role.) Then formula (3) says that the exponent
v(m) in the formula F(m) = £(") is equal to the number of decompositions

m = &8 A(a) (7)

with a an integral ideal of I, because there are a 4 1 possibilities 1, 3,..., 2a + 1 for k
and then (b; + 1)---(b, + 1) possibilities for a. In the splitting v(m) = [[~(p, m),
each factor y(p,m) (p # €) counts the number of ideals of norm p°™¥»{™)  In particu-
lar, ¥(2,m) (= v + 1, where 2||m) is the cardinality of the set I'(2,m) of ideals of norm 2¥
(= {p¥, p*'p,... ,p"}, where (2) = pp), and it is reasonable to guess that the decomposi-
tion of v(2,m) into four numbers v,(2,m) corresponds to a partition of I'(2,m) into four
subsets I'(2, m). On aesthetic grounds (and others that will appear in §5), we distribute
the ideals of I'(2,m) according to the following scheme:

a=0 a=1 =2 a=3
m= 3 (mod 8) {1} — — —
m= 7 (mod 8) — {1} — —
m= 1 (mod 4) — — {1} —
m= 2 (mod 4) — — — {p, b}
m =12 (mod 16) {pp} — — {p?, p*}
m= 4 (mod 16) — {pp) — {p?, p*}
m = 8 (mod 16) — — {p*p, pp*} {r*, P’}
m =16 (mod 32) {p?p?} - {p°p, pP°} | {p*, p*}
2llm, v 25 | {p* P Yacicu—s | {p*72P%, 020V | {p* "D, PPV 1Y | {pY, B¥)

Table 3': The sets I'4(2,m)

An inspection of this table shows that the column (i.e., the value of a) to which a given
ideal b = p*~'p* € I'(2,m) is assigned depends only on the minimum of i and v — 1, i.e.,
only on the largest power of 2 which divides b. Of course, this is the same as the largest
power dividing the ideal a in the decomposition (7) (since b is the 2-primary part of a).
Denote by ¢ = c(a) the content of a, i.e., the largest rational integer such that a = cay for
some integral ideal ap (which is then primitive, i.e., not divisible by any rational integer
> 1). Then the 36 entries of Table 3' can be replaced by the following simpler description

12



of the a which must be assigned to the decomposition (7):

(0 ifm =3 (mod 8)

e = o = 4 1 ifm =7 (mod 8)

2 ifm=1 (mod4)

(3 ifm =0 (mod 2)
_ (0 if m/4 =3 (inod 4)
2]c = a =<1 ifm/4=1 (mod4)
(2 ifm/4 =0 (mod 2)
e = o= { 0 Tf m/16 =1 (mod 2)
1 ifm/16 =0 (mod 2)

8c = a = 0 always

This already looks much simpler and can be improved immediately to the uniform formula

8/(8,¢)
(8/(8s C)s 7'”/(87'2):z - 3) ,

where ( , ) denotes greatest common divisor. But we can do more. Write m as mgc? (so
my = €8 M(ap) in the notation already introduced) and observe that

2% =

G - e

))zmu = my (mod

8
EXL

because ¢/(8,¢c) is prime to 8/(8,¢) and any number prime to a divisor of 8 has square
congruent to 1 modulo this divisor. (This property of 8 is shared by 3 and 24 and will be
used again for them.) Hence finally we can rewrite the entire content of Table 3' by saying
that we assign to each decomposition (7) the number a € {0,1, 2,3} defined by

29-0 = (8, o(my - 3)), (8)

where a = cay with gy primitive and mg = m/c? = E‘U\f(au).

