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Introduction

The present paper is aimed at the generalization of the Atiyah—Bott—Lefschetz fixed point
theorem [1] in the situation of symplectic geometry. Let us briefly describe the general
statement of the problem.
Let
//{I Hl - H'z

be a Fredholm operator acting in Hilbert spaces H; and H; and let ﬁl and Ug be invertible
operators such that the diagram

)

Hy Ha

H, H,

commutes. It is easy to see that in this case the space Ker A is an invariant subspace of the
operator U, and, hence, this operator acts on the kernel of the operator A. Similarly, the
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operator U, is correctly defined on the cokernel of the operator A. Since the spaces Ker A
and Coker A are finite-dimensional (the operator A is a Fredholm one) the number

L (2, (71, (72) = Trace ((71 A) — Trace (ﬁg

Ker A

Coker 4 )

is defined. This number is called the Lefschetz number of the diagram (1). We remark that
if Ul id, Ug = id then the Lefschetz number £ (/T,id,id) coincides with the indez of the

operator A.
The Lefschetz number can also be defined in more general situation. Namely, let

0 My A g Ay A (2)
be a complex with finite-dimensional cohomology (for example, an elliptic complex on a
smooth compact manifold without boundary) and let U,, . UN be operators defining an

endomorphism of this complex:

-~ -~ -

A Az An_1
0 — H[ H'; HN — 0
o, 7 \ O \ @
A A AN
0 — H, H, Hy — 0

Then the Lefschetz number of diagram (3) is defined as an alternative sum

L= ZN:(—I)kTrace (Uk‘m) ,
k=1

where H* are the cohomology of complex (2).
Let us consider the two important particular cases of the above general construction.
a) Classical Lefschetz theorem. In this case complex (2) is the classical de-Rham
complex on a smooth compact manifold M without boundary

0 - A%M) S A'M) S LS AN M) >0

and mappings Uy are determined by some smooth mapping f : M — M with the graph
being transversal to the diagonal. In this case the Lefschetz number equals to

L= Z 1)¥Trace (UL ka)) ,




where Uy is the action of the induced mapping f* on forms of the degree k and H*(M) are
cohomology groups of the manifold M.
The following statement is the classical result by S. Lefschetz.

The formula
L= (1,
o

is valid, where the sum is taken over all fized points of the mapping [ and o(ay) is the
intersection indez between the graph of the mapping f and the diagonal at the point oy.

b) Atiyah-Bott—Lefschetz theorem. In the paper [1] M. F. Atiyah and R. Bott
had formulated the following generalization of the Lefschetz theorem to the case of elliptic
complexes. Let F; — M, 1= 1,2,..., N be vector bundles over M and let

0 — CR(E) 25 C®(E,) 2% ... 23 ¢®(Ey) — 0
be an elliptic complex. Consider a mapping
f+M-M

with its graph transversal to the diagonal and suppose that f acts on sections of the bundles
E} in accordance to the formula

fou(z) = Te(@)u(f(z) € Tilu),

where Ti(z) is an endomorphism of the bundle Ey (such endomorphisimns of the space C*°(Ey)
of sections of the bundle Ej are called geometrical).Then the following statement is valid.
The formula takes place

30 = 3 S (=1 Trace Ty(au)
L=L (AaU) = ; |det (1 — f.(ax))]

the outer summation is performed over all fized points of the mapping f.

Thus, generalizing the Lefschetz theorem Atiyah and Bott use an arbitrary elliptic com-
plex instead of the de-Rham complex preserving the ‘geometrical’ nature of an endomor-
phism U of the considered complex. This means that the mentioned endomorphism is, as
before, determined by some mapping f: M — M of the manifold A.

It seems, however, that more natural is to consider endomorphisms connected with some
symplectic (canonical) transformation

g: T"M - T*M



rather than with a mapping of the manifold M itself.!

Such endomorphisms can be realized on sections of the corresponding bundles as Fourier
integral operators (obtained by quantization of canonical transformations) associated with
these endomorphisms g (see, for example, [2]).

