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Introduction

The present paper is ailned at the generalization of the Atiyah-Bott-Lefschetz fixed point

theorem [1] in the situation of syn1plectic geometry. Let us briefly describe the general
statement of the problen1.

Let

....... .......
be a Fredholm operator acting in Hilbert spaces 'H 1 and 'H2 and let U1 and U2 be invertible

operators such that the diagraIl1

A

'H 1 · 'H2

v, I I v, (1)
A

'H1 • 'Hz

.......
commutes. It is easy to see that in this case the space Ker A is an invariant subspace of the

....... .......

operator VI anel, hence, this operator acts on the kernel of the operator A. Sin1ilarly, the

•Supported by !vlax-Plank-Gesellshaft zur Förderung der \Vissenschaften e. V,) Arbeitsgruppe "Partielle
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operator U'J is correctly defined on the cokernel of the operator A. Since the spaces Ker A
and Coker Aare finite-dimensional (the operator A is a Fredholm one) the number

12 (A, Oll fJ'J) = Trace (VII ....) - Trace (O'JI ....)
Ker A Goker A

is defined. This nUlnber is called the LeJschetz number of the diagram (1). We remark that

if VI = id:.V2 = id then the Lefschetz number L ( A, id, id) coincides with the index of the

operator A.
The Lefschetz nurnber can also be clefined in more general situation. Namely, let

(2)

be a complex with finite-dimensional coholnology (for example, an elliptic complex on a

smooth compact manifold without boundary) alld let Dt, ... , fJN be operators defining an

endomorphism of this c0I11plex:

AI

0 - 'Hl
. 'H'J

v} U2 j
A}

0 'Hl
. 'H2

Then the Lefschetz number of diagratll (3) is defined as an alternative SUIU

where Hk are the coholllology of cOIuplex (2).

Let us consider the two iIuportant particular cases of thc above general construction.

a) Classical Lefschetz theorelTI. In this case cOluplex (2) is the classical cle-Rham

complex on a Sl1100th COll1pact l11anifold A1 without boundary

and mappings Ok are detennined by SOfne SfllOOth Inapping f : AI ----+ AI with the graph
being transversal to the diagonal. In tltis case the Lefschctz number equals to
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where Uk is the action of the inclucecl mapping f· on forms of the clegree k anel Hk(M) are

cohomology groups of the nlanifold NI.
The following statenlent is the classical result by S. Lefschetz.

The forrnula

is valid, where lhe SU1n is laken over o.ll fixed points 0/ the mapping fand a(Ok) is the

inlersection index between the graph 0/ the 7napping fand the diagonal at the point 0k.

b) Atiyah-Bott-Lefschetz theorem. In the paper [IJ M. F. Atiyah and R. Bott

had formulated the following generalization of the Lefschetz theorem to the case of elliptic

complexes. Let Ei -t Al, i = 1,2, ... , IV be vcctor bunelles over Iv! anel let

be an elliptic conlplex. Consider a I11apping

f: Al -t AI

with its graph transversal to the diagonal anel suppose that facts on sections of the bundles

Ek in accordance to the fonnula

where Tk(x) is an eneloIllorphislIl of thc bundle Ek (such cndornorphisrTIs of the space COO(Ek )

of sections of the bundle Ek are called ge01netricaI).Then the following statement is valid.

The form ula takes place

the outer sum1nation is performed oue1' all jixed points 0/ the 7napping f.

Thus, generalizing the Lefschetz theoTern Atiyah and Bott use an arbitrary elliptic com

plex instead of the de-Rham cOlnplex preserving the 'geometrical' nature of an endomor

phism U of the considereel cOlllplex. This ITIeanS that the Illentioned endomorphism is, as

befoTe, detenTIined by sOUle lllapping f : k[ -t 1\'[ of the manifold Ai.
It seems, howevcr, that rnore natural is to consider endorTIorphislTIS connected with some

symplectic (canonical) transfonnation

9 : T* 1\1 -+ T* Al
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ßH a ßH ß
\I(H) = Dp ßx - ux up

determined by SOllle real Halnilton funet,ion H(x, p). In this case thc corresponding Fourier

integral operators can be represent.ed in t.he fonn

rather than with a mapping of the Illanifold Al itselL l

Such endomorphisl11S can be rcalized on sections of the corresponding bundles as Fourier

integral operators (obtained by quantizat.ion of canonical transformations) associated with

these endomorphisl11S 9 (see, for exanlple, [2]).
The aim of this paper is Lo obLain the corresponding generalization of the Atiyah-Bott

