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ABSTRACT. This paper invents the notion of torified varieties: A torification of a scheme
is a decomposition of the scheme into split tori. A torified variety is a reduced scheme
of finite type overZ that admits a torification. Toric varieties, split Chevalley schemes
and flag varieties are examples of this type of scheme. Given a torified variety whose
torification is compatible with an affine open covering, we construct a gadget in the sense
of Connes-Consani and an object in the sense oféSand show that both are varieties over

F; in the corresponding notion. Since toric varieties and split Chevalley schemes satisfy
the compatibility condition, we shed new light on all examples of varieties Byén the
literature so far. Furthermore, we compare Connes-Consani’s geometr§,sSgpdmetry

and Deitmar’'s geometry, and we discuss to what extent Chevalley groups can be realized
as group objects ovét; in the given categories.
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INTRODUCTION

A study seminar o'y, which was held at the Max Planck Institute for Mathematics
in Bonn in fall 2008, led to several discussions about the possibilities and limitations of
the various notions of geometries over that were produced in recent years. This paper
subsumes the most relevant thoughts of those discussions. It was possible to establish
a good part of varieties ovéf; in the notion of Sow#, which was further developed by
Connes and Consani. While the philosopher’s stone regaftlirgeometries is not found
yet, there will be many examples and remarks disclosing problems of the recent theories
and hinting at directions one might try to go.

The idea of constructing objects over a “field with one element” goes back to Tits in
[22], where the question about the interpretation of Weyl groups as “Chevalley groups
overF," is posed. In recent years, a number of papers ([17], [21], [4], [5], [6], [2], [3],
[18], [19], ...) on the topic have appeared, dealing mostly with the problem of defining a
suitable notion of algebraic geometry over such an elusive object. Several non equivalent
approaches have been tried, for instance Durov (cf. [8]) and Shai-Haran (cf. [20]) enlarged
the category of schemes to yield the spectruniofin place ofSpecZ as final object,
Deitmar mimicked scheme theory using monoids (i.e. commutative semi-groups)with
in the place of commutative rings (cf. [4, 5, 6]), and Soptoposed in [21] that varieties
overF; should be functors that admit a base extensidi.to

SouE gives a precise realization by considering functors from the category of flat rings
of finite type overZ to the category of finite sets together with an evaluation, i.e. a natural
transformation from this functor to the functor of homomorphisms from a fixed complex
algebra to the complexification of the given ring. Soshowed that smooth toric varieties
admit a model oveff; in his notion. This approach was further developed by Connes
and Consani in [3] by exchanging flat finite rings by finite abelian groups and doing some
further refinements. They mention that S®slmethod of establishing smooth toric vari-
eties overlf; still works and they demonstrate this in the case of the multiplicative group
scheme, affine space and projective space. However, their focus is on Chevalley schemes.
To be precise, Connes and Consani establish split Chevalley schemes as variefigs.over

In the present work, we generalize methods to show that all reduced schemes of finite
type overZ that admit a decomposition by algebraic tori, dubbarfied varieties have
a model overF; in both Soué’s and Connes-Consani’s notion—provided they admit an
open affine cover compatible with the decomposition. This class of schemes includes toric
varieties and split Chevalley schemes, which covers all examples in the literature so far.
Grassmannians and flag varieties are torified varieties as well, but in general, they lack
the extra condition of having a compatible atlas, which is necessary to define the base
extension tdZ in the given notions. However, the class of torified varieties could be a
leading example for the development of new notions of geometriesiyver

Furthermore, we connect Deitmar’s viewpoint ([4]) with the previous. Namely, we
construct an embedding of Deitmar’s category of schemes Byehat base extend to
integral schemes of finite type ové&rinto the category of varieties ovédt;. We also
compare the two notions of varieties oy, which seem to produce similar theories
except for one remarkable difference: Chevalley groups are more likely to be a variety
over F; after Soué than they are after Connes-Consani (see Remark 6.1.2). We show,
however, thafl(2) cannot be established as a group object in either notion.

The paper is organized as follows. In section 1, we introduce the notitmmifi€ation
of a schemeX as a finite family of immersion§y; : T; — X} such that every; is a
split torus overZ and every geometric point of factorizes through exactly one of such
immersions. We consider schemes with torification together with morphisms that respect
the torifications, calledorified morphisms We describe the zeta function of a torified
variety overlF; and provide a list of examples of torified varieties.
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In section 2, we recall the notion of Connes-Consani’s gadgets and varietieEqver
and show how to associate a gadge¢X, T') to every torified varietyX endowed with a
torificationT. We prove in Theorem 2.10 that this gadget is actually a variety providing
anF,-model for X whenever the torification is compatible with an affine open cover. In
particular, this result extends the one by Connes and Consani by realizing split Chevalley
schemes oveF; (and not only oveif;2).

In section 3, we recall Soé’s approach t&; geometry. We show in Theorem 3.11 that
the previous result (Theorem 2.10), mutatis mutandis, also holds in this case.

In section 4, we recall the notion of Deitmar’s schemes @erand refine the equiva-
lence between the category of toric varieties and the category of schemé? dkat base
extend to connected integral schemes of finite type @ver

In section 5, we compare the three aforementioned notions of geometries over the field
with one element by establishing functors between them. Deitmar’s theory can be embed-
ded into both the theory of Sauhnd the theory of Connes and Consani. There are further
several ways to go from Connes-Consani's world to 8sulorld and back, but it is not
clear if they compare one-to-one as we discuss in section 5.3. We summarize these results
in the diagram of Theorem 5.10.

We conclude the paper with remarks showing the boundaries oESauid Connes-
Consani’'s geometries, mainly the impossibility of obtaining the group operation of Cheval-
ley schemes as a morphism ov&r. Further we recollect some thoughts that might even-
tually lead to new approacheslfe geometries in future works.

Acknowledgments: The authors would like to thank all people that participated in the
IF, study seminar and attended the various discussions, in particular Peter Arndt, Pierre-
Emmanuel Chaput, Bram Mesland an@#&ric Paugam for providing interesting lectures
at the seminar and participating on stimulating discussions. We also thank the Max-Planck
Institut fur Mathematik in Bonn for support and hospitality and for providing excellent
working conditions.

1. TORIFIED VARIETIES

1.1. The category of torified schemes.n this section, we will establish the definition of
torified schemes and show some basic propertieX. &hd.S are schemes ovet, we will
denote byX (S) := Hom(S, X) the set ofS—points of X. The underlying topological
space ofX will be denoted byX*°P, its structure sheaf b§)x, and the stalk at a point
x € Xtop byOXJ;.

Definition 1.1. Given a schem&, adecompositiorof X consists of a familf{y; : Y; —

X }ier of immersions of nonempty schemEsinto X such that for every geometric point
p = Spec2 — X there exists a uniqué € I and a unique map — Y; factorizing
p — X, i.e. making the following diagram commutative:

p X.

~
\&
Pi
Yi

In other words, for every algebraically closed fiéldhe map[ [ »:(Q) : [[Y:(Q) —
X (Q) is a bijection. If this is the case, we will write for sha¥t = [[Y;. This property
implies the following result:

Lemma 1.2. Let X = [[Y; be a decomposition of the schetkie and letS be a scheme
overZ; then the mag [ Y;(S) — X(9S) is injective. Moreover, iS5 = Spec k for a field
k, itis a bijection.

Proof. The result is immediate if is the empty scheme, so we will assume tKais
nonempty. Let); : S — Y; andy, : S — Y; be twoS—points such thap; o; = ¢;01);,
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i.e. the diagram

/\
\/f

commutes. If we consider a geometric pqmiz Spec Q) — S of S, which exists sinc&
is nonempty, we have a commutative diagram

—

p:—>5

~

7

/\v

\

/
—->Y

where the dashed arrows are defined by composition. Thus, we found factorizations through

Y; andY; of the morphisnp — X; by the universal property of a decomposition we obtain

that these factorizations must be equal, and héneej. So, topologically we have that

the mapsp.? o 91" andy!”” o 14" coincide, and since; is an immersion foi = 1,2,

we havey i = P,
On the algebralc side, we have two equal morphisms of sheaves:

oF v
@) Oy, ———= Og,
vy
Where<pf’£ is surjective, and thug]” = #. Henceforth), = 1, Which proves the

desired injectivity.

Assume now tha$' = Spec k for some fieldk, and let2 some algebraically closed field
containingk, then we have a magp= Spec ) — ¢ = Spec k. Consider a poing — X
of X (k). By the decomposition property we obtain the commutative diagram

Ve
~
Y; \X.

As topological space!°P andq’°? are homeomorphic, since they both consist of a single
point, so the above diagram factorizes, at the topological level, through a‘fiap: Yf"p .
On the algebraic level, we get the corresponding diagram

0 K Ox.x Oviy 0,

wherez andy stand, respectively, for the images @f? = ¢'°? in X andY;; and K
denotes the kernel of the map of the corresponding s@ks — Oy, ,

Now, sinceOy, , = Ox ,/K, the mapOy, , — € factorizes throughﬁ: if and only if
the composed maff’ — k is identically zero. Since the mag — 2 coincides with the
compositionk — Ox, — Oy,, — Q and the magk — Q is injective, also the map
K — k must be equal to zero, and th@ls,, , —  factorizes througtk:

Q\
\\\OY

This gives us the desired elemenfihY;(k), proving surjectivity wherk is a field. O

OX,a:

Corollary 1.3. If X =], .,Y; is a scheme of finite type ovér then the sef is finite.

el
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Proof. Let k be any finite field, then we have

#(D) < # (H m—(k)) — #(X (k) < . O

i€l

If X =]J,.,Y:is adecomposition ak’, we will consider the subset
I° .= {i € I| ¢; is an open immersidn
Lemma 1.4. Let X = [],.,;Y;. The following properties hold true:
(1) The mad [, ¥;"*” — X' is a continuous bijection.
(2) The cardinality off° coincides with the number of irreducible componentXof

Proof.

(1): This follows from the universal property of the decomposition, taking into account
that every point ofX*°? is the image of some geometric pofijiec 2 — X.

(2): Open immersions are in one to one correspondence with the generic poXitsof

the result follows from (1). O

Definition 1.5. A schemeX is torified if it has a decompositioX = HieITi’ where for
eachi € I we haveT; isomorphic toG?: (as algebraic groups) fat; € N. In this case we
will say thatT = {¢; : T; — X} is atorification of X. A torified varietyis a torified

scheme that is reduced and of finite type o¥erA torification X = [],_,7; is affine
if there is an affine open covéil/;} of X such that for eacli there is a subset; C I

satisfying thatU; = [, T:.

We will denote by( X, T') the schemé& with a fixed torificationl” when needed, though
often we will denotg X, T') simply by X when there is no risk of confusion.

Definition 1.6. A torified morphism® : (X,T) — (Y, .5) between torified scheme$
andY with torificationsT = {T; Z, Xtier andS = {S; Z Y'}ies, respectively, is a
triple ® = (p, @, {¢i }icr) Where

e ¢ : X — Y is amorphism of schemes,

e ¢: 1 — Jisasetmap, and

e ¢; : T; — Sz;) are morphisms of algebraic groups such that fori al I the

diagram
X——sy
ﬂ'T T%(i)
T; ——— S5
commutes.

Thecategory of torified schemesnsists of torified schemes together with torified mor-
phisms. The categories of torified varieties and affinely torified varieties are defined as full
subcategories of the category of torified schemes.