The aim of this paper is to obtain the corresponding generalization of the Atiyah—Bott—
Lefschetz theorem in the framework of the classical quantization, that is, in the situation of
1/h~pseudodifferential operators [2]. In such a situation we obtain an asymptotic formula
of the Lefschetz type, which expresses the leading term of the asymptotic expansion of the
Lefschetz number as & — 0 in terms of fixed points of the symplectic transformation g (see
Theorem 4 below).

The interesting particular case [3] of such a construction is a case when the considered
symplectic transformation is determined by a Hamilton flow g, along trajectories of Hamilton
vector field

OH 0 O0H O

p Oz 0z dp

determined by some real Hamilton function H(z,p). In this case the corresponding Fourier
integral operators can be represented in the form

V(H) =

_ —iHt
Uk—e L *,

where ﬁ;,, k = 1,2 are pseudodifferential operators with principal symbol H. Here the Lef-
schetz number is strongly connected with spectral properties of the operators Hi. Actually,
let us consider the simplest case of an elliptic operator:

0 — C=(E,) Co(By) — 0

c-{‘-ﬁlr c—{-ﬁ,:

=)

Suppose that the operators H, and H, has a discrete spectrum and denote by A} and A?

the eigenvalues of the operators ﬁl and ﬁg correspondingly. Then it is evident that the
Lefschetz number can be written down in the form

L (E, ﬁl, ﬁz) = Z e'%)‘;” — Z e_'x-;)‘it,

1We recall that for any smooth manifold the total space of the cotangent bundle has the standard
symplectic structure (see, for example, [2]).




where the first sum is taken over eigenvalues corresponding to the kernel of the operator
A and the second over eigenvalues corresponding to the cokernel of this operator. Such a
situation arises, for example, in the simplest scattering problem. Actually, let us consider
Hamiltonians

Hy=—h*A, H = -hA+T

where 7' is an 1/h-differential operator with finite in (z,p) symbol. Then there exist the
operator A

W= lim e kfitektat =1 L B

t——+oo

where B is an operator of trace class. One can show that the operator 1?[1 has continuous
spectrum and a finite number of eigenvalues. The operator W maps the space corresponding
to the continuous spectrum of the operator H, on the whole space L, and the kernel of this
operator coincides with the subspace corresponding to the discrete spectrum of this operator.

In this situation the Lefschetz number

At

=

N
c (H/,e—-,';H,t’e-;;Hgt) _ Z o

k=1

is simply the Fourier transform of the part of the spectral measure of the operator FII
corresponding to the discrete spectrum of this operator.

Let us desrcibe briefly the contents of the paper.

Section 1 is aimed at the computation of the asymptotics of the trace of a Fourier inte-
gral operator associated with some symplectic transformation. The result of this section is
formulated in the theorem expressing the leading term of the asymptotical expansion of the
trace of Fourier integral operator in terms of fixed points of the corresponding symplectic
transformation.

In Section 2 we consider the case when the symplectic transformation is determined by
a flow along trajectories of some Hamilton vector field. In this case fixed points of the
symplectic transformation ¢, correspond to closed trajectories of the Hamilton vector field
and the coefficients of the asymptotic expansion obtained in the previous section can be
expressed in terms of integrals along closed trajectories of the Hamilton vector field.

In Section 3 we derive the generalized Lefschetz formula in situation of symplectic trans-
formations. Here we obtain the expression of the leading term of the asymptotic expansion
of the Lefschetz number as A — 0. To simplify the notation we restrict ourselves to the
case of elliptic operator though all considerations can be carried out in the case of elliptic
complexes as well.



In conclusion we remark that all the constructions of the present paper can be carried
out also in the case when the principal symbol Hy(z, p) of the operator H which determines
the Hamilton flow g, is a complez-valued function. In this case one should use the s~analytic
theory and, in particular, the formula of asymptotic expansion of rapidly oscillating integral
with complex phase function (see [2]).

Acknowledgements. This paper was written as a result of discussion on the paper [3]
with Professor Boris Fedosov. We are very grateful to him for his very interesting talk and
further stimulating conversations. We are very grateful to Dr. Vladimir Nazaikinskii for a
very helpful duscussion on the theme of this paper.

We are also very grateful to Professor B.-W. Schulze for the very good conditions for
working in Arbeitsgruppe “Partielle Differentialgleichungen und komplexe Analysis” where
this paper has been written.