Lefschetz theorem in the fraillework of the classical quantization, that is, in the situation of

1/h-pseudodifferent.ial operators [2]. In such a situation we obtain an aSYlnptotic fOfll1ula

of the Lefschetz type, which expresses the leading tenn of the asYIllptotic expansion of the

Lefschetz number as h -t 0 in ternlS of fixed points of the sYInplectic transformation 9 (see

Theorem 4 below).
The interesLing particular case [3] of such a construction is a case when the considered

symplectic transforl11ation is detennined by a Haillilton flow 9t along trajectories of Hamilton

vector field

where Hk, k = 1,2 are pseudodifferential operators with principal sYlnbol H. Here the Lef

schetz number is strongly connect.ed with speclral properties of the operators Hk- Actually,

let us consider the sinlplest. case of an elliptic operator:

-0

-0

Suppose that the operators Hl al~l H2 h,:, a discrete spectrum and denote by A} and Al
the eigenvalues of the operators H1 and flz correspondingly_ Then it is evident that the

Lefschetz number can be written down in the fonll

1We recall that for any smooth manifold the total space of the cotangent bundle has the standard
symplectic structure (see, for example} [2]).
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where the first SUll1 is taken over eigenvalues corresponding to the kernel of the operator

A and the second over eigenvalues corresponding to the cokernel of this operator. Such a

situation arises, for example, in the Sill1plest scattering problem. Actually, let us consider

Hamiltonians
....... 2....... 2 .......
H2 = -h ß, fl l = -h ß + T

.......

where T is an 1/h-differential operator with finite in (x, p) symbol. Then there exist the

operator
W= lin1 e-j;HJte-kH2t = 1 + B

t-+oo
.......

where B is an operator of trace dass. Dne can show that the operator H1 has continuous

spectrUll1 and a finite nUll1ber of eigenvalucs. The operator W maps the space corresponding

to the continuous spectrull1 of the operator HI on the whole space L2 and the kernel of this

operator coincides with the subspace corresponding to the discrete spectruln of this operator.

In this situation the Lefschetz nUll1ber

N

[, (W, e--j;-lflt, etii2t ) = L e--k,xk t

k=l

.......
is simply the Fourier transforl11 of the part of the spectral n1easure of the operator H1

corresponding to the discrete spectrUll1 of this operator.

Let us desreibe briefty the coutents of the paper.

Section 1 is ain1ed at the c0l11putation of the aSY111ptotics 0/ the trace of a Fourier inte

gral operator associated with SOlne sYlnplectic transformation. The result of this section is

formulated in the theorenl expressing the leading tenn of the asymptotical expansion of the

trace of Fourier integral operator in tenns of fixed points of the corresponding symplectic

transformation.

In Section 2 we considcr thc case when the symplectic transfonnation is detennined by

a flow along trajectories of SOllle Hatnilton vector field. In this case fixed points of the

symplectic transfonl1ation 9t corrcspond to closcd trajectories of the Halnilton vector field

and the coefficients of the asYI11ptotic expansion obtained in the previolls section can be

expressed in ternlS of integrals along dosed trajectories of the Han1ilton vector field.

In Section 3 we derive the geneTalized Le/schelz /ormula in situation of syrnplectic trans

formations. Here we obtain the expression of the leading terlll of the asYJnptotic expansion

of tbe Lefschetz nUll1ber as h -+ o. Ta sill1plify the notation we restrict ourselves to the

case of elliptic operator though all considerations can be carried out in the case of elliptic

cornplexes as weIl.
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In conclusion we remark that all the construetions of the present paper can be carried

out also in the case when the principal symbol Ho(x,p) of the operator fj which determines

the Hamilton flow g, is a complex-valued funetiOll. In this case one should use the s-analytic

theory and, in particular, the formula of asymptotic expansion of rapidly oscillating integral

with complex phase funetion (see [2]).
Acknowledgements. This paper was Wl·itten as a resuit of discussion on the paper [3]

with Professor Soris Fedosov. We are very grateful to hirn for his very interesting talk and

further stimulating conversations. We are very grateful to Dr. Vladimir Nazaikinskii for a
very helpful duscussion on the theme of this paper.