Lemma 1.7. Let X, Y be torified schemes ovér, then the cartesian product x Y is
also torified.

Proof. If X = [[,.,T; andY = [, ,S; are torifications ofX andY’, then we have that

X xY =Tl jyerxsTi x S; is a torification ofX x Y. 0

el
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Lemmal.8.If X = HieIXi is a decomposition aX into torified schemeX;, thenX is
also torified.

o

Proof. If for each X; we haveX; = [[;c,T;, then][;c[; ,T; is a torification of
Ji iel Ji
X. a

1.2. Zeta functions overF;. One expects a certain zeta functign of a geometric object
X overF, that actually does not depend on the particular geometry, but is the ¢ligoies
to 17 of the zeta functions of the base extensiotis = X ®@r, F,. We recall the precise
notion of a zeta function ovef; and calculate it in the case that ®p, Z is a torified
variety.

Assume that there is a polynomidl(T) € Z[T] such thatN (¢) = # Xk, (F,) when-
everq is a prime power. This polynomial is called theunting function of X. Using the
formal power series

Z(q,T) := exp ZN(q’")TT/T ,

r>1
we define theeta function of X as

Cx(s) := lim 7Z(q,q_s)

We have the following result.
Theorem 1.9(Souk). The functiorx (s) is a rational function with integral coefficients.

Moreover, ifN(z) = ag + a1z + - - - + aqz?, then we have
d

Cx(s) =[] (s = i)™

1=0

Proposition 1.10. Let X = [[7; be a torified variety. Puf) := {i € I| dimT; = 1}
andd; := #I. ThenX has a counting function, which is given by
dim X

N(g)= > dlg—1) ez,
=0

In particular, the numbers; are independent from the chosen torificatiomof

Proof. The form of the counting function follows frogG., (F,) = (¢ — 1)! and from
Lemma 1.2. The independence of thdrom the torification can be seen as follows. Let
T and S be two torifications ofX, and denote byNr(q) and Ns(q) the corresponding
counting functions. For every finite fielgl, we have

Nr() = # ([TT(E,)) = # (X(E,) = # ([ Si(F.) = Ns(a).

soNr(q) andNg(g) coincide in an infinite number of values, and henceforth they must be
equal as polynomials. O

With this, we can calculate the zeta function for a malledf a torified variety oveff, .
Let the numbers; be defined as in the proposition. Then

dim X dim X /dim X k
Ng = S s = 3 ( S (-1 (l)> sid
=0 =0 k=l
from where we can compute the zeta function of a torified variety by applying Theorem
1.9. Itis possible to recover all examples of zeta functions in [15] by this method since all
these examples concern torified varieties as explained in the following example section.
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1.3. Examples of torified varieties.
1.3.1. Tori and the multiplicative grouplf X = G¢

¢, is a product of multiplicative groups,
it admits the obvious torification given by the identity nag, — X.

1.3.2. The affine spaces™. The affine line admits a torificatioh! = G, 1IG!,, obtained
by choosing any point as the image®§, and identifying its complement witf'., .

By applying Lemma 1.7, and taking into account thdt x G$, = G!.+* we obtain a
torification of the affine spaces by

n

A”—G?anG}nHmH(d

>G,‘flﬂ-~HG"m,

where byrG%, we mean that we getdifferent copies of the torug¢, .
1.3.3. Toric varieties. As a general reference for toric varieties consider [10] or [16]. We
introduce the notation for toric varieties that is frequently used in this paperALst a
fan, i.e. a family of cones ordered by inclusion such that the faces of a caheaie in

A and such that the intersection of two coneg\iris a face of each of the cones (cones
are always assumed to be embeddetkinand to be strictly convex and rational). To a
coner C R™ of A, we associate the semi-grodp = 7V N (Z2")", wherer¥ C (R™)" is

the dual cone of and(Z")V is the dual lattice t&™ in the standard basis &". We put

U, = SpecZ[A,]. AninclusionT C 7’ defines an inclusion of semi-groupgs C A-

and an open immersion of scheniés — U... Then the toric varietyX associated ta\

is the direct limit of the family{U.},cA relative to the immersion&,. — U... In the
following, we will always consider toric varietie¥ together with a fixed far\.

A morphismA — A’ of fans of toric varietiesX and X', respectively, is mag be-
tween ordered sets together with a direct system of semi-group morphisms — z/?(r)
(with respect to inclusion of cones) whose dual morphisms restrigl' to A,/;(T) — A,
wherer ranges through\. Taking the direct limit over the system of scheme morphisms
SpecZ[yY] : U, — U&(T) yields a morphism) : X — X’ between toric varieties. A
triple (w,gz?, {1, }) like this is called a toric morphism. Theategory of toric varieties
consists of toric varieties ové together with toric morphisms.

Let X be a toric variety with fam\. Let AX be the group of invertible elements df.,
then the algebra morphism

ZIA;] — Z[AT]

a ifae A,
@770 ifae A\ AX

defines an immersion of the torfis = Spec Z[A)] into U, C X, and we obtain the well-
known decomposition oX into tori T’ (cf. [7, §4, Prop. 2], [10§3.1] or [16, Proposition
2,2,14)), that in our formulation reads as follows:

Proposition 1.11. The familyTa = {T- — X },ca is a torification ofX.

Given a toric morphisnii, i, {1+ }) : (X,A) — (X’,A’), we obtain a torified mor-
phism(p, ¢, {p,}) : (X,Ta) — (X', Ta) as follows:
e = 1/~) X — X/,
e o=1:A—= A,
e sincethemap. : Aq/;(T) — A, preserves units, it restrictsto a mag(T) — AX,
and therefore it induces a homomorphism of tpfi := SpecZ[y,] : T, —
Tj(ry = To(n)-
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Remark 1.12. The triple(¢, ¢, {¢,}) : (X,Ta) — (X', Ta/) is indeed a torified mor-
phism: the diagram

X —2 - x

Ty —= Ts(r)

commutes because

X X'
Ur Up(r)

Spec Z[y)+]

does.

Since{U, } is an affine open cover that is compatible with the torification that we have
constructed, we have the following result.

Proposition 1.13. The torifications associated to toric varieties are affine.

1.3.4. Grassmannians and their Schubert varieti€ar a couple of positive integefs<
k < n, theGrassmann varietyGr(k,n) = Gri(A"™) is defined as the variety éf-planes
in the affine spac&™ (cf. [12, Chapter 14]).

The Grassmann varieties admit a nice decompositi&chubert cellcf. [13, Chapter
1.85] and [12, Chapter 146]) indexed by the set of multi-indices

Ik,n = {;’:(il,ig,...,ik)ﬂgil<i2<--~<ik§n},

partially ordered by(iy,is,...,i) < (j1,J2,-..,J%) if and only if 4, < j; for ! =
1,...,k. To each element of I, ,, we can associate thechubert varietyX; and the
Schubert cellC;. The Schubert varieties give a stratification of the Grassmannian, with
X; C X;ifandonlyifi < j, we haveGr(k,n) = X, ,, wherei,, = (n —k+1,...,n).
Moreover, we have the following result (see [13, Chapt&b]ifor details):

Theorem 1.14(Schubert decompositionEach Schubert cell’; is an affine space of di-
mensiondim C; = Zle(it — t), and we have the cell decomposition

X; = stgci'

As an immediate consequence, applying Lemma 1.8 and the previous example, we ob-
tain a torification for all Schubert varieties, and in particular for the Grassmann varieties.

Example 1.15. Let us illustrate this example in the particular case of the Grassmannian
Gr(2,4). This example is of particular interest in connection with the open problem of
realizingGr(2,4) as a variety oveF;, which was posed by Saaiin [21, section 5.4]. For

the setl, 4 we get, with its partial ordering

(1,4)
_— T~
1274 = (1a2)4>(173) (254)4>(3a4)
\ /
(2,3)
generating the corresponding Schubert cells

0 1 2 3 4
Cip=2 A", Ci3=2 A, C1a=2Ch3 =A%, Coy 2A°, Cg4 = A7,
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that lead to the torification

GI‘(2, 4) = 0172 II 0173 11 01,4 II 0273 II 0274 II 0374 =
= ACITA'II2A2ITASITA® =
= 6G° I112G} 1T 11G3, 115G 11 GY,.

m

It is worth noting that the above torification mot compatible with the usual affine open
cover ofGr(2, 4), since thel—dimensional torus has a proper intersection with at least one
of the affine hyper-surfaces covering the Grassmannian. This shows that in general we
cannot expect the Grassmann varieties to be affinely torified.

1.3.5. Flag varieties. Let V' be a linear bundle (over a point) of rank For eachn—tuple
(di,...,dn) of positive integers, withl; + --- + d,,, = n, aflag of type (d1,...,d)
consists of an increasing sequence of linear sub-bundles

o=VycWVrcVoC---CVp,

such thatk(V;/V;_1) = d; forall j = 1,...,m. The setX(d,...,d,,) of all flags
of type (dy,...,d,) is a scheme, known as tlikag variety of type (di,...,d,,). For
instance, the flag varietY (d, n — d) coincides with the Grassmanni&h(d, n).

As in the case of the Grassmann varieties, flag varieties admit a decomposition in
Schubert cells, though their description is in general more complicated. The underlying
idea to this approach is the realization of the flag vari&t,,...,d,,) as the quo-
tient GL,,/P(dy,...,dy,), whereP = P(dy,...,d,) is the standard parabolic sub-
group of G L,, consisting of block upper-triangular invertible matrices with blocks of sizes
di,...,d,. The Schubert cells and varieties are then parametrized by the coset space
Sn/(Sa, X Sa, X --+ x Sq, ) = W/Wp. Each right coset moduld’» contains a unique

m

representativev such that we have
w(l) <w(2) < - <w(dy),
’(U(d1+1) <w(d1+2) < - <w(d1+d2)

w(di 4+ +dn1+1) < <wldi 4+ +dn).

This defines the se of minimal representatives diV/Wp. The Schubert cells in
GL, /P are the orbits”,,p := (BwP)/P, whereB denotes again the Borel group con-
sisting of all the upper triangular matrices, and the Schubert varidijgs are defined
as the closures of the Schubert cells. A detailed description of this decomposition can be
found in [11, Section 10.2].

Exactly as it happened with the Grassmannians, Lemma 1.8 applied to the Schubert cell
decomposition provides a torification of the flag varieties and their Schubert subvarieties.

Example 1.16(Complete flag varieties)Consider the flag variet\ = X (1,...,1), that
can be identified with the quotiedL,,/B. In this caseP(1,...,1) = B the group of
upper-triangular matrices, and we hale = {e} the trivial group, and thus Schubert cells
are parametrized by elements of the Weyl gréiip= S,,. Associated to each permutation
w € S, we construct the complete flag

F,:=0cC <€w(1)> c---C <ew(1),...,ew(k)> (@G

Schubert cells are given by,, = BF,,, we can explicitly compute the dimension as
dim C,, = I(w), the length of the permutatian, and we have the decomposition

o

X(,...,1) = Hwes Alw)
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that we can turn into a torification in the same way we did for the Grassmagii@n4).
As it happened for the Grassmann varieties, in general it is not clear whether the above
torification is affine.

1.3.6. Chevalley schemed\e establish an affine torification for split Chevalley schemes.
As general reference, see [9, Expose XXI and XXII] or the survey in [3, Section 4].

