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Preface

The present volume presents the abstracts of the lectures held in the inter­
national conference

"Partial Differential Equations"
6.-10. September 1993,

organized by the Max-Planck-Arbeitsgruppe

"Partielle Differentialgleichungen und Komplexe Analysis"

at the department of mathematics, University of Potsdam. The conference
was supported by the Max-Planck-Gesellschaft, the Deutsche Forschungsge­
meinschaft (Sonderforschungsbereich 288 "Geometrie und Quantenphysik"),
ancl the Land Branclenburg.

The conference 1993 continued aseries of earlier meetings, (Ludwigsfelde
1976, Reinhardsbrunn 1985, Holzhau 1988, Breitenbrunn 1990, Lambrecht
1991, Potsdam 1992, cf. MPI-Preprint 93-7). The general idea of the series is
to bring together specialists in analysis, mathematical physics and geometry
and to point out interactions and common aspects in the recent development
of these fields.

Acknowledgement: The editors are indepted to Frau M. Bernhard,
Frau Ch. Gottschalkson, and to the colleagues of the Max-Planck-group
S. Behm, Ch. Dorschfeldt, T. Hirschmann, 1. McGillivray, E. Ouhabaz,
E. Schrohe for their effort in organizing the conference and carrying out the
technicalities of this volume.

Potsdam, 30. November 1993

M. Demuth B.-W. Schulze
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PERTURBATION OF EMBEDDED EIGENVALUES OF LAPLACIANS
ON HYPERBOLIC MANIFOLDS.

Erik Balslev

University of Aarhus

Let ß be the Lapace-Beltrami operator on a non-compact finite-area Riemann surface

r\h, where r i8 a discrete subgroup of P - SL2(R) and h is the Poincare halfplane.

Selberg [Se] proved that for a congruence subgroup f p of P - SL2(R), ß has infinitely

many eigenvalues embedded in the continuous spectrum [~' 00]. This conjecture has

been disproved by Phillips and Sarnak [PS] under certain assumptions such as a gen­

eralized Lindelöf hypothesis. Their method consists in proving that sufficiently many

cusp forms become resonances under a perturbation in the Teichmüller space Tr of the

group r. This in turn is based on an explicit formula for Ima2, where in the case of

a simple eigenvalue K( f) = K+ al f + a2f2 + O(f2) is the perturbation expansion of the

eigenvalue K( f) of ß( f) for small f i: O. The method of proof of Phillips and Sarnak

utilizes the Lax-Phillips scattering theory for the automorphic wave equation.

This formula for Ima2 has been known in the physics literature of Schrödinger operators

for a long time under the name of Fermi's Golden rule. It says that if ß( f) = ß +fL +
O(f2

) (f E (-fo, fO)) is a real-analytic perturbation of 6. and K(f) = K+al€+a2€2+0(f3)

is a Taylor expansion of a simple eigenvalue, then

where K = ~ + r 2 and E1(s, '), I = 1, ... , m are the Eisenstein series associated with the

m cusps (Note that Real = 0). It was proved by B. Simon [Si] utilizing the dilation­

analytic theory of [Be], which in that case provided the basis for the application of

analytic perturbation theory.

The identity of this formula in the Euclidean and hyperbolic cases suggests the pos­

sibility of proving it by the same method in both cases. The basic problem is the

separation of the embedded eigenvalues from the continuous spectrum. In the Eu­

clidean case the operator -ß + V is transformed by a farnily of unitary operators

induced by dilations of independent variables. Analytic continuation in the scaling

parameter leads to a rotation of the continuous spectrum away from the eigenvalues;

successively turning resonances into discrete eigenvalues. The analogous transforma­

tions in tbe byperbolic case are dilations in tbe hyperbolic distance or, equivalently,



power transformations U(t) of the independent variables. Since the continuous spec­

trum of ~ is entirely controlled by the O'th Fourier mode and since the exponentially

decreasing cusp forms explode under complex power transformations, these operators

should be restricted to the y-coordinates in each cusp in the O'th Fourier mode. The

O'th Fourier coefficient of the Eisenstein series E(z, s) is transformed by U(t) into a

function ao(z, s, t) which is for large y = Im z equal to yk+(a-!)t + C(s)yt-(a-~)t in

each cusp. This is why the continuous spectrum of ~(t) = U(t)~U(t-I) in the s-plane

is given by Arg i- 1 (s - ~) = -Arg t. This is proved by a ca1culation of ~(t).

The embedded eigenvalues are unchanged, since cusp forms are unchanged by U(t).

The O'th Fourier coefficient of the resonance function with resonance p is for large

y transformed into RespC(s)yt-(p- t)t which becomes a square-integrable eigenfunc­

tion of ~(t) for Arg t < -Arg i-I (p - ~). Thus, the resonance p of ~ becomes an

eigenvalue of ~(t), when the continuous spectrum of ~(t) crosses the resonance. As a

consequence of the separation of the continuous speetrum from the eigenvalues Fermi 's

Golden Rule is now proved by the same proof as the one given by Simon in the case of

Schrödinger operators.

References

[BC] E.Balslev and J .M.Combes; Speetral properties of many body Schrödinger oper­

ators with dilation-analytic interaetions, Comm. Math. Phys. 22 (1971), 280-294

[PS] R.Phillips and P.Sarnak, Perturbation theory for the Laplacian on automorphic

functions, Journal of the AMS 5,(1992), 1-32

[Se] A. Selberg, Harmonie Analysis, in Colleeted Papers, Vol.I, 626-674, Springer

Verlag 1989

[Si] B. Simon, R~sonances in N-body Quantum systems and the foundations of time

dependent perturbation theory, Annals of Math. 97 (1973), 247-274.



MIXED BOUNDARY VALUE PROBLEMS FOR ELLIPTIC AND

HYPERBOLIC OPERATORS.

Joseph Bennish

California State University

Long Beaeh

The faetorization method was used by Eskin to eompute the asymptotics for elliptie

boundary value problems for a scalar pseudo-differential equation. Other methods were

developed by Schulze to treat the systems. case as weIl as other types of problems on

manifolds with singularities. In my talk I presented the result that the factorization

method extends to elliptic boundary value problems for pseudo-differential systems. In

this result the asymptotics are expressed as singular integrals.

The second part of my talk was on mixed initial boundary value problems for second­

order hyperbolic equations. The main results are conormal regularity (that is, tangen­

tial regulari ty and regularity in weighted function spaces) and asymptotics for both

the mixed Dirichlet-Neumann-Cauchy problem and problems satisfying the Shapiro­

Lopatinski condition. The manuscript eoneerning the hyperbolic results is in prepara­

tion.
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THE TRACE FORMULA FOR THE SCHRÖDINGER GROUP,

GUTZWILLER TRACE FORMULA AND CLASSICAL PERIODIC

ORBITS

Zdzislaw Brzezniak (Bochum)

The eigenvalues ofthe quantum harmonicoscillator Ho = -~L\.+~ E1;1 w;x; acting in

L2 (1lt') are weIl known, Ao = ~Iwl+a.w, where a E !Nd and a·w = E ajWj, Iwi = EWj.

If we define tr e- itHo := L:o e-it'\Q as a tempered distribution (in t E IR) then one ean

easily calculate that tr e-itHo = e -i~I,",1 n1;1 (1 - e-itwi ), still in distributional sense.

An easy consequenee of the last formula is

sing supp tr e-itHo = {t E IR : e-itwi for some j E {I, ... , d} }. (1 )

A natural question then arises as to what extent is the above property characteristic

of the harmonie oscillator?

Related problems have been studied (but for first order differential (or pseudo differen­

tial) operators on eornpaet manifolds) by Y. C. de Verdier, J. Chazarin, Duistermaat

and Guillernin, Melrose. For the Schrödinger equation ease, see: Albeverio, Blanchard,

H0egh-Krohn, Comm. Math. Phys. (1982), Boutet de Monvel-Berthier A., Boutet de

Mouvel L., Lebeau G., J. d'Anal. Math. (1993), Albeverio, Boutet de Monvel-Berthier

A., Brzeiniak, The trace formula for Schrödinger operators from infinite dimensional

oscillatory integrals, preprint (1992), Albeverio, Brzeiniak, Aeta Math. Appl. (1994).

In this talk we mainly follow the third paper eited above. We present two resuIts from

this work.

Theorem 1 Let for a strictly positive symmetrie matrix n2 and for h > 0J Ho (h) =

-~L\. + 2\ <n2x,x> and H(h) = -~~ + 2\ <n2x,x> +kVo(X) be respectively the

Jree and the perturbed quantum harmonie oseillators (whieh are selJ-adjoint operators

in L2(IRd
)). Here we assume that Vo(x) = f ei <:C,'Ii> d/lo(y) Jor some complex measure

J.L on lRd that has all moments finite.

Then sing supp tr e-itH(h) ean be defined in a distributional sense as beJore and the

Jollowing holds
sing supp tr e-itH(h) C sing supp tr e-itHo(h). (2)

Since the RHS of (2) is h independent one rnay ask for the small h asyrnptotics of

sing supp tr e-itH(h). For this we also need sorne preliminary notation. Denote the total



potential by ltJ. (x) = ~ < f!2 x,x> +va(x), x E F. We make the following assumptions

on yt. The set {x: V{(x) = O} is finite (and its elements will be denoted by CI, .•• , cao ,

with So E IN \ {O}) and det V{'(Cj) # 0, det cos Jt V{'(Cj) # 0 for j = 1, ... , So. t > 0

is fixed such that any t-periodic, non-constant solution to the classical Hamiltonian

system

7(s) + V;Cr(s)) = 0, 0 < s < t (3)

is a nondegenerate periodic solution, see I. Ekeland, Convexity methods in Hamiltonian

mechanics. One can prove that there exist a finite number of pairwise non-congruent

t-periodic1 solutions ,1, ... , laI to (3) such that any t-periodic solution , to (3) is

either a constant solution, ,(s) = Cj, s E [0, t] for some j = 1, ... ,so or I = (/j)T for

some j E {I, ... , SI}, T E [0, t]. We also need the notion of oscillatory integral over a

(infinite dimensional) Hilbert space, which we do not recall here. Then we have

Theorem 2 If1ip ,t = {, E H l (O, tj JRd) : ,(0) = ,(t)} is a Hilbert space with norm

given by II,II~ = J; {1i'(s)12 + 1,(s)12}ds then

tr e-üH(h) = k,1 e,t{lhll'-< B-Y,i>-<!h'i> }-tV(-y) d-y, (4)
'Hp,t

where the integral (with -) on the RHS is the oscillatory integral mentioned before, Band

C are trace dass linear operators in 1ip ,t defined by <BI ,,>= J; <02/ (s),,(s» ds,

< C11 ( >= J; IJ(s) 1
2 ds, while V( I) = J; Vo(I( s)) ds. Moreover, with some additional

assumptions on the small potential va, and assuming thai det sin(~O) =I 0 the following

asymptotic formula as h ~ 0 holds
So

tr e-itH(h) = L ektvt{Cj) I;(h)
j;;;;1

SI

+ (21rih)-t L e* fo
t

(tl-Yj(s)1
2
-vt{'"Yj(s»))ds Ij*(h) + h-~O(h),

j:::::l

(5)

1

where I; and 1;* are Coo functions on IR such that 1;(0) = {det cos JtV{' (Cj) } -2"

1

and 1;*(0) = t(dj)-~ {J; {1i'j(s)12+ IV{(/j(s))l} dS} 2" and dj is the determinant ofthe

linearization of the Poincare map corresponding to (j'

ITwo periodic solutions to (3) are called congruent iff each of them can be obtained from the other

by means of time translation. If, is such a solution, then by 'T we denote the translation of, by

time T, Le. 'T(S) =,(s + T), if s + T :5 t or IT(S) = ,(s + T - t) otherwise.



Let us remark that for studying the limit h ~ 0 we use results from two other papers:

Albeverio, Brzeiniak, J. Funet. Anal. (1993) and Rezende, Comm. M. Phys. (1984).

Fakultät für Mathematik, Ruhr Universität, 44780 Bochum, Germany



LIOUVILLE PROPERTY AND ROUGHLY ISOMETRIe MANIFOLDS.

Thierry Coulhon

Universite de Cergy-Pontoise

This is areport on a joint work with Laurent Saloff-Coste ([3]). We eonsider the

equivalenee relation of rough isometry hetween measured metric spaees, as introdueed

by Chavel and Feldmann [1], following Kanai [4]. Under very weak loeal geometry

assumptions, we associate with a riemannian manifold M a. weighted graph X whieh

is roughly isometrie to M. Several analytie features, such as the volumegrowth, the

Sobolev type inequalities, transienee or reeurrenee, ean be transfered from M to its

diseretisation X or hack from X to Mj moreover, it ean be cheeked that they are

preserved under rough iS0!TIetries between graphs. Therefore, all these properties are

preserved under rough isometries between manifolds. This is nothing hut a system­

atization of the work of Kanai (see [4], referenees herein and also [2]). In addition,

it ean be shown that the sealed Poineare inequalities on balls of large radius are also

preserved. Sinee Saloff-Coste has shown in [6] that the paraholie Harnaek inequality

is invariant under rough isometry between manifolds satisfying mild loeal geometry

assumptions. As a corollary, one has that a manifold with Ried eurvature hounded

from below, which is roughly isometrie either to a manifold with non-negative Ried

curvature, or to a polynomial growth Lie group, has the strong Liouville property, i.e.

there exist no non-trivial polynomial positive harmonie functions.

Let us reeall in contrast the result of Lyons [5] that the Liouville property is not

invariant under quasi-isometry.
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PERTURBATION OF ANALYTICALLY CONTINUED DIRICHLET

RESOLVENTS.

M.Demuth

Potsdam

Let (Hoh:. be the Dirichlet Laplacian in L2(E) where E is some open region in JRd such

that JRd - E is bounded. Let Hß = Ho +ßIRd-El with Ho = -ß, ß > O. Assurne that

the sandwiched resolvent e-lxl((Ho)E+z)-le-lxl has an analytic continuation into apart

Goo of the second sheet in the lower half-plane. A quantitative analyticity condition is

given which ensures that e-1xl(Hß + z)-le-1xl is analytic in a set Gß C Goo . Moreover,

for large ß the distance between the boundaries of Gß and G00 is estimated from below

in terms of ß.



SYMPLECTIC REDUCTION IN DEFORMATION QUANTIZATION

Horis V. Fedosov

Moscow Institute of Physics and Technology

Let W (M) be the WeyI algebra bundle over a symplectic manifold (M, w). Let D

denote an Abelian connection on W(M) with the curvature

1
OD = --w,

h

and let WD (M) be the algebra of Hat sections of W (M) with respect to D. This algebra

is called a deformation quantum algebra.

Let H = Ho+H1 +... be an element of WD(M) with areal function Ho(x) as a leading

term. Suppose the following conditions are fulfilled:

(i) Ho(x) generates a 21r-periodic Hamiltonian flow, that is, a symplectic action of

the group U(l) on M,

(ii) Mo = {Ho = O} is a noncriticallevel manifold, which is compact and connected,

(iii) the orbit space B = Mo/U(l) is a smooth manifold,

(iv) any solution of the Heisenberg equation

. z
a = h[H,a]

in WD(M) is 21r-periodic, that is the group U(l) acts on WD(M) by autom.or­

phisms.

Under these conditions we prove a reduction theorem for the deformation quantum

algebra, similar to the classical reduction theorem of Marsden-Weinstein.

Define the reduced quantum algebra as

where AH is the subalgebra of WD(M) consisting of elements commuting with Hand

J H is an ideal in AH generated by H. Let WB denote the Marsden-Weinstein symplectic



form on B. There exists an Abelian eonneetion iJ on the Weyl algebra bundle W(B)

with the eurvature
t

OlJ = -y;,WB + Wo + hWl + ... ,

where Wo, Wl ... are closed two-forms on B, such that the redueed algebra R is isomor­

phie to the algebra Wb(B) of Rat seetions of W(B) with respeet to the eonnection

D.

This theorem allows us to eonstruct an eigenstate functional on WD(M), that is, a

funetional (a) with values in h-(n-l)C[[h}] having the property (Ha) = (aH) = 0

for any a E WD(M). Combining this eonstruction with the index theorem for quan­

tum algebras, we obtain necessary eonditions for existenee of an asymptotie operator

representation of the algebra WD(M) such that the operator iI corresponding to H

has a cluster of eigenvalues near zero. These eonditions yield the Bohr-Sommerfeld

quantization eonditions and multiplicity of clusters.



N-BODY HAMILTONlANS WITH HARD-CORE INTERACTIONS.

V. Georgescu

C.N.R.S. (Paris)

This is aresurne of a work with Anne Boutet de Monvel-Berthier and Arny Soffer. Let

X be an euclidean space, L a finite lattice and for each a E L let xa be a subspace

of X such that a < b iff xa C X b strictly, XC = xa + X b if c = sup(a, b), Xo = {O}

if 0 = in!L, Xl = X if 1 = Slip L. We consider potentials va : X a ~ R which have

a short-range and a long-range cornponent verifying rather standard conditions, and

"hard-cores" ](a C xa which are compact, star-shaped with respect to the origin and

with boundary of dass Cl. Denote IIa the orthogonal projection of X onto xa and

V(a) = ~aIIa, 'l/;(a) the characteristic function of the cylinder rr;I(I<) with base Ka.