1 The Trace of Fourier Integral Operator
Let M be a smooth compact manifold without boundary and let
g: "M - T°M
be a symplectic transformation which satisfies the following condition on non-degeneracy.

Condition 1 The transformation g has only finite number of fized points «a,,..., o such
that the determinant det(l — g.) does not vanish at each of these points.Here

g TT"M — TT'M
is the induced mapping of the tangent spaces.

The aim of this section is the computation of the asymptotics as A — 0 of the trace
of Fourier integral operator T'(g,¢) with a symbol ¢ corresponding to the symplectic trans-
formation g. Let us recall briefly the definition of the operator T'(g,+) (see, for example,
2.

Denote by L € T*M x T*AM a submanifold of the symplectic space T*(M x M) =
T*M x T=M which is the graph of the transformation g. We remark that L = graphg is a
Lagrangian manifold in T*M x T™ M with respect to the Hamiltonian structure

TiW — Tw = Wy — wo,

where
m T"MxT"M - T*M



are the canonical projections and the form w determines the symplectic structure on the
space T*M. It is evident that L is diffeomorphically projected on the second factor, that is,
that

Tl L - T°M

is a diffeomorphism. Hence, there exists the canonical measure
%, .n
p=my(w")

on the manifold L (here w® = w A ... Aw (n times)).
Let now ¢ be a smooth function on the symplectic space T* M. Then the operator T'(g, ¢)
1s defined as an integral operator with the kernel
; nf2
Ko = (~37) b (), (1)
where k(z ,) is Maslov’s canonical operator on the quantized Lagrangian manifold L with
the non-degenerate measure g (see [2]). The function ¢ is called a symbol of the Fourier
integral operator T'(g, ).
Let us describe the symbol classes which will be used below. Denote by E™# the set of
C>-functions ¢(z, p, k) on T*M x [0,1] which satisfy the estimates

|D2 DEo(z,p, h)| < Caph™(1 + |p|?)tm 1PN/ (5)

(where (z,p) are canonical coordinates on T*A) and may be represented in the form

N
o, p k) = S W ou(a, p) + Ru(z,p, b)

k=0

for any integer N. Here the function Ry(z,p, h) must satisfy estimates (5) with m replaced
by m+ N + 1.

These symbol classes are modification to the case of compact manifold without boundary
of the classes L%y introduced by M. Shubin [4]. We remark that all the theory developed
below remaines valid also in the space R™ if we modify the estimate (5) in the following way

| D2 Df(p(:l:,p, R)| € Caph®(1 + |2|? + |p|?)tm-lel-1AD/2,

Suppose now that the transformation ¢ has the operator T'(g,¢) belongs to the class
Y™ with sufficiently large negative m. Then the following afirmation takes place.

Theorem 1 The formula

TraceT(g,¢) = ; exp {%S (m—)} Tt Zi; ((_1";* ) (mod O(h)), (6)



is valid. Here the sum is taken over all fired points ap of the transformation g, S is a
nonsingular action on the manifold L and the choice of the branch of the square root is
described below.

Remark 1 Certainly, one can show that there exists an asymptotic expansion of the trace
of the operator T'(g, ) up to an arbitrary power of h. However, the computation of explicit
formulas for the corresponding terms of this asymptotic expansion is rather complicated and
we present here only the computation of the leading term.

Remark 2 In the case when fixed points of the mapping g are degenerate, that is, they
do not satisfy Condition 1, one can also obtain the asymptotic expansion of the trace using
normal forms of the phase function at stationary points (see [5]).

All the rest of this section is the proof of Theorem 1, that is, the computation of the
asymptotical expansion of the integral

TraceT(g, ) =/K(J:,J:)d:1: (7)
M

as h — 0, here dz is some fixed positive measure on the manifold M.

To compute integral (7) we shall use the following special coordinates systems.

First, we denote by (z,p) (correspondingly, (y,q)) the canonical coordinate systems in
the first (correspondingly, second) factor of the product T*M x T*M. Thus, the structure
forms in the symplectic spaces T*M and T*M x T*M have the form

dp Adz and dp Adz —dqAdy,

correspondingly. We suppose also, that coordinate systems are chosen in such a way that
the measure dz mentioned above has the unit density.

