
ZERO-KNOWLEDGE AUTHENTICATION

BY THE SHERLOCK HOLMES METHOD

DIMA GRIGORIEV AND VLADIMIR SHPILRAIN

“When you have eliminated the impossible, whatever remains, however improbable, must be the truth.”

Arthur Conan Doyle, The Sign of Four

Abstract. We propose a class of authentication schemes that are zero-knowledge
by design, which means they are actually zero-knowledge, as compared to “prov-
ably” zero-knowledge, where the latter usually means, in the cryptographic lingo,
that retrieving any information about the prover’s long-term private key from an au-
thentication session is at least as hard as solving some problem that is “believed” to
be hard. The principal idea behind our schemes is: the verifier challenges the prover
with a question that has only a small number of possible answers (say, just 2), and
such that the verifier himself knows the right answer. The prover then responds with
one of the possible answers, and the verifier compares it to the answer he already
knew. We prove that no information about the prover’s long-term private key can
possibly be leaked during such an authentication session.

The schemes proposed in this paper can also be used for encryption.

1. Introduction

For a general theory of public-key authentication (a.k.a. identification) as well as
early examples of authentication protocols, the reader is referred to [8]. In this paper, we
propose a class of authentication schemes that are zero-knowledge by design, because
the prover gives to the verifier a “yes” or “no” answer without giving any proof of
the validity of the answer. Moreover, the verifier knows the correct answer before
communicating his challenge to the prover, which means he cannot possibly obtain any
new information from the prover’s response.

The reason why we call our idea of authentication the “Sherlock Holmes method” is
the following. It is the case with most natural decision problems in algebra (such as
the identity problem, the conjugacy problem, the membership problem, etc.) that, for
a generic input, the “no” answer can be obtained much more efficiently than the “yes”
answer. Thus, if the prover “eliminates the impossible” by (efficiently) getting the “no”
answers whenever she can, she is left with the only remaining possibility for a “yes”
answer. We note that in a typical concrete realization of this idea, the prover will not
be able to give a “yes” answer by any other method than “eliminating the impossible”,
which is why we call it the “Sherlock Holmes method.”

To conclude the Introduction, we summarize what we think are the most interesting
features of our proposal:

1



2

(1) Malicious verifier cannot possibly obtain from the prover any information that
he does not already know.

(2) There is no “concrete” problem for the adversary to solve in order to obtain the
prover’s long-term private key. The problem he/she faces is to obtain a test for
non-membership in a set that he/she does not know.

Finally, we note that our general scheme can also be used for encryption, see Remark
1 at the end of section 2.

2. The meta-protocol

In this section, we give a description of our general idea of “authentication by the
Sherlock Holmes method”, leaving particular realizations to the next sections. Here
Alice is the prover and Bob the verifier.

Alice’s private key consists of: (a) a subset S0 of some “universal” set S; (b) an
efficient test telling that a given element of S does not belong to S0; (c) a way to
disguise S0 to some S′

0.
Alice’s public key is a pair of sets S ′

0, S1 that either are disjoint or have negligible
intersection. Both sets are given to the public in such a way that it is possible to
efficiently select a random element from either set.

We note that the idea of a “non-membership test” for S0 can be expressed in a more
precise language. Alice should have her private separator T , such that S0 ⊂ T , the
intersection T ∩ S1 is negligible, and T is a “nice” set in the sense that the problem of
membership in T is efficiently solvable. Thus, Alice can efficiently check membership
of an element x in question in the set T ; then, if x /∈ T , she knows for sure that
x /∈ S0. If x ∈ T , then she assumes that x ∈ S0; the smaller T is, the more chances
this assumption has to be correct. Thus, even though there might be many different
separators for a given pair of sets, a good separator is hard for the adversary to find
without knowing the set S0.

The protocol itself is the following sequence of steps.

(1) Bob selects a random element x from either S0 or S1 and sends it to Alice.
(2) Alice checks, using her private test, whether x /∈ S0. If, indeed, x /∈ S0, she

sends “1” to Bob, meaning that x ∈ S1. If her test fails, Alice assumes that
x ∈ S0, and sends “0” to Bob.

