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Preface

The present volume presents the abstracts of the lectures held in the inter-
national conference

“Partial Differential Equations”
6.-10. September 1993,

organized by the Max-Planck-Arbeitsgruppe
“Partielle Differentialgleichungen und Komplexe Analysis”

at the department of mathematics, University of Potsdam. The conference
was supported by the Max-Planck-Gesellschaft, the Deutsche Forschungsge-
meinschaft (Sonderforschungsbereich 288 “Geometrie und Quantenphysik”),
and the Land Brandenburg.

The conference 1993 continued a series of earlier meetings, (Ludwigsfelde
1976, Reinhardsbrunn 1985, Holzhau 1988, Breitenbrunn 1990, Lambrecht
1991, Potsdam 1992, cf. MPI-Preprint 93-7). The general idea of the series is
to bring together specialists in analysis, mathematical physics and geometry
and to point out interactions and common aspects in the recent development
of these fields.

Acknowledgement: The editors are indepted to Frau M. Bernhard,
Frau Ch. Gottschalkson, and to the colleagues of the Max-Planck-group
S. Behm, Ch. Dorschfeldt, T. Hirschmann, I. McGillivray, E. Ouhabaz,

E. Schrohe for their effort in organizing the conference and carrying out the
technicalities of this volume.

Potsdam, 30. November 1993

M. Demuth B.-W. Schulze
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PERTURBATION OF EMBEDDED EIGENVALUES OF LAPLACIANS
ON HYPERBOLIC MANIFOLDS.

Erik Balslev

University of Aarhus

Let A be the Lapace-Beltrami operator on a non-compact finite-area Riemann surface
'\, where I is a discrete subgroup of P — SL;(R) and h is the Poincaré halfplane.
Selberg [Se] proved that for a congruence subgroup I'y of P — SLa(R), A has infinitely
many eigenvalues embedded in the continuous spectrum [%,00]. This conjecture has
been disproved by Phillips and Sarnak [PS] under certain assumptions such as a gen-
eralized Lindelof hypothesis. Their method consists in proving that sufficiently many
cusp forms become resonances under a perturbation in the Teichmiiller space Tt of the
group I'. This in turn is based on an explicit formula for Imas, where in the case of
a simple eigenvalue k(€) = k + a1€ + aze? + O(€?) is the perturbation expansion of the
eigenvalue x(€) of A(e) for small € # 0. The method of proof of Phillips and Sarnak
utilizes the Lax-Phillips scattering theory for the automorphic wave equation.

This formula for I'mag has been known in the physics literature of Schrédinger operators
for a long time under the name of Fermi’s Golden rule. It says that if A(e) = A+eL +
O(€?) (e € (—¢o, €0)) is a real-analytic perturbation of A and k(€) = k+a,e+aze?+0(€?)
is a Taylor expansion of a simple eigenvalue, then

T 1
Imay = = > | (L, Ey(5 +ir, )
=1

where £ = ; +r? and Ei(s,-), | = 1,...,m are the Eisenstein series associated with the
m cusps (Note that Rea; = 0). It was proved by B. Simon [Si] utilizing the dilation-
analytic theory of [BC], which in that case provided the basis for the application of
analytic perturbation theory.

The identity of this formula in the Euclidean and hyperbolic cases suggests the pos-
sibility of proving it by the same method in both cases. The basic problem is the
separation of the embedded eigenvalues from the continuous spectrum. In the Eu-
clidean case the operator —A + V is transformed by a family of unitary operators
induced by dilations of independent variables. Analytic continuation in the scaling
parameter leads to a rotation of the continuous spectrum away from the eigenvalues;
successively turning resonances into discrete eigenvalues. The analogous transforma-

tions in the hyperbolic case are dilations in the hyperbolic distance or, equivalently,



power transformations U(t) of the independent variables. Since the continuous spec-
trum of A is entirely controlled by the 0’th Fourier mode and since the exponentially
decreasing cusp forms explode under complex power transformations, these operators
should be restricted to the y—coordinates in each cusp in the 0’th Fourier mode. The
0’th Fourier coefficient of the Eisenstein series E(z,s) is transformed by U(t) into a
function ao(z, s,t) which is for large y = Im z equal to yz+(e=3)0 4 C(s)yr=(=2t ip
each cusp. This is why the continuous spectrum of A(t) = U(t)AU(t™?) in the s-plane
is given by Arg i~'(s — 3) = —Arg t. This is proved by a calculation of A(t).

The embedded eigenvalues are unchanged, since cusp forms are unchanged by U(t).
The 0’th Fourier coefficient of the resonance function with resonance p 1s for large
y transformed into Res,C(s)y%‘("“%)‘ which becomes a square-integrable eigenfunc-
tion of A(t) for Argt < —Argi~' (p—1). Thus, the resonance p of A becomes an
eigenvalue of A(t), when the continuous spectrum of A(t) crosses the resonance. As a
consequence of the separation of the continuous spectrum from the eigenvalues Fermi’s
Golden Rule is now proved by the same proof as the one given by Simon in the case of

Schrédinger operators.
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MIXED BOUNDARY VALUE PROBLEMS FOR ELLIPTIC AND
HYPERBOLIC OPERATORS.

Joseph Bennish
California State University

Long Beach

The factorization method was used by Eskin to compute the asymptotics for elliptic
boundary value problems for a scalar pseudo-differential equation. Other methods were
developed by Schulze to treat the systems case as well as other types of problems on
manifolds with singularities. In my talk I presented the result that the factorization
method extends to elliptic boundary value problems for pseudo-differential systems. In
this result the asymptotics are expressed as singular integrals.

The second part of my talk was on mixed initial boundary value problems for second-
order hyperbolic equations. The main results are conormal regularity (that is, tangen-
tial regularity and regularity in weighted function spaces) and asymptotics for both
the mixed Dirichlet-Neumann-Cauchy problem and problems satisfying the Shapiro-
Lopatinski condition. The manuscript concerning the hyperbolic results is in prepara-

tion.
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THE TRACE FORMULA FOR THE SCHRODINGER GROUP,
GUTZWILLER TRACE FORMULA AND CLASSICAL PERIODIC
ORBITS

Zdzistaw Brzezniak (Bochum)

The eigenvalues of the quantum harmonic oscillator Ho = —1A+1 ELI wiz? acting in
L*(IR*) are well known, Ao = }wl+ow, wherea € V¢ and avw = 3 ojw;, |w] = 3 w;.
If we define tre™"Ho ;= 5~ ¢~#*= as a tempered distribution (in ¢ € IR) then one can
=it]w l—Id

easily calculate that tre="Ho = ¢= = (1= e~"), still in distributional sense.

An easy consequence of the last formula is
sing supptre™ 0 = {t € JR: ™" for some j € {1,...,d}}. (1)

A natural question then arises as to what extent is the above property characteristic
of the harmonic oscillator ?

Related problems have been studied (but for first order differential (or pseudo differen-
tial) operators on compact manifolds) by Y. C. de Verdier, J. Chazarin, Duistermaat
and Guillemin, Melrose. For the Schrddinger equation case, see: Albeverio, Blanchard,
Hgegh-Krohn, Commm. Math. Phys. (1982), Boutet de Monvel-Berthier A., Boutet de
Monvel L., Lebeau G., J. d’Anal. Math. (1993), Albeverio, Boutet de Monvel-Berthier
A., Brzezniak, The trace formula for Schrodinger operators from infinite dimensional
oscillatory integrals, preprint (1992), Albeverio, Brzezniak, Acta Math. Appl. (1994).
In this talk we mainly follow the third paper cited above. We present two results from

this work.

Theorem 1 Let for a strictly positive symmetric matriz Q% and for h > 0, Ho(h) =
—2A 4+ & <WPx,z> and H(h) = —2A + L <Q%z,2> +1Vi(z) be respectively the
free and the perturbed quantum harmonic oscillators (which are self-adjoint operators
in L*(IR%)). Here we assume that Vo(z) = [ €' <% dpy(y) for some complezr measure
g on IR* that has all moments finite.
Then sing supp tr e *H®) can be defined in a distributional sense as before and the
Jollowing holds

sing supp tr e *H ) ¢ sing supp tr e o), (2)

Since the RHS of (2) is h independent one may ask for the small A asymptotics of

sing supp tre"*#(*)_ For this we also need some preliminary notation. Denote the total



potential by Vi(z) = 1 <Q%z,2> +Vy(z), z € R®. We make the following assumptions
on ;. Theset {z : V/(z) = 0} is finite (and its elements will be denoted by ¢y, ..., ¢s,,
with so € IV \ {0}) and det V{(c;) # 0, detcos\/t_Vl"@ #0forj=1,...,8. 1t>0
is fixed such that any ¢-periodic, non-constant solution to the classical Hamiltonian

system

i)+ V(9(s) =0, 0<s<t ®)

is a nondegenerate periodic solution, see I. Ekeland, Convexity methods in Hamiltonian
mechanics. One can prove that there exist a finite number of pairwise non-congruent
t-periodic! solutions 71,...,7, to (3) such that any t-periodic solution v to (3) is
either a constant solution, ¥(s) = ¢;, s € [0,¢] for some j = 1,...,s0 or v = («;)s for
some J € {1,...,s1}, 7 € [0,t]. We also need the notion of oscillatory integral over a

(infinite dimensional) Hilbert space, which we do not recall here. Then we have

Theorem 2 If H,, = {y € H0,t; R*) : 4(0) = ~(t)} is a Hilbert space with norm
given by |7l|* = f{I7(s)* + 1(s)I*} ds then

tre—itH(®) kt/ ear {IMP-< By =<Cvi> } =4V () dn, (4)
Hpt

where the integral (with”) on the RHS s the oscillatory integral mentioned before, B and
C are trace class linear operators in ’Hpt deﬁned by < By,y>= fot <0:y(3),v(s)> ds,
<Crvy,y>= f; |v(s)|* ds, while V(v fo Vo(v(s)) ds. Moreover, with some additional
assumptions on the small potential VE,, and assuming that det sin(£Q) # 0 the following

asymptotic formula as h \, 0 holds
tre=H® = §7 kil 12 (h) (5)

1=1
+ (2mih)H Y R L GIOP OO de ey 4 h=F0(h),
=1

1

2

where I7 and I}““ are C* functions on IR such that I5(0) = {det c0s tVl”(cJ-)}

1

and I3*(0) = t(d; { PR + Vi (s()))} au,}i and d; is the determinant of the

linearization of the Poincare map corresponding to v;.

!Two periodic solutions to (3) are called congruent iff each of them can be obtained from the other
by means of time translation. If v is such a solution, then by ¥, we denote the translation of v by
time 7, i.e. v (s} =v(s+7), i 8+ 1 < torv,(s) = v(s+ 7 —1) otherwise.



Let us remark that for studying the limit &\, 0 we use results from two other papers:
Albeverio, Brzezniak, J. Funct. Anal. (1993) and Rezende, Comm. M. Phys. (1984).

Fakultat fir Mathematik, Ruhr Universitat, 44780 Bochum, Germany



LIOUVILLE PROPERTY AND ROUGHLY ISOMETRIC MANIFOLDS.

Thierry Coulhon

Université de Cergy-Pontoise

This is a report on a joint work with Laurent Saloff-Coste ([3]). We consider the
equivalence relation of rough isometry between measured metric spaces, as introduced
by Chavel and Feldmann [1], following Kanai [4]. Under very weak local geometry
assumptions, we associate with a riemannian manifold M a weighted graph X which
is roughly isometric to M. Several analytic features, such as the volumegrowth, the
Sobolev type inequalities, transience or recurrence, can be transfered from M to its
discretisation X or back from X to M; moreover, it can be checked that they are
preserved under rough isometries between graphs. Therefore, all these properties are
preserved under rough isometries between manifolds. This is nothing but a system-
atization of the work of Kanai (see [4], references herein and also [2]). In addition,
it can be shown that the scaled Poincaré inequalities on balls of large radius are also
preserved. Since Saloff-Coste has shown in [6] that the parabolic Harnack inequality
1s invariant under rough isometry between manifolds satisfying mild local geometry
assumptions. As a corollary, one has that a manifold with Ricci curvature bounded
from below, which is roughly isometric either to a manifold with non-negative Ricci
curvature, or to a polynomial growth Lie group, has the strong Liouville property, i.e.
there exist no non-trivial polynomial positive harmonic functions.

Let us recall in contrast the result of Lyons [5] that the Liouville property is not

invariant under quasi-isometry.
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PERTURBATION OF ANALYTICALLY CONTINUED DIRICHLET
RESOLVENTS.

M.Demuth
Potsdam

Let (Hp)s be the Dirichlet Laplacian in L?*(Z) where ¥ is some open region in [R? such
that JR? — ¥ is bounded. Let Hy = Hy + Bl pga_y, with Hy = —A, 8 > 0. Assume that
the sandwiched resolvent e™I#l(( Hy)g+2)~'e~1*l has an analytic continuation into a part
G o of the second sheet in the lower half-plane. A quantitative analyticity condition is
given which ensures that e~1#l(Hp + z)~'e~1*! is analytic in a set Gg C Go. Moreover,
for large 8 the distance between the boundaries of Gg and G, is estimated from below

in terms of 3.



SYMPLECTIC REDUCTION IN DEFORMATION QUANTIZATION

Boris V. Fedosov
Moscow Institute of Physics and Technology

Let W(M) be the Weyl algebra bundle over a symplectic manifold (M,w). Let D

denote an Abelian connection on W{M) with the curvature
?
QD = —Tuw,

h
and let Wp{M) be the algebra of flat sections of W (M) with respect to D. This algebra

is called a deformation quantum algebra.
Let H = Ho+ H,+. .. be an element of Wp(M) with a real function Hp(z) as a leading
term. Suppose the following conditions are fulfilled:

(1) Ho(z) generates a 27-periodic Hamiltonian flow, that is, a symplectic action of
the group U(1) on M,

(i1} Mo = {Ho = 0} is a noncritical level manifold, which is compact and connected,
(iii) the orbit space B = Mp/U(1) is a smooth manifold,

(iv) any solution of the Heisenberg equation

a= %[H, a
in Wp(M) is 2r-periodic, that is the group U(1) acts on Wp(M) by automor-

phisms.

Under these conditions we prove a reduction theorem for the deformation quantum

algebra, similar to the classical reduction theorem of Marsden-Weinstein.

Define the reduced quantum algebra as
R=Ay/Jy,

where Ap is the subalgebra of Wp(M) consisting of elements commuting with H and
Jy is an ideal in Ay generated by H. Let wp denote the Marsden-Weinstein symplectic



form on B. There exists an Abelian connection D on the Weyl algebra bundle W(B)
with the curvature

Qﬁz—%wg-!—wo-{—hwl-}-...,

where wg,w ... are closed two-forms on B, such that the reduced algebra R is isomor-
phic to the algebra Wpy(B) of flat sections of W(B) with respect to the connection
D.

This theorem allows us to construct an eigenstate functional on Wp(M), that is, a
functional (a) with values in A=(*~1C[[R]] having the property (Ha) = (aH) = 0
for any a € Wp(M). Combining this construction with the index theorem for quan-
tum algebras, we obtain necessary conditions for existence of an asymptotic operator
representation of the algebra Wp(M) such that the operator H corresponding to H
has a cluster of eigenvalues near zero. These conditions yield the Bohr-Sommerfeld

quantization conditions and multiplicity of clusters.



N-BODY HAMILTONIANS WITH HARD-CORE INTERACTIONS.

V. Georgescu

C.N.R.S. (Paris)

This is a resume of a work with Anne Boutet de Monvel-Berthier and Amy Soffer. Let
X be an euclidean space, L a finite lattice and for each a € L let X* be a subspace
of X such that a < biff X* C X?® strictly, X° = X°® + X if ¢ = sup(a,b), X° = {0}
if0=1infL, X' = X if 1 = sup L. We consider potentials V* : X* — R which have
a short-range and a long-range component verifying rather standard conditions, and
"hard-cores” K°® C X*® which are compact, star-shaped with respect to the origin and
with boundary of class C*'. Denote II, the orthogonal projection of X onto X® and
V(a) = Vg1, ¥(a) the characteristic function of the cylinder II;!(K) with base K*°.
For any number o > 0, we have a selfadjoint operator H, = A+ 3 ., [V(a) + atp(a)]
in M = L*(X), with form-domain H! (H* are the usual Sobolev spaces on X and H? are
|1+ R+ @ ba||,p = —i0,, Q
= multiplication by z). For each complex non-real z, (z — H,)™! — R(z) as a — 400,
strongly in B(H™!, H*!). The family {R(2)|z € C,Imz # 0} is a selfadjoint pseudo-

resolvent and defines the selfadjoint non-densely defined hard-core Hamiltonian H in

the weighted Sobolev spaces defined by the norms

H. We show that a generalized form of the conjugate operator method combined with
graded C*-algebra techniques can be used to prove an optimal version of the limiting
absorption principle for H (as usual in N-body theory, the conjugate operator is the
generator of the dilation group in X). There is a closed, countable set x(H) C R
(the critical set composed of thresholds and eigenvalues) such that for real A ¢ x(H)
limy—+o0 R(A +ip) = R(X £10) exists in B(H;',H1}). For t > 1 a more precise result
holds in fact. In particular, H has no singular continuous spectrum and local decay
holds at non-critical energies. _

An important technical point of the proof is a regularity result for the Dirichlet problem
in a non-smooth domain {2 for the Laplace operator A: if € has the uniform interior
cone property and the uniform exterior ball property, then © € Hy(2) and Au € L}(Q)
imply u € H2(R).