It is easy to show that the Lagrangian manifold L can be covered by canonical charts
of the type U; with the coordinates (z/,pr, q) (here, as it is usual in the canonical operator
theory [2], by I C {1,...,n} we denote some subset of indices, by I we denote its complement
in {1,...,n}, =’ is the tuple (z",...,z") where I = {i},...,in}, and p7 has similar sense).

Let us express the objects included in definition (4) of the canonical operator in the
described local coordinates.

1. Let
Sr= 81 (z",p7,9)



be an action in the chart U; of the Lagrangian manifold L. This means that the equations

of L are
2! = —g—i(x’apm) ol (o' pr9),
pr = %(m’, 7q) € pr (=), p1,49) (8)
y = %?@ﬂmﬂfgy@ﬂmm%

The action S; can be constructed in the explicit form in the following way. First, we denote
by S (the non-singular action) a solution of the Pfaffian equation

dS = pdz|, (9)

on the Lagrangian manifold L. We recall that the manifold L is supposed to be quantized. In
particular, this means that equation (9) has a global solution on L defined up to an additive
constant. To fix this constant we choose a point ¢* on the manifold L (which will be referred
below as base point of the manifold L) and suppose that S(e*) = 0. Then the function S{«)
at the point o € L on the Lagrangian manifold is given by the formula

=]

S(a) = /pa’a: (10)

o

and the function S; (z/, p7, q) is equal to?
7

Si(a) = S(a) = (o' - ya)|,

expressed in the local coordinates of the chart U; (the Legendre transform of the function
S(a)).
2. The expression for the density of the measure g in the local coordinates of the chart
Ur is A 5
y A
S LA S [ — - (11)
dz! A dpy A dg az!, p7)
The argument of the function (11) (which is used below for calculation of the square root of
this function) is defined in the following way [2].

wr (=47, q)

Let Uy and U; be two canonical charts on the Lagrangian manifold L with non-empty
intersection. Denote

L=InJ, L=I\J L=J\I, L=InJ.

2Here and below we accept the usual in the tensor analysis summation convention.

9



Then in the intersection U; N U, we obtain

argu; = arguy + wary, (12)
where
1
ary = Z arg A rg + 12|,
3
__577_ < a.rg )\k'[J S g— (13)

and Ag jy are the eigenvalues of the matrix

8(—;)12,3:1“)
I\7PL:T ) 14
3(ah, pr) (14)

(The fact that the manifold L is a Lagrangian one leads to the symmetricity of matrix (14).
Hence, the inequalities (13} are correct.)

Now let [ be a path joining the base point o™ with a point o € Uj of the chart U;. Let
us fix some type Uy, of the chart in a neighbourhood of the point o* and some (arbitrarily
chosen) value of the argument of yj, at the point o*. Let

{U,..., U, = U}

be a chain of charts covering the path I. Define the index of the path ! (or, more exactly,
the index of the chain of charts along !) by the formula

N-1
ind! = Z QL Ty
k=0

Then, due to relation (12) it is evident that the argument of x; in the chart Uy is equal to
arg ji; = arg uy, + wind L. (15)

Due to the fact that the manifold L is quantized, the argument arg pu; given by (15) does
not, depend on the choice of the path { (as well as on the choice of a chain of charts).
Now the local expression of canonical operator (4) can be represented in the form

- h _I/h : .‘L"r, y
k(L.u} (ﬂ'2(r°) = Fl/ ITFq—-y {CESI( qu) Hr (xfapTaQ)(ro (I[rpfs(I)} y
Pr

where F''/* is 1/h-Fourier transformation and 7™ s its conjugate |2].