(3) Bob, who knows the right answer, simply compares it to Alice’s response and
accepts or rejects authentication accordingly.

To prevent the adversary from guessing the right answer with non-negligible proba-
bility, several rounds of this protocol have to be run; this is similar to the Feige-Fiat-
Shamir scheme [1].

Since Bob does not obtain from Alice any information that he does not already know,
the following is obvious:

Proposition 1. No information about the prover’s private key is leaked during any
authentication session in the above authentication scheme.

Our construction is therefore perfectly zero-knowledge.



3

To conclude this section, we make a couple of remarks.

Remark 1. The protocol in this section can also be used for encryption. Namely, if
Bob wants to transmit an encrypted bit to Alice, he sends her a random element from
S0 in case he wants to transmit “0”, and a random element from S1 in case he wants
to transmit “1”.

Remark 2. The protocol in this section admits the following modification. Instead of
having the private key of just 2 sets, Alice (the prover) can have several private sets
S1, . . . , Sk, together with private tests, for each i, detecting that a given element does
not belong to Si. This will increase the size of Alice’s private and public keys, but at
the same time this will decrease the adversary’s chances to guess the right answer in a
single round of the protocol.

In the following sections, we showcase three particular realizations of our meta-
protocol to illustrate the diversity of possible applications of our main idea.

3. A particular realization: subset sum

In this section, we offer a particular realization of the meta-protocol from Section 2,
exploiting the hardness of the subset sum problem, see e.g. [2]. We note that the com-
plexity of this particular problem was previously used in [5] in different cryptographic
contexts, namely for constructing a pseudo-random generator and a universal one-way
hash function.

The “universal” set S in this section is the set of all m-tuples of m-dimensional
vectors over Q.

Alice’s private key is a set S0 = {a1, . . . , am} of m random linearly independent (over
Q) m-dimensional vectors with integer coordinates, which is therefore a basis of Qm.
However, the vector a1 is special: the g.c.d. of its coordinates is 2r for some positive
integer r.

Alice’s public key includes the vector a1 and a set of k > m random vectors c1, . . . , ck

from the Z+-span of S0.
Now we give a description of the authentication protocol.

(1) Bob selects, with equal probabilities, either a random vector c ∈
Span

Z+
(a1, c1, . . . , ck) or a random vector c ∈ Span

Z+
(1
2a1, c1, . . . , ck) and sends

the vector c to Alice. Here Span
Z+

denotes the set of all linear combinations
of given vectors with nonnegative integer coefficients.

(2) Alice, using standard linear algebra, finds (rational) coordinates of c in the basis
S0. If at least one of these coordinates is not a nonnegative integer, she knows
that c /∈ Span

Z+
(a1, c1, . . . , ck); therefore, she sends “1” to Bob. If all coordi-

nates are nonnegative integers, Alice assumes that c ∈ Span
Z+

(a1, c1, . . . , ck),
and sends “0” to Bob.

(3) Bob, who knows the right answer, simply compares it to Alice’s response and
accepts or rejects authentication accordingly.

We note that there is a negligible probability for Bob to reject a legitimate Alice
because it may happen that all coordinates of c in the basis S0 are nonnegative integers,



4

but c /∈ Span
Z+

(a1, c1, . . . , ck). It may, in fact, even happen (again, with negligible
probability) that c ∈ Span

Z+
(a1, c1, . . . , ck), but Bob expected Alice to respond with a

“1” because he selected his c ∈ Span
Z+

(1
2a1, c1, . . . , ck).

We also note that the reason for using a public vector a1 with g.c.d. of coordinates
equal to 2r is to have Bob’s vector c in Span

Q+
(a1, c1, . . . , ck) in either case, because

there is a polynomial-time test detecting whether or not a given vector belongs to the
Q+-span of other given vectors (cf. linear programming problem), see [6] or [10].

