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CONFORMAL ENTROPY RIGIDITY

THROUGH YAMABE FLOWS

PABLO SUÁREZ-SERRATO AND SAMUEL TAPIE

Abstract. We introduce two versions of the Yamabe flow which preserve

negative scalar-curvature bounds. First we show existence and smooth con-
vergence of solutions to these flows. We then show that a metric with negative

scalar curvature is controlled by the Yamabe metrics in the same conformal

class with constant extremal scalar curvatures. This implies that the volume
entropy of our original metric is controlled by the entropies of these Yamabe

metrics. We eventually use these Yamabe flows to prove an entropy-rigidity

result: when the Yamabe metric has negative sectional curvature, the entropy
of a metric in the same conformal class is extremal if and only if the metric

has constant extremal scalar curvature.

1. Introduction

Geometric flows are powerful tools when dealing with geometric problems. In
this article we present variations of the Yamabe flow and use them to investigate
the asymptotic geometry of the underlying manifold.

Let (M, g) be a compact Riemannian manifold whose scalar curvature satisfies
Rmin ≤ Rg ≤ Rmax < 0. We will say a family of metrics (gt)t∈[0,T ) is an increasing
Curvature-normalized Yamabe flow , if it is a solution to the PDE

∂gt
∂t

= (Rmax(gt)−Rgt)gt with initial condition g0 = g.

It is a conformal flow (it flows along the conformal class), which we will denote
by CYF+. Similarly, we will say a family of metrics (gt)t∈[0,T ) is a decreasing
Curvature-normalized Yamabe flow if it is a solution to the PDE

∂gt
∂t

= (Rmin(gt)−Rgt)gt with initial condition g0 = g.

It is also a conformal flow and it will be denoted by CYF−.

Theorem 1. Let (M, g) be a compact Riemannian manifold whose scalar curvature
satisfies Rmin ≤ Rg ≤ Rmax < 0. Let gY be the unique metric in the conformal
class of g whose scalar curvature satisfies RgY ≡ −1.

(1) The increasing Curvature-normalized Yamabe Flow CYF+ (with initial con-
dition g0 = g) has a unique solution defined for all t ≥ 0, which we will
denote by (g+

t )t≥0.
Similarly, the CYF− has a unique solution defined for all t ≥ 0, which we
will denote by (g−t )t≥0.

(2) For all t ≥ 0, the scalar curvature bounds are preserved along these flows:

Rmin ≤ Rg+t ≤ Rmax,
1
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Rmin ≤ Rg−t ≤ Rmax.

(3) For all x ∈ M , the application t 7→ g+
t (x) is increasing and t 7→ g−t (x) is

decreasing.
(4) For all k ≥ 0 the CYF+ converges exponentially fast in the Ck topology to

gmax =
gY

|Rmax(g∞)|
≤ gY
|Rmax|

.

For all k ≥ 0 the CYF− converges exponentially fast in the Ck topology to

gmin =
gY

|Rmin(g∞)|
≥ gY
|Rmin|

.

The Yamabe flow was introduced by R. Hamilton in [Ham89] and item (1) above
actually follows from the work of R. Ye [Ye94] and a scaling argument which we
present in section 2. This geometric flow has been extensively studied. Notable
contributions to the global behaviour of the Yamabe flow in the presence of positive
scalar curvature include the recent work of H. Schwetlick and M. Struwe [SchS03]
and S. Brendle [Bre05] [Bre07]. However, since we will only be interested in the
negative scalar curvature case, we will not need the delicate analysis involved in
the positive curvature setting.

Recall that a metric with constant scalar curvature is called a Yamabe metric.
The monotonicity of these Curvature-normalized Yamabe flows implies in particular
the following Schwarz Lemma, whose first proof is due to S.T. Yau [Yau73].

Corollary 2 (Conformal Schwarz Lemma). Let (M, g) be a compact Riemannian
manifold whose scalar curvature satisfies Rmin ≤ Rg ≤ Rmax < 0. Let gY be
the Yamabe metric in the conformal class of g whose scalar curvature satisfies
RgY ≡ −1. Then

gY
|Rmin|

≤ g ≤ gY
|Rmax|

.

We will give several geometric applications of this Schwarz Lemma together with
the Curvature-normalized Yamabe flows, and emphasize on what they imply on the
entropy of the Riemannian manifold. The volume entropy of (M, g), which we
will simply call its entropy , is defined by

h(g) = lim inf
R→∞

log Vol(Bg(x̃, R))

R
,

where x̃ is any point of the universal cover M̃ of M and Bg(x̃, R) is the ball of

radius R centered in x̃ in M̃ for the metric lifted from g.
In this paper, we restrict to the conformal class of a Riemannian manifold with

negative scalar curvature. Let (M, g) be a Riemannian manifold whose scalar cur-
vature satisfies

Rmin ≤ Rg ≤ Rmax < 0,

and let gY be the Yamabe metric in the conformal class of g with scalar curvature
RgY ≡ −1. The conformal Schwarz Lemma stated above implies that the entropy
of the Yamabe metric controls the entropy of g.

Corollary 3. Let (M, g) be a Riemannian manifold whose scalar curvature satisfies

Rmin ≤ Rg ≤ Rmax < 0,
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and let gY be the unique metric in the conformal class of g whose scalar curvature
satisfies RgY ≡ −1. then√

|Rmax|h(gY ) ≤ h(g) ≤
√
|Rmin|h(gY ).

Moreover, using the Curvature-normalized Yamabe flows, in our main result
in this paper we will show the following entropy-rigidity in a conformal class for
metrics with negative sectional curvatures:

Theorem 4 (Conformal entropy-rigidity). Let (M, g) be a Riemannian manifold
with negative sectional curvatures and whose scalar curvature satisfies

Rmin ≤ Rg ≤ Rmax < 0.

Let gY be the Yamabe metric in the conformal class of g with scalar curvature
RgY ≡ −1.

(1) h(g) ≥
√
|Rmax|h(gY ) with equality if and only if g = gY

|Rmax| ;

(2) h(g) ≤
√
|Rmin|h(gY ) with equality if and only if g = gY

|Rmin| .

All the results we will prove are known for compact surfaces. In fact our line of
attack is inspired by A. Manning [Man04] who proved that starting with a negatively
curved metric on a closed compact Riemann surface the Volume-normalized Ricci
Flow strictly decreases entropy. In this dimension both the Ricci and Yamabe
flows agree. It should also be pointed out that this method will most likely not
yield the same results in a non-negatively curved situation. Indeed, D. Jane [Jan07]
constructed examples of smooth metrics on the 2–sphere and the 2–torus which have
zero topological entropy, and as they flow along the volume normalized Ricci flow,
entropy strictly increases. Observe that our choice of normalization comes from the
scalar curvature bounds and not from the volume. Let us now review some of the
known results.

