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On the singular values of Weber modular functions

NORIKO YUI AND DON ZAGIER

Introduction. Sinh'1.11ar lllOduli, the values of the elliptic nlodular fUllction of level one
j(7) at imaginary quadratic argulueuts 7 in the upper half cOluplex plane S), were studied
extensively by many luatheluaticialls in the early part of this century [11, 10, 2J. Their
most important application is to explicit dass field theory: if ]( = Q(Vd) is an imaginary
quadratic field of discrinünant d, then the ntllUbers j (7), Where T ranges over the S L 2 (Z )
inequivalent points in fj satisfyillg a quadratic equation of discriminant d, are the roots of
80 computable polynonüal Hd(X) E Z[X], the class polynomial. Since each root generates
the dass field of K when adjoined to J(, this gives an explicit way to construct the dass
fields of ](. There are other applications, e.g. to the problelus of priluality testingjproving
[1] and to the study of represelltability of prilues by quadratic forms x 2 + ny2 [5].

A drawback of the polynoluials Hd(X), however, is that they have coefficients of astrü
nomical size, even for quite nlodest discriIuinants cl, e.g., H-ss(X) is

In this paper we shall look at the dass equations obtained by using the Weber function
J(7) of level 48 and index 72 insteael of the luoelular invariant j (7) of level 1. We will
concentrate on the case of discriminallts d congruent to 1 luodulo 8 and not divisible by 3
(although other discriluillants will also be considered), since the results are optinlal here:
the values of f at suit.able points 7 E fj of discriluillallt d gellcrate the saIue fielels as before
hut are the roots of a POlYllOl11ial W11(X) havillg far sIllaller coefficients than H d(X), e.g.
for d = -55 we have simply l'V-ss(..Y) = X 4 +X 3

- 2X - 1.
The paper has two ailus. The first is to give an efficient procedure for calculating the

roots of the Weber dass polynomials Wd(X). To do this, we have to discover the rule
for picking out of each S L2 (Z )-equivalence dass of points 7 E fj of discriminant d one
r-equivalence dass (where r c SL2(Z) is the subgroup of index 72 nudel' which f( T) is
invariant) in such a way that the correspouding values of J(7) are the fOOtS of Wd(X).
The second, and more iIuportant, is to give analognes for the Weber function of the results
of Gross-Zagier [7] on the nonns of the differences of singular moduli j (7), i.e., on the
discinlinants anel resnltants of the dass polynomials Hd(X). The result of [7J, following
earlier work of Deuring [6], was that the nonns in question are highly factorizable and that
there is a dosed fonuula for their decoIuposition into pritne powers. The cOlTesponding



numbers for the Weber polynolllials are far smaller-for instance, the discriminant of the
polynolllial H -55 given above is

while that of W-55 (X) is only -52 11 = - 275 -but the rule for finding their prime factors
and the exponellts to which they occur turns out to be considerably more complicated.
More precisely, the fonnula given in [7] for the prime factorization of norms of differences
j(Tl) - j(T2) involved a certain arithmetic function ~(m) which takes on prime power
values; we will find that ~(m) decoluposes· uaturally illto the product of 8 more complicated
fl1l1ctions ~r(m), indexed by the divisors 7' of 24, which can be used in a similar way to
describe the norn18 of differences of singular values of f( T r. The formulas we give are
empirical observations, based on (extensive) ntuuerical computations. Detailed proofs are
being worked out by Alan Laing at the University of Marylal1d as part of his doctoral
thesis.

1. The Weber functions alld Weber class equations. For T E .fj (upper half-plane)
we set q = e2~ir al1d 1110re gel1erally qa = e2rriar (a E Q). The classical Weber functions
are defined by

00

f(T)=q-is II(l+qn-,),
n=l

00

f1(T) = q-b II (1 - qn-!),
n=l

00

f2(T) = V2q-t. II (1 + q").
"=1

The 8th powers of these functiol1s are cubic over j1/3 (f8, -fr and - f~ are the roots of
X 3 - j1/3 X -16 = 0) anel their 24th powers'al:e cubic over J' (f24, - fl 4 and - fi 4 al'e the
root8 of the equation (x - 16)3 - Xj = 0), where j = j (T) i8 the ellip tic 1110dular function
and j1/3 the cube root of j which is asYluptotic to q1/3 at infinity. In particulal', SL2(Z)
preserve5 the set of functions {f, f], f2} up to permutation and multiplication by 48th
1'oot5 of unity. The action of the generators of SL2(Z) on these functions is given by

where ( = (48 = e21ri/48. We will continue to use the classical notations f, f}, f2, but
mention that a n10re unifonn anclless arbitrary notation for the Weber functions would be

f( ~ )(T) = f2 (T) ,

slnce: (i) the functions I! al'e conjugate over C{j 1/3) and the functions fl 4 over C(j)j

(ii) Je (T)24 = (CT: 2
d

)12 c,.l~~)) where c,. (T) = q rr(1 - qn j24 is the classical discriminant

function and M = (: ~) auy 2 x 2 integral l11atl'ix of deternlinant 2 with Me =0

(mod 2); and (iii) the transfonllation law becolnes fee/i) = Ale'(T) for any / E SL2(Z),
where /e' =e (1110d 2) and A is a 24th root of unity.
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We now define the Weber cIass invariants which we want to study. Consider d such that

d < 0, d =1 (mod 8), d ~ 0 (nlod 3). (1)

Le., dis the discriminant of an order 0 in an iInaginary quadratic field in which 2 splits and
3 is unramified. Let Pic(O) denote the group of ideal cIasses of O. We will represent its
elements by SL2 (Z)-equivalence classes [Q] of primitive positive definite quadratic forms
Q = [a, b, c] of discrilninant b2

- 4ac = d. To each Q is associated the number TQ =
(-b + Vd)/2a whieh is the ullique root in 5) of Q(T, 1) = O. From the transformation
formulas just givell it is cleal' that the llllluber fee TQ )2\ where eis the unique vector in IE1
with Q(e) ~ 0 (lnod 2), depends olllyon the class [Q]. We now define a certain 24th root
of (the negative of) this nunlber with the same invariallce property.

PROPOSITION. Let d be a discrüninant satisfyillg (1). For Q = [a, b, c] a quadratic form of
discrilninaJlt d, define

{

(b(a-c-ac2) f( TQ) if 21a, 21c,

f(Q) = cd (b(a-c-a:') h(TQ) ~f2Ia, 2tc,

cd (b(a-c+a c) 12(TQ) If2ta,2Ic,

wllere cd = (_1)(d-l)/8 and ( = e2rri/48. Tllen:

(i) f(Q) depends only Oll tlle SL2(Z)-equiva1ence dass [Q] oE Q.
(ii) I (Q) E Q(j (TQ)) .

