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On the four-vertex theorem

1) Introduction

In 1912 Addlf Kneser proved that on any simple closed plane

curves there are at least four vertices, i.e. points where

the curvature 1s stationary [11]. For convex curves this had

been established already in "1909 by Mukhopadhyaya [13]. Since

then vertices of closed plane eurves have been studied from

various'viewpoints. Otto Haupt, to whorn the present paper is

dedieated,made eontributions in conneetion with his theory of

geometrie ord~rs [6,7]. A survey of the history of the four-

vertex theorem and an extensive bibiliography can be found

in [2] (see also the more recent papers [14, 15] ) .

In this paper we want to prove the four-vertex theorem for

a more general class of elosed curves, that may also have

self-intersections. For example, since every simple closed

curve in m2 has its tangent winding number n equal to one,

it seerns possible at first sight that the four-vertex theorem

rnight hold for all elosed plane curves with n =1. This however

is not true. Figure 1 indieates for every n;;: 0 a elosed plane

curve with tangent winding number n and only·two vertiees.

n=O n=1 n=2

Figure 1

,.' .
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By the Schoenflies theorem [12] anyembedding f:S 1 ~ m2

extends to an embedding [:0 2 ~ JR2 (here

D2 = {x E ]R211 \x 11 $ 1} , s 1 = dD
2 ). In other words, any simple

closed curve in lli
2 bounds an embedded disc. We say that an

immersion f:S 1 ~ ~2 bounds an imrnersed surface of genus g,

of genus .g

A 2
f:M ~ ~

if there is a compact surface M2

boundary dM = 8 1 and an immersion

with connected

which

extends f. For example, the curve in Figure 2a bounds an'

immersed disk (genus zero) and the ,one in Figure ~b an, immersed

surface of genus one. Immersed surfaces in m2

in some detail by Banehoff and Kauffman [9,10].

were studied

a)

Figure 2

b)

In section 4 we will prove the following theorem (even a

slightly improved version) :

Theorem: Any closed curve in 2
~ .that bounds an immersed

surface has at least four vertices.

Since a curve bounding a surface of high genus is

necessarily quite complicated it is very plausible that it

should be possible to obtain a better estimate (than the one

given by the theorem) in terms of the genus.
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Conjecture: If a closed curve in m2
bounds an imrnersed

surface of genus g '= 1, then it has at least

4g + 2 vertices.

Figure 3 indicates for every genus g 2: 1 an imrnersed surface

in ]R2 having only 4g + 2 vertices on i ts boundary.

g = 1

Figure 3

g = 2

• • •

We have indicated·in Figure 3 for each surface M2 a number

of 2g + 1 cuts which divide M
2

into two topological discs

(one of which is emphasized by shading). The vertices are just

on the endpoints' of these cuts. The first surface in Figure 3

was invented in another context by G. Francis [4].

The proof of our main theorem is based on a certain propo~ition

(Proposition 3 below) due to G. Valette [16]. Since Valettes

paper is somewhat inaccessible, we give a proof of this

proposition.

Different'approachesto the study of vertices on. plane curves

with self-intersections can be found in [5,8].
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2) Honest vertices of plane curves

2
Let x:lR ~ lR be a closed (i.e. L-periodic) curve of class

COO, parametrized by arclength. Let t = x' and u be the

Frenet frame of X, k:JR ~]R the eurvature of x. Then we

have n' = nt , t l = -kn.

x is said to have a vertex at s E lR if k' (5) = O. A vertex

at 5 is called an honest vertex if k fails to be a strictly

monotone function in every neighborhood of s.

Proposition 1: Every closed eurve in ]R2 has at least ,two·

honest vertices. If there are only finitely

many honest vertices then their number is even

and each honest vertex corresponds to a loeal

maximum or a loeal minimum of the curvature.

Proof: Any point where the maximum or the minimum of the

curvature is attained in an honest vertex. Thus there are at

least two honest vertices. Suppose there are only finitely

many honest vertices {sO I • •• I sn} E S1 = JR/2t 0L . Then k is

strictly monotone on each eomponent of 51 - {SO/ ••• /S
n

}.

This clearly irnplies the rernaining assertionso·
o

We will often find it useful to identify JR2 with CL and to

compaetify JR2 = CL by a Upoint at infinity" 00 ° Orientation

preserving Möbius transformations of the Riernann sphere

8 2 :: JR2 L; {oo} are then represented as fractional linear rnappings



( 1 )
az+b
cz+d '
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ad - bc = 1

~he point is that Möbius transformations take (honest) vertices

of a plane curve to (honest) vertices. This follows easily from

Lemma 1: The sign of k' is unchanged under orientation

preserving Möbius transformations of JR2 U {co}.