We now turn to the prime p = 3. If we assume that d; = dz =1 (mod 3), corresponding
to our assumption d; = dy =1 (mod 8) for the prime 2, then the discussion is exactly like
the one for p = 2, but very much simpler. The analogue of Table 3 in this case is just
lines 3 and 4 of Table 4 and the analogue of Table 3’ says simply that the decomposition
I'(3,m) =To(3,m)UTy(3,m) is {1}U if m =1 (mod 3) and {¢"~*§' }1<icu~1 U {g*, §*}
if m = 0 (mod 3), where (3) = g and 3*|m. The same discussion as for p = 2 lets us
summarize all this in the simple formula

37 = (3, c(mo—1)) ifdi=dy=1 (mod3). (9)
This can then be combined with (8) as
2872318 = (24, ¢(my +5)) ifdi=dy =1 (mod 24). (10)
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If d; and d; have opposite values modulo 3, then a similar analysis using lines 1 and 2
of Table 4 (but even easier, since now ord,(m) is always 0) gives 3'=% = 3,m + 1) =
(3, co(m + 1)), which can be combined with (8) as

3= 31=8 = (24, ¢(mp—11)) ifdy=dy =1 (mod8), didz =2 (mod 3). (11)

Finally, if d; = d; = 2 (mod 3), then we can interpret the last two lines of Table 4 by
saying that we must assign to the decomposition (7) the value § = 0 in all cases except
when £ = 3 and A(a) is prime to 3, in which case the decomposition is to be counted for
both 8 =0 and §# = 1, with multiplicity 1/2 each.

Let us now translate this discussion into a closed formula for the norm of f(Q,)"— f(Q2)".
To avoid case distinctions, we consider only the case dy = dz =1 (mod 24). The left-hand
side of (10) is 24/r, where r is the index of the function ¥, appearing in equation (67).
Comparing (6a7) and (6b7), we see that we are really interested in the function [],, Fe.
But for 7|24 the condition that 24/d = (24, ¢(my + 5)) for some divisor d of r is equivalent
simply to 24}rc(mg + 5). We can therefore rewrite the conjecture formulated in §3 in the
following closed form:

CONJECTURAL FORMULA FOR N(f(Q1)" — f(Q2)"), SECOND VERSION. Let d and d; be
coprime fundamental discriminants congruent to 1 modulo 24. Then for any prime £, the
power of £ dividing N'(f(Q,)** — f(Q2)**) is equal to the number of representations of dydy
in the form

dydy = z* + 16 % N(a) (12)

withz > 1, k > 1, and a an integral ideal of K; and for any r|24 the power of £ dividing
N(f(Q1)" — f(Q2)") is the nunber of such representations also satisfying

o(a) (e 1‘{5‘3 + 5) =0 (mod %ff), (13)

where c(a) is the content of a.

5. Factorizations of discriminants of Weber polynomials. In this section we
discuss the case d; = d3, so that we are concerned with the discriminant of a single Weber
polynomial rather than with the resultant of two different ones. The main ideas which will
be needed are already contained in §4. For simplicity we will assume that dy = d; = —p
is a prime with —p = 1 (mod 24). Then the class number h = h(—p) of K = Q(\/=p) is
odd. We write the corresponding class group as Pic(Oy) = {4y, AL, ... ’Aal—l)/z} with
Ap the principal class.

We start with some preliminary comments which apply equally to each of the modular
functions g(7) = j(r) or f(r)" (r|24). We have h numbers g(.A) (A € Pic(Og)) which lie
in the Hilbert class field H and are the roots of an irreducible monic polynomial G(X) =
G(g; X) € Z[X] and of K (so G(j,X) = Hy(X) and G(f,X) = Wy(X)). Because H/K is

Galois and abelian, we have
9(AB) — g(B) = 05(g(A) — 9(A)) (A, B € Pic(Ok), A# A)
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(here B + og is the Artin map Pic(Oy) = Gal(H/I)), so the discriminant of G factors:

disc(G) = 1T (9(A) —g(A)) =% J] Nuj(9(A4) - g(A)).
A;,A4;€Pic(Ok) AEPic(Oy)
.41;6442 A#-“O

Also, it is easy to show that for each A # Ay we have Ny i (9(A) — g(Ao)) = £I(A) V/=p
for some positive rational integer I{A) = I(yg; A), so finally

$(h-1)
disc(G) = £I*p"D2 1= [ I(4). (14)
i=1

The number I, of course, has a natural interpretation as the index of the order Z[g(A¢)] in
the full ring of integers of the maximal real subfield H+ = Q(¢(Ap)) of H. The fact that
it decomposes naturally into (h — 1)/2 factors means that we have replaced our original
problem of determining the discriminant of G by the more refined problem of calculating
each factor I{A;). We first describe the solution of this problem for the case g = 7, since
this solution was proved but not written out explicitly in [7].