By (i), we ean write I([Q]) for I(Q). vVe call the h(d) nunlbers I(A), A E Pic(O),
the Weber 3ingular rnoduli 01' Weber cla~"~ invariant.. for the discriIninallt d. The nlinimal
polynolnial of I(Ao), where Au E Pic(O) is the pdncipal eIass (corresponding to the form
Qo = [1,1, (1 - d)/4J), will be denoted Wd(X) and called the Weber polY1l.omial for the
discrinlinant d. It follows frolll (ii) of the proposition that the roots of Wd(X), Le. the
conjugates of I(Au), are up to sign the nluubers I(A). Indeed, we know that each j(TQ) is
a conjugate of j(TOo ), so the corresponding cOlljugate of I(Q) is areal root of the equation
(X 24

- I? = j (TQo) X 24
. But this equation has only two real roots ±/(Qo) (since as a

cubic in X24 it has negative discriluinant and hence only one real root, and areal number
has only two real 24th 1'oots). Based on the study of a large number of exarnples, we
conjecture that the f(A) thelllSelves, anel not lnerely their squares, are conjugates of one
another (the choice of sign in the defini tion of f (Q) was based on these exampIes). The
truth of this conjecture coulcl be ve1'ified by ca1'efully working out the statement of the
Shimura reciprocity Iaw in this situation, but we have not clone this. If it is true, then we
have

l'Vd(X) = TI (X - f(A)) . (27)
AEPic(O)

PROOF OF THE PROPOSITION: TO,prove (i), we Blust check the invariance under the gen
erators of SL2(Z). Let Q = [a, b, cl, Q* = [c, -b, a], so that TQ. = -l/TQ. Then, using the
transformation fornlulas for the vVeber functions under T ......-+ -1/T, we find

{

(-b(c-a-a 2c) I(TQ) if 21a, 21c,

f( Q*) = "d C-b(c-a+a:')ft(TQ) if 21a, 2tc,

Cd (-b(c-a-a c) 12 (TQ) if 2ta, 21c,
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so f( Q") and f( Q) are the saJlle if a 01' c is odd and differ by a faetor (ubc(a+c) if both are
even. But in the latter ease abc(a + c) is always divisible by 48 (a/2, e/2 and (a + e)/2
eannot all be odd, and b2 - 4ac ~ 0 (mod 3) iInplies that at least one of a, b, c, a + c is
divisible by 3). SiInilarly, if we take Q" = {a, b - 2a, e - b+ a], with TQ+ = TQ + 1, then
using the transformation fonnuhlS für the Weber funetions under T H- T + 1 we find that
the desired equality f( Q") = f( Q) is equivalent to the congl'uences

(b - 2a) (b - e - a(e - b+ a?) - 1 + 3(d - 1) =b(a - c - ac2
) (mod 48) if 21a,

(b - 2a) (b - c + a2 (e - b+ a)) + 2 =b(a - c + a2 e) (mod 48) if 2fa ,

and these can be checkeel by case-by-case analysis. This pl'oves Ci).
Now the SL2(Z)-invariance lets us give an alternate definition of f(A): choose a rep

resentative Q = [a, V, c] for A with (a,6) = 1 (this is possible because a priInitive form
represents ntl111bel's pl'iIlle t.o any fixed nlodulus) and with b =-a (lllOd 24) (this ean be
done by changing b by a suitable luultiple of 2a, since bis odd). Then since a2 =1 (mod 24)
we find

where we have used the identity f2( 7) = (V2/ f(27 - 1). But tv = 27Q - 1 is a root of
the quadratic equation Atv2 + 2Btv + C = 0 with A (= a) and C (= a + b + e) both odd,
B (= a + b) divisible by 24, anel AC - B 2 (= Idl) congruent to 7 lnodulo 8 and to ±l
modulo 3, and for such a nUluber Weber showed that J2 J( tv) is in the saUle fielel as the
j-invariant ({lI], §127; see also [3], [9] for nlore nlodern discussions). This proves (ii).

2. Exaluples of Weber class equations, their discrinlillants alld resultants.
As we just saw, we could have defined the Weber invariants f(A) as Cd -/2/ f(2TQ - 1),
where Q = [a, b, cl is any fornl in A with ((L, 6) = 1 and 241a + b, rather than by the more
complicated fonllulas in the proposition. The advantage of the definition we gave is that
f(A) can be COlllputed using the root of uny representative Q, so we cau assurne Q is
reduced (I bl ::; a ::; c). Then 7 Q lies in the standard fundaluen tal dOlluun of S L2 (Z) and

the Weber functions converge at worst like power series in e-1I'VJ ~ 0.004, so that a few
terms of the product expansion give f( Q) as a complex lll.uuber to high accuracy. Then
Wd(X) cau be cOlnputed using (2?), where the roots f(A) have been conlputed to sufficient
accuracy to recognize each coefficiellt of Wd as a rational integer. This is much faster than
the rnethod used in [8] of cOlnputing only one real root to high accuracy and then finding
its minimal polynomial by the "LLL" algorithln. Sinlilarly, to cOlnpute the discriminant
of a Weber class polynomial Wd, 01' the resultant of two such polynolnials Wd

1
and Wd:l'

we compute the product of the differences of the roots as complex numbers to sufficient
precision and then round to the llearest integer. The fact that we do in fact get integers
to high accuracy provides at the SaIne tilne a verification of the validity of formula (2?).

In this section we tabulate some of our nUlnerical data which provides the basis for the
conjectural fonnulas given in §§3-5. We calculated the polynomial Wd and their discrimi
nauts for all d satisfying (1) with Id[ < 2000. Table 1 gives the results for a few values of
d in the range -500 < d < O. Instead of writing out all the powers in Wd(X), we give just
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ldl h(d) Wd(X) Disc(Wd)

7 1 1,1 1

23 3 1,-1,0,1 -23

31 3 1,0,1, -1 -31

47 5 1,2,2,1,0,-1 472

55 4 1,1,0, -2,-1 -5211

71 7 1, -1, -1,1, -1, -1,2,1 -713

79 5 1, -1,1, -2,3,-1 792

95 8 1, -1,0,1, -2, -1,2,2,-1 -54 172 193

103 5 1, -2,3, -3, 1, 1 1032

119 10 1,1,2,4,5,7,9,8,5,4,1 74175192

127 5 1, -1, -2, 1,3,-1 1272

143 10 1, -3,6, -6,3,3, -9,13, -12,6,-1 52114 135

167 11 I, -1,5, -4, 10, -6, 11, -7,9, -4,2,1 -1721675

175 6 1,1,0,0,0,-4,1 3455 72

191 13 1, -2,0,4, -5, 1,5, -11, 19, -22,16, -10,6,-1 7441 2 1916

215 14 1,2,0, -6, -3,8,13, -4, -16, -7, 13, 11, -4, -6,-1 511 132102436

239 15 1, -4,4,4, -5, -13,20,4, -15, -13,27, -4, -8, -2,6,-1 -13219213922397

247 6 1, -3,6, -7,7, -4,--1 32133 192

311 19 1, -1,2, -5,8, -14, 13, -10, -1,9, -18,25, -10, -4,38, -174 192234 1032.