We are also very grateful to Professor S.-W. Schulze for the very good conditions for
working in Arbeitsgruppe "Partielle Differentialgleichungen und komplexe Analysis" where
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1 The Trace of Fourier Integral Operator

Let Al be a smooth compact manifold withollt boundary ancl let

g: T'M -t T'M

be a sympleetic transformation which satisfies the following condition on non-degeneracy.

Condition 1 The transformation 9 has only finite n1l1nber of fixed points 0" ... , 0k such
that the determinant det( I - g,) does not vanish at each of these points.Here

g, : TT' M -t TT' M

is the induced mapping of the tangent spaces.

The aim of this seetion is the complltation of the asymptotics as h -t 0 of the trace

of Fourier integral operator T(g,<,:J) with a symbol <,:J corresponding to the sympleetic trans

formation g. Let us recall briefty the definition of the operator T(g,<,:J) (see, for example,

[2]).
Denote by LeT'M X r M a sllbmanifold of the symplectic space r(M X M) ~

T'M X T' Al which is the graph of the transformation g. We remitrk that L = graph 9 is a
Lagmngian manifold in T' M X T' 111 with respect to the Hamiltonian struetllre

where

11";: T'M X T'M -t T'M
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are the eanonical projections and the fonn w detennines the sYlnplectic strueture on the

spaee T* M. It is evident that L is diffeon10rphieally projeeted on the second faetor, that is,

that

1T"2IL: L -. T* Al

is a diffeomorpbism. Henee, there exists the canonieal measure

on the manifold L (here wn = w 1\ .. . 1\ w (n tilnes)).

Let now 'P be a smooth function on tbe sympleetic spaee T* M. Then the operator T(g, r..p)

is defined as an integral operator with the kernel

( . )"/2
I< (x, Y) = - 2~ h k(L,1J) (1T"; (cp)) , (4)

where k(L.~) is ~1aslov's canonical operator on the quantized Lagrangian manifold L with
the non-degenerate measure Il (see [2]). The function cp is called a sYTnbol of the Fourier

integral operator T(g, cp).
Let us describe the sYl11boi dasses which will be used below. Denote by L;m,~ the set of

COO-funetions <p(x, p, h) on T" AI X [0,1] whieh satisfy the estimates

(5)

(where (x, p) are canonical coordinates on T" AI) and may be represented in the form

N

cp(x, p, h) = L h1J+k cpd x ,p) + RN(x,p, h)
k::;;:O

for any integer JV. Here the fUllction RN(x, p, h) must satisfy estin1ates (5) with m replaced

by m + N + 1.
These syn1bol c1asses are Inodification to the case of compact manifold without boundary

of the c1asses L;';(j intraduced by I\1. Shubin [4]. \Ve remark that all the theory developed

below remaines valid also in the space Rn if we modify the estimate (5) in the following way

Suppose now that t.he transfonnat.ion 9 has the operator T(g, cp) belangs to the dass
L;m,J.l with sufficiently large negative rH. Thcn the following affirn1ation takes place.

Theorem 1 The fonnula.

Trace T(g, cp) = L exp {-h
i

S (nJ.-)} cp (O'k) (ll1od O( h)), (6)
k Jdet (1 - g* (O'k))
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is valid. Here the sum is taken over all fixed points ak of the transformation 9, S is a

nonsingular action on the manifold L Q.nd the choice 0/ the branch 0/ the square rooi is

described be/ow.

Remark 1 Certainly, one can show that there exists an asylnptotic expansion of thc trace
of the operator T(g, c.p) up ta an arbitrary power of h. However, the computation of explicit

formulas for the corresponding terms of this asymptotic expansion is rather complicated and

we present here only the computation of the leading term.

Remark 2 In the case when fixed points of the lllapping gare degenerate, that is, they

do not satisfy Condition 1, one can also obtain the asymptotic expansion of the trace using

normal forms of the phase fUllction at stationary points (see [5]).

