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CYCLOTOMIC POLYNOMIALS AT ROOTS OF UNITY

BART LOMIEJ BZDȨGA, ANDRÉS HERRERA-POYATOS AND PIETER MOREE

Abstract. The nth cyclotomic polynomial Φn(x) is the minimal polynomial of an nth prim-
itive root of unity. Hence Φn(x) is trivially zero at primitive nth roots of unity. Using finite
Fourier analysis we derive a formula for Φn(x) at the other roots of unity. This allows one

to explicitly evaluate Φn(e2πi/m) with m ∈ {3, 4, 5, 6, 8, 10, 12}. We use this evaluation with
m = 5 to give a simple reproof of a result of Vaughan (1975) on the maximum coefficient (in

absolute value) of Φn(x). We also obtain a formula for Φ′n(e2πi/m)/Φn(e2πi/m) with n 6= m,
which is effectively applied to m ∈ {3, 4, 6}. Furthermore, we compute the resultant of two
cyclotomic polynomials in a novel very short way.

1. Introduction

The study of cyclotomic polynomials Φn has a long and venerable history1. In this paper
we mainly focus on two aspects: values at roots of unity and heights. These two aspects
are related. In order to explain the connection we have to recall the notion of height. Let
f(x) = a0 + a1x + a2x

2 + . . . + adx
d be a polynomial of degree d = deg f . Then its height

H(f) is defined as H(f) = max0≤j≤d |aj |. Now if z is on the unit circle, then for n > 1 we
obviously have

(1) An := H(Φn) ≥
∑

0≤j≤d |an(j)|
d+ 1

≥ |Φn(z)|
ϕ(n) + 1

≥ |Φn(z)|
n

,

where Φn(x) =
∑d

j=0 an(j)xj and d = deg Φn = ϕ(n), with ϕ Euler’s totient function. This

inequality shows that if we can pinpoint any z on the unit circle for which |Φn(z)| is large,
then we can obtain a non-trivial lower bound for An (cf. Bzdȩga [3]).

In this paper we show that there is an infinite sequence of integers n such that |Φn(zn)| is
large, with zn an appropriately chosen primitive fifth root of unity. It is easy to deduce (see
the proof of Theorem 33) that for this sequence log logAn ≥ (log 2 + o(1))log n/log logn as
n tends to infinity, which reproves a result of Vaughan [17]. The infinite sequence is found
using Theorem 1, our main result.

We evaluate Φn(e2πi/m) for m ∈ {1, 2, 3, 4, 5, 6} and every n ≥ 1 in, respectively, Lemmas
4, 7, 23, 24, 28 and 25. For m ∈ {1, 2} these results are folklore and we recapitulate them
for the convenience of the reader. For m ∈ {3, 4, 6} the results were obtained by Motose [14],
but they need some small corrections (for details see the beginning of Section 5). We reprove
these results using a different method which has the advantage of reducing the number of cases
being considered. Using a computer algebra package we verified our results for n ≤ 5000. We
note that the field Q(e2πi/m) is of degree at most 2 if and only if m ∈ {1, 2, 3, 4, 6}.

Our main result expresses Φn(ξm), with ξm an arbitrary primitive mth root of unity, in

Date: August 2016.
Mathematics Subject Classification (2000). 11N37, 11Y60
1Even involving poems, e.g. I. Schur’s proof of the irreducibility of Φn(x) set to rhyme [5, pp. 38-41].
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2 BART LOMIEJ BZDȨGA, ANDRÉS HERRERA-POYATOS AND PIETER MOREE

terms of the set of Dirichlet characters modulo m. This result allows one to explicitly evaluate
Φn(ξm) also for m ∈ {5, 8, 10, 12} (values of m not covered in the literature so far).

Theorem 1. Let n,m > 1 be coprime integers. By G(m) we denote the multiplicative group

modulo m and by Ĝ(m) = Hom((Z/mZ)∗,C∗) the set of Dirichlet characters modulo m. For

all χ ∈ Ĝ(m) let

Cχ(ξm) =
∑

g∈G(m)

χ(g) log(1− ξgm),

where we take the logarithm with imaginary part in (−π, π]. Then

Φn(ξm) = exp

 1

ϕ(m)

∑
χ∈Ĝ(m)

Cχ(ξm)χ(n)
∏
p|n

(1− χ(p))

 .