-42,37, -16,4, 1 .2112311 9

319 10 1,5,11,14,10,2,1,5,9,6, -1 38114 295

335 18 1,5,14,25,33,42,64,102,144,171,179,174,163,144,106, 59112172412678732.

55,20,4, -1 .12721392

367 9 1, -2, -1,6, -2,0,2, -3,9,-1 36 }!)2 3674

383 17 1, -1, -1, -1,0,1,13,7,11,4,1,7,23,31,42,24,6,-1 561141365928923838

407 16 1, -1,2, -1,9,2,15,0,12,0,4, -19, -17, -33, -4, -10,-1 -541173784148329721992

431 21 1,3, (i, 9, 9, -4, -10, -36, -30, -14, -2,66,41,83,44, 131°3124327321072.

10,21, -40, 16, -15,12,-1 '331 2431 10

455 20 1, -6, 15, -23,26, -16, -15,57, -73,30,76, -194,246, 5147141121314432732.

-191,38, 129, -200, 142, -50,6, 1 .972 1312

479 25 1,3,9,22,41,60,66,47,6,-48,-82,-76,11,138,280, 1361763164147921132.

336,317,205, 144, 109, 126, 104, 76, 23, 10, -1 '2832379247912

Table 1: SOll1e Weber class polynoillials and their discriminants

h(d) and the' coefficients of Xi in Wd(.Y) (h(d) ~ i ~ 0); thus the fifth entry of the table
means that W- 5S (X) is X 4 + X 3

-- 2X - 1, with discrilllinant -275 = -52 11.
The discussion of these nUlnbers will be postponed to §5j here we Hlake only the obser

vations that in Table 1 the sign of the discriminant of Wd(x) is given by

{~
if h =1 01' 2 (1110d 4)

if h =0 01' 3 (mod 4).

and that the primes dividing the discriIninant of Wd are bounded above by Idl, with the
power of Idl ( if Idl is prime) being (h(d) - 1)/2.
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In Table 2 we give the l'esultaut of Wd 1 and Wd 2 for various pairs of discriminants d1 ,

d2 • The last five entries, mar"ked off by a line, give sonle examples where (d), d2 ) =f:. 1,
while the discrinlinants luarked with an asterisk are not fundamental. We give only the
absolute values since the sign of the resultant is easily cOluputable and not very interesting
(for instance, if d1 and d2 are prilne then the sign depends only on d1 and d2 modulo 16 if
d1 =d2 +8 (mod 16) aud on sgn(d1 - eI2 ) if cl1 == d2 (mod 16)).

Id11 Id21 h(dI) h(d2 )

71 119 7 10

151 295 7 8

119 215 10 14

143 239 7 15

167 335 11 18

*175 239 6 15

191 407 13 16

215 479 14 25

247 431 6 21

287 367 14 9

311 191 19 13

319 383 10 17

*343 431 7 21
407 287 16 14

431 263 21 13
455 431 20 21

479 359 25 19

55 95 4 8

*175 287 6 14

247 455 6 20

287 *343 14 7

319 407 10 16

232523

38 179-211

195 2341531
13·432107·139221~1

54176 79.331.379.499.739

19241'5922411
7411.31241473.83.4003.4507
136172194294472691.87721051.2179

74599'1427'2963.6491

57 29226325003
1141932923157122011

114136 16321847.6947

132131'1812251'3947'8627'8699
56 74139.14921792787.811.1231

712 167.2572409.6172787.883
744727121132131.181-199.2392251.35921291.1699.2111212211

13619231'4336731132157-227'2392761297721163

232

5.592419.2099

52112 4724931.7019

5531259.6124451

7889211321151.3659

Table 2: Resultants of Weber class polynonlials

This tilne we luake the following observations: First, the priInes dividing the resultant of
Wd1 and Wd2 are bounded by cl1(h/1G. Looking more carefully, we find that if p is such a
priIne, then p divides SOlne positive integer 111 of the fonu (d1cl2 - x 2 )/16 satisfying m ~ 1
(mod 3) and eithe1' m =7 (mod 8) 01' 111 == 4 (luod 16) 01' m == 0 (luod 32). Refinements
of these observations willieacl in §3 to a complete cOlljectural fonnula for the resultants.

3. The prinle factorization of the resultants. Let Ql and Q2 be quadratic forms
of (the SaIue or different) discl'hllinallts d1 and d2 satisfying (1). Because of the relation
j (Q) = (f( Q)24 - 16)3 / f( Q)24 , we see that any prilue dividing f( Ql ) - f( Q2) also divides
j (Q1) - j (Q2). Hellce to find the fonnula for the factorization of the norm of f( Q1 ) - f( Q2),
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we start with the result of [7] on the factorization of N(j(Ql) - j(Q2))' This involves an
ari thmetic functioll ~ (depending on d I anel d2 ) whose defini tion we first recall.

Suppose that d] anel d2 are fixed negative discrilninants. For convenience we exclude the
values - 3 allel -4 (later d1 anel d2 will be assulued to satisfy (1)). We also asstulle that d1

and d2 are copritne. Then for a pritne p such that (d 'pd 2 ) =1= -1 we define

(note that this is well-definecl and always equal to ±1). Für a positive integer n all of
whose pritne factors satisfy (!b..!b..) i:- -1 we extend c lllultiplicatively, Le., we define c(n) =

p .

np1n e(p)ordp(n), where ordp ( n) denotes the power of p dividing n. Finally, if m is such
that c(m) is defined and equal to -1, we set

Inu =1n
n,n'>O

An easy proposition, proved in [7], is that ~(nl) is always a prilne power:

(3)

if nl has the fonu

(c:(e) = e(p;) = -1, e(q;) = 1 for all i)

(i.e., if there is a unique priIlle e wi th e(e) = -1 anel orell (m) odd) and ~(m) = 1 otherwise
(i.e., if there are three 01' more such prilues; note that there are always an odd number of
theIn since c:(m) = -1). The lllain result of [7] is the formula

(4a)

where the praduct is taken over all x such that x 2 < d1d2 und that x 2 =dl d2 (lllOd 4).
Note that each of the integers nl = (d1d2 - X

2)/4 satisfies e(:ln) = -1, so that ~(m) is
defineel. If d] allel d2 are both oelel, the fonnula can be Siluplified to

N(j(QI) - j(Q2») = ± rr J CI(\- x
2
)

o<x<~
x odd

The fornlula iUlplies that any priule p dividing the nonn has the following properties:
(i) (;-) i:- 1 and (!;) =1= 1;

(ii) p divides a positive integer of the fanu dld~-x2, and in particular p < d1d2 /4;
(iii) p < d I d2 /8 if d1 anel d2 are both cOllgruent to 1 IllOdula 8.