For any number Q' > 0, we have a selfadjoint operator H et = ~ + L:aEL [V(a) + Q'tf;(a)]
in 11. = L 2(X), with form-domain 1f1 (11.$ are the usual Sobolev spaces on X and H: are

the weighted Sobolev spaces defined by the norms 11(1 + p'2)~(l + Q2)tull, p = -i 8r , Q
= multiplication by x). For each complex non-real z, (z - Het)-l -+ R(z) as Q' ~ +00,

strongly in B(H-t, 1f+I). The family {R(z)lz E C, Im z i- O} is a selfadjoint pseudo­

resolvent and defines the selfadjoint non.densely defined hard-core Hamiltonian H in

H. We show that a generalized form of the conjugate operator rnethod combined with

graded C·-algebra techniques cau be used to prove an optimal version of the limiting

absorption principle for H (as usual in N-body theory, the conjugate operator is the

generator of the dilation group in X). There is a closed, countable set ,,-(H) C R

(the critical set cornposed of th~esholds and eigenvalues) such that for real A rt "-(H)

lim/J-±O R( A+ i /-l) = R(A± iO) exists in B ('H; I , 11.~: ). For t > ~ a more precise result

holds in fact. In particular, H has no singular continuous spectrum and local decay

holds at non-critical energies.

An important technical point of the proof is a regularity result for the Dirichlet problem

in a non-smooth domain !1 for the Laplace operator ~: if!1 has the uniform interior

cone property and the uniform exterior ball property, then u E 1-tÖ(f!) and ~u E L2(!1)

imply u E 'H2 (!1).



Multiplicative decompositions of holomorphic Fredholm

functions for pseudo-differential operators and
'1J*-algebras.

B. Gramsch and W. Kaballo

Let 'lI denote the submultiplicative Frechet algebra of Hörmander classes 'lI~,6 , 0 ::;

8 ::; p ::; 1, 8 < 1, embedded into JL(H), H = L2(IRn ). Let Cik (B) , k = 0,1,2, ... , be

the approximation numbers of B E JL(H) and let ßk ~ ßk+l > 0 be a null sequence.

Define J<ß> := {B E lL(H) : sup ßk1
Cik (B) < oo}. Furthermore let fl C CN be a

k

holomorphy region and <I-('lI) the set of Fredholm operators <I-(H) n ('lI) .

Theorem. Let T : n ~ <I>('lI) be holomorphic and homotopic in C(fl, <I>('lI)) to an

element of C(fl, 'li-I). Then there exists a holomorphic function A : fl ~ 'li-I (group

of invertible elements) and S: fl ~ 'li-co n J<ß> such that

T(z) = A(z)(l +S(z)) ,z E fl.

Remarks: (1) S is holomorphic with values in a locally convex Frechet left ideal I T C

'li-co n J<ß>'

(2) For N = 1 uo homotopy assumption is needed, in this case there exists a rather

sharp result of Leiterer (1978).

(3) Additive decompositions (related to multiplicative decompositions) have been con­

sidered e.g. by Krein, Trofimov 1969, Gramsch 1973, Gramsch, Kaballo 1978, 1989.

(4) The theorem above can be proved with slight changes for arbitrary submultiplicative

'lI*-algebrasj it seems to be new also for C>40-algebras of singular integral operators.



DERIVATIVES OF THE BEAT KERNEL

ON ARIEMANNIAN MANIFOLD

Alexander Grigor'yan, Bielefeld Universityt

Let M be a smooth connected non-compact geodesically complete Riemannian manifold,
Ll be the Laplace operator associated with the Riemannian metric, n ~ 2 be the dimension
of M. We are concerned with the hea.t kernel p(x, y, t) (where x, y E M, t > 0) being by
definition the smallest positive fundamental solution to the heat equation

Ut - Llu = 0 (0.1)

(0.2)

and which ia known to exiat on any manifold.
A question to be discussed here is estimations of derivatives of the heat kerne!. They are
based upon upper bounds of the heat kernel itself which were investigated in detail in [2]
Let us introduce the notation

where r = clist(x, V), D > 2 ia a given constant and m = 0,1,2, ... Let us specify that
'\Im means Llm/2 if m is eveo and 'VLl m;l if m is odd. In particular, Eo contaks 00

derivatives of the heat kernei:

Theorem 1 If D > 2 tben for any integer m ~ 0 the quantity Ern is finite. Mareover,
for any x E M Em(x, t) ia a continuous decreasing function oft. Besides, jf Eo is known
to satisfy for some x and for t E (0, T) the inequality

1
Eo(x, t) ~ f(t)

with a positive continuous function f(t) then Ern is estimated as follows:

coost Dm
Em(x,t) ~ fm(t)' ,m = 1,2,3...

where fm -is the rn-tb integral of f(t) i.e. is deHned by induction:

10 = I, h+l(t) = l' Ik( r)dr, k = 0,1,2...

t Supported by the Humboldt Foundation

•
(0.3)



(0.5)

(0.6)

Of course, oue need the initial estimate (0.2) of Eo in order to be able to apply this
theorem and to obtain the inequality (0.3) . The necessary estimates of "Eo can be found
in [2] . We only note here that the function I(t) from (0.2) is expressed through some
isoperimetric properties of the manifold.
The second result to be presented. here is pointwise estimates of the time derivatives of
the heat kerne!. They can be obtained from the integral estimates (0.3) due to the fact
that :tP = L\p and upon application of the seInigroup property.

Theorem 2 Suppose that for two points x, Y E M it is known that {or a11 t E (0, T)

const ronst
Eo(x, t) ~ J(t) , Eo(y, t) ~ g(t) , (0.4)

where C1 ,2 are constants and I, g are continuous, increasmg functions on (0, T) such that
the functions log J(t) and log g(t) are concave, then for any integer m ~ 0 and t E (O,2T)

1

am I const [ r
2

)
OtmP (x, y, t) ~ exp - 2Dt .

min ( Jf(~)g2m(~), J9(t)/2m(~»)

where r = dist(x, y) .
For example, let

{
tV ,t:S;; 1

J(t) = const
t'" ,t > 1

where v, p. > 0 and suppose for the sake of simplicity that the estimate (0.2) holds for all
x and for all t > Q. Then by Theorem 1 we have the estimate (0.3) which implies by
Theorem 2 the pointwise upper bound (0.5) which acquires tbe form

I~:pl (x, y, t) ~ t:;~:) exp [ - ;;t) . (0.7)

Let us note that the estimate (0.2) with the function (0.6) can be deduced from the
pointwise estimate of the heat kernei:

const
p(x, x, t) ~ I(t) (0.8)

supposed to be true for all x E M and t > O. Hence, (0.8) implies (0.7) ..This fact was
known before (see [1] ) but the theorems 1,2 with the results of [2] enable U9 to do the
same for a more general function I(t) rather than (0.6) .
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REGULARITY PROPERTIES OF THE ZERO-SET OF SOLUTIONS OF

SCHRODINGER EQUATIONS.

M.Hoffmann-Ostenhof, Universität Wien

Joint work with T.Hoffmann-Ostenhof and N.Nadirashvili.

Let u :# 0 be a real-valued distributional solution of the Schrödinger equation

(-ß + V)u = 0 in 0,

o a domain in~ and V E Lloc(O), V real-valued. For V E ](n,6(O) for some 8 E (0,1),
u E CO,6(0). Let BR denote the ball centred at the origin with radius Rand BR C 0

and let N~l) denote the set of points in BR where 'U vanishes in first order. Based on

arecent result [M.H.-O. and T.H.-O. 1992] we show that there is a constant C < 00

such that \:Ixo E N~l) n BRj2 and \:18' < 8

1

1+5'Iu(x) - \7u(xo)(x - xo) I::; C x - Xo 1 , \:Ix E BR ,

where C = C(V,8,8',n,R,sup{1 u(x) I: x E BR})' Using this estimate we then

prove that N~1) is locally a (n - l)-dimensional hypersurface which is the graph of a

C 1 ,6' -function, and hence "more regular" than u itself.



A VARIATIONAL FORMULATION OF FERROMAGNETISM­

ON THE REGULARITY OF THE EXTREMALS.

W. Höppne~

Berlin

We consider a ferromagnetic body nunder the presence of an applied magnetic field

Ha. If we neglect boundary anisotropy and magnetoelastic effects we may assume that

the free energy U of n is given by the formula

.... cl " (8M i)2 11............ 1 ........ 1 ....U(M) = 2: LJ -8. dx - 2: Hd(M)M dx - HaM dx + ep(M) dx
o .. x) 0 0 n

1,)

Here we have denoted by M the magnetization of n and by Hd(M) the demagnetizing

field. The function ep is a polynomial. The integrals represent the exchange energy,

the energy of the magnetic fields and the energy due to crystal anisotropy. If the

temperature of n is constant the magnetization NI has constant modulus, IM(x) I= M~,

x E 11 (cf. [3] and, for the mathematieal setting, [4]).
Thus we consider the variational problem

on the set

U(M) = Min! (1)

(2)

of Sobolev mappings.

Theorem 1 Let M be an absolute minimum 01 (1), (2). Then there exists an open set

111 c n such that M is smooth in 0 1 and the one-dimensional Hausdorff measure of

0-01 vanishes.

Corresponding results are known for harmonie mappings. Dur proof is based on a

theorem of Giaquinta [2] on partial Hölder continuity and on a modification of the

methods used by Evans [1] for studying the regularity of harmonie mappings.
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ON SOME STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS.

Helge Holden!

Uni versity of Trondheim

Norway

In my talk I discussed the two related stochastic partial differential equations

Ut + f(u)z = h(x, t, u) +g(u)W(t)

u(x,O) = uo(x), x E IR

and

Ut + A(U, ~)u = v.6.u + w

U ( XI, ••• , X n, 0) = Uo ( x!, . .. , X n)

(1)

(2)

In (2), U = (ut{XI, ... , Xn, t)), ... ,Un(XI, •.. , X n , t) and (u, V) = 2:};;;;1 Uj a~j' In the equa­

tions above, Wand w both represent white noise. The initial data in (1) and (2) are

deterministic.

In our analysis of (1), jointly with N.H.Rinebro (Oslo) [1], we interpret the equation

in the weak sense, i.e., u is a solution of (1) iff

foOO dt fßdx [ept U + f(u)epzl + f~dxuo(x)<p(x,·)

= - flldx f dB(t)epg + fßdx fooo
dt h ep

for all ep E CJ (IR x [0,00)). The stochastic integral is interpreted in the Ho sense.

(3)

By an operator splitting technique, also called the fractional steps method, where we

iterate beween the conservation law Ut + f(u)z = hand the stochastic differential

equation Ut = gW(t) interpreted as du = g(u) dB(t), we prove existence of a solution

of (1). In addition we provide a numerical method and illustrate the result with an

example from flow in porous media.

The methods we use to analyze (2) are based on the so-called white noise analysis,

and the results are joint with T.Lindstr0m, B.0ksendal (Oslo), J. Ub0e, T.-S.Zhang

1Research 8upported in part by NTNF I STP 29643



(Hangesund) [2]. Let Sand S' denote the Schwartz space of rapidly decreasing func­

tions on mand its dual respectively. Applying the Bochner-Minlos theorem we obtain

the probability space (S', Jl) where Jl is determined by

r ei<w,<p> dJl(w) = e-tll<pW, 'P E S (4)
1s1

where 1I . 11 is the L 2-norm. We recover white noise as

W :S' X S ~ IR

W(w, 'P) = (w, cp)
(5)

(9)

Brownian motion can be determined by B(x) = (w, X[o,x]). Let hn(x) denote the n-th
:2

Hermite polynomial, and ~n(x) = ene-=\- hn CJ2x). Then {~n} is an orthonormal basis

for L2(IR). The Wiener-Ito chaos theorem says that {Ha = flT=l hai ((w, ~j))} with

o = (aI, ... , om), eonstitute an orthogonal basis for L2 (S', p).

Thus, if X E L 2(S', Jl), we can write X = 2:0 coHo uniquely. With this we can define

the Wiek product as

X 0 Y = L codßHa +ß (6)
a,p

for Y = L:ß dpHp E L 2(8', p). One can prove that

JY, dE, = JY, <> IV, dt (7)

where we have on the left side a classical Ito integral of the adapted process ~. With

this we interpret equation (2) as

8u
Ut + AU 0 8x = vVu + W (8)

For simplicity of notation we eonsider the scalar ease, i.e., n = 1. Assurne that u = - ~~

and W = - ~~. Then we obtain the KPZ-equation

8.X ,\ (8X 2
) ~X N

Bt = 2" 8x + v +.

If we furthermore write Y = Exp (2)'vX) we obtain the heat equation with a stochastic

potential, viz.

8Y A
- = vßY + -VoN
8t 2v

Y(x,O) = f(x)
(10)



We can solve this equation explicitly as

(11)

with Q' = y'2V and E denotes expectation with respect to Brownian motion (bt , PX).
For more precise statements of resuIts and assumptions, as weIl as references to relevant

literature, we refer to our papers listed below.
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On the Dirichlet problem for pseudo differential operators generating FeIler semigroups

Nie1s Jacob

In [2] we proved that there exists a large dass of pseudo differential operators p(x,D)

generating a Feller semigroup and satisfying the following estimates

(1)

(2)

(3)

(4)

IIp(x,n)nlla2 s~ cllulla2 s+1 ', ,
Il u ll a2,s+1 ~ c(\Ip(x,D)ull a2,s + lIu llo) ,

IB(n,v) I ~ cllulla2,1/2 -lIvlla2,1/2 '
2 2

B(u,u) ~ collulla2,l/2 -Ilullo '

(7)

where

(5) B(u,v) = ~P(X,D)U(X).V(X) d.x ,

and for a fixed continuous negative definite fnnction a2 : of -i !R , a2(~) ~ cI~ Ir for r > 0 and

I ~ I large, the norm 11·11 2 S ia defined bya,

(6) lIulla2,8 =~(1 + a2
(~))2S·1 ~(61 2 d~ .

In case that p(x,D) is symmetric, (B,H
a2

,1/2(llf)) is a Dirichlet space. We are interested in

solving the Dirichlet problem

p(x,D)u = f in n , n ce lIf ,
n C .U - g In 1\,

For g =0 and f E L2(1ff) we have the following result for weak solutions

Theorem ([3]) For the representation problem B(u ,cp) = (f,cp) for all ({J E ClD(O)
o 0 • 0

2 1/2 11·11 2 1/2
Fredholm's alternative theorem holds in the space H~' (0) := C~(O) a , . More-

over, for any 7/J E C~(n) it follows that 'l/Ju
o

E Ha2,1(lRn) . H in addition fE L2(lRn) n LP(IIf) ,

p > %V 2 ,then U
o

E LlD(lRn) .



(9)

On the other hand, for f = 0 and g E ~2,1/2(lRn) a generalized solution of (7) is given by

u (x) = EX(g(X )), and u E Ha2,1/2(~), where (Xt)t>O denotes the Feller process
pr 0'0 pr _ .

generated by p(x,D) ,and O'n is the stopping time CTn:= in! { t > 0 , Xt ~ f2 } . Hy a result

of M.Fukushima we have B(upr'cp) = 0 for all cP E C~(n) . From this and the theorem stated

above, it follows for an 'f/; E CCD(O) that '/Ju E H
a2

,1(nf) . .o pr

The function u := U
o

+ upr EHa2,1/2(~) ~hould be r;garded as-a generalized soluti~n ;r (7). -

Hut in general it is open, whether

(8) 1 i m upr(x) - g(y)
n3x-ty Ean

and

1 i m n (x) = 0
f23x-ty Ean 0

hold. In some cases, for example for p(x,D) = (_6)t/2 ,0 < t ~ 1 , such resnlts do hold, see

R.Song [4].
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SOME TOPOLOGICAL ASPECTS OF ELLIPTIC BOUNDARY

PROBLEMS.

G. Khimshiashvili

Tbilisi Mathematical Institute

Georgia

In this informal report we describe a couple of topological observations on the L.Boutet

de Monvel algebra (as presented in [1]) which emerge naturally (and perhaps may

become useful) in the context of analytic K-homology [2].

Let X be a smooth manifold with (possibly empty) boundary Y and E, J be complex

vector bundles over X, Y, respectively. Our main concern is the Boutet de Monvel

Algebra B = B(X, Y, E, E, J, J) (in the notation of (I]).

In fact, at the present moment we are able to obtain certain preliminary results only

for trivial bundles but our basic considerations make sense also in the general case.

The strategy is to use recent developments within the (at least) three related ap­

proaches, namely, we would like to:

1) compute (at least some of) homological functors such as Hochschild homology

HH.(B), cyclic (co)homology CH!·)(B) and Kasparov bifunctor KK.(B) [3];

2) compute its non-stable K-theory in the sense of M.Rieffel (cf., e.g., [4], [5]), that

is the homotopy groups 'lr.(GB), where GB, as usual, denotes the groups of units

(invertible elements) of B or the groups 'lr.(FB), where F B denotes the subset

of elliptic (Fredholm) elements of B;

3) compute K-homology c1asses of extensions occuring in the CCR-tower of B in

the sense of Dynin [6].

For scalar pseudodifferential operators ('lJDOs) on a manifold without boundary a sub­

stantial part of this program is already realized. In particular Brylinski-Getzler and

also Wodzicki have computed Hochschild and cyc1ic homologies for the algebra of pseu­

dodifferential symbols Boo / B-oo [7] (there are also some related papers of Wodzicki yet

inaccessible for the author), 'lr.(FB) in certain cases were computed by the author (8]



and the singular integral extension is realized as the fundamental elass in K-homology

[2].

In the presence of boundary the results of such type are absent and we tried to do

first steps in this direction. In particular, recent results of A.Wassermann on the

cyelic homology of function algebras on Chevalley orbifolds [9] suggest the following

computation which seemed to us somewhat related with B.