Multiplicative decompositions of holomorphic Fredholm

functions for pseudo-differential operators and
U*—algebras.

B. Gramsch and W. Kaballo

Let ¥ denote the submultiplicative Fréchet algebra of Hormander classes ¥, , 0 <
§<p<1, 6<1,embeddedinto L(H), H = L*(IR"). Let o4 (B), k=10,1,2, ..., be
the approximation numbers of B € IL(H) and let 8; > Bk41 > 0 be a null sequence.

Define J¢ps := {B € IL(H) : supB;' ax (B) < oo}. Furthermore let & C €~ be a
k
holomorphy region and ®(¥) the set of Fredholm operators ®(H) N (V).

Theorem. Let T : @ — ®(V¥) be holomorphic and homotopic in C(£2, (¥)) to an
element of C(§2, ¥~'). Then there exists a holomorphic function A: Q — ¥~! (group
of invertible elements) and §:Q — ¥~ N J55 such that

T(z) = A(z)(I1+ 5(z)) ,z€q.

Remarks: (1) S is holomorphic with values in a locally convex Fréchet left ideal Ty C
¥ N Jep>-

(2) For N =1 no homotopy assumption is needed, in this case there exists a rather
sharp result of Leiterer (1978).

(3) Additive decompositions (related to multiplicative decompositions) have been con-
sidered e.g. by Krein, Trofimov 1969, Gramsch 1973, Gramsch, Kaballo 1978, 1989.
(4) The theorem above can be proved with slight changes for arbitrary submultiplicative

U*—-algebras; it seems to be new also for C*-algebras of singular integral operators.



DERIVATIVES OF THE HEAT KERNEL
ON A RIEMANNIAN MANIFOLD
Alexander Grigor'yan, Bielefeld Universityt

Let M be a smooth connected non-compact geodesically complete Riemannian manifold,
A be the Laplace operator associated with the Riemannian metric, n 2 2 be the dimension
of M. We are concerned with the heat kernel p(z,y,t) (where z,y € M,t > 0) being by
definition the smallest positive fundamental solution to the heat equation .

—Au=0 (0.1)

and which is known to exist on any manifold.

A question to be discussed here is estimations of derivatives of the heat kernel. They are
based upon upper bounds of the heat kernel itself which were investigated in detail in [2]
Let us introduce the notation

Eneit) = [ 1979 oty 3] @

where r = dist(z,y), D > 2 is a given consta.nt and m = 0,1,2,.. . Let us specify that

V™ means A™/2 if m is even and VA™F if m is odd. In pa,rtlcular E, contains no
derivatives of the heat kernel:

2
— 2 r
Eo(z,t) = /Mp (w,y,t)eXP[Dt] dy

Theorem 1 I D > 2 then for any integer m 2> 0 the quantity E,, is finite. Moreover,
for any x € M E,(z,t) is a continuous decreasmg function of t. Besides, J.f E, is known
to satisfy for some z and for t € (0,T') the inequality

Eo(:r t) (t) (0.2)
with a positive continuous function f(t) then E,, is estimated as follows:
Em(z,) < %St(f—)ﬂ m=123.. (0.3)

where fr, is the m-th integral of f(t) i.e. is defined by induction:

t
fo=1Fr for(t) = /o fu(r)dr, k=0,1,2...

t Supported by the Humboldt Foundation



Of course, one need the initial estimate {0.2) of Ey in order to be able to apply this
theorem and to obtain the inequality (0.3) . The necessary estimates of Eq can be found
in [2] . We only note here that the function f(t) from (0.2) is expressed through some
isoperimetric properties of the manifold.

The second result to be presented here is pointwise estimates of the time derivatives of
the heat kernel. They can be obtained from the integral estimates (0.3) due to the fact
that % p = Ap and upon application of the semigroup property.

Theorem 2 Suppose that for two points z,y € M it is known that for all t € (0,T)

const nst

f()?EU(y’)\ ()

where C ; are constants and f, g are continuous, increasing functions on (0, T') such that
the functions log f(t} and log g(t) are concave , then for any integerm > 0 andt € (0,2T)

const r?
(5,0,8) < — —ew [-35)  ©09)

min (/5(£)g2m(2): /9($) fam(£))

Eo(z,t) < (0.4)

m

atm

where r = dist(z,y) .
For example, let
v ,tg1
t) = const
rey=const{ 7S]

where v, p > 0 and suppose for the sake of simplicity that the estimate (0.2) holds for all
z and for all £ > 0. Then by Theorem 1 we have the estimate (0.3) which 1mphee by
Theorem 2 the pointwise upper bound (0.5) which acquires the form

(0.6)

e const

pre (z,y, )“tmf(t) xp[ 2Dt] . (0.7)

Let us note that the estimate (0.2) with the function (0.6) can be deduced from the
pointwise estimate of the heat kernel:

const

plz,z,t) € *}(t—) (0.8)

supposed to be true for all z € M and ¢ > 0. Hence, (0.8) implies (0.7) . This fact was
known before (see [1] ) but the theorems 1,2 with the results of [2] enable us to do the
same for a more general function f(¢) rather than (0.6) .
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REGULARITY PROPERTIES OF THE ZERO-SET OF SOLUTIONS OF
SCHRODINGER EQUATIONS.

M.Hoffmann-Ostenhof, Universitit Wien

Joint work with T.Hoffmann-Ostenhof and N.Nadirashvili.
Let u # 0 be a real-valued distributional solution of the Schrédinger equation
(-A 4+ V)u=0in 0,

Q! a domainin R* and V € L}, (), V real-valued. For V € K™*(0) for some 6 € (0, 1),
u € C%(Q). Let Br denote the ball centred at the origin with radius R and Bgr C
and let NV denote the set of points in Bp where u vanishes in first order. Based on
a recent result [M.H.-O. and T.H.-O. 1992] we show that there is a constant C' < oo

such that Vzo € NV N By, and V&' < 6
| u(z) — Vu(zo)(z — o) |< C |z — 2o |'**, Yz € Bp,

where C = C(V,6,8,n,R,sup{| u(z) |: = € Br}). Using this estimate we then
prove that N{! is locally a (n — 1)—dimensional hypersurface which is the graph of a

C'#¥' —function, and hence "more regular” than u itself.



A VARIATIONAL FORMULATION OF FERROMAGNETISM -
ON THE REGULARITY OF THE EXTREMALS.

W. Hoppner

Berlin

We consider a ferromagnetic body 2 under the presence of an applied magnetic field
H,. If we neglect boundary anisotropy and magnetoelastic effects we may assume that

the free energy U of ) is given by the formula

/Z<am,> “"‘fﬂd Mdz-fHMdm+Lw(ﬁ)dx

Here we have denoted by M the magnetization of ! and by ﬁd(ﬂ ) the demagnetizing
field. The function ¢ is a polynomial. The integrals represent the exchange energy,
the energy of the magnetic fields and the energy due to crystal anisotropy. If the
temperature of 2 is constant the magnetization M has constant modulus, |]ffjr (z)| = M,,
z €  (cf.[3] and, for the mathematical setting, [4]).

Thus we consider the variational problem
U(M) = Min! (1)
on the set
Wi(Q,S?) = {JVI e WHQY| |M(z)| = M, a.e} (é)
of Sobolev mappings.

Theorem 1 Let M be an absolute minimum of (1),(2). Then there exists an open set
Q. C Q such that M is smooth in Q; and the one-dimensional Hausdorff measure of

1 — Q, vanishes.

Corresponding results are known for harmonic mappings. Our proof is based on a
theorem of Giaquinta [2] on partial Holder continuity and on a modification of the

methods used by Evans [1] for studying the regularity of harmonic mappings.
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ON SOME STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS.

Helge Holden'
University of Trondheim

Norway

In my talk I discussed the two related stochastic partial differential equations

ue+ f(u)e = h(z, 1, u) + g(w)W(2)
u(z,0) = uo(z), z € R

and

u + Ay, V)u = vAu+w

u(Zy,y .y Tn, 0) = up(21, ..., n)

(2)

In (2), u = (us(z1,00y Tny 1))y ooy wn( 21, ooy Tny 2) and (v, V) = 377 “ié"z";' In the equa-
tions above, W and w both represent white noise. The initial data in (1) and (2) are

deterministic.

In our analysis of (1), jointly with N.H.Rinebro (Oslo) [1], we interpret the equation

in the weak sense, i.e., u is a solution of (1) iff

Jo dt [{Rdz [pru + f(w)ps] + [Rdzuo(z)e(z, )
= — [{Rdz [ dB(t)pg + [Rdz [T dthe

for all ¢ € C3(IR x [0,00)). The stochastic integral is interpreted in the Ito sense.

(3)

By an operator splitting technique, also called the fractional steps method, where we
iterate beween the conservation law u; + f(u); = h and the stochastic differential
equation u; = gW (t) interpreted as du = g(u) dB(t), we prove existence of a solution
of (1). In addition we provide a numerical method and illustrate the result with an

example from flow in porous media.

The methods we use to analyze (2) are based on the so-called white noise analysis,
and the results are joint with T.Lindstrem, B.Oksendal (Oslo), J.Ubge, T.-S.Zhang

! Research supported in part by NTNF, STP 29643



(Hangesund) [2]. Let S and S’ denote the Schwartz space of rapidly decreasing func-
tions on IR and its dual respectively. Applying the Bochner-Minlos theorem we obtain

the probability space (S’, ¢) where p is determined by
[ <o dufw) = M, g e s @)
Sﬂ

where || - || is the L2-norm. We recover white noise as

W:8x8— R

W(w,¢) = (v, )
Brownian motion can be determined by B(z) = (w, Xjo.z))- Let h.(z) denote the n—th
Hermite polynomial, and &,.(z) = cue‘fﬁz'hﬂ(\/ﬁz). Then {£,} is an orthonormal basis
for L2(R). The Wiener-Ito chaos theorem says that {H, = II7 ks, ((w,;))} with
a = (a,...,an), constitute an orthogonal basis for L*(&’, u).
Thus, if X € L*(S8’, 1), we can write X =} _ ¢, H, uniquely. With this we can define
the Wick product as

(3)

XoVY =) cadgHarp (6)
a,B

for Y =% ,dsHp € L*(S’, p). One can prove that

where we have on the left side a classical Ito integral of the adapted process Y;. With

this we interpret equation (2) as

%,
U+ Ao o = yVu + W (8
Oz
For simplicity of notation we consider the scalar case, i.e.,n = 1. Assumethat u = _a_);(

and W = —2X. Then we obtain the KPZ-equation
X A /9X 2
ot~ 2\ Oz

If we furthermore write Y = Ezxp (%X) we obtain the heat equation with a stochastic

) +vAX + N, 9)

potential, viz.

—a—y—szY+~—/}-YoN
2v

ot (10)
Y(z,0) = f(=)



We can solve this equation explicitly as
A A t
Y(t,z) = E* [f(bat)Ea:p (5;/ N(s,b,,) ds)] (11)
)

with o = v/2v and E denotes expectation with respect to Brownian motion (be, f’"")
For more precise statements of results and assumptions, as well as references to relevant

literature, we refer to our papers listed below.
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On the Dirichlet problem for pseudo differential operators generating Feller semigroups
Niels Jacob

In [2] we proved that there exists a large class of pseudo differential operators p(x,D)

generating a Feller semigroup and satisfying the following estimates

(1) IpCeDYall e g < cllullye gy s
(2) lwlly2 gy ¢ lPCDYullyz g + lfull)
(3) |Buy)] <clullyz g pevllyey g

(4) B(u,u) 2 ellufZz ;o — ulZ,

where .

(5) B(u,v) = {Lﬂp(x,n)u(x)-v(x) dx,

and for a fixed continuous negative definite function aZ KR SR , a2(§) >c|é|Tforr >0 and

| €| large, the norm ”‘”a’,s is defined by

(6) ol 2 g = lﬂ(l +22() % |u(e)| 2 ae .

2
atl/ 2(IRH)) is a Dirichlet space. We are interested in

In case that p(x,D) is symmetric, (B,H
solving the Dirichlet problem

M p(x,D)u=finQ,QCC[Rn,
7

u=ginQC.

For g=0 and fe¢ L2(1Rn) we have the following result for weak solutions

Theorem ([3]) For the representation problem B(u ) = (f,p)  for all ye Cg(ﬂ)
3212

2
Fredholm‘s alternative theorem holds in the space Hg 1/ 2(Q) = Cz(ﬂ) . More—

) 2
over, for any 9 € C3(€) it follows that Yu_ € H2L(R®) . If in addition fe L2(®™) n LP(RY),

p> %V 2, then u, € L(RY) .



21/2,8 . : o
On the other hand, for =0 and ge H*" (R™) a generalized solution of (7) is given by

2
u_(x)=FE*gX_)), and u__ e H? A/ 2(ERH) , where (X,),, denotes the Feller process
pr q pr t

20
generated by p(x,D), and aq is the stopping time oq := inf{t>0, X, ¢ 1} . By a result
of M.Fukushima we have B(upr,cp) =0 for all pe C (R). From this and the theorem stated

2
above, it follows for all ¢ € Cz(ﬂ) that 1,bupr e H? ’1([Rn) N

- a%1/2 - - PR T i
pr ¢ H* */%®R"™) should be regarded as a generalized solution of (7).
But in general it is open, whether

The function u := u, +u

(8) Lim u (x)= gy
Qaxayean P!

and

(9) lim uf(x) =20
Dax-ye o °

hold. In some cases, for example for p(x,D) = (—A)t/ 2 ,0 <t <1, such results do hold, see
R.Song [4].
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SOME TOPOLOGICAL ASPECTS OF ELLIPTIC BOUNDARY
PROBLEMS.

G. Khimshiashvili
Thilisi Mathematical Institute

Georgia

In this informal report we describe a couple of topological observations on the L.Boutet
de Monvel algebra (as presented in [1]) which emerge naturally (and perhaps may

become useful) in the context of analytic K-homology [2].

Let X be a smooth manifold with (possibly empty) boundary Y and E, J be complex
vector bundles over X, Y, respectively. Our main concern is the Boutet de Monvel
Algebra B = B(X,Y, E, E, J,J) (in the notation of {1]).

In fact, at the present moment we are able to obtain certain preliminary results only

for trivial bundles but our basic considerations make sense also in the general case.

The strategy is to use recent developments within the (at least) three related ap-

proaches, namely, we would like to:

1) compute (at least some of) homological functors such as Hochschild homology
HH,(B), cyclic (co)homology C H{"(B) and Kasparov bifunctor K K,(B) [3];

2) compute its non-stable K-theory in the sense of M.Rieffel (cf., e.g., [4], [5]), that
is the homotopy groups =,(GB), where GB, as usual, denotes the groups of units
(invertible elements) of B or the groups 7.(F B), where F'B denotes the subset
of elliptic (Fredholm) elements of B;

3) compute K-homology classes of extensions occuring in the CCR-tower of B in

the sense of Dynin [6].

For scalar pseudodifferential operators (¥ D0Os) on a manifold without boundary a sub-
stantial part of this program is already realized. In particular Brylinski-Getzler and
also Wodzicki have computed Hochschild and cyclic homologies for the algebra of pseu-
dodifferential symbols B® /B~ [7] (there are also some related papers of Wodzicki yet

inaccessible for the author), 7.(FB) in certain cases were computed by the author (8]



and the singular integral extension is realized as the fundamental class in K-homology
[2).

In the presence of boundary the results of such type are absent and we tried to do
first steps in this direction. In particular, recent results of A.Wassermann on the

cyclic homology of function algebras on Chevalley orbifolds [9] suggest the following

computation which seemed to us somewhat related with B.

Represent V' := X as the simplest orbifold obtained from its double W with the
evident action of Z; = Z/2Z (reflection w. r. t. boundary). This Z-action lifts to all
reasonable functional spaces, in particular, to the space of classical symbols of ¥ DOs

on W: § = U®(W)/T-=(W).