Let (M, g) be a closed Riemannian n–manifold, n ≥ 3, such that its sectional
curvatures satisfy Kg ≤ −1. Assume that M is homotopically equivalent to a
locally symmetric manifold (MS , gS) with sectional curvaturesKgS ≤ −1 (when
such a symmetric space exists, it is unique by Mostow’s rigidity theorem). It has
been shown by U. Hamenstädt in [Ham90] that the entropy of (MS , gS) is a lower
bound for the entropy of (M, g):

h(M, g) ≥ h(MS , gS)

The equality holds if and only if (M, g) is isometric to (MS , gS). This is called
the entropy rigidity of the locally symmetric spaces with negative sectional cur-
vatures. A stronger version of this result was shown using another method by G.
Besson, G. Courtois and S. Gallot in [BCG95]. The extension of this result to
the case of products of symmetric spaces with negative sectional curvatures was
announced in [BCG96] and published by C. Connell and B. Farb in [ConFar03].
Furthermore, it was shown by G. Robert in [Rob94] that a locally symmetric space
of nonpositive sectional curvatures is the unique minimizer for the entropy within
its conformal class, see also [Kni05].

When M is not homotopically equivalent to a locally symmetric Riemannian
manifold with non-positive sectional curvatures (or a product of them), not much
seems to be known about entropy minimizing metrics. In fact, this appears to
be the first time that a metric which is not necessarily locally symmetric is
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identified to be an entropy minimizing metric (keep in mind that we are using
different normalizations). The first negatively curved smooth 4–manifold which is
not diffeomorphic to a locally symmetric space was found by G.D. Mostow and
Y.T. Siu in [MS80]. Other interesting examples come from the conformal classes
of metrics described by M. Gromov and W. Thurston in [GT87], in which there
is a metric with almost-constant negative sectional curvatures but no hyperbolic
metric. Our Theorem 4 provides metrics that uniquely minimize the entropy in the
conformal class of these metrics. We are not aware of any other method to single
out special metrics as minimizers of the entropy on these manifolds.

Maximizing the entropy has been less often dealt with. Bishop’s Compari-
son Theorem implies that when the Ricci curvature of (M, g) satisfies Ricg ≥
−(n − 1)g, where n is the dimension of M , then its volume entropy satisfies
h(M, g) ≤ n − 1. Recently, Ledrappier and Wang proved in [LW09] that under
these hypotheses, the upper bound h(g) = (n − 1) is attained if and only if g is
real-hyperbolic. They also proved a similar entropy-rigidity statement for complex-
hyperbolic and quaternionic-hyperbolic closed manifolds relying on a lower bound
on the holomorphic-sectional curvature. Our Theorem 4 implies the following re-
sult:

Corollary 5. Given any constant C > 0 and any metric g0 with negative scalar
curvature let us consider the set of metrics g conformal to g0 which satisfy 0 > Rg ≥
−C: on this set, the functional g 7→ h(g) attains its maximum at the Yamabe metric
whose scalar curvature is constant and equal to −C. Moreover, if this Yamabe
metric has negative sectional curvature, then it is the unique maximum.

In the next section we explain the details and relevant facts of the CYF. Then
in section 3 we prove the conformal version of the Schwarz lemma and give some
geometric applications. Finally, in section 4 we focus on finding extrema for the
entropy. We have included the maximum principles which underpin this paper’s
analysis in the appendix.
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2. Curvature-normalized Yamabe Flows

Let Rmax < 0 be a negative constant and (M, g) be a Riemannian n–manifold,
n ≥ 3, whose scalar curvature Rg is at most Rmax < 0. For example, a real-
hyperbolic manifold (M, gH) of dimension n ≥ 3 satisfies RgH ≡ −n(n−1). This is
a special case of a Yamabe metric, i.e. a metric with constant scalar curvature.
Let us first recall the following fundamental result on Yamabe metrics.
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Theorem 6 (Yamabe-Trudinger). Let (M, g) be a closed Riemannian manifold of
dimension n ≥ 3 such that the scalar curvature of g is everywhere nonpositive,
and does not vanish everywhere. Then there exist a unique Yamabe metric gY
conformally equivalent to g with constant scalar curvature RgY = −1.

It was claimed by H. Yamabe in [Yam60] that in each conformal class, there
exists a metric with constant scalar curvature. N. Trudinger pointed in [Tru68]
that the proof had a mistake, and corrected it in the case of non-positive scalar
curvature. The remaining cases were settled later by T. Aubin and R. Schoen. A
proof of the uniqueness (up to scaling) of the Yamabe metric in the case of non-
positive scalar curvature can be found in [Aub82], p. 135. In each conformal class,
we will always normalize the Yamabe metric by the value of its (constant) scalar
curvature.

We call the Curvature-normalized increasing Yamabe Flow (in short,
CYF+) on M with initial data g a family of metrics (gt)t≥0 on M satisfying :

∂gt
∂t

= (Rmax(gt)−Rgt)gt
g0 = g

All this section is devoted to the proof of:

Theorem 7. Let (M, g) be a closed Riemannian manifold of dimension n ≥ 3
whose scalar curvature satisfies

Rmin ≤ Rg ≤ Rmax < 0.

Then the Curvature-normalized increasing Yamabe Flow with initial data g has a
unique maximal solution (gt = eftg), defined for t ∈ [0,∞). For all t ≥ 0, its scalar
curvature satisfies

Rgt ∈ [Rmin, Rmax].

Moreover, there exists a Yamabe metric gmax in the conformal class of g with
constant scalar curvature Rgmax ≤ Rmax < 0 such that, for all k ≥ 0, gt converges
exponentially fast to gmax in the Ck topology.

Let us point out that, since along the CYF+ the scalar curvature is less than the
initial Rmax, then the conformal factor of the metric gt with respect to the initial
metric g is non-decreasing in time.

Proof. Let g be a metric whose scalar curvature satisfies Rmin ≤ Rg ≤ Rmax < 0.
Let g̃t be the solution of the Volume-normalized Yamabe Flow VYF:

∂g̃t
∂t

= (sg̃t −Rg̃t)g̃t
g0 = g,

where

sg̃t =
1

Vol(M, g̃t)

∫
M

Rgtdvg̃t

is the average scalar curvature of (M, g̃t). Since Rmax < 0, it follows from
Theorem 2 of [Ye94] that this conformal flow has a unique solution, defined for all
t ≥ 0. Moreover, the metric converges exponentially fast when t → ∞ in the C2

topology to the Yamabe metric in the conformal class of g with same volume as g.
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Let us set for all t ≥ 0

φ(t) =

∫ t

0

(Rmax(g̃τ )− sg̃τ ) dτ,

and let a : (0,∞)→ (0,∞) be the unique solution of

a′(t) = e−φ(a(t))

a(0) = 0,

The map a is obviously increasing and defined as long as it stays finite. It follows
from the exponential convergence of the metric shown by Ye that there exist C, ε > 0
such that for all t ≥ 0, we have

|sg̃t −Rmax(g̃t)| ≤ Ce−εt.