Represent V := X as the simplest orbifold obtained from its double W with the

evident action of Z2 = Z/2Z (refleetion w. r. t. boundary). This Z-action lifts to all

reasonable functional spaces, in particular, to the space of elassical symbols of \I1 DOs

on W: S = \I1 00 (W)/\I1- 00 (W).

Following Brylinski and Wodzicky one can construct now spectral sequences converging

to H H*(T) and CH*(T). A formal analysis of these spectral sequences shows that

they satisfy the conditions permitting to apply the "invariance principle" formulated

by A.Wassermann ([9], main theorem of the fourth sequel) so that one can introduce

the invariant subalgebra T of S and obtain certain reductions to usual (co)homology.

Theorem 1

HH.(T) ~ H'2n-·(z X sI, C),

CH·(T) ~ (ker(d*f) n 'D.) ffi H.- 2 (Z, C) ffi H.- 4 (Z, 117) EB ...

where Z denotes the pair (S· X, S·Y)J S· standing for spherical cotangent bundleJ D.

are spaces 0/ the De Rham currents and ~ is the dual De Rham operator.

We would like to emphasize that the relation (if any) of these formulas to genuine

algebra of boundary problems remains unclear. Initially, it seemed to the author that

this may be applied for inner symbols with the transmission property. I was unable to

explicate this idea and some remarks of Prof. E. Schrohe in the course of discussions

during this conference have convinced me that it should not be possible. Besides

I was neither able to find somewhere proofs of Wassermann's results nor to prove

them myself. So that these formulas are to be considered as some conditional results

(modulo .some technicalities in the "invariance principle") and rather as an invitation

to a collaboration wi th experts in boundary problems, a collaboration in course of

which topology should benefit from differential equations as it has already happened

many times.



In conclusion, we would like to outline another perspective concerning 1r'.(FB). The

point is that the weH-known construction of boundary symbols going back to Vishik

and Eskin assigns to a boundary problem p E B a family sy(P) of Wiener-Hopf opera­

tors (WHOs) parametrized by points of S· Y, and P is eHiptic iff this family consists of

invertible operators. One obtains thus a mapping Sy : F B ~ C(S·Y, GW), where W

denotes now the algebra of matrix Wiener-Hopf operators in suitable function spaces

on IR. The key observation is that it is possible to describe the set of connected compo­

nents of the target space of mappings because the initial homotopy groups 1r.(GW) are

already known [la] (in fact, we dealt there with singular integral operators but the rea­

soning applies also to WHOs) and the rest is a standard problem of algebraic topology

which admits an algorithmic solution using Sullivan's theory of minimal models. As a

trivial example, when X is a simply connected planar domain the boundary symbols

for scalar problems define simply two classes in the fundamental group 1rl (GW) ~ Z,

that is two integers, and is not difficult to relate these integers with the index of the cor­

responding elliptic problem, which includes, in particular, the model result of I.Vekua

on the oblique derivative problem. Similar connections are, of course, available also in

higher dimensions.

Our last remark is that there are some recent computations of K-groups for solvable

algebras of length two in the sense of Dynin and this is just the case for Boutet de

Monvel algebras.
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STATIONARY DIFFRACTION PROBLEMS ON THE WEDGES WITH
GENERAL BOUNDARY VALUE CONDITIONS

A.I.Komech *), Moscow State University
A.E.Merzon **), Moscow State Pedagogical University

We consider the boundary value problem for the HeImholtz equation in the plane angle
Q of the arbitrary magnitude c.p, 0 < c.p < '11'":

11u(x) =(ß +w2 )u(x) = 0, x E Q (1)

B,ulr, = Jl(X), 1=1,2 (2)

Here w E C, B1 ,2 are arbitrary linear differential operators with canstant complex
caefficients. V-le denote by f , t.he sides of augl~ Q , J, are temperated distributions on
r, . We seek a solution u in the space S'(Q).

It means that u(x) =uo(x)IQ, where Uo E S'(R~) and supp Uo C Q . Our result
is the deriving of the explicit formulas of all solutions (1), (2). The boundary value
problems for the Helmholtz equation with different boundary conditions were consid­
ered in [1-6, 8, 9 ]. Our results may be applied to the deriving of trapping modes in
open wave guides, to the verification of tbe limit amplitude principle, to the finding
of a scattering amplitudes, to the analysis of high order approximations of boundary
value conditions in scattering problems etc.

1. Let c.p < tr • Then we apply the Paley - Wiener tbeory, tbe division theorem and
the Cauchy - Kowalewski metbod to reduce (1), (2) to the SAE (system of algebraic
equations) on the Riemannian surface [3, 8].If, for example, c.p = ~ then Q~ Q++ =
{x E R~ : Xl > 0, x~ > O} and we get SAE on tbe riemannian surface

v++ == V n {z E C~ : Im Zl > 0, I = 1, 2}.

Here'we denote by V the riemannian surface of complex characteristics of the Helmholtz
operator 11:

V ={z E C~ : 11(z) =-z~ - z~ + w~ = O}.

Tbe SAE is the following:

d+(z) == vf(zd - iZ2V~(zd +V~(Z2) - iZ1V~(Z2) = 0, z E V++ (1')

Here the functions üf(z,) are analitic for Im Zl > 0, Fz~!..rl(vf)IR+ are equal to Cauchy
data of the solution u(x) of the jroblern (1), (2). The sums in (2') are finite. The
solution may be represented by V, in the form •

*) With the support by Grant of RAS, RMHE and AMS.
*) With the support by Grant of RAS.



We call (1 ') a connection equation. It ia the relation between Cauchy data of
solution u(x) on the complex characteristics of Helmholtz operator 'H.

We reduce the system (1 '), (2') to RHP (Riemann - Hilbert problem) by V.A.Ma­
lyshev automorphic functions method as in [3, 8]. In the case Im w 'I:. 0 this RHP ia
weH posed and may be solved explicitly by the traditional Riemann-Hilbert procedure
as in [3].

In case when Im w = 0 the RHP is ill posed. This additional difficulty was overcome
i.n [8], by introducing of the "retarded" 8Olutions to the problem (1)-, '(2). For the
solutions the corresponding RHP is well posed..

2. Let now 'P > 1r and Im w 'I:. O. In the case we cannot apply the Paley - Wiener
theorem. Meanwhile in the case the connection equation similar to (1') exists tao. For
cxample~if 'P = ~1r, and Q = R2 \ Q++ then roughly speaking, SAE (1 '), (2') holds for
zEV\V++. . .. -- .--.-----. -'--"---'_.- . --"---

FUrther we reduce corresponding SAE of the type (1'), (2') to RHP by the method
of [4]. In the case, when Im w 'I:. 0 the solution tl ( x) of (1), (2) may be expressed by
(3).

3. Finally, let 'P > 11" and Im w = O. In the case, (3) loses the sense. Then we
derive for u(x) the Sornmerfe1d type representation instead of (3). This representation
we derive for "retarded" solutions to the.problem (1), (2), mentioned above.

Aknowledgments. Authors thank the Orgamzers of the Conference "Partial Dif­
ferential Equations" 1993 at Potsdam University for support.
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ON ASYMPTOTICS OF SOLUTIONS OF NONLINEAR ELLIPTIC

EQUATIONS IN A NEIGHBOURHOOD OF A CONIC POINT OF THE

BOUNDARY.

V. Kondratiev

Moscow

Consider equations of the form

~ 8 ( 8u) I 1L.J -8. ai j(x)-8. - ao(x)lu P- u = 0
.. 1 XI X Jt,J=

and

(1)

(2)

where x = (Xl, ••• , xn), mll~12 ~ L:7,j;;;;l aij(X )~i~j ~ m21~12, ~ E Rn, X E 0, mt, m2 =

const > 0, ao( X) 2: ao = const > O. We assurne that aij (x) are measurable and

aij(x) =aji(x).

A set ]{ E JtT& is called a cone if for any x E ]{ and any constant ,\ > 0 the point ,\x

belongs to ]{. We set K l =]{ n{x : lxi = 1}, Kb = {x : x E ]{, lxi< b}

We consider solutions of equations (1), (2) on 0 = I{b with the boundary condition

8ul 0
8v BK =

iflxl<b (3)

where :v is the derivative of u in the conormal direction. Assurne that BI{' satisfies a

Lipschitz condition.

Theorem 1 Let u be any weak solution of (1), (3) on ](b and

n
p>-­

- n-2

Then

lu(x) - u(O)1 ~ Clxl 6

fOT some s > O. Here C, s depend on ml, m2, ao, nJ p.



Remark. Assume 1 ::; P < n~2' Then there exists a weak solution 0/ (1), (3) such

that

lim u(x) Ix In-2 = +00
x-o

Consider the solution of the problem (2), (3) on ](b such that u(x) E C2(Kb\0) n
Cl (l(b \0). Assume that BK' E C2 and p > 1.

:)

Theorem 2 There exists a constant Cl > °such that Iu( x) I~ Cl Ix ll-p .

Remark 1. 1/ laij(x) - 8ijl ~ Clxl'"Y, I > 0, P ~ n:2 then lu(x) - u(O)] ~ Clxl a
, where

u(x) is any classical solution 0/ (2), (3), and s > 0.

Remark 2. For any p, P > 1 there exists ai;(x) E COO(](), such that problem (2), (9)

has unbounded solutions. This means that Theorem 1 is not valid for problem (2), (9).



EIGENFUNCTION EXPANSION OF MULTIPARAMETER SPECTRAL
PROBLEMS.

A. Yu. Konstantinov (University of Kiev)

We study lllultiparanleter eigenvalue problems

n

Ajuj = L AkBjkUj, O:f Uj E Hj, 1 < j ~ n,

k=l

where Ai, Bik are symmetrie operators in separable Hilbert spaces Bi and Bjk are bounded.
Here A = (Al, ... ,An) E C n is the spectral parameter.
We discuss some recent expansion resuIts for such problems. For the ease of multiparameter
probleills with elliptic operators A j and multiplication operators B jk we prove theorems
about smoothness of corresponding eigenfunetions.
Also we give an abstract approxiIllation criterion for the existence of commuting self-adjoint
extensions of a fanlily of sYlllInetric operators.
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INTERIOR BOUNDARY VALUE PROBLEMS WITH SINGULAR

INTERIOR BOUNDARY.

O. Kounehev

In analogy with the univariate spline-theory, we eonsider the problem

10 (ßU(X»2 dx -> inf

where n(x) = f(x), for x E f, where r is a piecewise smooth variety of codim 1 in !1,

and r ::> an.

We prove theorems for existence and smoothness of the solution to the above problem.

The solution u is eombined of pieees Uj of biharmonic funetions in every eonnected

subdomain nj of n\f.
The funetions Uj and Uk satisfy some matehing eonditions on the joint part of the

boundaries aO j n ank.
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NONLINEAR SECOND-ORDER ELLIPTIC EQUATIONS WITH JUMP

DISCONTINUOUS COEFFICIENTS.

P.-L. Lions

Universite Paris-Dauphine

N. Kutev

Institute of Mathematics

Sofia

We investigate the Dirichlet problem for quasi linear second order, uniformly elliptic

equations

ak,ii(x, u, Du)uXiXj + ak(x, u, Du) = 0 in nk , k = 1, 2j U = 9 on an (1)

fk(x, u, Du, D2u) = 0 in nk , k = 1, 2j u = 9 on an (2)

in a bounded domain n c !Rn, n 2:: 2 with a smooth boundary an. We assurne that

n = .01 U .02 U S is divided into two subdomains .01 and fh by a smooth surface S

without self-crossing points. The coefficients of (1), (2) are supposed to be smooth on

each side of S on fh, n2 respectively, and, when considered as functions on .0, present

some pure jump discontinuity on S.

We wish to show that under general and natural conditions on the coefficients, including

uniform ellipticity, there exist unique solutions of (1) and (2) which belong at least to

0 1(.0) n 0(.0).

In the case of (2), for general nonlinearities /1, /'2, the equation will be understood

in a viscosity sense. Viscosity solutions, as introduced by M.G. Crandall and P.-L.

Lions and M.G. Crandall, L.C. Evans and P.L. Lioos, have provided a general and

efficient tool for studying the existence, uniqueness and regularity questions for fully

nonlinear elliptic equations. The Cl character of solutions is clearly fundamental for

the uniqueness of solutions, since we can always prescribe u as we wish on S, solve

(1) and (2) on each side, Le. in 0.1 and .02 , and obtain in this way a continuous (even

Lipschitz contiuous) solution of (1) or (2) in nj which is therefore highly nonunique.

Our motivations for studying these problems: first, it is a natural first step towards

the study of nonlinear elliptic equations with discontinuous coefficients. Next, when



f1, f'l are convex say in (Du, D2u) so that (2) corresponds to the so-called Hamilton­

Jacobi-Bellman equations of optimal stochastic control, problem (2) has a very natural

interpretation in terms of optimal stochastic control since it only means that different

sets of control can be used in fh and O2• This has many applications to problems

where some controls are forbidden in certain regions.

Theorem 1 Suppose that fk E C1(nk x JR x mn x sn) and the uniform elliptic con­

ditions hold i. e.

..\lel2~f~/x,z,p,r)eiej ~Alel2, k=1,2

for (x, z, p, r) E nk x JR x JRn X sn, eE JRn and some positive constants ..\, A. Let 0

be a bounded domain in mn and S satisfy the exterior and interior sphere conditions.

If fk (x, z, p, r) is a nonincreasing function of z then (1) has at most one solution

u E C2(01 n O2) n C1(0) n C(O).

Theorem 2 Let n be a bounded C2
,JJ smooth domain in JRn, n ~ 2, 0 < J1. < 1 and

ak,ii, ak E Cl, S E C3 , 9 E C 2
,JJ. Suppose that the uniform ellipticity conditions

hold as well as the natural structure conditions

lakl ::; C(lzl) (1 + Ip12)
(1 + Ipl) la;,iil, la:,iil, la:,iil ::; c(lzl)

(1 + Ipl) la;l, la~I, la:l ~ C(lzl) (1 + Ip12)

If

zak(x,z,O)::; 0 for x E 0, Izi ~ M, k = 1,2

fOT some nonnegative constant M, then problem (1) has at least one solution'

Next, a word on the method of proof. Uniqueness follows from some simple consider­

ations or modifications of the maximum principle and/or of the uniqueness theory for

viscosity solutions. Concerning existence, our strategy of proof is the following. We

first regularize equations (1)-(2) by appropriately smoothing out the discontinuity of

the coefficients across S. To find bounds on derivatives directly (without diff.) seems



hopeless in view of the result of Safonov. This is why we first prove same estimates on

tangential (to S) derivatives, namely, bounds and Hölder continuity; this follows from

a modification of Bernstein 's method, where we consider only the tangential part of

the gradient, differentiating the approximated equation tangentially. Then we deduce

similar estimates for the normal derivative to S.



ON NON-DIVERGENT SEMI-LINEAR ELLIPTIC EQUATIONS WITH

DISCONTINUOUS COEFFICIENTS.

E.M. Landis

Moscow

Consider the Dirichlet problem for the equation

Lu =aij(x)uXiXj + F(x, Du) + cI>(x, u) = 0;

Lu = 0, ulaG = t.p

(1)

(2)

in a bounded domain G c JRn. We assume that aij(x), F(x, e), cI>(x, e) are measurable

in all variables aij (x) = aji (x), and

(3)

We also assume that cI> (x, 0) = 0 and ~ (x, e) monotonically decreases in e.
1. The maximum principIe is true: for u, v E 0 2 ( G) nO (G) from the conditions Lu ~ 0,

Lv :::; 0, and ulaG :::; vlaG it follows u :S v in G.

2. Let F(x,7]) = L: bi(x)11lill+ßsgn TJi, Ilbll > 1, 1 < ß < 2. A function v E 02(G) n
o(G) is called a super (sub) function if v laG 2:: t.p (v laG :::; c.p) and Lv :::; 0 (Lv 2:: 0) in

G. The function u+ = inf v (u - = sup v) where the infimum (supremum) is taken over

all super (sub) functions is called a super (sub) solution. From the maximum principle

it follows that u- ~ u+.

Theorem 1 The functions u+ and u- satisfy Hölder's condition in any strietly interior

subdomain 0/ G with the exponent (ß -l)/ß.

Theorem 2 If in (3), a(x) > const > 0 in a neighborhood 0/ BG, c.p in (!J) satisfies a

Hölder condition in G and u+laG = u-laG = c.p.

3. Let F =0 and I~I ;::: Ojulq
, 0 < q < 1. Define u+ and u- as befare.

Theorem 3 The functions u+ and u- satisfy Hölder's condition in any strictly interior

subdomain ofG. If Be satisfies a Lipschitz condition and t.p satisfies Hölder's condition,

then u+ laG = u-laG = t.p.



4. Let in (3), a(x) > a > 0 everywhere in G. Denote by A(X) the maximal eigenvalue

of the matrix a(x) = 1taii(x)11. Define by a~ (x) the convolution of aii(x) with a positive

function with support in a ball of radius h. Assume that IF(x, ~)I ~ 1Jl+ß, 0 < ß < 1,

F is odd in TJ and ]<I-(x,~)1is decreasing in f Assume for simplicity that Fand eIl are

infinitely differentiable. Consider a solution of the problem

i' h h h
a~ (x) U XjXj +F(x, Du ) +<I-(x, u ) = 0;

hl -u 8G - cp.

If Be satisfies a Lipschitz condition and cp satisfies a Hölder condition then the family

{uh} is compact in C(G). Choose uhA:::: uo .