The main result of [7], given here as equations (4b) and (7), says that the power of a prime
£ dividing the norm of 7(Q;) — 7(Q2) in the case d) # d3 is the number of representations
of didy as z% + 46 A(b) with z, k¥ > 0 and b primitive in K (K now defined as in §4);
the conjecture in §4 then says that the same is true for f** instead of j if we add the
requirement 2|b (so b = 2a with a satisfying (12)) and for f” if we add the congruence
condition (13). If we now set dy = dy = —p (and K = Q(y/=p)), then the expression
3{(dydy — 2?) factors as 3(p — z) - 2(p+ z). Since the two factors are coprime, we find that
¢* divides one factor 3(p £ z). Then 3(p + z) = (*N(b)), 3(p F =) = N(b;) for uniquely
determined ideals b; and b; with b;b, = b, so we have to count the representations of p in
the form

p="N(b)+N(b;)  (k>1,b; and by integral ideals of K). (15)

The result of [7] was then that the power of € in each factor I(j;.4;) in (14) is equal to the
number of decompositions (15) with by € A;. (This is proved in Theorem 4.7 of [7] and
the three following sentences, but the subsequent Corollary 4.8 gives only the result for the
product I.) Now going back to our case, it is clear that the logical conjecture is:

CONJECTURAL FORMULA FOR TIIE DISCRIMINANT FACTORS. Let K = Q(\/=p) withp =
23 (mod 24) and other notations as above. Then for any prime ¢, r|24, and non-principal
ideal class A € Pic(Og), the power of ¢ dividing I(f"; A) is equal to the number of
representations of p in the form (15) with by and by Integral ideals of K with bz € A and’
b1b2 = 2a for some integral ideal a and satisfying (13). '

Remarks. 1. The special case of this conjecture when r = 1 and we multiply all of
the I(A) says that the power of a prime ¢ # p dividing the discriminant of the Weber
polynomial W_,(X) equals the number of representations (15) with b2 non-principal and
a = by b2/2 an integral ideal satisfying (13) with r = 1.
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2. When we decided to realize the decomposition y(2,m) = Ei=u Ya(2,m) described
in Table 3 by the partition I'(2,m) = Ui=0 'a(2,m) given in Table 3', the only reason we
could give was that this was the most natural way available and led to the simple final
formula (8). However, in the case d; = d; the fact that the discriminant factors as in (14)
means that we can uniquely recognize the “right” way to partition the set I'(2,m) (and
similarly T'(3,m)) by looking at the ideal classes to which the ideals in the various subsets
must belong to make the formula work out. In fact the content of Table 3' was found in this
way, by looking at the various factors of the discriminant of G(f7; X) for a large number of
quadratic fields and determining the unique way of choosing the entries in the table which
was compatible with the numerical data.

Example. We illustrate the conjecture and remarks by one example. Take p = 47, with
class number 5. Here the discriminant of the Weber polynomial W_p(X) = G(f,X) is
uninteresting (compare Table 1), but the polynomials G(7; X) and G(f"; X) for » > 1 have
non-trivial discriminants. For instance, the polynomial G(7, X) is

z° 4+ 2257834125z — 0987063828125 2% + 5115161850595703125 =2
— 14982472850828613281250 = + 16042929600623870849609375

whose discriminant factors as 4721(7, B)*I(7, B2)? with
I(7,B) =5'11%13°19*23%20.31.41,  I(j,B%) =5""11713%10-23.20-31-41.43,

where B is ideal class of the prime ideal p; = (2, bz_@), and similarly the discriminant of
the polynomial G(f7, X) for ¢ = f" with r|24 factors as 47%I(g, B)*I(g, B?)* with I(g,.A)
given by:
g f f2 f3 f4 fG fB le f24
I(g,8) [1]1 [11]19 [5-11]5%.19[5°11-19] 5°11-13%19-23
I(¢,B) (1|5 |15 | 5 |531[ 51 5511-23-31

To explain these numbers in terms of the formula explained in this section, we must look
at each decomposition of p in the form (15) with £ < p a prime quadratic non-residue of p.
There are (p — 1)/2 = 23 decompositions of p as By + B, with By, By > 0, (B, /p) = -1,
(B2/p) = +1, and for each such decomposition a unique prime quadratic non-residue £ of
p dividing B; to an odd power (since the smallest product of three prime non-residues of p
is 715 > p) and various representations of By /€ and B as norms of ideals of X = Q(/—p).
Rather than making a table of all cases, we give all the details for the prime € = 11; the
other primes £ work similarly and yield the numbers given in the above table.