10



Evidently, with the help of a partition of unity the computation of the trace (7) of the
operator T'(g,¢) can be reduced to the case when the support of the function ¢ is contained
in one of the canonical charts U;. In this case we have

_ - N | T]/2 S
TraceT(g,¢) = (—1)II* (-2";7) /eXP {% [IIPT— gz + 51 (z', pr, q)]}

x +/ur(z!,p1, Qe (=¥, p1, ) dprdgdr, (16)

where the argument of —1 equals —= in accordance to (13).
We shall compute the asymptotical expansion of integral (16) by the stationary phase
method (see, for example, [2]). To do this we first derive equations for stationary points of

the phase function of integral (16)
¢ =.1:Tp7—(1-73+51 (1‘1,}’7,?) (17)

with respect to the variables (py,¢,z). Due to relations (8) the equations for the stationary

point read
T 55[ (Ilap-3Q) T T
! + — ! =zl —zf [: 3 :0:
z Tpr T -z (a: pfq)
rr — q=0,
aS; (=, p7,q
-q + __Lax—f—f_)— = —=q1+pI (Ila Iaq) =0, (18)
asy (z!, p7,
_z + 1(z ])Tq)=-—:c+y(x’,py,q)=0.

dq

Equations (18) show that stationary points of the phase function (17) ezactly correspond to

fized points of the mapping g.
Now let us show that if the Condition 1 is satisfied then each stationary point of the
phase function (17) are non—degenerated. To do this we compute the Hessian of (17) in

z! 2! qr,q7, p7) at stationary points. It is equal to
T ! 1

_9 0 | -8 _8m _3
dr 8qr aq-l— 3197
0 0 0 1 -1
dy! 3y’ ay’ 3y’
1 - oz 0 B 3 ]
det Hess (—®) = 7 7 T (19)
_at o et el o
dr dqr 2] T SpT
ozl _y  aal oz’ ozl
2z7 3qr aqT 3pT

11



Adding the last column of determinant (19) to the previous one and decomposing this de-
terminant with the hellp of the second row, we get

A - A
()-(0)  a(a)we
det Hess (—®) = (80?3—3(2 é) ((1) 3)-001—3(3 [1)) ; (20)

1
where the matrices A, B, C, and D are given by the relations

o 5 g = il il
z PT z P s a7 a1 7
A= - - ,B: - - ,C= - _ ,D..—_ - -
o oy ocT o7 af oy oz 2l
8z p7 a7 dpy 99 Ogf 8qr  Odg7

From the other hand, deriving the variables (z,p) via (y,q) from equations (8) of the La-
grangian manifold L, we obtain equations of the symplectic transformation g. Now, using
the implicit function theorem, one can show that the determinant

det(l — g.),

included in the non—-degeneracy condition is equal to

()-(8) (i) |
(59)-2(28) (s 4)-0-n(2 )

Comparing formulas (20) and (21) we obtain the relation

(=1)ldet A~

det (1 - g.) = (—l)lilﬂ.l_l (z!,p7,9) detHess(z ¢,y (— ) (22)

which is valid at fixed points of the mapping ¢. Relation (22) shows, in particular, that
if Condition 1 is valid, then stationary points of the phase function of integral (16) are
non-degenerated.

Now the computation of integral (16) by the stationary phase method gives

Trace T(g,¢) Z '“uexp { } AL (m)(p (ak) (mod O(h)),

where the sum is taken over all fixed points of the mapping ¢ lying in the support of the
amplitude function ¢ (z, py,q).



With the help of formula (22) the latter expression for the trace can be rewritten in the
form

Trace T(g,¢) = exp id) o (o) mod O(h)), 23
(0:6)= o { 0 (o0} Z B (modOW), (23)

where the argument of the determinant det(1 — g.) is chosen in accordance to the following
rule:

argdet(l — g.) = —im |7| — argpuy (ag) + arg det Hess (— )| (24)

oy, ?

the argument argy; is chosen in accordance with formula (15) and arg det Hess(—®) is equal
to 3r T
arg det Hess(—®) = arg Ay, —— <argA; < —.
Tg (-9) Z g Ak 5 EAr S 5
In the latter relation Ay are eigenvalues of Hessian matrix.
Now it remains only to note that the value of the phase function ®{ay) at a stationary
point is equal to
(I)(ak) = IIP‘[“_([-T"E' SJ’ (mla I:Q)l

A

=5 (ak) )

= .‘L'IPT— qz + [S —:;:Ip7+q:1:] o
where S is the non-singular action defined above by formula (10). The latter formula
completes the proof of Theorem 1.