Let G be a split Chevalley scheme ov&rwith maximal split torusI’. Let N be the
normalizer ofl" in G andW = N (C)/T'(C) be the Weyl group. LeB be a Borel subgroup
of G that containg” and has unipotent radic&l. Let ® be the set of roots and lét" c ¢
be the set of positive roots correspondingo Let X,. denote the additivé-parameter
subgroup ofG defined byr € ®. Put®,, = {r € ®* | w(r) < 0} and letU,, be the
subgroup ofU that is generated b{X, },cs, . Choose a set of representaties, } wcw
for W in N(Z). We restate the Bruhat decomposition(éfn the language of the present
paper.

Theorem 1.17(Bruhat decomposition)
The family of inclusions of subscherm{é§, n.,,TU — G}.,cw is a decomposition df.

We refer to SGA3 ([9, Expose XXII, Thm. 5.7.4 and Rem. 5.7.5]) for a proof.

Proposition 1.18. Let G be a split Chevalley scheme. Then there exists an affine torifica-
tion S of G.

Proof. Let r be the dimension df’, let s be the dimension of/ and for everyw € W,
let s,, be the dimension of/,,, which equals the cardinality @b,,. Then, as a scheme,
U, TU is isomorphic toA®» x GJ, x A® for everyw € W. Since affine space and
the multiplicative group scheme are torified, Lemma 1.7 impliestihat,, T'U is torified,
and Theorem 1.17 together with Lemma 1.8 implies thad torified. Since> is an affine
scheme( is affinely torified. O

Example 1.19. Let G = SI(2). Let T be the diagonal torusy its normalizer inG and
B the subgroup of upper triangular matrices. ket= (}9) andw = (2 }), then
{e,w} C N(Z) represents the Weyl grodfy’. In the notation of the proof of Theorem
1.18, we have = s = s, = 1 ands,, = 0, and thus we have decompositions

N=G,IG, c G=G,xA’IG,xA = 2G,, II 3G2, 1I G3, .

2. CONNES AND CONSANI'S GEOMETRY

2.1. CC—gadgets and CC-varietiesLet us start this section by recalling some defini-
tions from [3].

Definition 2.1. A (Connes-Consani) gadgetver F; (CC—gadget for short) is a triple
X = (X, X¢,evx) where
e X : F, — Setsis a functor from the category of finite abelian groups to the
category of sets,
e X is a variety overC and
e cvy : X = Hom(SpecC[—], X¢) = X¢(C[-]) is a natural transformation.

We say that a gadgéeX is finite if X (D) is finite for all abelian group®, and that it is
gradedif X = [[,-, X" is a graded functor.

A morphism of CC—gadgets : (X, Xc,evx) — (Y, Y, evy) consists of a pair
(¥, ¢c) where

e ©: X = Y is a natural transformation and
e oc : X¢c — Yg is a morphism ove€
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such that for all finite abelian grougs the diagram

@(D)
X(D) Y(D)
evx(D)\L ieVY(D)
Xc(CD)) ——app— Ye(CID))

commutes.
A morphism of gadgets is animmersionif for every finite abelian grou@ the map
(D) is injective, andpc is an immersion of schemes.

We will say that a CC—gadget is affine, projective, irreducible, et-ceteld; if so.

Definition 2.2. Given a reduced scheni€ of finite type overZ, we define theCC—gadget
G(X) associated toX by G(X) := (X, X¢,evx), where

e X (D) := Hom(SpecZ[D], X) = X (Z[D]) for everyD,

e X¢:= X ®zCand

e evx : X(Z[-]) = Xc(C]-]) is given by extension of scalars.
A morphism of schemeg : X — Y induces a morphism of CC—gadgétsy) : G(X) —
G(Y') defined byG(p) := (¢, ¢c), where

e © = p*isthe pullback byp, i.e. forall f : Spec Z[D] — X we setp(f) := @o f.

o ¢ := ¢ ®z C is the complexification of.
A finite graded CC—gadgeX = (X, X¢,evx) is anaffine variety overF, in the sense
of Connes-Consani if there is a reduced affine schéfpeof finite type overZ and an
immersioni : X — G(X7) such that for all affine reduced scheniésof finite type
over Z and all morphisms of CC—gadgets: X — G(V), there is a unique morphism
¢ : Xy — V of schemes such that the diagram

X —G(Xy)

|
X \\Vg(sa)

g(v)

commutes. IfX = (X, X¢,evx) is a CC—variety ovelF,, we say thafXy is theextension
of scalars ofX to Z, and we writeX;, =: X ®p, Z. By Yoneda’s lemmaXy is unique up
to unique isomorphism.

Note that we have substituted “variety ov&r of the original definition in [3] by “re-
duced scheme of finite type ovE&r. It is however not an issue to abandon the restraint of
reducibility (in accordance with Sagik convention), also cf. Remark 5.8.

If we have a morphism of CC—gadgets= (p,pc) : X — Y, andX andY are
varieties oveif |, then the universal property af yields an immersiony : Y — G(Yz).
Hence, we get a morphisiy- o ¢ : X — G(Yz). By the universal property ok, we
obtain a morphisnpy : Xz — Y of schemes. We will writeoy, =: ¢ ®p, Z, and say that
7 is theextension of scalars op to Z.

We shall restrict in this work to the class of varieties oFewhose functor represents
the counting function of the base extensior¥to

Definition 2.3. An affine varietyX = (X, X¢,evx) overT, is called anaffine CC-
varietyif for every prime powegr; and every abelian group of cardinalityq — 1, we have

#X(D) = #Xz(F).

We transfer Connes and Consani’s definition of a general varietylavéaf. [3, para.
3.4]) to this restricted class.
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Definition 2.4. Let X = (X, X¢,evx) andU = (U, Ug,evy) be finite graded CC-
gadgets oveF,. A graded morphismis a morphism(p, ¢c) : U — X such thatp(D)
restricts to a map)(D) : UY(D) — XW(D) for everyl > 0 and every finite abelian
groupD. A morphism(p,¢c) : U — X of finite graded CC—gadgets is called @pen
immersionif it is a graded immersion such that : Uc — X¢ is an open immersion and
if

p(U(D)) = {z € X(D)| Im(evx(z)) € Uc} .
If such an open immersion is fixed, is called aropen CC—subgadgetf X .

An open affine cover oKX is a family {U; };<; of open affine CC—subgadgets such that
Uier Ui(D) = X (D) and{U; c} is an open affine cover ofc. A CC-varietyis a finite
graded CC—gadget that has an open affine cover by affine CC—varieties.

If U is an open CC—subgadget of a CC—vari&tyhat is a CC—variety itself, we call
anopen CC—subvarietpf X. Let{U;} be the family of all open CC—subvarieties &f
Theextension of scalargor thebase extensionof X from Iy to Z is the direct limit over
the family {U; } relative to all canonical inclusions, and it is denoted®y = X Qp, Z.

Note that the intersection of two open CC—subvarieties of a given CC—vafigtyagain
a CC—subvariety. This implies that the functorXfrepresents the counting function of
Xy. Further, we have a base extensiorZtfor morphisms between CC—varieties. More
precisely, Lemma 3.5 holds, mutatis mutandis, for CC—varieties.

2.2. Affinely torified varieties as CC—varieties. Let (X, T) be a torified variety. We
define a CC—gadget(X,T) := (X, X¢, evx ) overF; consisting of the following data:
e The graded functok = {X ()}, defined by
xO.F, — Sets
D +— H Hom(A4;, D)
il

foreveryl > 0, wherel ) = {i € T' | diim T; = I} andA; := Homgyg-(T;, G,y).
e The complex varietyX¢ := X ®7 C.
e For everyi € I, the evaluation

evy (D) : Hom(4;, D) — Hom(C[A4,],C[D]) C Hom(Spec C[D], X¢).

The following is a well known result in the theory of algebraic groups (cf. [1, section
1.5] or [23, section 1.4]).

Proposition 2.5. Let G = SpecR andT = Spec S be affine algebraic groups. The
coordinate ringsk and S are Hopf algebras, and we have the equality

Homgig—gr (G, T) = Hompops (S, R).

In our particular situation iR = Z[D] and.S = Z[A] are group rings for some abelian
groupsA and D, with Hopf algebra structure given as above, since group-like elements in
the Hopf algebr&|[A] are precisely the elements df we have

HomHOPf (Z[A]a Z[D]) = Hom(A, D)a
and we obtain the following consequence:

Corollary 2.6. Let A be a free abelian group of rank Z[A] its group ring with the usual
Hopf algebra structure, an@ = Spec Z[A] the torus ofA. Then the homomorphism

A — Homgg—gr (T, Gp)

mappinga € A to the morphisny,, : T — G,, = Spec Z[t,t~!] defined by (t) = a,
is an isomorphism of algebraic groups.
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Using this, the CC—gadgeX( X, T') := (X, X¢,evx) can also be defined in an equiva-
lent way by
o X(D):=[1,c; Homgyy— (G, T;), whereG = Spec Z[ D],
o Xc:=X®yC,
o foreveryi € I,
evx (D) : Hom(G,T;) — Hom(G ®7 C,T; ®7 C) C Hom(G ®7 C, X¢).

Furthermore, it follows that for every € I, we haved; ~ Z4™T:  Fixing these

isomorphisms yields
X(D) = [[Hom(4;, D) = [ D™ .
el el
Remark 2.7. We recover Connes-Consani’s construction for the CC—gadgets base extend-
ing to the multiplicative groufi,, and affine spacd™ by the use of the obvious torifi-
cationG,,, = G, for the multiplicative group and.! = {0} IT (A' \ {0}) for the affine
line, respectively, the product torification for higher dimensional affine space (cf. para-
graphs 1.3.1 and 1.3.2). Indeed, }¥the the multiplicative group or affine space dfd=
SpecZ[A;] be a torus in the torification as described above. et Hom(A;, D), then
evx(D)(g) € Hom(SpecC[D], X¢) is determined by) : (SpecC[D]) (C) — X¢(C).
For a character
x € Hom(D,C*) ~ Hom(SpecC,SpecC[D]) = (SpecC[D])(C),
we havey(x) = (1; ®z C) ((x(g5)j=1,....dimT;) @S in Connes-Consani’s description.
Proposition 2.8. Let® = (¢, ¢, {¢;}) : (X,T) — (X', T") be a torified morphism. The
mappingl(®) : L(X,T) — L(X',T") given byL(®) = (¢, ¢c), where
e for all i € I and every finite abelian group, generating a group schent@ =
SpecZ[D], we set
@(D) : Homgig—gr (G, T;) — Homyg—gr(G, Té)(i))
Y o g0,
o pc:=¢®;C: Xc— X¢,

is a morphism of gadgets

Proof. The pair(y, oc) is indeed a morphism of CC—gadgets: the diagram

»(D)

Hom(G, T;) ————— Hom(G, Té(i))
evX(D)\L levX/(D)
Hom(Ge, X¢) ——— Hom(Gc, X¢)
commutes since
X —X
|
Ti — T3
commutes. =

Remark 2.9.

