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ON REAL QUANTUM GROUPS

NICOLAS ANDRUSKIEWITSCH

ABSTRACT. Poisson-Lie structures on real simple Lie and Kac-Moody groups are considered.
The symplectic leaves of the inner ones are classified. An algebraic version of the Weinstein’s
Darboux theorem for Poisson manifolds is proved. The algebra of strongly regular functions
on a quantum Kac-Moody group is defined.

80. Introduction.

0.1. Let G be a complex Poisson Lie group, (g¢,8) the corresponding Lie bialgebra.
Assume that (g, 6) admits a quantization (in the sense of [D]) Uxg and that Ukg gives rise
to an "algebra of functions on the quantum version of G”, a suitable Hopf algebra Cx{G]
dual to Upg. Now let Gr be a real form of G, corresponding to a real formn gg of g, and
suppose that the involution of g whose fixed point set is gg "lifts” to an involution of Ujg,
providing this algebra, and a fortiori C,[G], with a *-Hopf algebra structure. Assume also
that the formal parameter & can be specialized, at least in an open neighborhood of 0. It
is certainly of interest to understand the irreducible * representations of Cj[G], at least
for some values of h. (Compare with [F]).

0.2. Suppose that G is a finite dimensional connected simply connected simple Lie
group, that Gg = K is a compact form and that é§(z) = ad zR, where R is the famous
solution of the classical Yang-Baxter equation

R = Z X AX_,.
ﬂ€A+

Then Uyg is well-known to exist [D1] and the formal parameter can be specialized to the
g-version U,g of Uyg [J}; the construction of C,[G] is not difficult to carry over (see for
example [L2], [A3], [LS]); if ¢ is positive, the Cartan involution defining K has a quantum
analogue and hence C,[G] is a *-Hopf algebra (in fact, a compact matrix pseudogroup
in the sense of [W]) which is denoted C,[K]. The description of all the irreducible *-
representations of C,[K] was achieved in [S] (for K = SU(2) previously in [VS] and '
for K = U(n) independiently in [Ko]). It turns out that the representation theory of
C,4[K] is closely related to the space of symplectic leaves of the Poisson structure of K:
there is a bijection between this space and the set of (isomorphy classes of) irreducible
*-representations of C,[K]. This is however an optimal case: if we consider, instead of
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2 NICOLAS ANDRUSKIEWITSCH

§, the Lie cobracket 8,(z) = adz(R + u), for a suitable v € A%h, then the irreducible
*-representations of C, ,[K] are still related to the symplectic leaves, but that bijection
does not exist any more (see [L], [LS]).

0.3. It would be very interesting to extend these results to another situations, for ex-
ample to non-compact forms of G, or to G of Kac-Moody type. This presents difficulties of
various sorts. The simplest non-compact case, namely SU(1, 1), was treated in [AE]. There,
it was introduced the notion of admissible representation of C,[SL(2,C)]; the admissible
irreducible representations were classified and those supporting an inner product, invari-
ant for the * structure corresponding to SU(1,1), were detected; and a relation between
admissible irreducible representations and symplectic leaves in SL(2,C) was established.
Note that it was not proved that any unitary irreducible representation of C,[{SU(1,1)] is
admissible.

0.4. This paper is concerned with technical background in order to make some progress
in the directions suggested in 0.8. Let us briefly describe the contents. First we prove
that any real form of G carries a Poisson structure, that at the infinitesimal level corre-
sponds to a Manin triple originated by an analogous of the Iwasawa decomposition. This
construction is also available for real forms of second kind of Kac-Moody groups. Second,
we discuss Poisson-Lie structures on Kac-Moody groups. We follow here the approach in
[KP1}, [KP2], [KP3], see also [S]].The more straightforward approach would be to consider
a Poisson algebra of functions on the group. We prove that the algebra considered in
[KP2] is a Poisson algebra. However, this algebra has a disadvantage: it lacks the real
form corresponding to the algebra of real functions on the real Kac-Moody groups we are
interested in. This is certainly connected with the fact that G has attached a twin building,
cf [T1], [Rou]. We propose to consider a bigger algebra as the algebra of rational func-
tions on G, which do have such real subalgebras. The precise structure of that algebras
is however not clear to us: the problem is in the neighborhood of the determination of
the complete reducibility of the tensor product of irreducibles highest and lowest weight
modules. Moreover, these bigger algebras seems to have no Poisson structure. However,
we are able to classify the simplectic leaves of these ”"would-be” Poisson Lie groups (under
a technical hypothesis). By the way, the method utilised gives also the classification of the
symplectic leaves in all the real forms of inner type of a complex simple connected simple
Lie group. '

Observe now that the symplectic leaves in the SL(2,C) case (cf. 0.3) are understood
in the complex sense. We prove an algebraic analogue of Weinstein’s ”Darboux” theorem
describing locally a Poisson manifold. The existence of symplectic leaves in Poisson regular
affine varieties follows from this. (Compare with [We], [Ki].)

Going to the quantum side, we define the algebra of ”strongly regular functions on the
quantum Kac-Moody group”; it is of course not a Hopf algebra, but worst, it is not a
*-algebra, by the reasons evoked below in the "classical” case. Finally, we introduce the
notion of admissible representations for the algebra of functions on the quantum group, in
the finite case. Of course, the inspiration for this definition comes from Harish-Chandra.

0.5 Acknowledgments. 1 wish to thank the hospitality of the Max-Planck Institut fir
Mathematik. Part of this work was done during a visit to the Mathematisches Seminar
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der Universitdit Hamburg, done with the generous help of the Alexander von Humboldt
Stiftung. I benefited from useful conversations with P. Slodowy and D. Gurevich. I wish
also thank R. Berger who kindly send me a copy of [Be].

