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§O INTRODUCTION.

Let f : X ---4 M be a projective abelian scheme over an arithmetic quotient of a
hermitian symmetric domain M = f\V, constructed from a symplectic representation of
the associated algebraic group. Such' fiber spaces of abelian varieties have been studied
by. Kuga, Shimura, Satak~, Mumford, et al. Following Satake [SI], eh. IV, we call such
a fiber space a Kuga fiber space ( of abelian varieties). Let TJ be the generic point of M
and X 17 denotes the generic fiber of f. Then XlI can be considered as an abelian variety
defined over the rational function field }( = C(M), so define the Mordell-Weil group to
be the group X l1 ( K) of ]{-rational points, or equivalently, the group of rational sections of
f : X ---4 M, and denote it by MW(X jM). In this paper, we shall study Mordell-Weil
groups MW(X jW) of Kuga fiber spaces, and prove' a finiteness theorem for them.

Historically, Shioda first showed that the Mordell-Weil groups of the elliptic modular'
surfaces corresponding to arithmetic subgroups f C SL2 (71..) are finite in [Sd]. Generalizing
Shioda's result, Silverberg [Si1] proved the finiteness of the Mordell-Weil groups of those
Kuga fiber spaces which are characterized by an endomorphism algebra with positive
involution and a polarization, introduced by Shimura in [Sh1] and [Sh2]. She later obtained
in [Si2] a eohomological criterion for the finiteness, which covered the most of her former
results.

Denote by R1f.Cx the local system of the first homology groups of the fibers of f.
Then the local system R1f.Cx is induced by a representation f ---4 GL(Wc ), and we
have natural isomorphisms Hq(M, R1f.Cx) rv Hq(f, Wc) where Hq(f, Wc) denotes the
Eilenberg-MaeLane eohomology group. The criterion of Silverberg says that if dirn M > 1
or M is compaet and Hq(f, Wc) = 0 for q = 0,1 then the Mordell-Weil group MW(XjM)
is finite .

. This criterion direcHy works for the cases when the algebraic group GQ defined over
Q under eonsideration has rational rank ~ 2, or the rational rank = 0 (i.e. f C GlIR is
cocompaet) and GlIR has no compact factor and no factor isomorphie to SV (n, 1) (see Th.
6 and Th.7 in [Si2], or [B-W)). (When the rational rank =1, see Theorem 7 of [Si2)).

On the other hand, there are examples of Kuga fiber spaces for whieh one can not apply
these vanishing theorem direeHy, and in some cocampact cases, we da have examples with
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H I (f, We) =J O. (See §5). But we ean still expeet the finiteness of the Mordell-Weil group
(see [Si1], [Si3]).

As far as the classification of Kuga fiber spaees is eoneerned, Satake studied deeply Q­
sympleetie representations, and classified all Q-prirriary sympleetie representations with a
very mild additional eondition ([S2], see also IV, §6, [Sl]), and every Q-sympleetic repre­
sentation is a sum of primary representations. They eonsist of the standard one whieh is
eonstrueted from the pair of aD-module V with a D-skew hermitian or a D-hermitian form
h where D is a division algebra over Q with center FI, and the non-standard one obtained
from exterior produet and spin representations. In the standard ease, the Q-algebraic group
is given by RFl/Q(SU(V, h)), whieh is obtained from the FI-algebraie group SU(V, h) by
Weil's restrietion of the scalars. We remark that the the standard representations include
the eases whieh were studied by Shimura in [Sh3].

In this paper, we will only eonsider the standard Q-sympleetic representation. Also, we
will exclude the following ease from our eonsideration (cf. (3.42)):

(0.1)
Case (R2, -1), n = 2: G~ rv SU2 (1HI)- X ... x SU2 (1H)- X S04(R) X ... X S04(R),

because the reduciblity of SU2 (1HI)- forees annoying distinetions about the nature of f.
(For the notation, see §3, (3.23) and (3.31)).

Then the main theorem in this paper ean be stated as follows.

(0.2) Theorem. ((4.23), (5.8) and (6.25)). Let 1. : X ~ M be a Kuga fiber spaee asso­
eiated to a standard Q-primary representation. not isomorphie to the ease (0.1). Assume
that dim M 2:: 1. Then the Mordell- Weil group MW( X IM) is finite.·

The main idea of our proof is a generalization of Silverberg's method in [Si2] by intro­
dueing the L2-eohomology and the Hodge theory, whieh ean be outlined as follows.

If the eodimension of the singular loeus of the Satake eompaetifieation M* of M is greater
than 1, then for q ::; 1, Hq(f, liVe) ~ Hq(M, We) is isomorphie to the middle perversity
interseetion eohomology IHq(M*, We). Then by the Zucker eonjeeture proved in [L] and
[Sa-St], these are also isomorphie to L 2-eohomology groups. By Borel-Casselman [B-C],
the L2-eohomolgy is ealculated by (9, J<)-eohomology, and henee we ean apply the Borel­
Wallach vanishing theorem in [B-W] even in the ease when fis not eoeompaet, and deduee
that Ht2)(M, We) = 0 if q < rk~G~. So if rk~G~ 2:: 2, we always have Hq(M, We) = 0
for q = 0,1. In ease when rk~G~ = 1, we will separate the proof into two eases, that is,
the eases where M = r\V is eompaet or non-eompaet.

If M is eompaet, we ean use Deligne-Zueker Hodge theory on Hq(M, We), beeause
W e admits a variation of polarized Hodge strueture. It is proved that the Mordell-Weil
group MW(X IM) is isomorphie to HI(M, W 71 ) n (Ho!O) in this ease. Sinee WQ has a
strueture of a loeal system of FI-veetor spaees, we have a deeomposition of We aeeording
to the distinet embeddings of FI into C. We ean see from Satake's classifieation that this
decomposition is compatible with the Hodge strueture. Though in this ease it is possible
that HI(M, We)O,O =J 0, we ean use the deeomposiotion of HI(M, We) to eonclude that
HI(M, WQ)O,O = O.
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If M is not compact and rklJiGIJi = 1, we can take a smooth toroidal compactifica­
tion j : M ~ M such that D = M - M is a smooth divisor and consider the coho­
mology group H1(M,j* W71.). Then by a result due to Cattani-Kaplan-Schmid [C-K-S]
and Kashiwara-Kawai JK-K], this admits polarized Hodge structure of weight O. On the
other hand, we can extend the Kuga fiber space f : X ~ M to a semi-abelian scheme
7 : X ~ M .. And in this case one can prove that HO(M, O~(X)) = H1(M,j* W71.)O~O,

where HO(M, O~(X)) denote the group of holomorphic sections of 1. By using the
theory of Neron model, it can be shown that there is an injective homomorphism r :

HO(M, O~(X)) ~ MW(X /M) with finite cokernel. Now by using the description of

Hodge structure due to Yuji Shimizu [ShzV], we calculate the Hodge component and we
can finally prove that H1(M, j* W Q)o:o = O.

The organization of this paper as folIows. In §1, we introduce Q-symplectic representa­
tions and Kuga fiber spaces. In §2, we introduce the Mordell-Weil groups of Kuga fiber
spaces and recall some results due to Silverberg [Sill, [Si2]. We also review a Hodge theory
of the cohomology group to give a slight refinement of Silverberg's results. In §3, we sum­
marize the basic fact on Satake's classification of Q-symplectic representations. In §4, we
recall some results from Borel-Casselman [B-C] and Borel-Wallach [B-W], and prove the
desired vanishing theorem when the IR-rank of GIJi· ~ 2, even if GIJi has compact factors.
In §5, we shall deal with the case when the IR-rank of GIJi is 1 and M = f\1) is compact.
We will check that the decomposition (see (5.10)) is compatible with the Hodge structure,
and we calculate the first Gauss-Manin complex whose H 1 is the space of (0, O)-elements.
In §6, we shall deal with the case when ·the IR-rank of GIJi is 1 and M is non-compact.

The author would like to thank Professor Steven Zucker for very useful discussions about
Hodge theory, L2-cohomology and intersection cohomology. He would also like to thank
Professor Alice Silverberg for reading the preliminary version of this paper and giving useful
comments. He would like to express his gratitude to JAMI in Johns Hopkins University
for its hospitality during academic year 1990/91.

After I have finished the preliminary version of this paper, the author was infromed
that Ngaiming Mok obtained the similar result to one in this paper independently. It
is announced in his preprint "Aspect of Kähler geometry on Arithmetic Varieties". The
author believes that the method in this paper is different from his and it is worth while
publishing this paper.

NOTATION. Let T be a complex vector space. For a complex endomorphism land
a E C, we set T(a,I) = {u E TII('ll) = a· u}, the eigen space of I. We denote by
H = IR + IR . i + IR . j + IR . k the field of Hamilton quaternions.
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§1 Q-SYMPLECTIC REPRESENTATIONS AND KUGA FIBER SPACES.

Let GQ be a Q-algebraic group such that its IR-valued point Glill is a Zariski connected
semisimple IR-group of hermitian type. Let ]( be a maximal compact subgroup of Glill and
V = GOi / K the corresponding Hermitian bounded symmetrie space. We denote by g, t
Lie algebras of GOi and ]( respectively, and by p the orthogonal complement of t in 9 with
respect to the Killing form. Then the complex structure of V is induced by an element
Ho E Cent(t) such that (adp(Ho)? = -lp. A pair (GQ, Ho) consisting of the above GQ
and Ho is called a Q-hermitian pair.