Following Brylinski and Wodzicky one can construct now spectral sequences converging
to HH.(T) and CH.(T). A formal analysis of these spectral sequences shows that
they satisfy the conditions permitting to apply the ”invariance principle” formulated
by A.Wassermann ([9], main theorem of the fourth sequel) so that one can introduce

the invariant subalgebra T" of S and obtain certain reductions to usual (co)homology.

Theorem 1
HH, (T)= H™*(Z x §', ©),

CH*(T) = (ker(d+') N D) ® Hu_o(Z, €) & Hu_s(Z,C) ...

where Z denotes the pair (§*X,S*Y), S* standing for spherical cotangent bundle, D,
are spaces of the De Rham currents and d is the dual De Rham operator.

We would like to emphasize that the relation (if any) of these formulas to genuine
algebra of boundary problems remains unclear. Initially, it seemed to the author that
this may be applied for inner symbols with the transmission property. I was unable to
explicate this idea and some remarks of Prof. E. Schrohe in the course of discussions
during this conference have convinced me that it should not be possible. Besides
I was neither able to find somewhere proofs of Wassermann’s results nor to prove
them myself. So that these formulas are to be considered as some conditional results
(modulo some technicalities in the ”invariance principle”) and rather as an invitation
to a collaboration with experts in boundary problems, a collaboration in course of
which topology should benefit from differential equations as it has already happened

many times.



In conclusion, we would like to outline another perspective concerning .(FB). The
point is that the well-known construction of boundary symbols going back to Vishik
and Eskin assigns to a boundary problem p € B a family sy (P) of Wiener-Hopf opera-
tors (WHOs) parametrized by points of S* Y, and P is elliptic iff this family consists of
invertible operators. One obtains thus a mapping sy : B — C(S*Y,GW), where W
denotes now the algebra of matrix Wiener-Hopf operators in suitable function spaces
on IR. The key observation is that it is possible to describe the set of connected compo-
nents of the target space of mappings because the initial homotopy groups 7.(GW) are
already known [10] (in fact, we dealt there with singular integral operators but the rea-
soning applies also to WHOs) and the rest is a standard problem of algebraic topology
which admits an algorithmic solution using Sullivan’s theory of minimal models. As a
trivial example, when X is a simply connected planar domain the boundary symbols
for scalar problems define simply two classes in the fundamental group =;(GW) = Z,
that is two integers, and is not difficult to relate these integers with the index of the cor-
responding elliptic problem, which includes, in particular, the model result of 1.Vekua
on the oblique derivative problem. Similar connections are, of course, available also in

higher dimensions.

Our last remark is that there are some recent computations of K-groups for solvable
algebras of length two in the sense of Dynin and this is just the case for Boutet de

Monvel algebras.

3
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STATIONARY DIFFRACTION PROBLEMS ON THE WEDGES WITH
GENERAL BOUNDARY VALUE CONDITIONS
A.LLKomech *), Moscow State University
A.E.Merzon **), Moscow State Pedagogical University

We consider the boundary value problem for the Helmholtz equation in the plane angle
@ of the arbitrary magnitude ¢, 0 < ¢ < =:

Hu(z) = (A +w)u(z) =0, z€Q (1)
Bulr, = fi(z), 1=1,2 (2)

Here w € C, B, are arbitrary linear differential operators with constant complex
coefficients. We denote by T'; Lhe sides of augle @ , fi are temperated distributions on
I'; . We seek a solution u in the space S'(Q).

It means that u(z) = uo(z)|g, where up € S'(R?) and supp up C @ . Our result
is the deriving of the explicit formulas of all solutions (1), (2). The boundary value
problems for the Helmholtz equation with different boundary conditions were consid-
ered in [1-6, 8, 9 ]. Our results may be applied to the deriving of trapping modes in
open wave guides, to the verification of the limit amplitude principle, to the finding
of a scattering amplitudes, to the analysis of high order approximations of boundary
value conditions in scattering problems etc.

1. Let ¢ < 7. Then we apply the Paley - Wiener theory, the division theorem and
the Cauchy - Kowalewski method to reduce (1), (2) to the SAE (system of algebraic
equations) on the Riemannian surface (3, 8].1f, for example, ¢ = 7 then Q = Q44 =
{z € R*:z; > 0,23 > 0} and we get SAE on the riemannian surface

V++EV0{ZEC2:Im21>0,I=1,2}.

" Here'we denote by V the riemannian surface of complex characteristics of the Helmholtz

operator H:
={z€C?: H(z) = —2f — 27 +w? = 0}.

The SAE is the following:

dy(2) = 3{(n1) = iz} (21) + B3(z) — iz1D3(22) = 0, z€Vis (1)

B (—iz))0(z1)+ B}~ zz;) z)+3cf( —iz)*, 1=1,2, Imz >0 (2)

Here the functions /() are analitic for Im z; > 0, F71, (3)|r+ are equal to Cauchy
data of the solution u(z) of the l?roblem , {2). The sums in (2’) are finite. The
solution may be represented by ¥, in the form : .

u(z) = F2L[d(2)/H)), 2€Qur. (3)

*) With the support by Grant of RAS, RMHE and AMS.
*) With the support by Grant of RAS.



We call (1) a connection equation. It is the relation between Cauchy data of
solution u(z) on the complex characteristics of Helmholtz operator H.

We reduce the system (1’), (2') to RHP (Riemann - Hilbert problem) by V.A.Ma-
lyshev automorphic functions method as in (3, 8]. In the case Im w # 0 this RHP is
well posed and ‘may be solved explicitly by the traditional Riemann-Hilbert procedure
as in [3].

In case when /m w = 0 the RHP is ill posed. This additional difficulty was overcome
in [8], by introducing of the "retarded” solutions to the problem (1), (2). For the
solutions the corresponding RHP is well posed.

2. Let now ¢ > 7 and Im w # 0. In the case we cannot apply the Paley - Wiener
theorem. Mea.nwhlle in the case the connection equation similar to (1') exists too. For

cxample, if p = -1r, and Q = R2 \ Q.H. then roughly speakmg, SAE (1 ) ( ) holds for

ZEV\ V. 2L Y

Further we reduce corresponding SAE of the type (1), (2’) to RHP by the method
of [4]. In the case, when Im w # 0 the solution u(z) of (1), (2) may be expressed by
(3).

3. Finally, let ¢ > 7 and Im w = 0. In the case, (3) loses the sense. Then we
derive for u(z) the Sommerfeld type representation instead of (3). This representation
we derive for "retarded” solutions to the problem (1), (2), mentioned above.

Aknowledgments. Authors thank the Organizers of the Conference "Partial Dif-
ferential Equations” 1993 at Potsdam University for support.
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ON ASYMPTOTICS OF SOLUTIONS OF NONLINEAR ELLIPTIC
EQUATIONS IN A NEIGHBOURHOOD OF A CONIC POINT OF THE
BOUNDARY.

V. Kondratiev

Moscow

Consider equations of the form

i 3%__ (az‘:‘(m)g—;) — ao(z)uf"u =10 (1)

f,j=1

and

n 82
Y aii(2) 57— — aofe)lulP e =0 2)
L]

1=1

where = = (ml’-"awn), 7‘77'1|€|2 S Zn 1 aij(x)é‘ifj < m2|£12a E € Rn’ z € Q, my, Mg =

‘1j= -

const > 0, ag(z) = ap = const > 0. We assume that a;j(z) are measurable and
a.-j(z:) = aj,-(x).

A set K € R" is called a cone if for any z € K and any constant A > 0 the point Az
belongs to K. Weset K' = K({z:|z|=1}, Ky ={z:z € K,|z| < b}

We consider solutions of equations (1), (2) on © = Kj with the boundary condition

Ou

5, =° ifle] < b (3)

where % is the derivative of u in the conormal direction. Assume that 8K’ satisfies a

Lipschitz condition.

Theorem 1 Let u be any weak solution of (1), (3) on K and

Then
lu(z) — u(0)] < Clz[*

for some s > 0. Here C,s depend on my, ma, ao, n, p.



Remark. Assume 1 < p < 2=, Then there erists a weak solution of (1), (3) such
that

]in?]. u(z)|z|"? = 400

Consider the solution of the problem (2}, (3) on K} such that u(z) € C*(K3\0) N
C'(K,\0). Assume that K’ € C? and p > 1.

Theorem 2 There ezists a constant C; > 0 such that |u{z)| < C'1|$|13_P.

Remark 1. If |a;j(z) — 6| < Clz|", v > 0, p > 25 then |u(z) —u(0)| < Clz|*, where
u(z) is any classical solution of (2), (8), and s > 0.

Remark 2. For any p, p > 1 there ezists a;;(z) € C(K), such that problem (2), (3)
has unbounded solutions. This means that Theorem 1 is not valid for problem (2), (3).



EIGENFUNCTION EXPANSION OF MULTIPARAMETER SPECTRAL
PROBLEMS. ‘

A. Yu. Konstantinov (University of Kiev)

We study multiparameter eigenvalue problems

Aju; = Z/\kBjku_f, 0#u; € H;, 1 <j<n,

k=1

where A;, Bji are symmetric operators in separable Hilbert spaces H; and Bj; are bounded.
Here A = (Ay,...,As) € C" is the spectral parameter. '

We discuss some recent expansion results for such problems. For the case of multiparameter
problems with elliptic operators A; and multiplication operators Bj; we prove theorems
about smoothness of corresponding eigenfunctions.

Also we give an abstract approximation criterion for the existence of commuting self-adjoint
extensions of a family of symmetric operators.
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INTERIOR BOUNDARY VALUE PROBLEMS WITH SINGULAR
INTERIOR BOUNDARY.

0. Kounchev

In analogy with the univariate spline-theory, we consider the problem

L (Au(z))? dz — inf

where n(z) = f(z), for z € ', where I is a piecewise smooth variety of codim 1 in Q,

and I' D 992

We prove theorems for existence and smoothness of the solution to the above problem.
The solution % is combined of pieces u; of biharmonic functions in every connected
subdomain ; of Q\T'.
The functions u; and wuy satisfy some matching conditions on the joint part of the
boundaries 9§; N 9.
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NONLINEAR SECOND-ORDER ELLIPTIC EQUATIONS WITH JUMP
DISCONTINUOUS COEFFICIENTS.

P.-L. Lions

Université Paris-Dauphine

N. Kutev
Institute of Mathematics

Sofia

We investigate the Dirichlet problem for quasilinear second order, uniformly elliptic

equations

a®(z, 4, Du)ugs; + a*(z,u, Du) = 0 in O, k=1,2; u = gon 89 (1)
¥z, u, Du, D*u) =0in Q, k=1,2; u = gon 99 (2)

in a bounded domain Q C IR, n > 2 with a smooth boundary 9. We assume that
1 =Q,U80N;US is divided into two subdomains Q; and §; by a smooth surface §
without self-crossing points. The coefficients of (1), (2) are supposed to be smooth on
each side of S on Q;, {1, respectively, and, when considered as functions on £, present

some pure jump discontinuity on S.

We wish to show that under general and natural conditions on the coeflicients, including

uniform ellipticity, there exist unique solutions of (1) and (2) which belong at least to

cHQ) N C(D).

In the case of (2), for general nonlinearities f', f?, the equation will be understood
in a viscosity sense. Viscosity solutions, as introduced by M.G. Crandall and P.-L.
Lions and M.G. Crandall, L.C. Evans and P.L. Lions, have provided a general and
efficient tool for studying the existence, uniqueness and regularity questions for fully
nonlinear elliptic equations. The C! character of solutions is clearly fundamental for
the uniqueness of solutions, since we can always prescribe u as we wish on §, solve
(1) and (2) on each side, i.e. in ©y and Q2, and obtain in this way a continuous (even

Lipschitz contiuous) solution of (1) or (2) in ; which is therefore highly nonunique.

Our motivations for studying these problems: first, it is a natural first step towards

the study of nonlinear elliptic equations with discontinuous coefficients. Next, when



f*, f? are convex say in (Du, D*u) so that (2) corresponds to the so-called Hamilton-
Jacobi-Bellman equations of optimal stochastic control, problem (2) has a very natural
interpretation in terms of optimal stochastic control since it only means that different
sets of control can be used in ©, and Q;. This has many applications to problems

where some controls are forbidden in certain regions.

Theorem 1 Suppose that f* € C'(Qx x R x IR* x S™) and the uniform elliptic con-
ditions hold i.e. '

MNEP < £5 (z,2,p,7)6°8 < AJEP, k=12

T.J
for (z,2,p,7) € Y x IR x IR™ x S™, £ € IR" and some positive constants A, A. Let Q
be a bounded domain in IR* and S satisfy the exterior and interior sphere conditions.

If f¥(z,2,p,r) is a nonincreasing function of z then (1) has at most one solution

u € C*0 NQL)NCHA) N C(Q).

Theorem 2 Let § be a bounded C** smooth domain in BR* , n > 2,0 < u <1 and
akii, ok € C', § € C3, g € C¥*. Suppose that the uniform ellipticity conditions

MEPP < a9 (z,2,p)€'¢ < AlEP
hold as well as the natural structure conditions
la*| < C(l2]) (1 + [pf)
(L +Ipl) |ap], |ab7}, |az™| < e|2])
(1+Ipl) |a5], |ai], |ab| < C(l2]) (1 + |pI*)
If
za*(z,2,0) <0 forz € Q, |z| > M, k= 1,2
for some nonnegative constant M, then problem (1) has at least one solution

u € CHANISYNCH () NCHM (D), k=1,2

Next, a word on the method of proof. Uniqueness follows from some simplé consider-
ations or modifications of the maximum principle and/or of the uniqueness theory for
viscosity solutions. Concerning existence, our strategy of proof is the following. We
first regularize equations (1)-(2) by appropriately smoothing out the discontinuity of
the coefficients across S. To find bounds on derivatives directly (without diff.) seems



hopeless in view of the result of Safonov. This is why we first prove some estimates on
tangential (to S) derivatives, namely, bounds and Holder continuity; this follows from
a modification of Bernstein’s method, where we consider only the tangential part of
the gradient, differentiating the approximated equation tangentially. Then we deduce

similar estimates for the normal derivative to S.



ON NON-DIVERGENT SEMI-LINEAR ELLIPTIC EQUATIONS WITH
DISCONTINUOUS COEFFICIENTS.

E.M. Landis

Moscow
Consider the Dirichlet problem for the equation

Lu= a""(a:)u,,,.,,j + F(z, Du) + ®(z,u) = 0; (1)

Lu =0, ulog = ¢ (2)

in a bounded domain G C IR*. We assume that ¢"(z), F(z,¢), ®(z, ) are measurable

in all variables a’(z) = a/(z), and
0 < d(=)|n|* < anin; < MIn[*, 2 € G, n € R (3)

We also assume that ®(z,0) = 0 and ®(z,£) monotonically decreases in £.

1. The maximum principle is true: for u,v € C*}(G)NC(G) from the conditions Lu > 0,
Lv <0, and u|se < v|sg it follows u < v in G.

2. Let F(z,n) = 3 b'(z)|m:|"*Psgn m;, ||B]] > 1,1 < B8 < 2. A function v € C*G) N
C(G) is called a super (sub) function if v|sg > ¢ (v|se < @) and Lv < 0 (Lv > 0) in
G. The function u* = inf v (v~ = sup v) where the infimum (supremum) is taken over
all super (sub) functions is called a super (sub) solution. From the maximum principle
it follows that v~ < u¥.

Theorem 1 The functions u* and u~ satisfy Holder’s condition in any sirictly interior
subdomain of G with the exponent (8 —1)/8.

Theorem 2 Ifin (3), a(x) > const > 0 in a neighborhood of 0G, ¢ in (2) satisfies a
Holder condition in G and ut|sg = u™ |oc = .

3. Let F =0 and |®] > Clul?, 0 < ¢ < 1. Define u* and u~ as before.

Theorem 3 The functions ut and u™ satisfy Holder’s condition in any strictly interior
subdomain of G. If OG satisfies a Lipschitz condition and o satisfies Holder’s condition,
then ut|sc = u™|ag = .