Therefore, a exists for all t ≥ 0, and a(s)
s converges to a positive limit a∞ when

t→∞.

Lemma 8. Let us define for all t ≥ 0,

gt = eφ(a(t))g̃a(t).

Then (gt) satisfies:
∂gt
∂t

= (Rmax(gt)−Rgt)gt.

Proof. An immediate computation shows that, with the notations of the Lemma,
we have

∂gt
∂t

=
(
Rmax(g̃a(t))− sg̃a(t)

)
g̃a(t) +

(
sg̃a(t) −Rg̃a(t)

)
g̃a(t)

=
(
Rmax(g̃a(t))−Rg̃a(t)

)
g̃a(t)

= (Rmax(gt)−Rgt) gt
because Rgt = e−φ(a(t))Rg̃a(t) . �

Therefore, (gt)t≥0 is a solution of the CYF+. By the above argument, since the
map a is an increasing bijection on (0,∞), the uniqueness of the solution to CYF+

follows directly from the (well-known) uniqueness of the solution to VYF. We will
now prove that the scalar curvature bounds are preserved along the flow.

Lemma 9 (Scalar curvature remains bounded along CYF+). For all t ∈ [0, T ), the
scalar curvature of gt satisfies:

∂Rgt
∂t

= −(n− 1)∆gtRgt +Rgt(Rgt −Rmax(gt))

and
Rmin ≤ Rgt ≤ Rmax.

Proof. By Theorem 1.174 of [Bes08], when a metric g varies in the direction of the
symetric 2-tensor k, the variation of the scalar curvature is given by

R′g(k) = ∆g(trg(k)) + δg(δgk)− g(Ricg, k).

Here, at time t ≥ 0, k = (Rmax −Rgt)gt, and by definition, gt(k, gt) = trgt(k). We
therefore get:

∂Rgt
∂t

= ∆gt(−nRgt) + δgt(δgt(−Rgtgt)) +Rgt(Rgt −Rmax(gt))
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Since for all smooth functions f : M → R, δg(fg) = −df (see [Bes08], 1.59), this
eventually becomes

(1)
∂Rgt
∂t

= −(n− 1)∆gtRgt +Rgt(Rgt −Rmax(gt)),

which establishes our first claim. Moreover, Rg0(x) ≤ Rmax for all x ∈ M . There-
fore the Maximum Principle proven in Appendix A (see Proposition 26 (1))
implies that for all (x, t) ∈M × I, we have

Rgt(x) ≤ Rmax.

Now, going back to the variation formula (1), we conclude

∂Rgt
∂t

(x) ≥ −(n− 1)∆gtRgt(x).

Since Rg0 ≥ Rmin, the Maximum Principle implies again that Rgt ≥ Rmin for all
t ∈ I. Therefore the scalar curvature of a solution to CYF+ stays bounded in
[Rmin, Rmax] ⊂ (−∞, 0). �

Let now k ≥ 2 be fixed. It follows from Theorem 2 of [Ye94] that the solution (g̃t)
of the VYF converges exponentially fast in the Ck topology to the unique Yamabe
metric gV in the conformal class of g with same volume as g. Let recall that the
solution (gt)t≥0 is given by

gt = eφ(a(t))g̃a(t),

with a strictly increasing, a(t)
t converging to a positive limit when t→∞ and φ(t)

converging exponentially fast to a constant l when t → ∞. This implies that gt
converges exponentially fast (in the Ck topology) to the Yamabe metric

gmax = elgV .

Since for all t ≥ 0, we have Rgt ≤ Rmax, the constant scalar curvature of gmax
satisfies Rgmax ≤ Rmax. �

We have derived the long time existence and convergence CYF+ from the work of
Ye on VYF to shorten the argument. Since the CYF+ equation is rather simple, it
can be proven independently by repeating arguments which are very similar to Ye’s.
However, the smooth exponential convergence of the VYF is deduced in [Ye94] from
its C0 convergence due to well known facts from the theory of parabolic equations.
It appears that a complete proof of this smooth convergence, which relies on the
Schauder Theory for parabolic equations, has never been published. So we will
now give a complete proof of this exponential convergence in the case of CYF+. It
shows in particular that all derivatives of the flow converge exponentially fast to a
Yamabe metric at the same speed, given by the upper bound Rmax on the scalar
curvature.

Theorem 10 (Exponential convergence of CYF+). Let (M, g) be a closed Rie-
mannian manifold whose scalar curvature satisfies Rg ≤ Rmax < 0 and (gt)t≥0 be
the maximal solution of the CYF+ with initial data g. Then there exists a Yamabe
metric gmax, with scalar curvature Rgmax ≤ Rmax, such that for all k ≥ 0, there
exists a constant Cg,k satisfying for all t ≥ 0:

||gt − gmax||Ck ≤ Cg,ke
Rmaxt.
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Proof. Let (M, g) be a closed Riemannian manifold whose scalar curvature satisfies
Rg ≤ Rmax < 0 and (gt)t≥0 be the solution of the CYF+ with initial data g on
[0,∞).

Lemma 11. The scalar curvature Rgt of gt converges uniformly exponentially fast
to Rgmax ≤ Rmax when t→∞.

Proof. We have seen in Lemma 9 that Rgt ≤ Rmax for all t ≥ 0. Moreover, writing
the evolution equation of the scalar curvature given in Lemma 9 at a point where
the scalar curvature is maximal, we get that along the flow,

∂Rmax(gt)

∂t
≤ 0.

Therefore, the evolution equation of the scalar curvature gives for all (x, t) ∈M ×
[0,∞),

∂(Rgt −Rmax(gt))

∂t
≥ ∂Rgt

∂t
≥ −(n− 1)∆gt(Rgt −Rmax(gt))

+Rgt(Rgt −Rmax(gt))

≥ −(n− 1)∆gt(Rgt −Rmax(gt))

+Rmax(Rgt −Rmax(gt)).

Using the variable form of the Maximum Principle (Theorem 28), we get for all
(x, t) ∈M × [0,∞):

(2) 0 ≥ Rgt −Rmax(gt) ≥ (Rmin −Rmax)eRmaxt

Since Rmax < 0, the curvature converges exponentially fast to Rgmax ≤ Rmax at
all points of M . �

We will need an a priori bound on the conformal factor along the flow. It can be
deduced either from Ye’s work, or shown independently as indicated below. For all
t ≥ 0, we define vt : M → (0,∞) by gt = vtg0. We have seen that the map t→ vt
is increasing.