All the rest of this section is the proof of Theoreln 1, that is, the computation of the

asymptotical expansion of the integral

Trace T(g, 'P) = J[((x, x )dx

At

(7)

as h ~ 0, here dx is SOBle fixed posi ti ve Illeasure on the lllanifold AI.

Ta compute integral (7) wc shall tlse the following special coordinates systenls.

First, we denote by (x, p) (correspondingly, (y, q)) the canonical coordinate systems in

the first (correspondingly, second) factor of thc product T* AI X T* A1. Thus, the structure

forms in the symplectic spaces Tl< Al and T- Al x Tl< Al have the fonn

dp /\ dx and dp /\ dx - dq /\ dy,

correspondingly. Vt/e suppose also, that coordinat.e systems are chosen in such a way that
the measure dx lllentioned above has the llnit density.

It is easy to show that the Lagrangian l11anifold L can be covered by canonical charts

of the type UI wi th the coordinates (xl, PT, q) (here, as it is usual in the canonical operator

theory [2], by I c {I, ... , n} wc denote SOUle subset of indices, by 7 we denote its complement

in {I, ... ,n}) xl is the tllple (xi)) ... , x im ) where I = {i1) .. . , im}, and PT has sirnilar sense).

Let us express the objects included in definition (4) of the canonical operator in the

described local coordinates.

1. Let
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be an action in the chart VI of the Lagrangian o1anifold L. This Ineans that the equations

of L are

Xl aSI (I ) der I (I )= -a- X ,'PI,q = X X ,'PI,q ,
PI

aSI (I ) der (I ) (8)PI BxI X, PI, q = PI X ,PI, q ,

y asI ( I ) der (I )= aq X, PT, q = y X ,PI, q .

The action SI can be constructed in the explicit fonn in the following way. First, we denote

by S (the non-singular action) a solution of tbe Pfaffian equation

dS = pdxlL (9)

on the Lagrangian Inanifold L. \\Te recall that the Inanifold L is supposed to be quantized. In
particular, this Ineans that equation (9) has a global solution on L defined up to an additive

constant. Ta fix this constant we choose a point 0'* on the Inanifold L (which will be referred

below as base point of tbe Inanifold L) allel suppose that S(0'"') = O. Then the function S( 0')

at the point a E L on the Lagrangian Inanifold is given by the fonnula

0'

S(a) = Jpdx

anel the function SI (xl, py, q) is equal t.02

(10)

VI is

expressed in the local coordinat.es of t.he chart VI (the Legendre transfonll of the function

5(a)).
2. The expression for the density of the Ineasure f.l in the Iocal coordinates of the chart

I dy 1\ dq Dy
PI (x ,PT, q) = dx I 1\ dpy 1\ dq = det D( x I, PI) (11 )

The argument of the function (11) (which is used below for calculat.ion of the square root of

this function) is defined in the following way [2).

Let VI allel VJ be two canonical charts Oll the Lagrangian Inanifold L with non-elnpty

intersection. Denote

11 = I n J, 12 = 1 \ .J, 13 = J \ I, 14 = 1 n J.

2Here and below we accept the lIsllal in the tensor analysis summation convention.
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Then in the intersection UI n UJ we obtain

arg/11 = arg/1J + 7rO'IJ,

where

(12)

O'/J
1

= - L arg Ak,lJ + 112 1,
7r

7r
< arg Ak,lJ ::; "2 (13)

and Ak,lJ are the eigenvalues of the matrix

8 (-Ph,X I3 )

8(x I2 ,PI3 ) •

(14)

(The fact that the l11anifold L is a Lagrangian one leads to the sYlnnletricity of Inatrix (14).
Hence, the inequalities (13) are correct.)

Now let I be a path joining the base point 0'. with a point 0' E UI of the chart UI . Let

us fix some type U10 of the chart in a neighbourhood of the point a· and some (arbi trarily

chosen) value of the argulnent of /110 at the point a·. Let

be a chain of charts covering the path l. Define the index of the path I (or, more exactly,

the index of the chain of charts along I) by the fornlltla

N-l

ind I = L O'hh+l .

,1.. :;;;0

Then, due to relation (12) it is evident that the argument of J-ll in thc chart UI is equal to

arg jlI = arg plo + 7rind l. (15)

Due to the fact that thc Inanirold L is quantized, the argument arg ILI given by (15) does

not depend on the choice of the path , (as welt as on the choice of a chain of charts).