(1) The CC—gadgef(X,T) := (X, X¢, evx) is finite and graded.
(2) £L(X,T) depends in a strong way on the torification, as explained in the following.
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If S'is a second torification ok and£(X, S) = (X', X(, ev'y), we know by Propo-
sition 1.10 that there is a bijection betweEmand I’ that respects the grading, so we can
assumd = I'. Itis also clear thak{ = Xc. Anisomorphism of gadgets: £(X, S) —
L(X,T) consists of a paify, ¢c) wherep : X’ = X is a natural transformation and
wc : Xc — Xc is a morphism of complex varieties such that for all finite abelian groups
D the following diagram commutes:

»(D)

(2.1) X'(D) = [1;¢, D™ [Tiey D% = X(D)

J(EVX(D)

Hom(Spec(C[D]), X¢).

wim)|

Hom(Spec(C[D]), X¢) — =D

The morphismy can only be an isomorphism X'(D) — X (D) is a bijection for
every finite abelian grou. In particular, considering the trivial group = {e} yields a
bijection

e{ep) : [[{er™ s — [ [Her ™™,
i€l i€l
which is merely a bijection) : I — I. The trivial group homomorphisn® — {e}
induces, by the naturality @f, the commutative diagram

¢(D)
X'(D) X(D)
X'({e}) 21— T = X({e})

and a cardinality argument shows thatmust respect the grading and thatD) maps
DI Ti jnto Ddim Svi) - Consequently, commutativity of (2.1) implies that there are maps
T;(C) — Sy (C) such that the diagrams

Tii lo’w(i)

X¢(C) ———— X¢(0)

commute for alk.
For instance,

-
|
| | =A% = ||
L

are two torifications of the affine plan€® that give rise to CC—gadgets that by the above
reasoning cannot be isomorphic. This illustrates (2).

Theorem 2.10. Given an affinely torified varietyX, T'), the corresponding CC—gadget
L(X,T) = (X, Xc,evx) is a CC—variety oveif'; such thatX ®p, Z = X. More
precisely, the base extension functery, Z is a left inverse toC as a functor from the
category of affinely torified varieties to the category of CC—varieties.

Proof. Start assuming thaX is affine. LetG(X) be the gadget defined by as in [3,
Example 2.2.1], and define the immersion

i L(X,T) — G(X)

as follows:
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(1) For every finite abelian group, the map

i(D): X(D) = [[ D™ " — Hom(Spec Z[D], X)
el
is defined in the same way as the evaluation map, using the fact that this map
is obtained by extension of a scalars. In other words, we have the commutative
diagram

evy

(2.2) X Hom(Spec C[—], X¢).

\ 7

' Hom(SpecZ[—], X) et

Itis clear thati( D) is injective for everyD.
(2) The morphism of varieties: : X¢ — X¢ is the identity.
(3) By the commutativity of (2.2), the diagrams

i(D)

Hom(Spec Z(D], X)

evx l \L —-®zC

Hom(Spec C[D], X¢) Hom(Spec C[D], X¢)

commute for every finite abelian group.

To verify the universal property, |8t be an affine reduced scheme of finite type d&er
and (¢, ¢c) : L(X,T) — G(V) a morphism of gadgets. We need to find a morphism
¢ : X — V of schemes such that the diagram

L(X,T) = G(X)

g
(m i (¢)

gv)

commutes. Sincec : X¢ — Ve = V ®z Cis already given, it suffices to prove that there
is a morphismp : X — V such thatpc = ¢ ®z C, or in other words: we have to show
thatyc is already defined ovex.

The mappc is defined oveZ if oy is defined oveL for every irreducible component
Y of X. To each irreducible component &f corresponds a unique open toflisC Y,
which is the torus that contains the generic pointofsee Lemma 1.4, (2)). Sincgé =
Gaum™i is a CC-variety oveff; (cf. [3, Sect. 3.1]), the mapc/y, is defined ovetZ,
and thusyc is a rational function withp)y : Y — V defined overZ. Consequently,
p: X — — >V isarational function defined ové.

In order to show thap is indeed a morphism, we have to show that for all affine open
Z C X andU C V such thatpe : Z¢ — Ug, and for allh € Oy (U), we have
(p#(h) S Oz(Z)

We know thatp? (h) € Oz (Z N (U0 T3)), WhereI® = {i € I| T; is openinX}.
If we denote byl := I\ I°, there is somé € Oy (Y) such thatZ N (U,c; T3) is
contained in the vanishing set &fand thusp? (h) € Oz(Z)[671].

But we also know th%é(h) € 0z.(Z¢) = Oz(Z) ®z C. Since

OZ(2)[67 N (04(Z) 22 C) = 0z(2),

where we can consider all sets as subsets of the functionHighd ), we obtainy* (h) €
0Oz(Z), proving the desired result. Note that Proposition 1.10 implies haépresents
the counting function ofX.

For the general case, I€V; } be the collection of all affine open subscheme&asuch
thatT restricts to a torificatiofT; of U;. ThenX,; = L(U;,T;) is an affine CC—-variety, and
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by the definition of a general CC—variet}, is a CC—variety. FurthermoréX;} is the
family of all affine open subschemes 6{X,T'), thus£(X,T); is defined as the direct
limit over the family of theX; z ~ U, which is nothing else tha¥ itself.

Concerning functoriality, it is clear that for all torified morphisnfis: (X,T) —
(X', T") between torified varieties, the diagram

f

X X'
X, Ty, — s px 1),

commutes. This establishes®p, Z as a left inverse of restricted to affinely torified
varieties. O

Remark 2.11. In the proof of this theorem, we made only use of the highest degree term
X@mX) of the functorX = {X?} in the proof thatGdm X is an affine CC-variety.
This has the following consequence: Léthe a reduced scheme of finite type o%ewith

an open affine covefU;} and with an open subscherffethat is isomorphic tazdim X

such thatl’ ¢ U; for all i. DefineX (D) = Y,(D) = D4™X andX¢ = X ®z C and

Y;c =Y, ®z Cfor all i. Define the evaluationsvx andev; in the same way as fof.

Then the same proof as above shows tét X, evx) is a variety oveif; (in the sense

of Connes and Consani, cf. [3, section 3.4]) covered by the affine varigfies’ c, ev;)

overF;.

3. SOULE’'S GEOMETRY.

3.1. S—objects and S—varietiesIn this section we recall some notions Bf—geometry
introduced by Sod in [21], reformulated as in [3, Section 2.2].

Definition 3.1. Let R the category of commutative rings which are finite and flaZas
modules. A(Souk) gadget{S—gadget for short) ovef; is a triple X = (X, Ax,ex)
consisting of

e afunctorX : R — Sets,

e acomplex algebral x,

e anatural transformatiogly : X = Hom(Ax, — ®z C).

An S—gadgefX is finite if for all R € R the setX (R) is finite. Amorphismy : X — Y
of S—gadgets is a couplgy, ¢*), wherey : X = Y is a natural transformation and
©* : Ay — Ax is morphism of algebras such that

(R)
X(R) ‘

Hom(Ax, R ®z C)

Y(R)

\Ley (R)

*(R®zC
ZF920) | Hom(Ay, R @y C)

commutes for allk € R. If ©* is injective andp(R) is injective for allR € R, we say
thaty is animmersion

We can associate a gadgetV) = (V, Oy.(V¢), ev) to any scheme of finite typ¥
overZ, whereV (R) := Hom(Spec R, V) is the functor of points®y, (V¢) the algebra
of global sections of the complexification &f, andey is the extension of scalars .
For a morphisny : U — V, we defineZ (f) : T(U) — T (V) as the pai(f, fZ) where
f(R) : U(R) — V(R) is the induced morphism on sets of points :f@ﬁ: Ay — Ay is
the complexification of the morphism between global sections. It is immediatg {tax
is a morphism. Thug is a functor from schemes of finite type ov&to S—gadgets.
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Definition 3.2. An affine (Souk) variety overl; (affine S—variety for short) is a finite
S—gadgefX such that there is an affine schertig of finite type overZ and an immersion
of gadgetsx : X — 7 (Xy) satisfying the following universal property: For every affine
schemé/ of finite type overZ and every morphism of S—gadgets X — 7 (V) there is

a unique morphism of schemesg : X; — V such thaty = 7 (¢z) o ix.

We define the category of affine S—varieties as the full subcategory of S—gadgets whose
objects are affine S—varieties. The universal property defines the base extension functor
from affine S—varieties to affine schemes dZeNamely, it sendx to Xz and a morphism
p: X = Yto(iy o)z : Xz — Yz (cf. Lemma 3.5 below).

By [21, Proposition 2], the functoR — 7 (Spec(R)) is a fully faithful embedding of
the categoryR°? into the category of affine S—varieties.

Definition 3.3. An (Soule) object ovei; (S—object) is a tripleX = (X, Ax,ex) con-
sisting of
e acontravariantfunctor X : {Affine S—varietie$ — Sets,

e a complex algebral x,
¢ anatural transformationy : X = Hom(Ax, A_)).

An S-object idfinite if X (7 (Spec R)) is finite for all R € R. A morphism of objects
¢ : X — Y is given by a natural transformatign: X = Y and a morphism of algebras

p* : Ay — Ax such that

e(V)
X(V) Y(v)
ex(V)l ey(V)l
Hom(Ax, Av) — Y9 Hom(Ay, Ay)

commutes for all’ € A. If o* andyp(V') are injective for all’ € A, then we say thap

is animmersion of objects

We can associate an obj&@b(S) = (S, Os.(Sc)) to any schemé of finite type over
Zvia S(V) := Hom(Vz, S) and evaluatior x (x) defined by the composition

OSC(S(C) L> OVC(VC) Z*H' Ay .

Definition 3.4. A (Souk) variety ovelf; (S—variety) is a finite objeck for which there
exists a schemé&y, of finite type overZ and an immersion : X — Ob(X7) such that
for every schem&” of finite type overZ and every morphism of objects: X — Ob(V),
there is a unique morphism of schemes: X, — Ob(V) such thatp = Ob(yyz) o i.

We define the category of S—varieties as the full subcategory of S—objects whose objects
are S—varieties. An S—gadget can be considered as an S—object in the following way. If
X = (X, Ax,ex) is an S—gadget, then the associated S—objecKisdx, ¢’y ), where
for an affine S—variety A,

X(A) = Hom(A4, X)

ande’y sendsp = (@, p*) € X(A) to* : Ax — Aa. This defines a fully faithful func-

tor from S—gadgets to S—objects. The essential image of the category of affine S—varieties
is the full subcategory of S—varieties whose objects base extend to an affine scheme over
Z (cf. [21, section 4.2, Prop. 3].

An immediate observation following from the definition of an S—variety is the follow-

ing.
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Lemma 3.5. Let X be an S—variety antl’ a scheme of finite type ovér
(1) The mapp — ¢z given by the universal property of defines a bijection

Hom(X,0b(V)) — Hom(Xz, V).

(2) If¢: Y — Ob(V) is an immersion of S—objects, then— (¢ o )z defines an
embedding

Hom(X,Y) — Hom(Xz,V).
In particular, if X andY are both S—varieties, thdfiom(X,Y") < Hom(Xz, 7).

3.2. Smooth toric varieties as S—varieties.Souk describes in [21, section 5.1] an S—
objectS(X) associated to a toric variety. Note that this association works for arbitrary
toric varieties, though So@lproves only for smooth toric varietiéé thatS(X) is an S—
variety. Further note that we are working with an different complex algebra tham Soul
does, but that results transfer by [21, Prop. 4]. Given a toric vardetyith fan A, we
define the S—objec§(X) in two steps.

In the first step, we define for every conec A the S—gadgeX, = (X, Ax,,ex.)
as follows. Letd, = 7V N (Z")" be as in paragraph 1.3.3. LetR) be the roots of unity
of the ringR. For everyR € R, putX_(R) = Hom(A,, u(R)o), the set of semi-group
homomorphisms fromd, to the multiplicative semi-group(R), = {0} U pu(R). Put
Ax_ = C[A,;] and let

ex (R): X, (R)=Hom(A,,u(R)g) — Hom(C[A,],R®zC)

be the natural map.