Proof: We describe the plane curve under consideration by a

map s ~ z(t) E: CL, sE: JR satisfying I z • I s 1. Then we have

(2 )
Z 11,

k' = Im Z' = Im {z,s}

where s is arclength and

( 3 ) {z,s} Z"'
= Z"'

3 z 11 2- - (-) .
2 z·

is the Schwarzian derivative. If t is another parameter then

it i5 known ([1], formula 5.30) that

(4 )

where

{z , t} = <.p-
2 ( { z , 5} + 2A2 - 2A I ) ,

(5 )
dt

<.p = ds '
A = 1 p~

2 lP

Thus the sign of Im {z,s} is invariant under changes of the

parametrization of the curve z. Moreover {Z,5} itself i5

known to be invariant under orientation preserving Möbiu5

transformations.
o
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The following lemma due to A. Kneser ([11], see also [17])

will be crucial for our further discussion:

Lemma 2: 2Let x: [a,b] ~ lR be a regular curve whose

curvature k satisfies k > 0 and is strictly

increasing in [a,b]. Then the circular closed

discs D
t

bounded by the osculating circles Yt ,

t E [a,b] satisfy

(6 ) for s < t .

Proof: The osculating circle Yt has radius r(t) = 1/k(t)

and center m(t) = x(t) - r(t)n(t). We have

(7 ) m' = rln,

so the length of the evolute

r(s) - r(t). Therefore we have

2m:[s,t] ~ m. is given by

(8 ) IIm(s) - m(t) 11 :;;; r(s) - r(t),

which is equivalent to Dt C Ds . Moreover, since k is strictly

monotone in [s,t] there must be some open subinterval of

[5, t] where k' > o. Therefore the evolute ':'~ contains a strictly

convex an:" and hence strict inequality must hold in (7). This

implies (5).
o

As an illustration for the lemma Figure 4 shows the osculating

circles of a logarithmic spiral (the spiral itself is not drawn).
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Figure 4

Lemma 2 is not yet quite what we need , because we had

to exclude inflection points. However from the viewpoint of

Möbius geometry inflection points are just points where the

osculating circle passes through. 00. Thus they are not

really distinguished points. Considering the whole problem

on the Riemann sphere 8
2

=: R2
U {oo} i t is clear that Lemma 2

immediately implies

Lemma 3: Let 2x: [a,b] ~ S be a regular curve without

honest vertices in (a,b). Then,one can choose round

discs bounded by the osculating circles
o

such that Dt C D
s

for s < t ..
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By Lemma 3, a regular curve x:[a,b] ~ 8 2 with no honest

vertices in (a,b) cannot have self-intersections. It is

therefore justified to call such a curve a spiral arc.

We say that a spiral are x: [a,b] ~ 8 2
= ]R2 U {co} is in

normal form if both osculating circles Ya and Yb are

centered at the origin 0 E ]R2 •

Proposition 2: Every spiral arc x:[a,b] ~ 82
= m2

ü{co} can

be brouqht into normal form by applying to x

a suitable Möbius transformation g:8
2 ~ 8 2 •

Proof: By Lemma 3 the osculating circles and are

disjoint. Now it is known ([3], 10.10.12) that any two disjoint

circles in m2 U {oo} can be made concentric by applying a

suitable Möbius transformation.
o

If we ignore the freedom to rotate and to stretch a given

spiral are in normal form, then there are essentially only

two different ways to bring a given spiral are into normal

form (using orientation preserving Möbius transformations) :

With any spiral are in normal form also its image under

z ~ 1/z is in' normal form.

Let z: [a,b] ~ ]R2 U {oo} be a spiral are in normal form.

By Lemma 3 all oseulating eircles Yt (and therefore also

the eurve z) are contained in' the circular region bounded

by the concentric circles Ya and Yb . Repararnetrizing z, if

necessary, via t t----;... b + a - t we may assurne that has
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bigger radius than Yb (Figure 5).

Figure 5

Obviously z and the normal vector n to the curve z can

be represented as

( 9 ) n (t) = e iW (t)

where ~,w:[a,b] ~ m either both are strictly increasing

or both or strictly decreasing functions. Furthermore

( 1 0 ) ~ (a ) = W(a) I ~(b) = !JJ(b)

The angle cl> =~ (b) - ~ (al = IJJ (b) - IJJ (a) is called the

winding angle of the spiral are. cl> does not depend on the

choice of normal form and thus gives as a Möbius geometrie
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invariant for arbitrary spiral ares on 52

Prooositon 3 (Valette [16]: The windina angle ~ of any s~iral

'"\

are on S' satisfies I~I > TI.