REAL PoissoN LIE GROUPS

§1. Bialgebra structures on real Kac-Moody algebras. Let A € Z¥*N be a sym-
metrizable generalized Cartan matrix and let (hg,II,IIV) be a real realization of A, see
[K, 1.1] and also [T2]. Let gg be the real Kac-Moody algebra coresponding to A, with
generators e;, f; (1 €1 < N) and by, cf. [K, 1.3]. Now let h¢ = b ® C and g¢c = gr ® C;
we shall identify gc with the complex Kac-Moody algebra corresponding to A. Let us fix
J C{1,...,N}. Let o be the linear Lie algebra involution of ggr determined by

o(e;) = (=)D, o(fi)y=(-1De;, o(h)=—h,Vh € by,

where x is the characteristic function of J. Let 8 : gc — g¢ be the induced antilinear
involution, i.e. § = c®~, where the bar denotes complex conjugation. Now let g; be the
fixed point set of 8; g is a real Lie algebra, whose complexification is isomorphic to g¢.

Let (])o be a non-degenerate invariant bilinear form on g; whose extension (|) to gg is
the given in [K, Th. 2.2] (cf. [A2, Th. 2], [AR]).

Remark 1.1. If J = {1,..., N}, then we shall denote w instead of § and B instead of g; w
is usually called the "compact” involution, and t the "compact” form, of g¢.

Now let p = g¢, ny. = n; considered as real Lie algebras, p; = gy and p; be the direct

sum of hg and n4. (Here gc = ny @ he @ n— is the triangular decomposition, i.e. ny is the
Lie subalgebra spanned by the e;’s, etc. We shall also denote by = be @ ny.) Let Im(]|)
be the imaginary part of (|); it is a real bilinear form on p, invariant and non-degenerate.

Lemma 1.1. (p,p1,p2) is a Manin triple.

Proof. a) p = p1 + p2: As /—1bgr C gy, ny ® bc € p1 + p2. Let 2,,...1; be a sequence
of indices in {1,...,N}. We have 6([f;,, (fi,,[---, fi;].-- 1) = [ei,, [eqyy [ -5 €] ... ]] and

hence
[fin[fl'nw["‘afij]-"]]i[efn[eizs["wei,‘]'“]]
and

VI firs Fir Lo il D F leins [eins Lo ves ]

- belong to gy. This shows that n_ C p; + p,.

b) Clearly, p) and p; are isotropic with respect to Im(|). Thus p; N p2 = 0 and the
Lemma follows. O

Remark 1.2. Note that we have in fact a decomposition of real vector spaces g¢c = gD hr®
n4, which can be viewed as a generalization of the (infinitesimal) Iwasawa decomposition.
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Now let (g¢ x g¢, diag(ge), P2) be the Manin triple considered in [D1, §3]. (Recall that
B2 =np xn_ @ {(h,~h): h € hbc}.) Assume that the non-degenerate invariant bilinear
form fixed in [D1, Example 3.2] is (|). Let A' be the set of positive roots of g¢ and let
{Xq,i it € I} be a basis of (g¢)a, such that I, = I_, and (X4,i|X—q,j) = & ;. Let {he}
be an orthogonal basis of h¢. Let us consider the formal expression

1

(1.1) T o= -2- Z Xo,’,' ® X_o,,,' - X..c,,,' & .Xa.,'.

agAt iel,

(8c X ¢, diag(pc), P2 ) gives rise to a Lie bialgebra structure on g¢; let § be the correspond-
ing cobracket. Then §(z) = adzr. In fact, (cf. [D1, §4]) r = ro — 3p, where p = rf? + r3!

and )
Ty = Z Xa,i®X—u,£+§th-
acAt i€l t

Lemma 1.2. The Manin triple (p @ C,p, ® C,p2 ® C) (cf. Lemma 1.1) is isomorphic to
(8¢ x g¢c,diag(gc), B2), modulo multiplying the invariant bilinear form by a scalar.

Proof. Let T: gc X g¢ — p @ C be the application given by
1 '
T(z,y) = 5(z = V=12' + 8(y) + V-16(y)’)-

Here £ — z' is the multiplication by /—1 in p with respect to its real form ggr. It is
easy to see that T is an isomorphism of complex Lie algebras and that YT(diag(gc)) =
p1 ® C. Let us show that T(B2) = p, @ C. Let A € hgr. Then Y(h,—h) = h hence

T({(h,=k) : h € bhc}) = hr ® C. On the other hand, from Y(e;,0) = %(e; — V-1e)

—1)x(
and Y(0, f;) = ( 12) (e; + V—1¢]) follows that Y(n, x n_) = ny ® C. Finally, a

straightforward computation shows that

=L (ahu) - (ylo),

Im(Y(z,y)|T(u,v)) =

for any z,y,u,v € g¢. O

Remark 1.9. The preceding Lemma is known when the Cartan matrix is finite and § = w,
see [M} and also [LW]. When this work was in its final stage, the author noticed the
interesting article [LQ)], where Lie bialgebra structure on such forms where constructed,
for finite Cartan matrices, by means of Koszul operators.