7
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We now want to find a similar type of fOl'lllula for the nOl'lll of j(Q1) - j(Q2), Le.,
for the resultant of the Weber polynoluials lVd t and Wd 2 • Since this norm divides that
of j (Q1) - j (Q2), as already mentioned, we know that only prilnes satisfying Ci )-(iii) can
occur. Looking at Table 2 in the previous section, we find that this is true and that in fact
(iii) can be strengthened to p < d]d2 /16. However, even after studying this table (and a
much larger collection of nUlnerieal results of whieh it is only an excerpt) in detail it was not
obvious what the exaet rule was for deciding which. prilnes occurred and to which powers.
To find this rule, we first split the prablenl into aseries of silnpler ones by passing, not
froßI j direetly ta j, whieh satisfies an algebraic equation af degree 72 over j, hut first to
the cubic extension C(j24) of C(j) and then st.ep by step to the (24/r )th degree extension
C(jr) of this, where 7' ranges aver the divisors of 24.

The first step is easy. Looking at a nUluber of exaluples of factorizations of the norm of
J(Ql)24 - J(Q2 )24, we find that, just as fol' J, the pl'ilne divisors are always bounded by
d1d2 /16 and that the only nUlnbers m = (cl 1d2 - x 2 ) /4 w hieh contribute prime factors are
those divisible by 4 (note that 7n is always even since d1 and d2 are 1 modulo 8 and x is
even). This suggests the fOl'lllUla

N(J(Qd4 - f(Qd4) = ± rr J (dld~; x
2

) ,

x>o

where the product extends over all x between 0 and J(f;d; for which d1d2 - x 2 is divisible
by 16, and this fonnula incleed t.urns out t.o be COl'l'ect experilnentally in all cases. To prove
it, one would have to repeat the analysis in [7] with SL2(Z) replaced by the group r o(2).

Ta go further, we observe that the polYllomial X 24
- 1 factorizes as nrl24 Cf'r(X), where

<.pr(X) denotes the rth cyclotolnic polynolnial. We ean write this in the homogeneous form
X 24 - y24 = Ilrl24 <I>r(X, Y) with the <I>r(X, Y) (r = 20'3ß124) given by the tahle

0:=0 0:=1 0:=2 0:=3

ß=O
ß=l

x-y x+y X2 +y2 X4 +y4

X 2 +Xy + y2 X 2 -XY + y2 X 4 _ X2y2 + y4 X 8 _ X4y4 + y 8

Trus factorization suggests that the function ~ should have a cOl'l'esponcling deeolnposition
as TI rl24 ~ r in such a way that the nonn of eaeh iJJ r (f (Q1 ), j (Q2 » is giyen a formula like

(5?) hut with ~ replaced by ~r.

We have to give a fonnula for the al'ithnletie funetions ~r. By lookillg at a large number
of numerical exulnples, we found the following clescl'iptioll. If ~(m) = 1, then we set
~r ( rn) = 1 for each 7'. 0 therwise by equation (3) we have ~(m) = er(m) for some prime f,
where ,(rn) = Ilp1m ,(p, 1"n.) with

if f:(p) = +1,
if f:(p) = -1, ordp(m) even,

if f:(p) = -1, ol'dp(m) odd (i.e. p = f).

8



In this case we define ~ r ( 1n) by

,r(1n) = 1'0(2, m) ,p(3, m) rr I'(p, m)
p>3

where r has again been written as 2°3P with 0 :::; 0' :::; 3, 0 :::; ß :::; 1 and the numbers
1'0(2, m) and 1'P(3, m) are givell by the following two tables:

0'=0 0'=1 a=2 a=3

1n =3 (mod 8)

m =7 (Iuod 8)

m =1 (mod 4)

m =2 (mael 4)

1'n == 12 (Iuad 16)

m == 4 (Iuod 16)

m == 8 (nI0d 16)

m == 16 (nIoel 32)

1n == 0 (moel 32)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 2

1 0 0 2

0 1 0 2

0 0 2 2

1 0 2 2

ord2(1n) - 5 2 2 2

Table 3: Values of 1'0(2, 1n)

(~) =-(~),

(ili..) - _ (!b.)
3 - 3'

(!!t) =(~) = +1,

(!!t) =(~) = +1,

(~) =(~) = -1,

(~) =(~) = -1,

nt =2 (IUOel 3)

m _ 1 (mod 3)

1'n =1 (nI0d 3)

111 =0 (mod 3)

onb (711) even

Ol'd3 (nt) odd

ß=O ß=1

1 0

0 1

1 0

ord3 (m) - 1 2

1 0

! onb(m) I
'2

Table 4: Values of fp(3, 1n)

Then the following conjectural fonnula fits all cases we looked at. (In particular, cases with
ord2 (m) up to 11 were checked nUlnerically to test the last line of Table 3.)
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CONJECTURAL DECOMPOSITION LAW FOR N(f(Q})r - f(Q2)r). Let d} anel d2 be coprime
fundmnental discri111iJulllts satisfying (1). For eac11 divisor r of 24 we have

(6a? )

or equivalently

N(J(Qlr-f(Q2r) = ±IIII~d(dld;;x2),
x dir

wllere X runs over integers between 0 Rllel~ for wlJic11 x 2 =dl d2 (luod 16) and the
functiolls ~r(m) for 111 E N witll e(.,.n) = -1 und r a divisor of 24 are defined as above.

Renlarks. 1. It. is easily checked that the cOllgruence cOllditions on 111 in Table 3 cover all
possibilities. Sinlilarly, since nUlubers 111. of the fonus (d l d2 - x 2 )/lG are always congruent
to 1 01' 2 modulo 3 if (dl /3) i= (d2 /3) and to °01' 11110dulo 3 if (dl /3) = (d2 /3), the entries
in Table 4 also cover all cases.

2. Adding the entries in each row of Tables 3 and 4 and comparing with the definition of
3 1

,(p, m), we see that L: '0(2,711) = ,(2, rn), L: 'ß(3, m) = ,(3, 7n) in all cases and hence
0=0 ß=O

L ('rein) = ,(111),
rl24

II,~,·(7n) = ~(7n).
rl24

Therefore the fOl'lnula given is c0111patible with equation (5?).
3. Since the entries in the last colunln, in Table 3 are all even, the formula given implies

that the norms of if!8 (f( Q1 ), f( Q2)) and ~24(f( Q1 ), f( Q2)) are always pelfect squares.
4. The entries in the last row of Table 4, corresponding to the case when e= 3, are half

integers. Therefore ,(7n) can be a half-integer in this case. However, this happens if and
only if m has the fonn 3y2 for sOlne y > 0, since the formulas for ,(p, m) and '0(2,711) imply
that these numbers are evel1 if ordp(m) (resp. orch(m)) is odd. Thus ~r(m) is an integer
multiple of v'3 if 171 = 3y2 anel an integer otherwise. Since the number of representations
of d l d2 as x 2 +48y2 under Dur assu1uptions on d1 anel d2 is always even, the formula stated
always yields an integral value for N(q,r(f(Q1 ), /(Q2))), as it should.