The theorem is especially easy to use if Ĝ(m) only consists of the trivial and quadratic
characters. This occurs precisely if (Z/mZ)∗ is a direct product of cyclic groups of order two.
It is elementary to classify those m and one finds that m ∈ {1, 2, 3, 4, 6, 8, 12, 24}.

A variant of Theorem 1 for Φ′n(ξm)/Φn(ξm) is also obtained (Theorem 31). It is used to
evaluate Φ′n(ξm)/Φn(ξm) for m ∈ {3, 4, 6}.

Kronecker polynomials are monic products of cyclotomic polynomials and a monomial. For
them some of our results can be applied (see Section 8).

A question related to computing Φn(ξm) is that of determining its degree as an algebraic
integer. This was considered in extenso by Kurshan and Odlyzko [9]. Their work uses Gauss
and Ramanujan sums, the non-vanishing of Dirichlet L-series at 1, and the construction of
Dirichlet characters with special properties.

2. Preliminaries

We recall some relevant material on cyclotomic fields as several of our results can be re-
formulated in terms of cyclotomic fields. Most books on algebraic number theory contain a
chapter on cyclotomic fields, for the advanced theory see, e.g., Lang [10]. Furthermore we
consider elementary properties of self-reciprocal polynomials and the (generalized) Jordan
totient function.

The results in Section 2.6 and Lemma 14 in Section 2.7 are our own, but given their el-
ementary nature they have been quite likely observed before. The proof of Theorem 9 is
new.

2.1. Important notation. We write double exponents not as ab
c
, but as (a)∧bc in those

cases where we think it enhances the readability.
Throughout we use the letters p and q to denote primes. For a natural number n we will

refer to the exponent of p in the prime factorization of n by νp(n), i.e., pνp(n) ‖ n.

A primitive nth root of unity is a complex number z satisfying zn = 1, but not zd = 1

for any d < n. We let ξn denote any primitive nth root of unity. It is of the form ζjn with
1 ≤ j ≤ n, (j, n) = 1 and ζn = e2πi/n.

2.2. Cyclotomic polynomials. In this section we recall some material on cyclotomic poly-
nomials we will need later in the paper. For proofs see, e.g., Thangadurai [16].

A definition of the nth cyclotomic polynomial is

(2) Φn(x) =
∏

1≤j≤n, (j,n)=1

(x− ζjn) ∈ C[x].
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It is monic of degree ϕ(n), has integer coefficients and is irreducible over Q. In Q[x] we have
the factorization into irreducibles

(3) xn − 1 =
∏
d|n

Φd(x).

By Möbius inversion we obtain from this that

(4) Φn(x) =
∏
d |n

(xd − 1)µ(n/d),

with µ the Möbius function.
Lemma 2 and Corollary 3 summarize some further properties of Φn(x).

Lemma 2. We have
a) Φpn(x) = Φn(xp) if p | n;
b) Φpn(x) = Φn(xp)/Φn(x) if p - n;

c) Φn(x) = xϕ(n)Φn(1/x) for n > 1.

Corollary 3. We have

Φn(−x) =


(−1)ϕ(n)Φ2n(x) if 2 - n;

(−1)ϕ(n)Φn/2(x) if 2 ‖ n;

Φn(x) if 4 | n.

2.3. Calculation of Φn(±1). The evaluation of Φn(1) is a classical result. For completeness
we formulate the result and give two proofs of it, the first taken from Lang [11, p. 74].

Lemma 4. We have

Φn(1) =


0 if n = 1;

p if n = pe;

1 otherwise,

with p a prime number and e ≥ 1.

Proof. By (3) we have

(5)
xn − 1

x− 1
=

∏
d|n, d>1

Φd(x).

Thus

(6) n =
∏

d|n, d>1

Φd(1).

We see that p = Φp(1). Furthermore, pf = Φp(1)Φp2(1) · · ·Φpf (1). Hence, by induction
Φpf (1) = p. We infer that

∏
d∈Q, d|n Φd(1) = n, where Q is the set of all prime powers > 1.

Thus for the composite divisors d of n, we have Φd(1) = ±1. Assume inductively that for
d | n and d < n we have Φd(1) = 1. Then we see from our product that Φn(1) = 1 too. �

The reader might recognize the von Mangoldt function Λ in Lemma 4. Recall that the von
Mangoldt function Λ is defined as

Λ(n) =

{
log p if n = pe, e ≥ 1;

0 otherwise.