Lemma 1.3. The Manin triple (p,p1,p2) gives rise to a Lie bialgebra structure on p,
and the corresponding cobracket is given by 6y(z) = adz+/—1 ZGEA+,iE[u Xa,i®X_a,i—
X—a,i ® Xa,i-

Proof. Let (p,p1,p2) be an arbitrary Manin triple that gives rise to a Lie cobracket d on
p1, where the fixed bilinear invariant form on p is denoted by (|). Notice that choosing
(1): = t(|) instead of (|) is equivalent to having the Lie cobracket t~'d instead of d. O
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Now let 7: {1,...n} — {1,...n} be a diagram automorphism, i.e. a bijection satisfying
ai; = ar(i)r(;) for any 7, 3. Assume for simplicity of the exposition that A is non-degenerate;
then hg is spanned by h; = [e;, fi]- Let o, be the linear Lie algebra involution of gr
determined by

alei) = (-1, o(fi) = (=1Derqy,  o(hs) = —h,

where y, we recall, is the characteristic function of J. Let as above 8, : gc — gc¢ be
the induced antilinear involution, and g ,, a real Lie algebra whose complexification is
isomorphic to g¢, be the fixed point set of #,. Assume that there exists a non-degenerate
invariant bilinear form (|)o on 9, whose eztension (|) to g¢ 13 the given in [K, Th. 2.2].
(The author ignores the existence of a proof of this fact, but there should be no substantial
difficult in checking it; in particular, this is obviously true for finite dimensional g’s.) Then
the preceding discussion applies to this new situation; one has to replace p, by the direct
sum of h_; and ny, where h_, is the subspace of 8, eigenvectors of eigenvalue —1. We get
as before

Lemma 1.4. (p,p1,p2) is a Manin triple.

Moreover, Lemmas 1.2 and 1.3 still hold, with analogous proofs.

It follows from [KP3, Prop. 3.7] that we have covered all the real forms of g¢ of second
kind.

§2. Symplectic leaves.

2.1 Symplectic leaves on SU(1,1). In this subsection we shall treat, by elementary
computations, the simplest non-compact case, namely SU(1,1). Some remarks in this
section were stated without proof in [AE]. Notice first that we can not ”globalize” the
decomposition

(2.1) fc=9gsPhr®n,.

Let Hgr be the subgroup of SL(2,C) of diagonal matrices with real non-negative entries
and N the unipotent subgroup of upper diagonal matrices. Given z € SL(2,C) it is not
always possible to express it as a product

(2.2) T = zghn, where =z, € SU(1,1), h € Hg,n € N.

(The uniqueness of such decomposition, when it exists, follows from SU(1,1)N HgN = 1.)
(2.2) fails for example for
1 1)

(Thus the method for computing the symplectic leaves via dressing transformations [Se},
[LW] seems to do not apply here.) On the other hand, let
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be such that |a|? — |y|> > 0 and take
_fat™t (B —al) _(t 0 (1 A
s (’Yt" i6-v3) ) "=lo ) "={o 1

t=+af =P, A= B =78

lorf? = |yI*
A straightforward computation shows that z = zghn and z¢ € SU(1,1). (It is not always
true that a product hu, h € HgN, u € SU(1,1), satisfies the above condition.)

where

Now let us complexify (2.1); we get s£(2,C) x s£(2,C) = diag(s€(2,C)) @ {(z,y) €
by x b_ : zg+yo = 0}. Let H (resp., By, B_) be the diagonal torus (resp., the Borel
subgroup of upper, resp. lower, triangular matrices) of SL(2,C). Again, we do not have a
diffeomorphism from SL(2, C) x SL(2,C) onto diag(SL(2,C)) x P, where Py = {(z,y) €
B4 x B_ : zyyo = 1}. Moreover, even the uniqueness fails, because diag(SL(2,C))N P, =
{£1}. Nonetheless, let z;;, 1 < 7,j < 2 be the matrix coefficients of the 2-dimensional
representation of SL(2,C). It is known [VS] that the Poisson bracket is given by

(21, 22) = —z"1e12, (2", 2%} = —gM1a?|  {g1?, 522} = —g2g22

b

(o3, 222} = =z {212,281} =0 {z",2%*} = —27'%2%),
It follows from this that the sets {t}, for ¢t in H, and

Eer,6) = {(i f}) € SL(2,C) : &b+ &2¢ = 0,(b,c) # 0},

where (£1,£2) # 0, are connected (complex) Poisson submanifolds of the (complex) Poisson
manifold SL(2,C) (since the corresponding ideals in the ring of rational functions on
SL(2,C) are Poisson ideals, and Zariski open subsets of an algebraic Poisson manifold are
still Poisson). Moreover the Poisson rank at any of their points equals their dimension
and they constitue a partition of SL(2,C). In other words, they are the symplectic leaves
of SL(2,C). It follows easily that the symplectic leaves of SU(1,1) are the points of the
diagonal (compact) torus and the submanifolds

Sw=1(} 1) esU0):mgb=g)

For any symplectic leave (4 there exists a unique ¢ in the diagonal compact torus such
that (4) = tL(x/2). On the other hand, observe that the intersection of a symplectic leave
in SL(2,C) with SU(1,1) splits as a disjoint union of two (real) leaves.

Note that the symplectic leaves of SL(2,C) are of three different types:

(1) Se ) = (; t91 ) Z(1,1), where t is a square root of £, /£, whenever {;§; # 0;

(2) Z4,0) = B- — H and Z( ;) = B4 ~ H, which are isomorphic, and
(3) the points of H.
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2.2. Let G be the Kac-Moody group corresponding to the matrix A, cf. [KP1, §1] and
let G; be the image of SL(2, C) under the morphism ¢; defined loc cit. Let W be the Weyl
group of g¢ and w; the reflection corresponding to the index 7. Let H (resp., By, B_) be
the subgroup generated by the images under ¢; of the diagonal torus (resp., of the Borel
subgroup of upper, resp. lower, triangular matrices) of SL(2,C).

It follows from the axiomatic definition of G given in [KP2, 2] that there exists a unique
automorphism @ of G such that Op; = ¢;¢;, where ¢; is the automorphism of SL(2,C)

defined by ¢;(a) = z;'a  z;,
(1 0
Ti= 1y (—1)x(+1 -

Let G be the fixed-point set of ©.