Theorem 4 (i) u- ::; Uo ::; u+ and

(ii) tor almost every point x0 E G there exists a second order polynomial PXo ( x) such

tha.t L (Pxo(x))lx::=ro = 0 and uo(x) - Pxo(x) = o(lx - xoI2).

Theorem 5 Let e = sUPxEG(tr Haiill/ Amax(X)) and e > 2. Let N C G be a c10sed

subset in G and cap!_2N = O. Assume that tor any point Xo E G\N,

OSC ..

O(xo)a'J(x) < A(x)/n

in some neighbourhood U(xo) 0/ xo. Then



PERIODIC AND STATIONARY SOLUTIONS TO THE

SCHRÖDINGER-POISSON AND WIGNER-POISSON SYSTEMS

O. Kavian, H. Lange, P.F. Zweifel

We are concerned with the study of the Wigner-Poisson (WP) and Schrödinger-Poisson

(SP) systems with space periodic boundary conditions on the unit cube Q = [0,1 J3 in

IEf3. Both (WP) and (SP) are quantum transport models, they describe the quan­

tum mechanical motion of a large ensemble of electrons in a vacuum under the action

of repulsive or attractive Coulomb forces generated by the charge of the electrons.

Thus, both models play an important role e.g. in semiconductor theory. We refer to a

couple of recent paper's on (WP) and (SP) for an introduction to the subject; see

BREZZI-MARKOWICH [1], ILLNER-LANGE-ZWEIFEL [2], LANGE-ZWEIFEL

[3], [4], BOHUN-ILLNER-ZWEIFEL [5], ZWEIFEL [6], ILLNER [7], ARNOLD­

NIER [8], ARNOLD-MARKOWICH [9]; a general introduction may be fouod in

TATARSKII [10].

When studying (WP) and (SP) for periodic boundary conditions some slight changes

in the equations have to be taken into account. The physical model should be a plasma

of electrons moving in a background of fixed posi tive charge density (say C (x)) w hereas

the overall plasma is charge neutral. Thus, the Poisson equation takes a different form

than that of most of the references, namely it should read as

(P) ~V(x,t) = C(x) - n(x,t)

where n(x, t) is the density of negative charge which (together with C(x)) is normalized

to Jn(x, t)dx = JC(x)dx = 1 ;

Q Q

for simplicity in this note we consider only the case C(x) =I. Furthermore, the

momentum is quantized to Vk = 21rk, k E Z3. Following the discussions in [5], [6], [7]
the (WP) and (SP) systems in our case can be shown to take the form

(WP)



here k E Z3, Wk(X, t) = w(x, Vk, t) (where w(x, v, t) is the original Wigner function),

and 8(V) is the pseudo-differential operator given by (for quantum number n= 1)

"J x + z x - z .( ')8(V)w(x, t) = -i LJ [V(-2-' t) - V(-2-' t)]wk'(x, t)e2
'1f1 k-k zdz ;

k' ez32Q

here V(x, t) is a solution of Poisson's equation (P) and n(x, t) = L:kEP Wk(X, t); the

(SP) system reads as

ßV

1
= -2ßVJm +V(x, t)1/Jm ,

= 1 - n(x, t), 1/Jk(X,O) = <pk(X) , n(x, t) = L Am l1/Jm(x, t) 12 ,

kEZ3

both (WP) and (SP) are subject to I-periodic boundary conditions on Q; furthermore

in (SP) one should assurne that II'PmIlL2(Q) = 1, ('Pm, cpl) = Sml; whereas the (Am) are

the occupation probabilities of the initial pure states (<Pm) which build up the initia.l

mixed state. The link between solutions of (SP) and (WP) is given by the WIGNER­

transform ( ) "\ J (x - Z ),,1,. (x + z ) 21rikzd
Wk x, t = LJ Am 'l/Jm -2-' t o/m -2-' t e z,

m=l 2Q

whereas in tenns of W= (tPm) e(V) is giyen by

We formulate results on

(1)

a.) Existence and uniqueness of global-in-time strong I-periodic solutions of (SP);

b.) Existence of countably many I-periodic stationary states of (SP), i.e. solutions

of type

W(x, t) = eiwt<I>(x)

with same w E IR and areal I-periadic function 4>.

Theorem 1 Let cI> = ('Pm) E X 2 with L 2-norm equal to 1; then for any T > 0

there is a unique global strang I-periodic solution (W, V, n) 0/ (SP) which satisfies the

conservation laws

11\l1(·,t)lli2(Q) = 1, IIV\lI(.,t)lli2(Q) + IIVV(.,t)lli2(Q) = const. (Vt E ST). (2)



Theorem 2 There exists a countably infinite nU7nber 0/ different stationary states

'I';(x, t) = e iWljt 4>;(x) with I-periodic real functions 4>; E H2 n Coo such that w; --Jo 00

for j --Jo 00.

Remark: All results stated for (SP) transfer by using the WIGNER transform (1) to

similar results for (WP) which we do not formulate here.
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GEOMETRIe REMARKS ON AN INVERSION FORMULA FOR THE

HEAT EQUATION.

Eric Leichtnam

C.N.R.S. (Paris)

This report is a brief summary of two forthcoming papers: one in collaboration with

Fran~ois Golse the other in collaboration with Fran~ois Golse and Matthew Stenze!.

To motivate our work let us recall Lebeau's ([2]) inversion formula for the heat operator

8t + ~ (~ is nonnegative) of (the flat euclidean space) JRn. For any u E L 2(F)

defines for all t > 0 a holomorphic function on C n denoted by Tu(t, .). Lebeau's

formula is stated as follows: for all y E lRn and t: > 0, one has:

for all u E Co(F).
We will state an analogous formula when JRn is replaced by any real analytic Rieman­

nian orientable compact n-dimensional manifold (X,g). The volume form defining the

orientation is denoted by p., ~ = -div(grad·) denotes the Laplacian of (X,g), p(x,~)

is the principal symbol of ~ and d(x, y) denotes the geodesic distance on X.

Let us recall the following theorem of Guillemin and Stenzel (see [3]).

Theorem 1 There is an open neighborhood U 01 X in T· X and unique complex struc­

ture on U such that:

(i) (x, () 1-+ u(x, () = (x l -() defines an antiholomorphic involution on U = u(U).

(ii) On U the standard i-form ( . dx is equal to +Im äcp.

In this work we shall work with such a complexification U of X.



Theorem 2 For c > 0 small enough the complexijication oJ the exponential map is

given by:

Tt;X = {(x,() E TxX; 11(llx < c} --+ U(C T*X)

(x, () 1-+ ExPx(i~)

( : h ~< h, e>x where < , > is the scalar produet of TrX and 11~1I; =< (, ~ >x'

Thus ExPx(i~) ~ x 'defines the usual cotangent fibration of X.

Let us fix x E X and write Y = {Expx(i~)/llellx < c} ( for c small enough). We

orientate Y and ay in a compatible way.

Roughly speaking if we consider the holomorphic extension of the metric 9 (of X) to

U and restriet it to Y we obtain a non degenerate C-quadratic form gY on Y. In the

same way we construct (from JL on X) an n-form flY on Y which never vanishes. We

can define on Y a notion of gradY
.

Definition 3 (i) For any complex Coo veetor fie1d v E r(y, T cry) let us denote

divY v the scalar funetion defined by d(i~ J..'Y) = divY V!LY where i~ is the interior

product and d the exterior derivative on Y.

We can now state our inversion formula for the heat equation (recall that T J(t, m) =

(e-tL\ IHm) for (t, m) E JR+* X U). We still denote tfl(·, ·)the holomorphic extension of

tP(".) to a neighborhood of the diagonal of X x X in U x U.

Theorem 4 Let us assume that J- Re tf2 (', .) dejines a distance in the fiber Y (it is

non negative for c > 0 small enough).

(i) There is a funetion [«(i, m) E COO(JR+* x Y) such that (at - b..Y)I( =0 and

K(t, m) --->. 8(x) (the dirac mass) when t -+ 0+.

(ii) For every I E COO(X) satisfying Ix J dJl = 0 we have:

f(x) = {OO dt r [Tf iY
adYKJL

Y
- K iY

adYTf]10 J8Y sr sr



When X is asymmetrie spaee of the eompaet type then Y is an open subset of the

"dual" (see [4]) of X and the preceeding geometrie objeets of Y have remarkable

properties. For instanee, -gY defines a real definite positive quadratie form on Y

and J-d2(.,.) defines the geodesie distanee of -gY (so the hypothesis of the theorem

is satisfied).
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DIFFUSION PHENOMENA WITH SHOCKS: RESULTS ON PURE

AND APPLIED PROBLEMS.

Günter Lumer

We develop an operator-theoretic approach in the setting of a Banach space X, and

in the classical PDE context with X = C(n) appropriate for a realistic treatment of

diffusion shocks (abrupt changes in boundary values), or heat shocks, with specific

applications. The evolution of such systems between shocks at t = to and t = t 1 > to

is described by an initial value-boundary value (Banach space X) problem:

du A

di=Au+F(t)

u(to) = I (mild g.s.) (1)

Bu(t) = <p, (<p EH), (2)

where A is of the form: D( A) = D(A) EI:) H, A is the generator of an irregular bounded

analytic semigroup Q(t) on X, H the space of." A-harmonic" elements, Aj = AI for

j = f + h (with I E D(A), h EH). Details of much of what is mentioned here will

appear in {I], {2].

Theorem 1 VfEX, ep E H, F E Lloc ([0, +00[' X), (1) has a unique optimal regular

solution u :]to, td -+ D(A) given explicitly by (u(t, f, F) = u(t))

u(t) = cp +Q(t - ta)(J - cp) +LQ(t - s) F(s) ds. (3)

We treat periodic shock problems with period 2r > 0, boundary values ep, 0, 1.fJ, 0, ... ,

F=O.

Theorem 2 For the above-mentioned periodic shocks problem there is a unique 2r­

periodic asymptotic attractor u*, where u*(t) = u*(t, wr ) and

Wr = (1 +Q(r))-lep (4)



(5)

The above formulas can be, and actually are, used for computer analysis of particular

situations and concrete applications.

Among other things, one studies the steady "shock pattern", D_.r(t) = u*(to) - u*(t) =

W r - Q(t)wr for smaH t > O. One has:

Theorem 3 'Vrl,r2 > 0, 118_,rl(t) - 8-,r2(t)ll-t 0 as t -t 0+.

More precise facts will appear in [2].

These results can be applied in particular with X = 0(.0), .0 a bounded smooth domain

in JRN, A essentially an elliptic second order operator - A(x, D) with appropriate

regularity conditions on the variable coefficient,

D(A) = {f E 0 0 (.0) n W 2,p(n) : A(x, D)f E O(n)} ,

Af=A(x,D)finn (p>N)

The theory, and computer analysis based on the theoretical formulas, has technologi­

cal implications (see [2]) and has been used in connection with solar cells on II spinning

communication satellites" (and analogous systems). For instance, it gives useful infor­

mation on (the delicate matter of) "accelerate testing" of the mentioned satellites and

analogous systems (as far as comparing the results of testing with actual functioning).

Finally, ramified (transmission) shock problems are studied, bringing up special dif­

ficulties concerning the analyticity of Q(t) in a 0(.0) setup where w = uni, with

transmission. We have results on this in quite particular cases, hut sufficient to cover

some interesting technological applications (for instance: the qualitative behavior in

solar cells on spinning satellites is not essentially modified by the presence of protec­

tive glasses - mathematically this follows from the study of a heat shocks problem with

transmission on three adjacent domains).
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ESTIMATES FOR A SYSTEM OF DIFFERENTIAL OPERATORS.

M.M. Malamud

Donetsk, Ukraine

1. We consider the problem of describing certain linear spaces L(PI, .. .PN ) (depending,

in general, on the domain n (c JR") and on p E [1,00] ) of differential polynomials

Q(D) satisfying the estimate

Vf E OOO(n) (1)

with same constant C being independent of f E OOO(n).

Theorem 1 Let n be a bounded region in IR!', {Pj(D)}~ be differential polynomials

whose symbols {Pj (~)}~ are algebraically independent, and let the generic fiber 0/ the

mapping P = (PI, .", PN) : cn -+ CN be irreducible (i.e. the variety

is irreducible for almost all Q' E CN ). Then estimate (1) is equivalent to the equality

Q(~) = L AjPj(~) + AO
l$;j$;N

(2)

for some Aj E C (0 ::; j ::; N), i.e. to the equality dim L(PI , ... , PN) = N + 1.

Remark 1. The condition 0/ algebraic independence 0/ the polynomials {Pj (~)}~ is

equivalent to their funetional independence. So it can be reformulated in terms 0/ the

Jacobian matrix (aPj/a~k) as follows: there exist ~o = (~r, ... ,~~) E Cn such that

rank (aPj(~}, ... , ~n)/a~k)e==eO = N.

Corollary 2 Let I = (I}, ..., In) E (Z+ \o)n, let n be a bounded region in IR!' and let

Pj(D) = L ajkDik ,

l$;k$;n

(1::;j::;n-1)

be linearly independent differential operators whose linear span contains no differential

monomial Dik
, 1 ::; k ::; n. Then dirn L(P}, "., Pn-I} = n.



2. Let us consider the consequences of estimate (1), assuming that the transcendence

degree of the field 117 (Pt (~), ,." PN(e)) (over 117) is equal to one. The latter condition is

equivalent to the representability of each of the polynomials Pj(e) in the form Pj(e) =

Tj(w(e)), where Tj(t) E C[t] and w(e) E d7 [el, ... , ~n] is irreducible.

Theorem 3 Let n be a bounded region in JR:& and let Pj(~) = T(W(e)) E IV [el, "',~n]

where Tj(t) is a polynomial in one variable and w(6, "',~n) is irreducible. If for some

p E [1,00) estimate (1) holds for all f E Coo (f2) then either Q(e) has the form (2) for

some Aj E C, 0 ~ j ~ N orw(e) = (~,xO) = elX~+'''+~nx~, where XO = (x~, ...,x~) E

JRn andQ(e)=q((~,xO)), q(t)E C[t] with

deg q(t) ~ m~x deg Tj(t)
15J:5n

3. The well-known result of Hörmander now follows easily from Theorems 1 and 2

combined with the following.

Proposition 4 Let P(6, ... ,en) be a polynomial, If p(e) - a is reducible for all a E C

then p(e) = T(W(e)), where T(t) E C[t] and w(~) (E C[et, ... , ~n]) is irreducible.

Theorem 5 (Hörmander) If f2 is a bounded region in JR:& and the differential poly­

nomials P(D) and Q(D) satisfy the condition (1) then either Q(e) = ap(e) + b

(a,b E C) or p(e) = T((e,XO)) and Q(~) = q((e,xO)) where XO E JRn and T(t),

q(t)in C[t], degq(t) ~ degT(t).
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A FELLER PROPERTY FOR SOME DEGENERATE ELLIPTIC

OPERATORS.

I. McGillivray

In the theory of Dirichlet forms, statements are valid in general only up to sets of zero

capacity. It is desirable to specify circumstances in which "q.e." valid statements are

in fact valid everywhere.

The notion of (r, p)-capacity for general submarkovian semigroups Tt , a generalisation

of the Bessel capacity, was introduced by Fukushima and Kaneko. We give a condition

to guarantee that each point in the state-space has (r, p)-capaeity uniformly bounded

away from zero for r, p suffieiently large. Our condition is verified, for example, when­

ever we have a Sobolev inequality. We have found the following abstract regularity

condition: if the LV-generator of the semi-group Tt , or its square-root, contains a core

of continuous functions, and the above capacitory condition is valid, then

Tt! admits a continuous version for all ! E LI n Loo

We apply this result to degenerate elliptic operators. Suppose we have a gradient

Dirichlet form with weight function belonging to the Muckenhoupt dass of order 2.

Combining methods of Gilbarg and Trudinger, and Fabes, Kenig and Serapioni, we

show there exists an operator core of continuous functions and hence the above weak

version of the FeIler property holds.



SPECTRUM OF THE ELLIPTIC OPERATOR AND BOUNDARY

CONDITIONS.

V. Mikhailets

Kiev, Ukraine

Let n c JR'l be a bounded domain, A(x, D) be a selfadjoint elliptic differential operator

of 2m - th order on n with smooth coefficients, A be the selfadjoint realization of

A(x, D) in the Hilbert space L2 (O). The spectral properties of Aare analyzed. We

assurne that the minimal operator of A(x, D) is positive.

Theorem 1 If

D(A) ~ H$(O), S E (0, 2m]

then the functions

N±(.,\;A) = #{k: ±Ak E (D,A]) , A > °
satisfy the asymptotic formulas

(1)

(2)

N_(A; A) = 0 ( A0-;1 ) ,

{

0 (A0;1) , s E (0, so]
N+()..; A) = 0 ( 0-1)

WA~ +0 A-' ,S E (So, 2m]

where A -t +00, W = w(O, A) > 0, So = 2m n~l.

The case of a positive realization A and s = 2m has been studied in many papers (see

(1], (2]).
The formulas (2) are precise for the dass of selfadjoint elliptic differential operators

under condition (1).

Let AM be a "soft" selfadoint extension of a minimal operator. A question concerning

the asymptotic behaviour of nonzero eigenvalues of the operator AM have been raised

in [3]. G. Grubb in [4] proved that the number NO(A; AM) of eigenvalues in (0, A]

satisfies the asymptotic formula

where

No()..; A) = WA2r:n +0 (A~) , A -t 00

{
12m }o= max 2' - c, 2m + n _ 1 ,€ > °

(3)



Theorem 2 The asymptotic formula (9) is valid for any () E (0,1).