In terms of the von Mangoldt function we can reformulate Lemma 4 in the following way.
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Lemma 5. We have Φ1(1) = 0. For n > 1 we have Φn(1) = eΛ(n).

We will give a reproof of this lemma in which the von Mangoldt function arises naturally.

Proof of Lemma 5. By Möbius inversion the identity (6) for all n > 1 determines Φm(1)
uniquely for all m > 1. This means that it is enough to verify that log n =

∑
d|n, d>1 Λ(d) for

all n > 1. Since Λ(1) = 0 it is enough to verify that log n =
∑

d|n Λ(d) for all n > 1. This is

a well known identity in elementary prime number theory. �

The Prime Number Theorem in the equivalent form
∑

n≤x Λ(n) ∼ x yields in combination
with Lemma 5 the following proposition.

Proposition 6. The Prime Number Theorem is equivalent with the statement that∑
2<n≤x

log(Φn(1)) ∼ x, x→∞.

In a similar vein, Amoroso [1] considered a variant h of the Mahler measure and established

that the estimate h(
∏
n≤x Φn) � x1/2+ε for every ε > 0 is equivalent with the Riemann

Hypothesis.

2.4. Calculation of Φn(−1). Once one has calculated Φn(1), the evaluation of Φn(−1) fol-
lows on invoking Corollary 3.

Lemma 7. We have

Φn(−1) =


−2 if n = 1;

0 if n = 2;

p if n = 2pe;

1 otherwise.

with p a prime number and e ≥ 1.

Remark 8. It is also possible to prove this lemma along the lines of the proof of Lemma 4,
see Motose [14].

2.5. Cyclotomic fields. Several of the results in this paper can be rephrased in terms of
cyclotomic fields. A field is said to be cyclotomic if it is of the form Q[x]/(Φm(x)) for some
m ≥ 1. It is isomorphic to Q(ζm) which is the one obtained by adjoining ζm to Q. It satisfies
[Q(ζm) : Q] = deg Φm = ϕ(m) and has Z[ζm] as its ring of integers.

A field automorphism σ of Q(ζm) is completely determined by the image of ζm. This has

to be root of unity of order m and hence σ(ζm) = ζjm with 1 ≤ j ≤ m and (j,m) = 1. It
follows that Gal(Q(ζm)/Q) ∼= (Z/mZ)∗ and that the norm of an algebraic number α in Q(ζm)
satisfies

(7) NQ(ζm)/Q(α) =
∏

1≤j≤m,(j,m)=1

σj(α),

where σj denotes the automorphism that sends ζm to ζjm. It also follows that Φm(x), the
minimal polynomial of ζm, satisfies (2).

Let (j,m) = 1. We have Φn(ζjm) = Φn(σj(ζm)) = σj(Φn(ζm)) and so in order to compute

Φn(ζjm) it is enough to compute Φn(ζm). In particular if and only if one of the values Φn(ζjm)
is rational, then all of them are equal.

Let k be an integer. On combining (7) and (2) we infer that

(8) NQ(ζm)/Q(k − ζm) = Φm(k).
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The resultant of two monic polynomials f and g having roots α1, . . . , αk, respectively
β1, . . . , βl is given by

ρ(f, g) =
k∏
i=1

l∏
j=1

(αi − βj) =
k∏
i=1

g(αi).

In particular it follows from (2) that

(9) ρ(Φm,Φn) =
∏

1≤j≤m, (j,m)=1

Φn(ζjm).

E. Lehmer (1930) [12], Diederichsen (1940) [7], Apostol (1970) and Louboutin (1997) [13] all
computed the resultant of cyclotomic polynomials (see also Sivaramakrishnan [15, Chapter
X]). More recently Dresden (2012) [8] gave yet another proof. Here we present a very short
new proof.

Theorem 9. If n > m > 1, then

ρ(Φn,Φm) =

{
pϕ(m) if n/m = pk for some prime p and k ≥ 1;

1 otherwise.