(1.1) Definition. A Q-symplectic representation of a Q-hermitian pair (GQ, Ho) is a
quadruples (WQ, PQ, AQ, I) consisting of

(i) a Q-vector space WQ of dimension n,
(ii) a non-degenerate symplectic bilinear form AQ on WQ X WQ ,
(iii) a faithful representation PQ : GQ ~ Sp(TVQ, AQ) and
(iv) a complex structure I E V(WIIll , AIIll ) satisfying the condition

(1.2) [dpOi(Ho) - (1/2)1, dplIll(X)] = 0 for all X E gOi,

where V(WIIll, AIIll ) denotes

(1.3) {I E End(WOi)1 12 = -lWmn AIIll(X, 1y) is a positive-definite IR-symmetrie form}.

(See (3.11)).

Next we introduce a Kuga fiber space 01 abelian varieties induced from a Q-symplectic
representation. Let (WQ, PQ, AQ, I) be a Q-symplectic representation of a Q-hermitian
pair (GQ, Ho). By a lattice in TVQ, we mean a free l-submodule Wz in WQ such that
Wz 0z Q rv WQ. Considering GQ as a subgroup in GL(WQ) through the representation
PQ : GQ ----+ Sp(WQ, AQ), for each lattice W71 in WQ, we set

(1.4)

Then GWll C GQ becomes a discrete subgroup of Glill.

(1.5) Definition-Proposition. ([51], eh. IV, /5 7). A discrete subgroup r of GOi
commensurable to G Wll for some lattice W 71 is called an arithmetic subgroup of GOi. The
quotient space r\GOi is of finite measure with respect the measure induced from the Haar
measure of GOi, and there always exists anormal subgroup r' of r of finite index such that
r' is torsion-free.

(1.6) Definition. A 5-tuple (WQh PQ, AQ, I, W71) is said to be a Kuga 5-tuple if (WQ, PQ,
AQ, I) is a Q-symplectic representation of a Q-hermitian pair (GQ, Ho) and Wz is lattice
of WQ such that

(1. 7)
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From a Kuga 5-tuple, we obtain a fiber spaee of abelian varieties as follows. Let K be
the maximal eompaet subgroup of G~ determined by Ho, and denote by V = GIIl1 / K the
eorresponding hermitian symmetrie spaee. Set W~ = WQ ®Q IR, Wc = WQ ®Q C. We have
a eomplex strueture 10 E 1)(W~,A~) (cf. (1.3)) satisfying (1.2). For an element 9 E G IIl1 ,
define

19 = p-l(g) .1. p(g).

Then, by definition, we have 19 E 1)(W~, A~), and from (1.2), 19 = 10 for 9 E ]{. Henee
we define, for eaeh point z = [g] E 1) = G~/1{,

1z = 19 E 1)(W~, A~).

Setting W: = {u E Wcl1zu = Ru}, we can obtain a hololnorphic veetor bundle
:iu = UzEVW: over 1) such that the following diagranl C01l11l1utes.

1) X lVc +---J TU
(1.8) 1 ,/

1).

Let r be a torsion-free arithlnetic subgroup of G~ such that r c GWll' Then the quotient
spaee M = r\V is a c01l1plex lnanifold, which is known to be a quasi-projective variety
([Ba-BJ). Denote by W7I. the local systenl of free l-lnodules on M indueed by the Hat
bundle (Vx W7I./ rv), where rv denotes tht:: equivalence relation given by

(1.9) (z, w) rv (, • z, p( I) . v) for I Er.

We also denote by W Q, W IIl1 , W c the local systenls on !'vI corresponding to WQ, W~, Wc
respectively. The GQ-invariant fonn AQ induces a Hat sYlnpleetie bilinear fonn A on
W Q. A hololnorphic vector bundle :iu on 1) descends to M and we denote by TU the
corresponding locally free sheaf on NI. Now we have the following

(1.10) Deflniton-Proposition. The tripIe (W7I., A,;:O) construeted above beeolnes a
variation of polarized Hodge structure (VPHS, for short) of weight -1, and of types (-1,0),
(0,-1) over M = r\1), i.e.,

(i) A is a Hat l-valued non-degenerate sYlnplectic fonn on W 7l,

(ii) r c W7I. ®71 OM defines a Hodge filtration of weight -1, and of types (-1,0), (0,-1),
l.e.

such that
U -

T EB TU ~ W 7l 071 0 M .

(iii) A satisfies the Hodge-Rielnann bilinear relations, i.e. for a non-zero local section
u E;:O, we have

A(u, u) =0,

-(R)A(u, u) > 0.

As explained in [D2] (4.4.3), we have an equivalence between the category of polarized
abelian schelues over M and the eategory of variations of polarized Hodge structure over
M of weight -1, and of type (-1,0), (0,-1), so we obtain a fiberspace f : X ---+ M of
abelian varieties over M.
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(1.11) Definition-Proposition. (Oh. IV, §8, [51) 01' 3.10, [5b2} ) A fiber space of
abelian varieties f : X ~ M = f\V obtained fron] a Kuga 5-tuple (W~~h PQ, AQ, I, W71)
and a torsion-free aritbn]etic subgroup f C G Wll of G~ is called a Kuga fiber space (of
abelian varieties). The total space X is a sn]ootb quasi-projective variety and f is a sn]ootb
projective n]orphisn].

§2 A CRITERION OF SILVERBERG AND A GENERALIZATION.

In this seetion, we review a eriterion of the finiteness of Morde11-Weil group of Kuga
fiber spaees due to Silverberg [Si2], aIid give a slight generalization.

First of a11, we introduee the Mordell- 'iVeil group of a fiber spaee of abelian varieties. Let
M be a eonneeted smooth quasi-projeetive variety. By a fiber spaee of abelian varieties
over M we mean a polarized smooth abelian seheme f : X ~ M. Consider the generie
fiber X l1 of f. Then X l1 is eonsidered as an abelian variety over the field K = C(M)
of the rational funetions on M. Then the Morde11-Weil group of f is defined to be the
group of K-rational points X l1 (I{), and is denoted by MW(X IM). There exists a natural
isomorphism

(2.1) MW(XIM) = {a rational seetion s : M··· ~ X of f}.

Now let (WQ, PQ, AQ, I, W71) be a Kuga 5-tuple for a Q~hermitian pair (GQ, H u), f c
G Wll , M = f\D as in §1, and f : X ~ M the assoeiated Kuga fiber spaee (see (1.11)). Let
(~M(X) (resp. 0M(X)) denote the sheaf of germsof regular algebraie (resp. holomorphie)
seetions with values in X (resp. xan). The eohomology group HU(M, OM(X)) is isomor­
phie to the group of regular algebraie seetions of f. A rational seetion s E MW(X IM)
always extends to a regular algebraie seetion in case of a I(uga fiber spaee (see Prop. 2.1
[Si1]). So we have

(2.2) Proposition. For a I(uga fiber space f : X ~ M, we bave an iSOll]Orpbisll]

(2.3) MD(XIM) ~ HU(M,(~M(X)),

(2.4) REMARK: From the eonstruetion, there exists a natural map

(2.5) HU(M, (~M(X)) ~ HU(M, 0M(X)),

In general, there exists a holomorphie seetion of f whieh is not algebraie, (e.g. eonsider
the ease where M is a non-eompaet eurve.) Assurne that f is irredueible in G~ (see
(4.4)). Then, if either dirn (D) > 1,01' M is eompaet, one ean show that (2.5) must be an
isomorphism (see [Si2, §1], [Ba-B, §10]).

For K = l, Q, IR, C, let H'(f, WO() denote the Eilenberg-MaeLane eohomology groups
indueed by the representation PQ and an arithmetie group f. Sinee V is eontraetible, we
have natural isomorphisms for K = 71., Q, IR, C

(2.6)

where WO( denote the loeal system on M assoeiated to WO(, (see (1.9)).
Now we ean state the Silverberg's eriterion of the finiteness of M D( X IM) ([Si2], Theo­

rem 5).
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(2.7) Theorem. Assume that f is irredueible (cf. (4.4)) and dirn V> 1 or M = Vif is
eompaet. If

(2.8)

the Mordell-Weil group MW(X IM) is finite; and isomorphie to H1(f, Wl) rv H1(M, Wl).

(2.9) L:l-cohomology.

Let f : X ~ M = f\V be a Kuga fiber spaee as above, and (WI,A,P) the eorre­
sponding VPHS of type (0,-1), (-1, 0) as in (1.10).

The loeal system W c = W 71 @71 C has a flat symmetrie bilinear form Ac, and if we
denote by Cz the Weil operator, (01' the eomplex strueture) of a fiber W c, the form
Tz(x, y) := Ac(x, Czy) beeomes a positive-definite hermitian form, so it induees ametrie
on W c. From the eonstruetion of W c and Ac, this metrie is nothing but the one indueed
by the admissible inner produet on Wc ([M-M], p375). The base spaee M = f\V is
endowed with a eomplete metrie indueed by the Bergman metrie on V. Henee, we ean
give a norm on eaeh term of the eomplex A' (M, W c)OC of W c-valued Coc exterior forms
on M. Let L(:l)(M, W c)OC denote its subeomplex eonsisting of square-integrable elements

whose exterior derivative are also square-integrable. We define the L:l-eohomology group
for Wc by

(2.10)

Let M* denote the Baily-Borel, Satakeeolnpaetifieation of M. It is known that M* is
anormal projeetive variety whieh has a stratifieation by eomplex subvarieties. Following
[G-M], we ean define the middle perversity intersection cohomology group IH'{M*, W c).
The following theorem is a direet eonsequenee of the result, whieh was known as the Zucker
eonjeeture, proved by Looijenga [L] and Saper-Stern [Sa-St].