Remark 2.1. This definition of G is known and was pointed out to me by G. Rousseau.
Another definition was proposed in [Al]. Let G be the group defined in [Al]; recall
that it is the quotient of the free product of the groups S; (the fixed-point sets of each
¢;) by the intersection of the kernels of all the integrable representations. The inclusions
S; — SL(2,C) induce a monomorphism G; — G ;. Obviuosly, S; is isomorphic to SU(2)
(resp., SU(1,1)) if ¢ belongs (resp., does not belong) to J. If G is finite dimensional, then
G is the connected component of G ;. Indeed, the Lie algebra of G contains the Lie
algebra of each S; and by [Al], also contains gg. On the other hand, G is generated
by exponentials of elements in the Lie algebras of the S;’s, hence it is contained in the
component of G j. We will be more concerned here with G .

Now let G = (J,,¢yy BwB be the Bruhat decomposition of G (cf. for example [KP2,
3]) and let GY = G; N BwB. Let

D, = {(_"'b b) € SU(2) : b <0},

a

D1y ={(_\/a_—1b \/?b) € SU(1,1): b> 0},

T = (D ,1) (resp., p(D2)), if x(z) = 0 (resp., 1). In what follows we shall omit to write
@i

Proposition 2.1. Let w € W and let w = w;, ... w;,(w) be a reduced decomposition of
w. Any z € GY can be uniquely expressed as a product = z;, ... z;,,,t, where z;; € &;,
andte T=HNG,.

Proof. Let * € G and decompose it as a product = = z;, ...z;,, where z;; € 5;. We
shall first prove by induction on e that z can be expressed as a product z = z;, ...2;,t,
where z;; € I;; and t € T. The case e = 1 is covered by 2.1 or is well known, so we can
assume that e > 1. Write z;; = u;;t;; for some u;; € X;; U {1}, t;; € T. Applying the
inductive hypothesis, we get £ = w;,t;, ... ti, = zi, ... zi,, tu; t;_. But then tu;, € GY'
and the claim follows from [KP2, 4.6], [St] and the remarks in 2.1.

It follows easily that any z € GY can be expressed as a product = = z;, ... z;,,,t. The
uniqueness is proved exactly as in [St, Th. 15].
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Now for any w € W, let w = w;, e Wiy be a reduced decomposition and let £,, =

Zi, ... iy, As in the compact case [S], we deduce from Proposition 2.2, [VS] and 2.1
the following fact.

Proposition 2.2. The family T,t, w € W, t € T, constitutes a classification of the
symplectic leaves in G .

Remark 2. 2. The preceding proposition, in the compact Kac-Moody case, can be also
deduced from {KP2, Proposition 5.1].

§3. Poisson structures on real Kac-Moody groups. In this section we want to
discuss the passage from the Lie bialgebra structure on g¢ (resp., gy) discussed in (D1,
§3] (resp., §1) to a Poisson structure on the corresponding Kac-Moody group. We shall
assume from now on that the generalized Cartan matrix A is not finite; in the finite case,
the passage is well-known: see [D3]. It is not clear, to my knowledge, which is the definition
of a Poisson group, or even a Poisson manifold, in the infinite dimensional case. We shall
adopt the provisional point of view, of considering a structure of Poisson algebra on some
algebra of functions on the space in question, but see the remarks after Lemma 3.1.

Let C[G] be the ring of strongly regular functions on G [KP1, §2].Let [(X) (I*(X)) be
the irreducible highest (lowest) weight gc-module defined as in [K, Ch. 9]. Then, as a
gc X gc-module, we have

(3.1) CIG] =~ @arep+I(A) ® I(A),

cf. loc cit. Moreover, C[G] can be also identified with a subalgebra of U(gc)*, and then
it is a g¢c X gc-submodule, where gc x g¢ acts on U(ge)* in the following way: the first
(resp; second) by the transpose of the right action (resp., the left action composed with
the antipode). In the following, we shall always consider this action. Recall that this
identification factorizes through the right hand side of (3.1) thanks to the morphisms of
gc X ge-modules ¢y : [(A) @ I"(A) — U(gc)* given by

(dr(v ® a),z) = (a,zv), =z € U(gc).

Note that the image of ¢, is the isotypic component, with respect to the g¢ x g¢ action, of
type [(A) @ I*(A). Indeed, let ¢ : I{A) @ I*(A) — U(gc)* be a morphism of g¢ x ge-modules
and set d(v,a) = (#(v ® a),1). Then b(v, &) = ¢{a,v) for some scalar ¢; hence ¢ = cé,.

It is suggestive to consider some other subspaces of U(gc))*. First let C_[G] =
w!(C[G]); second, let C+[G] let the subalgebra generated by C_[G] + C[G]. Note that
C_[G] N C[G] is one-dimensional and C_[G] ~ Prep+[*(A) ® [(A). Next let O[G]
be the sum of all integrable gc x gc-submodules of U(ge))*. As the multiplication
U(ge)* ® U(sc)* — U(se)* 1s a morphism of ge x ge-modules, O[G] is a subalgebra
of U(gc)*.
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Now let 7 be the formal expression defined by (1.1).

Lemma 3.1. (a) C[G] is a Poisson algebra, with the bracket determined by

(3.2) {exr(v @), du(w@Ohz) = (1B (2 @1+ 10z, T @w).
(b) C_[G] is also a Poisson algebra, with the bracket defined again by (3.2).

Let {, }: (U(sc)®U(8c))* — U(gc)* be the transpose of the extension to U(gc) of the
cobracket defined by r. We only need to show that {C[G],C[G]} C C[G]. Let z € U(gc),
Mt € P*, v I(3), w e 1), 1 € ((A), C € 1*(u). Then

{oa(v@n), pu(w®()}, 2} = (a(v@N) @, (wB(),ad z(r)) = (n®(, [z@1+1@z, rlv@w)
=R ER1+10z)rvRuw)+ (MA((z@®1+1Qz)v@w).