Lemma 12. For all t ≥ 0, we have 1 ≤ vt ≤
∣∣∣RminRmax

∣∣∣ .
Proof. Let gt = vtg0 = u

4/(n−2)
t g0 be the solution of the CYF+ with initial metric

g0.
It was shown in [Yam60] that if g = u4/(n−2)g0, then its scalar curvature is given

by:

(3) Rg = u−
n+2
n−2

(
4(n− 1)

n− 2
∆g0u+Rg0u

)
Therefore, the CYF+ evolution equation for the metric is equivalent to the fol-

lowing:

∂

∂t

(
u
n+2
n−2

t

)
=

n+ 2

n− 2
u

4
n−2

t

∂ut
∂t

=
n+ 2

4
u

∂

(
u

4
n−2

t

)
∂t

=
n+ 2

4
(Rmax(gt)−Rgt)u

n+2
n−2



CONFORMAL ENTROPY RIGIDITY 9

Now, writing N = n+2
n−2 and using the expression (3) for the scalar curvature, this

last equation becomes

(4)
∂

∂t

(
uNt
)

=
n+ 2

4

(
Rmax(gt)u

N
t −Rg0ut

)
− (n+ 2)(n− 1)

n− 2
∆g0ut.

Setting wt = uNt , we rewrite this equation as

(5)
∂

∂t
(wt) = c1(n)(Rmaxwt −Rg0w

1/N
t )− c2(n)∆g0w

1/N
t ≤

≤ −c2(n)∆g0w
1/N
t + c1(n)(Rmaxwt −Rminw1/N

t )

where

c1(n) =
n+ 2

4
and c2(n) =

(n+ 2)(n− 1)

n− 2
.

The positive map wt satisfies

w0(x) = 1 ≤
∣∣∣∣RminRmax

∣∣∣∣ N
N−1

for all x ∈M . A straightforward check from equation (5) shows that for all (x, t) ∈

M × [0,∞) such that wt(x) >
∣∣∣RminRmax

∣∣∣ N
N−1

, we have that

∂

∂t
(wt) ≤ −c2(n)∆g0w

1/N
t .

Therefore, by the Maximum Principle given in Corollary 27, for all (x, t) ∈ M ×
[0,∞),

wt(x) ≤
∣∣∣∣RminRmax

∣∣∣∣ N
N−1

.

Now,

wt(x)
N−1
N = u

4
n−2

t = vt,

therefore we get for all (x, t) ∈M × I,

vt ≤
∣∣∣∣RminRmax

∣∣∣∣ .
�

Schauder estimates for parabolic equations give a classical argument of bootstrap-
ping which shows that this C0 exponential convergence of the curvature actually
implies exponential convergence in the Ck topology at all orders k ≥ 0 of the con-
formal factor (and hence also of the scalar curvature and of the metric). We present
this now.

For all k ≥ 0, t ≥ 0 and for all Ck maps f : M × [t,∞)→ R, we write

||f ||k (t) =

k∑
p=0

sup
x∈M

∣∣∇pg0f(x, t)
∣∣ ,

where
∣∣∇pg0f(x, t)

∣∣ is the norm of the covariant derivative of order p of the map
x 7→ f(x, t) with respect to the initial metric g = g0. With this notation, for all
t ≥ 0,

||f ||0 (t) = sup
x∈M
|f(x, t)| .
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For all r > 0, we also write

||f ||k,r (t) = sup
t−r≤s≤t

||f ||k (s)

Assume that f satisfies a quasilinear uniformly parabolic homogeneous equation
on M × [0,∞). Schauder theory of Hölder estimates for parabolic equations (which
we will not present here, see for example [Lie96], Chapter 4 and 8) implies that
for all k ≥ 0 and all r > 0, there exists a constant Ck,n,r which depends on k, the
dimension n, the range r > 0 and the constants of parabolicity such that whenever
f is a solution of this parabolic equation, we have

||f ||k (t) ≤ Ck,n,r ||f ||0,r (t).

Let us apply these estimates to the CYF+. Differentiating the evolution equation
(4) gives the evolution equation of ∂ut

∂t :

(6)
∂2

∂t2
(
uNt
)

=
n+ 2

4

(
Rmax(gt)

∂

∂t
(uNt )−Rg0

∂

∂t
ut

)
− (n+ 2)(n− 1)

n− 2
∆g0

∂

∂t
ut +

n+ 2

4

∂

∂t
(Rmax(gt))u

N
t .

Due to equation (3), the scalar curvature also satisfies a quasilinear parabolic equa-
tion with respect to the variable Laplacian ∆gt . However, it follows from equation
(4) that for all smooth functions f : M → R, we have

4(n− 1)

n− 2
∆gtf +Rgtf = u

−n+2
4

t

(
4(n− 1)

n− 2
∆g0(utf) +Rg0utf

)
.

Therefore, since ut and the scalar curvatures are uniformly bounded and away from
0, equation (4) is uniformly parabolic for the fixed Laplacian ∆g0 . Hence, Schauder
estimates show that the last term in the equation (6) is bounded. This implies
that (6) is also a quasilinear uniformly parabolic equation for ∂ut

∂t . Schauder
estimates for equation (6) imply that for all r > 0 and k ≥ 0, there exists Ck,g0,r > 0
depending only on the initial metric g0 such that∣∣∣∣∣∣∣∣∂ut∂t

∣∣∣∣∣∣∣∣
k

(t) ≤ Ck,g0,r
∣∣∣∣∣∣∣∣∂ut∂t

∣∣∣∣∣∣∣∣
0,r

(t)

Observe that these Schauder estimates work only because all the norms are taken
with respect to the fixed metric g0 (they would no longer work if the norms were
taken with respect to the metric gt).

Since gt = vtg0 = u
4/(n−2)
t g0 we have that

∂ut
∂t

=
∂(v

(n−2)/4
t )

∂t

=
n− 2

4
v
n−2
4 −1

t

∂vt
∂t

=
n− 2

4
v
n−2
4 −1

t (Rmax −Rgt)vt

by definition of the CYF+. Moreover, it follows from Lemma 12 that vt is uniformly
bounded:

v
n−2
4

t ≤ Ag0 =

∣∣∣∣RminRmax

∣∣∣∣n−2
4

.