The 25 decompositions of p in the form (15) with £ =1 all have k¥ = 1 and are given by

by = (1), b2 € {p3p3, 203, P3p3, 3p3, (G), 3p3, P2P3, 203, P2p3};
b1 € {pZ) 52}) b2 = (5)1
b1 € {ps, P3}, ba € {p2b7, Pap7, P2p7, P2b7};

b1 € {pg) (2)) ﬁ%}) b'Z € {pih ﬁii}’
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where p3 and p7 are prime ideals of norm 3 and 7, respectively, and p, (p = 2, 3, 7) denote
the conjugates of p,. We can choose the ideals ps and p7 to belong to the ideal classes B?
and B, respectively, since K contains integers of norm 12 and 14. Then we find that of the
25 cases listed there are 7 for which b, is principal, 2 for which b; belongs to the class B
(and of course equally many with b; € B4), and 7 with by € B? (or B®). This explains the
powers 112 and 117 in the numbers I(j, B) and I(j, B?) given above.

Finally, of the 25 decompositions (15), there are only 5 with byby divisible by 2, and of
these there are one each with by belonging to the ideal classes B or B%. This explains why
the exponent of 11 in I(f%*, B) and I(f**,B?) is 1. For the decomposition having by € B,
namely b; = (1), by = 2p2, the ideal a = b;b3/2 is primitive of norm 9, so the number
occurring on the left-hand side of (13) is 104, which is divisible by 24/r if and only if r is a
multiple of 3, explaining why the factor 11! occurs in I(f", B) in these cases. Similarly, for
the decomposition for which by € B2, namely b; = (2), by = p3, we have that a is primitive
of norm 3, so the left-hand side of (13) is 38, which is divisible by 24/r only for r = 12.
and 24.

6. Weber polynomials for other discriminants. In theory one could repeat the
analysis of the previous sections for discriminants congruent to 5 (mod 8), 0 (mod 4), or
0 (mod 3), obtaining (conjectural) formulas for the conjugation behavior of the singular
Weber moduli and for the norms of their differences. The results in general would be less
sharp than in the case of discriminants satisfying (1) since, as mentioned in the introduction,
one cannot usually get class invariants by going all the way from j to f but has to take
a modular function on some intermediate group. We will restrict ourselves to giving some
partial discussion of the two cases

A. d =5 (mod 8) (so that 2 is inert) but still # 0 (mod 3), and
B. d =1 (mod 8) as before but now 3|d.

In both cases we will end up in small extension fields of the Hilbert class field H =

Q(Vd)(jo) and its real subfield H* = Q(j), jo = ](1—-%@)

A.If d = 5 (mod 8), then the correct class invariant is f(v/d) rather than v/2/f(v/d) as
before. It generates the same number field as jy = ) (\/(_i) (this was conjectured by Weber
(11, §127] and proved by Schertz [9]), but this field no longer coincides with H* since now
h(4d) equals 3h(d) rather than h(d) as in the case d = 1 (1nod 8). Instead, f(v/d) satisfies
a cubic equation of the form

X2 Xt 424X -2=0

with A and g integers in H*. (In particular, f(v/d)*/2 is a unit.) The other two roots
of this equation are \/é/f(‘:ﬁzt‘ﬂ) where b = 0 (mod 3) and "24—"’ = 1 (mod 16), so the
numbers A and p can be obtained easily, using an analogue of the proposition in §1 to
find the numerical values of their conjugates. These two numbers have relatively small
height and generate H*, so we again get reasonable equations for generating the class
field. Examples are given in Table 6. In all cases either § = Aor8=p (or 8§ =0if h =1)
generates HY, but the cases d = —83 and d = —427 show that neither A nor p alone always
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|d|  h(d) A 7! minimal polynomial of § € H*
11 1 1 1 A X