NowrvQw = % EuEA“’,iEIq Naiv @ X_q,iwv — X_q,iv @ Xq,iw is a well-defined element
of [(A) ® [(u). Indeed, we can assume that v is a weight vector of weight A — 7, for some
T € Q@ (cf. §4 for the notation); if Xo ;v #0, then A — 7+ 0o = A — 7/ for some 7' € Qt;
hence the set of a’s such that X, ;v # 0 is finite.

The proof of (b) does not differ from the proof of (a). O enddemo

Let us now discuss the real case. We want to consider a Poisson algebra of functions on
G ;. The (antilinear) Lie algebra automorphism @ extends to an (antilinear) Hopf algebra
automorphism of U(gc), still denoted 8, whose fixed-point set is the universal enveloping
algebra of g;. However, its transpose does not preserve C[G], nor C_{G]. On the other
hand, C4[G] and D[G] are both 8* stable, but the Poisson bracket seems to be not well
defined on them. The author imagines two possibilities of circunvecting this problem: one
is to consider a Poisson algebraic infinite dimensional variety as a limit of finite dimensional
ones, as in [Sh]; the other is not to force ourselves to consider a Kac-Moody group as an
"affine” one, but perhaps to take into account simultaneously two rings of functions on it;
l.e. an algebraic analogue of twin buidings [T1].

ALGEBRAIC P01SSON GEOMETRY

The following sections are concerned with a systematic study of algebraic varieties car-
rying and additional structure-wich is locally described by a Poisson bracket.

§4. Poisson algebras. The material of this section, with the exception of two or three
points, is taken from (Be]; the author decided to include it because that paper is not easily
available.

Let k be a commutative ring. A Poisson algebra over k is a pair (4, {, }) where 4 is
a commutative algebra over k and a Lie algebra over k with bracket {, }, both structures
being related by the Leibnitz rule: {f,gh} = {f,g}h+¢{f, h}. In what follows, all algebras
are understood to be over k, and commutative unless explicitly stated.
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A subset of a Poisson algebra which is simultaneously an ideal for both structures is
called a Poisson ideal. Poisson subalgebras are defined in the same vein. The quotient
of a Poisson algebra by a Poisson ideal is obviously a Poisson algebra, wich satisfies the
expected universal property. We shall reserve the words "ideal”, ”subalgebra”, ... , for the
ideals ,subalgebras, ... , of the associative algebra structure. The sum and the intersection
of an arbitrary collection of Poisson ideals are still Poisson. In particular, the greatest
Poisson ideal contained in an arbitrary ideal I is denoted = (I).

Let us fix a Poisson algebra (A4, {, }) and let I be an ideal of A,a € A. Set

oa(I) = {s € A:3m € N such that a™s € I}.

The following properties can be easily verified:

(a) 0q(I) 1s an 1deal of A, o,(I) I. If I is Poisson, then so is o,(I).

(b) 0,(I) = Aif and only if a € VI.

(c) P a prime ideal of A, a ¢ /7(p). Then o,(x(P)) = n(P).
If a ¢ P, then m,(P) C \/7,(P) C P and we are done. Now suppose that /7,(P) ¢ P
and let s € /m,(P) — P. Take m € N such that a™s € 7(P). Then a™ belongs to
as(m(P)) = 7(P).

(d) P prime implies n(P) primary.

(e) Localization and tensor product of Poisson algebras are still Poisson.

Let S be a multiplicatively closed subset contained in a Poisson algebra A and let t,s € S,
a,b € A. Then the formula for the Poisson bracket in Ag 1s

a b st{a,b} — sb{a,t} — at{s, b} + ab{s,t}
{;’?} = 5242

Let B be another Poisson algebra. Then the Poisson structure on A® B is determined by
{a®ba'" @V} = {a,d'} @bV +ad @ {b,'}.
(f) ”"Sheaf” property.
Let (si)ier be a family of elements in an associative algebra A such that each localized
algebra A,; is provided with a Poisson structure. A,,,; inherits then two Poisson structures,
by localizing from A,, or A,,. Assume that they coincide. If A = (s,)ier, then A admits
a unique Poisson structure inducing the given in A4,, by localization.
Apply [AM, Ex. 7.1] to {a,b}; € A,, to guarantee that {a,b} € A whenever a, b € A.

(g) Assume that k is Q-algebra. Then P prime implies 7(P) prime.
We need to prove that \/x(P) is Poisson. Let z € (/n(P), a € A. Let n be the

minimal positive integer such that z" € n(P); we can assume that n > 1. Then {a,z"} =
nz""1{a,z} € n(P), hence z"~'{a,z} € n(P) and by (d), {a,z} € \/7(P).

(h) Without the assumption Q — £, (3) is false.
Let k[D, €] be a polynomial ring in two variables over k. Then the bracket defined by

{EjD", Equ} — (qu _ mj)€q+j—1Dm+n—1
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provides k|D, €] with a Poisson algebra structure. Assume that p = 0 in k for some integer
p. Then (€?) is a Poisson ideal and hence A = k[D, €]/{e?) is a Poisson algebra. Let I be
the principal ideal of A generated by the image of e. If k is an integral domain, then I is
prime. Now assume that p is a prime number. Then we claim that x(I) = 0, which is not
a prime ideal of A. Indeed, let 0 # P(e, D) € n(I), where by abuse of notation we still
name D, ¢, their images in A. Write P(e, D) = }_.c;c,_, Pi(D)€', with Pi(D) # 0, and
take j minimal. Obviously, j > 0. But {D,P(e,D}} = }".;c, Pi(D)ie!. Asjisa
unit, P;j(D) # 0, a contradiction.