Applying the bounds from the inequalities in (2), we obtain
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for all t > 0: ∣∣∣∣∂ut∂t
∣∣∣∣ (t) ≤

∣∣∣∣n− 2

4
v
n−2
4

t (Rmax −Rgt)
∣∣∣∣

≤ n− 2

4
Ag0

[
(Rmax −Rmin)eRmaxt

]
=

n− 2

4
Ag0 |Rmin −Rmax| eRmaxt

Therefore, since ∣∣∣∣∣∣∣∣∂us∂s
∣∣∣∣∣∣∣∣

0,r

(s) = sup
s−r≤t≤s

∣∣∣∣∂ut∂t
∣∣∣∣ (t),

and as t 7→ eRmaxt is decreasing, we get

(7)

∣∣∣∣∣∣∣∣∂us∂s
∣∣∣∣∣∣∣∣

0,r

(s) ≤ n− 2

4
Ag0 |Rmin −Rmax| e(s−r)Rmax .

Let us now fix k ≥ 2 and write ∇k = ∇kg0 . For all r, t, T ≥ 0, we have∣∣∇kut+T −∇kut∣∣ =

∣∣∣∣∣
∫ t+T

t

∂

∂s

(
∇kus

)
ds

∣∣∣∣∣
≤

∫ t+T

t

∣∣∣∣∇k ∂us∂s
∣∣∣∣ ds

≤ Ck,g0,r

∫ t+T

t

∣∣∣∣∣∣∣∣∂us∂s
∣∣∣∣∣∣∣∣

0,r

(s)ds

where Ck,g0,r is the constant for Schauder estimates of order k for ∂us
∂s , which

depends only on r, k and the initial metric g0. From (7) above we find the following
estimates:∣∣∇kut+T −∇kut∣∣ ≤ Ck,g0

∫ t+T

t

∣∣∣∣∣∣∣∣∂us∂s
∣∣∣∣∣∣∣∣

0,r

(s)ds

≤ Ck,g0,r

∫ ∞
t

n− 2

4
Ag0 |Rmin −Rmax| e(s−r)Rmaxds

≤ Ck,g0,r
n− 2

4
Ag0

∣∣∣∣Rmin −RmaxRmax

∣∣∣∣ e(t−r)Rmax

= Cg0,ke
tRmax

Therefore the family (ut)t≥0 is a Cauchy family in the Banach space of Ck maps
from M → R. So it converges in the Ck topology to a Ck map u∞ : M → (0,∞),
and this convergence is uniformly exponential because Rmax < 0.

We have seen that the convergence ut → u∞ is uniformly exponential at all
orders k ≥ 0. In particular, together with the convergence of Rgt , this implies that

the metric gmax = u
4/(n−2)
∞ g is a smooth metric with constant scalar curvature

Rgmax ≡ Rmax < 0.
This concludes the proof of Theorem 10. �

Remark 13. Knowing whether Rgmax = Rmax is in general a delicate issue. It may
be the case if the initial metric contains an open set with constant maximal scalar
curvature.
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Let us now change the normalization of the flow, and consider the Curvature-
normalized decreasing Yamabe Flow (which we will denote by CYF−) on M
with initial data g. We define it to be the family of metrics (gt)t≥0 on M satisfying:

∂gt
∂t

= (Rmin(gt)−Rgt)gt
g0 = g

We let the reader adapt the method of proof of Proposition 9 to show that, along
the CYF−, the scalar curvature satisfies

∂(Rgt −Rmin(gt))

∂t
≤ −(n− 1)∆gt(Rgt −Rmin(gt)) +Rmax(Rgt −Rmin(gt)).

By using analogous arguments to those in the previous results in this section we ob-
tain the following statement for the CYF−. The appropriate forms of the Maximum
principles can be also found in the Appendix.

Theorem 14. Let (M, g) be a closed Riemannian manifold of dimension n ≥ 3
whose scalar curvature satisfies

Rmin ≤ Rg ≤ Rmax < 0.

Then the Curvature-normalized decreasing Yamabe Flow with initial data g has a
unique maximal solution (gt = eftg), defined for t ∈ [0,∞). Moreover, for all t ≥ 0,
its scalar curvatures satisfy

Rgt ∈ [Rmin, Rmax].

The conformal factor t 7→ eft is non-increasing in time t and for all k ≥ 0, the flow
(gt) converges exponentially fast in the Ck topology as t → ∞ to a Yamabe metric
gmin in the conformal class of g with constant scalar curvature Rgmin ≥ Rmin.

The proof of Theorem 1 follows from Theorem 7 and Theorem 14.

3. Conformal Schwarz Lemma and geometric applications

In this section, we establish Yau’s Conformal Schwarz Lemma [Yau73], and give
some of its geometric consequences.

Corollary 15 (Yau’s Conformal Schwarz Lemma). Let (M, g) be a closed Rie-
mannian manifold of dimension n ≥ 3 whose scalar curvature satisfies Rg ∈
[Rmin, Rmax] ⊂ (−∞, 0) and gY = vY g be the Yamabe metric conformally equiva-
lent to g with scalar curvature RgY = −1. Then in all points of M ,

gY
|Rmin|

≤ g ≤ gY
|Rmax|

.

Proof. Let (M, g) be a closed Riemannian manifold of dimension n ≥ 3 whose
scalar curvature satisfies Rg ∈ [Rmin, Rmax] ⊂ (−∞, 0). We have seen that the
CYF+ with initial metric g increases the conformal factor, and converges to the
metric with constant scalar curvature Rgmax ≤ Rmax, which is gY

|Rgmax |
. This gives

the upper bound stated above. Similarly, the CYF− with initial data g decreases
the conformal factor and converges to gY

|Rgmin |
with Rgmin ≥ Rmin, which gives the

lower bound. �
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This result can be seen as a Schwarz Lemma in the conformal class of g, it
has many interesting geometric applications which seem to have gone unnoticed.
For instance, it implies that when the scalar curvature of the initial metric g is
pinched enough, then the unique metric gS with constant scalar curvature in the
same conformal class is close to g for the C0 topology.

By integrating over the manifold we get

Vol(M, gY )

|Rmin|n/2
≤ Vol(M, g) ≤ Vol(M, gY )

|Rmax|n/2
.

These volume estimates where already shown by 0. Kobayashi in [Kob87], using
a study of the Yamabe functional. From the Conformal Schwarz Lemma we also
obtain the following volume-rigidity result:

Corollary 16 (Volume-rigidity in a conformal class). Let (M, g) be a closed Rie-
mannian manifold of dimension n ≥ 3 whose scalar curvature satisfies Rmin ≤
Rg ≤ Rmax < 0, and gY = efg be the Yamabe metric gY in the conformal class of
g whose scalar curvature satisfies RgY = −1.

