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§0 INTRODUCTION.

Let f : X — M be a projective abelian scheme over an arithmetic quotient of a
hermitian symmetric domain M = I'\'D, constructed from a symplectic representation of
the associated algebraic group. Such fiber spaces of abelian varieties have been studied
by Kuga, Shimura, Satake, Mumford, et al. Following Satake [S1], Ch. IV, we call such
a fiber space a Kuga fiber space ( of abelian varieties). Let n be the generic point of M
and X, denotes the generic fiber of f. Then X, can be considered as an abelian variety
defined over the rational function field K = C(M), so define the Mordell-Weil group to
be the group X, (K) of K-rational points, or equivalently, the group of rational sections of
f: X — M, and denote it by MW (X /M). In this paper, we shall study Mordell-Weil
groups MW (X /W) of Kuga fiber spaces, and prove a finiteness theorem for them.

Historically, Shioda first showed that the Mordell-Weil groups of the elliptic modular
surfaces corresponding to arithmetic subgroups I' C SLy(Z) are finite in [Sd]. Generalizing
Shioda’s result, Silverberg [Sil] proved the finiteness of the Mordell-Weil groups of those
Kuga fiber spaces which are characterized by an endomorphism algebra with positive
involution and a polarization, introduced by Shimura in [Sh1] and [Sh2]. She later obtained
in [Si2] a cohomological criterion for the finiteness, which covered the most of her former
results.

Denote by R; f,Cyx the local system of the first homology groups of the fibers of f.
Then the local system R;f,Cy is induced by a representation ' — GL(W¢), and we
have natural isomorphisms HY(M,R; f,Cx) = HY(T,W¢) where HY(T', W¢) denotes the
Eilenberg-MacLane cohomology group. The criterion of Silverberg says that if dim M > 1
or M is compact and HY(T', W¢) = 0 for ¢ = 0,1 then the Mordell-Weil group MW (X /M)
is finite.

~ This criterion directly works for the cases when the algebraic group Gg defined over
Q under consideration has rational rank > 2, or the rational rank = 0 (i.e. T C Gg is
cocompact) and Ggr has no compact factor and no factor isomorphic to SU(n,1) (see Th.
6 and Th.7 in [Si2], or [B-W]). (When the rational rank =1, see Theorem 7 of [Si2]).

On the other hand, there are examples of Kuga fiber spaces for which one can not apply
these vanishing theorem directly, and in some cocompact cases, we do have examples with
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HY(T,Wg¢) # 0. (See §5). But we can still expect the finiteness of the Mordell-Weil group
(see [Si1], [Si3]).

As far as the classification of Kuga fiber spaces is concerned, Satake studied deeply Q-
symplectic representations, and classified all Q-primary symplectic representations with a
very mild additional condition ([S2], see also IV, §6, [S1]), and every @-symplectic repre-
sentation is a sum of primary representations. They consist of the standard one which is
constructed from the pair of a D-module V with a D-skew hermitian or a D-hermitian form
h where D is a division algebra over @ with center F}, and the non-standard one obtained
from exterior product and spin representations. In the standard case, the Q-algebraic group
is given by Ry, ,(SU(V, h)), which is obtained from the Fj-algebraic group SU(V, h) by
Weil’s restriction of the scalars. We remark that the the standard representations lnclude
the cases which were studied by Shimura in [Sh3].

In this paper, we will only consider the standard Q-symplectic representation. Also, we
will exclude the following case from our consideration (cf. (3.42)):

(0.1)
Case (R2, -1), n = 2: Gg = SUz(H)™ x - x SU(H)~ x SO4(R) x - -- x SO4(R),

because the reduciblity of SU;(H)~ forces annoying distinctions about the nature of T.
(For the notation, see §3, (3.23) and (3.31)).

Then the main theorem in this paper can be stated as follows.

(0.2) Theorem. ((4.23), (5.8) and (6.25)). Let f : X — M be a Kuga fiber space asso-
ciated to a standard Q-primary representation not isomorphic to the case (0.1). Assume

that dim M > 1. Then the Mordell-Weil group MW (X /M) is finite.

The main idea of our proof is a generalization of Silverberg’s method in [Si2] by intro-
ducing the L?-cohomology and the Hodge theory, which can be outlined as follows.

If the codimension of the singular locus of the Satake compactification M* of M is greater
than 1, then for ¢ <1, HY(I', W¢) & HY(M, Wc¢) is isomorphic to the middle perversity
intersection cohomology IHY(M*, W¢). Then by the Zucker conjecture proved in [L] and
[Sa-St], these are also isomorphic to L%-cohomology groups. By Borel-Casselman [B-C],
the L2-cohomolgy is calculated by (g, K )-cohomology, and hence we can apply the Borel-
Wallach vanishing theorem in [B-W] even in the case when T is not cocompact, and deduce
that H("2)(M,Wc) =01if ¢ < tkgGgr. So if rkgGgr > 2, we always have HY(M,W¢) =0
for ¢ = 0,1. In case when rkgGr = 1, we will separate the proof into two cases, that is,
the cases where M =I'\D is compact or non-compact.

If M is compact, we can use Deligne-Zucker Hodge theory on HY(M, W¢), because
W¢ admits a variation of polarized Hodge structure. It is proved that the Mordell-Weil
group MW (X /M) is isomorphic to H}(M,Wz) N (H%%) in this case. Since Wg has a
structure of a local system of F)-vector spaces, we have a decomposition of W¢ according
to the distinct embeddings of F} into C. We can see from Satake’s classification that this
decomposition is compatible with the Hodge structure. Though in this case it is possible

that H1(M,W¢)%? £ 0, we can use the decomposiotion of H!(M, W¢) to conclude that
H'(M,Wgqg)" =0. .



If M is not compact and rkgGg = 1, we can take a smooth toroidal compactifica-
tion j : M < M such that D = M — M is a smooth divisor and consider the coho-
mology group H!(M,j,Wz). Then by a result due to Cattani-Kaplan-Schmid [C-K-S]
and Kashiwara-Kawai [K-K], this admits polarized Hodge structure of weight 0. On the
other hand, we can extend the Kuga fiber space f : X — M to a semi-abelian scheme
f: X — M. And in this case one can prove that H°(}M, O%‘(T)) = HY(M, ,Wz)"9,
where HO(M, (’Jﬁ(?)) denote the group of holomorphic sections of f. By using the
theory of Néron model, it can be shown that there is an injective homomorphism r :
HO(M, O%(T)) — MW(X /M) with finite cokernel. Now by using the description of
Hodge structure due to Yuji Shimizu [ShzY], we calculate the Hodge component and we
can finally prove that H'(M, j,Wqg)%? = 0.

The organization of this paper as follows. In §1, we introduce Q-symplectic representa-
tions and Kuga fiber spaces. In §2, we introduce the Mordell-Weil groups of Kuga fiber
spaces and recall some results due to Silverberg [Sil], [Si2]. We also review a Hodge theory
of the cohomology group to give a slight refinement of Silverberg’s results. In §3, we sum-
marize the basic fact on Satake’s classification of Q-symplectic representations. In §4, we
recall some results from Borel-Casselman [B-C] and Borel-Wallach [B-W], and prove the
desired vanishing theorem when the R-rank of Gg. > 2, even if Gg has compact factors.
In §5, we shall deal with the case when the R-rank of Gg is 1 and M = I'\D is compact.
We will check that the decomposition (see (5.10)) is compatible with the Hodge structure,
and we calculate the first Gauss-Manin complex whose H! is the space of (0, 0)-elements.
In §6, we shall deal with the case when the R-rank of Gr is 1 and M is non-compact.

The author would like to thank Professor Steven Zucker for very useful discussions about
Hodge theory, L?-cohomology and intersection cohomology. He would also like to thank
Professor Alice Silverberg for reading the preliminary version of this paper and giving useful
comments. He would like to express his gratitude to JAMI in Johns Hopkins University
for its hospitality during academic year 1990/91.

After I have finished the preliminary version of this paper, the author was infromed
that Ngaiming Mok obtained the similar result to one in this paper independently. It
is announced in his preprint “Aspect of Kahler geometry on Arithmetic Varieties”. The
author believes that the method in this paper is different from his and it is worth while
publishing this paper.

NOTATION. Let T be a complex vector space. For a complex endomorphism I and
a € C, we set T(a,I) = {u € T|I(u) = a - u}, the eigen space of I. We denote by
H=R+R .-:4+R-j+R-k the field of Hamilton quaternions.



§1 Q-SYMPLECTIC REPRESENTATIONS AND KUGA FIBER SPACES.

Let Gg be a Q-algebraic group such that its R-valued point Gg is a Zariski connected
semisimple R-group of hermitian type. Let K be a maximal compact subgroup of Gg and
D = Gr/K the corresponding Hermitian bounded symmetric space. We denote by g, €
Lie algebras of Gg and K respectively, and by p the orthogonal complement of € in g with
respect to the Killing form. Then the complex structure of D is induced by an element
Hy € Cent(t) such that (ad,(Hg))? = —1,. A pair (Ggq, Hg) consisting of the above Ggq
and Hj is called a Q-hermitian pair.