Finally, we note that the problem that the adversary who wants to impersonate the
prover faces is the following: find out whether or not the matrix equation Bx = c has
a solution for x as a vector with nonnegative integer coordinates. Here B is the matrix
made up of coordinates of the vectors a1, c1, . . . , ck, c is the challenge vector selected by
Bob, and x is the vector unknown to both the prover and the adversary. A special case
of this problem, where B is just a vector with integer coordinates, x is a 0-1 vector,
and c is just an integer, is known as the subset sum problem and is NP-complete, see
e.g. [2]. Moreover, as pointed out, for example, in [3, p.41], it appears that the subset
sum problem might be hard on random instances, not just on some carefully selected
ones.

3.1. Suggested parameters and key generation. Suggested parameter values for
the protocol above are:

(1) The dimension of vectors is m = 20.
(2) Coordinates of the vectors ai: random nonnegative integers ≤ 10. We note that

m random m-dimensional vectors like that are going to be linearly independent
with overwhelming probability.

(3) Vectors ci are constructed by Alice as random linear combinations of the vectors
ai with nonnegative integer coefficients ≤ 10. The number of vectors ci is
k = 2m.

(4) Bob constructs his vector c as a random linear combination of the public vectors
with nonnegative integer coefficients ≤ 10, with one exception: according to the
protocol description, he may choose the coefficient at a1 to be of the form n

2 ,
where n is odd, 1 ≤ n ≤ 19.

4. A particular realization: polynomial equations

In this section, we offer another particular realization of the meta-protocol from
Section 2.

Alice’s private key consists of: (i) a polynomial h(x1, . . . , xk) over Z; (ii) a large
prime p.

Alice’s public key includes: (i) polynomial f(x1, . . . , xk) = (h(x1, . . . , xk))
2 −

c (mod p). Thus, for any x1, . . . , xk ∈ Z, there is u ∈ Z such that f(x1, . . . , xk) +
c = u2(mod p); (ii) a random polynomial g(x1, . . . , xk) with the same collection of
monomials as f .

Now we give a description of the authentication protocol.



5

(1) Bob selects random integers x1, . . . , xk and plugs them, with equal probabilities,
into either f or g. He then sends the result, call it Bob(x1, . . . , xk), to Alice.

(2) Alice computes a = Bob(x1, . . . , xk)+ c (mod p) and checks whether or not a is
a square modulo p. If not, she knows that Bob(x1, . . . , xk) 6= f(x1, . . . , xk) and
sends “1” to Bob. If it is, Alice assumes that Bob(x1, . . . , xk) = f(x1, . . . , xk)
and sends “0” to Bob.

(3) Bob, who knows the right answer, simply compares it to Alice’s response and
accepts or rejects authentication accordingly.

The way Alice checks whether or not a is a square modulo p is as follows. She raises
a to the power of p−1

2 . If the result is equal to 1 modulo p, then a is a square modulo
p; if not, then not.

Again, we note that there is a negligible probability for Bob to reject a legiti-
mate Alice because it may happen that Bob(x1, . . . , xk) + c is a square modulo p,
but Bob(x1, . . . , xk) = g(x).

4.1. Suggested parameters and key generation. Suggested parameter values for
the protocol above are:

(1) The number k of variables: between 3 and 5.
(2) The value of p: on the order of 2t, where t is the security parameter.
(3) The degree of Alice’s private polynomial h: between 2 and 3. The magnitude

of its coefficients: at least p
2 .

(4) Bob generates his integers x1, . . . , xk uniformly randomly from the interval

[1, 2
t

k ].

Remark 3. The adversary may try to attack Bob’s challenge by solving one of the
equations f(x1, . . . , xk) = Bob(x1, . . . , xk) or g(x1, . . . , xk) = Bob(x1, . . . , xk) for in-
tegers x1, . . . , xk, or just try to find out whether either of these equations has integer
solutions. The corresponding decision problem (the Diophantine problem, or Hilbert’s
10th problem) is known to be undecidable, see [7]. In our situation, however, adversary
actually faces a promise problem since he/she knows that at least one of the equations
has integer solutions. Furthermore, in our situation the range for the unknowns is
bounded. Still, the “bounded” Diophantine problem is known to be NP-hard, see e.g.
[2], which makes this kind of attack look infeasible.