(1) If the volume of (M, g) is minimal, in which case Vol(M, g) = Vol(M,gY )

|Rmin|n/2
,

then g = gY
|Rmin| .

(2) If the volume of (M, g) is maximal, in which case Vol(M, g) = Vol(M,gY )

|Rmax|n/2
,

then g = gY
|Rmax| .

Let us recall that the systole of a Riemannian manifold (M, g), which we write
sys(M, g), is the minimal Riemannian length of any loop which is not homotopic
to zero. For a pair of smooth metrics which satisfy g1 ≤ g2 it is well known that
sys(M, g1) ≤ sys(M, g2). Therefore we obtain:

Corollary 17. Let (M, g) be a closed Riemannian manifold of dimension n ≥
3 whose scalar curvature satisfies Rmin ≤ Rg ≤ Rmax < 0, and gY = efg be
the Yamabe metric gY in the conformal class of g whose scalar curvature satisfies
RgY = −1. Then

sys(M, gY )√
|Rmin|

≤ sys(M, g) ≤ sys(M, gY )√
|Rmax|

Recall that the injectivity radius inj(M, g) of a Riemannian manifold (M, g)
without conjugate points is half the length of the shortest closed geodesic. There-
fore, if (M, g) and (M, gY ) have no conjugate points, then their injectivity radii
satisfy

inj(M, gY )√
|Rmin|

≤ inj(M, g) ≤ inj(M, gY )√
|Rmax|

.

4. Entropy extrema in a conformal class

We will now apply the Schwarz Lemma established in the previous section to
study the entropy in each conformal class. This yields the main results as stated
in the introduction.

We first use the Schwarz Lemma we established in Corollary 15 in the previ-
ous section to prove that the metric with constant scalar curvature is actually a
minimum for the entropy:
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Corollary 18 (Entropy bounds in a conformal class). Let (M, g) be a closed Rie-
mannian manifold of dimension n ≥ 3 whose scalar curvature satisfies Rmin ≤
Rg ≤ Rmax < 0, and gY be the Yamabe metric in the conformal class of g with
constant scalar curvature RgY = −1. Then√

|Rmax|h(gY ) ≤ h(g) ≤
√
|Rmin|h(gY ).

Proof. Let (M, g) be a closed Riemannian manifold whose scalar curvature satisfies
Rmin ≤ Rg ≤ Rmax < 0, and gY be the Yamabe metric in the conformal class of
g whose scalar curvature satisfies RgY = −1. The Conformal Schwarz Lemma we
proved in Corollary 15 implies that in all points of M we get

gmax =
gY
|Rmax|

≤ g ≤ gmin =
gY
|Rmin|

.

Corollary 18 will now be an immediate consequence of the following well-known
lemma.

Lemma 19. Let g1 and g2 be two Riemannian metrics on M such that in all points
x ∈M , we have g1(x) ≤ g2(x). Then the entropies satisfy h(g1) ≥ h(g2).

Proof. Let M̃ be the universal cover of M . We will still denote by g1 and g2 the
metrics on M̃ lifted respectively from g1 and g2 on M . These lifted metrics also
satisfy for all x̃ ∈ M̃,

g1(x̃) ≤ g2(x̃).

Let x̃ ∈ M̃ be fixed. By the above inequality, we have for r > 0,

Bg2(x̃, r) ⊂ Bg1(x̃, r).

Moreover, the Riemannian volume-measures dvg1 and dvg2 are absolutely continu-
ous with respect to each other. Therefore, since M is compact, there is a C > 1
such that

1

C
≤ dvg1
dvg2

≤ C.

These estimates are still valid for the lifted volume-measures on M̃ : they imply
that for all r > 0,

Volg2 (Bg1(x̃, r)) ≤ CVolg1 (Bg1(x̃, r)) .

Therefore, for all r > 0

log Volg2 (Bg2(x̃, r))

r
≤ log Volg2 (Bg1(x̃, r))

r

≤ logC

r
+

log Volg1 (Bg1(x̃, r))

r
.

Letting r →∞, this implies h(g2) ≤ h(g1). �

This ends the proof of Corollary 18. �

Corollary 20. Let (M, g) be a closed Riemannian manifold of dimension n ≥ 3
whose scalar curvature satisfies Rg ≤ Rmax < 0, and gmax = gY

|Rmax| be the Yamabe

metric in the conformal class of g with scalar curvature Rgmax = Rmax. If gmax
has no conjugate points, then

htop(g) ≥ htop(gmax),
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where htop(g) and htop(gmax) are the topological entropies of the geodesic flows on
(M, g) and (M, gmax).

Proof. Let (M, g) be a closed Riemannian manifold whose scalar curvature satisfies
Rg ≤ Rmax < 0, and gmax be the unique metric in the conformal class of g with
constant scalar curvature Rgmax = Rmax. By Theorem 18, the volume entropies of
(M, g) and (M, gmax) satisfy

h(g) ≥ h(gmax).

It follows from the work of A. Freire and R. Mañé [FM82] that htop(gmax) =
h(gmax). Moreover, it was shown by Manning in [Man79] that in all cases, htop(g) ≥
h(g).

Therefore htop(g) ≥ h(g) ≥ h(gmax) = htop(gmax). �

We now wonder whether—in this setting—the metric with constant maximal
scalar curvature is the unique entropy minimum in the conformal class, and whether
the metric with constant minimal scalar curvature is the unique entropy maxi-
mum. Uniqueness of the metric with minimal (or maximal) entropy is known as
entropy-rigidity . We first show that when the scalar curvature is not maxi-
mal everywhere and the sectional curvatures are negative, the increasing curvature-
normalized Yamabe flow CYF+ strictly decreases the entropy, and the decreasing
curvature-normalized Yamabe flow CYF− strictly increases it. This will imply our
entropy-rigidity theorem.

Proposition 21. (1) Let (M, g) be a closed Riemannian manifold of dimen-
sion n ≥ 3 with negative sectional curvatures, with scalar curvature Rg ≤
Rmax < 0 everywhere and Rg < Rmax somewhere. Let (g+

t )t≥0 be a so-
lution to the CYF+ starting in g. Let T ∗ > 0 be such that Kg+t

< 0 for

t ∈ [0, T ∗). Then the map t 7→ h(g+
t ) strictly decreases for t ∈ [0, T ∗).

(2) Let (M, g) be a closed Riemannian manifold with negative sectional curva-
tures, with scalar curvature Rmin ≤ Rg < 0 everywhere and Rmin < Rg
somewhere. Let (g−t )t≥0 be a solution to the CYF− starting in g. Let
T ∗ > 0 be such that Kg−t

< 0 for t ∈ [0, T ∗). Then the map t 7→ h(g−t )

strictly increases for t ∈ [0, T ∗).