(1.1) Definition. A Q-symplectic representation of a Q-hermitian pair (Gg, Hq) is a
quadruples (Wg, pg, Ag, I) consisting of
(i) a Q-vector space Wg of dimension n,
(ii) a non-degenerate symplectic bilinear form Ag on Wg x Wg ,
(iii) a faithful representation pg : Gg — Sp(Wq, Ag) and
(iv) a complex structure I € D(Wg, Ag) satisfying the condition

(1.2) [dor(Ho) — (1/2)I,dpr(X)] =0 forall X € gg,
where D(Wg, Ag) denotes
(1.3) {I € End(Wg)| I? = —1w,, Ag(z, Iy) is a positive-definite R-symmetric form}.

| (See (3.11)).

Next we introduce a Kuga fiber space of abelian varieties induced from a Q-symplectic
representation. Let (Wq, pg, Ag,I) be a Q-symplectic representation of a Q-hermitian
pair (Gq, Hy). By a lattice in Wg, we mean a free Z-submodule Wz in Wg such that
Wz ®z Q = Wg. Considering Gg as a subgroup in GL(Wg) through the representation
pq : Gg — Sp(Wg, Ag), for each lattice Wz in Wg, we set

(1.4) Gw, ={9 € Ggl gWz =Wz }.

Then Gw, C Gg becomes a discrete subgroup of Gg. .
(1.5) Definition-Proposition. ([S1], Ch. 1V, /S 7). A discrete subgroup I' of Gr

commensurable to Gy, for some lattice Wy is called an arithmetic subgroup of Gg. The
quotient space I'\Gg is of finite measure with respect the measure induced from the Haar
measure of Gg, and there always exists a normal subgroup I'' of T of finite index such that
I'! is torsion-free.

(1.6) Definition. A 5-tuple (Wq, pg, Ag, I, Wz) is said to be a Kuga 5-tuple if (Wg, pq,
Ag,I) is a Q-symplectic representation of a @-hermitian pair (Gg, Hy) and Wz is lattice
of Wg such that

1.7 ' Ag(Wz,Wz) C L.
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From a Kuga 5-tuple, we obtain a fiber space of abelian varieties as follows. Let K be
the maximal compact subgroup of Gg determined by Hg, and denote by D = Gr/K the
corresponding hermitian symmetric space. Set W = Wg ®qR, Wg = Wg ®g C. We have
a complex structure Iy € D(Wg, Ar) (cf. (1.3)) satisfying (1.2). For an element g € Gg,
define '

I, =p""(9) I p(9)-
Then, by definition, we have I, € D(Wg, Ar), and from (1.2), I, = I for g € K. Hence
we define, for each point z = [g] € D = G/ K,

Iz = Ig € D(WR,AR).
Setting W} = {u € W¢|Il,u = v/—1u}, we can obtain a holomorphic vector bundle
FY = U.epW over D such that the following diagram commutes.

DxWe « FU
(1.8) L
D.

Let I' be a torsion-free arithmetic subgroup of Gg such that I' C Gw,. Then the quotient
space M = I'\D is a complex manifold, which is known to be a quasi-projective variety
([Ba-B]). Denote by Wz the local system of free Z-modules on M induced by the flat
bundle (D x Wz / ~), where ~ denotes the equivalence relation given by

(1.9) (z,w) ~ (v~ 2z,p(7)-v) for yeT.

We also denote by Wgq, Wg, W the local systems on M corresponding to Wg, Wg, We
respectively. The Gg-invariant form Ag induces a flat symplectic bilinear form A on
Wg. A holomorphic vector bundle FY on D descends to M and we denote by FU the
corresponding locally free sheaf on M. Now we have the following

(1.10) Definiton-Proposition. The triple (Wgz, A, F') constructed above becomes a
variation of polarized Hodge structure (VPHS, for short) of weight -1, and of types (-1,0),
(0,-1) over M =T\D, i.e.,

(i) A is a flat Z-valued non-degenerate symplectic form on Wy,

(ii) F* € Wz ®z Oy defines a Hodge filtration of weight -1, and of types (-1,0), (0,-1),
ie.

0=F'cF' cF!'=WzQz0u,
such that .
FoF'=WzQ10m.

(1) A satisfies the Hodge-Riemann bilinear relations, i.e. for a non-zero local section

u € .7-'”, we have

A(u,u) =0,
—(vV=1)A(u,@) > 0.

As explained in [D2] (4.4.3), we have an equivalence between the category of polarized
abelian schemes over M and the category of variations of polarized Hodge structure over
M of weight -1, and of type (-1,0), (0,-1), so we obtain a fiber space f : X — M of
abelian varieties over M.



(1.11) Definition-Proposition. ( Ch. IV, §8, [S1] or 3.10, [Sh2] ) A fiber space of
abelian varieties f : X — M = I'\D obtained from a Kuga 5-tuple (Wq, pg, Ag,I, Wz)
and a torsion-free arithmetic subgroup I' C Gy, of G is called a Kuga fiber space (of
abelian varieties). The total space X is a smooth quasi-projective variety and f is a smooth
projective morphism.

§2 A CRITERION OF SILVERBERG AND A GENERALIZATION.

In this section, we review a criterion of the finiteness of Mordell-Weil group of Kuga
fiber spaces due to Silverberg [Si2], and give a slight generalization.

First of all, we introduce the Mordell-Weil group of a fiber space of abelian varieties. Let
M be a connected smooth quasi-projective variety. By a fiber space of abelian varieties
over M we mean a polarized smooth abelian scheme f : X — M. Consider the generic
fiber X, of f. Then X, is considered as an abelian variety over the field K = C(M)
of the rational functions on M. Then the Mordell-Weil group of f is defined to be the
group of K-rational points X, (K), and is denoted by MW (X /M). There exists a natural
1somorphism :

(2.1) MW (X /M) = {a rational section s : M -.. — X of f}.

Now let (Wg, pg, Ag, I, Wz) be a Kuga 5-tuple for a Q@-hermitian pair (Gg, Hy), T C
Gwy,, M =T\Dasin§l, and f : ¥ — M the associated Kuga fiber space (see (1.11)). Let
Op(X) (resp. O4f (X)) denote the sheaf of germs of regular algebraic (resp. holomorphic)
sections with values in X (resp. X"). The cohomology group H’(M, Oy (X)) is isomor-
phic to the group of regular algebraic sections of f. A rational section s € MW (X /M)
always extends to a regular algebraic section in case of a Kuga fiber space (see Prop. 2.1

[Si1]). So we have
(2.2) Proposition. For a Kuga fiber space f : X — M, we have an isomorphism
(2.3)  MD(X/M)= H'(M,0Opn(X)).

(2.4) REMARK: From the construction, there exists a natural map
(2.5) HY(M,0(X)) — H'(M, 037 (X)).

In general, there exists a holomorphic section of f which is not algebraic, (e.g. consider
the case where M is a non-compact curve.) Assume that I is irreducible in Gg (see
(4.4)). Then, if either dim (D) > 1, or M is compact, one can show that (2.5) must be an
isomorphism (see [Si2, §1], [Ba-B, §10]).

For K = Z,Q,R,C, let H(I', W) denote the Eilenberg-MacLane cohomology groups
induced by the representation pg and an arithmetic group I'. Since D is contractible, we
have natural isomorphisms for K =Z7Z,Q,R,C
(2.6) H(T',Wg) 2 H(M,Wk)
where Wig denote the local system on M associated to Wi, (see (1.9)).

Now we can state the Silverberg’s criterion of the finiteness of M D(X /M) ([Si2], Theo-
rem 5).



(2.7) Theorem. Assume that T is irreducible (cf. (4.4)) and dim D> 1 or M = D/T is
compact. If

(2.8) HY(T,W¢) = HYT,We) =0,

the Mordell-Weil group MW (X /M) is finite, and isomorphic to HY(T', Wz) = H'(M, Wgz).

(2.9) L*-cohomology.

Let f: X — M = I'\D be a Kuga fiber space as above, and (Wgz, A, ') the corre-
sponding VPHS of type (0,-1), (-1, 0) as in (1.10).

The local system W¢ = Wz ®z C has a flat symmetric bilinear form Ag, and if we
denote by C, the Weil operator, (or the complex structure) of a fiber W¢, the form
T.(z,y) := Ac(z,C,7) becomes a positive-definite hermitian form, so it induces a metric
on W¢. From the construction of W¢ and Ag, this metric is nothing but the one induced
by the admissible inner product on Wg¢ ([M-M], p375). The base space M = I'\D is
endowed with a complete metric induced by the Bergman metric on D. Hence, we can
give a norm on each term of the complex A'(M , We)> of We-valued C* exterior forms
on M. Let Liz)(M’ W¢ ) denote its subcomplex consisting of square-integrable elements
whose exterior derivative are also square-integrable. We define the L?-cohomology group

for W¢ by
(2.10) Hipy (M, We) = H'(Liyy (M, We)™).

Let M* denote the Baily-Borel, Satake compactification of M. It is known that M* is
a normal projective variety which has a stratification by complex subvarieties. Following
[G-M], we can define the middle perversity intersection cohomology group IH (M*, W¢).
The following theorem is a direct consequence of the result, which was known as the Zucker
conjecture, proved by Looijenga [L] and Saper-Stern [Sa-St].