5. The case r = 1 of the conjecture gives the resultant of the Weber polynomials Wd 1

and Wd2 (up to sign), as given in Table 2.

Example. Take dl = -71, d2 = -119, with class nUlubers 7 anel 10, respectively. Here
the absolute value of the nonu of /(Q1) - /(Q2) is 232523 (first entry of Table 2), while
that of f( Q1 )24 - /( Q2 )24 is

72211281324178231°473 592712113216322572433.523 ~ 8.1 x 10128 .

Table 5 gives the data needed to COlllpute these nUlubers (01' n10re generally the norm of
~ r (f (Q1 ), f (Q2 )) for each divisor 7' of 24). The table shows the prime factorizations of the
numbers m = (d1d2 - X

2)/1G= (8449 - x 2
) /16, the underlined prime factor being f, and

gives the values of ~r(n1) (7'124) and of their proeluct ~(m).
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x m ~1 ~2 ~4 ~8 ~3 ~6 ~12 ~24 ~

1 24 ·3· 11 1 1 1 1 112 1 114 114 11 10

7 3.52 'l 1 1 1 1 1 1 76 1 76

9 523 523 1 1 1 1 1 1 1 523
15 2· 257 1 1 1 2572 1 1 1 1 2572

17 2·3·5·17 1 1 1 1 1 1 1 178 178

23 32 ·5· !l 1 114 1 1 1 112 1 1 116

25 3 . 163 1 1 1 1 1 1 1632 1 1632

31 22 . 32 . 13 1 13 1 132 1 132 1 134 139

33 22 ·5 . 23 232 1 1 234 1 1 1 1 236

39 433 1 1 433 1 1 1 1 1 433
41 32 . 47 1 47 1 1 1 472 1 1 473

47 2 . 3 ·5· 13 1 1 1 1 1 1 1 138 138

49 2.33 ·l 1 1 1 74 1 1 1 74 78

55 3· 113 1 1 1 1 1132 1 1 1 1132

57 52 . 13 1 1 133 1 1 1 1 1 133

63 23 ·5·1 1 1 74 74 1 1 1 1 78

65 23 ·3 . !l 1 1 1 1 1 1 114 114 118

71 3 . 71 1 1 1 1 1 1 712 1 712

73 3·5· 13 1 1 1 1 134 1 1 1 134

79 2·3· 23 1 1 1 1 1 1 1 234 234

81 2· 59 1 1 1 592 1 1 1 1 592

87 5· TI 1 1 1 1 1 112 1 1 112

89 3· 11 1 1 1 1 1 1 112 1 112

Table 5: Exalllple of a resultant cOlnputation

4. Simpliflcation of the forillula for the resultant. In the last section we gave a
conjectural fon11ula for the n01'111 of f( Ql)r - f( Q2 r, 1'124. This fo1'1nula is complete and
is easy to apply ulunerically, but has the aesthetic disadvantage that the definition of the
crucial function ~r(1n) is given in tenns of the 48 entries of Tables 3 and 4, which were
found experinlentally anel for which UD unified clescriptiou was given. In this section we will
find such a unified description by aseries of successive Siulplificationsj the form we obtain
finally will still be a little ll1ysterious, hut will involve many fewer pieces of experimentally
obtained data.

The formula for the case r = 24, equation (5?), was a natural enough analogue of the
known equation (4b) for the level 1 casej all the l11ystery cOl1cerned the splitting of the
arithmetic fUl1ction ~ as TIrl24 ~r. This splitting was elescribcd by Tables 3 and 4 which
gave an additive decomposition of the nUlnber ,(p, 1n) for p = 2 and p = 3. We will look
first at the p = 2 case, which is nlore COll1plicated but also more h01110geneous because we
are always assulning that cI) and d2 are == 1 (nioel 8), whereas they cau take on different
values luodulo 3.

Recall that for each prinie p clividing an integer m for which ~(m) is defined, there is a

11



well-defined sign e(p) = ±1 which is the conUllon value of the Legendre symbols (d]) and
p

(d2
) if these are both non-zero. Pick a quadratic field [( in which all plrn with e(p) = +1

p .
split and all plm with e(p) = -1 are inert. (The field ]( will not matter here and is just a
convenient device for counting ideals. However, in §5, where we consider the case d] = d2 ,

the canonical choice]( =Q(~) will playa role.) Then fonnula (3) says that the exponent
,(rn) in the fonnula ~(m) = f-y(m) is equal to the uuruber of decompositions

(7)

with 0 an integral ideal of ](, because there are (l + 1 possihili ties 1, 3, ... , 2a + 1 for k
and then (b] + 1)·· . (b 8 + 1) possibili ties for o. In the spli t ting ,(rn) = n-y(p, m),
each factor ,(p, m) CI) =f. f) counts the ntunbcr of ideals of norm pordp(m). In particu
laI', ,(2, m) (= 1I + 1, where 21111nt) is the cardinality of the set r(2, 111) of ideals of norm 2V

(= {pV, pv-l p, ... , pV}, where (2) = PP), and it is reasonable to guess that the decomposi
tion of ,(2, m) into foul' nUlnbers '0(2, 7n) corresponds to a partition of r(2, m) into four
subsets r 0(2, m). On aesthetic grounds (and others that will appear in §5), we distribute
the ideals of r(2, m) according to the following scheIne:

{I} - - -

- {I} - -

- - {I} -

- - - {p, p}

{pp} - - {p2,p2}

- {pp} - {p2, p2}

- - {p2 p, pp2} {p3,p3}

{p2 p2} - {p3 p, pp3} {p4, p4}

{pll-ijji }3~i~1I-3 {pV-2 p2, p2 pV-2} {pV-li', ppV-l} {pV, pV}

m =3 (nlod 8)

m == 7 (Ill0d 8)

m =1 (Inod 4)

m =2 (nloel 4)

m =12 (luod 16)

m == 4 (mod 16)

m =8 (mod 16)

m == 16 (Ill0d 32)

2v llm, 1I ~ 5

0'=0 0'=1 0'=2 0'=3

Table 3': The sets r 0(2,711,)

An inspection of this table shows that the COIUffil1 (i.e., the value of a) to which a given
ideal b = pV-ipi E r(2, m) is assiglled depends only on the minhnUIn of i and 1I - i, i.e.,
only on the largest power of 2 which divides b. Of course, this -is the SaIlle as the largest
power dividil1g the ideal a in the deCOI1Iposition (7) (since b is the 2-primary part of 0).
Denote by c = c(0) the content of 0, i.e., the largest rational integer such that 0 = c 00 for
some integral ideal 00 (which is then prirnitive, i.e., not divisible by any rational integer
> 1). Then the 36 entries of Table 3' cal1 be replaced by the following simpler description