4. Let in (3), a(z) > a > 0 everywhere in G. Denote by A(z) the maximal eigenvalue
of the matrix a(z) = ||a”(z)]||. Define by a}’(z) the convolution of a”(z) with a positive
function with support in a ball of radius k. Assume that |F(z,¢)| <9'*?, 0< 8 < 1,
F is odd in 5 and |®(z, £)| is decreasing in {. Assume for simplicity that ¥ and ¢ are

infinitely differentiable. Consider a solution of the problem
ij h h A n.
ay (z) uy,,, + F(z, Du*) + ®(z,u") = 0;

uh|ac; =@

If OG satisfies a Lipschitz condition and ¢ satisfies a Holder condition then the family

{u*} is compact in C(G). Choose u™ — u,.
Theorem 4 (i) u~ <y Lut and

(11) for almost every point zo € G there exists a second order polynomial Py (z) such
that L (Pyy(z))],_,. =0 and ug(z) — Pro(z) = 0|z — 20/?).

r=xp

Theorem 5 Let € = sup,(ir ||aij||/ Amez(z)) and € > 2. Let N C G be a closed
subset in G and capz_o;N = 0. Assume that for any point zo € G\N,

038cC

O(z0) a’(z) < AMz)/n

in some neighbourhood U(zo) of zg. Then

uoEu"'Eu'



PERIODIC AND STATIONARY SOLUTIONS TO THE
SCHRODINGER-POISSON AND WIGNER-POISSON SYSTEMS

O. Kavian, H. Lange, P.F. Zweifel

We are concerned with the study of the Wigner-Poisson (WP) and Schrédinger—Poisson
(SP) systems with space periodic boundary conditions on the unit cube @ = [0,1]* in
IR®. Both (WP) and (SP) are quantum transport models, they describe the quan-
tum mechanical motion of a large ensemble of electrons in a vacuum under the action
of repulsive or attractive Coulomb forces generated by the charge of the electrons.
Thus, both models play an important role e.g. in semiconductor theory. We refer to a
couple of recent paper’s on (WP) and (SP) for an introduction to the subject; see
BREZZI-MARKOWICH [1], ILLNER-LANGE-ZWEIFEL [2], LANGE-ZWEIFEL
[3], [4], BOHUN-ILLNER-ZWEIFEL [5], ZWEIFEL [6], ILLNER [7], ARNOLD-
NIER [8], ARNOLD-MARKOWICH [9]; a general introduction may be found in
TATARSKII {10}.

When studying (WP) and (SP) for periodic boundary conditions some slight changes
in the equations have to be taken into account. The physical model should be a plasma
of electrons moving in a background of fixed positive charge density (say C(z)) whereas
the overall plasma is charge neutral. Thus, the Poisson equation takes a different form

than that of most of the references, namely it should read as

(P) AV(z,t) = C(z) — n(z,1)
where n(z,t) is the density of negative charge which (together with C(z)) is normalized
to
/n(a:,t)dx = /C’(J:)da: =1;
2 2
for simplicity in this note we consider only the case C(z) = [. Furthermore, the

momentum is quantized to vy = 27k, k € Z>. Following the discussions in [5], [6], [7]

the (WP) and (SP) systems in our case can be shown to take the form

(WP) Orwi + vk - Vowe + O(Viwe(z, 1) =0 ,  wi(z,t) = w)(z) ;



here k € 23, wi(z,t) = w(z,v,t) (where w(z,v,t) is the original Wigner function),
and O(V) is the pseudo-differential operator given by (for quantum number # = 1)

O(V)w(z,t) = —i Y f[vﬁ;’z,t) 7

K'ez33q

Owy (2, )2 ¢ dz

here V(z,t) is a solution of Poisson’s equation (P) and n{z,t) = 3, wi(z,1); the
(SP) system reads as

10pm = —%A’l,bm + V(z,t)m ,
AV = 1-n(z,t), ¥i(z,0) = pi(z) Z Am | Ym(z,0) |*

kez3
both (WP) and (SP) are subject to 1-periodic boundary conditions on @; furthermore
in (SP) one should assume that {|¢m|lz2(q) = 1, (¥m, 1) = mi; whereas the (An) are
the occupation probabilities of the initial pure states (¢,,) which build up the initial
mixed state. The link between solutions of (SP) and (WP) is given by the WIGNER-

transform
zt)._z,\ /¢m Z wn(E2

whereas in terms of ¥ = (¢,,,) ©(V) is given by

, t)e‘lm'kzdz

: (1)

OV )u(z, 1)
= —zZA VESE, Ol (52, 00 (12, ek ds
meN

We formulate results on

a.) Existence and uniqueness of global-in-time strong 1-periodic solutions of (SP);

b.) Existence of countably many 1-periodic stationary states of (SP), i.e. solutions

of type
U(z,t) = e“'d(x)

with some w € IR and a real 1-periodic function &.

Theorem 1 Let & = (p,,) € X? with L*-norm equal to 1; then for any T > 0
there is a unique global strong 1-periodic solution (¥, V,n) of (SP) which satisfies the

conservation laws

N Oz =1 » IV DlLq) +IVV(,t)llLaq) = const. (Yt € S). (2)



Theorem 2 There ezists a countably infinite number of different stationary states
V,(z,t) = e“'®;(x) with 1-periodic real functions ®; € H?* N C* such that w; — oo

for j — co.

Remark: All results stated for (SP) transfer by using the WIGNER transform (1) to

similar results for (WP) which we do not formulate here.
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GEOMETRIC REMARKS ON AN INVERSION FORMULA FOR THE
HEAT EQUATION.

Eric Leichtnam
C.N.R.S. (Paris)

This report is a brief summary of two forthcoming papers: one in collaboration with
Frangois Golse the other in collaboration with Francois Golse and Matthew Stenzel.

To motivate our work let us recall Lebeau’s ([2}) inversion formula for the heat operator
d: + A (A is nonnegative) of (the flat euclidean space) IR". For any u € L*(IR")

- 1 _==p?
e ‘Au(a:):- 7 /ne - u(y)dy

defines for all ¢ > 0 a holomorphic function on €™ denoted by Tu(t,-). Lebeau’s

formula is stated as follows: for all y € IR™ and € > 0, one has:

u(y) = c(g,q)/0 e« tit_l f||— (1 -2tv—1e7w - grad,) Tu(t,y — vV—lw)dt dw

#I"”

for all u € C§°(IR").

We will state an analogous formula when IR” is replaced by any real analytic Rieman-
nian orientable compact n-dimensional manifold (X, g). The volume form defining the
orientation is denoted by u, A = —div(grad-) denotes the Laplacian of (X, g), p(z,£)
is the principal symbol of A and d(z,y) denotes the geodesic distance on X.

Let us recall the following theorem of Guillemin and Stenzel (see [3]).

Theorem 1 There is an open neighborhood U of X in T*X and unique complez struc-

ture on U such that:

(1) (z,() — o(z,{) = (z,—() defines an antiholomorphic involution on U = o(U).
(ii) On U the standard I-form ( - dz is equal to +Im Gp.

In this work we shall work with such a complexification U of X.



Theorem 2 For ¢ > 0 small enough the complezification of the exponential map is
given by: '
T.X = {(ID,{) € 1. X; "6”2 < 5} — U(C T*X)
(z,€) — Exp.(:£)

¢ :h—< h >, where <, > is the scalar product of T, X and ||¢||2 =< &,¢ >,.

Thus Exp,(i€) — z defines the usual cotangent fibration of X.
Let us fix ¢ € X and write Y = {Exp_(i£)/||é]l- <€} ( for € small enough). We

orientate Y and JY in a compatible way.

Roughly speaking if we consider the holomorphic extension of the metric g (of X) to
U and restrict it to Y we obtain a non degenerate €-quadratic form g* on Y. In the
same way we construct (from g on X) an n-form g#¥ on Y which never vanishes. We

can define on Y a notion of grad”.

Definition 3 (i) For any complez C*® vector field v € T(Y,T%Y) let us denote
div¥v the scalar function defined by d(i¥ u¥) = div¥v u¥ where i¥ is the interior

product and d the exterior derivative on Y.

(ii) AY = —div¥ grady(~)

We can now state our inversion formula for the heat equation (recall that T f(t,m) =
(e7*2 f)(m) for (t,m) € IR** x U). We still denote d*(-,-)the holomorphic extension of
d*(,) to a neighborhood of the diagonal of X x X in U x U.

Theorem 4 Let us assume that \/—Red?(-,-) defines a distance in the fiber Y (it is

non negative for € > 0 small enough).

(i) There is a function K(t,m) € C®(IR*™ x Y) such that (8, — AY)K = 0 and
K(t,m) — §(z) (the dirac mass) whent — 0.

(ii) For every f € C®(X) satisfying [, fdu =0 we have:

f(z) = /0 dt /BY [sz':mdprY—Ki:mdny]



When X is a symmetric space of the compact type then Y is an open subset of the

”dual” (see [4]) of X and the preceeding geometric objects of ¥ have remarkable

properties. For instance, —g¥ defines a real definite positive quadratic form on Y
and /—d?(-,-) defines the geodesic distance of —g¥ (so the hypothesis of the theorem
is satisfied).
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DIFFUSION PHENOMENA WITH SHOCKS: RESULTS ON PURE
AND APPLIED PROBLEMS.

Glinter Lumer

We develop an operator-theoretic approach in the setting of a Banach space X, and
in the classical PDE context with X = C(Q) appropriate for a realistic treatment of
diffusion shocks (abrupt changes in boundary values), or heat shocks, with specific
applications. The evolution of such systems between shocks at t =ty and t = ¢; > tg

is described by an initial value-boundary value (Banach space X) problem:

du

= = Au + F(t)
u(to) = f (mild g.s.) (1)
Bu(t)=¢, t<t<ty, (p€H), (2)

where A is of the form: D(A) = D(A)® H, A is the generator of an irregular bounded
analytic semigroup Q(¢) on X, H the space of ” A-harmonic” elements, ./if = Af for
f=f+h(with fe D(A), h € H). Details of much of what is mentioned here will
appear in [1], [2].

Theorem 1 Vf € X, o € H, F € L}, ([0,+00[, X), (1) has a unique optimal regular

A

solution u :Jto,t1] = D(A) given explicitly by (u(t, f, F) = u(t))

o) =+ Qu-t(/ )+ [ Q-9 Fo)ds. 3)

We treat periodic shock problems with period 2r > 0, boundary values ¢,0,¢,0,...,
F=0.

Theorem 2 For the above-mentioned pertodic shocks problem there is a unique 2r-

periodic asymptotic attractor u*, where u*(t) = u*(t,w,) and

w, = (1+Q(r))™'¢ (4)



The above formulas can be, and actually are, used for computer analysis of particular
situations and concrete applications.
Among other things, one studies the steady "shock pattern”, é_ ,(¢) = u*(tp) — u*(t) =
w, — Q(t)w, for small ¢ > 0. One has:
Theorem 3 Vry,r3 >0, ||6-,,(t) — 6—,7r2(t)|| = 0 as t — 0.
More precise facts will appear in [2].
These results can be applied in particular with X = C(f), Q a bounded smooth domain
in /RN, A essentially an elliptic second order operator —A(z, D) with appropriate
regularity conditions on the variable coefficient,
D(A) = {f € Co(Q)NW?*(Q) : A(z,D)f € C(Q)},
Af=A(z,D) finQ  (p>N)

The theory, and computer analysis based on the theoretical formulas, has technologi-

()

cal implications (see [2]) and has been used in connection with solar cells on ”spinning
communication satellites” (and analogous systems). For instance, it gives useful infor-
mation on (the delicate matter of) ”accelerate testing” of the mentioned satellites and
analogous systems (as far as comparing the results of testing with actual functioning).
Finally, ramified (transmission) shock problems are studied, bringing up special dif-
ficulties concerning the analyticity of Q(t) in a C(f) setup where w = {J§, with
transmission. We have results on this in quite particular cases, but suflicient to cover
some interesting technological applications (for instance: the qualitative behavior in
solar cells on spinning satellites is not essentially modified by the presence of protec-
tive glasses — mathematically this follows from the study of a heat shocks problem with

transmission on three adjacent domains).
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ESTIMATES FOR A SYSTEM OF DIFFERENTIAL OPERATORS.

M.M. Malamud
Donetsk, Ukraine

1. We consider the problem of describing certain linear spaces L( Py, ...Pn) (depending,
in general, on the domain 2 (C IR") and on p € [1,00] ) of differential polynomials
Q(D) satisfying the estimate

1RD) fllzpay SC | D IBD ppiay + 1 lzriey viec=(@) (1)
1<5SN
with some constant C being independent of f € C(f).

Theorem 1 Let  be a bounded region in IR, {P,(D)}Jlv be differential polynomials
whose symbols {P,-(f)}iV are algebraically independent, and let the generic fiber of the
mapping P = (Py,...,Py) : €™ — €V be irreducible (i.e. the variety

Va = V(Pl _aly'--,PN_Q’N)z {£ € Cﬂ:Pl(f)—a‘l = '=PN(€)_0N =0}
is irreducible for almost all o € €~ ). Then estimate (1) is equivalent to the equality

Q) = Y NP6+ (2)

1<3EN
for some Aj € € (0 <j < N), e tothe equality dim L(Py,...,Pnv) =N + 1.
Remark 1. The condition of algebraic independence of the polynomials {Pj({)}iv is
equivalent to their functional independence. So it can be reformulated in terms of the

Jacobian matriz (9P;]0¢:) as follows: there ezist £° = (£9,...,€2) € €™ such that
rank (a-PJ(Ela seey En)/agk)5=€o = N.

Corollary 2 Letl = (I, ...,15) € (Z4\0)?, let Q be a bounded region in IR™ and let

Pi(D)= ) apDE, (1<j<n-—1)
1<k<n

be linearly independent differential operators whose linear span contains no differential
monomial Di*, 1 < k < n. Then dim L(P,, ..., P._1) = n.



2. Let us consider the consequences of estimate (1), assuming that the transcendence
degree of the field € (P (£), ..., Pn(€)) (over €) is equal to one. The latter condition is
equivalent to the representability of each of the polynomials P;(¢) in the form P;({) =
7;(w(€)), where 7;(t) € C[t] and w(€) € € [¢1,...,&x) is irreducible.

Theorem 3 Let Q be a bounded region in IR™ and let P;(€) = T(w(¢)) € €&, ..., &)
where 7;(t) is a polynomial in one variable and w(éi,...,€,) 18 irreducidle. If for some
p € [1,00) estimate (1) holds for all f € C®(Q) then either Q(€) has the form (2) for
someXj € €,0< 7 < N orw(f) =(£,2% = &2l +... +&.22, where 2° = (29,...,20) €
R and Q(€) = 4({6,2%), a(t) € €11 with

< ,
degq(t) < Dax deg 7;(t)

3. The well-known result of Hérmander now follows easily from Theorems 1 and 2

combined with the following.

Proposition 4 Let P(§,,...,&,) be a polynomial. If P(£) — « is reducible for alla € €
then P(£) = r(w(£)), where 7(t) € C[t] and w(¢) (€ C[é1,...,&x)) 1s irreducible.

Theorem 5 (Hérmander) If Q is a bounded region tn IR* and the differential poly-
nomials P(D) and Q(D) satisfy the condition (1) then either Q(¢) = aP() + b
(a,b € €) or P(€) = 1((£,2°) and Q(&) = q({£,2°)) where z° € IR* and 7(t),
q(t)in C[t], deg q(t) < deg7(t).
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A FELLER PROPERTY FOR SOME DEGENERATE ELLIPTIC
OPERATORS.

I. McGillivray

In the theory of Dirichlet forms, statements are valid in general only up to sets of zero

” valid statements are

capacity. It is desirable to specify circumstances in which "q.e.
in fact valid everywhere.

The notion of (r, p)-capacity for general submarkovian semigroups 7, a generalisation
of the Bessel capacity, was introduced by Fukushima and Kaneko. We give a condition
to guarantee that each point in the state-space has (r, p)-capacity uniformly bounded
away from zero for r, p sufficiently large. Qur condition is verified, for example, when-
ever we have a Sobolev inequality. We have found the following abstract regularity
condition: if the L? —generator of the semi-group 7%, or its square-root, contains a core

of continuous functions, and the above capacitory condition is valid, then
T.f admits a continuous version for all f € L' N L

We apply this result to degenerate elliptic operators. Suppose we have a gradient
Dirichlet form with weight function belonging to the Muckenhoupt class of order 2.
Combining methods of Gilbarg and Trudinger, and Fabes, Kenig and Serapioni, we
show there exists an operator core of continuous functions and hence the above weak

version of the Feller property holds.



SPECTRUM OF THE ELLIPTIC OPERATOR AND BOUNDARY
CONDITIONS.

V. Mikhailets

Kiev, Ukraine

Let 2 C IR™ be a bounded domain, A(z, D) be a selfadjoint elliptic differential operator
of 2m — th order on ! with smooth coefficients, A be the selfadjoint realization of
A(z, D) in the Hilbert space L,((2). The spectral properties of A are analyzed. We

agsume that the minimal operator of A(z, D) is positive.
Theorem 1 If
D(A) € H*(82), s € (0,2m] (1)

then the functions

NeOA)=#{k:EM € (0,A]}, A >0

satisfy the asymptotic formulas

where A — 400, w = w(Q, A) > 0, 5o = 2m2L,

The case of a positive realization A and s = 2m has been studied in many papers (see
(1], [2})-

The formulas (2) are precise for the class of selfadjoint elliptic differential operators
under condition (1).