Proof. Assume that n > m > 1. Then there exist a prime p such that νp(n) > νp(m). Put

n = Npe and m = Mpf with p -M,N . Obviously e > f ≥ 0.
Note that by the Chinese Remainder Theorem every primitive residue j modulo m can be

uniquely written as
j ≡ apf + bM (mod m),

where a and b are primitive residues respectively modulo M and pf . We will use this fact.
In order to make the notation shorter we will write

∏
j ,
∏
a and

∏
b for the product over

primitive residues respectively modulo m, M and pf .
First we consider the case M 6= N . We have

ρ(Φn,Φm) =
∏
j

Φn(ζjm) =
∏
j

ΦN (ζjp
e

Mpf
)

ΦN (ζjp
e−1

Mpf
)

=
∏
j

ΦN (ζjp
e−f

M )

ΦN (ζjp
e−f−1

M )

=
∏
a

∏
b

ΦN (ζap
e+bMpe−f

M )

ΦN (ζap
e−1+bMpe−f−1

M )
=

(∏
a

ΦN (ζap
e

M )

ΦN (ζap
e−1

M )

)ϕ(pf )

= 1.

For M = N we need to replace the quotients by their limits. Using the L’Hôpital rule and
the substitution j ≡ apf + bM , we obtain

Φn(ζjm) = lim
z→ζjm

ΦN (zp
e
)

ΦN (zpe−1)
= pζ

ϕ(pe)
M

Φ′N (ζap
e

M )

Φ′N (ζap
e−1

M )
.

After taking the product over all primitive a modulo m, the derivatives cancel out. So for
M = N we have

ρ(Φn,Φm) =
∏
a

∏
b

(pζ
aϕ(pe)
M ) = pϕ(m)ζ

ϕ(pe)ϕ(pf )
∑
a a

M = pϕ(m),

where we used that M |
∑

a a for M > 2. If M = 2 then ζM = −1, p > 2 and ϕ(pe) is
even. �

Corollary 10. Let n > m > 1. The algebraic integer Φn(ζm) is not a unit in Z[ζm] if and
only if n/m is a prime power.
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2.6. Self-reciprocal polynomials. A polynomial f of degree d is said to be self-reciprocal
if f(x) = xdf(1/x). If f(x) = −xdf(1/x), then f is said to be anti-self-reciprocal. Lemma 2c
says that Φn is self-reciprocal for n ≥ 2. Note that Φ1 is anti-self-reciprocal.

Lemma 11. Let f ∈ R[x] be a self-reciprocal polynomial. Then for |z| = 1 we have

f(z) = ±|f(z)|z
deg f

2 .

If f ∈ R[x] is an anti-self-reciprocal polynomial, then for |z| = 1 we have

f(z) = ±i|f(z)|z
deg f

2 .

Proof. Let d = deg f . If f is self-reciprocal and |z| = 1 we have f(z) = zdf(1/z) = zdf(z).
Multiplying both sides by f(z) and taking the square root we obtain the first claim.

If f is anti-self-reciprocal and |z| = 1 we have f(z) = −zdf(1/z) = −zdf(z) and the proof
is analogous. �

The behaviour of a self-reciprocal f and its first derivative at ±1 is easily determined.

Proposition 12. Let f be a polynomial of degree d ≥ 1.
Suppose that f is self-reciprocal.
a) We have f ′(1) = f(1)d/2;
b) If 2 - d, then f(−1) = 0. If 2 | d, then f ′(−1) = −f(−1)d/2.
Suppose that f is anti-self-reciprocal.
a) We have f(1) = 0;
b) If 2 | d, then f(−1) = 0. If 2 - d, then f ′(−1) = −f(−1)d/2.

Proof. If f is self-reciprocal, then f(z) = zdf(1/z). If f is anti-self-reciprocal we have f(z) =
−zdf(1/z). Differentiating both sides and substituting z = ±1 gives the result. �

The next result concerns the behaviour of self-reciprocal polynomials in roots of unity other
than ±1.

Lemma 13. Let f ∈ Z[x] be a self-reciprocal polynomial of even degree d and m ∈ {3, 4, 6}.
Then ξ

−d/2
m f(ξm) is an integer.