Now the IDeal expression of canonical operator (4) can be represented in the form

where F 1/ h is 1/h-Fourier transformation anel F
1
/
h

is its eonjugate [2].
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Evidently, with the help of a partition of unity the computation of the trace (7) of the

operator T(g, <p) can be reduced to the case when the support of the function c.p is contained

in one of the canonical charts UI . In ihis case we have

TraceT(g,cp) = (_1)11'1/2(~r+lll/2JexpU [xlPI-qx+Sdxl,PI,q)J)

x JJ11 (xl,py,q)'P (xl,py,q) dpydqdx, (16)

where the argument of -1 equals -7t" in accordance to (13).

We shall compute the asymptotical expansion of integral (16) by the stationary phase

method (see, for exalnple, [2]). To do this we first derive equations for stationary points of

the phase function of integral (16)

(17)

with respect to the variables (py, (j, x). Oue to relations (8) the equations for the stationary

point read

-x

I 8SI(xl,p[,q) I I( I )
x + =x -x x ,P!,q =0,

8py
qy= 0,

ß.r:h (x I,Irr, q) (1)
ßx I = -qI +PI x ,P!,q = 0,

aSI (xl, Irr, q) _ (I) _
+ a - -x + y x ,PT, q - O.

q

(18)

Equations (18) show thai stationllry points 0/ the phase /unction (17) exactly correspond to

fixed points 0/ the nwppi1lg g.

Now let us show that jf the Condition 1 is satisfied then each stationary point of the

phase function (17) are non-degenent.led. To do this we COlllpute the Hessian of (17) In

(xl, xl, qI, CJ7, PT) at stationary points. It is equal to

-~ ° 1 - !ti!.L -Qu _!ZE.L
aqI aqT 8p[

° 0 0 1 -1

1-~ 0 -gL -~ -~
det Hess (-«I» = ox aqI aqy 8p[ (19)

-~ 1 -~ _!!JZ. -~ox aq! aq! aPy

axT -1 axT axT axT
a;r oqI 8qy OPy

11



Adding the last colulnn of deterillinant (19) to the previous one and decomposing this de

terminant with the hellp of the second row, we get

det Hess ( -<I» = (20)

\

where the matrices A, B, C, and D are given by the relations

From the other hand, deriving the variables (x, p) via (y, q) froIll equations (8) of the La

grangian manifold L, we obtain equations of thc symplectic transfonnation g. Now, using

the implicit function theorem, one can show that the detenninant

det(l - g.),

includeel in the non-degeneracy condition is equal to

A(OO) C° 1 +

~)-D-B(~ ~ )
(21 )

Comparing forillulas (20) and (21) we obtain the relation

(22)

which is valid at fixed points of thc 111apping g. Relation (22) shows, in particular, that

if Condition 1 is valid, then stationary points of the phase function of integral (16) are

non-degeneratecI.

Now the COlllputation of int.egral (16) by the stationary phase method gives

(moel O(h)),

where the surn is taken over all fixed points of the mapping 9 lying in the support of the

amplitude function <p (xl, PT, q).
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With the help of fOflllula (22) the laUer expres.sion for the trace can be rewriUen in the

form

(lllOd O(h)), (23)

where the argument of the detern1inant det(l - g.) is chosen in accordance to the following

rule:

arg det(l - g.) = -hr 171- argpl (ak) + arg det Hess (-<I» lOk' (24)

37r 7r
-- < argAk < -.

2 - 2
arg det Hess( -<I» = L arg Ak l

the argument arg/LI is chosen in accordance with fornuI1a (15) and arg det Hess( -<I» is equal

to

In the latter relation Ak are eigenvalues of Hessian matrix.

Now it remains only to note that the value of thc phase function 4l(ak) at a stationary

point is equal to

<I> (O'k) = x1py-qx + S'I (xI'PT,q)lo
k

xIpy-qx+ [S-xIpy+qx]L. =S(O'k),

where S is the non-singular action defined above by fOflllula (10). The latter fonnula

completes the proof of TheoreIll 1.