Let Aps be a "soft” selfadoint extension of a minimal operator. A question concerning
the asymptotic behaviour of nonzero eigenvalues of the operator Ay have been raised
in [3]. G. Grubb in [4] proved that the number No(A; Ap) of eigenvalues in (0, )]

satisfies the asymptotic formula

No(A; A) = wA% + 0 (xz‘w) A= oo (3)

0= 1_ 2m >0
S Y T omtn—1 » €

where



Theorem 2 The asymptotic formula (8) is valid for any 8 € (0,1).

It should be expected that formula (3) is valid also for § = 1.
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SINGULAR PERTURBATIONS AND EXTENSION THEORY.

H. Neidhardt and V.Zagrebnov

Let A and V be two nonnegative self-adjoint operators on the separable Hilbert space
H. Further, let D C dom(A) Ndom(V) be a dense subset of H such that

(V1. f) <alAf,N)+0bIfI,  feD, O<a<l (1)

We introduce the abstract operator H

Hf=Af-Vf,  fedom(H)=D. (2)
The operator H is symmetric, closable and semibounded with lower bound —b. How-
ever, the operator H is in general not essentially self-adjoint. Let us assume that His
not essentially self-adjoint. Since H is semibounded the Friedrichs extension H exists.
Moreover, denoting by A the Friedrichs extension of A = A|D it is not hard to see
that A coincides with the form sum of A and —V. Next let us introduce a regularizing

sequence for the singular perturbation.

Definition 1 A sequence {V,},>1 of bounded non-negative self-adjoint operators is

called a regularizing sequence of V if
() WSW<. . <Va<...<V

(ii) limnsos(Vaf, f) = (V£, f), f € D C dom(V).

Let A any semibounded self-adjoint extension of A. With the regularizing sequence

{V,}22, we associate the following sequence of self-adjoint operators H,,

Ho=A-V,, n=12,.... (3)

oo

The problem is now to find conditions which guarantee that the sequence {H,}%2,

tends to the Friedrichs extension H , e,
s—lim(H,—2)'=(H=-2)"", H:2)#0 (4)

for every semibounded self-adjoint extension A of A. In general we cannot expect that
the sequence H, tends to H assuming only that {V,}a»1 is a regularizing sequence.

Actually we need a little bit more.



Proposition 2 Let {V,}n>1 be a regularizing sequence of V. If for every self-adjoint
extension A offi = A|D obeying A > 5, n < 0, the convergence (4) takes place, then
sup(Vah, k) = +oo (5)

n>1
for every nontrivial h of N, = ker(A* — 7).
By this proposition it seems to be natural to introduce the following notation.

Definition 3 Let {V,}.>1 be a regularizing sequence of V. The sequence is called
admissible with respect to A = A|D if there is a n < 0 such that for every nontrivial
h € N, = ker(A* — 1) the condition (5) is satisfied.

To solve our problem an optimal result would be to show that the inverse of Proposition
2 is true, i.e., if {V,}a»1 is an admissible regularizing sequence of V with respect to
A = A|D, then for every semibounded self-adjoint extension A of A we have that the
convergence (4) is valid. Till now we cannot prove this conjecture in full generality.
However, if we restrict the set of semibounded self-adjoint extensions A of A, then
we can do it. To describe these restrictions we use a description of all semibounded
self-adjoint extensions which goes back to [1]. Let A be any semibounded self-adjoint
_extension of A = A|D with lower bound greater than < 0, i.e. A> 7. By # > 1 we

denote th7 closed quadratic form which corresponds to A, i.e.

‘7(f1 f) = ((‘& - W)l/zf, (1‘1 - n)llzf) + n(fa f)! f € dom(&) = dom((;l - n)1/2). (6)

In particular, by © > 0 we denote the closed quadratic form which corresponds to the
Friedrichs extension A of A. In accordance with [1] we have now a one-to-one cor-
respondence between the set of all semibounded self-adjoint extensions A of A obey-
ing A> 7 and all non-negative closed quadratic forms § on the deficiency subspace
N, = ker(A* — ), where the form § is not necessarily densely defined on A,. The

correspondence is given by the formulas
dom(#) = dom(¥)+dom(§), (7
where 4 means dom(7) N dom(§) = {0}, and
o(g+h,g+ h) = (g,9) + §(h, h) + 2Re(g, h) + 7(h, h), (8)

g € dom(?), h € dom(§) C N,. This means, having an extension A which obeys A > 5
we can find a unique non-negative closed quadratic form § on A, such that (7) and (8)



hold. Conversely, if we have a non-negative closed quadratic from § on A, then we
can define by (7) and (8) a semibounded extension A of A obeying A > 5. The domain
of ¢ may be a closed subspace of A, or not. The Friedrichs extension A corresponds
to the trivial form §, i.e., dom(g) = {0}. Very often this is expressed by § = +c0. The
Krein extension A is given by a form § which is zero on the whole deficiency subspace
N, i.e., §=0. All other forms i are between 7 and & and which yields A < A < A

Using this description our main theorem goes now as follows.

Theorem 4 Let {V,}.>1 be an admissible regularizing sequence of V with respect to
A and let A > n be a self-adjoint extension of A obeying A > 1 for somen < 0. If A
corresponds to a closed quadratic form § on N, = ker(A*) whose domain dom(§) is a

closed subspace of NV, then we have

-

s— lim(H, -2)"'=(H-2)", Xz) # 0, (9)

n—+00

where H is the Friedrichs extension of H = (A — V)|D.
In particular, if A denotes the Krein eztension of A with respect to the lower bound

7 < 0, then we have

s— lim(H, —2) =, - 27", ¥e)#£0. (10)

n—oo

Corollary 5 If the deficiency indices offi are finite, then for every self-adjoint exten-
sion A of A we have (9).

Corollary 5 strengthens the results of Section 3 of [2].
Corollary 6 If A is a semibounded self-adjoint extension of A such that
dim(dom(9) \ dom(¥)) < 400, ‘ (11)

then (9) is valid.
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ON SPECTRA OF ELLIPTIC AND SCHRODINGER OPERATORS.

El Maati Quhabaz
Potsdam

Given an elliptic operator A on L?(IRY) defined formally by

N N
Ay = — Z D; (ax; D) + Z ap Dy + Di(be) + ¢,

k=1 k=1

we ask when the essential spectrum o.,,(A) = [0, 00).

Assume that a; € WY®(R") and ay; are real 1 < k,j < N. We show that if one of
the following conditions holds

1. ap — Vk5kj, ag, bk, c e Lg(RN) and Ak = Qjk

2. apj — l/kfskj, ax,br c € Lg =L2N L°°L

for some constants v > 0, then o.,,(A) = [0, 00).

The method consists in showing that the resolvent difference (A + A)™' — (A + Ho)™*
is a compact operator in L2(IRY). Here Hy = — S, v D2

We use the same method to get similar results for the general Schrodinger operator

N N N
A(B) = = (D; —ib;) (ak;(Dx — ib)) + Y ai (Dk — ibi)) + D _(Di — ibi)(cx) + ¢
k=1 k,j=1 k=1

where b = (b1,...,bn) is a magnetic potential.



DEGENERATE ELLIPTIC BOUNDARY VALUE PROBLEMS FOR
WEAK COUPLED SYSTEMS. SOLVABILITY AND MAXIMUM
PRINCIPLE

Boris Paneah

Let 2 be a bounded domain in IR*, n > 3, with a smooth boundary 3. We denote
by 7 a smooth nonsingular vector field on df2 and by v a unit vector field of interior
normals to J€). In the first part of the talk we consider the following boundary value

problem

Lu+Hu = F inQ
g

(—,)\}-u+A56;u+Bu = f on 0. (1)

Here u = (uy,us,...,un) in an unknown vector—function: @ — RN, L is a scalar
second order elliptic differential operator on §, H is an arbitrary first order differential
operator, A and B are smooth N X N matrices on 9f2. So, the problem (1) is weak
coupled in 2 but not on the boundary 9f2.

It is well known that the ellipticity of the problem (1) is equivalent to the condition
detA # 0 on 0. For this reason we suppose further that the set p = {q € 9 |
detA(q) = 0} is not empty and, moreover, g is a submanifold of codim 1. Let us
assume also that the vector field 7 is transversal to p.

Consider a sufficiently small tubular neighborhood U of the submanifold g with the
normal coordinates (t,z) on Y. Here z = (21,22, ..., zn—2) are local coordinates on p.

Condition 1. The zero eigensubspace R of the matrix A(QO, z) is p-dimensional, p > 1,
and does not depend on z € u.

This means that in some basis in IRY the matrix A(¢,z) has a form ((A;;))

where A;; and A,, are square matrices of orders p and N — p respectively; Aa(t,z) =

2,2
1=1,5=1?

t* A (t,z) for some integer k > 1 and smooth matrices A;;, 7 = 1,2.

Condition 2. There exists a smooth function a(z) # 0 on g such that A},(0, ) = a(z)T
where I' is a constant p X p matrix without eigenvalues on the imaginary axis.
Denote by ru the orthogonal projection of the vector u on the subspace R. Let miu
be the projections of mu on the spectral subspaces R* corresponding to positive (resp.

negative) eigenvalues of T'.



Theorem 1 If the number k is even then the problem (1) is Fredholm (between suitable

spaces).
Theorem 2 Ifk is odd then the problem (1) is not Fredholm. But the modified problem

Lu+Hu = F in Q
0 0

T_u = g on f

is Fredholm (between suitable spaces). Moreover, for sufficiently smooth F, f, g the
restriction u | O of the solution u belongs to Sobolev space H'(OQ\ ) and [u], = [74ul,

where [w], denotes the jump of w on y.

The second part of the talk is devoted to the strong maximum principle for boundary
value problems of the type (1) (and (2) as well). We consider the following problem

N
Lrug + Z hijj = Fj in 0

=1
) ] al
G_Tkuk + akauk + ;bkjuj =fi on 00, 1<k<N, (3)

Here all of Ly are elliptic second order operators on {) with positive principle parts, 74
are some nonsingular vector fields on 9Q and hyj, ai, bgj are smooth functions. It is
obvious that this is weak coupled boundary value problem. If all the functions a; do

not vanish on 99 then (3) is an elliptic problem. Let us introduce the sets
v ={q€ 00| arlg) =0, k=1,2,..,N}

and let us assume for short that all «; are not empty. We only need the following
condition on 7. The set vx, ¥ = 1,2,..., N, does not contain any maximal trajectory
of the field 7;. (If 4% is a submanifold this condition is fulfilled automatically). To
describe the class of matrices ((h;x)) and ((b;x)) under consideration, let us introduce
two definitions. We say that a matrix ((¢;;))V satisfies the (rd)-condition if for all
5Lk=12,.,N

(I‘d) Ci3Cik S 0, k % j; Cs4 chk 2 0.
k

We say that a matrix-valued function ((cjx(z)))Y satisfies (zs)-condition if for j < k

and for every z



(2s) cik(z) =0 = cri(z) =0.

Theorem 3 (Strong mazimum principle). Let u = (u1,us,...,un) be a solution of the
problem (8). Assume that

1°  each function a; does not change sign on 0S};
P ajh;; <0on 0N hj; <0inQ forall j=1,2,..,N.
& The matrices ((h;x)) and ((bjk)) satisfy (rd)- and (zs)-conditions.

IfF,>0inQ and arfi > 0 on 8Q for all k =1,2,..., N then each function uy either

>0 in ) or = const.

Remark. This result can be generalized to the case when some coefficients a; change

sign on 9. Then the strong maximum principle is formulated for the modified problem

2).



Asymptotics of Heat Flow

Derek W. Robinson

Australian National University
Canberra

The diffusion of heat in a system with periodic conductivity is governed by two scales of
length. The small time diffusion is described by the geodesic distance but the large time
behaviour is dictated by the distance associated with an homogenized system obtained by a
suitable nonlinear averaging process.

Let H be the positive self-adjoint operator

d
H=- Z 6,-c.-,-a,-

ij=1
on Ly(R*;dz) with real-valued coefficients ¢;; = c;; € Loo(R?;dz) satisfying
C=(c;)2pl>0 ,

in the sense of d x d-matrices, uniformly on R?. The semigroup S generated by H describes
the heat flow governed by the coefficients of conductivity c;;. The action of S is determined
by a positive kernel K, *

(Se0)@) = (Kuxp)@) = [ dyK(z:9)e(0)

which is known to satisfy Gaussian upper and lower bounds and the behaviour of the heat
flow has largely been analyzed by successive improvements of such bounds.

First, recall that if the coefficients c;; are constant then
K. (z;y) = (47mt)~¥?| det C|"/? exp(—dc(z ; y)? /4t)

with do(z;3)* = ((z — ¥),C~'(z — y)). Thus the asymptotic behaviour is a dissipation
governed by the distance d¢, the geodesic distance associated with the Riemannian metric
Cc-L

Secondly, as a result of the work of many authors, it has been established that for variable

coefficients
. Kt(z ; y) ~ t"dlze"dC(s;V),/4i

for all small ¢ > 0 with d¢ the appropriate geodesic distance. It has also been a common
belief that a similar result should be true for large t. But Davies established that this is not
always the case for one-dimensional systems. In particular he showed that for large ¢ the
kernel resembles a Gaussian distribution with a distance which is generally larger than the
geodesic distance. In fact for periodic multi-dimensional systems Batty, Bratteli, Jorgensen
and Robinson (J. Geom. Anal., to appear) have recently demonstrated that the asymptotic
behaviour can be exactly identified.

Theorem Assume the coefficients ¢i; are periodic. Then there is a constant coefficient d x d-
matriz C, satisfying € > ul, with corresponding semigroup S and kernel K, such that one
has uniform convergence

,1_i,ﬂ.§° IS, — 3!"9-—-10 =0

on each of the L,-spaces over R®.



Moreover, )
limswpt% ([ dy|Ki(z39) - Rzi)lt) =0

with p-—l + q_l = 1.

‘The matrix C corresponds to the homogenization, in the sense of Bensoussan, Lions and
Papanicolau, of the conductivity matrix C. It is a type of average of C-and the result
reflects the physical fact that the inhomogeneities of the system are averaged out with time.

It should be emphasized that the map C — C is highly nonlinear, although it is order
preserving. If M denotes the usual mean value over R? one has

M(C) 1 <E<HC)

and € = M(C) if and only if the coefficients are constant. These statements follow most
readily from two variational principles given by Norris (Bull. Lond. Math. Soc., to'a,ppea.r)
who extended many of Davies’ estimates to the multi-dimensional case. In addition, in
one-dimension one has & = M(C~')~" but necessary and sufficient conditions for this iden-
tification are not known.

Finally, although the theorem identifies the asymptotic form of S its proof does not give any
indication about the rate of convergence to the limit, nor does it adapt to the addition of
first-order terms. It would be of interest to understand the situation with drift terms and
to find methods of dealing with more general non-periodic systems.



GREEN’S FORMULA FOR GENERAL PARABOLIC PROBLEMS AND
SOME OF ITS APPLICATIONS.

I.Ya.Roitberg, Ya.A .Roitberg

Chernigov, Ukraine

Let G C IR" be a bounded domain with a boundary 8G € C*, = G x (0,7),
0<T <o0, ¥ =00 x(0,T). We denote by (, )a, (, )a, <, >ag, <, > the scalar
products (or their extension in Ly(G), La(), L2(9G), L2(Q') respectively.

In @ we consider a general parabolic boundary value problem
Lu = L(z,t,D,,0:) = f(z,1) ((z,t) € Q);

Bju = Bj(z,t, Dz, O)u(z,t)|__,, = @iz, 1) (j=1,..,m; ' € 0G); (1)

OF ulimoor (k= 1,...,K).
Here D, = (Dy,..,Dy), D; = i0/dz;, 8 = 8/dt, ordL = 2m, ord B; = m;. The
order of the operator is defined as its terms highest order; the order of the D29; =
D?‘...Dg"@f is |a] + 208 = oy + ... + ay, + 2b8; b is the divisor of the number m. The
. number 2b is called the parabolic weight of the problem, £ = . The m; (j =1, ...,m)
are arbitrary nonnegative numbers. Let r; be an order of the expression B; with respect
to derivatives D, = 10/0v (v is the normal to ') and

r=max {2m,r +1,...,7 + 1} (2)

Theorem 1 Let the problem (1) be parabolic. Then expressions Cj(z,t, D, 04),
Bi(z,t, Dz, 8), Cilz,t, Dz, ;) (of corresponding orders l;, m}, i, (7 = 1,..,m; k =

1,...,r —m)) exist such that Green’s formula

(Lu,v)q + Z (Bju,Civ)+ Z (DI Lu, Gy, jv) g + z_:((afu)(z, 0), Txv(z,0))qg
k=0

j=1 j1<j<r—2m

= (u, LTv)q + Z (C’;,-u,B;-v>n + z—:((T,:u)(w,T) , va(a:,T))G (u,v € C=°(R)) (3)

is valid.