12



of the Q' which IUUSt be assigned to the clecolllposition (7):

0 if m == 3 (1110d 8)

1 if 1n =7 (lllOd 8)
2fc => Cl' -

if m == 1 (mod 4)2

3 if m == 0 (lllOd 2)

{
0 if 1n/4 == 3 (1110d 4)

2J1c => a = 1 if rn/4 =1 (mod 4)

2 if m/4 == 0 (mod 2)

411c => {~
if m/16 == 1 (mod 2)

a -
if m/16 =0 (1110d 2)

81e => a - ·0 always

This already looks lnuch silupler and can be illlproved iUll11ediately to the uniform formula

2n = 8/(8,e) ,
(8/(8, c), m/(8, c)2 - 3)

where ( , ) denotes greatest COnll110n divisor. But we can da more. Write m as mocz (so
mo = gk N(ao) in the notation already introduced) and observe that

8
(1110d -(-) )8,e

because e/(8, c) is pritne to 8/(8, e) aud any nUlllber pritne to a divisor of 8 has square
congruent to· 1 modulo this divisor. (This property of 8 is shared by 3 and 24 and will be
used again for thenl.) Hence finally we can rewrite the entire content of Table 3' by saying
that we assign to euch decoluposition (7) the nUluber Cl' E {O, 1,2, 3} defined by

23
-

n = (8, e(mo - 3)), (8)

where 0 = c 00 with 00 prinütive anel 'mo = m/eZ = ekN(00).

We now turn to the prilue p = 3. If we asslllue that d] =dz =1 (1110d 3), correspondillg
to our assunlption cll =eIz == 1 (1110d 8) for the prilue 2, then the discussion is exact1y like
the one for p = 2, hut very 111uch silllpier. The analogue of Tahle 3 in this case is just
lines 3 and 4 of Table 4 anel the ana.l0bJlle of Table 3' says sinlply that the decoluposition
r(3,m) = r O(3,nl)Url (3,nl) is {1}u0 ifnl == 1 (nlod 3) and {q/l-iqi}1:::;i:::;Jl_l u {qJl, qJl}
if m =0 (1110d 3), where (3) = qq and 31' 111n. The SaIue discussiol1 as for p = 2 lets us
sumluarize aH this in the silnple formula

31
- ß = (3, c(1no - 1»

This can then he cOlllbined with (8) as

23
-

n 31
- ß = (24, C(1710 + 5»

13
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if d1 =dz =1 (mod 24).
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If d1 and d2 have opposite values luoclulo 3, then a similar analysis using lines 1 and 2
of Table 4 (but even easier, since now ordp (1n) is always 0) gives 31-,8 = (3, m + 1) =
(3, co(m +1)), which can be eOlnbined with (8) as

23
-0' 31-,8 = (24, c(mo -11)) (11)

Finally, if d1 =d2 == 2 (nloel 3), then we ean interpret the last two lines of Table 4 by
saying that we must assign to the eleeolnposition (7) the value ß = 0 in all eases exeept
when i = 3 anel N(a) is prilne to 3, in which case the deeolnposition is to be eounted for
both ß = 0 and ß = 1, with lllUltiplicity 1/2 each.

Let us now translate this diseussion into a dosed fonnula for the nonn of f (Q1 ) r - f (Q2 )r .

To avoid ease distinetions, we consieler only the case d1 =d2 == 1 (lllOd 24). The left-hand
side of (10) is 241r, where l' is the index of the fune tion ~T appearing in equation (6?).
Comparing (6a?) and (6b?), we see that we are really interested in the function ndlr ~d.
But for 1'124 the conclition that 241d == (24, c(nz.u + 5)) for SOllle divisor d of r is equivalent
silllply to 241rc(1nO + 5). "VVe can therefore rewrite the conjeetu.re formulated in §3 in the
following closed farnl:

CONJECTURAL FORMULA FOR N(f(Ql)T - f(Q2)T), SECOND VERSION. Let d1 aJld d2 be
coprinle fund8Jllental discrilninants congruellt to 1 modulo 24. Tllell for any prilne i, tbe
power ofedividing N (f (Q 1 )24 - f (Q2 )24) is equaI to tlle n umher oE represell tations of d 1d2

in tbe fonn
(12)

with x ~ 1, k ~ 1, alld a an integral ideal oE !(; aJld for allY rl24 tlle power of i dividillg
N(f(Ql )r - f( Q2 )T) is tlle nlunber oE SUdl representations also satisEying

(
N(a) ) _ 24

c(a) ec(a)2 + 5 == 0 (lllOd -;-),

wllere c(a) is tlJe coutellt oE a.

(13)

5. Factorizations of discrhuinants of Weber polynolnials. In this seetion we
diseuss the case d1 == d2 , so that we are coneerned with the cliscrilllinant of a single Weber.
polynomial rather than with the resultant of two different ones. The main ideas whieh will
be needed are already eontained in §4. For siIuplicity we will assunle that d1 = d2 = -p
is a prime with -p == 1 (lUOel 24). Then the eIass nUlubel' h = h( -p) of !( == Q(A) is
odd. We write the eorrespondillg dass gl'OUP as Pie(0 J() = {Ao,A~1 , ... ,A~I_1)/2} with
Ao the principal dass.

We start with SOlue prelilninal'Y conuuents whieh apply equally to each of the modular
funetions g(r) = j(r) 01' f(rY (rI24). We have h nUlubers g(A) (A E Pie(OJ()) whieh lie
in the Hilbert class field H and are the roots of an irreclueible monie polynomial G(X) =
G(gj X) E Z[X] and of !{ (so G(j, X) == Hd(X) and G(f, X) == Wd(X)). Because HI K is
Galois alld abeliml, we have

g(AB) - 9(B) == O"ß(g(A) - g(Ao))

14
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(here B f-+ aB is the Artin map Pic(01\) === Gal(H/ [()), so t~le discriminant of G factors:

disc(G) = ± II (g(A 1 ) - g(A2 )) = ± II N H /1\(g(A) - g(Ao)).

Al ,A2EPic( 0 K) AEPic( 0 K)
Al ;;eA 2 A;;eAo

Also, it is easy to show that for each A i= Au we have NH/K(9(A) - g(Ao)) = ±1(A) J-P
for SOlue positive rational integer I(A) = leg; A), so finally

disc(G) = ±12 p(/I-1)/2 ,

!(/I-I)

1= II I(Ai)'
i;;;; 1

(14)

The number I, of course, has a natural interpretation as the index of the order Z[g(Ao)] in
the full ring of integers of the lllaxilllal real subfield H+ = Q(g(Ao)) of H. The fact that
it decoluposes natul'a11y into (h - 1)/ 2 factol's Illeans that we have l'eplaced our original
problenl of detennining the discl'iulinant of G by the nl0re refined prablenl of calculating
each factor leAd. We first describe t.he solut.ion of t.his problelu for the case 9 = j, since
this solution was pl'oved hut not wl'itten out explicitly in [7].