It should be expected that formula (3) is valid also for () = 1.

References

[1] S. Agmon, Asymptotic formulas with remainder estimates for eigenvalues of el­

liptic operators, Arch. Ration Mech. and Analysis, 28 (1968), 165-183.

[2] J. Brüning, Zur Abschätzung der Spectralfunktion elliptischer Operatoren, Math.

Z. 137 (1974), 75-83

[3] A. Alonso, B. Simon. The Birman-Krein-Vishik theory of selfadjoint extension of

semibounded operator, J. Operator Theory, 4 (1980), 251-270

[4] G. Grubb, Spectral asymptotics for the "soft" selfadjoint extension of asymmetrie

elliptic operators. J. Operator Theory, 10 (1983), 9-20.



SINGULAR PERTURBATIONS AND EXTENSION THEORY.

H. Neidhardt and V.Zagrebnov

Let A and V be two nonnegative self-adjoint operators on the separable Hilbert space

'H. Further, let V ~ dom(A) n dom(V) be a dense subset of'H such that

(V f, f) ~ a(Af, f) + bllfl1 2
,

We introduce the abstract operator H

fEV, O<a<l. (1)

Hf = AI - VI, fE dom(H) = V. (2)

The operator H is symmetric, ~losable and semibounded with lower bound -b. How-. .
ever, the operator H is in general not essentially self-adjoint. Let us assurne that H is

not essentially self-adjoint. Since iI is semibounded the Friedrichs extension iJ exists.

Moreover, denoting by A the Friedrichs extension of Ä = AIV it is not hard to see

that iI coincides with the form sum of Aand - V. Next let us introduce a regularizing

sequence for the singular perturbation.

Definition 1 A sequence {Vn }n2:1 of bounded non-negative self-adjoint operators is

called a regularizing sequence of V if

(ii) limn_oo(Vnf, f) = (Vf, I), f E V ~ dom(V).

Let A any semibounded self-adjoint extension of Ä. With the regularizing sequence

{Vn}~::::l we associate the following sequence of self-adjoint operators Hn,

n=1,2, .... (3)

The problem is now to find conditions which guarantee that the sequence {Hn}~=l

tends to the Friedrichs extension iI, i.e.,

~(z) # 0 (4)

for every semibounded self-adjoint extension Aof Ä. In general we cannot expect that

the sequence Hn tends to iJ assuming only that {Vn}n2:1 is a regularizing sequence.

Actually we need a little bit more.



Proposition 2 Let {Vn}n~l be a regularizing sequence 0/ V. 1110r every sell-adjoint

extension Ä 01 Ä = AIV obeying Ä. 2: 71, 1] < 0, the convergence (4) takes place, then

sup(Vnh, h) = +00
n~l

for every nontrivial h 01 NT] = ker( A'" - 1]).

By this proposition it seems to be natural to introduce the followlng notation.

(5)

Definition 3 Let {Vn}n~l be a regularizing sequence of V. The sequence is called

admissible with respect to Ä = AIV if there is a 7J < 0 such that for every nontrivial

h E NT] = ker( A'" - 1]) the condition (5) is satisfied.

To solve our problem an optimal result would be to show that the inverse of Proposition

2 is true, i.e., if {Vn}n>l is an admissible regularizing sequence of V with respect to

Ä = AIV, then for every semibounded self-adjoint extension A of Ä we have that the

convergence (4) is valid. Till now we cannot prove this conjecture in full generality.

However, if we restrict the set of semibounded self-adjoint extensions Ä of Ä, then

we can do it. To describe these restrictions we use a description of all semibounded

self-adjoint extensions which goes back to [1]. Let A be any semibounded self-adjoint

.extension of Ä = AIV with lower bound greater than 1] < 0, i.e. A 2: 1]. By ii 2: 1] we

denote th, closed quadratic form which corresponds to A, i.e.

ii(/, f) = ((Ä - Tl )1/2I, (A - Tl )1/2I) + 1](/, I), f E dom(v) = dom((Ä - 7J)1/2). (6)

In particular, by v 2: 0 we denote the closed quadratic form which corresponds to the

Friedrichs extension A of Ä. In accordance with [1] we have now a one-to-one cor­

respondence between the set of all semibounded self-adjoint extensions A of Ä obey­

ing A 2: 11 and all non-negative closed quadratic forms q on the deficiency subspace

NT] = ker(Ä'" - 1]), where the form q is not necessarily densely defined on N'TJ' The

correspondence is given by the formulas

dom(ii) = dom(zi)+dom(q),

where +means dom(v) n dom(q) = {O}, and

ii(g + h, 9 + h) = v(g, g) + q(h, h) +2Re(g, h) + 11(h, h),

(7)

(8)

9 E dom(v), h E dom(q) ~ N'TJ' This means, having an extension A which obeys A 2: 11

we can find a unique non-negative closed quadratic form qon NT] such that (7) and (8)



hold. Conversely, if we have a non-negative c10sed quadratic from ij on N,}) then we

can define by (7) and (8) a semibounded extension Aof Ä obeying A~ 11. The domain

of ij may be a closed subspace of NT/ or not. The Friedrichs extension A corresponds

to the trivial form q, i.e., dom(q) = {O}. Very often this is expressed by q= +00. The

Krein extension A is given by a form ij which is zero on the whole deficiency subspace

NT/' i.e., q= O. All other forms ii are between {; and v and which yields A ~ A~ A.
Using this description our main theorem goes now as follows.

Theorem 4 Let {Vn}n~l be an admissible regularizing sequence 0/ V with respeet to

Ä and let A ;::: 11 be a sel/.adjoint extension 0/ Ä obeying A ;::: 17 tor some 17 < O. I/ A
corresponds to a closed quadratic form ij on NT/ = ker(Ä*) whose domain dom( ij) is _a

closed subspace 0/ NT/J then we have

s - lim (Hn - z)-l = (H - Z)-l,
n-oo

~(z) -# 0, (9)

where iI is the Friedrichs extension 0/ iJ = (A - V)IV.

In particular, i/ Adenotes the [(rein extension of Ä with respect to the lower bound

11 < 0, then we have

~(z):;fO. (10)

Corollary 5 I/ the defidency indices 0/ Ä are finite, then for every self-adjoint exten­

sion A 0/ Ä we have (9).

Corollary 5 strengthens the results of Section 3 of [2].

Corollary 6 I/ A is a semibounded self-adjoint extension 0/ Ä such that

dim( dom( v) \ dom( v)) < +00,

then (9) is valid.
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ON SPECTRA OF ELLIPTIC AND SCHRODINGER OPERATORS.

EI Maati Ouhabaz

Potsdam

Given an elliptic operator A on L2(JRN) defined formally by

N N

A2 = - L Dj (akjDk) + L akDk + Dk(bk·) + C,

kJ=l k=l

we ask when the essential spectrum O"eu(A) = [0,00).
Assurne that ak E W1100(JRN) and akj are real 1::; k,j ::; N. We show that if one of

the following conditions holds

1. ak - VkOkj, ak, bk , c E L 2(RN) and akj = ajk

-=-=-_=---.L00

2. akj - VkOkj, ak,bk c E L5 := L2 n Loo

for some constants Vk > 0, then 0'eu (A) = [0,00).

The method consists in showing that the resolvent difference (,\ + A)-l - (,\ + HO)-l

is a compact operator in "L2(JRN). Here Ho = - E:=l vkDZ.

We use the same method to get similar results for the general Schrödinger operator

N N N

A(b) = - L (D; - ibj ) (akj(Dk - ibk)) + L ak ((Dk - ibk)) + L(Dk - ibk)(Ck') + C

kJ=1 kJ=1 k=l

where b= (bt, ... , bN) is a magnetic potential.



DEGENERATE ELLIPTIC BOUNDARY VALUE PROBLEMS FOR

WEAK COUPLED SYSTEMS. SOLVABILITY AND MAXIMUM

PRINCIPLE

Boris Paneah

Let n be a bounded domain in IR!', n ~ 3, with a smooth boundary an. We denote

by T a smooth nonsingular vector field on an and by v a unit vector field of interior

normals to an. In the first part of the talk we consider the following boundary value

problem

Lu+Hu = F in n
a a
-u +A-u +Eu = f on an.aT av (1)

Here U = (ut, U2, ..• , 'UN) in an unknown vector-function: n --+ JRN. L is a scalar

second order elliptic differential operator on n, H is an arbitrary first order differential

operator, A and E are smooth N x N matrices on an. So, the problem (1) is weak

coupled in n but not on the boundary an.
It is wen known that the ellipticity of the problem (1) is equivalent to the condition

detA :j:. 0 on an. For this reason we suppose further that the set J-L = {q E an I
detA( q) = O} is not empty and, moreover, J-L is a submanifold of codim 1. Let us

assume also that the vector field T is transversal to 1".

Consider a sufficiently small tubular neighborhood U of the submanifold tL with the

normal coordinates (t, x) on U. Here x = (x 1, X2, ... , xn - 2) are local coordinates on p.

Condition 1. The zero eigensubspace R of the matrix A(0, x) is p-dimensional, p ~ 1,

and does not depend on x E tL.

This means that in same basis in lRN the matrix A (t, x) has a form (( Ai;))~:1 ,j=l ,

where All and A22 are square matrices of orders p and N - p respectively; Ai1 (t, x) =

tk A:1(t, x) for some integer k~ 1 and smooth matrices A:1 , i = 1, 2.

Condition 2. There exists a smooth function a(x) :j:. 0 on p such that A~1(0, x) = a(x)r
where r is a constant p X P matrix without eigenvalues on the imagjnary axis.

Denote by 1rU the orthogonal projection of the vector 'U on the subspace R. Let 1r±U

be the projections of '7rU on the spectral subspaces R± corresponding to positive (resp.

negative) eigenvalues of r.



Theorem 1 11 the number k is even then the problem (1) is Fredholm (between suitable

spaces).

Theorem 2 11 k is odd then the problem (1) is not Fredholm. But the modified problem

Lu+Bu = F
a a

/-u+A-u+Bu =aT av
1r'_U = 9

in n
on an \ fl

on fl

(2)

is Fredholm (between suitable spaces). Moreover, lor sufficiently smooth F, /, 9 the

restTiction u Ian 01 the solution u belongs to Sobolev space BI (an\J1.) and [u]~ = [7r+u]~

where [wL denotes the jump 0/ Won J1..

The second part of the talk is devoted to the strong maximum principle for boundary

value problems of the type (1) (and (2) as weH). We consider the following problem

N

.ckUk +L: hkjuj = Fk In n
j=1

a a N

8T Uk +ak 8v Uk +L: bkjuj = fk on an, 1 ~ k S N.
k j::;;;1

(3)

Here all of .ck are elliptic second order operators. on n with positive principle parts, Tk

are sorne nonsingular vector fields on an and hkj, ak, bkj are smooth functions. It is

obvious that this is weak coupled boundary value problem. If all the functions ak do

not vanish on an then (3) is an elliptic problem. Let us introduce the sets

ik = {q E an 1 ak(q) = 0, k = 1,2, ... ,N}

and let us assume for short that all ik are not empty. We only need the following

condition on /k. The set ik, k = 1,2, ... , N, does not contain any maximal trajectory

of the field Tk. (If ik is a submanifold this condition is fulfiHed automatically). To

describe the dass of matrices (( hjk )) and (( bjk )) under consideration, let us introduce

two definitions. We say that a matrix ((Cij))f' satisfies the (rd)-condition if for all

j,k=1,2, ... ,N

(rd) CjjCjk ~ 0, k =I j; Cjj L: Cjl: ~ 0 .
k

We say that a matrix-valued function ((Cjk(x)))f satisfies (zs)-condition if for j < k

and for every x



(zs) Cjk(X) = O::::} Ckj(X) = 0 .

Theorem 3 (Strong maximum principle). Let U = (Ul, U2, ... , UN) be a solution of the

problem (3). Assume that

1° each function ak does not change sign on an;

f!' ajbjj :::; 0 on an; h jj :::; 0 in n for all j = 1,2, ... ,N.

{fJ The matrices (( hjk )) and (( bjk )) satisfy (rd)- and (zs )-conditions.

/f Fk ~ 0 in n and ak/k ;::: 0 on an for all k = 1,2, ... , N then each /unction Uk either

> 0 in n or =const.

Remark. This result can be generalized to the case when some coefficients ak change

sign on an. Then the strang maximum principle is formulated for the modified problem

(2).



Asymptotics of Heat Flow

Derek W. Robinson
AllStralian National University

Canberra

The diffusion of heat in 30 system with periodie conductivity is govemed by two scales of
len~h. The Bmall time diffusion is described by the geodesic distanee but the luge time
behaviour is dictated by the distance associated with an homogenized system obtained by a
suitable nonlinear averaging proeess.

Let H be the positive self-adi?int operator

d

H =- E 8i Ci;8;
iJ=l

on L,.(gl; dx) with real-valued eoefficients C;; = C;i E Loo(Ri; dx) satisfying

C = (Ci;) ~ JLI > 0 ,

in the sense of d x d-matrices, uniformly on Jrl. Tbe semigroup S generated by H describes
the heat flow govemed by the coefficients of conductivity Ci;. Tbe action of S is determined
~y a positive kemel K, •

(Sttp)(x) = (Kt * tp)(x) = f dy Kt{x; y)tp(y) ,JRtJ
which is known to satisfy G30ussian upper and lower bounds and the behaviour of the heat
flow has largely been analyzed by successive improvements of such bounds.

First, recal.l that if the coefficients Ci; are constant then

Kt(x; y) = (41rt)-d/21 detCI-1
/
2exp(-dc(x; y)2/4t)

with dc(x; y)2 = «x - y), C-1(x - y)). Thus the asymptotic behaviour is ,a dissipation
govemed by the distance dc ) the geodesie distance 88Sociated with the Riemannian metric
C-1•

Secondly, as a result of the work of many authors, it has been established that for variable,
coefficients

Kt{x; y) "'-i t-d/2e-de(=i~)3/41

.for all sma.ll t > 0 with dc the appropriate geodesie distance. It has also been ;, common
belief that a similar result should be true for large t. Hut Davies establiahed that this is not
always the case for one-dimensional systems. In particular he showed. that for large t the
kernel resembles a Gaussian distribution with a distance which is generally larger than the
geodesic distance. In faet for periodie multi-dimensional systems Batty, Bratteli, J9Jrgensen
and Robinson (J. GeoID. Anal., to appear) have recently demonstrated that the asymptotic
behaviour can be exactly identified.

Theorem Assume the coefficients Ci; are periodic. Then there is a constant coefficient d x d­
matrix C, satisfying C ~ p.I, with corresponding 3emigroup Sand kernel K, such that one
has uniform convergence

on each of the L p-space! Qver Jrl.



Moreover,

(1 - )1/q

lim suptd
/

2p dy IK,(x; y) - K,(x; y)lq = 0'-00 Z Rlt

with p-l + q-l = 1.

.The matrix C corresponds to the homogenization, in the sense of Bensoussan, Lions and
Papanicolau, of the conductivity matrix C. It is a type of average of C .&nd the result
reßects the physical fact that the inhomogeneities of the system are averaged out with time.

It should be emphasized that the map C ~ C is highly nonlinear, although it is order
preserving. If M denotes the usual mean value over R1 one has

and C = M (C) if and only if the coefficients are constant. These statements follow most
readily from two variational principles given by NorriB (Bull. Lond. Math. Soc., to·appear)
who extended many of Davies' estimates to the multi-dimensional case. In addition, in
one-dimension one has C = lvf(C-l)-l but necessary and sufficient conditions far this iden­
tification are not known.

Finally, although the theorem identifies the asymptotic fonn of S its proof does not give any
indication about the ra.te of convergence to the limit, nor does it adapt to the addition of
first-order terms. It would be of interest to understand the situation with drift tenns and
to find methods of dealing with more general non-periodic systems.



GREEN'S FORMULA FOR GENERAL PARABOLIC PROBLEMS AND

SOME OF ITS APPLICATIONS.

I.Ya.Roitberg, Ya.A.Roitberg

Chernigov, Ukraine

Let G c JRn be a bounded domain with a boundary 8G E coo, n = G x (0, T),

°< T < 00, f2' = 8n x (0, T). We denote by (, )0, (, )0, < , >8Q, <, >0' the scalar

products (or their extension in L2 (G), L2(n), L2 ( 8G), L2 (f2/) respectively.

In n we consider a general parabolic boundary value problem

Lu == L(x, t, D:;r, 8t ) = f(x, t) ((x,t) E n);

(j = 1, ... ,m; x' E 8G); (1)

8;-lU lt=0'Pok (k = 1, ... , 1\:).

Here Dx = (D1 , ... , Dn ), Dj = i8/8xj, 8t = 8/8t, ordL = 2m, ordBj = mj. The

order of the operator is defined as its terms highest order; the order of the D~8f =
Drl ...D~n8f is laI + 2bß = a1 + ... + an + 2bß; b is the divisor of the number m. The

. number 2b is called the parabolic weight of the problem, K, = ~. The mj (j = 1, ... , m)

are arbitrary nonnegative numbers. Let rj be an order of the expression B j with respect

to derivatives D&I = i8/8v (v is the normal to n/) and

r = max {2m, rl + 1, ... , rm + I} (2)

Theorem 1 Let the problem (1) be parabolic. Then expressions Cj(x, t, D x , 8t ),

Bj(x, t, Dx , ßt)J CJ.(x, t, Dx , 8t ) (of corresponding orders IjJ m~'J I~ (j = 1, ... , mj k =

1, ... , r - m)) exist such that Green's formula

m ~-l

(Lu,v)n+ L (Bju,Cjv) + L (D~-lLu,C:n+jv)o+ L((8:u)(x,O),TkV(X, 0))0
j=l j:l$j$r-2m k=O

m ~-1

= (u, L+v)o + L (Cju, Bjv)o + L((T~u)(x, T), 8;v(x, T))o (u, v E Coo(O)) (3)
j=l k=O

is valid.