To conclude this section we present a generalization of the trace theorem to the case
when the symplectic transformation ¢ has a smooth manifold of fixed points. This general-
ization will be used below in consideration of the case when the symplectic transformation is
generated by a Hamiltonian flow with closed trajectories. Certainly, for computation of the
trace of Fourier integral operator one needs to impose some nondegeneracy condition to the
manifolld of fixed points. In our case such condition is essentially Condition 1 formulated in
the beginning of this section but considered only in transversal directions to the fixed points
manifold.

Let us proceed with exact definitions.

As above, we consider a symplectic transformation

g:T"M ->T°M

13



and we denote by F the set of its fixed points. We suppose that F can be decomposed into
a finite disjunct union of the components £} which are smooth compact manifolds without
boundary of different dimensions. We remark that, since the fixed points of g correspond
to stationary points of the phase function S, the value of this function is constant on each
component F} of the set F. We denote these values by S .

Suppose that the following condition is valid.

Condition 2 The kernel of the operator | — g, coincides with the tangent space to the fixed
points manifold F.

Then the following affirmation takes place.

Theorem 2 The formula

(p(lm

Nons

is valid. Here dm is a special measure on Fj, which will be defined below and A; are non-zero

TraceT(g, ) = Z exp {;{Sk} (mod O(h)) (25)
%

eigenvalues of the operator 1 — g..

Since the proof of this Theorem is similar to those of Theorem 1, we present here only the
sketch of the proof. To do this we again write down the trace of the operator 7'(g,¢) in the
form of integral (15) and then localize it in a neighbourhood of the set F. The integral can
be evidently represented as a sum of integrals taken over neighbourhoods of the components
F} of the set . Then we write down each of these integrals as an iterated integral, the inner
integral being taken over (local) variables transversal to Fi and the outer over the variables
on the manifold Fj itself.

Let us show that, under Condition 2 the phase function in ‘the inner integral has only
non-degenerated stationary points. Denoting, as above, by & the phase function of the
integral (16}, we obtain the following relation

A0 0 o« B0 | 0
Hess(=®) =M, | B 1 0 B a 0 I 0 | My, (26)
0 0 1 0 0 1 00 I

where M, and M, are non-degenerated matrices with constant coefficients, A and B are
matrices defined above and « and g are given by

=(00)7=(0 1)

14



This formula shows that the kernel of the matrix Hess(—®) exactly coincides with the tangent
space of the corresponding component Fj and, hence, this matrix is non-degenerated in
transversal directions to this component.

To conclude the proof, it remains to note that, due to formula (26) we have

VI m
/ Hess'(—®) /H A

Here arg); are defined as above (see (13)), m is a density of measure dm on F, and by Hess'
we denote the Hessian along the variables transversal to F.

2 Trace Formula for Evolution Operator

In this section we specialize the theorem proved in the previous section for the case when the
considered Fourier integral operator is determined by an evolutional Schrédinger equation

L AU, _ »
{zh%#..HUh 27
U3|t=0 = id. ‘

- .9
BH=H (:::,——zh—a;)

is a 1/h-pseudodifferential operator on the manifold M with the full symbol

Here

H(z,p) = Ho(z,p) + hH (z,p) + R*Hy(z,p) + ...

1t is well-known (see, for example [2]) that the operator U, determined as a solution of prob-
lemn (27) is a Fourier integral operator (for each fixed value of t). This operator corresponds
to the symplectic transformation ¢, which is the shift by the time ¢ along trajectories of the
Hamilton vector field V(Hy) defined by the principal symbol Hy(z,p) of the operator H.
It is supposed that the function Ho(z,p) is a real-valued function and that the flow g, is
defined for all values of t.

We shall also use a subprincipal symbol of the operator H, that is, the function defined
by the formula

. I [9?Ho(z,
Hsub(J:’p) = lHl(.’IZ, P) - § ‘—a% - V(Ho)[ll UI(I) y

where v.(z) is a density of the measure dz introduced in the beginning of Section 1.

15



We shall denote the solution U, to problem (27) by
U, = e #1¢, (28)

The aim of this section is obtaining an asymptotical expansion as h — 0 of the trace of
operator (28).