Proof: Let z:[a,b] ~ m be a spiral are in normal form,

n(t) = ei~(t) its outward pointing normal veetor at z(t),

m = z + rn its evolute. Applying to z a euelidean !"otation we

may assurne that ~ is an inereasing funetion and ~(a) = o.

Then, assuming z is parametrized by arclength,

( 11 ) m l (t) = r'e i1J1 (t) = r t (eos ~ (t)+i sin 1J1,(t) .

Sinee m(a) = m(b) = 0 we eonclude

( 1 2 )
b

Ja r l (t) sin ~(t) = o.

By (10) the assumption I~I ~ TI would imply sin ~(t) > 0

for t E (a, b), whieh contradicts (1 2) beeause r I ~ o.
o

. 4) The four-vertex theorem

In order to establish the four-vertex theorm for a certain

class of plane eurves it suffiees by Proposition 1 to show

that it is impossible for a elosed eurve of the eonsidered

kind to have only two honest vertices. Now elosed curves on
2

S with only two honest vertices are rather completely

described by the following theorem, whieh is an immediate

eorollary of Proposition 2:
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Theorem 1: Let ·z: 5 1 ~ 52 = JR2 U {co} be a elosed eurve

with only two honest vertiees. Then, by applying

to z a s~itable M6bius transformation, we ean

assume that the oseulating eireles at the two

vertiees are both eentered at 0 E JR2 . In this

ease the eurve z is the union of two spiral ares

in normal form.

Combining Theorem 1 with Proposition 3 we easily obtain as

a eorollary the classical four-vertex theorem:

Corollary: Every simple closed eurve on 52 has at least

four honest vertiees.

We now prove a slightly more general version of the theorem

announeed in the introduetion. In"contrast to the earlier

version we now allow also immersed surfaces in S2 = JR2 U {co}

that cover the point co

Theorem 2: Any closed eurve on 52 that bounds an immersed

surface has at least four honest vertiees.

Proof: By the remark at the beginning of this seetion we have

to show that no elosed eurve with only two honest vertices can

bound an immersed surfaee. Suppose on the contrary that we

had a compact surface M2 with connected boundary aM2 = 51

and an immersion f:M 2
~

52 such that the closed curve

"f = fl 1 has only two honest vertices.
s
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We assume that f is the union of two spiral ares in normal

form (cf. Theorem 1).

Figure 6

Also we assurne (applying, if necessary an inversion in the unit

eircle) that the surface is on the "inner" (the convex) side of

A 2 2
the locally convex curve flaM. See Figure 6 where near aM

the surfaee M2 is indieated by shading.

Let be some point in the exterior of the bigger one

out of the two oseulating circles at the vertices. We connect

X o to the origin in ]R2 by the path t ~ x t ·= (1 - t) x O.

This path hits f(S1) a finite number, say n, times, each

time transversally. (if it should hit a multiple point of f(S1)

we count of eourse·with multiplicity) . n is determined as
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where $1 and $2 are the winding angles of the two rnentioned

spiral ares. By proposition 3 we have n 2: 2. For each t E [0, 1 ]

let k t be the nurnber of preimages of x t in M
2 under f.

"Then, because f is an immersion, k t is locally constant

ex.cept at the n points where x t hits f(S1), where it jurnps

up by one. We conclude k 1 ~ 2, i. e. the or igin 0 E:]R2 is covered
1\

at last twice by f.

The radial.vector field

smooth vector field to

2X(x) = x on]R extends as a

S2 = ]R2 U {ro}. The only critical

points of X on s2 are at 0 and ro and both have index 1.

Pulling X back to M2 via the immersion f we obtain on M
2

~. srnooth vector field Y, all of whose critical points have

index 1. By the preceding paragraph Y has at least two critical

points.

Moreover Y is transversal (outward pointing) to aM2 . We can

2 "2 "2think about M as, M - D where M is a cornpact surface

of genus g without boundary and D is a disc in A2. Then Y

extends as as a srnooth vector field ~ t6 ~2 which has only

one further critical point in D, also of index 1. Thus all

"critical points of Y have index 1, and there, are at least

three such points. This contradicts the Poincare index formula.

o
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