(2.11) Theorem. Under the notation and assumption as above, we have isomorphisms

H(Z)(Mvw‘f:) = IH(M*’WC)

(2.12) Corollary. If codim¢(M* — M) =1 in M*, then we have isomorphisms
H(qz)(M, We)= HY(M,W¢) for ¢g<i1.

PROOF: From the definition of the intersection cohomology group [G-M, §3, 3.1}, one can
easily deduce that

THY (M, W¢) = HY(M,W¢) for q<i,
hence (2.11) implies the assertion.

If T is irreducible in GR (see (4.4)) and dim D > 1, one has codim¢g(M* — M) > 2 in
M*. Hence, thanks to (2.12), we have the following '
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(2.13) Corollary. Assume that I C Gg is irreducible and dim D > 1, or M = T\D is
compact. Then there exist isomorphisms

(2.14) H(",ZJ(M,WC) = HY(M,W¢), forq<]1.

(2.15) Hodge theory in case M is compact.

We recall that the triple (Wz, A, %) constructed in §1 is a VPHS of weight (-1) of
types (0,-1), (-1,0) (see (1.10)). In particular, the sheaf Wy := Wz ®z Op has a Hodge
filtration

0=F cF cF!=W.

Assume now that M = I'\D is compact. Then we have an isomorphism
(2.16) H"(M,Wc¢) = H(,,(M,W¢) foralln.

In this case, from the L?-harmonic theory, the right hand side of (2.16) can be expressed as
a space of We-valued L?-harmonic forms. Deligne showed that, as in the classical Hodge
theory, there exists a decomposition '

(2.17) Hn(M, WC) = H&)(]VI, Wc) = @p-}-q:n—]Hp’q

such that H?:9 = H9? (see [Z1]). Moreover the associated Hodge filtration on H"(M, W¢)
is given as follows. Let Q},(W¢) denote the holomorphic deRham complex with values in
W, with differential dy. If we define the filtration (F"Q,,(W¢)) by

FrQL,(We) =04, @ F777,

Griffiths’ transversality (see e.g. [Z1]) implies that they actually become subcomplexes of
Q3,(W¢). The holomorphic Poincaré lemma implies that

H'(M,W¢)=H(Qy(Wc)),

and the above filtration induces a filtration on the cohomolgy.

(2.18) Thorem. Under the above notation, we have the following.
(1) The spectral sequence

(2.19) E}? =H" (M, GriQy,(We)) = HPT(M, Wc¢)

degenerates at E;.

(ii) The filtration induced by {F?Q;,(W¢)} on H*(M, W¢) coincides with the Hodge
filtration induced from the decomposition (2.17).

(1i1) There is a natural identification

HP = H" (M, Gri.Q,(We))
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forp+g¢g=n-1.

(iv) The cohomology group H"(M,Wg)/torsion is a Z-structure of H"(M,Wg¢), and
has a natural polarization B, i.e. a Z-valued bilinear form satisfying the Hodge-Riemann
bilinear relations.

For example, H'(M, W¢) has a 2-step filtration 0 = F! C FO‘C F~1 whose successive
P P
quotients are:
H' ' =Grl =F' = H"(F’ — Qu ®Gr]__-l ,
H Y =Grp' = F71/F' = HY(GryY).

where Grz' = F~1/F°. H'(M,W¢) has a 3-step filtration 0 = F c F1c F' c F~! =
H?' whose successive quotients are:

(2.20) H" ' =Gri, =F'=H'(0 — Q), @ F' — 0%, @ Grz'),
(2.21) H* =Grl. =F’/F' = HY(F' — Q)  Grz'),
(2.22) H ' =Gr' = F71/F' = HY(Gr7).

Considering H(M, Wgq) as a lattice of‘Hl(M, We), we set
223) (0, W) — H (M, Wa) 1 .

Let p, : H"(M,W¢) — H~1" = H"(M,Gr3') be the natural projection map induced
by the spectral sequence (2.19). Set also A ‘
- (2.24) Xconst = coker{py : H'(M,Wz) — H'(Grz")},
(2.25) HY(M,Wz)"? = ker{p, : H'(M,Wz) — H'(M,Grz")}.

Then by Hodge theory (2.18), one has
(2.26) H' (M, W) = H' (M, W2)"' @z Q.

Under these notations, we can state the following theorem which gives a very natural

description of MW (X /M). (Cf. [Z1], Cor. 10.2)

(2.27) Theorem. Assume that M = T'\D is compact. Then
(1) Xconst in (2.24) is an abelian variety over C, and
(ii) we have a natural exact sequence of abelian group

(2.28) 0 — Xeonst — MW(X/M) — H'(M,Wz)"’ — 0.

PROOF: The assertion (i) is an immediate consquence of (2.18). Since M is projective, all
holomorphic sections become algebraic, so by (2.5), we have an isomorphism MW (X /M) =
H®(M,087(X)). The relative exponential map for an abelian scheme f: X — M yields

the following exact sequence of sheaf on M"
*) 0 — Ry fiZ — Lie(X) — O47(X) — 0,

9



where R f,Z denote the local system of the first homology of fibers of f. From the
construction of a Kuga fiber space, we have isomorphisms Wz = R, f,Z and Lie(X) &
Grz', hence (*) can be written as

(2.29) 0 — Wz — Grz! — O47(X) — 0.

This yields an exact sequence of cohomology group

pagy 0 HUMWa) —— H(M,GrE) —— HY(M,03(X))
—— H(M,Wz) —— H(M,Gr7") ,
from which (2.28) follows. q.e.d.

As a corollary, we have the following generalization of Silverberg’s result (2.7).

(2.31) Theorem. Assume that T'\D is compact. The Mordell-Weil group M D(X /M) of
a Kuga fiber space is finite if and only if

H'(M,Grz') = H'(M,Wgq)"' =0.

§3 SATAKE’S CLASSIFICATION OF Q-SYMPLECTIC REPRESENTATIONS.

In this section, we will summarize the Satake’s work of classification of @-symplectic
representations. The main references are [S1], [S2].

(3.1) Preliminary.

Let F be a field of characteristic zero and D a division algebra over F'. Denoting by F}
the center of D, we set

(3.2) [Fy: Fl=d, [D:F]=r%

Consider a finite dimensional F-vector space V with a structure of a right D-module, and
set n = ranky V. We set:

GL(V/D) = {g € End;(V)] g is invertible },
SL(V/D) ={de€ GL(V/D)| N(g) =1},
where N denote the reduced norm of End;(V). The corresponding matrix group are
donoted by GL,(D) and SL,(D) respectively.
Let ¢ be an involution on D and let ¢ = +1. A (D, e¢)-hermitian form h on V with

respect to ¢ is by definition a F-bilinear mapping h : V x V — D satisfying the following
conditions:

(3.3) h(v,v'a) = h(v,v")a,
(3.4) h(v',v) = eh(v,v')* forall wv,v' €V, a€ D.
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A (D, €)-hermitian form h is called non-degenerate if a intersection matrix T' = (h(e;, €;))
for a D-basis (e;) of V is invertible. Fix an involution ¢ on D. For a non-degenerate
(D, €)-hermitian form h on V with respect to ¢, we define the unitary group and the special
unitary group for h by

(3.5) U(V,h) = {g € GL(V/D)|h(gv, gv') = h(v,'), (v,v' € V)}
(3.6) SU(V, k) = U(V,h) N SL(V/D),

and the corresponding matrix group are donoted by U,(D, h) and SU,(D, h) respectively.

The groups GL,(D),SL,(D),U,(D, 1) and SU,(D, h) can be viewed as algebraic group
defined over Fy. For a general Fy-group G, we denote by Ry, 4 (G) the F-group obtained
by scalar restriction (Weil [W, 1.3]).

(3.7) Classical groups over R and classical domains.

If FF =R, we can define the classical groups and classical domains of type (I), (II), (III).
A division algebra D over R must be either R,C, or H, and here let ¢« be the standard
involution of D. - ' A

Let h be a non-degenerate skew-hermitian form on V (i.e. (D, —1)-hermitian form)
with respect to «. We can find a D-basis (e;) for V such that the corresponding matrix
T = (h(ei,e;)) € M,(D) is in the following form:

(i) D = R; n is an even integer

0. 1,/

(i1) D = C; (p, q) is a pair of non-negative integers such that p+ ¢ = n.
.. -1, 0
T=—-1,,= ( 0 il,,)’

T = jln.

(i) D = H;

Hence the corresponding special unitary groups SU,(D, h) are given by the following ma-
trix groups:
(i) D =R; n is even.

(38) SUn(Ra h) = Spn/'Z(R) = {g € SLn(R)Ithn/Zg = Jn/'z}'

(i))D=C;p+qg=n.

(3.9) SUA(C, k) = SU(p,4,C) = {g € SLo(C)ltT1p09 = Lpg}-
(iii)’ D = H |
(3.10) SUa(H, ) = SUL(H)™ = {g € SLa(H)I'"(i1a)g = 1n}.
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These groups are R-algebraic groups, which are of non-compact hermitain type unless
G = SU(n,0,C) = SU(0,n,C) = SU(n,C) or SU;(H)~. Moreover these groups are
R-simple except for the case where G = SU,(H)™ (see (4.12), or [S1], Appendix, §1).