Here Tk, T{ are (2m - (k + 1)b)-order differential expressions,

mj + lj = lj + mj = 2m - 1 (j = 1, ...rn)j l:n+ j = -j (j: 1 5: j 5: r - 2m) (4)

(if r = 2m then the third term of the left part of (3) is absent).

Expressions Cj , Bj, Cj (j = 1, ... , m) are differential with respect to derivatives D~ and

they are pseudodifferential with respect to tangential derivatives along the f2J.

Theorem 2 The problem

L+v = g (in !1); Bjvlol = f.{Jj (j = 1, ... , m); a;-lv lt:::T = l/Jok (k = 1, ... , x:)

(wilh the changed time axis direction) that is adjoint to problem (1) with respect to

Green's formula (3) is parabolic ij and only if the problem (1) is parabolic.

Let us note a few applications and generalizations.

A) Both for problem (1) and for problem (5) the theorem on a complete collection on

isomorphics holds. By means of passage to the limit (3) may be established for the

corresponding space of distributions.

B) It follows from theorems 1,2 that if we change arbitrarily f(x, t) in Go x (0, T) or

r.pj(x, t) (j = 1, ... , m) in /0 x (0, T), (Go c G, /0 C aG are open subsets; the diameters

of Go and /0 are arbitrarily small) then any vectorfunction defined on the manHold

/ x (0, T) may be approximated by solutions of the problem (1) and their derivatives

(here / is an open piece of the (n-1)-dimensional manifold /1 C G).

C) We study L'rtheory in this work. But Lp-theory (1 < p < 00) can also be treated

here.



LOCAL INCREASING OF SMOOTHNESS OF GENERALIZED

SOLUTIONS OF ELLIPTIC BOUNDARY VALUE PROBLEMS IN

NON-SMOOTH DOMAINS.

Va. A. Roitberg

Chernigov, Ukraine

This work consists of two parts. The first part was obtained together with B. Va.

Roitbergj the second part was obtained together with A. V. Sklyarets.

Let G c JRn be a bounded domain. The boundary Be contains the conical points,

edges, etc.; let M C ßG be a singular pointset, ßG\M E coo.

In G we consider the elliptic boundary value problem

L(x, D)'U = f, Bj'UlaG\M = <I>j (j = 1, ... , m; ord L = 2m, ord Bj = mj). (1)

Let

r = max{2m,ml + 1, ...mm + I}.

By means of integration by parts we find

(2)

(Lu, v) = (u, L+v) + L (D~-1U, A2m - i+1V) (u E COO (G\M), v E CM(G))j (3)
1::5j::5 2m

here, if v E Cr;(G) vanishes in some neighborhood in G of the set M then v E Cr;(G),

( , ), < , > is the scalar product in L2( Gd, L2(ßed respectivelYi Dv = iß/ ßVj v- is a

normal to Be. Therefore the equation Lu = f is equivalent to the equality

(uo, L+v) + L (uj, A1m - j+1V) = (fo, v) (v E CM(G)) .
1$j$2m

(4)

Similarly, if Bj(x, D) = I:l<k<m '+1 Bjk(x, D')Dt- 1
( Bjk(x, D') is the tangential oper-

- _ J

ator) then

Bj'UlaG\M = L Bjk(x,D')Uk = 4>j (j = 1, ... ,m).
l$k$mj+l

(5)



We identify U E CCO(G\M) with the vector (Uo, ... , ur), and I with the vector (10, ... , Ir-2m),

10 = Ilc\M' Ik = Dt- I /18G\M (k = 1, ... ,r - 2m). Then u = (uo, ... ,ur ) is the solution

of the problem (1) if and only if equalities (4), (5) and

(D~-lL) laG\M = fj (j = 1, ... , r - 2m) (6)

are valid. Here the left-hand part of (6) is expressed in terms of UI, ... , Ur by formulas

as (5).

Definition 1 Let uo,lo be (generalized) functions in G; Uj, 110 be (generalized) func­

tions on fJG\M. Then a vector is called a generalized solution 0/ the problem (1) if

(4)-(6) are valid.

The problem (1) (or equalities (4)-(6)) defines a mapping A : U = (uo, ... , ur) ~

F = (I, 'P) = (/0, ... , Ir-2m, 'PI, ... , c.pm). To study it we must introduce some functional

spaces.

For any 8,2:: 0 and P E (1,00) we denote by HS,P(G) the Bessel potential space, and

let H-S,P(G) = (Hs,P'(G))*, l/p + l/p' = 1; I[[[s,p is the norm in HS,P(G) (8 E R,

1 < p < 00). By BS,P(8G\M) (8 E R, 1 < P < 00) we denote the Besov space,

«»s,p is the norm in BS,P(8G\M).

Let r > 0 be a fixed integer, 8,P E IR, 1 < p < 00, S =1= k + l/p (k = 0,1, ... ,r -1). By

Hs,p,(r)(G\M) we denote the completion of CCO(G) with respect to the norm

1

Illu, G\MIII.,p,(r) =(1IUII~,p + lEr«Dt-1u, 8G\M»:_i+t_;,P) p (7)

The closure S of the mapping u I-t (UIO\M' ulaG\M, ... , D~-lulaG\M) (u E CCO(G))

is the isometry between Hs,p,(r) (G\M) and the subspace of direct product FS'P :=

HS,P(G) x n Bs-j+l-~'P(fJG\M)l<j<r .
Therefore we ~a~ identify U E Hs,p,(r)(G\M) with the element Su E FS'p. We shall

write u = (Uo, ... , ur) (\lu E iJs,p,(r) (G\M)). Hence, the space Hs,p,( r) (G\M) consists

of vectors u = (uo, ... ,ur). This is the space of the solutions of the problem (1) (or

(4)-(6)). The mapping introduced above A : u ~ F = (!,c.p) acts continuously from
Hs,p,(r)(G\M) to j(S,P := HS-'Jm,p,(r-2m) (G\m) x I1T=l Bs-mj-;,P(8G\M).



By means of the complex interpolation method we define the space H6,p,(r)(G\M) and

the norm (7) for 8 = &±1 (k = 0, ... , r - 1).
p

Theorem 2 Let u E H6,p,(r)(G\M) (s E IRJ p E (1,00)) be a generalized solution of

the problem (1) with F E f<61,Pl. Let Xo E 8G\MJ and F belong to f< 61,Pl

(s 1 ~ s, Pt ~ p) locally up to th e 'bounda ry in some neighborhood in G \ M . Then the

solution u belongs to H61lPl,(r) locally up to the boundary in this neighborhood. A similar

theorem is valid also for the elliptic problem for the Douglis-Nirenberg system.

This theorem gives an answer to a question formulated by professor V.A.Kondratjev

in 1992 at the conference in Rostock.

In the second part Sobolev's problem is studied. In this problem the boundary of

the domain consists of smooth manifolds with different dimensions. A theorem on the

complete collection of isomorphisms for this problem is obtained.



RADIATION CONDITION FOR DIRAC OPERATORS

CHRIS PLADDy1, YOSHIMI SAITÖ2 , AND TOMIO UMEDA3

1,2 University of Alabama at Birmingham, U. S. A.
and

3 Himeji Institute of Technology, Japan

In the papers [1J and [2], results from the theory of pseudodifferential opera­
tors and spectral analysis of Schrödinger operators were combined to discuss the
asymptotic properties of the Dirac operator

(1)

Here' i = A, x = (Xl, X2, X3) E R 3 and Cij, ß are the Dirac matrices, i.e., 4 x 4
Hermitian matrices satisfying the anticommutation relation

(2) (j, k = 1, 2, 3, 4)

with the convention Q'4 = ß , bjk being Kronecker's delta and I being the 4 x 4
identity matrix. The potential ,Q(x) = (qjk(X)) is a 4 X 4 Hermitian matrix-valued
funetion. Here we assume that Q( x) is short-range in the sense that each element
qj k satisfies

(3) (x E R 3
, j,k = 1,2,3,4),

where f is a positive constant. The free Dirac operator Ho is defined by

.(4) •

The aim of this talk is to show how the Dirac operator and the Schrödinger
operator are related each other and how some properties of the Dirac operator
and the solutions of the Dirac equation ean be obtained from the corresponding



properties of the Schrödinger operator. Sinee we have from the antieommutation
relation (2)

(5) (HO)2 = (-~ + 1)1,

we can anticipate a elose relationship between these two operators. We also want
to show that some results from the theory of pseudodifferential operators, which
were used in [1] and [2], are useful in diseussing our problems.

Our strategy is to combine a representation formula for the resolvent Ro(z),
·which was originated in Yamada (3] and used in [1] and [2] with same known results
on Sehrödinger operators to study some new properties of the extended resolvent
R± (..\) of the Dirne operator H with a shorl-range potential Q. Let

(6) R±( ..\)f(x) = t(vt(x), vt(x), vi=(x), vt(x»,
where tA is the transposed matrix (or vector) of A, and

(7)

with a fixed constant 8 satisfyjng 6 > 1/2. In order to simplify the description,
here we assume that A > 1. Then, after giving another proof of the limiting
absorption prineiple for the Dirac operator (1), we are going to prove the following:

(1) Eaeh element vj(x), j = 1,2,3,4, satisfies the radiation condition

{

vj E L 2(R
3 , (1 + ]xI2)-6 dx), '

(8)
(ßl 1= iV..\2 - 1Xl)vj E L2(R3

, (1 + IxI2 )6-1 dx),

where e= 1,2,3, ß l = ß/ßXl, and Xl = XL/lxi.
(2) v = R±(A)f is characterized as a unique solution ofthe equation (H -..\)v =

f with the radiation condition (8).
(3) Each element vj(x), j = 1,2,3,4 satisfies the asymptotic behavior

(9) vj(r.) ,...., c(..\, f)r-1e±i.;rcrr 10 L2(s2)

as r = [xl --Jo 00, where B2 is the umte sphere in R 3 , and c(..\, f) E L 2(S2) is
determined by ..\ and f.
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BOUNDARY VALUE PROBLEMS IN BOUTET DE

MONVEL'S ALGEBRA FOR MANIFOLDS WITH

CONICAL SINGULARITIES

Elmar Schrohe, Max-Planck-Arbeitsgruppe "Partielle Differentialgleichungen und

Komplexe Analysis", Potsdam

In joint work with B.-W. Schulze a pseudodifferential calculus for boundary value

problems on manifolds with finitely many conical singularities is constructed {4].

The idea is to combine Boutet de Monvel's concept for smooth manifolds with boundary

{I] with the calculus of B.-W. Schulze [5, 6] for singular manifolds without boundary.

On the smooth part of the manifold, the operators we are considering are standard

elements in Boutet de Monvel's algebra. Near one of the singularities we assume that

the manifold looks like the cone X x R+/X x {O}, where X is a smooth compact

manifold with boundary.

All the analysis is then performed on the cylinder X x R+. Choosing coordinates (x, t)

in X X R+ we introduce Mellin symbols with values in Boutet de Monvel's algebra: the

action is of Mellin type with respect to the t-direction, while it is pseudodifferential

(in the sense of Boutet de Monve!) on the cross-section X.

The operators correspondingly act on Sobolev spaces involving the Mellin transform.

Similarlyas before, these spaces coincide with the standard L2 -Sobolev spaces outside

the singularities. Close to {t = O} we additionally use weight functions I'V f"y' 1 E R

and the Mellin action with respect to t combined with the pseudodifferential action in

x.

The construction of both, the operators and these Sobolev spaces requires the intro­

duction of a parameter-dependent version of Boutet de Monvel's algebra.

In this calculus, the parameter plays the role of an additional covariable. Instead

of relying on the theory proposed in [2], we present a new approach to Boutet de

Monvel's calculus based on operator-valued pseudodifferential symbols on spaces with

an R+ group a~tion, cf. [6], Section 3.2.

This point of view allows a considerably faster access. Moreover, it makes some of the

constructions in Bautet de Monvel's algebra more transparent and brings the concept of

('singular') Green, potential, and trace operators doser to the usual pseudodifferential

theory, cf. als? [3].



In order to he ahle to handle the asymptotics of solutions near the singularites, discrete

asyptotics types play an important role in the definitions of the operators and the spaces

they are acting on.
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THE WEDGE SOBOLEV SPACES WITH BRANCHING DISCRETE

ASYMPTOTICS.

B.-W. Schulze

Pseudo-differential operators on manifolds with edges are a generalization of boundary

value problems. They form an algebra analogously to Boutet de Monvel's algebra, [2],

[5], [9], but the analogue of the transmission properties is typically violated. The "edge

theory" is in a sense a combination of the theory of pseudo-differential boundary value

problems and that for conical singularities. A question is, in particular, the nature of

the elliptic regularity in the weighted "wedge Sobolev spaces" W""'Y, s E IR being the

smoothness, '/ E IR the weight. Consider those spaces aver the infinite open stretched

wedge

IR+ X X x JR:l 3 (t, x, y),

where Xis a closed compact Cco manifold, n = dim X, the base of the (stretched)

model cone JR+ x X =: X" of the wedge, and JR:l 3 y is the edge. If K",i(X'') denotes

the weighted Sobolev space on X" (defined by means of the Mellin transform in t near

t = 0) and equal to H"(JR x X)I(~,co)xX for every c > 0, there is an JR+ action "')" on

IC','Y(Xj defined by (",).u)(t,x) = A(n~1)U(At,X), A E IR+. Set< 1] >= (1 + ITJI 2)t and

"'(TJ) := "'<11>' Then W"'i(X" x JR:l) is defined as the closure of S (IRq, Cff(X')) with

respect to the norm

(1)

These spaces have been introduced in [5] in a more general set up for an arbitrary

Banach space E instead of K: ",'Y (X"), wi th a corresponding graup {"'). }>. ER+ of iso­

morphisms. In [2] there were obtained the asymptotics of solutions for elliptic wedge

problems in the case of constant exponents along the edge.

The singular terms are of the form

(2)

with Cjk( x, y') E Cco (X, H" (JR~I))' and hat indicating the image under the Fourier

transform Fyl-11' Here Pi E C, Re Pi --+ - 00 as j --+ 00. For the case of variable (along



IRq :3 y) and branching Pi = Pi(Y) the singular functions were first obtained in [6], [7].

They have the form (modulo "easier" singular terms for .s = (0)

(3)

Here ((Yi y l
) is an element of

(4)

((y,~) = (Ff1 - lI () (y; yl) K, V c Cz compact, where A'(l<, V) is the space of V­

valued analytic functionals, carried by K. The element ( E (4) involved in(3) is

pointwise (i.e. for every y) discrete in the sense of (2). The functions (2), (3) belong

to W-'·'"Y(X'" x IRq). The formula (2) shows how the smoothness in y of the coefficients

of the edge asymptotics depends on Re Pi' The corresponding jumping and branching

smoothness in the general case (3) is adequately formulated in the form (4). This fits

to the shape of smoothing Green and smoothing Mellin operators in the wedge algebra

with branching discrete asymptotics. Details for dirn X = 0 are contained in [7]. The

generalization to arbitrary dirn X is of analogous structure.
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ON THE INDEX OF PAIR OF
PROJECTORS

R. Seiler
FB Mathematik

TU Berlin

We study the relative index of two orthogonal infinite dimensional projections
which, in the finite dimensional case, is the difference in their dimensions. We
relate the relative index to the Fredholm index of appropriate operators, discuss
its basic properties, and obtain various fonnulas for it. We apply the relative
index to counting the change in the number of electrons below the Fermi energy
of certain quantum systems and int.erpret it as the charge deficiency. Wy study
the relation of the charge deficiency with the notion of adiabatic charge transport
that arises from the consideration of the adiabatic curvature. It is shown that,
under a certain covariancc, (homogeneity), condition the two are related. The
relative index is related to Bellissard's theory of the Integer Hall effect. For
Landau Hamiltonians the relative index is computed explicitly for all Landau
levels.

•



TWO-SIDED BOUNDS ON THE HEAT KERNEL FOR THE

SCHRÖDINGER OPERATOR

Yu. A. Semenov (Kiev)

Let us consider the operator 11 = -~ + V acting in LP = LP(JRd), d ~ 2, for some

p E [1,00[. In this report we are interested in assumptions on V, guaranteeing the

following estimates

CL9t(1 x - y I) ~ e-tH(x,y) ~ CV9t(1 x - y I), t > 0, x,y E IRd (1)

where CL and Gy are positive numbers, 9t(a) = (47rt)-fe-~ and e-tH(x,y) is the

integral kernel of e-tH .

Simple arguments show that the condition II(_~)-l Vlloo ~ ev - 1 (for V ~ 0) is

necessary for pointwise (a.e.) inequality e-tH (x, y) ::; evg( I x - y l) to hold. On the

other hand, the condition

is sufficient for the correct definition of Hand e-tH (x, y) and for the following estimates

to hold

cle->'lt gto1 (1 x - y I) ::; e-tH(x,y) ~ c2e>'ltgto2(1 x - y I)

where Al, C1,2, al.~ are positive numbers, al < 1, a2 > 1 (see [6], [3], [4]).

The main goal of this report is to prove (1) under some assumptions on V. In particular,

I will show the implication

lI(-~)-lIVllloo<l=>(l) , d::;3 (2)

and related results for other cl s.