Proof. We will prove the first item, for the Curvature-normalized increasing flow
CYF+. The other proof is similar. Let (M, g) be a closed Riemannian manifold with
negative sectional curvatures and with scalar curvature Rmin ≤ Rg ≤ Rmax < 0.
Let (gt) be the solution of the CYF+ with initial metric g, which we suppose to be
non-trivial, and T ∗ > 0 be such that Kgt < 0 for t ∈ [0, T ∗).

For all t ≥ 0, we denote by StM the unit tangent bundle of (M, gt). Notice
that the family of metrics (gt)t≥0 is smooth and for all t ∈ [0, T ∗) the sectional
curvatures of gt are negative. Therefore, for all t ∈ [0, T ∗), the entropy h(gt) is
equal to the topological entropy of the geodesic flow on (M, gt). So it follows from
[KKW91] that the map t 7→ h(gt) is C1 and for all t ∈ [0, T ∗), its derivative is given
by

(8)
∂

∂λ

∣∣∣∣
λ=t

h(gλ) = −h(gt)

2

∫
StM

∂

∂λ

∣∣∣∣
λ=t

gλ(v, v)dµt(v).

Here µt is the Bowen-Margulis measure for the geodesic flow on StM . By
definition of the Curvature normalized Yamabe Flow, for all x ∈M, t ∈ [0, T ∗) and
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v ∈ StxM ,
∂

∂λ

∣∣∣∣
λ=t

gλ(v, v) = (Rmax −Rgt(x)) ≥ 0

by Proposition 9. Therefore, for all t ∈ [0, T ∗),

∂

∂λ

∣∣∣∣
λ=t

h(gλ) ≤ 0.

Let t ∈ [0, T ∗), since the CYF+ is not trivial, there is an xt ∈ M such that
Rgt(xt) < Rmax. Since the CYF+ is smooth, we have Rgs(xt) < Rmax for s ∈
(t− ε, t+ ε) for some ε > 0. Therefore for all t ≥ 0 there exists an open set Ot ⊂M
containing xt such that Rgt(y) < Rmax for all y ∈ Ot. We will use the following
classical lemma:

Lemma 22. With the previous notations, for all t ∈ [0, T ∗), let StOt ⊂ StM be
the preimage of Ot by the canonical projection πt : StM →M . Then

µt(StOt) > 0,

where µt is the Bowen-Margulis measure for the geodesic flow on StM .

Proof. Let t ∈ [0, T ∗), and Ot ⊂ M be an open set. Then StOt = π−1
t (Ot) is an

open set in StM . Since Kgt < 0, the geodesic flow on StM is Anosov (see [KH95]),
it has an orbit (vs)s∈(−∞,∞) which is dense in StM and with full measure. Assume
now µt(Ot) = 0, there is a non-empty segment (a, b) ⊂ R such that (vs)s∈(a,b) ⊂ Ot.
Hence µt

(
(vs)s∈(a,b)

)
= 0, and since µt is invariant by the flow we get µt(StM) = 0

: a contradiction. �

This last lemma and the variational formula (8) imply that if Rg(x) < Rmax,
then for all t ∈ [0, T ∗) we obtain

∂

∂λ

∣∣∣∣
λ=t

h(gλ) < 0.

This ends the proof of Proposition 21. �

We can actually express these properties of the entropy in the following form,
which is scale-invariant.

Theorem 23 (Entropy along Unscaled Yamabe Flow). Let (M, g) be a Riemann-
ian manifold with negative scalar curvature, and (gt) be the unique solution of the
Unscaled Yamabe Flow

∂gt
∂t

= −Rgtgt.

Then the map t 7→
√
|Rmax(gt)|h(gt) is non-increasing along the flow. It strictly

decreases whenever gt has negative sectional curvature. Similarly, the map t 7→√
|Rmin(gt)|h(gt) is non-decreasing along the flow and strictly increases whenever

gt has negative sectional curvature.

What is the behaviour of the map t 7→
√
|R(gt)|h(gt)? In other words, how

does the entropy behave along the Volume-normalized Yamabe Flow ? In
the case of surfaces of genus> 1, it has been shown by A. Manning that the
Volume-normalized Yamabe-Ricci flow decreases the entropy when it starts from a
negatively curved metric [Man04]. For manifolds of dimension at least 3 , it is
not known whether Volume-normalized Ricci Flow or Volume-normalized Yamabe
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Flow decrease the entropy. To our knowledge, the only known fact (claimed in
[Tho09]) states that starting in a metric with total scalar curvature less than −n(n−
1) and conformally equivalent to a hyperbolic metric, then the Volume-normalized
Ricci Flow decreases the entropy for a short time. Theorem 23, obtained from
Curvature-normalized Yamabe Flows, gives a first insight to the complexity of this
question.

Theorem 23 implies the following entropy-rigidity Theorem.

Theorem 24 (Conformal Entropy-rigidity). Let (M, gY ) be a closed Riemannian
manifold of dimension n ≥ 3 where gY is a Yamabe metric with negative sectional
curvatures and constant scalar curvature RgY = −1. For any metric g = vgY
conformally equivalent to gY such that Rmin ≤ Rg ≤ Rmax, the following holds:

(1) h(g) ≥
√
|Rmax|h(gY ) with equality if and only if g = gY

|Rmax| ;

(2) h(g) ≤
√
|Rmin|h(gY ) with equality if and only if g = gY

|Rmin| .

Proof. Let (M, gY ) be a closed Riemannian manifold where gY is a Yamabe metric
with negative sectional curvatures and constant scalar curvature RgY = −1, and g
be a metric in its conformal class. Up to scaling, we can assume that Rmin ≤ Rg ≤
−1. Let us assume that g 6= gY , we will show that h(g) > h(gY ).

Let (gt)t>0 be the solution of the Curvature-normalized increasing Yamabe Flow
CYF+. Let 0 < t < s, we have seen in Theorem 1 that gt ≤ gs. Therefore, it follows
from Lemma 19 that h(gt) ≥ h(gs): the map t 7→ h(gt) is non-increasing.

Moreover, it follows from Theorem 7 that the flow gt converges to gmax ≤ gY in
the C2 topology. Since gY has negative sectional curvatures, this implies that there
exists a T > 0 such that for all t ≥ T , the sectional curvatures of gt are negative.
Moreover, it follows from the proof of Proposition 21 that since g 6= gY , we have
RgT < Rmax at some point of M . Together with Proposition 21, this implies that
the entropy h(gt) does not increase on [0, T ) and strictly decreases on [T,∞). Since
it converges to h(gmax) ≥ h(gY ), we obtain

h(g) = h(g0) > h(gY ).