(2.11) Theorem. Under the notation and assumption as above; we have isomorphisms

(2.12) Corollary. If eodimc(M* - M) = i in M\ then we have isomorphisms

PROOF: From the definition of the intersection eohomology group [G-M, §3, 3.1], one ean
easily deduee that

IHq(M, W c) ~ Hq(M, W c) for q < i,

henee (2.11) implies the assertion.

If f is irredueible in G~ (see (4.4)) and ditn V > 1, one has eodimc(M* - M) 2::: 2 in
M*. Henee, thanks to (2.12), we have the following
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(2.13) Corollary. Assume that f C G~ is irreducible and dim V > 1, or M = f\V is
compact. Then there exist isomorphisms

(2.14)

(2.15) Hodge theory in case M is conlpact.

We recall that the tripIe (W71,A,;:-U) constructed in §1 is a VPHS of weight (-1) of
types (0,-1), (-1,0) (see (1.10)). In particular, the sheaf W (? := W71 Q971 OM has a Hodge
filtration

o= ;:-1 C r c ;:--1 = W (?

Assume now that M = f\V is compact. Then we have an isomorphism

(2.16)

In this case, from the L~-harmonic theory, the right hand side of (2.16) can be expressed as
aspace of W c-valued L~-harmonic forms. Deligne showed that, as in the classical Hodge
theory, there exists a decomposition

(2.17)

such that Hp,q ~ Hq,p (see [ZI]). Moreover the associated Hodge filtration on Hn(M, W c)
is given as follows. Let nM(Wc) denote the holomorphic deRham complex with values in
W c, with differential 8M . If we define the filtration. (Frn M(Wc)) by

Frn p (W ) - nP tO. 'L'r-pM C - MI(Y.r ,

Griffiths' transversality (see e.g. [ZI]) implies that they actually become subcomplexes of
nM(Wc). The holomorphic Poincare lelnma implies that

H'(M, Wc) ~ H'(nM(Wc)),

and the above filtration induces a filtration on the cohomolgy.

(2.18) Thorem. Under the above notation, we have the following.
(i) The spectral sequence

(2.19)

degenerates at EI'
(ii) The filtration induced by {FPnM(Wc)} on Hn(M, Wc) coincides with the Hodge

filtration induced from the decomposition (2.17).
(iii) There is a natural identification
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for p + q = n - 1.
(iv) The cohomology group Hn(M, W71.)ltorsion is a l-structure of Hn(M, Wc), and

has a natural polarization B, i.e. a l-valued bilinear form satisfying the Hodge-Riemann
bilinear relations.

For example, HU(M, W c) has a 2-step filtration 0 = F 1 C F U C F- 1 whose successive
quotients are:

HU~-l = Gr~, = F U= HU(Fu
---4 nM Q9 Gr"F1),

H-I~U = Gr;.l = F-1/Fu = HU(Gr"F1).

where Gr"il = :F-1/P. H1(M, Wc) has a 3-step filtration 0 = F'l. C FI C F U C F- 1 =
H 1 h . .w ose succeSSlve quobents are:

(2.20)

(2.21 )

(2.22)

H l.-1 G 1 F 1 H 1(0 01 -r-U 0'2 G -1). = rl" = = ---4 HM Q9.r ---4 HM Q9 rF ,

HU~U = Gr~, = F UI F 1 = H] (y=-U ---4 nlt Q9 Gr"F1),

H-1,l = Gr;.l = F-1/FU= H1(Gr"F1).

Considering H1(M, WQ) as a lattice of H1(M, Wc), weset

(2.23)

Let Pn : Hn(M, W c) ---4 H-1:n = Hn(M, Gr"F1) be the natural projection map induced
by the spectral sequence (2.19). Set also

(2.24)

(2.25)

Xconst = coker{pu : HU(M, W71.) ~ HU(Gr"i I
)},

H1(M, W71.)u:u = ker{pl : H1(M, W71.) ~ H1(M, Gr"F1)}.

Then by Hodge theory (2.18), one has

(2.26)

Under these notations, we can state the fo11owing theorem which gives a very natural
description of MW(X IM). (Cf. [Zl], Cor. 10.2)

(2.27) Theorem. Assume tbat M = f\'D is compact. Tben
(i) Xconst in (2.24) is an abelian variety over C, and
(ii) we have a natural exact sequence of abelian group

(2.28)

PROOF: The assertion (i) is an immediate consquence of (2.18). Since M is projective, a11
holomorphic sections become algebraic, so by (2.5), we have an isomorphism MW(X IM) ~
HU(M,OM(X)), The relative exponential map for an abelian scheme f : X ---4 M yields
the fo11owing exact sequence of sheaf on Man

(*)
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where RIf.l denote the local system of the first homology of fibers of f. From the
construction of a Kuga fiber space, we have isomorphisms W71. rv RIf.l and Lie(X) rv

Gr"iI, hence (*) can be written as

(2.29)

This yields an exact sequence of cohomology group

(2.30)
o -----+1 HU(M, W71.)

-----+) HI(M, W71.)

Po
----+1 HU(M, Gr"iI)

PI
-----+1 HI(M, Gr"iI)

from which (2.28) follows. q.e.d.

As a corollary, we have the following generalization of Silverberg's result (2.7).

(2.31) Theorem. Assume tbat f\'D is compact. Tbe Mordell- Weil group M D(X jM) of
a Kuga fiber space is finite if and only if

§3 SATAKE'S CLASSIFICATION OF Q-SYMPLECTIC REPRESENTATIONS.

In this section, we will summarize the Satake's work of classification of Q-symplectic
representations. The main references are [SI], [S2].

(3.1) Prelhninary.

Let F be a field of characteristic zero and D a division algebra over F. Denoting by FI

the center of D, we set

(3.2) [FI : F] = d, [D: FI ] = r'2.

Consider a finite dimensional F -vector space V with a structure of a right D-module, and
set n - rankv V. We set:

GL(VjD) = {g E Endv(V)1 9 is invertible },

SL(VjD) = {d E GL(VjD)1 N(g) = I},

where N denote the reduced norm of Endv(V). The corresponding matrix group are
donoted by GLn(D) and SLn(D) respectively.

Let l be an involution on D and let € = ±l. A (D, €)-hermitian form h on V with
respect to l is by definition a F-bilinear mapping h : V X V ----+ D satisfying the following
conditions:

(3.3)

(3.4)

h(v, v'a) = h(v, v')a,

h(v',v)=€h(v,V')L forall v,v' EV, aED.
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A (D, €)-hermitian form h is called non-degenerate if a intersection matrix T = (h(ei, ej))
for a D-basis (ei) of V is invertible. Fix an involution t on D. For a non-degenerate
(D, €)-hermitian form h on V with respect to t, we define the unitary group and the special
unitary group far h by

(3.5) U(V,h) = {g E GL(V/D)lh(gv,gv') = h(v,v'), (v,v' E V)}

(3.6) SU(V, h) = U(V, h) n SL(V/ D),

and the correspanding matrix group are donoted by Un(D, h) and SUn(D, h) respectively.
The groups GLn(D), SLn(D), Un(D, h) and SUn(D, h) can be viewed as algebraic group

defined over FI . For a general Frgroup G, we denote by R F1 / F( G) the F-group obtained
by scalar restriction (Weil [W, 1.3]).

(3.7) Classical groups over IR alld classical domains.

If F = IR, we can define the classical groups and classical domains of type (I), (Il), (IlI).
A division algebra D over IR must be either IR, C, or H, and here let t be the standard
involution of D.

Let h be a nan-degenerate skew-hermitian form on V (i.e. (D, -1)-hermitian form)
with respect ta t. We can find a D- basis (ei) for V such that the corresponding matrix
T = (h(ei' ej)) E Mn(D) is in the following form:

(i) D = IR; n is an even integer

T =Jn /'2 =( O.
-l n /'2

(ii) D = C; (p, q) is a pair of non-negative integers such that p + q = n.

T - 'I _ (-il p
- -2 pq - 0

(iii) D = H;
T = jl n .

Hence the corresponding specialunitary groups SUn(D, h) are given by the following ma­
trix groups:

(i)' D = IR; n is even.

(3.8)

(ii)' D = C; p + q = n.

(3.9)

(iii)' D = H

(3.10)

SUn(C, h) = SU(p, q, C) = {g E SLn(C)ltgl pq g = I pq }.

11



These groups are R-algebraie groups, whieh are of non-eompaet hermitain type unless
G = SU(n, 0, C) f'V SU(O, n, C) f'V SU(n, C) 01' SUI (lI-O)-. Moreover these groups are
R-simple exeepf for the ease where G = SU:l(lI-O)- (see (4.12), 01' [Sl], Appendix, §1).

These groups aet on bounded symmetrie domains as follows. Consider the following set
of eomplex struetures on V

(3.11) V(V, h) = {I E End~(V)1 I:l = -lv, h(x, Iy) is a positive-definite D-hermitian}.