5. A particular realization: matrices

In this section, we offer yet another particular realization of the meta-protocol from
Section 2 using a ring of matrices as the platform. Matrices have been occasionally
used in the literature as platforms for various cryptographic primitives, see e. g. [4],
[11], or [9] for a general discussion.

The “universal” set S here is the semigroup of all 2 × 2 matrices over R, the ring
of truncated k-variable polynomials over the ring Z2. Truncated (more precisely, N -
truncated) k-variable polynomials over Z2 are elements of the factor algebra of the
algebra Z2[x1, . . . , xk] of k-variable polynomials over Z2 by the ideal generated by
all monomials of degree N . In other words, N -truncated k-variable polynomials are



6

expressions of the form
∑

0≤s≤N−1

aj1...js
· xj1 · · · xjs

, where aj1...js
are elements of Z2, and

xjs
are variables.

To make computation efficient for legitimate parties, we suggest to use sparse poly-
nomials as entries in participating matrices. This means that there is an additional
parameter d specifying the maximum number of non-zero coefficients in polynomials
randomly generated by Alice or Bob. Note that the number of different monomials of
degree N in k variables is M(N, k) =

(

N+k
k

)

. This number grows exponentially in k
(assuming that N is greater than k). The number of different collections of d mono-

mials (with non-zero coefficients) of degree < N is more than
(

M(N,k)
d

)

, which grows
exponentially in both d and k. Concrete suggested values for parameters are given
below; right now we just say that, if we denote the security parameter by t, we suggest
that the number M(N, k) =

(

N+k
k

)

is at least t. At the same time, neither N nor k
should exceed t.

Now we get to describing Alice’s private key. The set S0 is a finitely generated (by
matrices G1, . . . , Gn) ring of 2 × 2 matrices over a subring R0 ⊂ R that consists of all
N -truncated k-variable polynomials over Z2 with one particular variable xj missing.
This particular variable xj is selected by Alice uniformly randomly from the set of k
variables.

Alice’s way to disguise S0 is conjugation by an invertible 2 × 2 matrix X.
Alice’s private test for a given matrix not to belong to S0 is simple: if at least one

entry of the given matrix depends on xj , then the matrix does not belong to S0.
Now we get to Alice’s public key. She publishes two sets of matrices: (1) the set

ϕ(S0) is given by n generating matrices X−1G1X, . . . ,X−1GnX, and (2) the set S1 is
given by n generating matrices H1, . . . ,Hn.

In the following subsection, we are going to describe how the matrices Gi, Hi and X
are selected. Here we give a description of the authentication protocol:

(1) Bob selects a matrix M , from either S0 or S1, as a sum of random products of
published matrices in the relevant set.

(2) Alice computes M1 = XMX−1 and then checks, by inspection, whether there
is an entry of the matrix M1 that depends on xj. If there is such an entry, she
sends “1” to Bob, meaning that M ∈ S1. If not, Alice assumes that x ∈ S0,
and sends “0” to Bob.

(3) Bob, who knows the right answer, simply compares it to Alice’s response and
accepts or rejects authentication accordingly.

We note that there is a negligible probability for Bob to reject a legitimate Alice
because it may happen that all entries of a matrix M1 from S1 do not depend on xj .

5.1. Generating matrices. Our notation here follows that of Section 5. First we
describe how to generate the matrices G1, . . . , Gn. To prevent the adversary from
obtaining any information about these matrices from their conjugates by computing
the trace or the determinant, we want the trace and the determinant to be equal to



7

0. To that effect, each matrix Gi is selected in the following form:

(

piqi q2
i

−p2
i −piqi

)

,

where pi and qi are random polynomials that do not depend on a particular, randomly
selected, variable xj, the same for all matrices Gi. Clearly, any matrix Gi of this form
has both the determinant and the trace equal to 0.