Here T}, Ty are (2m — (k + 1)b)-order differential expressions,
mi+l=L4+m;=2m—-1 (G=1,.m}l ., =-j (j:1<j<r-2m) (4)

(if 7 = 2m then the third term of the left part of (3) is absent).

Expressions C;, B}, C} (j = 1,...,m) are differential with respect to derivatives D, and

they are pseudodifferential with respect to tangential derivatives along the '
Theorem 2 The problem
L*v=g (inQ); Bl =¢; (G=1..,m); O l=r=1¢ox (k=1,..,x)

(with the changed time azis direction) that is adjoint to problem (1) with respect to
Green’s formula (8) is parabolic if and only if the problem (1) is parabolic.

Let us note a few applications and generalizations.

A) Both for problem (1) and for problem (5) the theorem on a complete collection on
isomorphics holds. By means of passage to the limit (3) may be established for the

corresponding space of distributions.

B) It follows from theorems 1,2 that if we change arbitrarily f(z,t) in Go x (0,T) or
wi(z,t) (= 1,...,m)in v x (0,T), (Go C G, 70 C 0G are open subsets; the diameters
of Gy and ~y, are arbitrarily small) then any vectorfunction defined on the manifold
7 % (0,T) may be approximated by solutions of the problem (1) and their derivatives

(here «y is an open piece of the (n-1)-dimensional manifold v, C G).

C) We study Ls-theory in this work. But L,-theory (1 < p < o0) can also be treated

here.



LOCAL INCREASING OF SMOOTHNESS OF GENERALIZED
SOLUTIONS OF ELLIPTIC BOUNDARY VALUE PROBLEMS IN
NON-SMOOTH DOMAINS.

Ya. A. Roitberg

Chernigov, Ukraine

This work consists of two parts. The first part was obtained together with B. Ya.
Roitberg; the second part was obtained together with A. V. Sklyarets.

Let G C IR™ be a bounded domain. The boundary OG contains the conical points,
edges, etc.; let M C 0G be a singular pointset, dG\M € C*.

In G we consider the elliptic boundary value problem
L(z,D)u = f, Bjulaesm = ®; (7 =1,...,m; ord L = 2m, ord B; = m;). (1)
Let
r = max{2m,m; +1,..my + 1}. (2)
By means of integration by parts we find

(Lu,v) = (w, L*0) + Y (Di7u, Agmejiav) (u € CF(G\M),v € CR(G));  (3)

1<5<2m

here, if v € C3(G) vanishes in some neighborhood in G of the set M then v € C%(G),
(,), <, > is the scalar product in Ly(G,), L2(0G,) respectively; D, = i3/0v; v— is a

normal to 3G. Therefore the equation Lu = f is equivalent to the equality

(uo,L+U) + Z (Uj,l\gm_j.H‘U) = (fo,v) (‘U c foo(é‘)) . (4)

1<j<2m
Here ug = u|5\M, u; = D£-1U|aG\M: fo= f|6\M-

Similarly, if B;(z,D) = 32, chem, 1 Bik(2, D")\D% -1 ( Bj(z, D') is the tangential oper-
ator) then

Biulaow = Y. Bis(z, D)ue = ¢; (j =1,...,m). (5)

1<k<m;+1



We identify u € C°(G\M) with the vector (ug, ..., %, ), and f with the vector (fo, .., fr—2m ),
fo= flawn fe = DE flag\m (k= 1,...,r — 2m). Then u = (uo, ..., 4,) is the solution
of the problem (1) if and only if equalities (4), (5) and

(D' D)|pgpe =i (G=1,...,m = 2m) (6)

are valid. Here the left-hand part of (6) is expressed in terms of uy,...,u, by formulas
as (5).

Definition 1 Let uo, fo be (generalized) functions in G; u;, fi be (generalized) func-
tions on OG\M. Then a vector is called a generalized solution of the problem (1) if

(4)-(6) are valid.

The problem (1) (or equalities (4)-(6)) defines a mapping A : U = (ug,...,u,) —
F=(f,0) = (fos--s fr=2m,®15 .--s om). To study it we must introduce some functional

spaces.

For any s > 0 and p € (1,00) we denote by H*?((G) the Bessel potential space, and
let H=*?(G) = (H**(G))", 1/p +1/p' = 1; || ||s» is the norm in H**(G) (s € R,
l < p < 0). By B*(0G\M) (s € R, 1 < p < o) we denote the Besov space,
<< >>,, is the norm in B*?(0G\M).

Let r > 0 be a fixed integer, s,pe R, 1 <p<oo,s#k+1/p (k=0,1,...,7—1). By
H*»()(G\M) we denote the completion of C®(G) with respect to the norm

1

“lu:E\Mms,p.(r) = (”ullz,p + Z <<Di_lu, aG\M))f—j+l—%,p) (7)

1<j<r

The closure S of the mapping u +— (u|5\M,u|ag\M,...,D:‘lu|ag\M) (u € C=(G))
is the isometry between H*?()(G\M) and the subspace of direct product F*? :=
H**(G) x [1,¢j¢, BT/ 7P (0G\M).

Therefore we can identify u € H*»(")(G\M) with the element Su € F*?. We shall
write u = (ug, ..., u,) (Yu € H*P)(G\M)). Hence, the space H*»()(G\M) consists
of vectors u = (ug,...,u,). This is the space of the solutions of the problem (1) (or
(4)-(6)). The mapping introduced above A : u — F = (f,¢) acts continuously from
HoPONG\M) to K*» = [[=3mar=2m)(G\m) x IT™, B* "™~ $7(8G\M).

=1



By means of the complex interpolation method we define the space H*»("(G\M) and
the norm (7) for s = k%l (k=0,..,7r—1).

Theorem 2 Let u € H*»HG\M) (s € R, p € (1,00)) be a generalized solution of
the problem (1) with F € K*» | Let o € 8G\M, and F belong to K*#:

(s1 > s,p1 > p) locally up to the boundary in some neighborhood in G\M. Then the
solution u belongs to H*»#1:(") Jocally up to the boundary in this neighborhood. A similar
theorem s valid also for the elliptic problem for the Douglis-Nirenberg system.

This theorem gives an answer to a question formulated by professor V.A.Kondratjev

in 1992 at the conference in Rostock.

In the second part Sobolev’s problem is studied. In this problem the boundary of
the domain consists of smooth manifolds with different dimensions. A theorem on the

complete collection of isomorphisms for this problem is obtained.



RADIATION CONDITION FOR DIRAC OPERATORS

CHRis PLADDY!, YOSHIMI SAITO?, AND ToMIO UMEDA3

1.2 University of Alabama at Birmingham, U. S. A.
and
3 Himeji Institute of Technology, Japan

In the papers [1] and [2], results from the theory of pseudodifferential opera-
tors and spectral analysis of Schrédinger operators were combined to discuss the
asymptotic properties of the Dirac operator

: 3
(1) H=—iY ajs+8+Q)
j=1 J

Here : = /=1, z = (21,22,73) € R® and q;, are the Dirac matrices, i.e., 4 x 4
Hermitian matrices satisfying the anticommutation relation

(2) ajar + ara; =265 1, (7,k=1,2,3,4)

with the convention ay = 3 , 6;i being Kronecker’s delta and I being the 4 x 4
identity matrix. The potential Q(z) = (g;x(z)) is a 4 x 4 Hermitian matrix-valued
function. Here we assume that Q(z) is short-range in the sense that each element
g;k satisfies

(3) sup. (1 +|z)"*lgje(z)l]] <0 (z€R?, j,k=1,2,3,4),
z€

where € is a positive constant. The free Dirac operator Hy is defined by
S
(4 Hy=—1 — . .
“ e

The aim of this talk is to show how the Dirac operator and the Schrédinger
operator are related each other and how some properties of the Dirac operator
and the solutions of the Dirac equation can be obtained from the corresponding



properties of the Schrédinger operator. Since we have from the anticommutation
relation (2)

(5) (Ho)* = (=A+ 1),

we can anticipate a close relationship between these two operators. We also want
to show that some results from the theory of pseudodifferential operators, which
were used in [1] and [2], are useful in discussing our problems.

Our strategy is to combine a representation formula for the resolvent Ry(z),
‘which was originated in Yamada [3] and used in (1] and 2] with some known results
on Schrédinger operators to study some new properties of the extended resolvent
R*()) of the Dirac operator H with a short-range potential Q. Let

(6) RE(N)f(2) = {(vF (=), v (), v3°(2), v (2)),
where ‘A is the transposed matrix (or vector) of A, and
() f € Ly(R%, (1 + |2f*)~" da)

with a fixed constant § satisfying 8§ > 1/2. In order to simplify the description,
here we assume that A > 1. Then, after giving another proof of the limiting
absorption principle for the Dirac operator (1), we are going to prove the following:

(1) Each element vj-i(z), 7 = 1,2, 3,4, satisfies the radiation condition
vF € Ly(R%, (1 + [2|*)° dz),
(B FiV A2 - 15¢)vji € Ly(R3, (1 + |z[2)° 1 dz),

where € =1,2,3, 8, = 3/0z¢, and z, = z,/|z|.

(2) v = R%¥()\)f is characterized as a unique solution of the equation (H—A)v =
f with the radiation condition (8).

(3) Each element v;-h(.r), J = 1,2,3,4 satisfies the asymptotic behavior

8

(9) vE(r) ~ (A, fr1eEVITT i L(S?)

as r = |[z| — oo, where S? is the unite sphere in R3 , and ¢(), f) € L2(S?) is
determined by A and f.
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BOUNDARY VALUE PROBLEMS IN BOUTET DE
MONVEL’S ALGEBRA FOR MANIFOLDS WITH
CONICAL SINGULARITIES

Elmar Schrohe, Max-Planck-Arbeitsgruppe ”Partielle Differentialgleichungen und

Komplexe Analysis”, Potsdam

In joint work with B.-W. Schulze a pseudodifferential calculus for boundary value
problems on manifolds with finitely many conical singularities is constructed [4].

The idea is to combine Boutet de Monvel’s concept for smooth manifolds with boundary
[1] with the calculus of B.-W. Schulze [5, 6] for singular manifolds without boundary.
On the smooth part of the manifold, the operators we are considering are standard
elements in Boutet de Monvel’s algebra. Near one of the singularities we assume that
the manifold looks like the cone X x R,/X x {0}, where X is a smooth compact
manifold with boundary.

All the analysis is then performed on the cylinder X x Ry. Choosing coordinates (z,t)
in X x Ry we introduce Mellin symbols with values in Boutet de Monvel’s algebra: the
action is of Mellin type with respect to the t—direction, while it is pseudodifferential
(in the sense of Boutet de Monvel) on the cross-section X.

The operators correspondingly act on Sobolev spaces involving the Mellin transform.
Similarly as before, these spaces coincide with the standard LZ—Sobolev spaces outside
the singularities. Close to {t = 0} we additionally use weight functions ~ t7,y € R
and the Mellin action with respect to t combined with the pseudodifferential action in
.

The construction of both, the operators and these Sobolev spaces requires the intro-
duction of a parameter-dependent version of Boutet de Monvel’s algebra.

In this calculus, the parameter plays the role of an additional covariable. Instead
of relying on the theory proposed in [2], we present a new approach to Boutet de
Monvel’s calculus based on operator-valued pseudodifferential symbols on spaces with
an R4 group action, cf. [6], Section 3.2.

This point of view allows a considerably faster access. Moreover, it makes some of the
constructions in Boutet de Monvel’s algebra more transparent and brings the concept of
(’singular’) Green, potential, and trace operators closer to the usual pseudodifferential

theory, cf. also [3].



In order to be able to handle the asymptotics of solutions near the singularites, discrete

asyptotics types play an important role in the definitions of the operators and the spaces

they are acting on.
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THE WEDGE SOBOLEV SPACES WITH BRANCHING DISCRETE
ASYMPTOTICS.

B.-W. Schulze

Pseudo-differential operators on manifolds with edges are a generalization of boundary
value problems. They form an algebra analogously to Boutet de Monvel’s algebra, [2],
(5], [9], but the analogue of the transmission properties is typically violated. The "edge
theory” is in a sense a combination of the theory of pseudo-differential boundary value
problems and that for conical singularities. A question is, in particular, the nature of
the elliptic regularity in the weighted "wedge Sobolev spaces” W*?, s € IR being the
smoothness, ¥ € IR the weight. Consider those spaces over the infinite open stretched
wedge
R, x X x R > (t,z,y),

where X is a closed compact C* manifold, n = dim X, the base of the (stretched)
model cone IRy x X =: X" of the wedge, and IR? 5 y is the edge. If K*7(X"} denotes
the weighted Sobolev space on X" (defined by means of the Mellin transform in ¢ near
t = 0) and equal to H*(IR x X)|(c)xx for every € > 0, there is an IR, action k) on
K*7(X?) defined by (kau)(t, ) = AT u(At,z), A € Ry. Set < >= (1 + |n[*)¥ and
k(1) := K¢y>. Then W* (X" x IR?) is defined as the closure of S (1R, C{°(X")) with

respect to the norm

2 3
K*1(X7) dﬂ} . (1)

These spaces have been introduced in [5] in a more general set up for an arbitrary

{ / <0 > |57 (0) (Fymqi) ()]

Banach space E instead of K*7(X"), with a corresponding group {s.},cp, of iso-
morphisms. In [2] there were obtained the asymptotics of solutions for elliptic wedge
problems in the case of constant exponents along the edge.

The singular terms are of the form

F2 {< 1 >% ciu(z, H)( <1 >)Pilogh(t < n >)w(t <7 >)} (2)

with ¢c;x(z,y’) € C* (X, H? (J’RZ,)), and hat indicating the image under the Fourier

transform Fy,_,,. Here p; € €, Rep; — —oo as j — oo. For the case of variable (along



IR? 3 y) and branching p; = p;(y) the singular functions were first obtained in 6], [7].

They have the form (modulo ”easier” singular terms for s = o0)

F2 {<n >t (it <n>) )it <n>)} (3)

Here ((y;y’) is an element of

Cc= (Q,, A (K,C* (X, H* (R%)))) (4)

(y, 1) = (Fh=yQ) (v;9") K, V C €. compact, where A'(K,V) is the space of V-
valued analytic functionals, carried by K. The element ( € (4) involved in(3) is
pointwise (i.e. for every y) discrete in the sense of (2). The functions (2), (3) belong
to W*7(X" x IR?). The formula (2) shows how the smoothness in y of the coeflicients
of the edge asymptotics depends on Rep;. The corresponding jumping and branching
smoothness in the general case (3) is adequately formulated in the form (4). This fits
to the shape of smoothing Green and smoothing Mellin operators in the wedge algebra
with branching discrete asymptotics. Details for dim X = 0 are contained in [7]. The

generalization to arbitrary dim X is of analogous structure.
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ON THE INDEX OF PAIR OF
PROJECTORS

R. Seiler
FB Mathematik
TU Berlin

* We study the relative index of two orthogonal infinite dimensional projections

which, in the finite dimensional case, is the difference in their dimensions. We
relate the relative index to the Fredholm index of appropriate operators, discuss
its basic properties, and obtain various formulas for it. We apply the relative
index to counting the change in the number of electrons below the Fermi energy
of certain quantum systems and interpret it as the charge deficiency. Wy study
the relation of the charge deficiency with the notion of adiabatic charge transport
that arises from the consideration of the adiabatic curvature. It is shown that,
under a certain covariancc, (homogeneity), condition the two are related. The
relative index is related to Bellissard’s theory of the Integer Hall effect. For
Landau Hamiltonians the relative index is computed explicitly for all Landau
levels.



TWO-SIDED BOUNDS ON THE HEAT KERNEL FOR THE
SCHRODINGER OPERATOR

Yu. A. Semenov (Kiev)

Let us consider the operator H = —A + V acting in L? = LP(IR?), d > 2, for some
p € [1,00[. In this report we are interested in assumptions on V, guaranteeing the

following estimates

ag(lz—y) < e (z,y) <eval(lz~y ), t>0, z,y€ R (1)

2
where ¢, and cy are positive numbers, g(a) = (47t)-fe~% and e H(z,y) is the

integral kernel of e*H.
Simple arguments show that the condition [[(=A)™'V|le < ey — 1 (for V < 0) is
necessary for pointwise (a.e.) inequality e=*#(z,y) < evg(] £ — y |) to hold. On the

other hand, the condition
il =27V e =a(V]) <1

is sufficient for the correct definition of H and e~ (z,y) and for the following estimates
to hold

Cle-Altgtcu(l Ty |) S c_tH(J:) y) S CZC/\ltgtaz(l r—y i)

where Ay, ¢;,2, ¢1,2 are positive numbers, a; < 1, a; > 1 (see [6], [3], [4]).
The main goal of this report is to prove (1) under some assumptions on V. In particular,

I will show the implication
I(=2)7" [V illw<l=(), d<3 (2)

and related results for other d's.