Then the special unitary group SUn(D, h) aets on V(V, h) transitively, and V(V, h) be­
eomes an irredueible hermitian symn1etrie domain and is isomorphie to a homogeneous
spaee SUn(D, h)/ I< where I{ is a maximal eompaet subgroup of SUn(D, h). A bounded
symmetrie domain V(V, h) obtained as above is ealled a c1assieal domain and isomorphie
to one of the following bounded sYlTIllletrie dOlTIains.

(3.12)

(3.13)

(3.14)

(I)pq = {z E 1\l(p, q, C)11 q _t ZZ » O},

(II)n = {Z E 1\!Jn(C)l t Z = -Z, 1n _t ZZ » O},

(III)m = {Z E Mm(C)l t Z = Z, 1m _t ZZ » O}.

The relations between SU(V, h) and V(V, h) and the R-rank of SU(V, h) are shown in
the following table.

(3.15)

D

IR
C
IH

G = SU(V, h)

SPn/:l(IR)
SU(p, q, C)
SUn(lI-O)-

v = V(V, h)

(III)n/:l
(I)pq
(II)n

dimcV

(n/2)(n/2 + 1)/2
p.q

n(n - 1)/2

R-rank

n/2
min(p, q)

[n/2]

(3.16) Satake's classification.

A Q-sympleetie representation (vVQhPQ,AQ,I) of a Q-hermitian pair (GQ,Ho) (cf.
(1.1)) is ealled Q-primary if (WQ, PQ) is a sum of GQ-stable subspaces isomorphie to
an irredueible Q-representation PI : GQ ~ GL(V/Q).

In this seetion, we review the classifieation of Q-primary standard sympleetie representa­
tions. In order to c1assify Q-priinary sympleetie representations, the following proposition
is fundamental. For a proof, see [Sl], Ch. IV.

(3.17) Proposition. Let (lVQ, PQ, AQ, I) be a Q-primary symplectic representation of a
Q-hermitian pair (GQ, Ho), and P : GQ ~ GL(V) an irreducible representation contain­
ing in (WQ, PQ). Setting

we have the following.
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(i) D is a division algebra over Q, and V (resp. U) becomes a left D-module (resp. a
right D-module).

(ii) There exists a canonical isomorpbism

(3.18) WQ ~ U 0v V.

(iii) There exist a natural involution l on D, a (D, €)-hermitian form h on V and a
(D, -€)-hermitian form h' on U witb respect to the involution l such that

(3.19)

(iv) The form h on V is GQ-invariant. In particular, P is reduced to a natural represen­
tation over F I

(3.20)

(with Endo@(V) = D).

PI : GQ ~ SU(V, h)

(3.21) Definition. A Q-primary representation (WQ, PQ, AQ, I) of a Q-hermitian pair
(GQ, Ho) is said to be standard if GQ = RFt/Q(SU(V, h) and P in (3.20) is induced by the
universal homomorphism of the scalar restrietion (cf. [W, 1.13]).

(3.22) Remark. Satake [S2] detern1ined a11 Q-primary symplectic representation under.
an reasonable additional condition. Besides the standard one, there exist few non-standard
representations involving skew-symmetric representations and spin representations. But
there exist also a Q-primary symplectic representation which does not satisfy his condition
(see p195 [SI] for references). In this paper, we will not deal with non-standard case.

A standard representation is determined only by the data D, l, V, U, h, h' in proposition
(3.17). First we have the following

(3.23) Proposition. ({51], Cb. IV, §6). Let (lJVQ, PQ, A Q, I) be a Q-primary symplectic
representation (not necessarily standard) of a Q-bermitian pair (GQ, Ho), and D, F I , l, V, h,
U, h' be as in lemma (3.17). Tben one of tbe following cases occurs.

(R1) D = F I is a totally real algebraic number neld and l = identity, and h is a
symplectic form on V (€ = -1).

(R2, €) D is a quaternion algebra over a totally real algebraic number neld F I and l is
the standard involution, h is a (D, €)-bermitian form V witb respect to l, where € = ±1.

(e) F I is a CM neld, i.e. a purely imaginary quadratic extension of a totally real
algebraic number neld F IO , D is a central division algebra over F I , l is an involution of D
of the second kind, and h is a (D, €)-bermitian form witb respect to l where € = ±l.

Let D, FI, l be as in Proposition (3.23). If we set F I+ = {z E FII ZL = z }, then F I+ is a
totally real algebraic number field. Setting t = [FI+ : Q], let {Ti: FI+ C--+ IR, 1 :s; i :s; t } be

13



the set of t-distinet embeddings of FI+ into IR. For eaeh : Ti : F; ~ IR, we put

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(i)
FI = F I ~1'/ ,T, IR,

D T
, = D ~L'+ . IR,

L't ,T.

vV T
, = WQ ~Ft,Ti IR,

VTi = V ~L'+ . IR,
L't ,T.

UT
, = U ~L'+ . IR.

L't ,T.

The algebra DT, becomes a eentral sitnple algebra over FI(i) , so there exists a division

algebra D(i) over Fi i
) such that

Fixing an above isomorphism, we denote by €~11 the eorresponding matrix unit in DT'. We
moreover set:

(3.29) V (i) .- L: i V T, U(i) - UTi L: i
'-"11 , . - ~ll'

Then V(i) (resp. U(i)) are left (resp. right) D(iLmodules and we have an isomorphism (cf.
[SI], pI89),

(3.30) W T, - [T(i) IV\ . V(i)- I(YLJ{') .

Note that from (3.23), F?) is isomorphie to IR or C, eorresponding to the ease (R1), (R2,
f) or (e), so D(i) is isomorphie to IR, IHI, or C.

Under these notations, we ean state the following theorem.

(3.31) Theorem. ([51], eb. IV. §6). Let (WQ, PQ, AQ, I) be a standard Q-primary
symplectic represenation, and D,t,FI , V,h,U,h', WQ = U ~1J V,AQ = trLJ/Q(h' ~ h) be
as in (3.17). Tben we bave the following.

(i) There exists a decomposition

(3.32) TXT ._ TXT IV\ []) _ ffit W T , rv ffit U(i) IV\ . V(i)
VY[i .- VVQ I(YQ ~ - Wi=1 = Wi=1 1(Y1J{') •

(ii) For eacb i,l:S; i:S; t, h (resp. h') induces a (D(i),fTJi)-bermitian form h(i) on V(i)

(resp. (D(i), -fTJi)-bermitian form h'(i) on U(i) ), wbere TJi = ±1. We bave a decomposition

of A[i := AQ 01R = EB1=1 A(i) corresponding to (3.32), wbere one set

(3.33)

(iii) Tbe IR-valued points G[i of GQ = RFt/Q(SU(V, h)) bas a canonical decomposition

(3.34)
t

G[i = RFt/Q(SU(V, h ))[i = rr SU(V(i), h(i)),

i=1
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and, for each i, the natural representation PI : GQ ~ SU(V, 'h) induces a representation

(3.35)

where p~i) can be written in tbe form

(3.36) p~i) = 1 @ .. ·1 @ idv(i) @ 1 ... @ 1.

according to the decomposition (3.34).

Moreover, for each case in (3.23), we have the following

(3.37) Theorem. ([Sl), eb. IV, §6). Under tbe notation in Proposition (3.23), we bave
the follwing explicit descriptions of F{i) DTi D{i) V{i) h{i) U{i) Grm for the cases of (Rl)l' , , , , 'w ,
(R2, E), (e) respectively.

(Rl) (E = -1) D = F I = F I+. Set dimF1 V = n, dimF1 U = m. Then one has:

h{i): IR-symplectic form on Vi, (T)i = 1) for 1 ~ i ~ t = d,

(3.38) G~ ~ SPn/'2 (IR) x ... x SPn/'I. (IR) .
~ ~

V'

d

(R2, E) We have F I = F1+, and D is a quaternion algebra over F I . Set ranklJ V =
n, ranklJU = m. Then one has F{i) = IR. After a suitable renumbering of {riJ, we may
assume that for some t', 0 ~ t' ~ t,

Then one has:

1 ~ i ~ t'

t' + 1 ~ i ~ t, {
IHI 1 ~ i ~ t'

D{i)~ lOl

n t' + 1 ~ i ~ t.

(E = 1)

1 ~ i ~ t'

t' + 1 ~ i ~ t.

(3.39)

h{i) = { positive-definite IHI-symmetric form (T)i = 1) 1 ~ i ~ t',

IR-symplectic form (T)i = -1) . t' + 1 ~ i ~ t,

GIRl = SUn(lH) x ... x SUn(lHI) x SPn(lR) x ... x SPn(lR) .
\, .J \. J

V V

t'xr.nmpnr.t {t-t')x{lll)n
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(€ = -1)

h(i) = { IH-sympleetie form (1]i = 1)
positive-definite IR-symmetrie form (1]i = -1)

1 ~ i ~ t',

t' + 1 ~ i ~ t,

(3.40) Glii = SUn(IHI)- x ... x SUn(IHI)- x SO:ln(lR) X ... X SO:ln(lR) .
'" "I , #V v

t'x(l1)n (t-t')xr.nmpnr.t

(C) (€ = ±1). F I is a purely imaginary quadratie extension of FI+, so t = 1[FI : Q].
We set [D: FI] = r:l, rankuV = n, and rankuU = m. Then one has:

FI(i) ~ D(i) ~ C, Dri rv Mr(C),

V(i) rv cnr , U(i) ~ cmr , W ri ~ cmr ®c cnr .