Proof. For anym with ϕ(m) = 2 the field Q(ξm) is quadratic. Hence we can write ξ
−d/2
m f(ξm) =

a + bξm with a and b integers. Since by assumption f is self-reciprocal we have a + bξ−1
m =

ξ
d/2
m f(ξ−1

m ) = ξ
−d/2
m f(ξm) = a+ bξm. Hence b = 0 and the result follows. �

2.7. The (generalized) Jordan totient function. Let k ≥ 1 be an integer. The kth Jordan
totient function is defined by

Jk(n) =
∑
d |n

µ(
n

d
)dk.

As Jk is a Dirichlet convolution of multiplicative functions, it is itself multiplicative. One has

Jk(n) = nk
∏
p |n

(1− 1

pk
).

Given a character χ and an integer k ≥ 0 we define

(10) Jk(χ;n) =
∑
d |n

µ(
n

d
)dkχ(d).
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Since Jk(χ; ·) is a Dirichlet convolution of multiplicative functions, it is a multiplicative func-
tion itself. The next lemma demonstrates that it is an analogue of the Jordan totient function.
Recall that rad(n) =

∏
p |n p is the radical, sometimes also called the squarefree kernel, of n.

Lemma 14. Let χ be a character modulo m and k ≥ 0 an integer. We have

Jk(χ;n) =
∏
pe‖n

pk(e−1)χ(pe−1)(pkχ(p)− 1) =

(
n

rad(n)

)k
χ

(
n

rad(n)

)∏
p |n

(pkχ(p)− 1).

If n is squarefree, then Jk(χ;n) =
∏
p |n(pkχ(p)− 1). If (m,n) = 1, then

Jk(χ;n) = χ(n)nk
∏
p |n

(
1− χ(p)

pk

)
.

Proof. The proof follows by the usual arguments from the elementary theory of arithmetic
functions. �

3. Cyclotomic values in arbitrary roots of unity

Let us consider two positive integers n,m with n > 1 and m ≥ 1. In this section we present
general facts about the value Φn(ξm). Clearly Φn(ξm) = 0 if and only if n = m. Hence we
study the case n 6= m.

The next result is due to Kurshan and Odlyzko [9, Corollary 2.3]. We give a simpler reproof
of it (suggested to us by Peter Stevenhagen).

Lemma 15. Let n ≥ 2. The cyclotomic value Φn(ξm) is non-zero and real if and only if
m | ϕ(n).

Proof. The number Φn(ξm) is real if and only if Φn(ξm) = Φn(ξm) = Φn(ξ−1
m ). By the

self-reciprocity of Φn we see that this is equivalent with Φn(ξm) = ξ
−ϕ(n)
m Φn(ξm), which is

equivalent with n = m or m|ϕ(n). On noting that n - ϕ(n) and Φn(ξm) = 0 if and only if
n = m, the proof is completed. �

Lemma 11 shows that for n ≥ 2 we have Φn(ξm) = ±|Φn(ξm)|ξϕ(n)/2
m . The next result

shows that the sign is given by (−1)ϕ(n/m;n), where ϕ(x;n) is the number of positive integers
j ≤ x with (j, n) = 1.

Lemma 16. Write ξm = ζjm. For n ≥ 2 we have Φn(ξm) = (−1)ϕ(nj/m;n)|Φn(ξm)|ξϕ(n)/2
m .

Proof. Let us consider the function g(t) = e−itϕ(n)/2Φn(eit) with t ∈ [0, 2π). The self reci-
procity of Φn ensures that g(t) is invariant under conjugation and hence real. Note that g is
differentiable. Furthermore, the set of roots of g equals {2πj/n : 1 ≤ j < n, (j, n) = 1}. All

of the roots are simple. Since g(0) = Φn(1) > 0 we infer that g(t) = (−1)ϕ(nt/(2π);n)|Φn(eit)|,
which by substituting t = 2πj/m yields the result. �

Corollary 17. Write ξm = ζjm. In case Φn(ξm) ∈ {−1, 1} for some n ≥ 2, then we have

Φn(ξm) = (−1)ϕ(nj/m;n)+jϕ(n)/m.

Proof. Write ξm = ζjm. If Φn(ξm) ∈ {−1, 1}, then Φn(ξm) = (−1)ϕ(nj/m;n)ξ
ϕ(n)/2
m . By Lemma

15 we obtain that m | ϕ(n). The result now follows on noting that ξ
ϕ(n)/2
m = (−1)jϕ(n)/m. �
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Lemma 18. Let us assume that there exists p ≡ 1 (mod m) and k ≥ 1 such that n = pkn′

with p - n′.
a) If n′ 6= m, then Φn(ξm) = 1.
b) If n′ = m, then Φn(ξm) = p.