ForU, = SpecZ[A,] C X, we have a canonical morphism of S—gadgets X, —
7 (U.), which is an immersion since the complex algebras are the same and since for every
R € R, we have

X,(R) = Hom(A,, p(R)o) C Hom(Z[A,],R) = U,(R).

Consequently, the universal property of an affine S—vafietyith immersion.y, : V' —
T (Vz) implies that given a morphism : V' — X, of S—gadgets there is a unique mor-
phismgy such that, o ¢ = T (pz) o tyy. By Lemma 3.5, we obtain inclusions

Hom(V, X;) C Hom(Vz,U;) C Hom(Vz, X) .

In the second step, we define the S—obf®cX) = (X, Ax, ex) as follows. For every
affine S—varietyV’, put

I

(V) = |J Hom(V, X,),

TEA
where the union is taken iHom(V7, X). PutAx = Ox.(Xc), whereX¢ = X ®z C,
and letex (V) : X(V) € Hom(Vz, X) — Hom(Ax, Ay ) be the natural map.

In a natural way,S extends to a functor from toric varieties to S—objects. Given a
toric morphismf : X — X’ that is induced by a morphism of conés A — A’ (see
paragraph 1.3.3), then following the constructions of the first step yields morphisms of S—
gadgetsf, : X, — Xé(f) for everyr € A. In the second step, taking the union over all
conesr € A defines a morphisr§(f) : S(X) — S(X').

As a consequence of [21, Thm. 1(i)] and [21, Prop. 4], we obtain the following result.

Theorem 3.6(Souk). Let X be a smooth toric variety. Then the S—obj&¢fX) is an
S—variety such thak’ ~ S(X) ®p, Z.

Remark 3.7. In particular, [21, Prop. 3] implies that the S—gadgdts are affine S—
varieties withU. ~ X, ®p, Zforall 7 € A,
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3.3. Affinely torified varieties as S—varieties. In this section, we define a funct&™
from the category of affinely torified varieties to the category of S—objects, prove that
S~ extendsS, which allows us to drop the superscript™, and show that So@éls result
(Theorem 3.6) extends to this class of S—objects.

Let X be torified variety with an affine torificatiod = {7; — X},c;. Put4; =

Homgg—gr (T3, Gy, for i € 1. Let{U,};c; be themaximal torified atlasi.e. the family

of all affine open subschemé§ of X such thaty; = ][, 7; for a subset/; of 1. We
define an S—obje&™~ (X, T') in two steps. '
In the first step, we define an S—gadggt = (X', A7, e}) for everyj € J as follows.

37y
ForR € R, putX7 (R) = [[;c;, Hom(4;, u(R)). PutA; = Oy, .(Ujc) and let

iEIj
;' (R): J] Hom(A;,u(R)) — ][] Hom(C[A;],R®C) — Hom(A},R®C),
Jjely Jjely
be the composition of the natural mafism(A;, u(R)) — Hom(C[A4;], R ® C) with the
inclusion induced by the restriction maps
"4; = OU_;‘,C(UL(C) — OU;V(TNC) = (C[AZ} .

For everyi € I, there is a canonical morphism of S—gadgets X7 — 7 (U;), which
is an immersion since the complex algebras are the same and since folReweR, we
have

X7 (R) = Hom(4;, u(R)) C Hom(Z[A;],R) = U;(R).
Consequently, we obtain inclusions

Hom(V, X7*) C Hom(Vz,U;) C Hom(Vz, X)

for every affine S—variety (cf. Lemma 3.5).
In the second step, we define the S—obgt(X,T) = (X, Ax,ex) as follows. For

every affine S—variety’, put

Ip<

(V) = |J Hom(V, X7"),
jeJ

where the union is taken Hom(Vz, X). PutAx = Ox.(Xc¢), and let
ex(V): X(V) € Hom(Vz,X) — Hom(Ax, Ay)

be the natural map.

Since a torified morphisnfi : X — X’ maps the opens of the maximal torified atlas of
X to opens of the maximal torified atlas &f, we can associate to every torified morphism
a morphism of S—objects by following through the constructio§of This definesS™ as
a functor from the category of affinely torified varieties to the category of S—objects.

Remark 3.8. A discussion similar to the one in Remark 2.9 shows that different affine
torifications of the same torified variefy can lead to non-isomorphic S—objects. The two
torifications ofA2 given in Remark 2.9 provide an example.

We show thatS™ extends indeed Sogik functorS. Let X be a toric variety with far\.
Let TA be the torification ofX as defined in section 1.3.3. We @it (X) = S™(X,Ta).

Lemma 3.9. For everyr € A, there are isomorphisms

a(R)

[I,c, Hom(AZ, u(R)) Hom(A-, u(R)o)
B(R)

that are functorial inR € R.



20 JAVIER LOPEZ PEIA AND OLIVER LORSCHEID

Proof. We construct the maps = «(R) and = 3(R) as follows. Letp : AX — p(R)
be an element dflom(AY, u(R)). SinceA, C A,, we can defing) = a(p) by

v A — ﬂ(R)O .
. pla) facecAXNA;
a 0 otherwise

Lety : A, — p(R)o be an element oHom(A,, u(R)o). We claim that there is a
smallest cone fot), i.e. a smallest subcone of 7 such thaty extends to a morphism
Y A, — p(R)o of semi-groups. Indeed, assume thiagxtends taj; : A, — u(R)o
andis @ A, — u(R)o for two conesr;, » C 7. Thenty extends also to a morphism
from the semi-group generated By, and A.,. But this semi-group is nothing else than
A nr,- This proves the claim.

If o is the smallest cone fap, then definep = [(v) as the restriction of)’ : A, —
p(R)o to A7

We show thaix and 5 are mutually inverse. Lep : AX — u(R) be an element of
Hom(AX, u(R)) andy = a(p) : Ar — u(R)o. Theno is the smallest cone fap since
for everyos’ C o, the larger semi-groupl, is still generated byd, and consequently
AX € AX,, but we know tha(wﬁ)‘l(u(B)) = AX. Thusp(y) equalsy by definition of
.

Let conversely) : A, — u(R)o be an element dffom (A, u(R)o) andy = 8(¢)) €
Hom(AY, u(R)), whereo is the smallest cone fap. It is clear by definition that(y)
equalsy restricted toAX N A,. We have to show thapt(A, \ AY) = {0}, where we
extended) to ¢ : A, — u(R)o. If there is ana € A, \ AX such thawp¥ (a) # 0, i.e.
wzﬁ(a) € u(B), we derive a contradiction to the minimality efas follows.

Choose a basi6\;);cy of R", whereN = {1,...,n} andn is the dimension ofX,
such thatr = (\;R>)ics for someS C N and (\;R);cn\ s is orthogonal tar (here
“(—)" denotes the generated semi-groufiRif). Let (\});cn be the dual basis dh\;);c v,
theno = (IiR>0)ies + (liR);en\s- The sef{o’ € A | o’ C o} is the set of cones of the
formeo; = (MR>0)ic.7, WhereJ is a subset of. For everyi € N, definel; as the smallest
multiple of A} such that; € A,. Thenc} = (;R>0)ics + (LiR);en s for everyJ C S,
and the semi-group ; = (ls)ics + (liZ);en\ s is Of finite index inA, ;. This implies that
for the chosem € A, \ A, a positive multiplen - a isin Lg, i.e.m-a = Y, gcil;
for certain non-negative integecs. Since we assume thaz%#(a) € u(B), we have that
Yics ciwf(li) = w;(m-a) = ¢§(a)m # 0 and thus alreadwf(li) # 0 forsomei € S.
PutJ = S\{i}. Thenw%‘yE can be extended to a semi-group morphi}sjh: Ay, — u(B)o,
which yields the desired contradiction to the minimalityofThis completes the proof that
« andg are mutually inverse.

Itis clear thatv(R) andg(R) are functorial inR, i.e. that for every morphisnfi : Ry —
R, in R, the diagram

[T Hom(AX,u(Ry)) —L— ][ Hom(AZ,u(R,))

oCT oCT

O((R1)i (X(RQ)\L

Hom(A,, u(R1)o) - . Hom(A, u(R2)o)

commutes. O

Proposition 3.10. The functorsS and S™ from the category of toric varieties to the cate-
gory of S—objects are isomorphic.

Proof. Let X be a toric variety with famA. Then the maximal torified atlas 0, TA) is
{U;}rea. We first show that for every € A, the corresponding S—gadgets and X~
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are isomorphic. We define maps

ar=(a,,arc)
X7 = (X", A%, ex) Xr = (X, Ax,ex) .
5T:(é7’ﬁr,”’l)

as follows. For even? € R, definea.(R) as the mapx(R) of the previous lemma.
Define . c as the identity map oA~ = Ox_. = Ac. Concernings;, defingd (R)

as the mag(R) of the previous lemma for everi? € R. Defineg, ¢ like a, ¢ as the
identity map. It is easily verified that. andj, are indeed morphisms of S—gadgets. The
previous lemma implies that, and 3, are inverse to each other.

Since the second steps in the constructionS(©f ) andS™ (X)) coincide, the families
{ar}rea and{p:}-ca define mutually inverse morphismasy : S~(X) — S(X) and
Bx : S(X) — 8™ (X) of S—objects. Itis straightforward to verify thaty and3x are
functorial in X, i.e. that the diagram

S(f)

S(X1) S(X2)

ﬁXl\L ﬁle
S™(f)

S~ (X1) S~ (X2)

commutes for every toric morphisifi: X; — X,. Thus we established an isomorphism
of functors. O

The proposition justifies that we can wrié X, 7)) = S~ (X, T') for an affinely torified
variety (X, T).

Theorem 3.11.If (X, T) is an affinely torified variety, thefi(X, T') is an S—variety such
thatS(X,T)z ~ X. More precisely, the base extension functapy, Z is a left inverse to
S as a functor from the category of affinely torified varieties to the category of S—varieties.

Proof. Define the morphism of S—objects= (t,ic) : S(X,T) — T(X) as follows.
Write S(X,T) = (X, Ax,ex). For every affine S—variety’, let o(V) : X(V) —

Hom(Vz, X) be the extension of scalars, which is an injective map (cf. Lemma 3.5). Let
tc be the identity map oflx = Ox.(X¢). Itis clear that defines a morphism and that it
is an immersion of S—objects.

We raise in three steps the generalityX0f In the first step, leX beG?, forann > 0.
Then there exists up to isomorphism only one torificatioi:¢if, namelyT = {G?, —
G} given by the identity map. Thefi is the same as the torificatidf, if we consider
G, as toric variety with famA = {0}. Proposition 3.10 states th&(G,,T") ~ S(G},)
and Theorem 3.6 says th&{G!,) is an S—variety such th&(G!,)z ~ GJ,.

In the second step, let be affine with torificatiorl”. In this caseX itself appears in

the maximal torified atlagU, };c; of X, sayX = Uy. ThenS(X,T) = (X, Ax,ex)

has the following simple description. L&, = (X, Ao, eo) be the S—gadget defined by
Uy. For every affine S—variety, we haveX (V) = Hom(V, X,), we havedx = Ay and

ex (V') sends a morphism = (¢, ¢f) € Hom(V, X)) to o € Hom(Ay, Ay ). From this
description it follows that we can apply [21, Prop. 3] to derive th@X, T') is an S—variety

if and only if X, is an affine S—variety, and if this is the case tliHX, T); ~ (Xy)z.