We may assume that for t' , 0 ~ t' ~ t,

h(i) = { C-sympleetie form witb tbe signature (pi, qi)

positive-definite C-bermitian form

1 ~ i ~ t' (pi ~ qi),

t' + 1 ~ i ~ t,

(3.41)
t'

Glii rv II SU(pi, qi, C) X SUnr(C)'X ... X SUnr(C).
i=I '-v---" ' 'V' J

(1)PiQi (t-t') xr.nmpnr.t

(3.42) Proposition. A Q-algebraie group GQ = RFt/Q(SU(V, h)) in (3.37) is Zariski
eonneeted. Assume that Glii is non-eompaet, i.e., dim 1) ~ 1. Tben GlQ is Q-simple exeept
for tbe ease (R2,-1), n = 2.

PROOF: See [SI], Appendix, §1.

§4. VANISHING THEOREM AND THE CASE rklliGIii ~ 2.

Let G be a eonneeted semi-simple real Lie group with finite center of hermitian type, K a
maximal eompaet subgroup of G, so that a quotient spaee 1) = GI]{ beeomes a hermitian
symmetrie bounded domain. Let f a diserete subgroup of G of a finite eovolume with
respeet to the Haar measure. If f is torsion-free, the quotient spaee M = f\1) beeomes a
smooth quasi-projeetive variety. For a finite dimensional eomplex representation p : G~
GL(Wc ), we denote by W c the assoeaited loeal system on M = f\1). Let L(:l/M, W c)
be as in (2.9), and H('2)(M, Wc) the L'2-eoholllOlogy group for it. Let L'2(f\1))OC denote

the set of Coc square-integrable funetion on f\1), and view it as a unitary G-module under
the right translation. Sinee it is a (9, }()-module, we may eonsider the relative Lie algebra
eomplex C*(g, ]{; L'2(f\G)OC ® lVc ), whose eohomology yields the relative Lie algebra
eohomology (cf. [B-W]).

First, we reeall t he following

16



(4.1) Theorelll. ([B), [B-C)). Tbere exists a quasi-isOllJOrphis11l

111 particular, we bave iso11lorphis111S

WriteL:l(f\G)CX:: as the direct sum of the discrete spectrum L:l(f\G)d and its orthog­
onal complement, the so-called continuous spectrum LAf\G)~.

The following theorem is a special case of results in [B-C).

(4.2) Theorelll. (see [B-C), Prop. 4.4 and Th. 4.5) Under tbe assu11lption as above, we
bave tbe following.

(i) H(:l)(M, W c) is finite dillJensional1
,

(ii) tbere exists a finite set (Hi ), (i E S) of nlutually orthogonal c10sed irreducible G­
invariant subspaces of L:l (f\G)d sucb that

(4.4) Definition. Let G he as ahove. We say that G has no compact lactor if it has no
infinite normal compact subgroup. A discrete subgroup f of G is said to be irreducible if the
image of funder any surjective morphism G ~ G' with non-trival image and non-compact
kernel is non-discrete.

We can prove the following vanishing theorem of L:l-cohomology group.

(4.5) Theorem. Let G be as above. Assunle that G has no c011lpact factor and f is an
irreducible discrete subgroup of G witb a finite covolUllJe. If (p, Wc) is a non-trivial finite
c011lplex representation of G, we bave

wbere rkrw.G denote tbe IR-rank of G.

PROOF: If f is cocompact, then this is nothing hut Proposition 6.4 in Ch. VII of Borel­
Wallach [B-W). Thanks to (4.3), their proof works even if f\G is not compact.

(4.6) Vanishing theorelll.

Now we apply this theorem for standard Q-primary symplectic representations. Let
(WQb PQ, AQ, I) be a standard Q-symplectic represenation, D, l, F I , V, U, h, h' as in (3.17),
and GQ = RF1/Q(SU(V, h)).

1 Of course, this also follows from the Zucker conjeeture (2.11)
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We take a lattice V71 in V (see §1), and set D71 = {m E DlmV71 C V71}. Then D71 becomes
a l-subalgebra of D such that D71 Q971 Q ~ D, which is called an order of D. Taking a
Dz-right submodule Uz of U, we set

(4.7)

Then Wz becomes a lattice in W Q. and we may assurne that W71 satisfies the condition
(1.7), i.e., AQ(Wz, W 71 ) C l. From definition (1.4) and the above construction, we have
an isomorphism of discrete groups

Take a torsion-free arithmetic subgroup r c G Vll •

Let GQ = RFI/Q(SU(V, h)) be as above. Then from (3.37) and (3.42), except for the
case (R2, -1), n == 2, we can write

(4.8) G~ = G} X ... X G, X U,

where Gi = SU(V(i), h(i)) is aIR-simple non-compact Lie group of hermitian type for
1 ~ i ~ land U is a compact group.

(4.9) Proposition. Assunle tbat (Y, h) is not in tbe case (R2,-1), n== 2. For any torsion­
free aritbnletic subgroup r c G~; let r' denote tbe il11age of runder tbe projection
G~ ---t G~ = GI X " . X G, (cf. (4.8)). Tben r' is a;l irreducible torsion-free discrete
subgroup witb finite covolunle..

PROOF: It is easy to see that r' is a dicrete subgroup in G~ with finite covolume. Let

p~i) : G~ ~ Gi = SU(y(i), h(i)) be the representation in (3.35) for 1 ~ i ~ I. Then from
the construction we can see that Pill' induces an isomorphism r f'V Pi(r). By a corollary
in No. 4 of [Shz], r' is irreducible in G~. Since the projection map r ---t r' is injective, r'
is also torsion-free.

Let K be a maximal compact subgroup of G~ = G} X ... X G, X U, and write K as
K I X ... X ]{, X U, so that the corresponding hermitian symmetrie space V = G~ I]{ has
a decomposition as

(4.10) v = V} X ... X V"

where Vi = Gil ]{i are irreducible syn1metric spaces. We have a natural isomorphism

(4.11) NI := r\V ~ r'\V

(4.12) Renlark. We have an isomorphism SU:l(lHl)- f'V SU(2, C) X SL2 (1R).

Now we state our main theorem in this section.

18



(4.13) Theoreln. Let (W~Jb PQ, AQ, I) be a standard Q-prilllary sYlllplectic representa­
tiOll, wbicb is not tbe case (R2, -1), n=2, and (V, h), r c GIIR as above. ASUlll1l1e tbat
r kli GIIR ~ 2. Tben we bave

(4.14)

Evell if rkliGli = 1, we bave HU(M, W Q) = O.

PROOF: From (3.17), WQ is a vector space over a field F I = Cent(D). The field FI is a
totally real field, or a CM field (see (3.23)). Set t = [FI : Q]. Let {ai: FI ~ C}~=I denote
the set of t-distinct embeddings of F I into C. For an embedding ai : F I ~ C, we put

(4.15)

By the universal coefficient theorem, we have an isomorphism

(4.16)

Note that W"· is a local system on lvI associated to a representation

(4.17)

induced by PQ. From the assumption and (4.9), an arithmetic group r c GIIR is irreducible,
so from (2.13), we have isomorphisms

(4.18)

From (4.16) and (4.18), in order to show (4.14), it suffices to show that

(4.19)

Recall that we have an isomorphism vVQ = U ®1J V (see (3.17)). Set U"· := U ®F1 ,". C,
V"· := V ®F1 ,". C, and D"' := D ®F1 ,"' C. Choosing an isomorphism D"' rv M.'l(C), let

E~v denote the matrix unit in D"·. Then, as in (3.29) and (3.30), setting U~i) := U"i E~I'

V; (i) i V"' h .. h'c := EIl " we ave an lsomorp 18m

(4.20) W "i ~ [T(i) 101 v;(i)
- C 'OIC C .

Assurne that FI is totally real. Then, the representation PI : GQ ----+ SU(V, h) induces a
representation

C)which is obtained by a scalar extension of (3.35) from IR to C. Henee, from (3.36), Pl~ ean
be written in form
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Write Gli = GI X ... X Gl X U as in (4.8) and take i such that 1 :::; i :::; 1. Then since p~~
is trivial on the compact factor U, it descends to a represent~tion of G~ = GI X ... X Gl .

Let r' be as in (4.9). Then we can apply Theorem (4.5) for G~, p~~, V~i), r' to deduce
that

(4.21 )

By the assumption that r kli G~ ;::: 2, one has

Hence the assertion (4.19) (so (4.14)) follows from this and the following isomorphism.

H q (M W fTi ) I'.J [T(i) iO. H q (M V(i))
(:l)' = C \OIC (:l) , by (4.20) .

The proof for the case when FI is a CM field is similar, so we omit it.

(4.22) Remark. Note that we have the isomorphism SU3 (1HI)- ~ SU(3, 1, C).

By virture of Silverberg's criterion (2.7), as a corollary of (4.13), we obtain the following

(4.23) Theorenl. The Mordell- Weil group MW(X /1\11) oI a !(uga fiber space f : X ---7

M associ9-ted to a standard Q-prirnary synJplectic representation is finite whenever r kli G~ ;:::
2.

§5 IR-RANK 1 AND r COCOMPACT.

(5.1) In this section, we shall deal with the cases where the IR-rank of G~ is 1 and r is
cocompact. For techinical reasons, we exclude the case (R2, -1), n ==2.