These groups act on bounded symmetric domains as follows. Consider the following set
of complex structures on V

(3.11) D(V, k) = {I € Endg(V)| I* = -1y, h(z,Iy) is a positive-definite D-hermitian}.

Then the special unitary group SU,(D, k) acts on D(V, h) transitively, and D(V, h) be-
comes an irreducible hermitian symmetric domain and is isomorphic to a homogeneous
space SU,(D, h)/K where K is a maximal compact subgroup of SU,(D,h). A bounded
symmetric domain D(V, h) obtained as above is called a classical domain and isomorphic
to one of the following bounded symmetric domains.

(3.12) : (Ipe ={Z € M(p,q,C)|1, -* ZZ >> 0},
(3.13) (I, ={Z € M, (C)|'Z =-2,1,-'ZZ >> 0},
(3.14) (IINpm ={Z € Mp(O)'Z = Z,1,n =* ZZ >> 0}.

The relations between SU(V, h) and D(V, k) and the R-rank of SU(V,h) are shown in
the following table. '

D G = SU(V, h) D =D(V,h) dim¢D R-rank
(3.15) R Spns2(R) (111)y; (n/2)(n/2+1)/2 n/2

C SU(P; q, C) (I)pq Pq man(p, ‘1)

H SUn(H)- (II)n n(n—' 1)/2 {n/Q]

(3.16) Satake’s classification.

A Q-symplectic representation (Wg, pg, Ag,I) of a Q-hermitian pair (Gg, Hy) (cf.
(1.1)) is called Q-primary if (Wq, pg) is a sum of Gg-stable subspaces isomorphic to
an irreducible Q-representation p; : Gg — GL(V/Q).

In this section, we review the classification of Q-primary standard symplectic representa-
tions. In order to classify @-primary symplectic representations, the following proposition
is fundamental. For a proof, see [S1], Ch. IV.

(3.17) Proposition. Let (Wg, pg, Ag,I) be a Q-primary symplectic representation of a
Q-hermitian pair (Gg, Hy), and p: Gg — GL(V) an irreducible representation contain-
ing in (Wq, pg). Setting

D = Endgq(V), Fy=Cent D, U= Homgg(V,Wy),

we have the following.
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(i) D is a division algebra over @, and V (resp. U) becomes a left D-module (resp. a
right D-module).
(i1) There exists a canonical isomorphism

(3.18) We=U®pV.

(ii1) There exist a natural involution ¢ on D, a (D,e¢)-hermitian form h on V and a
(D, —€)-hermitian form h' on U with respect to the involution ¢ such that

(3.19) AQ = tru/@(h' X h)

(iv) The form h on V is Gg-invariant. In particular, p is reduced to a natural represen-
tation over Fy

(3.20) p1: Gg — SU(V, k)

(with Endgq(V) = D).

(3.21) Definition. A Q-primary representation (Wg, pg, Ag, I) of a Q-hermitian pair
(Gg, Hy) is said to be standard if Gg = Ry, j@(SU(V, k) and p in (3.20) is induced by the
universal homomorphism of the scalar restriction (cf. [W, 1.13)).

(3.22) Remark. Satake [S2] determined all Q-primary symplectic representation under
an reasonable additional condition. Besides the standard one, there exist few non-standard
representations involving skew-symmetric representations and spin representations. But
there exist also a Q-primary symplectic representation which does not satisfy his condition
(see p195 [S1] for references). In this paper, we will not deal with non-standard case.

A standard representation is determined only by the data D, ¢, V,U, h, h' in proposition
(3.17). First we have the following

(3.23) Proposition. ([S1], Ch. IV, §6). Let (Wq, pg, Ag,I) be a Q-primary symplectic
representation (not necessarily standard) of a Q-hermitian pair (Gg, Hy), and D, Fy,¢,V, h,
U, k' be as in lemma (3.17). Then one of the following cases occurs.

(R1) D = F; is a totally real algebraic number field and « = identity, and h is a
symplectic formonV (e = —1).

(R2, €) D is a quaternion algebra over a totally real algebraic number field Fy and : is
the standard involution, k is a (D, €)-hermitian form V with respect to ¢, where e = £1.

(C) Fy is a CM field, i.e. a purely imaginary quadratic extension of a totally real
algebraic number field Fyy, D is a central division algebra over Fy, ¢ is an involution of D
of the second kind, and h is a (D, ¢)-hermitian form with respect to « where ¢ = £1.

Let D, Fy,: be as in Proposition (3.23). If we set F;" = {2 € F}| 2 =z }, then F}" isa
totally real algebraic number field. Setting t = [Fy : Q], let {; : F1+ — R, 1<i<t} be

13



the set of ¢-distinct embeddings of F;" into R. For each : 7; : Fit — R, we put

(3.24) F'=F &, R’
(3.25) D% =D®u+ . R
(3.26) W =We @ ., R,
(3.27) V=V @, R,
(3.28) Un =U®us ,, R

The algebra D™ becomes a central simple algebra over Fl(i), so there exists a division
algebra D) over Fl(') such that
D™ = M,(DW).

Fixing an above isomorphism, we denote by ¢, the corresponding matrix unit in D™. We
moreover set:

(3.29) v .= v, Ul =UTé .

 Then V® (resp. U®) are left (resp. right) DW_modules and we have an isomorphism (cf.
[S1], p189),

(3.30) W =U® @6 V.

Note that from (3.23), F( D is isomorphic to R or C, corresponding to the case (R1), (R2,
€) or (C), so D) is isomorphic to R, H, or C.
Under these notations, we can state the following theorem.

(3.31) Theorem. ([S1], Ch. 1V. §6). Let (Wq, pq,Aq,I) be a standard Q-primary
symplectic represenation, and D,, Fy,V,h,U, ' ,\Wg = U ®p V,Ag = tr;q(h' ® h) be
as in (3.17). Then we have the following.

(i) There exists a decomposition

(3.32) Wg:=Wg@qR=0_,W"=g!_UYe,un VY.

(i) For each i,1 < i < t, h (resp. h') induces a (D9, en;)-hermitian form h(Y) on V()
(resp. (D), —en;)-hermitian form h') on U®), where n; = +1. We have a decomposition
of Ag := Ag ® R = @!_, A) corresponding to (3.32), where one set
(3.33) A(i) = tru(i)/l..'(i)(h'(i). ® h(i)).

(iii) The R-valued points Gg of Gg = R}, j@(SU(V, k)) has a canonical decomposition

(3.34) Gr = Ry, g(SU(V, h))g H SUW@ Ry,

=1
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and, for each i, the natural representation p; : Gg — SU(V,h) induces a representation
(3.35) P\ : Gr = Ry, 1q(SU(V, h))g — SUV®, A1),

where pgi) can be written in the form

(3.36) Pgi)=1®"'1®idv(-‘)®1-'-®1.

according to the decomposition (3.34).

Moreover, for each case in (3.23), we have the following

(3.37) Theorem. ([S1], Ch. IV, §6). Under the notation in Proposition (3.23), we have
the follwing explicit descriptions of Fl(z) ,D7 DO v p() () G for the cases of (R1),
(R2, €), (C) respectively.

(R1) (e = —1) D = F} = F}". Set dim;,V = n,dims, U = m. Then one has:
FOOxpri~plxg yOxge yl=gm,

RO R-symplectic form on V', (n; = 1) for1 <i<t=d,

(3.38) Gr = Sppy2(R) X - X Spny2(R).

d

(R2, €) We have Fy = F;", and D is a quaternion algebra over Fy. Set rankpV =
n, rankpU = m. Then one has F\Y = R. After a suitable renumbering of {7;}, we may
assume that for some t',0 < t' < t,

, {H 1<i<t ‘ H 1<:i<?
D7 DO
MyR) #'+1<i<t, R t#+1<i<t.

Then one has:

n m n m , !
o IHl‘ o H — IHI’ ®HH‘ 1<:1<t
Rln , H'Z’m , RZn ®|R le tl + 1 S ’ S t.
(e=1)
B { positive-definite H-symmetric form (n; =1) 1 <1<t
| R-symplectic form (n; = —1) t+1<1<t,
(3.39) Gg = SU,(H) x -+ x SUL,(H) x Spa(R) x -+ x Spa(R).
t’X(!;'r:l.p(Ntt (t—t‘);r(lll),,
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B { H-symplectic form (n; = 1) 1<i<t,
positive-definite R-symmetric form (n; = =1) t' +1<i<t¢,
(3.40) Gr = SU,(H)™ x -+ x SU,(H)™ X SO2n(R) x -+ x SO4,(R).