On the other hand, let ¥ = Z and I C Z[D,¢] the ideal generated by 2 and e. Then
m(I) = (2,€?), which is not prime. (If eP(D) belongs to m(I), then so does {D,eP(D)} =
P(D); hence 2|P(D)).

Remark 4.1. (g) was proved in [Be], but claimed in [VK] without the assumption above.
The first part of (h) is inspired in [Kp, p. 12, Example].
Now we state some consequences of (g). Assume that Q — k.
(i) Any prime ideal of A is Poisson.
(j) Let I be an ideal which is maximal in the set of Poisson ideals of A. Then I is
prime.

(k) The radical of a Poisson ideal is the intersection of all the Poisson prime ideals

containing it. It is then also a Poisson ideal.

(1) If I is a radical ideal, then so is =([).

Example. Let F be a finite set and let A be the algebra of functions on F with values in
k; then A admits no non-trivial Poisson bracket. In fact, A has no non-trivial derivation.

§5. A Darboux type theorem. Let 4 be a k-algebra and let Der(A4) (resp., Q(A))
denote the A-module of k-derivations (resp. the differential module of A); recall that
Der(A) is isomorphic, as A-module, to Hom 4(Q2(A4), 4A). Assume that A is a Poisson
algebra. Then there exists F € Hom(A2Q(A), A) such that

(5.1) {a,b} = F(da Adb).

Now assume that the Poisson algebra A is local and let 9 denote its maximal ideal,
K = A/ its residual field, y — ¥ the projection 9 — M/M?2. The composition of the
Poisson bracket with the canonical projection A — K induces an antisymmetric bilinear
form B : /M2 x M/M? - K. If dimg(m/MM?) is finite, B can be expressed in some

basis as
0 I, 0
-I, 0 0],
0 0 0

where I, 1s the r X r identity matrix. The following auxiliary result should be well known.

Lemma 5.1. Let A be a local ring, M a free A-module of finite rank, B: M x M — A
an antisymmetric bilinear form. Then there exists a basis of M such that the matrix of B
in it has the form
0 I, 0
-I. 0 0],
0 0 X



12 NICOLAS ANDRUSKIEWITSCH

where the entries of X belong to the maximal ideal M of A. (Clearly, the integer r depends
only of B.)

Proof. Let {e;} be a basis of M. If B(ei,e;) € M for all 4, j, there is nothing to prove.
Otherwise we can assume, after reordering the index set and multiplying by a unit, that
B(ey,e3) = 1. Take u; = e; + B(e;, e1)e; — Ble;, e;)e; and proceed by induction. O

Theorem 5.2. Let A be a local regular Poisson algebra over a field k of char 0 and
suppose that the residual field k' = A/9 is isomorphic to 0 and that A is a localiza-
tion of a finitely generated k-algebra. Then A admits a regular system of parameters
Ply---sPrs@ly. . s qrsY1,---,Ys Such that
(5.2)

{pi»g;} = 6i5, {pi,p;} = {aia;} = {pisyn} = {aiun} =0, {vn,ve} € (v1,.-.,9s).

In particular, 7(9M) is the ideal generated by y1,...,ys,.

Proof. By hypothesis A4 is a free A-module of rank equal to dim A [Ha, Th. 11.8.8). We
shall apply the Lemma to the bilinear form B : 24 x 24 — A induced by the Poisson
bracket. Let py,...,prq15.--,¢r,%1,...,Y» De elements of M such that their images in
M /M? coincide with the images of the basis B provided by the Lemma, after tensoring

QLA with k (see [Ha, I11.8.7]). By Nakayama Lemma, B = {dpy,...,dp,,...,dy,}. Assume

now that
{yn,ye} = Z a;p; + Z bjq; + Z ceyy mod 9)?2,

for some a;,bj,c € k. Then 0 = {p;,{yn,ye}} = bi mod M (by Jacobi) and similarly,
a; = 0. A similar argument shows that {yx,ye} belongs to {y1,...,ys) mod 9" for all n.
Passing to the quotient by (¥1,...,y,) and using [Ma, 14.D and Th. 36] we conclude that
{yn,ye} € {y1,--.,ys). Hence, {y1,...,y,) is a Poisson ideal and is contained in #(90).
To prove the equality, we can assume that s = 0; that is, we want now to prove that
7(9M) = 0. Let n be the minimal integer such that there exists z € (9M" N (M) — M+,
Assume for example that
T = z ngf mod M+
>0

where P, 1s an homogeneous polynomial in p,, . .. ¢, of total degree n—£, and for some £ > 0,
Py # 0 [Ma, Th. 35]. Then {q;,z} = 3,5, ¢Ppt~! mod M € n(9M), contradicting the
minimality of n. O

Now let X be a Poisson non-singular variety over an algebraically closed field k of char
0. This means (1) X is a non-singular variety as defined in [Ha, pp. 105, 177],
(2) the structural sheaf is in addition a sheaf of Poisson algebras.

Let O; be the local ring at a closed point  with the inherited Poisson structure and let
Plye-sPrsqly---sqrs Y1,---,Ys be as in the conclusion of the Theorem. Let U be an affine
neighborhood of z such that py,...,pr,¢1,...,4r,v1,...,¥s belong to k[U]. Let Fy(z) be
the closed reduced subvariety of U defined by the ideal generated by y;,...,y,. Observe
that Fy(z) is an irreducible subvariety of dimension 2r. As the application k[U] — O; is
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injective, we have that (5.2) is still true on k[U]; it follows that the Poisson rank of Fy(z)
at any closed point z is 2r and hence Fy(x) is a symplectic subvariety of U.