Let us suppose that the Hamiltonian vector firld V(H) has for given value of ¢ only the
finite number of isolated closed trajectories v, £ = 1,2,..., N (including zeroes of the field
V(H)). Then each fixed point a; of the transformation g, for such value of ¢ is determined
by some closed trajectory of the Hamiltonian field V(H) (in particular, each zero of the
Hamiltonian vector field can be wieved as a closed trajectory for any value of ).

We remark that if a closed trajectory of the vector field V(H) containes more that one
point (that is, if it is not generated by a zero of V(H)), then this trajectory is a smooth
submanifold of fixed points of g; of dimension 1.

The following statement takes place.

Theorem 3 Let
a (z,—th g )
a=a(z, —th—
’ T

be a pseudodifferential operator with the finite® (in (z,p)) principal symbol ag(z,p) and sup-
pose that the transformation g, satisfies Condition 2 above. Then the (mod O(h))-comparizon

Trace {e'i”‘a} = ¥e><p {% M* pdz — Ho(ak)t] _ ik Hsub(a:,p)dt} }Ek “0;{1 (29)

J

is valid. In the case when the fized point of g, is determined by a zero of the Hamiltonian
vector field, the corresponding term under the summation sign in the lalter formula becomes

aoax)

Vdet(1 — gea () -

Here the argument of the determinant det (1— g,.) is chosen as it was described in the general
case (see formula (24) above).

(30)

exp {—;l-—Hg(a'k)!. - Hs,,b(ak)t}

In the case when all fixed points of the Hamilton flow g; lying on the support of ag are
determined by zeroes of the field V(Fy), the corresponding result was obtained by microlocal
technique in {3] We shall obtain the result of Theorem 3 as a consequence of Theorem 1 proved
in the previous subsection.*

30ne can use a weaker assumption, that is that the symbol ag(z, p) of the operator @ belongs to the class
™ for sufficiently large negative value of m.
4In doing so, one has not use the microlocalization procedure.
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Proof of Theorem 3. To derive formula (29) from formula (25) it suffices to compute
the values S and ¢ of the action and amplitude function included in the right-hand part of
formula (25). First of all we remark that the operator

exp (—%ﬁt) a

is an integral operator with the kernel

. nf2
, 1
K{z,y,t)= (—m) k(L..u.) (‘Pt)’

where L; = graph g;, p, is a measure on L, equal to 7} (w"), and ¢, is a function on L,
satisfying the transport equation

Poi =0, ¢i,eo = ao. (31)

Here P is the transport operator

~ 0
P = EN + V(Ho) + Hauly, -

The transport operator can be regarded as an operator on the Lagrangian manifold
L = Ug(L;)

lying in the symplectic space T"M x T*AM x T"R with coordinates (z,p;y,¢;t, E) defined
with the help of the relation
E + Ho(z,p)|, = 0.

Besides, due to the initial data of problem (27) it is evident that the base point of the
manifold L must be chosen at £ = 0.
Let us now compute the values of the action § at fixed points of the mapping ¢;. We

have
{

t
S= /pda: + Edt = /pda: — Ho(z,p)dt.
0

0
Since
Ho(z,p) = const

along the trajectories of the field

d
2 + V(Ho)
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and since the point a; is a fixed point of the transformation g,, corresponding to the closed
trajectory vx of V(Hy), we obtain

S (o) = J{pdm — Ho (a)t. (32)

Tk

Now, solving transport equation (31) we have

t
P =¢€xXpy§ — [ Hsub(xyp) dt aO(y) Q)’

the integration is taken along trajectory of the vector field V(Hp) with the origin point (y, ¢).
The latter formula gives the value of the amplitude function ¢, at any fixed point a; of the
transformation g, in the form

we(ar) =exp ¢ — ¢ Han(z,p)dt } ap(ax). (33)
T

Substituting expressions (32) and (33) into formula (25) we obtain formula (29). This com-

pletes the proof.

Remark 3 In the case when the fixed point «; of the transformation g, is determined by a
zero of the Hamiltonian vector field V(Hy), formulas (32) and (33) can be rewritten in the
form

S(ar) = —Ho(ow)t,
@ (ar) = exp{—Heu (ax)t} ao (o)

and we come to the formula derived in [3].