~ ~

tUx (1), (t—=t')xcompact

(C) (e = £1). Fl is a purely imaginary quadratic extension of Ff, sot = z[Fl 2 Q.
We set [D : Fy] = r?, rank;V = n, and rank)U = m. Then one has:

F>pll~¢c, D™ =M, (C),
v xcrr, y=cmr, WTC™T e C
We may assume that fort',0 <t' <t,
B { C-symplectic form with the signature (p;,¢qi) 1< i<t (pi > qi),
positive-definite C-hermitian form t'+1<:<¢,

tl

(3.41) G =[] sz;f(p,, gi,C) X SUnr(C) X -+ X SUpy(C).

i=1 N

(“p T (t—t')xcompact

(3.42) Proposition. A Q-algebraic group GQ = Ry, @(SU(V,h)) in (3.37) is Zariski
connected. Assume that Gr is non-compact, i.e., dim D > 1. Then Gg is Q-simple except
for the case (R2,-1), n = 2.

PROOF: See [S1], Appendix, §1.

§4. VANISHING THEOREM AND THE CASE rkgGg > 2.

Let G be a connected semi-simple real Lie group with finite center of hermitian type, K a
maximal compact subgroup of G, so that a quotient space D = G/K becomes a hermitian
symmetric bounded domain. Let I' a discrete subgroup of G of a finite covolume with
respect to the Haar measure. If T is torsion-free, the quotient space M = I'\D becomes a
smooth quasi-projective variety. For a finite dimensional complex representation p: G —
GL(W¢), we denote by W the assocaited local system on M = I'\D. Let L. (M We)
be as in (2.9), and H. )(M W¢) the L?-cohomology group for it. Let L‘(I’\D) denote
the set of C*° square- mtegrable function on I'\D, and view it as a unitary G-module under
the right translation. Since it is a (g, K)-module, we may consider the relative Lie algebra
complex C*(g, K; L*(T\G)>* ® W¢), whose cohomology yields the relative Lie algebra
cohomology (cf. [B-W]).

First, we recall the following
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(4.1) Theorem. ([B], [B-C]). There exists a quasi-isomorphism
C* (8, K; LE(T\G)*™ © We) —» Liyy (M, W)™
In particular, we have isomorphisms
Ext, 1(W*, L*(T\G)™®) = H,,(T\D, W).

Write L,(I'\G)* as the direct sum of the discrete spectrum L,(I'\G)$® and its orthog-
onal complement, the so-called continuous spectrum Ly(T\G)S.
The following theorem is a special case of results in [B-C].

(4.2) Theorem. (see [B-CJ, Prop. 4.4 and Th. 4.5) Under the assumption as above, we
have the following.
(i) H, (M, W) is finite dimensional®, _
(i1) there exists a finite set (H;), (1 € S) of mutually orthogonal closed irreducible G-
invariant subspaces of L*(T\G)4 such that

(4.3)  Hiy(M,We) = Baty 1o(We, LHT\G)Y) = @iesExt g, k) (WE, Hi),

(4.4) Definition. Let G be as above. We say that G has no compact factor if it has no

infinite normal compact subgroup. A discrete subgroup I' of G is said to be irreducible if the - -

image of I' under any surjective morphism G — G’ with non-trival image and non-compact
kernel is non-discrete.

We can prove the following vanishing theorem of L?-cohomology group.

(4.5) Theorem. Let G be as above. Assume that G has no compact factor and I is an
irreducible discrete subgroup of G with a finite covolume. If (p, Wg) is a non-trivial finite
complex representation of G, we have

(Z)(I‘\D We¢)=0 for ¢q<rkgG.

where rkg G denote the R-rank of G.

PROOF: If T is cocompact, then this is nothing but Proposition 6.4 in Ch. VII of Borel-
Wallach [B-W]. Thanks to (4.3), their proof works even if I'\G is not compact.

(4.6) Vanishing theorem.

Now we apply this theorem for standard @-primary symplectic representations. Let
(Waq, pg, Ag, I) be a standard @-symplectic represenation, D, Fl,V U,h,h' asin (3.17),
and Gg = Ry, /q(SU(V, h)).

10Of course, this also follows from the Zucker conjecture (2.11)
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We take a lattice Vz in V (see §1), and set Dz = {m € D|mVz C Vz}. Then Dz becomes
a Z-subalgebra of D such that Dz ®z @ = D, which is called an order of D. Taking a
Dgz-right submodule Uz of U, we set

(4.7) Wz =Uz Qu, Vz.

Then Wz becomes a lattice in Wg. and we may assume that Wy satisfies the condition
(1.7), i.e., Ag(Wz,Wgz) C Z. From definition (1.4) and the above construction, we have
an isomorphism of discrete groups

GW72 = GVE-

Take a torsion-free arithmetic subgroup I' C Gy,
Let Gg = Ry, q@(SU(V,h)) be as above. Then from (3.37) and (3.42), except for the
case (R2, -1), n = 2, we can write

(4.8) Gg=G; x---xG xU,

where G; = SU(V® hr()) is a R-simple non-compact Lie group of hermitian type for
1 <:<land U is a compact group.

(4.9) Proposition. Assume that (V,h) is not in the case (R2,-1), n= 2. For any torsion-
free arithmetic subgroup I' C Gg, let I’ denote the image of I' under the projection
Gr — Gl = Gy x -+~ x Gy (cf. (4.8)). Then T' is an irreducible torsion-free discrete
subgroup with finite covolume.

PROOF: It is easy to see that I'' is a dicrete subgroup in G with finite covolume. Let
pgl) :Gr — G; = SU(V‘“, h(i)) be the representation in (3.35) for 1 < ¢ < I. Then from
the construction we can see that p;- induces an isomorphism I' 2 p;(T'). By a corollary
in No. 4 of [Shz], I is irreducible in G. Since the projection map I' — I'' is injective, I''
is also torsion-free.

Let K be a maximal compact subgroup of Gg = G; X --- X Gy x U, and write K as
K; x -+ x Ky x U, so that the corresponding hermitian symmetric space D = Ggr/K has
a decomposition as
(410) D:D]X"'XD[,

- where D; = G;/K; are irreducible symmetric spaces. We have a natural isomorphism

(4.11) M :=T\D=TI'\D

(4.12) Remark. We have an isomorphism SU,(H)™ = SU(2,C) x SLy(R).

Now we state our main theorem in this section.
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(4.13) Theorem. Let (Wgq, pg, Aqg,I) be a standard Q-primary symplectic representa-
tion, which is not the case (R2, -1), n=2, and (V,h), ' C Gg as above. Asumme that
rkgGgr > 2. Then we have

(4.14) HY(M,Wgq)=0, ¢<1.

Even if rkgGg = 1, we have H'(M, Wg) = 0.

PRrROOF: From (3.17), Wg is a vector space over a field F; = Cent(D). The field F; is a
totally real field, or a CM field (see (3.23)). Set t = [F} : Q]. Let {o; : F; — C}!_, denote
the set of t-distinct embeddings of F into C. For an embedding o; : F} — C, we put

(4.15) W =Wgq ®,.0: C, W7 =Wgq Qp, 0, C.
By the universal coefficient theorem, we have an isomorphism

(4.16) H'(M,Wgq)® . CZH(M W)
Note that W7 is a local system on M associated to a representation
(4.17) (p@)") : G — GL(W™ /C).

induced by pg. From the assumption and (4.9), an arithmetic group I' C GR is irreducible,
so from (2.13), we have isomorphisms

(4.18) H(q.z)(M, W) =2 HY (M, W) for ¢<1.
From (4.16) and (4.18), in order to show (4.14), it suffices to show that

(4.19) H(q.z (M,W?)=0 for ¢<1.

)

Recall that we have an isomorphism Wg = U ®p V (see (3.17)). Set U” :=U @, .4, C,
V7% :=V @ .4, C, and D” := D Qp, 5, C. Choosing an isomorphism D? 2 M,(C), let

ejw denote the matrix unit in D?. Then, as in (3.29) and (3.30), setting Ug) = U"¢€,,

Vé') := €}, V7, we have an isomorphism
(4.20) wei =2 U @e VLY.

Assume that F) is totally real. Then, the representation p; : Gg — SU(V, h) induces a
representation

AL Gy — SUWVY, RY)

which is obtained by a scalar extension of (3.35) from R to C. Hence, from (3.36), pgg can
be written in form

P =18 18 (idyw)c®1:- ®1.
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Write Gg = Gy X -+ X Gy x U as in (4.8) and take ¢ such that 1 < i < I. Then since p( )
is trivial on the compact factor U, it descends to a representation of G[R =Gy XX Gl

Let I be as in (4.9). Then we can apply Theorem (4.5) for G, plc, V(z) I to deduce
that

(4.21) HY, (M, V) =0 for g < rkgGp.
By the assumption that rkg G > 2, one has
H{,\ (M, vy=0 for g<1.
Hence the assertion (4.19) (so (4.14)) follows from this and the following isomorphism.

HE (M, W) 2 UE @c H, (M, V) by (4.20) .

(2)

The proof for the case when Fj is a CM field is similar, so we omit it.

(4.22) Remark. Note that we have the isomorphism SU3(H)™ = SU(3,1, C).

By virture of Silverberg’s criterion (2.7), as a corollary of (4.13), we obtain the following

(4.23) Theorem. The Mordell-Weil group MW (X /M) of a Kuga fiber space f : X —
M associated to a standard Q-primary symplectic representation is finite whenever rkg Gg >
2.

§5 R-RANK 1 AND T COCOMPACT.

(5.1) In this section, we shall deal with the cases where the R-rank of Gg is 1 and T is
cocompact. For techinical reasons, we exclude the case (R2, -1), n =2.