To conclude this section we present a generalization of the trace theoreln to the case

when the symplectic transforn1ation 9 has a sllloolh 7nanifold of fixed points. This general

ization will be used below in cOllsideration of the case when the sYlnplectic transformation is

generated by a Halniltonian Row with closed trajectories. Certainly, for cOlnputation of the

trace of Fourier integral operator one Ileeds Lo impose some nondegeneracy condition to the

manifolld of fixed points. In our case such condition is essentially Condition 1 fOflllulated in

the beginning of this section but cOllsiderecl only in transversal directions to the fixed points

manifold.
Let us proceed with exact definitiolls.

As above, we consicler a sYlllplectic transformation

13



and we denote by :F the set of its fixed points. We suppose that :F can be decomposed into

a finite disjunct union of the conlponents Fk which are smooth compact nlanifolds without

boundary of different dimensions. \Ve relllark that, since the fixed points of 9 correspond

to stationary points of the phase function S, the value of this function is constant on each

component FI; of the set :F. "Ve denote these values by Sk .
Suppose that the following condition is valid.

Condition 2 The kernel of the operator 1- g. coincides with the tangent space to the fixed

points manifold :F.

Then the following affirma.tion takes place.

Theorem 2 The form11.1a

TraceT(g,r..p) =Lexp {T,Sk} J~ (mod G(It))
k 0- A)Fit )

(25)

is valid. FIere dm is a special7neasure on FJ,; which will be defined below and Aj are non-ze7'0

eigenva/ues o/lhe operator 1 - g•.

Since the proof of this Theoretll is siIl1ilar to those of Theorenl 1, we present here only the

sketch of the proof. To do this we again write down the traee of the operator T(g, r..p) in the

form of integral (15) anel then localize it in a neighbourhooel of the set :F. The integral can

be evidently represented as a sunl of integrals taken over neighbourhoods of the cOInponents

FI; of the set:F. Thcn we writ.e do\vn eaeh of these integrals as an iterated integral, the inner

integral being taken over (Ioeal) variables transversal to Fk anel the outer over the variables

on the manifold Fk itself.

Let us show that, under Conclition 2 the phase function -in :the inner integral has only

non-degenerated stationary points. Denoting, as above, by 4> ,the phase funetion of the

integral (16), we obtain the following relation

where MI and A12 are non-degenerated Illatrices with constant coefficients, A anel Bare
matrices defined above and Q' anel ß are given by

14



m

This formula shows that the kernel of the matrix Hess( -~) exactly coincides with the tangent

space of the corresponding component Fk and, hence, this matrix is non-degenerated In

transversal directions to this component.

To conclude the proof, it remains to note that, due to formula (26) we have

VJi/
--;::::::::==;:== = ~==

Hed Jry Aj'

Here arg,,\ are defined as above (see (13)), m is a density of measure dm on Fk , and by Hess'

we denote the Hessian along the variables transversal to Fk •

2 Trace Formula für Evolution Operator

In this section we specialize the theorem proved in the previous section for the case when the

considered Fourier integral operator is determined by an evolutional Schrödinger equation

(27)

Here

H= H(x,-ih:x)
is a 1/h-pseudodifferential operator on the manifold 1\1 wi th the full symbol

lt.is well-known (see, for example [2]) that the operator Ut determined as a solution of prob

lem (27) is a Fourier integral operator (for each fixed value of t). This operator corresponds

to the symplectic transformation !Jt which is the shift by the time t along trajectories of the

Hamilton vector field V(Ho) defined by the principal synlbol Ho{x, p) of the operator H.
It is supposed that the function Ho{x, p) is a real-valued function and that the flow 9t is
defined for all values of t.

We shall also use a subprincipal synlbol of the operator ii, that is, the function defined
by the formula

where vr(x) is a density of the nleasure dx introduced in the beginning of Section 1.
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We shall denote the solution Ui Lo problenl (27) by

U - e-*Htt - • (28)

Theorem 3 Let

The aim of this section is obtaining an asymptotical expansion as h -4 0 of the trace of

operator (28).