For efficiency reasons, we require that polynomials pi and qi are
√

d-sparse N -
truncated k-variable polynomial over Z2, which are generated the obvious way. Namely,
one first chooses

√
d random monomials of degree at most N−1, then randomly chooses

non-zero coefficients from Z2 for these monomials.
Then, Alice generates her private matrices H1, . . . ,Hn in the same form as she gen-

erated the matrices Gi, only this time, after the polynomials pi and qi are selected, one
monomial involving xj is introduced either in pi or in qi.

An invertible matrix X can be generated as a random product of m elementary
matrices. A square matrix is called elementary if it differs from the identity matrix
by exactly one non-zero element outside the diagonal. This single non-zero element is
generated as described above. Denote by Eij(u) the elementary matrix that has u 6= 0
in the (i, j)th place, i 6= j.

We note that multiplying m elementary matrices may result in the number of non-
zero coefficients in some of the entries growing exponentially in m. More precisely,
when we multiply Eij(u) by Ejk(v), one of the entries in the product involves uv, and
the polynomial uv is no longer d-sparse, but d2-sparse. However, this phenomenon is
limited to products of elementary matrices of the form Eij(u) ·Ejk(v), and the expected
maximum length of such “matching” chains in a product of m elementary 2×2 matrices
is m

2 . We therefore require that d
m

2 ·k · log N ·4 < t, where t is the efficiency parameter.

5.2. Suggested parameters. Suggested values for parameters of our scheme in this
section are:

(1) Presently, N = 1000, d = 25, and k = 10 should be quite enough to guaran-
tee security against “brute force” attacks. In particular, with these values of
parameters, the number M(N, k) of different monomials is greater than 1020.

(2) The suggested number n of matrices published by Alice is 5.
(3) The matrix X is generated by Alice as a product of m random elementary

matrices, where the value for m is randomly selected from the interval 8 ≤ m ≤
16.

(4) Bob’s challenge M is selected as a sum of random products of published
matrices in the relevant set Si. The suggested number of products in such a
sum is between 3 and 5, and the suggested number of factors in a product is
between 5 and 10.

Acknowledgement. Both authors are grateful to Max Planck Institut für Mathematik,
Bonn for its hospitality during the work on this paper.



8

References

[1] U. Feige, A. Fiat and A. Shamir, Zero knowledge proofs of identity, Journal of Cryptology 1

(1987), 77–94.
[2] M. Garey, J. Johnson, Computers and Intractability, A Guide to NP-Completeness, W. H.

Freeman, 1979.
[3] O. Goldreich, Foundations of Cryptography: Volume 1, Basic Tools, Cambridge University

Press, 2007.
[4] D. Grigoriev, I. Ponomarenko, Constructions in public-key cryptography over matrix groups,

Contemp. Math., Amer. Math. Soc. 418 (2006), 103–119.
[5] R. Impagliazzo, M. Naor, Efficient cryptographic schemes provably as secure as subset sum, J.

Cryptology 9 (1996), 199–216.
[6] L. G. Khatchyian, A polynomial algorithm in linear programming, Doklady Akad. Nauk USSR,

244 (1979), 1093–1096 (Russian). [Translated as Soviet Math. Doklady, 20, 191–194.]
[7] Yu. Matiyasevich, Hilbert’s 10th Problem (Foundations of Computing), The MIT Press, 1993.
[8] A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied Cryptography, CRC-Press

1996.
[9] A. G. Myasnikov, V. Shpilrain, and A. Ushakov, Group-based cryptography, Birkhäuser 2008.

[10] A. Schrijver, Theory of Linear and Integer Programming, John Wiley 1998.
[11] V. Shpilrain and A. Ushakov, An authentication scheme based on the twisted conjugacy problem,

in: ACNS 2008, Lecture Notes Comp. Sc. 5037 (2008), 366-372.

CNRS, Mathématiques, Université de Lille, 59655, Villeneuve d’Ascq, France

E-mail address: dmitry.grigoryev@math.univ-lille1.fr

Department of Mathematics, The City College of New York, New York, NY 10031

E-mail address: shpil@groups.sci.ccny.cuny.edu