From the Satake’s classification (¢f. Theorem (3.37)), the cases where Gg has the R-rank
1 are listed as follows:

(5.2)
Case (R2, -1), n = 3 Gg = SUs(H)™ x SO6(R) x - - - x SOg(R),

possil?&:{]}
(5.3) Case (C) Gr = SU(nr—1,1) x SU,(C) x --- x SU,,(C).

possibly={1}

and
(5.4) dim D = 1.

In the above case, we can no more expect the vanishing of the H!(M, W¢) in general,

though we have the vanishing of H'(M, W¢) (see (4.13)). In fact, in the case (5.3) when
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r =1andt > 2, there is an arithmetic subgroup I' C G, such that H!(M, W¢) # 0 (See
Ch. VIII, §5, [B-W]). Hence we should consider the Hodge decomposition of H! (M, W¢),
and appeal to Theorem (2.31). In this section, we always assume that I'\D is compact.
Note that I'\D is compact whenever Gg has a compact factor.

(5.5) Let (Wgq, pg, Ag, I) be a standard Q-primary symplectic representaion, Wz C Wy
a lattice, I C Gy, C Gg a torsion free arithmetic subgroup. Let (Wgz, A, F') denote the
corresponding VPHS over the smooth manifold I'\D (see (1.10)). The main result in this

section is the following

(5.6) Theorem. Under the notation as above, we have
(5.7) H' (M, Wgqg)''=0
in the cases (5.2), (5.3), and (5.4).

As a corollary of this theorem, we have the following

(5.8) Corollary. The Mordell-Weil groups of the Kuga fiber spaces associated to a stan-
dard Q-primary symplectic representation is finite when rkgGg = 1 and I'\D is compact.

PROOF: Since we always have H'(M,W¢) = 0, by (2.31), Theorem (5.6) implies the

assertion.
(5.9) A reduction.

- We keep the notation in (5.5). Let F}, D be as in (3.17). Denote by {oy,---,04} the
set of all embeddings F; into C where d = [F} : Q]. Considering Wg as a Fj-vector, we
set W7 = Wg ®#,.0, C and W = Wgq ®¢, 4, C. Then we have the decompositions '

(5.10) We = Wg ®qC =@, W,

(5.11) HY(M,W¢) =L, H (M, W)

Let V: Oy(W¢g) — 2}, ® W¢ denote the Gauss-Manin connection on W¢. From
the horizontality, we have the complex

(5.12) V:F — 0 @Gry!
whose H! is isomorphic to HY(M, W¢ )" (see (2.21)). We have the following

(5.13) Lemma. Assume that the Hodge filtration F' and the Gauss-Manin connection V
on Wc¢ is compatible with the decomposition (5.10). Then if for at least one o; : F} — C

(5.14) CHY(M, W™ =g
we have H'(M,Wgq)?? = 0.

PROOF: From the construction of the Hodge structure in (2.15), under the assumption,
we have the decomposition

H' (M, W) = @p4e=0H}
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such that
H'(M, W) = @, B2,

Let m; : HY(M,Wgq) — H!(M, W?":) be the natural projection map. Then we have

HY (M, Wg)"' = ni_ =7 (HY).

1=1"1

Since the map =; is injective, this implies the assertion.

(5.15) Gauss-Manin complex.

Let (Gg, Hy) be the Q-hermitian pair corresponding to the @-symplectic representation
in (5.5), and K the maximal compact subgroup of Gg corresponding to Hy. We also
denote by gg, & the Lie algebras of Gg and K respectively, and by p the orthogonal
complement of €in gg with respect to the Killing form. Let us set Wét = We (i, Ie), pt =
pe(+£e, adp(Hy)). Then, by the condition (1.2), the spaces Wg and p* are stable under
the action of K, hence they become representations of K.

For any representation T of K, we can define a holomorphic vector bundle, or a locally

free sheaf 7 on M =T'\D as in §2 in [Z2]. In the notation in §1, the representations Wg
(resp. W) defines a Hodge bundle FV (resp. Gr;') and p~ defines the cotangent sheaf
Ql, on M.

We call the natural complex
(5.16) V:F'— Q) eGrF

the (first) Gauss-Manin complez. Then the Gauss-Manin complex in this case is induced
by the following homomorphism of the representations of K:

(5.17) wWe —p @We.
(5.18) Proof of Theorem (5.6) in the case (5.3).
In this case, since F} is a CM field, we can denote by {03, -+ ,04,071, -+ ,0¢} the set

of all embeddings of F} into C such that i pt is an extension of 7; : F1+ — R. Since
1

Gr = [[iz, SUWVWD hD) = SU(nr —1,1,C) x SU,,(C) x -+ x SU,,(C), (VI r)
is a C-vector space with a skew-hermitian form A() such that the signature of ih(1) is
(nr — 1,1). Recalling that the decomposition Wg = @!_ ;W™ = EBf=1U(i) ®¢c VW, we can
write the complex structure I € D(Wg, Ag) as

t
I'=1yw ® In) + ZI(',-) ®1lyw,
=2
for some I(y) € DV MYy = (I),,-,, and I('i) € D(UW, h'(). (See [S1], Ch. IV or
[S2]). If we set
nr—1

nr 41

t
H(',:I(l)-—i lv(;), HU=H(IJ+Z]‘V“)’
1=2

22



we can check that I and Hy satisfy the condition (1.2). The corresponding maximal
compact subgroup K in Gg can be written in the form K = K; x H:=2 SU(V® p))
where K, C Gy := SU(V _ h(1)) is the maximal compact subgroup corresponding to HJ.

Let g, ¢; denote the Lie algebras of Gy, K7, and p the orthogonal complement of &; in
g1. Then we have the decompositions

=t 0p, or = ED P,

and an isomorphism
DV V)~ Gg/K = G, /K.
We have the expression ‘ '
W = U((:I) ®c Vc’)

as in (4.20), and in this case, we have the decomposition

748 Qg C = Vél) ® Vél).
We may assume that the natural projection V(1) — V((:l) becomes a C-linear isomorphism.

Then if we set V¥ = V{(&i, 1)) , we have dim VT = nr — 1, dim V)™ = 1,

and Wit = g) ® Vél)i. From the description as above, the homomorphism (5.17)
of representation of K is compatible with decomposition (5.10) and the (o;)-part of the
homomorphism is given by

went p- @ W
(5.19) 2w eVt — eV

(5.20) Lemma. The homomorphism (5.19) of the representations of K and K; is an
isomorphism.

PROOF: It suffices to show that VélH — P ® Vél)— is an isomorphism of K;-modules.

Since Vé]H and p ® Vél)_ are irreducible representations of K; of dimension nr — 1 and
the homomorphism is not trivial, it must be an isomorphism.?

The following corollary shows Theorem (5.6) for the case (5.3).
(5.21) Corollary. In case (5.3), we have

HI(M, W1 )U,U — 0,
so in particular H'(M, Wg)"? = 0. ‘

PROOF: Let V,, denote the Gauss-Manin connection restricted to W?. Then the corre-
sponding Gauss-Manin complex

Vo, : Fpl — Qu ®Grz!

2Considering the Harish-Chandra embedding (I)yy—1,1 < P;‘:"_l, we can easily see that p~ = Vq(:lH ®
(V((:l)—)w
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is induced by the homomorphism (5.19). Then by (5.20), this V,, becomes an isomor-
phism. Hence we have H}(W?')VY = H!(V, ) = 0. The last assertion follows from this
and Lemma (5.13).

(5.22) Remark. If ¢ > 2 and H'(M,W¢) # 0, we can show that H!(M, W )00 £ @
for : > 2. Therefore from the example with non-vanishing H!(M, W¢) mentioned in (5.1),
we have examples with non-vanishng H! (M, W¢)%Y, but still we have (5.21).

(5.23) Proof of Theorem (5.6) in the case of (5.2).

In this case, F} is a totally real field, and D is a quaternion algebra over F}. We denote by
o; : F| — C the embedding which is the extension of 7;. Since Gg = Hf=1 SU(V®, p)y =
SU3(H) x SOs(R) x - - - x SO4(R), (VM) (1) is a left H-module of rank 3 with a H-skew-
hermitian form A(). Recall that the expression W7t & U((:I)(X)c Vél) asin (4.23). Let us take
a complex structure I;) € D(V), h(M)) 2 (I3 and define Vél)i = Vél)(:tz',I(l)). Then
we have the decomposition Vél) = Vé]H o Vél)_. Setting Hy = (1/2)1(1) + S, 1y, we
obtain the associated maximal compact subgroup K = K; x H:___z SU(VW ) of Gg =
Gy x H:=2 SU(V® h()), Then as in (5.19), we have the homomorphism of representations
of K and Kj:

I/Vn'l,+ SN p— ® W”l’_
(5.24) 2P @ (VI — pm @ V)
In this case, we have the isomorphism SU(3,1,C) 2 SU3(H)~, which is induced as follows.
Let (T, h) be a complex vector space of dimension 4 with a hermitian form h of signature
(3,1), and set G = SU(T,h) = SU(3,1,C). Let I' € D(T,ih), and set T+ = T(&s:,I').
Note that dim T = 3 and dim T~ = 1. Then the space A*T has a hermitian form A’
induced by h, and the decomposition

ANT=ANTTo(TteT™)
corresponds to an element I" € D(A?T,R'). It is known that D(A*T, k') =& (II); and
the correspondence Tt — A*T* induces an isomorphism (I);, = (II); (cf. 85, IV,
[S1]), which can be lifted to a group isomorphism SU(3,1,C) & SU3(H)~. Thus the

homomorphism VélH — PR Vél)— in (5.24) is isomorphic to
(5.25) AT S TR (TTRT)
as a homomorphism of representation of K; (and K). Since we have an isomorphism
p~ =TT ®(T™)* as K;-modules (cf. (5.20)), the homomorphism (5.25) is isomorphic to
(5.26) AL AT S T RTT.
Hence it is trivial that the homomorphism A? is injective and

coker (A%) = §%(TT).
Let 7 denote the locally free sheaf on M corresponding to the representation Tt. Then,
from (5.24), we have the isomorphism

(5.27) coker V, = Uq(:l) ® SHT).