Let us suppose that the Halniltonian vector firld V(H) has for given value of t only the

finite number of isolated closed trajectories 1k, k = 1,2, ... ,N (including zeroes of the field

V(H)). Then each fixed point Q} of the transfonnation 9t for such value of t is determined

by same closed trajectory of the Hanliltonian field V(H) (in particular, each zero of the

Hamiltonian vector field can be wi~ved as a closed trajectory for any value of t).
We remark that if a closed trajectory of the vector field V( H) containes Illore that one

point (that is, if it is not generated by a zero of V(H)), then this trajectory is a smooth

submanifold of fixed points of gt of diInension 1.

The following stateInent takes place.

a= a(x, -ih:)

be a pseudodifferential operato1' with the ji1lite3 (in (x, p)) principal symbol ao( x, p) and sup

pose that the tra.ns/onnalion 9t satisfies Condition 2 above. Then the (1nod O(h))-comparizon

Trace {e-j;iitCi } =L exp {* [1 pdx -llo(ak)t] - 1llsUb(X,P)dt} 1{rfr (29)
k")',I,: ")'.1: ")',1,: TI ..\.,

J

is valid. In the case when the jixed point 0/9t is detc1'1nined by a zero 0/ the Ha1niltonian

vecLor jield} the corresponding f.e1'1ll under the SU1121nation sigll in the latter Jorrrl,ula becomes

(30)

Here the argument of the detenninant det (1- 9t.) is chosen as it was described in the general

case (see formula (24) above).

In the case wIten all fixed point.s of the Hanlilton flow gt Iying on thc support of 0.0 are

determined by zeroes of the fielel V(Jlo), t.he corresponeling result was obtained by microlocal

technique in [3] 'vVe shall obtain t.lle rcsult of TheoreIll 3 as a consequence of Theorem 1 proved
in the previous subsection.4

30ne can use a weaker assllmptioll) that is that the symbol ao(x, p) of the operator a belongs to the class
Em,lJ far sufficiently large negative value of m.

41n doing so, Olle has not use the microlocalization procedure.
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Pro%/ Theorem 3. To derive formlIla (29) from formlIla (25) it sllffices to compute
the val lies Sand 'P of the action and amplitude fllnction included in the right-hand part of

formula (25). First of all we remark that the operator

is an integral operator with the kernel

(
. )n/2

I«x, y, t) = - 2:h k(L,,~.) ('Pt),

where L t = graph g" 1'1 is a measure on L, equal to 71"2 (wn
), and 'PI is a function on L,

satisfying the transport equation

(31)

Here ß is the transport operator

The transport operator can be regarded as an operator on the Lagrangian manifold

L = U,(L,)

lying in the symplectic space T· 1\1 x T" 1\1 x T"R with coordinates (x, p; y, q; t, E) defined

with the hell' of the relation

E + Ho(x,p)I L = O.

Besides, due to the initial data of problem (27) it is evident that the base point of the

manifold L must be chosen at t = O.

Let us now compute the val lies of the action S at fixed points of the mapping gt. We

have
I I

S =Jpdx + Edt = Jpe/x - Ho(x,p)dt.
o 0

Since

Ho(x,p) = const

along the trajectories of the field
D
Dt + V(Ho)

17



and since the point O'k is a fixed point of the transformation 9t 1 corresponding to the closed

trajectory 'Ik of V(Ho), we obtain

S (akl = f pdx - Ho (ak) t.

"'fit;

Now, solving transport equation (31) we have

<P, = exp { - j H.ub(x, p) dt } ao(y, q),

(32)

the integration is taken along trajectory of the vector field V(J/o) with the origin point (y, q).
The latter formula gives the value of thc aIllplitllde function ept at any fixed point ak of the

transformation 9t in the fanll

(33)

Substitllting expressions (32) and (33) illto fonllula (25) we obtain formula (29). This com

pletes the proof.

Remark 3 In the case when the fixed point O:k of the transforn1ation 9t is determined by a

zero of the Han1iltonian vector fielel V(Ho), fonIlulas (32) anel (33) can be rewritten in the

form

8(0'1.') =

<pt (O:J.-)

-llo (CYd t,

exp {-Hsub (ak) t} Uo (ak)

and we come to the fonllula derived in [3).