Remark 4 In the case when the operators T'(g,¢) and exp (—iﬁt) are acting not on

functions but on sections of some vector bundle E over the manifold M, formulas (25) and
(29) can be rewritten in the form

Trace T'(g,¢) = Z exp {;—L.S'k} Trace/ so;;j\ (mod O(h))

k i
F :
* J
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Il
-

o

=

<
Sl

fpd:c — Ho(ax)t| } Trace exp { — f Hgun(z,p) dt
Tk Yk

x f Golm_ ( 0d O(h)).

J

Certainly, in the latter formula we suppose that the principal symbol Hy(z, p) is scalar, while
all the rest symbols can be matrix ones.

3 Generalization of Atiyah—Bott—Lefschetz Fixed
Point Theorem

In this section we shall apply the results of Section 1 to obtaining the theorem of Atyiah-
Bott-Lefschetz type for the case when the geometrical endomorphisms of an elliptic complex
are given by Fourier integral operators associated with some canonical transformation

g: T"M — T7M.
Let B, — M and E, — M are vector bundles over M and let
a: L2 (I'I’[, E[) - L2 (ﬁ’[, Eg)

be an elliptic pseudodifferential operator acting in sections of these bundles with symbol
a(z,p, k) of the class Z™°. The ellipticity of this operator means that there exists a regulizer
for the operator é, that is, a 1/h-pseudodifferential operator

7 =r(z,—1h3/0z)

such that symbols of the operators

=3

1—ro

and

~4

l—ao
belong to the class £=°% = (| ™. It is also clear that under this condition the operator &

m
has finite-dimensional kernel and cokernel, that is, this operator is a Fredholm one.
Let us consider an elliptic complex

0 — LE(M,E) S L*(M,E;) — 0 (34)
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and let

fj] = T(grﬁol): [71 = T(g:(:gl)

be Fourier integral operators of order zero determining an endomorphism of this complex.
This means that the diagram

0 —— L2(M, Ey) L*(M,E;) — 0

~ -~

U : Us (35)

0 — L2(M,E))

cominutes,

Remark 5 The nesessity of the requirement that Fourier integral operators U, and U, are
associated with one and the same symplectic transformation g naturally follows from the
requirement of commutativity of diagram (35). Actually, due to the fact that this diagram
commutes, we have

—~ fh—l . _~~
a=U; odol.

The latter operator is a pseudodifferential one only in the case when the operators 6’1 and
U, correspond to one and the same symplectic transformation g.
The diagram (35) allows to define the Lefschetz number

A} — Trace {UQ A} .
Kera Cokera

This number is a function of the parameter h and our goal is computation of the leading

L=L (ﬁ, 61,62) = Trace {(7,

term of the asymptotical expansion of £ = L(h) as h — 0.
The following affirmation is valid.

Theorem 4 Let @, U, and U, are the above operators and suppose that the transformation

g: T*M — T*M satisfies Condition 2 above. Then the formula

C=c(h)=Y exp {%Sk} Trace / lor=@a) dm - d0(h) (36)

k Fi ‘/H)‘j
2

is valid. In this formula the arqument of the determinant det (1 — g.(ax)) is chosen as it is
described in Section 1.
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Proof. Let 7 be a regulizer for the operator a. As it is shown in [6], the formula
L= Tra.ceal o(l —7oa)— Trace ((72 —ado (71 0 ?)

is valid. The important fact is that this formula does not depend on values of the symbol of
the operator 7 inside a compact set in T*M. Thus, choosing the operator 7 in such a way
that its symbol is equal to zero in a neighbourhood of the set of fixed points of g and then
rewriting the latter formula in the form

C=Tra.ce(jlo(l—Foa)—Traceﬁgo(l~Eo?), (37)

we come to the possibility of using the resuults of Theorem 1 for asymptotical computation
of the expression (37) as h — 0. Actually, up to terms of order O(h*) formula (37) can be

rewritten in the form
L = Trace U] — Trace U,

where the symbols of the operators U; have compact supports and coincide with the symbols
of the operators U; in a vicinity of the set of fixed points of the transformation ¢g. Therefore,
we are able to use the result of Theorem 1. It is easy to see that we come to formula (36).
This completes the proof of the theorem.
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