The material is, partly, a joint work with V.A. Liskevich.

The method of proving (1), presented here, is based on SOlne ideas of J. Nash [5] and

E.B. Davies [2].

We always assurne that V E LlocCJRd
) , V = V+ - V-, V± ~ 0 and V- is a -~-form

bounded potential, that is V- ~ ß(-~)+c(ß) for some numbers ß < 1 and c(ß) E IR l .

Let H be the form sum -~ + V.

Let S(o:)f(x) = eQ·xf(x), 0: E IRd•



Proposition 1 Assu1ne that

for some numbers c, ..\0 ~ c(ß), all 0' E md and t > O. Then for pointwise a.e. (x, y)

where CN( d) is the best constant in Nash 's inequality

Proof: One can show that Tt(O') =: S(O')e- t(H+a
2 }S(-0') is a holomorphic semigroup

on L2 and -'9tTt(O') = H(O')Tt(O'), where H(O') =: H + 20" V. Since (0" V j, f) = 0,

VI E Hl(md ), now one can follow [5] to obtain

and then put 0' = X~J1.

Results

First of aH notice that the operator ß - 20' . \7 defined on (1 - ß)-1 LP generates

a holomorphic semigroup on LP, 1 ~ P < 00, et(~-20"V) = S(0' )et(a-a 2 }s( -0') and

(-ß+20" \7)-1 has the integral kernel (-ß+20" \7)-1 (x, y) = ea.(x-~} (0'2 - 6.)-1 (x, y).

Assume for a moment that IIV-(-6. +20: . \7)-1111,1 = 8 < 1. Then according to J.

Voigt's theorem [8] ß - 20' . vr + V- defined on (1 - ß)-1 LI generates a bounded

C -semigroup on LI and Ile t (Q-2a.V+V-) 11 < _1_.o 1,1 - 1-0

Proposition 2 Let d = 3. Assume thai II( _ß)-1 V- 1100 = 8 < 1. Then

Proof:

(-ß +20' . vr)-1 (x, y) = (411" 1 x _ Y 1)-1 e-lallx-YI+a.(x-y)

~ (47r IX - Y 1)-1 = (-ß)-l(x, y)

Therefore

lIY-(-ß + 2a . vr)-IIII,1 = 11 (-ß - 2a . V')-1 V-lloo

~ 1I( -ß)-IV-lloo = 8 < 1



and

IIS(O')e- tHS( -O')/llt = Ile- t (H+2o o

V- 0 2) /iit
< e02t!let(a-2ooV+V-) 1 f Illt

02 te
< I_Sllfllt, fEL

1
nL

2
•

Appealing to Prop. 1 one can get the desired result.

Let us now consider the case d = 5. We have (z = x - y)

II(-ß + 2a . "\7)-1 y-lloo

Since

= _1_1 + lall z Ie-lollzl+ooz
811"2 1 z 1

3

< (_ß)-l( ) + _1_~e-lollzl+ooz
x,y 811"2jzF '

< 1I(-.6.)-lY-lloo

+ ~ I a I sup J1Z 1-2 e-lollzl+oozy(z + x)dz
811" xERd

Rd

~1
1

Z 1-2 e-lollzl+oo,V-(z + x )dz < IIV-II ~ U[I X 1-2 e-loIIXI+OOX]A) dx

I1 Y-II i' 1 a 1-1 'C(d) with explicit c(d),
2

then 11 ( -ß + 20' . "\7)-1 V-lIoo ~ 11 ( -ß)-1 V-lIoo + 8~2 C(d) 1I V-Hi. Thus we get
2

Proposition 3 Let d = 5. Assume that

II(-ßt1v-lloo + ~~lI1V-llf = 6 < 1 0

Then e-tH(x,y) ~ Co9t(1 x - y I)J Co ~ (1 - S)-~(211"dcN(d))~.

Remark. (2) is a simple consequence of Prop. 2. Surely, the proof of Prop. 3 works

also in other dimensions. Related to Prop. 3 the bound e-tH(x,y) ~ cv e.\ot9t (1 x-y l),

"0 > 0, has been discussed in [1] for Y E Lq(IRd
), q > ~' and in [7] under the

assumptions adV-) = 0 and V- E L~(IRd).

Concluding I give a variant of Prop 3.

Proposition 4 Let d ~ 4. Assume that II(_ß)-lV-lloo = S < 1 and v- ~ e( -.6.) +
c1e~ (Ve > 0) for a suitably small constant Cl. Then there exist Cv < 00 depending

only on d, S, and Cl such that e- tH(x, y) ~ CV9t(! x - y l).



Proof: Choose d = 5 for simplieity. Let 7/J(y) =1 Y 1-1 e-IQIIJI~+Q'Y 7/Jx(') = 7/J(. - x).

Then €IIV7/JII~+cle~lI7/JlI~2:: (1/;x, V-7/JQ)' A straightforward ealculation gives 11V1/;II~:::;

a I Q' 1-1 19 Ia \, 1l7/J1I~ :::; b I Q' 1-2
• The statement of Prop. 4 now easily folIows.
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APPROXIMATION BY SOLUTIONS OF NON-LOCAL ELLIPTIC

PROBLEMS.

Zinovi Sheftel

Chernigov, Ukraine

Let G c JRn be a bounded domain with the boundary f E coo, GI is a subdomain of

G wi t h the boundary , E 0 00
, r n , = 0, G2 = G\GI j Cl' : f -t , is a diffeomorphismj

for any function u(y) (y E ,) we set (Ju)(x) := u(ax) x E f. We consider the non­

Ioeal elliptie problem [1]

LiUi(X) = fi(X) (x E Gij ord Li = 2mij i = 1,2),

Bju := J (Bjl1LI(Y) + Bj2U2(Y)) (x) + Bj3U2(X) = <pj(x)

(x E fj y = ax E ,; j = 1, ... ,Ij 1= ml + 2m2)

The system of boundary expressions Bji is assumed to be normal [1]. In this ease

one ean introduce the adjoint with respect to Green's formula non-Ioeal problem for

the formally adjoint expressions Lt j corresponding boundary expressions we denote

Bji(j = 1, ... , I; i = 1,2,3) The adjoint problem is also elliptie.

Let Al be a smooth (n-1)-dimensional manifoId without border, situated in GI or in G2 ,

A is an open subset of Al having sufficiently smooth boundary. For u = ('U1l U2), where

u}, U2 are suffieiently smooth funetions, we set Vru := (UIA, ... , c(,-luIA), D v = ~~, v is

the normal to A. Let Go be a domain having arbitrarily small diameter situated in GI
or G2 • We put

Theorem 1 Let a) Go C G2J A C GI, GI \A conneeted,-

b) the expression Lt has in G'1 the property 0/ uniqueness /or Cauchy problem: if

Li v = 0 in a domain G' C G2 and v = 0 in GIf C G', then v = 0 in G',-
c) the problem Li VI = 0 in GI \A, Bjl v = 0 on , (j = 1, ... , l) has onIy zero solution.

Then V2mlM(Go) is dense in n~~; B6 j ,P(A) for any Sj 2: 0, 1 < p < 00.

Theorem 2 Let be

a) Go C G2, A C GIJ A the boundary 0/ a subdomain G' C GI



b) Lt has in G2 the property of uniqueness for Cauchy problem;

c) the Dirichlet problem for Li Vl = 0 in GI has no more than one solution;

d) the problem Lt Vl = 0 in Cl \ G' J B j } = 0 on 1 has only zero solution.

Let now f o be an open subset of rj the diameter of f o may be arbitrarily smal!. We put

M(fo) := {u E COO(Gt} X COO (G2): Lu = OjsuppBju c fo,j = 1, ... ,I}, vrM(fo) .­

{vru : U E M(fo)}.

Theorem 3 Let be A C G2 C 2 \A is connected and let the expression Lt has in G2 the

property of uniqueness for Cauchy problem. Then 1I2m2M(fo) is dense in TI;::; B.!j,P(A)

for any Sj ~ 0 and 1 < P < 00.

Some more assertions of such are proved. Similar questions for usual boundary value

probems were studied since 1960 by many authors (see [2], [3] and its references).
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SUPEROPERATORS AND EXISTENCE OF THE WAVE OPERATORS.

A. Shushkov

St. Petersburg

We study a problem of existence of the wave operators using Liouville superoperators

terms

[A, B]T = AT - TB, W±(T) = s- lim ei[A,B]tT.
t-=FOO

We consider the model problem. Let be L = (x, x] where x is the operator of multipli­

cation by x in L 2(R).

The following results are obtained.

Theorem I.Let P± be orthogonal projections on Hardy spaces Ht respectively, T be a

bounded operator such that LT E S2. /f P±'cT E SI Then w-limt_=Foo e,xtTe- ixt exists.

Theorem 2.a) Let T be a bounded operator such that .cT has L~oc-kernel k(x, y).

Suppose that

b) Let be ,c = [t ;x' t;x] T be a bounded operator such that LT E S2, t.cT E S2,

tT E B. Then W±(T) = w-liIllt_=Foo e,xtTe-ixt exists. Moreover

limt_=Foo lle ixt(T - W±(T)e-ixtfll exists for all f E L2 .

In particular, if T is unitary and W±(T) is unitary then

W±(T) = s- lim e'xtTe-ixt.
t-=Foo
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Bound on the Density at the Nucleus
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September 9, 1993

The Hamiltonian of an atom of N electrons with q spin states each and
a fixed nucleus of charge Z located at the origin is given by

(1)

1 -

N
self.adjointly realized in 1\ (L 2 (lR3 ) ® Cq

). Furthermore we write lj.; for an
v=l

eigenfunction that belongs to the bottorn of the spectrum of HN,z, i.e., a
ground state eigenfunction and

p~(t)

= 2::1 ....,dN=l 2:~1 JI.3(N-I) 1T,b( tll 0'1 i ... ; tV-l, 0"v-I j t, 0"vi tV+l, 0"v+l; ... ; tN, 0"N ) 1
2

dtl ...dtv-l dtv+l ...dtN (2)

for the corresponding density.
A quantity of particular interest ia the ground state density Pw(O) at the

nucleus. Recently Narnhofer [3) argued that one might expect for an atom
p~(O) = O(Z3). In this talk we will outline a praof of this conjecture. In fact

_____~~ ~an prov~ ~_ ~ ~ .



Theorem 1 Let P", be a ground state density 01 HN,Z and N = Z, then

P\b (0) :5 4~ qZ3 +C07l.,t ZIel/54.

This valne is not in disagreement with Lieb's Streng Sectt Conjecture [2J
which is actually older and stronger than Namhofer's: according to Lieb
!he scaled ßtODllC density Pv-(t/Z)/Z3 should co~verge to t~e ~~esp_ondillg ­
quantity of the bare Schrödinger operator Irk,z which equals HN,z ~c-ept ~ - -- - .
for the omission of the second sum, the electron-electron interaction. H
one assumes this convergence to be pointwise this would predict p",(O) =
(J:)qZ3 + O(Z3) (Lieb [2], (7.35)). We are now explicitly able to see that our
theorem does support this conjecture, since .;, which is about 0.065, is bigger
than (J~), which ia about 0.048. On the other hand it shows that our estimate
is rather good - we loose only using an_ inequality of Hoffmann-Ostenhof et
al. [1] right at the beginning of our proof while all other estimates Me
asymp.totically correct using phase space localizations developed in [4] and
[5] - hut presumahly not yet sharp.

References

[1] Maria Hoffmann-Ostenhof, Thomas Hoffmann-Ostenhof, and Walter
Thirring. Simple bounds to the atomic one-e1ectron density at the nu·
eleus and to expectation values of one.electron operators. J. Phys. B,
11(19):L571-L575, 1978.

[2] Elliott H. Lieb. Thomas-Fermi and re1a.ted theories of atoms and
molecules. Rev. Mod. Phys., 53:603-641, 1981.

[3] Heide Narnhofer. Towards control over electron density in heavy atoms.
Preprint, UWThPh.1993-15, June 1993.

[4] Heinz Siedentop and Rudi Weikard. On the leading energy correction
for the statistical model of the atom: Interacting case. Commun. Math.
Phys., 112:471-490, 1987.

[5] Heinz Siedentop and Rudi Weikard. A new phase space localiza-
•tion technique with application to the sum of negative eigenvalues



of Schrödinger operators. Annale.! Scientifiques de l'Ecole Nonnale
Superieure, 24(2):215-225, 1991.

- ----~---

•



(1)

ON A NOTION OF RESURGENT FUNCTION OF SEVERAL VARIABLES.

Boris Sternin and Victor Shatalov
Moscow State University

The aim of this report is the definition of aresurgent function of several independent
variables. The resurgent function theory introduced by Jean Ecalle (see [1]) has up to the
moment wide applications to different mathema~ical and physical problems. For example,
such problems are: investigation of the thin strucLure of the spectrum for Schrödinger oper­
ators, Dulac's problem on finiteness of the number of limit cycles and others.

However, some mathematical and physical problems require the notion of aresurgent
function of several variables. These are: the investigation of solutions to differential equations
at infinity, investigation of wave diagrams in electromagnetic theory and so on.

The notion of aresurgent function of several variables cau be introduced as follows.
Let cn be the complex space with coordinates x = (xl, ... ,xn ).

Definition 1 The function f(x 1
, •• ') xn) is called aresurgent funcf.ion if it admits a repre­

sentation of the form

f{x) = e[1{(, x)] = Je-( i((, x )d(,

r

the function j((, x) being an infinitely continuable homogeneous (hyper)function of ((, x)
of degree -1. Here the contour r goes to infinity along the direction of the real axis of the
plane C,. The set of singular points of ! surrounded by r is called a support of the resurgent
function f.

Let ii be a convolution algebra of functions !((, x) of the type described above and let
R be a set of resurgent functions. The following two assertions describe the main properties
of the operator (1).

Theorem 1 The set R is an algebra with respect to the standard multiplication. The oper­
ator ( defined by /ormula (1) is a homomorphism 0/ algebras

(: R --.. R.

Theorem 2 The Jollowing commutation fOTr1lulas

a - (( 8 ) -1 ( a ) _)8xi ((/) = e 8( 8x i f ,i = 1) ... , n

hold.



(2)

We present also tbe investigation of asymptotic expansions of resurgent funetions at
infinity. It happens that an analogue of the elementary resurgent symbol [1,2] (which is
essentially an asymptotie expansion of the resurgent function at infinity) for several variables
is an expansion of the type

00

f(x) = e-S(r)L:Ak(x),
k=o

where S(x) is a homogeneous function of degree 1 and Ak(x) are homogeneous funetions of
degree -k.

The eorresponding asymptotie expansion of the funetion j((, x) with respeet to smooth­
ness has the form

~ Ao(x) ~ (( - S(x»k
f((,x) = (_ S(x) + ln(( - S(x» L., k! Ak+l(X).

k=O

(3)

Functions having singularities of the type (3) are called resurgent funetions with simple
singularities (for one variable see, for example, [2]).

However, in general t he fune tion S(x) can have ramificat ion at some points of C n
\ { O}

where the function f (x) is regular (the so-ealled loeal points) . At slieh points the expan­
sions (2) and (3) do not work and, hence, the notion of resurgent funetions with simple
singularities is to be modified. Such a modification, done in the report, uses the so-called
B/ B(-transformation introdueed by the authors (see [4]):

(
. ) n/2 ( a) n/2 JFa/aC [j((, x)J = 2~ o( e-xP!< f( (, x )dx.

h«,p)

With the help of this transformation we write down modifieations of (2) and (3) at foeal
points being invariant along solutions of partial differential equations.

The introdueed notions can be applied to certain mathematical and physical problems
(such as obtaining asymptotic expansions at infinity of solutions to partial differential equa­
tions, investigation of wave diagrams in eleetromagnetic theory and others).
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ABSENCE OF ABSOLUTELY CONTINUOUS SPECTRA FOR HIGH

BARRIERS.

P. Stollmann

University of Frankfurt

Germany

The result presented in this talk was obtained ~ointl~ with I.McGiIlivray and G. Stolz.

It concerns' the nature 01 the spectrum of -t~ +V if the potential V has high barriers.

vVe say that V has barriers of form SI C lRd height h1 > 0 and width Wh > 0 provided

(i) L!(d \ USn has only bounded connected components.
"'

(ii) V(X) 2:: hn for dist(x, Sn) ::; T'
Theorem Let V E Lioe - K d haue barriers 0/ form Sn, height hn and wn . If hn -+ 00
and Ln a(Sn) exp (-8~~Vh::wn) < 00 for some c > 0 then aae ("':"'~ß + V) = 0.

The above theorem is a multidimensional extension of results of Simon and Spencer

[1]. The corresponding generalization of the Simon and Spencer technique for "wide

weIl" potentials has been given in [3]; see also [4]. While the general scheme of the

proof is a decoupling method as in [11, there is a difference: in the one-dimensional

situation one can use resolvents and their explicit representation by solutions to obtain

the necessary trace estimates. In the multidimensional case more involved techniques

are necessary. Apart from a factorization technique developed in [2,3] the following

propabilistic estimate is the key ingredient of the proof. Denoting Brownian motion

by (O,px'4xrd and the first hitting time of a set S by T~(W) = inf{s > O;);s(w) E S}

we have:

Occupation time lemma Let t > 0 and S C lRd compact, and TSD := A{O < s <
t; dist(X~(w), S) ~ J}. Then, /or 0 < a < t,

px [r, ::; t, T,. ::; 0'] ::; c· exp ( - (4 ~2E )0') ,

where C only depends on .:: > 0 and the dimension d.
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Analysis on Local Dirichlet Spaces

Karl-Theodor Sturm, Erlangen

Every regular Dirichlet (&, V(&)) form on a locally compact space X defines in an intrinsie
way ametrie p on X. This metric p is the key to prove vanous results in the context of loeal
Dirichlet forms which are known either in differential geonietry" or in p.d.e. _~.