Remark 4 In the case when the operators T(9, r.p) and exp ( - *iit) are acting not on

functions hut on seclions 0/ SOHle veclor bllndle E over the Jllanifalel .1\1, fonl1ulas (25) and

(29) can be rewritten in the fanll

'" {i} J r..pdlnTrace T(9l ep) = ~ exp J;S'k Trace fF (n1od O(h))
J.- FI<; nAJ

J
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Trace { e-tHt(i}

=~ exp { *[t pdx - Ho (ak) tJ }Trace exp { - t H.ub(x,p) dt }

x f 'jfr; (mod O(h)).
"'1k n)

)

Certainly, in the latter formula we Sllppose that the principal symbol Ho{x, p) is scalar, while

all the rest symbols can be matrix ones.

3 Generalization of Atiyah-Bott-Lefschetz Fixed
Point Theorem

In this section we shall apply tohe resuIt.s of Section 1 to obtaining the theorem of Atyiah
Bott-Lefschetz type for the case \"lhen the geoInetrical endonlorphisms of an elliptic complex
are given by Fourier integral operators associated with some canonical transfofIllation

Let EI ~ Al and E2 -+ Al are vector bllndles over Al and let

be an elliptic pseudodifferential operator acting in sections of these bundles with SYIllbol
a(x,p, h) of the dass 2: m ,o. The ellipticity of this operator illeans that there exists a regulizer

for the operator a, that is, a 1/h-pseudodifferential operator

.p. = r{x, -ih 8/8x)

such that symbols of the operators
1 - r 0 a

and

1 - CL 0 r
belong to the dass 2:- 00 ,0 = nEm.O. lt is also clear that under this conclition the operator a

m

has finite-dimensional kernel and cokernel, that is, this operator is a Fredholnl one.

Let us consider an elliptic cOInplex
.....

o~ L2 {kl, Ed ~ L'2 (Al, E2 ) ~ 0

19
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and let

be Fourier integral operators of order zero determining an endOlnorphism of this complex.

This means that the diagranl

commutes.

o - L2 (A1,E1 )

U, I
....
a

....
a

• L2 (Al, E2 ) -0

I U, (35)

• L2 (A1, E2 ) -0

Remark 5 The nesessity of the reqllirelnent that Fourier integral operators VI and V2 are

associated with one and the same sYlnplectic transfonnation 9 naturally follows froln the

requirement of COffill1utativity of diagrain (35). Actually, due to the fact that this diagram

commutes, we have

...... ......-1 ...... V......
a = U2 0 a 0 I.

The latter operator is a pseudodiffercntial OllC only in the case when the operators VI and

V2 correspond to one and the salne synlplectic transfonnation g.

The diagrain (35) allows to define the LeJschetz nU1nber

12 = 12 (0., VI, V2) = Trace {VII, .... } - Trace {V21 .... }.
Kera Cokcra

This number is a function of the parcuneter hand our goal is computation of the leading

ternl of the asymptotical expansion of 12 = l.( h) as h ~ O.
The following affinnation is valid.

Theorem 4 Let a, UI and U2 are the above operators und suppose that the transjonnation

9 : r· Nl ~ T· Ai satisfies Condition 2 above. Then the jOTmu.la

(36)

is valid. In this jormula the argument of the delerminant det (1 - g. (O'k)) is chosen as il is

described in Seclion 1.
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Proof. Let r be a regulizer for tbe operator a. As it is shown in [6], the formula

L = Trace VI 0 (1 - r 0 a) - Trace (02 - a0 01 0 r)
is valid. The important fact is that this fOflnula does not depend on values of tbe symbol of

the operator r inside a compact set. in T" A1. Thus, choosing the operator r in such a way

that its symbol is equal to zero in a neighbourhood of the set of fixed points of 9 and then

rewriting the latter formula in the forn1

L = Trace fJ1 0 (1 - r 0 Ci) - Trace O2 0 (1 - Ci 0 r) , (37)

we come to the possibility of using the resuults of Theoren1 1 for aSYlllptotical cOlnputation

of the expression (37) cu; h ~ O. Actually, up to terms of order O(hOO
) formula (37) can be

rewritten in the form

L == Trace V~ - Trace U;,

where the symbols of the operators V: have COlnpact supports and coincide with the symbols

of the operators Vj in a vicinity of the set of fixed points of the transfonnation 9. Therefore,

we are able to use the result of Theorelll 1. It is easy to see that we COIne to formula (36).

This completes the proof of thc theorcrn.
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