Now we have the following result which implies Thorem (5.6) in the case (5.2).
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(5.28) Proposition. In the case (5.2), we have
H' (M, W™)"Y = q.
PRrOOF: Since from (5.27)
H'(V,,) = H'(coker (V,,)) 2 U’ ® H'(M, $*(T)),

we only have to show that HY(M, S?(T)) = 0. Let T¢ denote the local system on M
induced by T. Since we have the natural inclusion 7 «— Oy (Tg), we also have the
inclusion

(5.29) HY(M,S*(T)) — H'(M, S*(T¢)).

Then since the right hand side of (5.29) vanishes by Theorem (4.13), we have the assertion.
(5.30) Proof of Theorem (5.6) in the case (5.4).

In this case, we always have Gg = G} x K, x --- x K; where G; & SL,(R) = Sp;(R) &
SU(1,1) and K; are compact. We also have a expression W7 = U((:l) ® Vél) where Vél) is
a complex irreducible representation of SL,(R) and U((:]) is a trivial representation. Then
since M = I'\D is compact, we can apply the result in [Z2] ((5.33), Example) to deduce
that

HY(M, W™ =

Hence, as before, we have the assertion.

§6 R-RANK 1 AND I' NON-COCOMPACT.

(6.1) Let (Wgq, pg, Ag,I) be a standard Q-symmplectic representation, Wz C Wg a Z-

lattice, I'(C Gw, C GRr) a torsion free arithmetic group. In this section, we assume that

rkgGgr = 1 and T C Gg is not cocompact. Again, we will not deal with the case (R2,

-1), n = 2. If dim D = 1, we can deduce the finiteness results from Zucker’s results in

[Z1] (see remark (6.30)). Hence we will assume that dim D > 1 unless we state otherwise.
We only have to consider the following cases:

(6.2) Case (R2, -1), n =3 Gg = SUs(H)~ = SU(3,1,C),

(6.3) Case (C) Gg = SU(nr —1,1,C).

In the above cases, the bounded symmetric domain D ~ Ggr/K is isomorphic to the m-
dimensional unit ball B™ C C™ for some m > 1. Since I' C Gp is a torsion free arithmetic
subgroup of Gg, M = T'\D is a smooth complex manifold with a finite invariant measure,
but, by assumption, is not compact. The Baily-Borel-Satake compactification M* of M
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can be obtained by adding a finite number of cusps {p;} to M. Note that M* is projective.
Moreover, according to Hemperly [He], a resolution of singularities 7 : M — M* is obtained
by the blowing up of the cusps {p;}, and the inverse images D; = 7~ !(p;) are abelian
varieties.

(6.4) Let (Wg, pg, Ag,I) be a standard Q-symplectic representation in the case (6.2) or
(6.3), D,¢, F1,V,U,h,h' be as in (3.17). Let f : X — M denote the Kuga fiber space
associated to the above representation and the lattice Wz in (6.1). Then, as in (2.29), we
have the exact sequence :

(6.5) 0 — Wz — Grz! — O31(X) — 0.

Let us assume that the local monodromy around each D; is unipotent. This is always
possible if one replaces I' with a normal subgroup I'’ of finite index. Then we can extend
the abelian scheme f : X — M to a semi-abelian scheme f : X — M as follows. Let
W := Oy @ We. Then we have the Gauss-Manin connection V : W — Q1 ® W which
is integrable. Let W denote the Deligne canonical extension of W which is a locally free
O4;-module with a logarithmic connection V:W— Qlﬁ(logD)(X)W such that Resp), (V)

is nilpotent (see [D1]). Let j : M — M denote the inclusion. We set:
(6.6) F =i, FPnW.

By the nilpotent orbit theorem [Sc, (4.12)], these are locally free subsheaf of W. Asin [Z3],
we can obtain a semi-abelian scheme f : X — M which is an extension of the original
abelian scheme f and fits into the following sheaf exact sequence

(6.7) 0— 5, Wz — Gr%l — O%’(T) — 0.

(6.8) Proposition. Under the notations and the assumptions as above, the natural re-
striction map (see (2.4))

r: HY(M, 02(X)) — H(M, Op(X)) = MW(X /M) |

is injective and has a finite cokernel.

PROOF: First, I remark that all sections H*(M, 0%41'(?)) is algebraic, so r is well-defined.
The injectivity of r is obvious. To prove r has a finite cokernel, we first remark that we can
costruct the Néron model N(f) : N(X) — M of f : X — M which has the following
properties.

(i) N(f) : N(X) — M is a group scheme over M which is an extension of f.

(ii) Let Y — M be a smooth morphism and ¢ : Y --- — N(X) a rational map over M.
Then ¢ extends to a morphism ¢ : Y — N(X).
. (iii) The semi-abelian scheme X is a connected component of N(X), i.e. X is a subgroup
scheme of N(X) such that for each closed point p € M, X, is the connected component
of N(X), containing the identity.
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Moreover there exists a projective manifold N(X) containing N(X') as a Zariski open
set and a projective morphism N(f) : N(X) — M which is an extension of N(f) such
that N(X) is the maximal open subset of N(X') where N(f) is smooth. The existence of
the above Néron model N(X') and its projective completion is proved as follows. It suffices
to show that the existence of them over a some tubular neighborhood U of an irreducible
component D; of D = Y_:_, D;. For each point p € D;, we can take a neighborhood U,
which is isomprphic to A™ = {(z;) € C"| |z;| < 1} and U, N D; = {2; = 0}. Then the
Néron model of fy, _p, : Xju,-p, — Up — D; = A* X A" can be constructed as in [A].
Since the Néron model has a uniqueness property, such local Néron models can be patched
together and one gets a global Néron model over the tubular neighborhood U of D;.

Now we prove that the finiteness of cokernel of r. Every algebraic section s : M — X

defines a rational map 3: M ... — N(X). Considering locally around D, we can show
that § must actually map to N(X). Then by the property (ii), 3 is a morphism 3: M —
N(X) and so it is a section of N(f). This shows that H'(M, Oy(X)) is isomorphic to
HY(M,O4(N(X))), i.e. the group of sections of N(f): N(X) — M. Then the cokernel
of r is a subgroup of HY(M, N(X)/X), where N(X)/X is a finite group scheme over D.
Since the fiber N(X)/X over each component D; is a finite group, H(D, N(X)/X) is also
a finite group, and this completes the proof.

(6.9) Hodge theory for j, Wc.

Let (Wz,A,F) be the VPHS (see (1.10)) over I'\D of weight -1 associated to the
symmplectic representation as in (6.4). As in (6.1), there exists a projective manifold M
and an inclusion j : M — M such that D = M — M is a union of smooth hypersurfaces
each of which is isomorphic to an abelian variety.

It is known that the cohomology group Hi(M, 5, Wz) has a polarized pure Hodge struc-
ture of weight ¢—1. This fact can be considered as a generalization of Zucker’s results in [Z1]
to the cases of the higher dimensional bases, and was proved by Cattani-Kaplan-Schmid
[C-K-S] and Kashiwara-Kawai [K-K] as follows.

One can see that M admits a complete Kahler metric with Poincaré singularities along
D. In the above case, j, W¢ equals the intersection complex ZC' (M, W¢) of Deligne and
Goresky-MacPherson. Then they showed that IC' (M, W¢) is quasi-isomorphic to the
L?-complex Liy(M, W) with respect to the above Kahler metric on M and the Hodge

metric on W¢.? Therefore we have the isomorphisms
H'(M,j W) = TH'(M,W¢) & H,) (M, Wc).
Each element of L?-cohomology group can be represented by a harmonic form, so by using

the Kahler identity between the Laplacians (cf. [Z1]), we obtain a Hodge decompostion of
the cohomology group. (See also [ShzY].)

(6.10) Mixed Hodge theory.

3 Actually, they proved this result for the more general case where ‘M — M is a divisor with normal crossings.
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We will recall a more explicit description of the Hodge structure on HY(M, j,W¢) in
our case following [ShzY] (cf. [Z1]). In order to see this, we shall introduce the mixed
Hodge structure on H'(M,Wgq).