The same idea as used in the proof of Theorem 2.10 applies to this situation. Namely, let
V be an affine S—variety and 1&p, ¢¢.) : Xo — V be a morphism of S—gadgets. Every
irreducible component ok has a unique open subtorus isomorphi€th for somen > 0

in the torificationT'. In the first step, we showed th&(G},) is an S—variety. Thus the
S—gadge(G?,), defined byG?, is an affine S—variety. Using the universal property of
(GI,)o defines a rational map; : X — V3. For the same reasons as in the proof of



22 JAVIER LOPEZ PEIA AND OLIVER LORSCHEID

Theorem 2.10 we see that, is indeed a morphism of schemes that verifies the universal
property of an affine S—variety fox.

In the third and last step, we 1€X, T') be a general affinely torified variety with max-
imal torified atlas{U, },c;. ThenU; is affine andI’ restricts to a torificatiorT; of U; for
everyi € I. By the previous stegg(U;, T;) is an S—variety such th&(U;, T;)z ~ U;.

The family {S(U;, T;) }:<r satisfies the conditions of [21, Prop. 5], and tBsX, T') is an
S—variety withS(X, T)z ~ J;c; Ui ~ X.

Concerning functoriality, it is clear that for all torified morphisnfis: (X,7T) —

(X', T") between affinely torified varieties, the diagram

!

X X'
o
S(X.T), D S(x!, T,
commutes. This establishes®p, Z as a left inverse af. O

4. DEITMAR’S GEOMETRY

4.1. D—schemes First let us recall the theory of schemes oWgrin Deitmar’s sense.
The main idea is to substitute commutative rings witlicalled rings in the latter) by
commutative semi-groups with(called monoids in the latter) and to mimic scheme theory
for monoids. It turns out that to a far extent, it is possible to yield a theory that looks
formally the same as usual algebraic geometry. Since definitions are lengthy, we only name
the notions we make use of and give the reference to the proper definition in Deitmar’s
paper [4].

There is the notion of prime ideals and the spectepat A of a monoidA ([4, section
1]), schemesX over[F; with underlying topological spack'°? and morphisms of schemes
(14, section 2.3]), the structure she&@f and local monoid® x , for z € X'P ([4, sections
2.1-2.2)).

There is a base extension functerzy, Z that sendspec A to Spec Z[A], whereZ|[A]
is the semi-group ring ofl. The right-adjoint of— ®p, Z is the forgetful functor from
rings to monoids ([4, Thm. 1.1]). Both functors extend to functors between schemes over
F, andZ ([4, section 2.3]). We will often writé, for X ®p, Z. We denote byp—schemes
the category of schemes ovér together with morphism of schemes in Deitmar’s sense.

A D—schemeX is connectedf it is connected as topological space, akds integral
(resp.of finite typeresp.of exponentl) if for all affine openspec A of X, the ringZ[A4] is
a integral domain (resfZ[A] is of finite type (cf. [5, Lemma 2]) resp.is the only element
of finite multiplicative order inA).

4.2. Toric varieties as D—schemesin [6, section 4], Deitmar describes a func@rthat
associates to a toric variefy with fan A the following scheme ovéf;. Let X be a toric
variety with fanA. We use the notation from section 1.3.3. An inclusioa 7’ of cones
gives an inclusion of monoidd,, C A, and thus we yield a directed system of affine
D-schemegspec A, },ca. The D-schem®(X) is defined as the limit over this system.

Let (v, W, {1 }) be atoric morphism. The directed system of morphigiis AJ}(T) —
A, describes a morphis®(f) : D(X) — D(X’) of D-schemes. This establishPsas a
functor.

Every monoidA has a uniqgue maximal subgroup, namely the grdupof invertible
elements, and a unique maximal ideal, namely- A \ A*. We define theank rk 7 of a
coner as the rank ofA* and therank rk z of a pointz in X' as the rank 005 . For
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every coner € A, we have the canonical inclusion : spec A, — D(X). We define
U: A — DX)oP,

T o t(my)

wherem.. is the maximal ideal ofd,.
The following is a refinement of Deitmar’s Theorem 4.1 in [6].

Theorem 4.1.
(1) The functorD induces an equivalence of categories

. . ~ connected integral D—scheme|
D: { toricvarieties } — L
of finite type and of exponent
with — ®p, Z being its inverse.
(2) LetX be a toric variety with fanA. Then¥ : A — D(X)"P is a bijection such
thatT C 7/ if and only if ¥'(7’) is contained in the closure df (7). Furthermore,

Ar =~ Op(x),w(r) @andrk ¥(7) = k7 forall 7 € A.

Proof. From the proof of [6, Thm. 4.1] it becomes clear tha®y, Z is connected it is
an integral D—scheme of finite type that is connected and of expandihte rest of part 1
of the theorem follows from [6, section 4].

We proceed with part 2 of the theorem. First note that the assignment

Uy :7 — (SpecZ[tV] — X)

defines a bijection betweefd and the family of the affine operig of X such that the
inclusionU — X is a toric morphism. If- C 7’ thenSpec Z[r"] C Spec Z[7"V].
By the part 1 of the theorem, the functBr puts this family in one-to-one correspon-
dence with the affine opens Bf(X') and respects inclusions.
SinceOgpec 4,m = A if Ais a monoid with maximal ideah = A\ A* (cf. [4, section
1.2]), the assignment
x +— (spec Op(x),. — D(X))

defines a bijection betwedn( X )'°P and the affine opens @ (X ). Note thatr is the image
of the maximal ideal of0px , under the canonical inclusiomec Op(x) , — D(X),
which describes the inversk, of the latter bijection. Ifz’ is contained in the closure of
z, then we have a inclusiaspec Op(x),, — spec Op(x),/- SinceV = Wy 0 Do ¥y, we
established tha¥ is a bijection and that C 7’ if and only if ¥(7’) is contained in the
closure of¥(r).

By definition, the rank ofr and the rank of’(7) equal the rank of the maximal
subgroups of the monoidd, and Op(x) v (-), respectively. The canonical inclusion
spec A; — D(X) induces the isomorphisi®px) w(r) ~ Ospec A, m, =~ A-, and con-
sequently we obtain equality of ranks. O

5. COMPARISON BETWEEN THE DIFFERENT GEOMETRIES OVER;

In this section, we establish certain functors between the categories of D—schemes, S—
objects and CC—gadgets and investigate to what extent they commute with base extension
to Z and with the realizations of classes of varieties dieifrom the previous sections.
Finally, we put together the results of the paper in Theorem 5.10.

5.1. From D—schemes to CC—gadgetdn this section, we construct a functéip_.cc¢
from the category of integral D—schemes of finite type and expohémthe category of
CC—gadgets.

Let X be an integral D—scheme of finite type and exporieit/e define the CC—gadget
Fpoco(X) = (X, X¢,evx) as follows. For a finite abelian group, we defineD, to
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be the monoid> U {0} that extends the multiplication d by 0 - « = 0 for everya € D.
Put

X(D) = Hom(spec Dy, X) = U Hom(O% ,, D),

e X'opP

where the latter equality is explained in the proof of Theorem 1 in [5].Rut= X ®p, C,
which is indeed a complex variety since every componenk dfase extends to a toric
variety. Note that the immersiospec Ox , — X inducesSpecC[Ox ;] — Xc and
defineevx (D) as the composition of the natural maps

J Hom(0%,,D) — | J Hom(C[Ox..],C[D]) — Hom(SpecC[D], Xc) .

rEX'top rEXP

Given a morphismf : X — X’ between integral D—schemes of finite type and ex-
ponentl, we defineFp_.cc(f) = (f, fc), wheref(D) = f. : Hom(spec Dy, X) —
Hom(spec Dy, X') and fc = f ®r, C: X¢ — X¢. Itis immediate thatFp_.cco(f) is a
morphism of CC—gadgets.

Note that for a finite abelian group, the setX (D) is finite. Putting

x9D) = |J Hom(0%,.D)
:EEXIOP
rk z=I
defines a gradind = (J,~, XY, Thus we can consideFp_.cc(X) as a finite graded
CC—gadget. B

Proposition 5.1. The functorsC and Fp_,cc o D from the category of toric varieties to
the category of finite graded CC—varieties are isomorphic.

Proof. Let X be a toric variety with famA and putY = D(X). Then we obtain the
finite graded CC—gadget3(X) = (X, X¢,evx) andFp_cc(Y) = (Y, Yc,evy). By
part 2 of Theorem 4.1, there is a bijectign: A — Y'°P such thatkr = rk ¥(7) and
A; =~ Oy,y(r) foreveryr € A. Thus we obtain for everyy > 0 and every finite abelian
groupD a bijection

x9D) = |J Hom(AX,D) = |J Hom(03,.D) = YY(D).
rﬂiél gf?jj;
Further,Yr = Y ®F, C ~ X ®z C = X¢. Itis immediate that these isomorphisms com-
mute with the evaluation maps x andevy, and we thus yield the desired isomorphism
of CC—gadgetpx : L(X) — Fp_cc(Y).
It follows from the naturality of definitions that given a toric morphigm X — X',
the diagram

£(f)

L(X) L(X')
fD‘PCC(Y) Fp-cc(g) Fpce (Y,)
commutes, wher® = D(X), Y’ = D(Y’) andg = D(f). Thus we established an
isomorphism of functors. O

This proposition together with Theorems 2.10 and 4.1 implies:

Corollary 5.2. If X is a connected integral D—scheme of finite type and expahehen
Fp_cc(X)isaCC~variety andFp_.cc(X) ®F, Z ~ X Qf, Z.
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5.2. From D-schemes to S—objectsln this section, we construct a functdi, . s from
the category of D—schemes of finite type to the category of S—objects X et a D—
scheme of finite type. We proceed in two steps, similarly to section 3.2.

In the first step, we define for every pointe X'°P an S—gadgeX, = (X, A, e.)
as follows. For even? € R, we putX,(R) = Hom(Ox ., u(R)o), the set of monoid
homomorphisms from the local monady ,, to the multiplicative monoigi(R), = {0} U
u(R), we putA, = C[Ox .|, the semi-group ring o® x , overC, and we define

ez(R): Hom(Ox 4, u(R)o) — Hom(C[Ox ], R ®z C)

as the natural map.
In the second step, we define the objégi_s(X) = (X, Ax,ex) as follows. For

every affine S—variety’, we put

Xv) = |J Hom(V,X,),

e Xop
where the union is taken iHom(Vz, X7). We putAx = Ox.(Xc), whereX¢ is the
complexification ofXy, and we define

ex(V): |J Hom(V,X,) — Hom(Ve, Xc) — Hom(Ax, Ay)
reXr
as the composition of the natural maps.
Given a morphisny’ : X — X’ between D—schemes of finite type, there is a natural
way to define a morphistfp_s(f) : Fp—s(X) — Fp_s(X’) going through the steps
of the construction ofFp_. g, similarly to the definition in section 3.2.

Proposition 5.3. The functorsS and Fp_ s o D from the category of toric varieties to the
category of S—objects are isomorphic.

Proof. Let X be a toric variety with famA andY = D(X). We will construct an iso-
morphismpyx : S(X) — Fp_s(Y) by going through the steps of construction of the
objects.