Proof.

a) We have Φn(x) = Φn′(x
pk)/Φn′(x

pk−1
) due to Lemma 2. By noting that ξpm = ξm it follows

that

Φn(ξm) =
Φn′(ξ

pk
m )

Φn′(ξ
pk−1

m )
= 1.

b) We apply L’Hôpital’s rule and obtain

Φn(ξm) =
pkξp

k−1
m Φ′m(ξp

k

m )

pk−1ξp
k−1−1
m Φ′m(ξp

k−1

m )
= p. �

A version of Lemma 18 has already been stated by Motose [14, Section 4]. Nonetheless, it
contains a mistake since his lemma claims that Φn(ξm) = 1 for case b).

Lemma 19. Let us assume that there exists p ≡ −1 (mod m) and k ≥ 1 such that n = pkn′

with p - n′.
a) If n′ = 1, then Φn(ξm) = −ξ(−1)k

m .

b) If n′ 6= m, then Φn(ξm) = ξ
(−1)kϕ(n′)
m . Furthermore, if n′ ≥ 3, then Φn(ξm) = ξ

ϕ(n)/2
m .

c) If n′ = m, then Φn(ξm) = −pξ(−1)kϕ(m)
m .

Proof.
a) By (3) we have

Φpk(ξm) =
ξp
k

m − 1

ξp
k−1

m − 1
.

Assertion a) is easily established on noting that ξp
k

m = ξ
(−1)k

m .

b) We have Φn(x) = Φn′(x
pk)/Φn′(x

pk−1
). In light of the self-reciprocity of Φn′ we find that

Φn(ξm) =
Φn′

(
ξ

(−1)k

m

)
Φn′

(
ξ

(−1)k+1

m

) = ξ(−1)kϕ(n′)
m .

Furthermore, if n′ ≥ 3, then ϕ(n)/2 = pk−1(p− 1)ϕ(n′)/2 ≡ (−1)kϕ(n′) (mod m).
c) L’Hôpital’s rule yields

Φn(ξm) =
pkξp

k−1
m Φ′m(ξp

k

m )

pk−1ξp
k−1−1
m Φ′m(ξp

k−1

m )
= pξ2(−1)k

m

Φ′m(ξ
(−1)k

m )

Φ′m(ξ
(−1)k+1

m )
.

Assertion c) follows on differentiating the equality Φm(z) = zϕ(m)Φm(1/z) giving rise to

Φ′m(ξ(−1)k

m ) = −ξ(−1)k(ϕ(m)−2)
m Φ′m(ξ(−1)k+1

m ). �
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4. The values - general method

In this section we present a general method of computing Φn(ξm). Our first step is to
reduce to the case where m is coprime to n. In order to do this, we write n = n1n2, where
n1 =

∏
pe‖n, p -m p

e is the largest divisor of n which is coprime to m. By the equations of

Lemma 2 and by an induction on n2 we have

(11) Φn(ξm) =
∏
d |n2

Φn1(ξdm)µ(n2/d).

For small n2 this formula is quite effective.
Therefore throughout this section we assume that m,n > 1 are coprime.

Proof of Theorem 1. Note that log(1− ξdm) considered as a function d is periodic with period
m and so it can be treated as a function G(m)→ C. It follows that

log(1− ξdm) =
1

ϕ(m)

∑
χ∈Ĝ(m)

Cχ(ξm)χ(d).

We find that log Φn(ξm), up to a multiple of 2πi, equals∑
d |n

µ(
n

d
) log(1− ξdm) =

1

ϕ(m)

∑
χ∈Ĝ(m)

Cχ(ξm)J0(χ;n).

The proof is completed by invoking Lemma 14 with k = 0. �

Remark 20. A character χ may be omitted if there exists a prime p | n for which χ(p) = 1.
In particular, the principal character may be omitted. It makes computing Φn(ξm) using
Theorem 1 a less daunting task.

If we wish only to compute |Φn(ξm)|, then in addition we may omit all characters χ satis-
fying χ(−1) = −1, since for such characters we have

Cχ(ξm) =
1

2

∑
g∈G(m)

(
χ(g) log(1− ξgm) + χ(−g) log(1− ξ−gm )

)
∈ iR.