Now let us define an equivalence relation on X(k) as follows: z and y are declared
equivalent if there exists a family of closed points (#;)1<i<n; and for each z; an open affine
neighborhood U; and a closed irreducible symplectic subvariety Fy,(z;) of U; as above such
that z; = z, zy = y and z; € Fy,_,(zi-1), 2 £ 1 £ N. Clearly, z is equivalent to y for
any y € Fy(x). It is easy to see that the equivalence class of z is a symplectic irreducible
subvariety of X.

ALGEBRAS OF FUNCTIONS ON QUANTUM GROUPS

§6. Quantum Kac-Moody groups. In this section, we shall discuss the "algebra of
strongly regular functions” on a quantum Kac-Moody group, cf. [KP1]. For simplicity, we
shall assume that det A # 0, cf. [L1, 4.14].

6.1. Let q # 1 be a positive real number. Following Gauss, we set for m € N

n

[m] = qQ”" —-q™™ [m]1 = [m][m - 1] . [1]’ [m [m]‘

q-q !’ J ] T Olm =)

The quantized enveloping algebra U = U,(A4) is defined as the associative C-algebra
given by generators E;, Fj, Kiil and relations

(6.1) K,K7'=K'K;=1, KK;=KK,

(6.2) KE; = ¢"“E,K;, K;F;=q %% FK;,

(6.3) E;F; — F;E; = 5,%

and if i # 5

(6.4) > -)EPEEM =0, Y (-)PFORFY =0
htt=1—a;; hdt=1—a;;

Here E,-(N) denotes E}Y divided by [N]} (idem for Fi(N)).U is a Hopf algebra with comul-
tiplication A, antipode S and counit e defined by

6.5 AE)=EQ®I+K®E AF)=FQK'+19F AK =K:®K;
(6.6) S(E;)=-K['E; S(F:)=-FK; S(K;)=K"
(6.7) E(E,') =0 G(Fi) =0 E(I(,‘) =1.

Let U° (resp.,UY, U~) be the subalgebra of U generated by all the K*! (resp., E;,
Fy).
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Let R (resp., L) be the right (resp., left} action of U on itself: R:(y) = yz (resp.,
L:(y) = zy.

* Let P (resp. QV) be the free abelian group with basis w; (resp. @}), 1 <1 < n. Let
Pt =Y Z w;. Let (,) : P x QY — Z be the bilinear pairing defined by {(w;,a)) = &;.
Let «; € P be defined by {aj, o)) = a;j and let Q = Y Ze;, QT =3 Z 0.

As usual, we shall denote by p the element >, ¢, wi € P.

Let > be the partial ordering on P defined by X > p if and only if A — € Q*.

Let (|) : Q¥ x @V — Z be the symmetric bilinear non-degenerate form defined by
(a)]af) = dj_la,'j = d;'a;;. Let v: QY — P be the morphism defined by (v(a¥),B") =
(aV|8Y); we have Q C v(QV) because o; = d;v(«)). Thanks to v, we have a symmetric
bilinear non-degenerate form, still denoted (|), on @; it follows that (a;la;) = diaij =
d;aj;. We can even extend this form to (|): P x P — Q.

Let M be an U%-module and let 7 € P. Then M, denotes the vector subspace of
M consisting of all v such that Kjv = ¢{"l*)y. We shall say M is U°-diagonalizable if
M = ®,epM,; and UC-admissible if in addition dim M, < oo, for any 7. (We do not
need to consider a more general notion of diagonalizable U%-modules than this one.) The
weights of M are the elements of the set

I(M) = {r € P: M, #0}.

Now let M be an U-module. We shall say that M is integrable [L1, 3.1] if it is U°-
diagonalizable and E;, F; act as locally nilpotent endomorphismson M, for all 2. The direct
sum (resp., tensor product) of an arbitrary (resp., finite) family of integrable modules is
again integrable.

Let A € P and let £()\) be the unique irreducible U-module having a vector vy €
L{(A)a — 0 such that U*v) = 0. Then [L, Th. 4.12] £(}) is a graded U°-module; more
precisely, £(A) = @,epL(X)r and the dimension of L(A), is given by the Kac-Weyl formula.
Now let us identify @,epL(A): with a subspace of £(A)* and let us consider the latter as
a U-module by the formula {(za,v) = (@, S(z)v), £ € U, a € L{A)*, v € L(A). Let ay €
L(A)} -0 and let £*()) be the U-submodule generated by a). Note that ay € L(A)X, —0
and U~ a, = 0; moreover L*(A) C @repL(A)r. £*(A) has a unique irreducible submodule;
applying again {L, Th. 4.12] we see that £*(}) is in fact irreducible and equals @,¢pL(A)}.

6.2. The known (to me) proofs of the "complete reducibility theorem” for quantum
groups with finite Cartan matrix are based on an argument of Borel, in order to avoid
the use of the Casimir [R], [L2, 7.2]. However, a quantum analogue of the Casimir was
constructed in [D2]. The purpose of this subsection is to prove a ”complete reducibility
theorem” for quantized Kac-Moody algebras, using this quantum Casimir and following
the lines of the proof in [K, 10.7].

The category O and primitive vectors are defined as in [K, §9].

The following important fact was proved in [D2, §5], see the remarks after Proposition
5.2. (It is not difficult to pass from the formal version of the quantized enveloping algebra
considered by Drinfeld to the present setting.)
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Proposition 6.1. Let V be an U-module in the category O. Then there exists an operator
Q:V — V which commutes with the action of U and which is the image of a certain
element in a suitable completion of U. (In particular, Q is preserved by morphisms of
U-modules.) Moreover, if V is generated by an element v such that Utv =0, v € V, for
some T € P, then Q acts on V as multiplication by ¢{7I7+2¢),

Theorem 6.2. Let M be a module in the category O. Then the following statements are
equivalents:

(a) M is integrable.
(b) M is isomorphic to a direct summ of modules L()), A € P*.