The material is, partly, a joint work with V.A. Liskevich.

The method of proving (1), presented here, is based on some ideas of J. Nash [5] and
E.B. Davies [2].

We always assume that V € L} (R?), V=V*+ -V~ V£ >0and V"~ is a —A-form
bounded potential, that is V= < B(—A)+¢() for some numbers 8 < 1 and ¢(8) € R'.
Let H be the form sum —A + V.

Let S(a)f(z) = e*“f(z), a € R".



Proposition 1 Assume that
IS(@)e™ ™ S(—a) fll < ce” *™|flly ,  feL'nL?
for some numbers ¢, Ao > ¢(B), all « € IR® and t > 0. Then for pointwise a.e. (z,y)

4
2 2
e"H(z,y) < & (—“ldi”;d)) gz —yl)

where cy(d) is the best constant in Nash’s inequality

2+4
lellate < x| Fo)2 - el .

Proof: One can show that T*(a) =: S(a)e~!H+*)§(-a) is a holomorphic semigroup
on L? and ~4£7T*(a) = H(a)T*(a), where H(a) =: H + 2a- V. Since (a - Vf, f) = 0,
Yf € H'(IR?), now one can follow [5] to obtain

2rden(d)

d
2
1-5 ) PRt (4rt)

ea-a:e—tH(x,y)e—a-y S (

and then put a = St

Results

First of all notice that the operator A — 2a - V defined on (1 — A)~'L? generates
a holomorphic semigroup on L?, 1 < p < oo, /229 = §(a)e'4-")§(—-qa) and
(—=A+2a-V)~! has the integral kernel (—A +2a-V)™}(z,y) = e* =¥ (a? - A)" Yz, y).
Assume for a moment that |V~ (—A + 2a - V)™Y|11 = § < 1. Then according to J.
Voigt’s theorem [8] A — 2a - V + V= defined on {1 — A)"'L! generates a bounded

Co-semigroup on L' and [[e"(A=2¥+V7)||, | < Lo

]

Proposition 2 Let d = 3. Assume that |(=A)7'V7 ||l =8 < 1. Then
e H(2,y) Scogllz—y ), < (1-6F - (2nden(d))f .
Proof:
(=4 + 20 V) (a,3) = (4 | 2 — y ) le kst
S@rlz—y )7 =(-4)"(z,y)

Therefore
Y- (~A+2a- V) i =(-A =20 V)W le

SN=A)"V o =6 <1



and

|S(e)eHS(~a) f|I; fje=tH 229 =0 g1

IA

e::r’t||et(.'3-—2cu~V'+V') If | ”]

ea’t

il felinit.

<

Appealing to Prop. 1 one can get the desired result.

Let us now consider the case d = 5. We have (z =z — y)

- 1 1+ l (84 ” 4 | - .
_ . 1 — lallz]+a-2
(A4 2a-V) (z,y) = ST 1z e

1 ja
_ -1 120 ~lallzjtoez
( A) (m,y)+87r2|2|2e ?

IA

(=A+20-V) Ve < (=8)7V7 e
= | a| sup / | z |72 emlolztazy (5 4 2)dz
R4

+

R
87!‘ zeRd

Since

%.Z
/ 2 |-2 e—lailxl+a-zv—(z +z)dz < ”V-”g_ (ﬂ/[l T |—2 e—|a||31+a-r]3ﬂ_:) dz
R®

5

= ||V"||aq- | a|~! -e(d) with explicit c(d),

then ||(=A + 20 V) W oo £ (=A) WV oo + 5 c(d)”V"“g. Thus we get

8x?

Proposition 3 Let d = 5. Assume that
- c(d) -
I(=8)7'V e + alVllg=6<1.
Then e=*H(z,y) < coge(| 2 —y |), co < (1 — §)~F (2nden(d))F.

Remark. (2) is a simple consequence of Prop. 2. Surely, the proof of Prop. 3 works
also in other dimensions. Related to Prop. 3 the bound e™**(z,y) < eve™ig(| z—y ),
do > 0, has been discussed in [1] for V € L([RY), ¢ > ¢, and in [7] under the
assumptions a1 (V=) = 0 and V- € L (IRY).

Concluding I give a variant of Prop 3.
Proposition 4 Let d > 4. Assume that [|[(—A)" "W ||l =6 <1 and V- < e(—A) +

cret (Ve > 0) for a suitably small constant ¢;. Then there ezist cy < oo depending
only on d,6, and ¢, such that e=*H(z,y) < cval(lz -y |).



Proof: Choose d = 5 for simplicity. Let ¥(y) =| y | R Pe() = ¥(- — z).
Then || V|2 + cie? [[]|2 > (e, V™ %ba). A straightforward calculation gives || V] <
ala|gleal, ||[¥)3 <b]a|™® The statement of Prop. 4 now easily follows.
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APPROXIMATION BY SOLUTIONS OF NON-LOCAL ELLIPTIC
PROBLEMS.

Zinovi Sheftel

Chernigov, Ukraine

Let G C IR™ be a bounded domain with the boundary T' € C*, G, is a subdomain of
G with the boundary v € C®, 'Ny =0, G; = G\Gy; a: ' — v is a diffeomorphism;
for any function u(y) (y € 7v) we set (Ju)(z) := u{az) z € T. We consider the non-
local elliptic problem [1}

Liui(z) = fi(z) (z € Gy; ord L; = 2my; 1 = 1,2),
Bju = J (Bjiui(y) + Bjaua(y)) (z) + Bjsua(z) = ¢;(z)
(zel;y=az €v; j=1,...,.5; | =my + 2m,)

The system of boundary expressions Bj; is assumed to be normal [1]. In this case
one can introduce the adjoint with respect to Green’s formula non-local problem for
the formally adjoint expressions L}; corresponding boundary expressions we denote
Bii(7 =1,...,1;1=1,2,3) The adjoint problem is also elliptic.

Let Ay be a smooth (n-1)-dimensional manifold without border, situated in G or in Gy,
A is an open subset of A; having sufficiently smooth boundary. For u = (uy,u;), where
u1, Uy are sufficiently smooth functions, we set v,u := (u|s,...,d."'ulp), D, = ;%, v is
the normal to A. Let Gy be a domain having arbitrarily small diameter situated in G
or (. We put

M(Go) := {u = (u1,u2) € C®(G1) x C®(Gy) : supp Lu C Go; Bju =0, j =1,...,1},
v M(Go) := {vru : u € M(Go)}

Theorem 1 Let a) Gy C Ga, A C Gy, Gi\A connected;

b) the expression L} has in G, the property of uniqueness for Cauchy problem: if
LIv=0in adomain ' C Gy andv =0n G' C G, thenv =0 in G;

c) the problem Lfv; = 0 in G{\A, Blyv =0 on vy (j = 1,...,1) has only zero solution.

Then vy, M(Go) is dense in Hj:l’ B%P?(A) for any s; 20,1 < p < oc0.

Theorem 2 Let be
a) Go C Ga, A C Gy, A the boundary of a subdomain G' C Gy



b) LT has in G, the property of uniqueness for Cauchy problem;
¢) the Dirichlet problem for L}v; = 0 in G' has no more than one solution;
d) the problem Lv; = 0 in G1\G', B;; =0 on v has only zero solution.

Then vy, M(Go) is dense in [|72 B’“"'“‘%"’(A),

r=1

Let now ' be an open subset of I'; the diameter of ['y may be arbitrarily small. We put
M(Ty) = {u € C®(G,) x C®(Ga) : Lu = 0;supp B;u CTy,j =1,...,1}, v, M(D) :=
{vru:u e M(To)}.

Theorem 3 Let be A C G3 Go\A is connected and let the expression LT has in G, the
property of uniqueness for Cauchy problem. Then vy, M(Ty) is dense in Hf:l’ BiP(A)
foranys; >0 andl < p < oco.

Some more assertions of such are proved. Similar questions for usual boundary value

probems were studied since 1960 by many authors (see [2], [3] and its references).

References

[1] Ja.A. Roitberg and Z:G: Sheftel, Dokl. Akad. Nauk SSSR, 19970, Tom 201, No.5,
1059-1062. Engl. transl.: Soviet Mah. Dokl., V. 12 (1971), No. 6 1797-1801.

[2] U. Hamann, Math. Nachr., 1986, 128, 199-214.

[3] Ja.A. Roitberg and Z:G: Seftel, Dokl. Akad. Nauk SSSR, 1989, Tom 305, No.6,
1317-1320. Eng). transl.: Soviet Math. Dokl., v.39 (1989), No.2, 411-414.



SUPEROPERATORS AND EXISTENCE OF THE WAVE OPERATORS.

A. Shushkov
St. Petersburg

We study a problem of existence of the wave operators using Liouville superoperators

terms

[A, BIT = AT — TB, W (T) = s— lim ¢4BlT,

t—Foo
We consider the model problem. Let be £ = [z,z] where z is the operator of multipli-
cation by z in Ly(R).

The following results are obtained.

Theorem 1.Let P, be orthogonal projections on Hardy spaces HE respectively, T be a
bounded operator such that LT € S;. If PrLT € S; Then w—limyzo, €' Te " exzists.

Theorem 2.a) Let T be a bounded operator such that LT has LY°-kernel k(z ,y)

Suppose that
ok Ok

oz 3y

exist.

Llac

Then w—lim; g €T e~

b) Let be L= [182:’ .az] T be a bounded operator such that LT € S,, LLT € Sa,
LT € B. Then Wi(T) = w—1limy_ g0, €T e ezists. Moreover

limy o go0 ||€7HT — Wo(T)e™ "t f|| exists for all f € L.

In particular, if T is unitary and Wy (T') is unitary then

We(T) = s— lim e®'Te "

t—=Foo
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Bound on the Density at the Nucleus

Heinz Siedentop
Matematisk institutt
Universitetet 1 Oslo
postboks 1053
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email: heinz@math.uio.no

September 9, 1993

The Hamiltonian of an atom of N electrons with ¢ spin states each and
a fixed nucleus of charge Z located at the origin is given by

Hyz = (—A,, - —-) + — 0
vgl Itl“l p.:-l |t# - tvl

self-adjointly realized in /\ (L*(R®) ® C?). Furthermore we write ¥ for an

eigenfunction that belongs to the bottom of the spectrum of Hy z, 1.2, a
ground state eigenfunction and

pe(t)
2
= Za;. an=1 Eﬂ;x fthN-n W(l‘x, 1y ooy Tl Ou—13 6 Ouy Yo, Oudls -o-) TN, "N)l
de,...dv,_ydr g ...dey (2)

for the corresponding density.

A quantity of particular interest is the ground state density py(0) at the
nucleus. Recently Narnhofer [3] argued that one might expect for an atom
py(0) = O(Z%). In this talk we will outline a proof of this conjecture. In fact
we can prove '



Theorem 1 Let py be a ground siate density of Hyz and N = Z, then

p¢(0) < fngs + const Z16V/4,

This value is not in disagreement with Lieb’s Strong Scott Conjecture [2]
which is actually older and stronger than Narnhofer’s: according to Lieb

the scaled atomic density pu(t/Z)/Z® should converge to the corresponding

quantity of the bare Schrédinger operator HY ; which equals Hy,z except
for the omission of the second sum, the electron-electron interaction. If
one assumes this convergence to be pointwise this would predict py(0) =
55(:—2an + o(2%) (Lieb [2], (7.35)). We are now explicitly able to see that our
theorem does support this conjecture, since %, which is about 0.065, is bigger
than 5-8(?, which is about 0.048. On the other hand it shows that our estimate
is rather good - we loose only using an inequality of Hoffmann-Ostenhof et
al. (1] right at the beginning of our proof while all other estimates are
asymptotically correct using phase space localizations developed in [4] and

[5] - but presumably not yet sharp.

References

(1] Maria Hoffmann-Ostenhof, Thomas Hoffmann-Ostenhof, and Walter
Thirring. Simple bournds to the atomic one-electron density at the nu-
cleus and to expectation values of one-electron operators. J. Phys. B,
11(19):L571-L575, 1978.

[2] Elliott H. Lieb. Thomas-Fermi and related theories of atoms and
molecules. Rev. Mod. Phys., 53:603-641, 1981.

(3] Heide Narnhofer. Towards control over electron density in heavy atoms.
Preprint, UWThPh-1993-15, June 1993.

(4] Heinz Siedentop and Rudi Weikard. On the leading energy correction
for the statistical model of the atom: Interacting case. Commun. Math.
Phys., 112:471-490, 1987,

(5] Heinz Siedentop and Rudi Weikard. A new phase space localiza.
tion technique with application to the sum of negative eigenvalues



of Schrodinger operators. Annales Scientifigues de I’Ecole Normale
Supérieure, 24(2):215-225, 1991. '




ON A NOTION OF RESURGENT FUNCTION OF SEVERAL VARIABLES.

Boris Sternin and Victor Shatalov
Moscow State University

The aim of this report is the definition of a resurgent function of several independent
variables. The resurgent function theory introduced by Jean Ecalle (see [1]) has up to the
moment wide applications to different mathematical and physical problems. For example,
such problems are: investigation of the thin structure of the spectrum for Schrédinger oper-
ators, Dulac’s problem on finiteness of the number of limit cycles and others.

However, some mathematical and physical problems require the notion of a resurgent
function of several variables. These are: the investigation of solutions to differential equations
at infinity, investigation of wave diagrams in electromagnetic theory and so on.

The notion of a resurgent function of several variables can be introduced as follows.

Let C™ be the complex space with coordinates z = (z!,...,z").
Definition 1 The function f(z',...,z") is called a resurgent function if it admits a repre-
sentation of the form
@) = tf(¢,2) = [ eitg.ac, (1)
r

the function f(¢,z) being an infinitely continuable homogeneous (hyper)function of (¢, z)
of degree —1. Here the contour I' goes to infinity along the direction of the real axis of the
plane C;. The set of singular points of f surrounded by T is called a support of the resurgent
function f.

Let R be a convolution algebra of functions f((,a:) of the type described above and let
R be a set of resurgent functions. The following two assertions describe the main properties
of the operator (1).

Theorem 1 The set R is an algebra with respect to the standard multiplication. The oper-
ator € defined by formula (1) is a homomorphism of algebras

(:R>R.

Theorem 2 The following commutation formulas

%aﬁ:e((%)_l (%) f) ,i=1,...,n

hold.



We present also the investigation of asymptotic expansions of resurgent functions at
infinity. It happens that an analogue of the elementary resurgent symbol [1,2] (which is
essentially an asymptotic expansion of the resurgent function at infinity) for several variables
is an expansion of the type

f(@) = e %)Y " Ay(a), : (2)

where S(z) is a homogeneous function of degree 1 and Ai(z) are homogeneous functions of
degree —k.

The corresponding asymptotic expansion of the function f((, x) with respect to smooth-
ness has the form

~ ot T e - T k
6.2) = 2 + e = S(ep S g A ), ®)

Functions having singularities of the type (3) are called resurgent functions with simple
singularities (for one variable see, for example, {2]).

However, in general the function S(z) can have ramification at some points of C"\{0}
where the function f(z) is regular (the so-called focal points). At such points the expan-
sions (2) and (3) do not work and, hence, the notion of resurgent functions with simple
singularities is to be modified. Such a modification, done in the report, uses the so-called
0/9(-transformation introduced by the authors (see [4]):

FOI(f(¢,z)] = (.2.%)"/2 (?f_c)m f e~ f(¢, v)dx.

h{¢.p)

With the help of this transformation we write down modifications of (2) and (3) at focal
points being invariant along solutions of partial differential equations.

The introduced notions can be applied to certain mathematical and physical problems
(such as obtaining asymptotic expansions at infinity of solutions to partial differential equa-
tions, investigation of wave diagrams in electromagnetic theory and others).
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ABSENCE OF ABSOLUTELY CONTINUOUS SPECTRA FOR HIGH
BARRIERS.

P. Stollmann
University of Frankfurt
Germany
The result presented in this talk was obtained.j_ointly with .McGillivray and G. Stolz.
[t concerns the nature of the specirum of —3A + V if the potential V has high barriers.
We sav that V has barriers of form S; C R? height 2, > 0 and width wy > 0 provided

(i) 84\ US, has only bounded connected components.
(it) V(z) > hy for dist(z, Sa) < 2.