Corollary 21. Let (m,n) = 1 and n > 1.
a) If n has any prime divisor q congruent to 1 modulo m, then Φn(ξm) = 1.
b) If m ∈ {3, 4, 6} and n has no prime divisor congruent to 1 modulo m then

Φn(ξm) = −(ξm) ∧(−(−2)ω(n)−1).

Proof.
a) As χ(p) = χ(1) = 1 we have

∏
p|n(1− χ(p)) = 0, so Φn(ξm) = e0 = 1.

b) Note that there is only one non-principal character χ and that it satisfies χ(−1) = −1.

Therefore
∏
p|n(1− χ(p)) = 2ω(n) and Cχ(ξm) = log(1− ξm)− log(1− ξ−1

m ). It follows that

Φn(ξm) = exp

(
1

2
(log(1− ξm)− log(1− ξ−1

m ))χ(n)2ω(n)

)
= −(ξm) ∧(−(−2)ω(n)−1),

as desired. �

Corollary 22. Let m ∈ {5, 8, 10, 12} and n > 1 be coprime with m. Suppose that n has no
prime divisor ±1 (mod m). Then

log |Φn(ξm)| = (−1)Ω(n)−12ω(n)−1 log |γm|,
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where

γm =


1 + ξm if m = 5;

1 + ξm + ξ2
m if m ∈ {8, 10};

1 + ξm + ξ2
m + ξ3

m + ξ4
m if m = 12.

Proof. The only non-principal character for which Cχ(ξm) has non-zero real part is the qua-
dratic character χ. We have <Cχ(ξm) = −2 log |γm| and by Theorem 1

log |Φn(ξm)| = −1

2
(log |γm|) χ(n)

∏
p|n

(1− χ(p)).

The assumption on n we made implies that χ(p) = −1 for all p | n and hence χ(n) = (−1)Ω(n)

and so
∏
p|n(1− χ(p)) = 2ω(n). �

5. Cyclotomic values in roots of unity of low order

In this section we apply the obtained results in order to easily compute Φn(ζm) for m ∈
{3, 4, 5, 6}. For m ∈ {3, 4, 6} these values have already been computed by Motose [14]. How-
ever, some of the results in Section 3 allow us to provide shorter proofs. For m ∈ {1, 2} the
computation is folklore and it was discussed in Section 2.3.

In [14], there are some inaccuracies. As we mention in Section 3 in part (1) of the first
lemma one has also to require that m 6= l. This oversight leads to the incorrect assertion in
Proposition 3 that if p ≡ 1 (mod 3) for some prime divisor p of m, then Φn(ζ3) = 1. This is
false as Φ3pk(ζ3) = p. A similar remark applies to Proposition 4, where Φ6pk(ζ6) = p, rather
than 1 as claimed. In the statement of Proposition 3 part (2) one has to read l+ k instead of
l + k − 1. As the proof is carried out correctly, this is a typo. As consequence of the typo in
Proposition 3, the exponent in case (6) in Proposition 4 is computed to be l + s + k instead
of l + s+ k − 1.

5.1. Calculation of Φn(i). Lemma 18 and Lemma 19 reduce the number of possible cases.
Hence it is not difficult to establish the following result.

Lemma 23. We have Φn(i) = 1 except for the cases listed in the table below.

n Φn(i)
1 i− 1
2 i+ 1
4 0

4pk p

pk3 (−1)k+1i

2pk3 (−1)ki

pk3q
l
3, 2pk3q

l
3 −1

Here p, p3 and q3 are primes such that p3 6= q3 and p3 ≡ q3 ≡ 3 (mod 4). Furthermore, k and
l are arbitrary positive integers.

Proof. The first three entries of the table follow by direct computation and hence we may
assume that n 6= 1, 2, 4.

• In case 4 | n we have Φn(i) = Φn/2(−1) and, by applying Lemma 7, Φn(i) is seen to equal

p if n = 4pk and 1 otherwise.
• In case 4 - n, we separately consider three subcases:
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a) The integer n has a prime factor p ≡ 1 (mod 4).
By Lemma 18 we have Φn(i) = 1.

b) The integer n is odd and has no prime factor p ≡ 1 (mod 4).
Thus we can write n = qe11 · · · qerr with qj ≡ 3 (mod 4) and ej ≥ 1 for every 1 ≤ j ≤ r.
By Lemma 19 it follows that Φn(i) = (−1)e1+1i if r = 1, Φn(i) = −1 if r = 2 and
Φn(i) = 1 otherwise.

c) The integer n is even and has no prime factor p ≡ 1 (mod 4).