From the Satake's classification (cf. Theorenl (3.37)), the cases where G~ has the IR-rank
1 are listed as follows:

(5.2)

(5.3)

and

(5.4)

pussiblll= {I}

Case (C) G~ ~ SU(nr - 1,1) X SUrl'f·(C) X ... X SUrl'f·(C).
\.. ,I

v

pussiblll= {I}

diln V = 1.

In the above case, we can no more expect the vanishing of the H I (M, W c) in general,
though we have the vanishing of HO(M, Wc) (see (4.13)). In fact, in the case (5.3) when
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r = 1 and t ~ 2, there is an arithmetic subgroup r c G Wll such that HI(M, W c) f= 0 (See
Ch. VIII, §5, [B-W]). Hence we should consider the Hodge deeomposition of HI(M, Wc),
and appeal to Theorem (2.31). In this section, we always assume that r\1) is compaet.
Note that r\1) iseompact whenever GIIR has a compad fador.

(5.5) Let (WQ, PQ, AQ, I) be a standard Q-primary sympleetic representaion, W71 C WQ
a lattice, r c G Wll c GIIR a torsion free arithmetie subgroup. Let (Wz,A, P) denote the
corresponding VPHS over the smooth manifold r\1) (see (1.10)). The main result in this
section is the fo11owing

(5.6) Theorem. Under tbe notation as above, we bave

(5.7) H 1(M, WQ)U,U = 0

in tbe cases (5.2), (5~3); and (5.4).

As a eoro11ary of this theorem, we have the following

(5.8) Corollary. Tbe Mordell- Weil groups of tbe !{uga fiber spaces associated to a stan­
dard Q-primary symplectic representation is finite wben r kllR GIIR = 1 and r\1) is compact.

PROOF: Since we always have H U(M, W c) = 0, by (2.31), Theorem (5.6) implies the
assertion.

(5.9) A reduction.

We keep the notation in (5.5). Let F1, D be as in (3.17). Denote by {a}, . .. ,ad} the
set of a11 embeddings F I into C where d = [F1 : Q]. Considering WQ as a Frvector, we
set W"· = WQ @Ft ,". C and W"· = W Q @Ft ,"' C. Then we have the deeompositions

(5.10)

(5.11 )

Let V' : 0 M (Wc) ~ nit ® W c denote the Gauss-Manin conneetion on W c. From
the horizontality, we have the complex

(5.12)

whose H I is isomorphie to HI(M, Wc)U,U (see (2.21)). We have the fo11owing

(5.13) Lemma. Assume tbat tbe Hodge filtration P and tbe Gauss-Manin connection V'
on Wc is compatible witb tbe decomposition (5.10). Tben iffor at least one ai : F I C-.....+ C

(5.14)

we bave HI(M, WQ)U,U = O.

PROOF: From the construetion of the Hodge strueture in (2.15), under the assumption,
we have the deeomposition
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such that
H 1(M W )P,q = ffi~ HP,q,e Wt=1 fTi'

Let 7ri : H 1 (M, WQ) ---? H 1(M, WfTi) be the natural projection map. Then we have

H 1(M W )U,U = n~ 7r:- 1(HU,U),Q t=1 t fTi'

Since the map 7ri is injective, this implies the assertion.

(5.15) Gauss-Manin conlplex.

Let (GQ, H u) be the Q-hermitian pair corresponding to the Q-symplectic representation
in (5.5), and K the maximal compact subgroup of G~ corresponding to Hu. We also
denote by gli, t the Lie algebras of G~ and I{ respedively, and by p the orthogonal
complement of t in gli with respect to the Killing form. Let us set wf = We(±i, Ie), p± =
Pe(±i, adp(Hu)). Then, by the condition (1.2), the spaces Wf and p± are stable under
the action of K, hence they become representations of I{.

For any representation T of I{, we can define a holomorphic vector bundle, or a locally
free sheaf T on M = f\V as in §2 in [Z2]. In the notation in §1, the representations wt
(resp. Wc)defines a Hodge bundle F U (resp. GrJ: 1

) and p- defines the cotangent sheaf
n~ on M.

We call the natural complex

(5.16)

the (fir~t) Gau~~-Manin camplex. Then the Gauss-Manin complex in this case is induced .
bythe following homomorphism of the representations of J(:

(5.17)

(5.18) Proof of Theorelu (5.6) in the case (5.3).

In this case, since F1 is a CM field, we can denote by {aI,'" ,at, al, ... ,at} the set
of a11 embeddings of F1 into C such that ailFt is an extension of Ti : F1+ C-+ IR. Since

Gli = rr:=1 SU(V(i), h(i») ~ SU(nr - 1,1, C) X SUU'f'(C) X ... X SU'fL7'(C) , (V(1), h(1»)
is a C-vector space with a skew-hennitian form h(1) such that the signature of ih(1) is
(nr - 1,1). Recalling that the decomposition TV~ = EB~=1 WTi = EB~=1 U(i) Qge V(i), we can
write the complex structure I E V(TVIi , A~) as

t

1= I V (i) Q9 1(1) + L I(i) Q91 V (i),

i='2

for some 1(1) E V(V(1), hOl) ~ (I)'/I'f'-1,1 and I(i) E V(U(i), h/(i»). (See [SI], Ch. IV or

[S2]). If we set

nr -1
H~ = 1(1) - i 1 V(i),

nr + 1
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we can check that land H u satisfy the condition (1.2). The corresponding maximal

compact subgroup K in GIIR can be written in the form ]{ = ]{I X rr~=~ SU(V(i), h(i))

where K I C GI := SU(V(I), h(I)) is the rnaximal compact subgroup corresponding to H~.

Let gl, el denote the Lie algebras of GI, ]<1, and p the orthogonal complement of eI in
gl' Then we have the decompositions

gllR = eEB p,

and an isomorphism

We have the expression
lilU; = ut) ®c V~i)

as in (4.20), and in this case, we have the decomposition

We may assume that the natural projeetion V(I) ~ viI) becomes aC-linear isomorphism.

Th 'f t TT(l)± TT(I) (±. I) h d' TT(I)+ 1 d' TT(I)- 1en 1 we se Vc = Vc Z, (1) ,we ave 1m Vc = nr - , 1m Vc =, .
and WUI± = ug) ® viI)±. From the description as above, the homomorphism (5.17)
of representation of I{ is compatible with decomposition (5.10) and the (aI )-part of the
homomorphism is given by

(5.19)

W U1 :+ ~ p- ® lVUI:-

~U~l) ® [Vi l
)+ ~ p- ® V~1)-].

(5.20) Lemma. Tbe homomorphism (5.19) oE the representations oE K and K I is an
isomorpbism.

PROOF: It suffices to show that vi I
)+ ~ p- ® vi I

)- is an isomorphism of KI-modules.

Since viI
)+ and p ® vi I

)- are irreducible representations of K 1 of dimension nr - 1 and
the homomorphism is not trivial, it must be an isomorphism.~

The following corollary shows Theorenl (5.6) for t he case (5.3).

(5.21) Corollary. In case (5.3), we have

HI(M, WUI )U:U = 0,

so in particular HI(M, WQ)U 1U= O.

PROOF: Let V U; denote the Gauss-Manin connectiol1 restricted to WUi. Then the corre­
spondil1g Gauss-Mal1il1 c01l1plex

:!Considering the Harish-Chandra embedding (I)'wr-l,l t..-+ p~'r-l, we can easily see that p- ~ V~l)+ ~

(V~l)-).
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is indueed by the honl0nl0rphisnl (5.19). Then by (5.20), this \70'1 beeolues an isoluor­
phislll. Henee we have H 1(WU1 )0:0 rv H 1(\70'1) = O. The last assertion follows frolll this
and Lelluua (5.13).

(5.22) Relnark. If t ~ 2 and H 1(M, W c) =1= 0, we ean show that H 1(M, WUi )O~O =1= 0
for i ~ 2. Therefore fronl the exalllple with non-vanishing H 1(M, W c) 111entioned in (5.1),
we have exanlples with non-vanishng HI (lvI, W c )O~O, but still we have (5.21).

(5.23) Proof of Theorenl (5.6) in the case of (5.2).