Theorem Let V € L} . — Ky have barriers of form Sy, height h, and w,. If h, = oo
and ¥, o(S,) exp (—#x/hnwn) < oo for some € > 0 then o, (4%:3 + V) ={.

The above theorem is a multidimensional extension of results of Simon and Spencer
[1]. The corresponding generalization of the Simon and Spencer technique for "wide
well” potentials has been given in [3]; see also {4]. While the general scheme of the
proof is a decoupling method as in [1], there is a difference: in the one-dimensional
situation one can use resolvents and their explicit representation by solutions to obtain
the necessary trace estimates. In the multidimensional case more involved techniques
are necessary. Apart from a factorization technique developed in [2,3] the following
propabilistic estimate is the key ingredient of the proof. Denoting Brownian motion
by (2, P, X;) and the first hitting time of a set S by 7,(w) = inf{s > 0; X,(w) € S}
we have:

Occupation time lemma Let ¢ > 0 and S C R? compact, and Tgs := M0 < s <
t;dist(X,(w),S) € 6}. Then, for 0 < a < t,

T 52
Plr, <t,Tys <a]<c- exp (—m) ,

where ¢ only depends on € > 0 and the dimension d.
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Analysis on Local Dirichlet Spaces

Karl-Theodor Sturm, Erlangen

Every regular Dirichlet (£, D(£)) form on a locally compact space X defines in an intrinsic
way a metric p on X. This metric p is the key to prove various results in the context of loca.l
Dirichlet forms which are known either in differential geometry or in p.d.e. ~ ' B

For instance, we give sharp conditions for recurrence as well as for conservativeness and
sharp spectral bounds. These conditions are in terms of the volume growth v : r — m (B,(z))
of concentric balls B,(z) C X which are defined intrinsically by means of the metric p. For

instance, if

. o
[* T dr=co
1

v(r)

(e.g. if v(r) £ C -r? for large r) then £ is recurrent and if

jxm log v(r) logo() " =

(e.g. if v(r) < exp(C - r?) for large r) then £ is conservative. This improves or generalizes
results by CHENG/YAU, KARP, KARP/LI, GRIGOR'YAN and TAKEDA. We also derive LP-
growth conditions for nonnegative sub- or supersolutions on X. In particular, we obtain L*-
Liouville theorems which extend results by YAU and KARP. Finally, we prove a sharp integrated
heat kernel estimate of the form

/ / (t,z,y m(dy (dz) \/——\/ exp( B)) ~exp(=A-1)

generalizing recent results by DAVIES and GRIGOR’YAN.

In order to get the sharp pointwise heat kernel estimates of L1/YAU, DAVIES, VAROPOULOS
and SALOFF-COSTE we have to assume that the doubling property holds true for the intrinsic
balls and that on these balls a uniform Poincare inequality is satisfied. Under these assumptions
BIROLI/MOSCO derived a uniform elliptic Harnack inequality. We prove that the latter two
properties already imply that a uniform parabolic Harnack inequality holds true. For
instance, this in turn implies that all solutions of the parabolic equation Lu = atu are Holder
continuous (w.r.t. the intrinisic metric).
~Actually, we prove also the converse: if a uniform parabolic Harnack inequality holds true
- then the doubling property and a uniform Poincare inequality must hold true. This extends
recent results by SALOFF-COSTE and GRIGOR'YAN.

We emphasize that the scope of applications of these results is much broader than classical
Riemannian geometry. The results also apply to uniformly elliptic operators on Riemannian
manifolds (cf. SALOFF-COSTE) as well as to uniformly elliptic operators with weights (cf.
FABES/KENIG/SERAPIONI and FABES/JERISON/KENIG), to Hormander type operators and
general subelliptic operators on R" (cf. FEFFERMAN/PHONG, NAGEL/STEIN/WAINGER,
FEFFERMAN /SANCHEZ-CALLE, JERISON, JERSISON /SANCHEZ-CALLE, BIROLI/MOSCO).



STRUCTURE OF SINGULARITIES OF SOLUTIONS OF ELLIPTIC
EQUATIONS

B. Fischer and N. Tarkhanov

Let P be an elliptic differential operator with real analytic coefficients on an openset X C R".
Weak solutions of the equation Pf = 0 on an open set U C X are known to be real analytic
functions in U.

Given a closed set S C X and a solution f of Pf =0 in X\S, the set S may be considered
* as the set of singularities of f in X.

Example 1. Denote by ¢ a fundamental solution of P in X which exists because of
Malgrange’s theorem (1955). For a distribution h € £ with support in S the potential ®(h)
satisfies the equation P®(h) = 0 outside S. Such singularities are considered to be the
simplest singularities on S.

The question arises whether an arbitrary singularity on S may be decomposed into the
simplest singularities. If S is compact the question was answered by Tarkhanov (1989).

A measure m on S is said to be massive if every subset of S of zero measure m has empty
interior.

Example 2. Choose a dense sequence {y,} of points of S and a sequence {m, } of positive
numbers such that 3, m, < co. Sct m{o) = X, ¢, m, for a subset ¢ C S. Then m is a
.massive measure on S.

Thus a massive measure always exists on S and we fix such a measure, say, m

Theorem 1. Suppose that S is a locally connected compact subset of X. Then for each
solution f of Pf = 0 in X\S there ezist a unique solution f, of Pf, = 0 in X and a
sequence {co} C L*(mn) satisfying ||a!ca||lL/-_.|("fi) — 0, such that

flz) = fulz) + f D%(z, y)ca(y)dm(y) for z € X\S.
* &

Proof. See Tarkhanov {3]. ]
For arbitrary closed subsets S of X this theorem fails. The obvious reason is that the
derivatives D$®(z,y) may be not in L*(m) for a fixed £ € X\S. However, there may be
deeper obsta.cles also. At least, the technique of Tarkhanov [3] does not work i in the case.
In the paper we investigate the singularities in the small, i.e., within a relatwely compact,
open set U in X.

Moreover, we limit ourselves to the singularities laying on a smooth submanifold S of X.
Then one has the natural choice of a massive measure m on S, namely, m = ds where ds is
the induced Lebesgue measure on S.



Theorem 2. For each solution f of Pf =0 in U\S there ezist a solution f, of Pf, =0 in
U and a sequence {c,} C LY(SNU) (g < 00) satisfying Ila!¢ﬂ||},':l(c'5an) —.0, such that

f@) = flz)+ T / D®(z, y)ca{y)dm(y) for z € U\S.

® sAU

Proof. The proof is given by combining some abstract theorems of functional analysis and

very precise estimates for solutions of the tra.nsposed equation P'g = 0 near S using methods ~

of complex analysis. . |

Mention some consequences of this theorem. '

Corollary 1. Let S be a locally connected compact subset of X and let {y,} be a dense

~ sequence of points of S. Then for every solution f of Pf =0 in X\S there are a solution
fe of Pf, = 0 in X and a sequence {f,} of solutions of Pf, = 0 in X\y,, such that

f=fe+3%, [, in the topologiy of E(X\S)."

Therefore compact -singularities of solutions of Pf = 0 may be separated into one-point

singularities.

Corollary 2. Let O be a relatively compact subdomain of X wih piecewise smooth boundary.

Then for each solution f of Pf = 0 in © there ezist a sequence {co} C L3(0O) (¢ < 00)

satisfying ||a!ca||2’,|$o) — 0, such that

@) =% [ D33z, p)ca(v)ds(y) for z€O.
* 80

Thus we can represent by boundary integrals not only solutions smooth enough near the
boundary but also quite arbitrary solutions without any boundary values on 80.
Corollary 3. Every hyperfunction on SN U has a representative of the form

¥ [ D38, p)ca(y)im(y)
“ snU
with {ca} C LY(SNU) (g < 00) satisfying |jalcall agnyy — O-
Finaly we formulate an open question.
Conjecture 1. Theorem 2 holds even if S is a locally connected closed subset of X.
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ON THE TIME-ASYMPTOTIC BEHAVIOUR OF THE SOLUTIONS
OF THE DIRAC EQUATION FOR LONG RANGE POTENTIALS.

Volker Vogelsang
Department of Mathematics
Clausthal

The problem of determining the time asymptotic behaviour of the solution u(t) of the

instationary Dirac equation
u+iAu=e*f(z),u(t=0)=0,k>1 (1)

with the Dirac operator

3
A=A0+P(I), A0= —iZaja_,-—l-a.;

i=1
essentially relies on the proof of the Holder continuity of the resolvent boundary values

Rytio on 04c(A). Namely, the solution u(t) possesses the representation

iult) = €U + w(t), w(t) = po. / emith (R*;; 7 f*;)“’)f dA @)

where U is satisfying the stationary Dirac equation
(A=k)U = f ()
and Sommerfeld’s radiation condition
(9 + VB =T) U = o([a|™) (ja] — o). (4)

Because of the time harmonic perturbation on the r.h.s of (1) we can expect that the
remainder w(t) in (2) is vanishing for ¢ — oo. In order to derive this limiting amplitude

principle he assumption ” f orthogonal to the point eigenspace” is necessary.

For the free Dirac operator Ag our problem can be precisely solved by Fourier transform
such that
w(t) =0 (t”%) in L2, — L2, a>1,

with an optimal exponent £. For short range Potentials P(z) = O (|z| — oo) there

exists the scattering operator S,and the operators A and Ay are unitary equivalent on



04c- Therefore in such cases the problem can be reduced on the free Dirac operator Ag
with the same decay O (t'—ig) assuming that the thresholds A = £1 are no eigenvalues or
resonances of A([K]). We remark that in the dilation-analytical situation the boundary
values Ry1io even are analytical across {}* > 1} ([B], [R]).

For long range potentials we exactly have the subsequent

Theorem.Let ay,...,ay € R*, a > 1, f € L2, k* > 1, k no embedded eigenvalue of
A, f orthogonal to the point eigenspace of A and P(z) be a 4 x 4 hermitian matriz
valued potentials such that |P(z)| < plz — ;|7 in U(a;) (7 = 1,...,N), p <1, P(z) =
O(|z]~%), 6, P(z) = O(|z|™*~¢) (z = o), € > 0 and P € L}}* else.

loc
Then with the notaions (1) - (4) for the spinor i(t) we have the decay
w(t) = o(1) (t = +o0)in L2 _, a > 1;

-y Y

and w(z,t) = o(1) (t — +o00) locally uniformly in z # a; ( = 1,...,N), if f € D(A)
additionally.

Remark(i) By the additional assumption
P(2) = p(Jz]) = o (Iz]#) (Iz| - o)

for some real functions p(r) there are no embedded eigenvalues of A on {A? > 1} ([V1]).
(it) If f do not be orthogonal to E, of A then the point spectrum op(A) induces an
additional oscillating part ,(t) in (2) such that

lup()ll2 < el fllz,

and uy(z,t) = O(1),(t = +00) locally uniformly in z # a; (j =1,...,N), if f € D(A)

again,
The proof of the theorem is essentially based on the resolvent estimate ([V2])

[ Arziofll_q < ellflloy @ > 1,

and the new radiation estimate
| (8- £:v37=T) Rasiof||,_ < eliflle

for some positive "Hélder exponent” § following some idea of Eidus ([E1], [E2])
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A PERTURBATION THEOREM FOR UNBOUNDED SEMI-GROUPS
AND SCHRRODINGER OPERATORS.

L. Weis
Baton Rouge and Kiel

In recent years one has studied "singular” perturbations of differential operators (e.g.
by potentials defined in terms of measures) which are not covered by the classical
semigroup perturbation theorems, using quadratic form methods or the Feyman-Kac

formula.

In this talk we propose a functionalanalytic framework for "singular” perturbations:
If A generates a cyp-semigroup of operators on a Banach space X we give a relative
boundness condition on a perturbation B that insures that (an extention of) A +
B generates a semigroup of unbounded operators. Adding analyticity conditions or
positivity assumptions we even get that (the extention of} A+ B generates a semigroup

again.

We show that in the Hilbert space case this extention coincides with the one given by
the K LM N-theorem. We apply our result to Schrodinger operators, in particular to

perturbation by measures.



OPERATORS WITH MULTIPLE CHARACTERISTICS AND RELATED
PSEUDODIFFERENTIAL OPERATORS

Karen Yagdjian

Yerevan, Armenia

In this talk, we shall describe two classes of pseudodifferential operators arrised in the
construction of the parametrix for the Cauchy problem for hyperbolic operators with
characteristics with variable multiplicity [1], [2].

1. We describe the first class by means of real-valued function A EC"’"([O, [']) T>0 , such that
A(0)=4"(0)=0, 2/(r) > 0 when t>0. Here A’ =dl/di. For A(t) we define A(r jﬂ dr and

assume that c‘l /A |

(0)/2(0)] s o |A()/AL2)) |;6" |5c,,|,1' O/ a(e), for al
k=1,2,..., and all t>0, with the positive constants ¢, ¢, ¢,, where c>(m- l)/m and m=>2. For
positive numbers M, N let us denote

Z,(M,N)= {(z,x,g) el TIx R xR | Al1)(&)2 Nln(g), (&2 M}

Z (M N)={(,x. D [0, T]x R xR, | A& <N (8, (&= M|
Here (&) = (e+
mapping of [0,7] into S

'ﬂz) We denote by S7; Hormander classes while by C([O T),S: ) a continuous

Definition 1. Let m,m,,m,p be a real numbers while M and N are positive. By
S, S {m.m,,m} wy W denote the set of all functions alt,x, ) eC”([O, T]x R x Rg) such that

aeC ([0 TLS; 5) for some m,p' and such that for any k,a,f there exists a constant C, , ; such
that

|DEDg Dealt,x, &))< Cp (&P 2(0)™

my+k

forall (1,x,&) e Z,(M,N).

A(r)
AlD)

We also denote xﬁ{ml. 2,m3}MN ﬂéga{ml k,m, - km3+k}MN

Proposition 1. Let a,(t,x,¢) €. {m k,m, - k,m, +k}MN, k=0,,..., and assume that
a,(1,x,&)=0 for all (£.x,8) eZpd(M,N) and all k=0,,.. Then there exists a symbol
a(t,x,&) eSp'(,{m,,mz,m,’}M‘N, supp a C Z,,(M N) for which

a~ay+a,+a,+. mod «x S{m,,mz m,}MJV
in the sense that a—a,—a,—..—a, , €8 J{m, k,m, —k,m, +k} v Jor all k, and any symbols
with the last property differ by the elements of x 5{m| m,,m,} A
2. We describe the second class by means of real-valued function 4 eCw(R") whose derivatives

of any order are bounded. We denote Z = {x e R"A(x) = 0}, NZ = R"\Z and




assume that for every & there exists constant C, such that

DEA(x)| < C K (x) (JA(x)|+
]Vzl(x)D for all x € NZ. Here we use the notation K(x) =1+ ’Vi(x)[/|/1(x)|. We also assume that

there is positive £<1/2 such that K(x)sC’l(x)r‘ for all xeNZ. Let M and N be positive
constants. We define

z,,(M,N)={(x,§)eR;ng ‘ Z(x)(&) 2 N*In*(&), (g)zM}

Z,{(M,N) ={(x,¢) eR! x R} ‘ 2 <N In*(g), (&)= M}
Definition 2. Let m,m,,m,p be a real numbers while M and N are positive. By
Sp_a{m, 1y, } i W denote the set of all functions a(x,8) eC r"’(R,f X Rg) such that a € § 7 5 for
some m,p" and such that for any a,f there exists a constant C, ; such that

|Dnga(x, §)| < CM(:Af)m'-p{aw'ﬁ‘|/1(Jc)|m2 K(x)m’%for all (x,&) eZ,(M,N).
We also denote .'cM{m],mz,»';-13:|LM"_‘r = ﬁSp.é'{ml ~k,m, —k,m3}MN.
k=0

Preposition 2. Let a,(t,x &) eSp‘é{m, -k,m, uk,mJ}MN, k=0,,., and assume that
a,(x,&)=0 for all (x,&) eZPd(M, N) and all k=0,1,... . Then there exists a symbol
a(x, &) eSM{m],mz,mJMw, supp ac Z,(M,N) for which

a~a,+a +a,+.. mod xns{m,,mz,ng}uw
in the sense that a—a,—a,—..—a,, €5, a{"’l ~k,m, —k,m,} wx JOr all k and any symbols with
the last property differ by the elements of «, J{rn, ,mZ,mB} MA -

For the pseudodifferential operators with the symbols from both first and second classes the
following theorem holds.

Theorem. Lef A and B be pseudodifferential operators with the symbols a €§, 5{m,,mz,m3} M
and b eSM{m,

] ’ ’
L ny } , respectively. Then the product AB is a pseudodifferential operator
MN
1 ! r
with a symbol belonging to SI,_J{m1 oy my 4+ my  my }
MN
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