The Inain result of [7], given here as equat.ions (4b) anel (7), says that the power of a prime
edividing the nonll of j (Ql) - j (Q2) in the case d1 i= d2 is the nlunber of representations

., of d1 d2 as. x 2 + 4ek N(b) with x, k > 0 and b pl'ilnit.ive in ]( (I( now defined as in §4);
the conjecture in §4 thel1 says that the salne is true for /24 instead of j if we add the
requirelnent 21b (so b = 2a with 0 satisfying (12)) and for Ir if we add the congruence
condition (13). If we now set cl) = d2 = -p (and ]( = Q( J-p)), then the expression
t(d}d2 - x2 ) factol's as ~(p - x)· ~(p + x). Since the two factol's are coprime, we find that

ek divides one factar ~(rJ ± x). Then k(p ± a:) = ekN(b1 ), !CIJ 1= x) = N(b 2 ) for uniquely
detennined ideals b1 and b2 wit.h b1 b2 = b, so we have to count the representations of P in
the fonu

(k ;::: 1, b] and b2 integral ideals of !() . (15)

The result of [7] was then that the power of ein each fac tor I (j ; Ad in (14) is equal to the
number of decolnpositions (15) with b2 E Ai. (This is pl'oved in Theorelu 4.7 of [7] and
the three fo11owing sentences, but. the ~ubsequentCorollary 4.8 gives only the result for the
product I.) Now going back to our case, it is eleal' that the logical conjecture is:

CONJECTURAL FORMULA Fon TUE DISCRIMINANT FACTORS. Let [( = Q( J-p) witb p ==
23 (IUOe! 24) and otl1er notations as above. Tllen for any prill1e e, 7'124, B.11d jlon-principal
ideal dass A E Pic(0 K ), tlle power of e dividing I (Ir; A) is equal ta tlle n umber of
representations of p in tlle (anll (15) witll b] B.1]d b2 ·integral ideals of K with b2 E A and·
b] b2 = 20 for some integral ideal a al](l satis{ying (13). .

Remarks. 1. The special case of this conjecture when 7' = 1 and we multiply a11 of
the I(A) says that the power of a prilue e i= p dividing the discrinlinant of the Weber
polynomial W_p(X) equals the nunlber of l'epresentations (15) with b2 non-principal and
a = b1 b2 /2 an integral ideal satisfying (13) with r = 1.
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2. When we decided to realize the decoillposition ,(2, m) = l:~=o '0'(2, m) described
in Table 3 by the parti tion r (2, 1n) = U:=0 r 0 (2, rn) giyen in Table 3', the only reason we
could give was that this was the 1110st natural way available and led to the simple final
formula (8). However, in the ease d1 = d2 the fact that the diseriminant factors as in (14)
means that we can uniquely reeognize t,he "right" way to partition the set r(2, m) (and
similarly r(3, 1n)) by looking at the ideal dasses to which the ideals in the various subsets
must belong to luake the fonuula work out. In fact the content of Table 3' was found in this
way, by looki'ng at the various factors of the discrinlinant of G(fT; X) for a large number of
quadratic fields and detenuining the unique way of ehoosing the entries in the table which
was eompatible with t.he lltll11erical dat.a.

Example. Vle illustrate the eonjecture anel rmuarks by one exalllple. Take p = 47, with
dass number 5. Here the discrilninant of the Weber POlynOlllial IV_p(X) = G(f, X) is
uninteresting (colnpare Table 1), hut the polynoluials G(j j X) and G(IT; X) for f' > 1 have
non-trivial discrhninants. For illstance, the polynonüal G(j, X) is

x 5 + 2257834125 x 4
- 9987963828125 x 3 + 5115161850595703125 x 2

- 14982472850828613281250 x + 16042929600623870849609375

whose discrinlinant factors as 472J(j, 8)2J(}, 8 2)2 with

where B is ideal dass of the prilue ideal P2 = (2, l+~), and siluilarly the discriminant of
the polynoillial G(fT, X) for g = fT with ,124 factors as 472J(g, 8)2 J(g, 8 2)2 with J(g, A)
given by:

9

1 1 11 19 5·11 52 .19 53 11.19 55 11.13219.23

1 5 1 5 5 5·31 5311 55 11.23.31

To explain these ntllnbers in tenns of the fonllnla explained in this seetion, we must look
at each decomposition of p in the fonn (15) with e< p a prhne quadl'atic non-residue of p.
There are (p - 1)/2 = 23 decompositions of]1 as BI + B2 with BI, B 2 > 0, (Bt/p) = -1,
(B2 /p) = +1, and for each such decoillposition a nnique prilne quadratie non-residue eof
p dividing B t to an oeld power (sinee the snlallest pl'oduct of three prime non-residues of p
is 715 > p) und various representat.ions of B t / eand B 2 as nonns of ideals of J( = Q(J=P).
Rather than Inaking a t able of all eases 1 we give all the details for the prime e= 11; the
other prhnes ewOl'k siluilarly and yield the ntt1nbers given in the above table.

The 25 decolnpositions of p in the fonn (15) with e= 1 all have k = 1 and are given by

bt = (1),

b1 E {P2, ih},
bt E {P3, ~3},

b1 E {p~, (2), ~~},

b { 2 2 2 2 -2 2 3 2 (6) 3-2 2-2 ?-2 -2-2}2 E P2P3' P3' P2P3' P2' -, P2' P2P3' ",P3' P2P3 ;
b2 = (5);

b2 E {P2P7, ~2PT' P2~7, ~2~7};

b2 E {P3' ~3} l
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where P3 and P7 are priIne ideals of nonn 3 and 7, respectively, and Pp (p = 2, 3, 7) denote
the cOlljugates of Pp' We ean ehoose the ideals P3 and P7 to belong to the ideal classes B2

and B, respeetively, sinee ]( contains integers of norm 12 and 14. Then we find that of the
25 cases listed there are 7 for which b2 is prineipal, 2 for which b2 belongs to the class B
(and of course equally lnany with b2 E ß4), and 7 with b2 E ß2 (01' B3). This explains the
powers 112 and 117 in the ntuubers J(j, B) and 1(j, B2

) given above.
Finally, of the 25 dee0l11posit.ions (15), there are only 5 with b1 b2 divisible by 2, and of

these there are Olle each with b2 belonging to the ideal classes ß 01' ß2. This explains why
the exponent of 11 in 1(f24 ,ß) and 1(f24, 8 2 ) is 1. For the deC0l11position having b2 E B,
namely b1 = (1), b2 = 2ß~, the ideal a = b1 b2 /2 is priInitive of nonn 9, so the number
occurring on the left-hand siele of (13) is 104, whieh is divisible by 24/r if and only if r is a
multiple of 3, explaining why the factor 11 1 OCCtU"S in [(fr, ß) in these cases. Similarly, for
the decomposition for which b2 E ß2, naIllely b1 = (2), b2 = ll3, we have that a is prilnitive
of norm 3, so the left-hand side of (13) is 38, which is divisible by 24/r only for r = 12.
and 24.