In this ease, F1 is a totally real field, and D is a quaternion algebra over F1 • We denote by
ai : F1 ~ C the elubedding whieh is the extension of Ti. Sinee G~ = rr:=1 SU(V(i), h(i)) ~
SUa(H) X SOö(lR) X··· X SOö(IR), (V(I), h(I)) is a left H-lllodule of rank 3 with a H-skew­

henuitian fonu h(I). Reeall that the expression W U1 ~ U~I)®c V~I) as in (4.23). Let us take

a eOlllplex strueture 1(I) E D(V(I), h(I)) ~ (11)'J and define V~I)± = vi1)(±i, 1(1))' Then

we have the deeolllposition viI) = viI)+ EB vi l)-. Setting Ho = (1/2)1(1) + L::=:l 1 V(i), we

obtain the assoeiated maxin1al eon1paet subgroup 1{ = 1{1 X rr:=:l SU(V(i), h(i)) of GOi =
GI X rr:=:l SU(V(i), h(i)). Then as in (5.19), we have the homomorphism of representations
of K and K 1 :

lV"1 ,+ ~ p- ® W"I~-

(5.24) ~ug) ® [V~I)+ ~ p- ® vi l
)-]

In this ease, we have the isomorphislu SU(3, 1, C) ~ SU'J(H)-, whieh is indueed as folIows.
Let (T, h) be a eomplex veetor spaee of din1ension 4 with a hermitian form h of signature
(3,1), and set G = SU(T, h) ~ SU(3, 1, C). Let I' E D(T, ih), and set T± = T(±i, 1').
Note that dirn T+ = 3 and din1 T- = 1. Then the spaee I\:lT has a herrnitian form h'
indueed by h, and the deeon1position

I\:lT = I\:lT+ EB (T+ ® T-)

eorresponds to an element 11t E D(I\:lT, h'). It is known that D(I\:lT, ih') rv (11)'J and
the eorrespondenee T+ 1-+ I\:lT+ induees an isornorphisrn (1)'J~1 rv (11h (cf. §5, IV,
[SI]), whieh ean be lifted to a group ison10rphisrn SU(3, 1, C) rv SU'J(H)-. Thus the

homomorphisrn viI)+ ~ p- ® V~I)- in (5.24) is isomorphie to

(5.25) I\:lT+ ~ p- ® (T+ ® T-)

as a hornornorphisrn of representation of ](1 (and 1{). Sinee we have an isomorphism
p- ~ T+ ® (T-)* as 1<I-modules (cf. (5.20)), the hornomorphism (5.25) is isomorphie to

(5.26) I\'i. : I\'2T+ ~ T+ ® T+.

Henee it is trivial that the homomorphisn1 1\ 'i. is injeetive and

eoker (1\ 'i.) ~ S:l (T+).

Let T denote the loeally free sheaf on 111 eorresponding to the representation T+. Then,
from (5.24), we have the isomorphisn1

(5.27) eoker \7"1 ~ u~l) ® S'i.(T).

Now we have the following result whieh iluplies Thoren1 (5.6) in the ease (5.2).
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(5.28) Proposition. In the case (5.2), we bave

PROOF: Sinee from (5.27)

we only have to show that HU(M, S'2(7)) = O. Let Tc denote the loeal system on M
indueed by T. Since we have the natural indusion 7 t......7 0 M (Tc), we also have the
indusion

(5.29)

Then sinee the right hand side of (5.29) vanishes by Theorem (4.13), we have the assertion.

(5.30) Proof of Theorem (5.6) in the case (5.4).

In this case, we always have G~ ~ Cl X !{'2 X ... X !{t where GI rv SL'2(~) rv SPI (~) ~
SU(l, 1) and Ki are eompaeL We also have a expression W"l ~ ug) Q9 viI) where viI) is

a complex irredueible representation of SL'2 (~) and u~l) is a trivial representation. Then
sinee M = f\1) is eompact, we ean apply the result in [Z2] ((5.33), Example) to deduee
that

Hence, as before, we have the assertion.

§6 ~-RANK 1 AND f NON-COCOMPACT.

(6.1) Let (WQl, PQb A~~b I) be a standard Q-symmpleetie representation, W 71 C WQ a l­
lattiee, f( C G W ll C G~) a torsion free arithn1etie group. In this seetion, we assurne that
rk~GIIi = 1 and r c Glii is not eoeompaeL Again, we will not deal with the ease (R2,
-1), n = 2. If dirn V = 1, we ean deduee the finiteness results from Zueker's results in
[Zl] (see remark (6.30)). Henee we will aSSlll11e that dirn V > 1 unless we state otherwise.

We only have to eonsider the follo\ving eases:

(6.2)

(6.3)

Case (R2, -1), n =3 G~ ~ SUa(lH)- rv SU(3, 1, C),

Case (C) C~ ~ SU(nr - 1,1, C).

In the above eases, the bounded symmetrie domain V ~ G~ /!< is isomorphie to the m­
dimensional unit ball B'fTl C C'fTl for some 1TI 2:: 1. Sinee f C G~ is a torsion free arithmetie
subgroup of GIIi, M = f\V is a smooth eomplex manifold with a finite invariant measure,
but, by assumption, is not eompact. The Baily-Borel-Satake eompaetifieation M* of M
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can be obtained by adding a finite number of cusps {pd to M. Note that M* is projective.
Moreover, according to Hemperly [He], aresolution of singularities 7r : M ~ M* is obtained
by the blowing up of the cusps {Pi}, and the inverse images Di = 7r-

1 (Pi) are abelian
varieties.

(6.4) Let (WQ, PQ, AQ, I) be a standard Q-symplectic representation in the case (6.2) or
(6.3), D, l, F}, V, U, h, h' be as in (3.17). Let f : X ~ M denöte the Kuga fiber space
associated to the above representation and the lattice W71 in (6.1). Then, as in (2.29), we
have the exact sequence

(6.5)

Let us assume that the local monodromy around each D i is unipotent. This is always
possible if one replaces r with anormal subgroup r' of finite index. Then we can extend
the abelian scheme f : X ~ 11,11 to a semi-abelian scheme 7 : X ~ M as follows. Let
W := OM Q9 Wc. Then we have the Gauss-Manin connection \7 : W ~ n~ Q9 W which
is integrable. Let W denote the Deligne canonical extension of W which is a locally free
~-module with a logarithmic connection \7 : W ~ n~ (logD) Q9 W such that Res LJi (\7)

is nilpotent (see [D1]). Let j : M '---7 lvi denote the indusion. We set:

(6.6)

By the nilpotent orbit theorem [Sc, (4.12)], these are locally free subsheaf of W. As in [Z3],
we can obtain a semi-abelian scheme 7 : X ~ M which is an extension of the original
abelian scheme fand fits into the following sheaf exact sequence

(6.7) o~ j. W 7l ~ Gr~l ~ 0Man(x) ~ O.
:F .

(6.8) Proposition. Under tbe notations and tbe assumptions as above, tbe natural re­
striction map (see (2.4))

is injective and has a finite cokernel.

PROOF: First, Iremark that all sections HU(!vi, ('J~(X)) is ~lgebraic, so r is well-defined.
The injectivity of r is obvious. To prove r has a finite cokernel, we first remark that we can
costruct the Neron model N(f) : lV(X) ~ M of f : X ~ M which has the following
properties.

(i) N(f) : N(X) ~ !vi is a group seheIne Qver M which is an extension of f.
(ii) Let Y ---? M be a smooth morphislll and cf> : Y ... ~ N(X) a rational map over M.

Then cf> extends to a morphism <p : Y ~ N(X).
, (iii) The semi-abelian scheme X is a connected component of N(X), i.e. X is a subgroup
scheme of N(X) such that for each dosed point P E M, X p is the connected component
of N( X)p containing the identity.

26



Moreover there exists a projeetive manifold N(X) eontaining N(X) as a Zariski open
set and a projeetive morphism N(f) : N(..-Y) ~ M whieh is an extension of N(f) such
that N(X) is the maximal open subset of lV(X) where N(f) is smooth. The existenee of
the above Neron model N(X) and its projeetive eompletion is proved as follows. It suffiees
to show that the existene<=: of them over a some tubular neighborhood U of an irredueible
eomponent Di of D = 2::=1 D i. For eaeh point p E D i, we ean take a neighborhood Up

whieh is isomprphie to ßn = {(Zi) E Cnl IZil < I} and Up n D i = {Zl = O}. Then the
Neron model of flUp-lJi : X 1up - u ,~ Up - D i ~ ß* X ßn-1 ean be eonstrueted as in [A).
Sinee the Neron model has a uniqueness property, such loeal Neron models ean be patehed
together and one gets a global Neron modelover the tubular neighborhood U of Di.

Now we prove that the finiteness of eokernel of r. Every algebraie seetion s : M ~ X
defines a rational map s : M ... ~ N(X). Considering loeally around D, we ean show
that s must aetually map to N(X). Then by the property (ii), s is a morphism s: M ~
N(X) and so it is a seetion of N(f). This shows that HO(M,OM(X)) is isomorphie to
0- -H (M, ~(N(X))), i.e. the group of seetions of N(f) : N(X) ~ M. Then the eokernel

of r is a subgroup of HO(M, N(X)/X), where N(X)jX is·a finite group seheme over D.
Sinee the fiber N(X)/ X over eaeh component D i is a finite group, HO(D, N(X)/ X) is also
a finite group, and this eompletes the proof.

(6.9) Hodge theory for j.W c.

Let (Wz,A,F') be the VPHS (see (1.10)) over f\1) of weight -1 assoeiated to the
symmpleetie representation as in (6.4). As in (6.1), there exists a projeetive manifold M
and an inclusion j : M C-.....+ M such that D = M - M is a union of smooth hypersurfaees
each of whieh is isomorphie to an abelian variety.

It is known that the eohomology group H i (A1,j.W71) has a polarized pure Hodge strue­
ture of weight i -1. This fact can be eonsidered as a generalizatiön of Zueker's results in [Zl]
to the eases of the higher dimensional hases, and was proved by Cattani-Kaplan-Sehmid
[C-K-S] and Kashiwara-Kawai [K-K] as follows.

One ean see that M admits a eomplete Käh1er metric with Poincare singularities along
D. In the above ease, j*W c equa1s the interseetion comp1ex IC'(M, W c) of Deligne and
Goresky-MaePherson. Then they showed thatIC'(M, W c ) is quasi-isomorphie to the
L~-complex .c(~)(M,Wc) with respect to the above Käh1er metrie on M and the Hodge

metrie on W C. 3 Therefore we have the isomorphisms

Each element of L~-eohomo10gygroup can be represented by a harmonie form, so by using
the Kähler identity between the Lap1aeians (cf. [Zl]), we obtain a Hodge deeompostion of
the cohomo10gy group. (See also [ShzY).)