In the first step, let € A andy = ¥(7), where¥ : A — Y'™P js the bijection from
Theorem 4.1. LeK ; andY), be the associated S—gadgets. By Theorem 4.1, part 2, we have
that A, ~ Oy, and consequentlX (R) = Hom(A,, 4(R)o) ~ Hom(Oy,, u(R)o) =
Y, (R) forall R € R. Further, A, = C[A,;] ~ C[Oy,| = A,. Itisimmediate that
these isomorphisms commute with the evaluation mgpande,, and thus we yield an
isomorphism of S—gadgets, : X, — Y.

In the second step, we note that fdrC 7, the image of the inclusiod, — A, under
the functorD is the generalization maPy y(;) — Oy, ¢(-). Thus the directed systems
{A;}rea and{Oy , },cywe are isomorphic and we have that for all affine S—varielties

X(V) = J Hom(V,X;) ~ [ J Hom(V,Y,) = Y(V).
TEA yey'tor

Further, Ax = Ox.(X¢) ~ Oy, (Yc) = Ay by Theorem 4.1, part 1. It is immediate that
these isomorphisms commute with the evaluation megpandey-, and we thus yield the
desired isomorphism of S—objeats : (X) — Fp_s(Y).

By the analogy of the constructions §fand F_. g, it is clear that given a toric mor-
phismf : X — X', the diagram

S(f)

S(X) S(X')
Fp_s(Y) Toosl) Fp_s(Y')
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commutes, wher® = D(X), Y’ = D(Y') andg = D(f). Thus we established an
isomorphism of functors. O

This proposition together with Theorems 3.6 and 4.1 implies:

Corollary 5.4. If X is a connected integral D—scheme of finite type and expanehen
Fp_s(X)isan S—variety andFp_.s(X) Qp, Z ~ X ®y, Z.

5.3. From CC—varieties to S—objects.In this section, we construct a funct@icc s
from the category of CC—varieties to the category of S—objects.

Let X = (X, X(,evx) be a CC-variety and letX;};c; be the family of all open
affine CC-subvarietieX; = (X, X; c,ev;) of X. Note that a priori,X¢ does not need
to be equal toX¢ = X ®p, C. We define the S—objedt-c_.s(X) in two steps.

In the first step, we define S—gadgéis_o(X;) = (X}, A}, eX) foreveryj € J
as follows. For every? € R, put X} (R) = X,;(u(R)). PutA; = Ox, (X, c) and put
evi(u(R ~ ~
7 (R): X, (u(R) " Hom(A>, Clu(R)]) — Hom(AT, Ry C) .

In the second step, we define the S—objest_.s(X) = (X, Ax, ex) as follows. For

everyj € J and everyR € R, there is a morphisnp;(R) given as the composition of
canonical maps

X7 (R) = X;(u(R)) € Hom(SpecZ[u(R)], X;jz) — Hom(Spec Z[u(R)], Xjz) -

J

We do not know a priori whethes; (R) is an inclusion. But the same reason as in Lemma
3.5 shows that we have for every affine S—varigtan (a priori not injective) map

1/J](V) HOID(V,]:EC_,S(X]’)) — HOm(Vz,ij) C HOm(Vz,Xz) .
DefineX(V) = U, Im4;(V) C Hom(Vz, Xz) andAx = Ox.(Xc). Define

ex(V): X(V) ¢ Hom(Vz, Xz) — Hom(Ax,Oy.(Vc)) — Hom(Ax, Av)

as the composition of taking complex global sections of a morphigm- Xz and the
push forward along the map : Oy,.(Vc) — Ay given by the universal property &f.

Proposition 5.5. The functorsS and Fcc_.s o £ from the category of affinely torified
varieties to the category of S—objects are isomorphic.

Proof. Let (X, T') be an affinely torified variety with maximal torified atl§g’; } ;c ;. Let
T; be the restriction of to U;, which is a torification olU;. PutY = (Y, Yg,evy) =
L(X,T). Then{Y;}jes withY; = (Y, Y] c,ev;) = L(U;,T;) is the family of all open
affine CC—subvarieties df* since they are precisely those open CC—subgadgets whose
functors represent the right counting function. We show in two steps&hat 7') ~
Feos o L(X,T).

In the first step, we show thaf; = (X ;, A;, e;) as defined in section 3.3 is isomorphic

to Foo s = (Y], A7, ef) foreveryj € J. For allR € R, we have equalities

X;(R) = [T Hom(AY.u(R) = Y;(u(R) = Y7 (R)
JET;
andA; = Oy, .(U;c) = A} This defines the desired isomorphism.
In the second step, we show ti&(tX, T') = (X, Ax, ex) is isomorphic to the S-object
Feo-s(Y) = (X, Ay, ey). For all affine S—varietie¥’, we have equalities

IP<

(V) = U Hom(V, Xj) = U Hom(Van) = Y(V)
JjeJ JjeJ

andAx = Ox.(Xc) = Ay. This defines the desired isomorphism, which we denote by
POX,T: S(X, T) — Foo—s o L(X, T).
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By similarity of definition it follows thaty x  is functorial in(X, T'), i.e. that for every
torified morphismf : (X, T) — (X', T"), the diagram

S(f)

S(X,T) S(X', T
Fooso L(X,T) — 22D g sor(X',T)
commutes. Thus we established an isomorphism of functors. O

Remark 5.6. As consequence of Proposition 5.5 and Theorem 3.11, we see that for every
CC-varietyX in the essential image df, the S—objectFoc—.s(X) is an S—variety such
that Foo—5(X)z ~ Xz. Itis, however, not clear if this holds true X is an arbitrary
CC-variety.

Namely, there are two problems. For simplicity, we assume *ha an affine CC—
variety with canonical immersion: X — G(X7).

The first problem is the following. We hav&; = Spec B for some ringB. Put
X~ = Fge_g(X). Then there is a canonical morphism: X~ — 7 (X7), but it is not
clear if the map

S(R): XY(R) = X (u(R) " Hom(B, Z{(u(R)]) —> Hom(B, R)
is injective for allR € R (hereX, X, . and.™ denote the usual functors and natural
transformations).

The second problem is verifying the universal property of an S—variety. This is, given a
schemé/ of finite type overZ and a morphism of S—gadgets X~ — 7 (V), we seek a
morphism of schemesy, : X7 — V such thatp = 7 (¢z) o ™. This would be implied by
the universal property faK if we could extend the functaFcc_.s to a functorF._, ¢
from CC—gadgets to S—objects such that

X~ 5> G(Xz)

X —> G(Xz)
flcc-»s( w\WW)) = < k¢7(wz>>
(V)

g(v)

for some morphism) : X — G(Vz). The uniqueness afz would follow from the
existence of a left inverse functor &.._, 5.

However, the definition ofFcc_. ¢ relies strongly on the defining property of a CC—
variety and we do not see whether there is a way to exfénd_. s to all CC—gadgets with
the desired property. We will discuss two attempts in this direction in the following two
paragraphs 5.3.1 and 5.3.2.

5.3.1. From CC—gadgets to S—objectShere is a natural definition for a funct@i.._, ¢
from CC—gadgets to S—objects, which, however, does not meet the requirements of Remark
5.6.
Let X = (X, Xc,evyx) be a CC-gadget. We define the S—obj&¢t_ (X)) =
(X, Ax,ex) asfollows. IfV is an affine S—variety, whefig, ~ Spec B and(y, (&) : V —
T (Vz) is the canonical immersion, then phit V) = X (u(B)). PutAx = Ox.(X¢) and

define fory € X (u(B)),

eva (V) ()7

ex(V)(®): Ax CluB)] —= BwyC —Sm Ay .

If ¢ = (o,c) : X — X'is a morphism of CC—gadgets, define the morphism of S—
objectsFrc_,s(¢) = (¢, @f) as follows. Forl” as above, pup(V) = ¢(u(B)) and let
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<p?§ be the morphism between global sections. One easily verifie@h@@) is indeed a
morphism using thay, oc) is one.

Remark 5.7. One can show that for a torified varigty(, T') that is affine and has maximal
torified atlas{U,};c; with Uy = X, the S—gadgetX, (as defined in section 3.3) and
Foo_g © L(X,T) are isomorphic. Further, one can show that there is a natural inclusion
of functorsF¢(.._, ¢ = Fcc—.s, when restricted to the category of CC—varieties.

The most basic example &f = G,,,, however, shows that/._, ¢ is not isomorphic
to Fco_ s if restricted to the category of CC—varieties. Consiigr as a toric variety
with fan A = {0}. In the usual notation (cf. sections 1.3.3 and 34)js an infinite cyclic
group andX, = (X,, Ax,ex) is an affine S—variety wittiXy)z ~ G,,. LetY and X

be the functors ofF/,_ ¢ o L(X) and Foc_.s o L(X) ~ S(X) (cf. Proposition 5.5),
respectively. Then

Y(Xo) = Hom(Ao, u(Z[Ao])) = Hom(Ao,{£1}) = {+£1}.

On the other hand,
X(XO) = HOHI(Xo,Xo) — Hom(G'vanL) = HOIn(Z[Ao],Z[Ao]) = {ianl}nLEZa

where the inclusion is given by extension of scalarg tcf. Lemma 3.5). One sees that
Y (Xo) € X(Xo). We will show that this inclusion is proper.

Letm be an integer and let,,, : A9 — Ay mapa to a™. We define a morphisng,,, =
@m,wm,@) : Xo — Xy as follows. ForR € R, we haveX,(R) = Hom(Ay, #(R)). Put

o (R): Hom(Ag,u(R)) — Hom(Ag,u(R))
X — X© Pm
and lett,, c : C[Ag] — C[Ao] be theC-linear homomorphism that restricts ¢g,,. It
is clear thaty,,, is indeed a morphism of S—gadgets for everyc Z and that(wm)g :
Z[Ao] — Z[Ay] is the restriction of),, ¢ to Z[Ap]. Concerning our question, we see now
that (v, )7 (Ao) & u(Z[Ao]) = {#1} unlessm = 0.
Thus we have shown thef/,_, ¢ does not extendFec—. 5. From [21, Prop. 4] it fol-

lows thatF/_, ¢(G,,) cannot be an S—variety. Regarding the second problem of Remark
5.6, note that it holds neither true that for a schexhef finite type overZ, the S—objects

to—s(G(X)) andOb(X) are isomorphic. Namely, their functogs’ and X, respec-

tively, differ. If V' is an affine S—variety witfyz ~ Spec B, then in general
X'(V) = Hom(SpecZ[u(B)],X) # Hom(SpecB,X) = X(V).

5.3.2. From S-objects to CC—gadget$here is also a natural way to define a functor
Fs_.cc from the category of S—objects to the category of CC—gadgets.
Let X = (X, Ax,ex) be an S—object. Then we define the CC—gadget.cc(X) =

(X, Xc,evy) as follows. For a finite abelian group, putVp = T (Spec Z[D]), which
is an affine S—variety by [21, Prop. 2] and sifEfD] € R. PutX (D) = X(Vp). Let

Nx be the nilradical ofdx. PutX¢ = Spec(Ax /Nx ), which is a complex variety. The
evaluation map is defined as

evx : X(Vp) — Hom(Ax,C[D]) = Hom(SpecC[D], X¢) .
v = ex(D)(¥)

Remark 5.8. There are several remarks in order concerning the “naturality” of definition.
Since we stay with the original definition of a CC—gadget in [3], we only allow complex va-
rieties, i.e. reduced schemes of finite type dlem the definition of a CC—gadget. There-
fore, we have to divide out the nilradical. One can, however, extend Connes-Consani’s
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definition by allowing arbitrary schemes of finite type o@and simply defineX¢ as the
spectrum ofd x .