For instance, we give sharp conditions for recurrence as weIl as for conservativeness and
sharp spectral bounds. These conditions are in terms of the volume growth v : r ~ m (Br(x))
of concentric balls Br(x) C X which are defined intrinsically by means of the metric p. For
instance, if

{CO r
J1 v(r) dr = 00

(e.g. if v(r) ::5 C . r 2 for large r) then & is recurrent and if

r:;.:-; __r_ dr = 00

Jl logv(r)

(e.g. if v( r) ::5 exp(C . r2) for large r) then & is conservative. This improves or generalizes
results by CHENG/YAU, KARP, KARP/LI, GRIGOR'YAN and TAKEDA. We also derive LP­
growth conditions for nonnegative sub- or supersolutions on X. In particular, we obtain LP.
Liouville theorems which extend results by YAU and KARP. Finally, we prove a sharp integrated
heat kernel estimate of the form

LLp(t, x,~) m(dy) m(dx) ~ /m(A)/m(B) . exp ( p2(~; B») . exp (-,\ . t)

generalizing recent results by DAVIES and GRIGOR'YAN.

In order to get the sharp pointwise heat kernel estimates of LI/YAU, DAVIES, VAROPOULOS

and SALOFF-COSTE we have to assume that the doubling property holds true for the intrinsic
balls and that on these balls a uniform Poincare inequality is satisfied. Under these assumptions
BIROLI/Mosco derived a uniform elliptic Hamack inequality. We prove that the latter two
properties already imply that a uniform parabolic Harnack inequality holds true. For
instance, this in turn implies that 3011 solutions of the parabolic equation Lu = :t u are Hölder
continuous (w.r.t. the intrinisic metric).
. Actually, we prove also the converse: if 30 uniform parabolic Harnack inequality holds true
then the doublin.g property and a uniform Poincare inequality must hold true. This extends
recent result~ by SALOFF-COSTE and GRIGOR'YAN.

We emphasize that the scope of 3opplications of these results is much broader than classical
Riemannian geometry. The results also apply to uniformly elliptic operators on Riemannian
manifolds (cf. SALOFF-COSTE) as weIl as to uniformly elliptic operators with weights (cf.
FABES/I(ENIG/SERAPIONI and FABES/JERISON /KENIG), to Hörmander type operators and
general subelliptic operators on !RN (cf. FEFFERMAN /PHONG, NAGEL/STEIN /WAINGER,

FEFFERMAN /SANCHEZ-CALLE, JERISON, JERSISON /SANCHEZ-CALLE, BIROLI/Mosco).



STRUCTURE OF SINGULARlTIES OF SOLUTIONS OF ELLIPTIC
EQUATIONS

B. Fischer and N. Tarkhanov

Let P be an elliptic differential operator with real analytic coefficients on an open set X c Rn~·-­

Weak sotutions of the eqllation Pf = 0 on an open set U C X are known to be real analytic
functions in U.
Given a closed set SeX and a solution f of P f = 0 in X\S, the set S may be considcrcd
as the set of singularities of f in X.
Example 1. Denote by tIJ a fundamental solution of P in ..,'l( which exists because of
Malgrange's theorem (1955). For a distribution h E E' with support in S the potential tI»(h)
satisfies the equation P~(h) = 0 outside S. Such singularities are considered to be the
simplest singularities on S.
The question arises whcther an arbitrary singularity on S may be decomposed into the
simplest singularities. H S is compact thc question was answered by Tarkhanov (1989).
A measure m on S is said to be massive if every subset of S of zero measure m has empty
interior.
Example 2. Choose a dcnse scquence {Yv} of points oieS and a sequcnce {mv} of positive
numbers such that Ev mv < 00. Set m(a) = E!I~E(1 mv for a subset (j C S. Then m is a
.massive measure on S.
Thus a massive measure always exists on S and we fix such a measure, say, m.
Theorem 1. Suppo.'1e that S is a locally connected compact subset 0/ X. Then tor each
8olution f 0/ Pf = 0 in ..\:'\5 the7'e exist a unique .'Jolution Je 0/ P Je = 0 in ..,Y" and a

sequence {Cer} C L2(1n) sati3fying Ila!call~I;::') ~ 0, such that

f(x} = fe(x} +L f n;cll(x, y}c('t(y}dm(y} for x E ..Y\S.
('f s

Proof. See Tarkhanov [3]. •
For arbitrary closed subsets S of ..Y this theorem fails. Tbe obvious reason is that the
derivatives D;~(x, y) ma.y be not in L"l(7n} for a fixed x E X\S. However, there may be
deeper obstacles also. At least, the technique of Tarkhanov [3] does not work in the case.

•In the paper we investigate the singularities in the small, i.e., within a relatively compact
open set f.[ in ..Y.
Moreover~ we limit ollrselves to the singularities laying on a smooth submanifold S of ..\'".
Then one h~ the na.tural choice of a massive measure m on 5, namely, m = ds where ds is
the induced.Lebesgue measure on S.



Theorem 2. For each solution / 0/ P / =0 in U\S there exist a solution /e 0/ PIe = 0 in
U and a ,lJequence {ca} C Lq(S n U) (q < 00) satisfying 1IQ'!call~l~nu) -+.0, such that

f(x) = fe{X) +L / D;cIJ(x,y)ca (y)dm(y) fOT' X E U\S.
a SnU

Prao/. The proof is given by combining same abstract theorems of functional analysis and
very precise estimates for solutions of the transposed equation 1"9 =" 0 near S using methods·-
of complex analysis.· •
Mention some consequences o.f this theorem.
Corollary 1. Let S be a locally connected compact subset 0/ X and let {Yv} be adense
sequence 0/ points 0/ S. Then tor every .901ution / 0/ P/ = 0 in X\S there are a solution
/e 0/ PIe = 0 in X and a sequence {Iv} 0/ solutions 0/ Pfv = 0 in X\Yv, such that
J = Je +EI' Iv in the topologiy 0/ E(X\S) ..
Therefore compact -singularities of solutions of PI = 0 may be separated into one-point
singularities.
Corollary 2. Let 0 be a relatively compact subdomain 0/ X wih piecewise smooth boundary.
Then tor each 301ution I 0/ PI = 0 in 0 there exist a sequence {ca} C Lq(80) (q < 00)
satisfying 1100!call~I~) -+ 0, such that

fex} = L / n;eJl(x, y)ca(y)ds(y) tor x E O.
0/0

'Thus wc can represent by boundary integrals not only solutions smooth enough near the
boundary but also qllite arbitrary solutions without any boundary values on 80.
Corollary 3. Every hyperfunction on Sn U has a representative 0/ the form

L / D;eJl(x,y)cQt(y)dm(y)
a SnU

with {ca} C Lq(SnU) (q < 00) satisfying IIQ!call~l~nU) -+0.
Finaly we formulate an open question.
Conjecture 1. Theorem 2 holds even if S i3 a locally connected closed subset of X.

References.

[1] .A. BAERNSTEIN: .

A representation theorem for functions holomorphic off the real axis. Trans. Amer.
Math. Soc. 165 (1972), 159-165. •

[2] U. HAVIN:

Gohibev series and the analyticity on a continuum. Linear and Complex Analysis.
Proble~ Book (LNM 1043), Springer-Verlag, Berlin etc., 1984, 670-673.

[3] N. TARKHANOV:

LaUIent series for solutions of elliptic systems. Nauka, Novosibirsk, 1991, (Russian).



ON THE TIlVIE-ASYMPTOTIC BEHAVIOUR OF THE SOLUTIONS

OF THE DffiAC EQUATION FOR LONG RANGE POTENTIALS.

Volker Vogelsang

Department of Mathematics

Clausthal

The problem of determining the time asymptotic behaviour of the solution u(t) of the

instationary Dirac equation

Ut +iAu = e-iktf(x), u(t = 0) = 0, k2 > 1

with the Dirae operator

3

A = Ao+P(x), Ao = -iL Qjß; +Q4

j=l

(1)

essentially relies on the proof of the Hölder continuity of the resolvent boundary values

R)"+iO on O"ac(A). Namely, the solution u(t) possesses the representation

. (t) = -iktU + (t) (t) = J-it).. (R)..+iO - R)..-iO)f d'
'Zu e w.'w p.v. e 27ri(k-A) /\

where U is satisfying the stationary Dirac equation

(A-k)U=f

and Sommerfeld's radiation condition

(2)

(3)

(4)

Because of the time harmonie perturbation on the r.h.s of (1) we can expeet that the

remainder w(t) in (2) is vanishing for t -4 00. In order to derive this limiting amplitude

principle he assumption "f orthogonal to the point eigenspace" is necessary.

For the free Dirae operator An our problem ean be preeisely solved by Fourier transform

such that

w(t) = 0 (t-~) in L:o ~ L~, Q > 1,

with an optimal exponent ~. For short range Potentials P(x) = 0 (lxI -4 00) there

exists the scattering operator S ,and the operators A and An are unitary equivalent on



G ac ' Therefore in such cases the problem can be reduced on the free Dirac operator Ao

with the same decay 0 (t~) assuming that the thresholds A = ±I are 00 eigenvalues or

resonances of A([K]). We remark that in the dilation-analytical situation the boundary

values R>.±iO even are analytical across {A~ > I} ((B], (R]).

For long range potentials we exactly have the subsequent

Theorem.Let a], ... , aN E R3
, Q > 1, / E L~, k2 > 1, k no embedded eigenvalue 0/

A, / orthogonal to the point eigenspace 0/ A and P( x) be a 4 x 4 hermitian matrix

valued potentials such that IP(x) I~ plx - aj 1-1 in U(aj) (j = 1, ... , N), J.l < 1, P(x) =

O(lx!-e), 8rP(x) = 0(lxl-1- e) (x -t 00), C > 0 and P E L~o~~ else.

Then with the notaions (1) - (4) for the spinor u(t) we have the decay

w(t) = 0(1) (t -t +(0) in L:o , Q > 1;

and w(x, t) = 0(1) (t -t +(0) locally uniformly in x #- aj (j = 1, ... , N), if / E D(A)

additionally.

Remark (i) Ey the additional assumption

P(x) - p(lxl) = 0 (lxl- t) (Ixl-t 00)

for some real functions p(r) there are no embedded eigenvalues of A on {A 2 > I} ([VIJ).
(ii) // f do not be orthogonal to Ep 0/ Athen the point spectrum Gp(A) induces an

additional oscillating part up(t) in (2) such that

and up(x, t) = 0(1), (t -t +00) locally uni/ormly in x #- aj (j = 1, ... , N), if / E D(A)

agazn.

The proof of the theorem is essentially based on the resolvent estimate ([V2])

IIR>'±iofll_a::; cll/lla, Q > 1,

and the new radiation esti"mate

for some positive "Hölder exponent" 8 following some idea of Eidus ((EI], [E2])
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A PERTURBATION THEOREM FOR UNBOUNDED SEMI-GROUPS

AND SCHRRÖDINGER OPERATORS.

L. Weis

Baton Rouge and Kiel

In recent years one has studied "singular" perturbations of differential operators (e.g.

by potentials defined in terms of measures) which are not covered by the classical

semigroup perturbation theorems, using quadratic form methods or the Feyman-Kac

formula.

In this talk we propose a functionalanalytic framework for "singular" perturbations:

Ir A generates a eo-semigroup of operators on a Banach space X we give a relative

boundness condition on aperturbation B that insures that (an extention of) A +
B generates a semigroup of unbounded operators. Adding analyticity conditions or

positivity assumptions we even get that (the extention of) A+B generates a semigroup

again.

We show that in the Hilbert space case this extention coincides with the one given by

the !(LMN-theorem. We apply our result to Schrödinger operators, in particular to

perturbation by measures.



OPERATORS WITH MULTIPLE CHARACTERlSTICS AND RELATED
PSEUDODIFFERENTIAL OPERATORS

Karen Yagdjian
Yerevan, Armenia

In this talk. we shall describe two classes of pseudodifferential operators arrised in the
construction of the parametrix for the Cauchy problem for hyperbolic operators with
characteristics with variable multiplicity [I], [2].
1. We describe the first class by means of real-valued function ..1. EC l1J ([O, r]), T>O , such that

_ t

..1.(0) = ..1'(0) =O. A'(t) > 0 when t>O. Here A' =dA/dt. For 2(t) we define 1\(1) =JA(r)dr and
o

assume that cll1(t)/ A(t)1 ~ 1..1'(t)/ A(t)j ~ Co II1(t)/1\(1)1, l~kl(t)1 ~ ck IA'(t) / 11(1)l
t

-
I
IA'(t)l, for all

k=I,2•... , and all t>O, with the positive constants c, co' ck , where c > (m-I)/m and m~ 2. For
positive numbers M. NIet us denote

Zh(M,N) = ((t.x,~) E[O. r] x R; x R~ 1 A(t)(~) ~ Nln(~) (~~ M}

Zpd(M.N)={(t,X.~)E[O,T]xR;xR; I A(t)(~)~Nln(~), (~2:M}

Hefe (~) = (e + 1~2)X. We denote by S;o Hörmander classes while by C([O, r]; S;o) a continuous

mapping of [0. T] into S;o'
Definition 1. Let m\, m2,~.P be a real numher~\' while M and N are positive. By

Sp.o {m1, m2 ,"'J}M.N we denote the set of all fUflclions a( t, x,~) E Crn
([0, r] x R; x R;) such that

a E C([O, T];S;o) /or some m,p' and such that /or any k, a.p there exists a constant Ck.a.ß such

that

1
t a ß ( )1 C (ß..'"l-~aj-h~ ()~ A(t) m,+k ( ) ( )

DtD(Dxa t,x,~ ~ t.aJ-I ~I At A(t) forall t,x,~ EZh M.N .

<i)

We also denote Kp.o{mi'm2'~}M.N = nSp.o{m\ -k.m2-k,m3 +k}M.N'
k=O

Proposition 1. Let ak(t.x,~) ESp,o{m\ - k,~ -k,~ +k}M.N' k = 0,1, ... , and assume that

at(t,x,~)=O for a// (t.X.c;)EZpd(M.N) and all k=O.l .... ,. Then there exists a ~\ymbol

a(t.x,C;) ESp,0{m
J
,m2,m3 }M.N' Slipp a c Zh(M,N)jor which

a - ao+QI +a2 +.. · mod Kp,0{m1,m2 ,m3 }M.N

in the sense that a-Qo -al-... -ak_l ESp.o{ml -k,m2-k.m3 +k}M.N jor all k, and any symbols

with the last property differ hy the elements 0/ Kp,li{m\,m2'~} M.N .

2. We describe the second dass by means of real-valued function A E C~ (Rn) whose derivatives

ofany order are bounded. We denote Z ={x E R!I]A(X) =O}, NZ =Rn\Z and



assurne that for every a there exists constant Ca such that ID:Jl( x)1 ~ CaK1aj---1 (x) (lJl(x)1 +

IVJl(x )1) for all x E NZ. Here we use the notation K(x) =1+ IVJl(x)[ / JJl(x )1. We also assurne that

there is positive &<1/2 such that K(x) ~ CIA(x)l-e
for all x ENZ. Let M and N be positive

constants. We define

Zh( M, N) ={(x, S') E R;X R; I ;[2 (x)W2 ~ N 2 1n 2(S'), (S') ~ M}

Zpd( M,N) ={(x, S') ER; x R; I ;[2(X)(S')2:<:; N21n 2 (S'), (S') ~ M}

Definition 2. LeI mj , m2 , ~,p be areal numbers while M and N are positive. By

Sp.o {mI' m2 , n':3}M,N we denote Ihe seI ofall functions a(x,~) E CetJ (R; x R;) such Ihat a E S;.o for

some m,p' and such Ihatfor any a,ß Ihere exisls a conslanl Ca.ß such Ihat

ID;D:a(x.;)! S; Ca.ß(~)17\-Aat+~IA(x)l~ K(x)~+~for all (x,~) EZh(M,N).
etJ

We also denote Kp..s{~ ,m2 ,m3}M,N =nSp..s{m\ - k,m2 - k.m3}M,N'

..=0

Preposition 2. Let ak (t,x.4)ESp.o{m\-k,m2 -k,m3}M.N' k=:O,l, ... , and Q.\·sume that

Q.. (x,4)=O jar all (X,4)EZpd(M,N) and all k=O,l, ... . Then there exists a .\ymbo/

a(x,4) E Sp..s{m\, ~,m3} M,N' supp ae Zh(M, N) jor which

a - ao + G\ +a2 +... mod Kp..s{m] ,m2 ,n'J}MN

in the sense that a - ao - a\-... -ak_1 ESp.o{m1 - k,m2 - k,m3 } M,N ·for all k, and any symbols with

the last property differ by the elements oj Kp..s{~ ,nl2 .m)}M,N •

For the pseudodifferential operators with the symbols from hoth first and second classes the
following theorem holds.
Theorem. Let A and B be pseudodifferentia/ operators with the symbols a ESp,s{ml ,!1lz, m3 } M,N

and h ESp,& { mj ' ,m2' , m3'} , re5pectively. Then the producI AB is a pseudodifferential operator
M,N

with a symbol be/onging to .5'1'.&{mj + ml', m2 +m2', m3 + n~'}
M,N
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