6. Weber polynolllials for other discrhllinants. In theory one eould repeat the
analysis of the previous seetions for discrinlinants COI1ßTuent to 5 (mod 8), 0 (mod 4), or
o (mod 3), obtainillg (conjectnral) formulas for the conjugation behavior of the singular
Weber moduli and for the nonns of their differences. The results in general would be less
sharp than in the case of discriIuinants satisfying (1) since, as luentioned in the introduction,
one eannot usually get class invariants by going all the way from j to f hut has to take
a modular function on SOlue interulediate gTOUp. We will restriet ourselves to giving same
partial discussion of the two cases

A. d =5 (lnod 8) (so that 2 is inert.) but still t= 0 (Inod 3), and

B. d =1 (nlod 8) as before but now 31d.

In bot.h cases we will end up in sluall extension fields of the Hilbert dass field H 
Q(Vd)(jo) anel its real subfield H+ = Q(Jo), jo = j(~).

A. If d =5 (Iuod sy, then the correct dass invariant is f( Vd) rather than -12/J(Vd) as
before. It gellerates the smne l1uluber field as jo = j (Vd) (this was conjectured by Weber
(11, §127] aild provecl by Schertz (9]), but this fielel no langer coincides with H+ since now
h(4d) equals 3h(d) rather thall h(cl) as in the case d =1 (luod 8). Instead, f( Vd) satisfies
a cubic equation of the fonn

with A and Il integers in H+. (In pUl'ticular, f( Jd)3 /2 is a unit.) The other two roots

of this equatioll are .;2/J( ±bi#) where b = 0 (lnod 3) and b'J:;d =1 (mod 16), so the
numbers A and Jl ean be obtained easily, using an al1alogue of the proposition in §1 to
find the numerical values of their conjugates. These two l1tuubers have relatively small
height and generate H+, so we again get reasonable equations for generating the dass
field. Examples are given in Table 6. In all cases either (} = ,,\ or () = JL (01' () = 0 if h = 1)
generates H+, hut the cases d = -83 anel cl = -427 show that neither ..\ nor JL alone always
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]dl h(d) ,,\ 11. millifllal polynomial of (} E H+

11 1 1 1 X
19 1 0 -1 X
35 2 (} f} X 2 - X-I
43 1 1 0 X
59 3 (} (}2 _ B X 3 -2X2-1
67 1 1 -1 X

83 3 1 B X 3
- X2 - 3X + 4

91 2 1 8 X 2 +X - 3
107 3 () (fP - 8 - 2)/2 X 3

- X - 4
115 2 () 8 X 2 - 3..\'" + 1
131 5 () ( - f}3 + 82 - (J + 2)/2 X 5

- 2X4 + X 3
- 4X2 + 7X - 4

139 3 fJ (lJl - (} - 2)/2 X 3 - X 2 - 2X-4
155 4 () -1 - f) X 4

- X 3
- 3X-l

163 1 3 2 X
179 5 8 (82

- f) - 2)/2 X 5 - 5X3 - IGX2 - 16X - 8
187 2 B () X 2

- 3X - 2
211 3 B -8 X 3

- 3X2 + X - 2
235 2 -8+3 f) X 2 - X-I
403 2 -2B - 2 () X 2 + 5X + 3
427 2 () -1 X 2 -7X-3

Table 6: Class flelds für discrhllinants d =5 (ruod 8)

works. We do not kllOW whether there is a universal cOlllbination of ,,\ alld J-1. which always
generates the class field.

'. Note that, since the Galois group of H /Q is solvable (dihedral), we could have given a
closed formula for the generator () in the last cohulln instead of its nlinilnal polynomial
over Q. For illstance, the 8 for d = -155 has the lllinimal polynolllial X 2 - ~ X + 1-2ß

over Q()5) (the real subfield of the genus field of Q(Jd)) anel is given explicitly by (} =

1+ vS J h'l 1 B~ 1 107· {l6/3 + JI07 + {l6V3 - JI07+ ,w 1 e t le 101' ( = - IS . /ö .
4 8 y3

·B. We now consider the case when d == 1 (1110d 8) hut 31el. Then the class number h of
-Q(Jd) is divisible by 2, the Hilbert class fielel H contains the biquadratic field Q(Vd, J -3),
and its subfield H+ has degree h/2 over the real quadratic field Q( J -d/3), Let e be the
fundaIllental unit of this latter fielel, The nUl11ber a = ..;2/ f( Vd) has degree 3h rather
than h over Q and only its cube lies in H+, However, in 811 the exanlples we looked at, it
was the case that (for an appropriate choice of e)

a 3h /e = cube (of a unit) in H+ .

Suppose that this is true. Then we have the following two possibilities:
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i) If the dass nUlnber h is == ±1 (nlocl 3), thel1 (16?) hnplies that a/e±I/3 belongs to
H+, so again we get relatively sluall generators of the dass field. As an example, take
d = -159, with h = 10. Thel1 the Inil1hnal polynoluial of (\'3 over Q is

. .

X 10
_ 3X9 + 7X 8

- 2X7 + 15X6 + 18X5
- 37X4

- 60X3
- 27X2

- 2X + 1

with discrhninant 38 535 7922232 , whieh is sonlewhat bettel'. However, the discriminant of
H+ is 34 535 und this field eOlltaills an elelnent wit.h the ll1uch silupler ll1inimal polynomial
X 10 ._ X 9 +2X8 + 7){7 +XG -15X5 - 5X4 +SX3 + 5X2

- 5X + 1 of discriIninunt 38 192 535 ,

so the polynoluia.ls 0 btainecl froln a 3 ancl 0'/ E: 1/3 are - as is to be expected - not as good
as the ones obtained directly fronl 0' in the ease 3td.

ii) On the other hand, if h is divisible by 3 then (16?) no langer lets us obtain an equation
of degree h for 0' by dividing by c:±1/3. Instead, it says that H+ contains the sextic field
Q(c:1 / 3). Then 0'3, whieh has degree h over Q, ean also be given by an equation of clegree
h / 2 over Q( E:) and by an equation of clegree h / 6 over Q(c:1/3 ). For instanee, the generator
x = (y'2/ f (Jd))3 of H+ for cl = - 87 (dass nluuber 6) satisfies the equations

x6 +x5 +4x4 -4x3 + l1x2 + 13x -1 = 0,

x3 _ (2 +c:- l )x2 + (3 - c:-l)x - C;-l = 0,

3x + (265
/

3 + 64
/

3 + C - 1062 /
3

- 7c l
/

3
_ 3) = 0

where e = (5 + )29)/2. Sinlilarly, the generator x for cl = -231· (h = 12) satisfies

where 7J = c1
/
3, E: = (0 + m)/2.
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