If X is an S—variety representing a scheme that is not affine, we yield a complex variety
Xc which is affine. One could, however, exchange the complex algebra by a scheme of
finite type overC in the definitions of an S—gadget and an S—object, and try to recover
the results of So@éfs paper [21]. Then one could simply define to take the same complex
scheme fotFs_,co(X).

Remark 5.9. Unfortunately, the different nature of Sé&4d and Connes-Consani’'s geome-
tries overF, leads to a misbehavior ¢fs_. ¢ even if the suggested changes are made, as
can be seen in the example Bf= G,,.

In the same notation as in Remark 5.7, #g be the infinite cyclic group and,
the affine S—variety associated 3. Let X be the functor ofS(X) and letX be the

functor of Fs_.cc o S(X). For a finite abelian grou® and V, as above, we have
X (D) = X(Vp) = Hom(Vp, Xy). Base extension frorfi; to Z defines the inclusion

Hom(Vp, Xo) — Hom(Z[Ao],Z[D]) (cf. Lemma 3.5). Using that(Z[D]) = Z[D]*
for finite abelian groups, one can show that conversely every morphjsty] — Z[D]
defines a morphisiiyp, — X,. Thus we see that

X(D) = Hom(Ao, p(Z[D])) = u(Z[D]) = DI -D.

This differs from the CC—varietf(G,,) = (Gm, Gm,c, evg,,) sinceG,,(D) = D, and
we see that andFs_.c¢ o S are not isomorphic. Furthermore, the counting function of
Fs—cc(X) differs from the counting function of(G,,,), so Fs_cc(X) is not even a
candidate for a CC—variety representifig, that produces the right counting function.

In particular, one verifies now easily that neith&f._ ¢ o Fs_.cc nor Fs_.cc ©
Féog NOr Fs_.cc o Foo—s is isomorphic to the identity functor of the category of
S—objects or the category of CC—gadgets, respectively—even if the changes are considered
as suggested in the previous remark.

5.4. Putting pieces together. Finally, we subsume the results of this section in a diagram.
Theorem 5.10. The following diagram essentially commutes (arrows with lakiéldfre

the canonical inclusion as subcategories and the arrow with lab@li$ the forgetful
functor).

Connected integral D—schemes
of finite type and exponent 1 Foos

]-_Dﬂcc/ D~ —®F, 2L

/ Toric varieties| \

Affinely torified
varieties
I

% Schemes ovef. \

—Qr, Z

Focc—s
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Proof. We label the subdiagrams as follows.

The functorsD and— ®p, Z are mutually inverse by Theorem 4.1. Subdiagram A com-
mutes essentially by Proposition 5.1 and Corollary 5.2. Subdiagram B commutes essen-
tially by Proposition 5.3 and Corollary 5.4. Subdiagram C commutes essentially by Theo-
rem 2.10. Subdiagram D commutes essentially by Theorem 3.6. Subdiagram E commutes
essentially with the rest of the diagram by Theorem 5.5. O

6. CONCLUDING REMARKS

6.1. On Chevalley schemes ovelF;. Among other reasons, Tits’ suggestion of realizing
Chevalley schemes as group objects del[22, section 13]) was a main motivation in
looking for concepts of geometries that have a base extension funcoartd that some-

how capture the aspects of usual geometry that can be “expressed by roots of unity”. We
discuss in various examples in how far Tits’ suggestion becomes realized by the different
concepts of Connes-Consani, Seahd Deitmar, respectively.

To realize a Chevalley schentg as a group object in one of the discussed notions
of geometries oveF,; means that there is a CC—variety, an S—variety or a D—schéme
respectively, representing and a multiplication mapn : X x X — X such thatXy
together withmyz is an algebraic group isomorphic @. In this case we say that
together withm is a group object over;.

Proposition 6.1. The Chevalley schemé&s!, for n > 0 can be realized as group objects
overlF in all three notions of geometry ovey .

Proof. The crucial observation is that the multiplicati®{,, x G}, — G, is a toric
morphism. With this, Theorem 2.10 implies th&(G”,) together withZ(m) is a group
object overF;. Theorem 3.11 implies tha(G!,) together withS(m) is a group object
overF;. Theorem 4.1 implies thaD(G},) together withD(m) is a group object over
F. ]

Proposition 6.2. The algebraic groug= for n > 0 cannot be realized as group object in
any of the three notions of geometries oer

Proof. First, we consider Connes-Consani’'s concept. Assume there was a group object
X = (X, X¢,evx) with multiplication m representingG?. We first want to exclude
the possibility that the image efvx (D) : X(D) — Hom(Spec C[D],G") consists of
only one element for all finite abelian groups If this was the case, then the image of
evx (D) would consist of the same pointe G?(C) for all finite abelian group® by the
functoriality of X. But then the compositiono ¢ of an automorphisny : X — X given
by a morphismX: — X¢ that leavest fixed but is not defined ovéet followed by the
canonical immersion : X — G(G?) would be a morphism of CC—gadgets that does not
base extend t@.

Thus assume thab is a group such that the image ef x (D) has more than one
element. Then commutative diagram

X(D) x X(D) e X(D)
ch(D)Xch(D)l ich(D)
n n mgc(C[D]) n
G4 (C[D)) x GL(C[D]) G (C[D])
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would establish the image ef x (D) as a non-trivial finite subgroup of the torsion free
groupA™(C[D]) ~ C"* whered = #D, which does not exist. Thus we showed ttiat
andm as assumed cannot exist.

A similar argument shows th&!' cannot be realized in Sceis geometry ovel;.

Since, up to isomorphism, the only D—scheme represertihgs Y = D(G), the
existence of a multiplication df would imply by Theorem 4.1, that the multiplication of
G is a toric morphism, which is not the case. O

6.1.1. Chevalley groups as CC—varietiel their paper [3], Connes and Consani show
that a split Chevalley schent& overZ is “a variety overF;=" ([3, Thm. 4.10]) and they
remark that the normalize¥ of a maximal split torug” in G is a group object ovefF:,
but that the multiplication o€ is “more mysterious” (ibid. 25). The following example
shows that neither the multiplication 6f nor the multiplication ofN has to be defined
overF;.

Let G = SI(2). LetT be the diagonal torugy its normalizer inG and B the subgroup
of upper triangular matrices. We saw in Example 1.19 that we have torifications

N = 2G,, C G = 2G,, 11 3G%, 11 G?, .
Write S for the torification ofG and byS’ the restriction of5S to N. Let X = (X, X¢,evx)
beL(G,S)andlety = (Y, Y¢,evy) be L(N, S’). Then
Y(D) = 2D C X(D) = 2D 11 3D? 11 D3
for a finite abelian grou®. Note that a multiplication ofX restricts to a multiplication
of Y, and thus we only have to show the non-existence of a multiplicatiokl fékssume

there is a multiplicationn : Y x Y — Y, then for the trivial groupD = {0}, we can
identify Y ({0}) with W, andev({0}) : W — Y¢(C) = N(C) defines a section to

1 T(C) NC) —Ww——>1 .
Moreover, the commutative diagram
1 0
W W —— 4o W
evY({O})XevY({O})l levy({o})

mc

N(C) x N(C) N(C)

that we obtain from the definition of a morphism between CC—gadgets implies that the
sectionWW — N(C) must be a group homomorphism. But this is not possible in the case
of S1(2).

6.1.2. Chevalley groups as S—varietieshe situation in Sod@'s geometry behaves simi-
larly except for one remarkable difference. Since all riiyE R are by definition flat
over Z, their additive groups are torsionfree and the group morphi§#) — u(R) is
thus injective. This means tha{R) has a distinguished element of ordemamely, the
image of—1 € p(Z). This allows us to transfer the idea of Connes-Consani, which is to
consider Chevalley schemes ov&r (see previous remark and [3, section 4]), to show
that the normalizeN of a maximal split torug” in a split Chevalley schem@ is a group
object in Soud’s notion of a geometry ovéft; .

But there is no larger subgroup 6f than N that can be realized as a group object in
Souk’s geometry since this would involve additive structure. The argument of Proposition
6.2 shows that this is not possible as it is not in the situation of Connes-Consani’s paper
(loc. cit.).

Remark 6.3. A possible way out of the dilemma could be to broaden the notion of a
morphism in Connes-Consani’s or Selslgeometry oveF;. This could possibly be done
by a motivic theory oveF; as already motivated in [17].
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6.1.3. Chevalley groups as D—schemes Chevalley scheme can be realized in Deitmar’s
notion of a geometry ovefr, if and only if the Chevalley scheme is a toric variety and the
multiplication is a toric morphism. This class of Chevalley schemes is precisely the class
of split tori.

6.2. Odds and ends. As we have noted in Remarks 2.9 and 3.8, different (affine) torifica-
tion can lead to non-isomorphic CC—gadgets or S—objects, respectively. One may put the
guestion: shall it be an essential feature of a geometryByvév obtain different forms of

a torified variety by choosing different torifications? There are two possible approaches to
avoid the ambiguity of a torification: weakening the notion of morphism to gain isomor-
phic CC—varieties by different choices of torifications or using the following notion. We

call a decompositiodX = [[,.;Y; regular if for every i € I there exists/; C I such

i€l
thatY; = [[,c;,Y;. In other words, the Zariski closure of each of the schemes in the de-
composition decomposes through the same decomposition. Whenever a torified ¥ariety
has a regular torification and any two regular torifications lead to isomorphic CC—varieties,
then one can declare the corresponding isomorphism class of CC—varietiesasthieal
model of X overF;. Note that split tori, affine spaces, projective space and flag varieties
have a unique isomorphism class of regular torifications. We do however not know whether
this is the case for all torified varieties.

A second matter is the problem of the realization of the Grassmafhigh 4) overF,
as posed by Soél([21, Question 3]), which stays open. It is not clear at all to us what this
should be in So@'s geometry oveF;. Concerning Connes-Consani’s notion, we present
in this paper the candidat®(Gr(2,4),T), whereT is a torification given by a Schubert
cell decomposition. Since, howevér,is not an affine torification, this CC—gadget fails
to be a CC—variety. A possible solution could be searched in relaxing the notion of a
CC-variety in an appropriate way.

Note that the idea of establishing affinely torified variei&s T') as varieties oveF,
is quite flexible. We showed that it works in both Sgaldefinition and Connes-Consani’s
definition. It further works with the modifications recently suggested by Connes and Con-
sani in the end of their paper [3]: There is a natural extension of the functors from finite
abelian groups to monoids with distinguished elem@&nsd 1 since the CC—gadgets of
torified varieties is defined in terms of homomorphism $&isi(A;, —), where thed; are
free abelian groups. First note that it is not essential for our construction that we r&strict
to finite abelian groups, but we can allow arbitrary abelian groups. Secondly, every homo-
morphism from a group into a monoid factorizes through the group of invertible elements
of the monoid. Further, one might exchange the complex variety by a functor on rings
that yields a reduced scheme of finite type over any ring. Namely, the result [3, Thm. 5.1]
holds true for affinely torified varieties due to Lemma 1.2: there is a natural definition of
evaluation®vy 4 : X = X 4(A[-]) for everyringA andX 4 = X ®z A. If Ais afield
and M its multiplicative monoid, then

X(ar) 2 X (AIM)) — Xa(4)

is a bijection, where the latter morphism is induced by thénear mapA[M] — A
identifying M with A.
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