A similar proof shows that if g is conformally equivalent to gY and −1 ≤ Rg < 0,
if g 6= gY then h(g) < h(gY ). A straightforward scaling argument finishes the proof
of Theorem 24. �

Remark 25. Let (M, g) be a metric satisfying Rmin ≤ Rg ≤ Rmax < 0. Once the
existence of the metric gY with constant scalar curvature −1 in the same conformal
class as g is proved, and once the Conformal Schwarz Lemma 15 is established, the
entropy-rigidity theorem could be proved using other flows. We only need to be sure
that the scalar curvature will remain strictly lower than Rmax on some open set for
large time: the Yamabe flow is a natural flow which satisfies this requirement.

Appendix A. Maximum principles for manifolds with variable metrics

We have used as a crucial tool the following forms of the Maximum Principle
(see the IHP lectures by Z. Djadli and [CLN06], p101. where a similar version is
proved).

Proposition 26 (Weak Maximum Principle for closed manifolds). Let M be a
smooth closed manifold and (gt)t∈I a smooth time-dependent family of metrics on M
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defined on I = [0, T ). Let b, η > 0 and C ∈ R be three constants. Let f : M×I → R
be a smooth map.

(1) If for all (x, t) with C < f(x, t) ≤ C + η, we have

∂f

∂t
(x, t) ≤ −b∆gtf(x, t)

and f(., 0) ≤ C, then for all (x, t) ∈M × I we have f(x, t) ≤ C.
(2) If for all (x, t) with C − η ≤ f(x, t) < C, we have

∂f

∂t
(x, t) ≥ −b∆gtf(x, t)

and f(., 0) ≥ C, then for all (x, t) ∈M × I we have f(x, t) ≥ C.

Proof. We shall prove the first item, the case of an upper bound (the other proof
is analogous). Under the assumption of item (1), let 0 < ε < η

1+T be fixed, we set

for all (x, t) ∈M × I:

vε(x, t) = f(x, t)− C − ε(1 + t).

We want to prove that vε is always non-positive on M × I. We have vε(., 0) =
f(., 0) − C − ε < 0. Assume there exists t ∈ I and x ∈ M such that vε(x, t) = 0,
which implies that C < f(x, t) = C+ε(1+t) ≤ C+η by construction of ε. Since M
is closed, there exists t0 ∈ I and x0 ∈M such that vε(x0, t0) = 0 and t0 is minimal
for this property. Then since vε must be increasing in time at (x0, t0) to reach 0,
we have

0 ≤ ∂vε
∂t

(x0, t0) =
∂f

∂t
(x0, t0)− ε ≤ −b∆gt0

f(x0, t0)− ε.

Moreover, by construction vε(., t0) is maximal in x0. Hence f(., t0) is also maximal
in x0. Therefore ∆gt0

f(x0, t0) ≥ 0 (because the Hessian of f is non-positive at a

point where f is maximum). The previous equality becomes 0 ≤ −ε, a contradic-
tion. Hence, for all (x, t) ∈M × I we obtain

vε(x, t) = f(x, t)− C − ε(1 + t) ≤ 0.

As this is valid for all ε ∈ (0, η/(1 + T )), it implies that f ≤ C on M × I. �

We have also used the following form of the Maximum Principle, whose proof is
a direct adaptation of the previous one:

Corollary 27. Let (M, g0) be a smooth closed manifold and (gt)t∈I a smooth time-
dependent family of metrics on M . Let α, b, C > 0 be three positive constants. Let
f : M × [0, T )→ R be a smooth positive map.

(1) If for all (x, t) with f(x, t) > C, we have

∂f

∂t
(x, t) ≤ −b∆gtf(x, t)α

and f(., 0) ≤ C, then for all (x, t) ∈M × I we have f(x, t) ≤ C.
(2) If for all (x, t) with f(x, t) < C, we have

∂f

∂t
(x, t) ≥ −b∆gtf(x, t)α

and f(., 0) ≥ C, then for all (x, t) ∈M × I we have f(x, t) ≥ C.

We used the following (stronger) form of the Maximum Principle in our proof
that along the CYF the scalar curvature converges exponentially fast to a constant:
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Theorem 28 (Variable Maximum Principle for closed manifolds). Let M be a
smooth closed manifold and (gt)t∈I a smooth time-dependent family of metrics on
M defined on an interval I = [0, T ). Let F : R→ R be a locally Lipschitz function
and b > 0 a constant and φ : I → R be the solution to :

dφ
dt (t) = F (φ)
φ(0) = C

.

(1) If u : M × I → R is a smooth function such that for all (x, t) ∈ M × I we
have that

∂u

∂t
(x, t) ≥ −b∆gtu(x, t) + F (u(x, t)),

and u(., 0) ≥ C. Then u(x, t) ≥ φ(t) for all (x, t) ∈M × I.
(2) If u : M × I → R is a smooth function such that for all (x, t) ∈ M × I we

have that
∂u

∂t
(x, t) ≤ −b∆gtu(x, t) + F (u(x, t)),

and u(., 0) ≤ C. Then u(x, t) ≤ φ(t) for all (x, t) ∈M × I.

Proof. We shall prove only item (1), since the other proof is similar.
Let M be a smooth closed manifold and (gt)t∈I a smooth time-depending family

of metrics on M defined on an interval I = [0, T ). Assume F : R → R is a locally
Lipschitz map and u : M × I → R satisfies the hypotheses of Theorem 28. Write
v = u− φ, where φ : R+ → R is the solution of:

dφ
dt (t) = F (φ)
φ(0) = C

Let T0 < T be fixed ; then for all (x, t) ∈M × [0, T0] we have that

∂v

∂t
≥ −b∆gtv + F (u)− F (φ).

Moreover, since F is locally Lipschitz, there exists C ′ > 0 such that for all
(x, t) ∈M × [0, T0] we get

|F (u(x, t))− F (φ(t))| ≤ C ′ |u(x, t)− φ(t)| = C ′ |v(x, t)| .
Therefore

(9)
∂v

∂t
≥ −b∆gtv − C ′ |v| .

Set w = e−C
′tv, then

∂w

∂t
= −C ′w + e−C

′t ∂v

∂t
.

Equation (9) becomes

∂w

∂t
≥ −b∆gtw − C ′ |w| − C ′w,

So for all (x, t) such that w(x, t) < 0 we obtain

∂w

∂t
≥ −b∆gtw.

Since w(., 0) ≥ 0, by Proposition 26 this implies that w(., t) ≥ 0. Hence v ≥ 0, for
all t ∈ [0, T0]. Therefore u(x, t) ≥ φ(t) for all t in [0, T0]. Since this is valid for all
T0 ∈ (0, T ), it is true on I = [0, T ). �
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