Proof. (b) == (a) follows from [L1, 3.2]. We shall trace from [K] the steps of the proof

of the remaining implication.

Step 1. (Compare with (K, Prop. 9.5].) Let V be a module in the category O and
suppose that for any two primitive vectors A and g of V, A > p implies A = u. Then V is
completely reducible.

Step 2. (Compare with [K, Prop. 9.9 b)].)Let V be a module in the category O and
suppose that for any two primitive vectors A and p of V', A > p implies 2(A + p|A — p) #
(A — |]A = ). Then V is completely reducible.

Step 8. Now the proof of (a) = (b) is the same as the proof of [K, Th. 10.7 b)}],
taking into account [L1, Lemma 3.3]. O

6.8. Let A, p € P*. Then I(A) ® I(11) is a completely irreducible g¢-module and one has
a decomposition

(6.8) I(A) ®@ (1) =~ Bierl(mi),

for some family (7;);es of elements in P* K, Corollary 10.7.b].

Now let us consider £(A) ® £(x) as an U-module via A. We shall deduce from [L1]
that the Grothendieck rings of the categories of "integrable modules in the category O”
coincide in the classical and quantum cases.

Theorem 6.3. L£(A) ® L(p) is completely reducible and
L(A) ® L() = Dierk(Ti),

where (1;)ies is the same family as in (6.8).

Proof. The first part follows from the Theorem and the second, from the first and [L1, Th.
4.12]. 0O

6.4. Now let ¢, be the application £(A) @ £L*(A) — U* given by

(dr(v @ a),z) = (a,zv), z€U.
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Let us consider U* as a U® U-module via R*®@(LoS)}, 1. e. {((R'Q(LoS)* ) y®2)T,z) =
(T, S(2)zy). Then ¢, is a morphism of bimodules:

(R'®(LoS))y®2)¢a((v@a),z) = ($a(v ® a), S(2)zy) = (20, zyv) = ($a(yv @ za), z).

Let M,y be the isotypic component of type £(A) of an U-module M, i.e. the sum of
all its submodules isomorphic to £()). We have ¢A(L(A)® L*(A)) € Uy, considering the
U-module structure on U* given by R,

In analogy with the Peter-Weyl theorem and [KP1, Th. 1], we introduce now the "ring

of strongly regular functions on a quantum Kac-Moody group”. Let C,;[G] be the image
of the morphism ® = @¢) : Bacp+ L(A) @ L*(A) — U™,

Proposition 6.4. (a) ® is a monomorphism and hence Cy[G] =~ @yep+ L(A) @ L*().
(b) C,[G] is a subalgebra of U*. :

Proof. (a). Each ¢, is injective since L(A)® L*(A) is an irreducible bimodule and ¢ (va ®
ay) # 0. As Ci[G] = @aepCy[Gl(n), @ is injective.

(b). Let A\, u € P+, v € L(N), @ € L*(N), w € L), B € L*(p). Let (7;) be a family
in P* such that £(\) @ £(jt) ~ DierL(r;); then L*(X) ® L*(1t) ~ DierL*(r;). Now let
u; € L(7;), v; € L*(7;) such that

v w = Zuf, a®ﬂ=27j.
i€l JEeT
Then
$r(v®a)g(w@ P =) $r(ui®7;). O

€]

§7. Admissible representations. In this section we propose a definition of admaissible
modules over C,{G]. From now on we assume that G is finite dimensional. Let w € W,
A € P*. Following [LS] we introduce the following elements of C,[G]:

Cj;,‘\ = ¢A(U,\ ® O.’_.w(,\)),

where vy (resp., a_,(1)) Is a non-zero weight vector of L{)) (resp., £L*(A)) of weight A (resp.,
—w(A)). Obviously, Cz’ ) 1s defined up to a constant. Let wy € W be the unique element
sending the set of all positive roots in the set of negative ones; then L£*(X) ~ L(—wg(A)).
Let us also denote

Con = ¢-w(@-2 B vu(y),

where vy,(1), @—» have a similar meaning as above. Let now A,, be the subalgebra of C,[G]
generated by C:%.w.- for all ¢, where the w;’s are the fundamental weights.
Let J, x be as in §1. Let §¢ be the unique antilinear involution of U, such that

9I(E) = (-1)XOF, 64F)=(-1)*9E;, /(K=K

(If J={1,...,N}, then we shall denote w? instead of 89.)
It is known that the formula z* = S6%(z) provides U, (and a fortiori C,[G]) with a
Hopf *-algebra structure. The following fact generalizes [S).
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Lemma 7.1. (a) Each £()\), A € P™, carries a non-degenerate sesquilinear form, invariant
with respect to *.

(b) oa(va ® a—w(n))’ € Cod_uo(n)(a-x @ vu(n)).
(c) A, is a *-subalgebra of C,[G].

Proof. (a) follows as in[K, Ch. 11] and (b), from (a) (see [A3]); (c) is now obvious.

Definition. A C,[G]-module is called w-admissible if as A,-module, is a direct sum of
one-dimensional submodules. It is called admissible if it w-admissible for some w € W.

Remark 7.1. It was proved in [LS] that each unitary (with respect to w?) irreducible
representation is admissible.

Lemma 7.2. A,, is a commutative subalgebra of C,[G).
Proof. This follows from [LS, 3.4.1].

The author suspects that this subalgebra plays an important role in the representation
theory of the algebras of functions on quantum groups.
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