(6.10) Mixed Hodge theory.

::I Actually, they proved this result for the more general case where .M - M is a divisor with normal crossings.
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We will recall a more explicit description of the Hodge structure on Hi(M,j*Wc) in
our case following [ShzY] (cf. [Zl]). In order to see this, we shall introduce the mixed
Hodge structure on Hi(M, W Q).

Since we have Hi(M, WQ) ~ Hi(lVI, Rj* WQ), we have the long exact sequence of
cohomology groups
(6.11 )

b

which comes from the Leray speetral sequence for the indusion j M ~ M. Then it
is known that Hi(M,WQ) and Hi-I(M,RIj*WQ) has a mixed Hodge structure, which
makes (6.11) an exaet sequenee of lTIixed Hodge struetures.

There are a weight filtration {W.} on Hl(lVI, W Q) and the Hodge filtration {F'} on
Hi(M, Wc) such that for each k, Grr/(Hi(AI.!, WQ)) with the indueed Hodge filtration
F' forms a polarized (pure) Hodge strueture. In our ease, we have 3-step weight filtration
o= W- I C Wo C W I C W~ = Hi(M, WQ), such that

(6.12)

where the Pk 's denote the loeal systems on D whieh underlies VPHS eoming from the limit
Hodge strueture along D. (See [8hzY]," (3.1.4)). "

One can show that there is a quasi-ison10rphism Rj*W c rv n~ (logD) ® W (cf. [8hzY],

(3.1.1)). Henee we have an isomorphislTI Hi(M, Wc) rv Hi(M, n~(logD) ® W) . The

Hodge filtration {F'} on the eomplex }(c ~ n~1(logD)® W ean be defined by

(6.13)

and this induces a Hodge filtration on Hi(M, W c). The spectral sequence induced by this
filtration

(6.14)

degenerates at EI'

(6.15) Now we restrict our attention to H I
.

the mixed Hodge struetures
(6.16)

o
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From (6.13), we have the 3-step Hodge filtration 0 = F'l. C Fl C FU C F- 1 on H 1(M, Wc)
whose successive quotients are:

(6.17)

(6.18)

(6.19)
H-1

1
1 = Gr;.1 = F-1/ F U = H 1(Gr;l).

(6.20) Proposition. Let us denote by H 1 (1v!,j*Wc)P,q the (Piq)-component ofthepure
Hodge structure of H 1(Al,j* W c ). Tben we bave

(i)tbe isomorpbism
H1(M J' W )-1,1 ~ H 1(M Gr::...1),* c - ':F'

(ii) and the indusion

H1(M,j* W c)U,U '-+H1 (TU --+ n~(logD) Q9 Gr;I).

PROOF: These come {rom (6.18), (6.19) and the fact that (6.16) is an exact sequenee of
mixed Hodge struetures.

(6.21) Now we have the following proposition whieh is a generalization of (2.27) (cf.
(10.2) of [Zl]).

(6.22) Proposition. Let f : X ~ 1\11 be a I(uga fiber space as in (6.4) andf : X ~ M
the extended semi-abelian scheme. Then we bave an isomorphism

HU(M, (')~/(X)) ~ H 1(M,j* W 71 )U,u.

Here we set H1(M,j* W71)u:u ~ i-1(HU,U) wbere i : H1(M,j*W71) --+ H1(M,j*Wc) is
the natural map.

PROOF: In this ease, HU(M, Gr;l) = 0, beeause HO(M, Wc) = 0 by (2.12) and (4.5).

Therefore, from (6.7), we have the long exaet sequenee

o P 1 --- 1)
-~l H (M, Gr; .

whieh implies that

Sinee H 1(M, Gr;l) ~ H- 1 :1 by (6.20), the lllap p is eoineides with the eomposite of i and

the projeetion from H1(M,j*Wc ) to its (-l,l)-part. Let us take an element u E ker p.
Sinee u E Hl(M,j*W71) is real and u has no (-l,l)-eomponent, it has also no (1,-1)­
eomponent. Thus u is of type (0,0), and eonversely.
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(6.23) Corollary. Let f : X ----+ M be a I(uga fiber space as in (6.4). The Mordell-Weil
group MW(XIM) is finite if and only if

(6.24)

PROOF: By Proposition (6.8), we only have to prove that the group HO(M, O~t(X)) is

finite. Sinee H)(M,j.W71.)O,o®Q ~ H)(M,j.WQ)O,O, Proposition (6.22) implies that the
condition (6.24) is equivalent to the finiteness of HO(M, O~t(X)).

(6.25) Theorem. Let f : X ----+ M be tbe I(uga fiber spaces associated to the Q­
symplectic representation oE type (6.2) or (6.3). Assurne tbat M = f\1) is not compact.
Then the Mordell- Weil group MW( ...1'I lvI) is finite.

PROOF: We first remark that we ean replace M = f\1) with its finite unramified eovering.
So we may assurne that loeal monodrennies around the eomponents of D are unipotent.

We first prove the ease (6.3). We sha11 use the notation in (5.18). In this ease, F) is a
purely imaginary quadratie field over Q, so denote by {a, er} the embedding of F) into C.
We have the deeomposition

where we put WU := WQ ®F1 :u C. We also have the expression

where Ve is an nr-dimensional C-vector spare which has a C-sympleetic form he such that
the signature of Rhe is (nr - 1,1). As in (5.18), a complex strueture ] E 1) defines a
decomposition Ve = vt EB Vc- where dirn vt = nr - 1 and dirn Vi" = 1. And setting
Wu,± = Ue ® Ve±, we have the homomorphisln of ]{-module

(6.26)

lIV U ,+ ----+ P- ® W u ,­

~ Uc ® [Vc+ ----+ p- ® Ve-]·

whieh induees the a-part of the first Gauss-Manin complex on M

(6.27)

where we set :F: = OM(Wc)n :Fp • Fronl Lemma (5.20), the homomorphism (6.26) is an
isomorphism of ]{-modules and so the sheaf homomorphism (6.27) is also an isomorphism.
Now let us write 1) = Gf'i.1!{. Sinee!{ is compact, WU'+, p- and wu,- admit Gf'i.-invariant
Hermitian metries, which induce Hermitian metrics on the 10ca11y free sheaves n, n~

and GrF~ respectively. Note that on :F~ and GrF~ these metric are constant multiple of
the metrie indueed by the original polarization A. Let E be a any 10ea11y free sheaf on
M = f\1) induced by a ]{-representation with an above hermitian metric h. In [Mum),
Mumford showedthat such a E adnlits a canonical extension E to a smooth toroidal
compaetifieation M in (6.1) such that h is a singular Hermitian metric good on M. (For
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the definition of goodness 01 a singular Hermitian metrie, see [Mum] §1.) One can see that

such canonical extensions of :F~ and Gr"i:l coineides with :F~ and Gr~} defined in (6.4),
a Fa

that is, those indueed from the Deligne's canonieal extension. (For the proof of this fact,
see [H], Theorem 4.2.) Moreover, the eanonieal extension of n~ in the sense of Mumford
is n~ (logD). Therefore, by uniqueness of eanonieal extensions, the isomorphism (6.27) is
extended to the isomorphism

(6.28)

over M. Then by (ii), Proposition (6.22), we have Hl(M,j* Wc)o!o = O. From this, by
the same argument as in Lemma (5.13), we deduee the vanishing eondition (6.24), whieh
implies the finiteness of the Mordell-Weil group.

Next we will deal with the ease (6.2). In this ease, F l = Q and GIRl '" SU3 (1HI)- '"
SU(3, 1, C). We use the same notation as in (5.23). By the same reason as in the case
(6.3), we only have to show that H 1(.i\,f, \7) = 0 where \7 is the eanonieal extension of
the Gauss-Manin complex. Over M, we have the isomorphism (5.27), so again by the
uniqueness of the eanonieal extension, we have the isomorphism

(6.29) eoker \7 '" Ue Q9 S2 (7)

where 7 is the canonieal extension of the sheaf 7 (see (5.23)) to M. As in proof of
Proposition (5.28), we only have to show that HO{M, S2(7)) = O. As in (5.29), we· have
the indusion

HO(M, S2(T)) L-+ HO(M, S2(Te))

where Tc is the canonieal extension of Tc. Vle have the isomorphism HO(M, S2(Te)) '"
HO(M, S2(Te)) (see (3.1.1), [ShzY)), and by (4.13) HO(M, S2(Te)) = O. So we have the
desired assertion.

(6.30) Remark. If dirn V = 1 and M = r\V is not compaet, the finiteness follows from
the result in [Zl]. Let f : X ----? M be a Kuga fiber spaee and 7 : X ----? M the semi­
abelian scheme in (6.4). By (6.8), we only have to prove that HO(M, CJan(x)) is finite.

M
Then by (6.22) (ef. Corollary (10.2) in [Zl)), wehave HO(M,CJ~(X)) '" Hl(M,j*W·ll.)o!o.

Then Lemma (12.4) in [Zl] says that Hl(M,j*We)o!o = 0, and henee the Mordell-Weil
group is finite.
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