19 1 0 -1 X

35 2 6 ] X?-X-1

43 1 1 0 X

59 3 6 6% -8 X3 —-2X%? -1

67 1 1 RS | X

83 3 1 6 X?-X?-3X +4

91 2 1 6 X4+ X -3

107 3 6 (6% — 6 —2)/2 X3 —-X—4

115 2 0 6 X?-3X +1

131 5 6 (=P 4+ 62 -04+2)/2 X5—-2X*4X3-4X24+7X -4
139 3 0 (02 — 6 —2)/2 X3P -X?-2X -4

155 4 6 —1-6 X4 -X3-3X -1

163 1 3 2 X :
179 5 6 (82 — 6 —2)/2 X% —5X% -16X% - 16X —8
187 2 6 6 X2 —-3X -2

211 3 6 -6 X3 -3X24+X -2

235 2 —-6+3 6 X?-X-1

403 2 —20 -2 6 X?+5X +3

4217 2 6 -1 X?2-7X -3

Table 6: Class flelds for discriminants d =5 (mod 8)

works. We do not know whether there is a universal combination of A and p which always
generates the class field.

Note that, since the Galois group of H/Q is solvable (dihedral), we could have given a
closed formula for the generator 8 in the last column instead of its minimal polynomial
over Q. For instance, the 8 for d = —155 has the minimal polynomial X? — 1_|_2\/g X+ 1-2‘/5
over Q(v/5) (the real subfield of the genus field of Q(v/d)) and is given explicitly by 8 =

f oTB VIO + YovB - Vi0T
14+V5 + i—t——m , while the @ for d = —107 is 6v3 + 107\;3. 6v3 107 .

4 8
‘B. We now consider the case when d = 1 (mod 8) but 3|d. Then the class number h of
“Q(V/d) is divisible by 2, the Hilbert class field H contains the biquadratic field Q(v/d, v=3),
and its subfield Ht has degree 1/2 over the real quadratic field Q(1/—d/3). Let € be the
fundamental unit of this latter field. The number o = 2/ f(v/d) has degree 3h rather
than A over Q and only its cube lies in H+. However, in all the examples we looked at, it
was the case that (for an appropriate choice of ¢)

o*" /e = cube (of a unit) in HY . (16+)
Suppose that this is true. Then we have the following two possibilities:
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1) If the class number h is = £1 (mod 3), then (16+) implies that a/e*'/® belongs to
H*, so again we get relatively small generators of the class field. As an example, take
d = —159, with h = 10. Then the minimal polynomial of a® over Q is

X1 X0 4 X8 47X +63X° + 121X° 4 219X* + 106X° + 146X2 + 47X — 1,
with discriminant 3'211217453°592792, while that of a/e'/?, where € = (7 + v/53)/2, is
X1 - 3X% 4 7X® — 2X7 4+ 15XC + 18X — 37X — 60X> — 27X% — 2X +1

with discriminant 385357922232, which is somewhat better. However, the discriminant of
H* is 31535 and this field contains an element with the much simpler minimal polynomial
X0 X9 42X 47X 4+ X0 —15X5—5X44+8X° +5X2 —5X 41 of discriminant 38192535,
so the polynomials obtained from o® and a/e!/® are—as is to be expected — not as good
as the ones obtained directly from « in the case 3{d.

i1) On the other hand, if & is divisible by 3 then (167) no longer lets us obtain an equation
of degree h for o by dividing by e*1/3. Instead, it says that Ht contains the sextic field
Q(Ell 3). Then a3, which has degree I over @, can also be given by an equation of degree
h/2 over Q(e) and by an equation of degree k/6 over Q(e'/®). For instance, the generator
r = (V2/f(Vd))® of Ht for d = —87 (class number 6) satisfies the equations

2% + 2% 44t —42® + 1122 +132 -1 =0,
- 2+e Mt +B-e Nz -1 =0,
3z + (265/% + €3 4 £ —106*° — 7P —3) =0
where £ = (5 4+ /29)/2. Similarly, the generator = for d = ~231-(h = 12) satisfies
3z —(69° — ' =532+ 9 —2)z+(20° =29 + > =192 + 1T ~2) =0
where 7 = €!/%, £ = (9 4+ V77)/2.
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