Since we have H'(M, Wg) = H{(M, Rj.Wg), we have the long exact sequence of
cohomology groups

(6.11)
R . . J— [
— HY(M,j,Wq) —— H'(M,Wgq) —— H"Y(M,R'j,Wq) ——

which comes from the Leray spectral sequence for the inclusion j : M «— M. Then it
is known that H{(M,Wgq) and H'"!(M, R'j,Wgq) has a mixed Hodge structure, which
makes (6.11) an exact sequence of mixed Hodge structures.

There are a weight filtration {W.} on H'(M,Wgq) and the Hodge filtration {F"} on
H'(M,Wg¢) such that for each k, Gr[V(H'(M,Wgq)) with the induced Hodge filtration
F" forms a polarized (pure) Hodge structure. In our case, we have 3-step weight filtration

0=W_1 C Wy C Wy C Wy = H(M, Wg), such that
(6.12) Wo(H (M, Wgq)) = Im{H' (M, j,Wgq) — H' (M, Wgq)},

Gr)V = ker{H'"Y(D, Py) - HtY (M, ;. Wgq)},
Gr) = ker{H' YD, P,) » H*tY(M,;,Wgq)},

where the P/;’s denote the local systems on D which underlies VPHS coming from the limit
Hodge structure along D. (See [ShzY], (3.1.4))."

One can show that there is a quasi-isomorphism Rj. We = Q2-(logD) ® W (cf. [ShzY],
(3.1.1)). Hence we have an isomorphism H'(M,W¢) = H'(M,Q(logD) ® W) . The
Hodge filtration {F'} on the complex K¢ = Q:-(logD) ® W can be defined by

(6.13) FPKg = Qi (logD)@ F' ',

and this induces a Hodge filtration on H*(M, W¢). The spectral sequence induced by this
filtration

(6.14) EY? = H" (M, Gri,Q=—(logD)) = HT9(M,W¢)
degenerates at E.

(6.15) Now we restrict our attention to H!. From (6.11), one has the exact sequence of
the mixed Hodge structures

(6.16)
—_ b
0 —— H'(M,j,Wq) —— H'(M,Wq) —— H'(D,R'j.Wgq) ——
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From (6.13), we have the 3-step Hodge filtration0 = F* C F! ¢ F' C F~! on H'(M,W¢)
whose successive quotients are:

6.17
( ) HY ' =Grl, = F' =H'(0 —» Q (logD) ® F o Q—(IOQD) ® GT— ),
(6.18)
H™ = Grl. = F'/F' =H'(F — Ql;(logD) ® GrZ"),
(6.19)

H™ ' =Grp!' = F7V/F' = H'(Gr}).

(6.20) Proposition. Let us denote by HY(M, 3, W¢)P¢ the (p,q)-component of the pure
Hodge structure of H'(M, j,W¢). Then we have
(i)the isomorphism

HY(M,j.We) ' = HY(M,GrZ'),

(ii) and the inclusion
H'(M,j,We)" — H'(F' - Q1(logD) ® Gr3).

PROOF: These come from (6.18), (6.19) and the fact that (6.16) is an exact sequence of
mixed Hodge structures.

(6.21) Now we have the following proposition which is a generalization of (2.27) (cf.
(10.2) of [Z1)).

(6.22) Proposition. Let f : X — M be a Kuga fiber space as in (6.4) and f : X — M
the extended semi-abelian scheme. Then we have an isomorphism

H'(M, 0i(X)) = H'(M, j,Wy)"*

Here we set HY(M,j,Wz)"" = i~1(H"Y) where i : H(M,j,Wz) — HY(M,;,W¢) is

the natural map.

PROOF: In this case, H'(M, Gr%]) = 0, because H'(M,W¢) = 0 by (2.12) and (4.5).

Therefore, from (6.7), we have the long exact sequence
0 —— H'(M,0u(X)) —— H(M,jsWz) —— H'(M,Gr3).
which implies that
HY(F, O22(F) = ker{p: H'(W, 5. Wz) — H'(M, Grz1)}.

Since H(M, Gr%l) =~ H~11 by (6.20), the map p is coincides with the composite of : and
the projection from H'(M,j,W¢) to its (-1,1)-part. Let us take an element u € ker p.

Since v € HY(M,j,Wz) is real and u has no (-1,1)-component, it has also no (1,-1)-
component. Thus u is of type (0,0), and conversely.
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(6.23) Corollary. Let f: X — M be a Kuga fiber space as in (6.4). The Mordell-Weil
group MW (X /M) is finite if and only if

(6.24 HY(M,;,Wg)"' =0.
Q

PROOF: By Proposition (6.8), we only have to prove that the group H'(M, OEA%‘(T)) is

finite. Since H'(M,j,W7)'*'®Q = H' (M, j,Wg)"", Proposition (6.22) implies that the

condition (6.24) is equivalent to the finiteness of H’(M, O“M"(T))

(6.25) Theorem. Let f : X — M be the Kuga fiber spaces associated to the Q-
symplectic representation of type (6.2) or (6.3). Assume that M = I'\D is not compact.
Then the Mordell-Weil group MW (X /M) is finite.

PROOF: We first remark that we can replace M = I'\D with its finite unramified covering.
So we may assume that local monodromies around the components of D are unipotent.

We first prove the case (6.3). We shall use the notation in (5.18). In this case, F} is a
purely imaginary quadratic field over @, so denote by {0,7} the embedding of Fj into C.
We have the decomposition

We =W @W?

where we put W7 := Wg Q, o C. We also have the expression
W =Ue Q¢ V¢

where Vg is an nr-dimensional C-vector space which has a C-symplectic form hg such that
the signature of \/—1h¢ is (nr — 1,1). As in (5.18), a complex structure I € D defines a
decomposition Vg = Vg ® V¢ where dim Vg =nr — 1 and dim Vg = 1. And setting
Wot = Ue ® Vg, we have the homomorphism of K-module

"VU’+ - p— ® WU"—
(6.26) =Uc@Vdg —r @Vl

which induces the o-part of the first Gauss-Manin complex on M
(6.27) Vo : Fo — Qiy ® Grzl,

where we set F? = Op(WE) N FP. From Lemma (5.20), the homomorphism (6.26) is an
isomorphism of K-modules and so the sheaf homomorphism (6.27) is also an isomorphism.
Now let us write D = Gg/K. Since K is compact, W% p~ and W2~ admit Gg-invariant
Hermitian metrics, which induce Hermitian metrics on the locally free sheaves Fo, Qj,
and Gr;: respectively. Note that on FU and G'r;: these metric are constant multiple of
the metric induced by the original polarization A. Let E be a any locally free sheaf on
M = T'\D induced by a K-representation with an above hermitian metric h. In [Mum],
Mumford showed that such a E admits a canonical extension E to a smooth toroidal

compactification M in (6.1) such that & is a singular Hermitian metric good on M. (For
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the definition of goodness of a singular Hermitian metric, see [Mum)] §1.) One can see that

such canonical extensions of F? and Gr;: coincides with ?g and Gr%l defined in (6.4),

that is, those induced from the Deligne’s canonical extension. (For the proof of this fact,
see [H], Theorem 4.2.) Moreover, the canonical extension of 2}, in the sense of Mumford
is ), (log D). Therefore, by uniqueness of canonical extensions, the isomorphism (6.27) is
extended to the isomorphism

—_— —0 _
(6.28) Vo : Fy — Q3:(logD) ® Gr?z,

over M. Then by (ii), Proposition (6.22), we have H!(M, j,WZ)%® = 0. From this, by
the same argument as in Lemma (5.13), we deduce the vanishing condition (6.24), which
implies the finiteness of the Mordell-Weil group.

Next we will deal with the case (6.2). In this case, F} = Q and Gg = SU;(H)~™
SU(3,1,C). We use the same notation as in (5.23). By the same reason as in the case
(6.3), we only have to show that H!(M,V) = 0 where V is the canonical extension of
the Gauss-Manin complex. Over M, we have the isomorphism (5.27), so again by the
uniqueness of the canonical extension, we have the isomorphism

(6.29) coker V = Ue @ S*(T)

where 7 is the canonical extension of the sheaf T (see (5.23)) to M. As in proof of
Proposition (5.28), we only have to show that H%(M, S?(T)) = 0. As in (5.29), we have

the inclusion o o . L

H(M, S*(T)) — H(M, $*(T¢))
where T¢ is the canonical extension of T¢. We have the isomorphism H(M, $%(T¢)) =
H%(M,S*(T¢)) (see (3.1.1), [ShzY]), and by (4.13) H%(M, S?(T¢)) = 0. So we have the
desired assertion.
(6.30) Remark. If dim D =1 and M = TI'\D is not compact, the finiteness follows from

the result in [Z1]. Let f: X — M be a Kuga fiber space and f X — M the semi-
abelian scheme in (6.4). By (6.8), we only have to prove that HO(M,O%(X)) is finite.

Then by (6.22) (cf. Corollary (10.2) in [Z1]), we have H'(M, 0%%(X)) = H'(M, j.Wz)*".
Then Lemma (12.4) in [Z1] says that H'(M,j,W¢)%? = 0, and hence the Mordell-Weil

group is finite.
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