Note that Φn(i) = Φn/2(−i) = Φn/2(i) and hence the result follows from subcase b).

Since we have covered all cases, the proof is concluded. �

5.2. Calculation of Φn(ζ3).

Lemma 24. We have Φn(ζ3) = 1 except for the cases listed in the table below.

n Φn(ζ3)
1 ζ3 − 1
3 0

3pk p

qk −1/ζ

3qk −qζ
qe11 . . . qerr , r ≥ 2 1/ζ
3qe11 . . . qerr , r ≥ 2 ζ

Here p 6≡ 2 (mod 3) is a prime. The integers q and q1, . . . , qr are primes congruent to 2
modulo 3 with r ≥ 2 and q1, . . . , qr distinct. Furthermore, k and e1, . . . , er are arbitrary
positive integers and ζ = (ζ3)∧(−1)s with s = Ω(n)− ω(n) = Ω(n/rad(n)).

Proof. The first two entries of the table follow by direct computation and hence we may
assume that n 6= 1, 3.

• In case 9 | n we have Φn(ζ3) = Φn/3(1) by invoking Lemma 2. This yields 3 if n is a power
of 3 and 1 otherwise.
• In case 9 - n we separately consider three subcases:

a) The integer n has a prime factor p ≡ 1 (mod 3).
Lemma 18 yields Φn(ζ3) = p if n = 3pk and 1 otherwise.

b) The integer n has no prime factor p ≡ 1 (mod 3) and 3 - n.
Thus we can write n = qe11 · · · qerr with qj ≡ 2 (mod 3) and ej ≥ 1 for every 1 ≤ j ≤ r.
We distinguish two cases:
r = 1. By Lemma 19a it follows that Φq

e1
1

(ζ3) = −(ζ3)∧(−1)s−1 = −1/ζ.

r ≥ 2. On applying Lemma 19b we obtain Φn(ζ3) = (ζ3)∧(−1)s+1 = 1/ζ.
c) The integer n has no prime factor p ≡ 1 (mod 3) and 3 | n.

Note that Φn(ζ3) = Φn/3(1)/Φn/3(ζ3) as a consequence of Lemma 2. Hence the result
follows from the subcase b) and Lemma 4. �

5.3. Calculation of Φn(ζ6). In our computation of Φn(ζ6) we make freely use of the fact
that −ζ3 = ζ−1

6 .

Lemma 25. We have Φn(ζ6) = 1 except for the cases listed in the table below.
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n Φn(ζ6)
1 ζ3

2 ζ6 + 1
3 2ζ6

6 0

6pk p

2qk −ζ
6qk −q/ζ

qe11 . . . qerr (different from 2 and 2qk) ζ

3qe11 . . . qerr (different from 6 and 6qk) 1/ζ

Here p is 3 or a prime number congruent to 1 modulo 6. The integers q and q1, . . . , qr are
2 or primes congruent to 5 modulo 6 with r ≥ 1 and q1, . . . , qr distinct. Furthermore k
and e1, . . . , er are arbitrary positive integers and ζ = (ζ3)∧(−1)s with s = Ω(n) − ω(n) =
Ω(n/rad(n)).

Proof. The first four entries of the table follow by direct computation and hence we may
assume that n 6= 1, 2, 3, 6.

• In case ν3(n) ≥ 2 we have Φn(ζ6) = Φn/3(−1), which yields 3 if n = 6 · 3k and 1 otherwise.
• In case ν3(n) ≤ 1 we separately consider three subcases:

a) The integer n has a prime factor p ≡ 1 (mod 6).
By Lemma 18 we obtain p if n = 6pk and 1 otherwise.

b) The integer n has no prime factor p ≡ ±1 (mod 6).
There are two possibilities:

i) n = 2k+1. We have Φn(ζ6) = Φn/2(ζ3) = −(ζ3)∧(−1)k = −ζ.

ii) n = 6 · 2k. We have Φn(ζ6) = Φn/2(ζ3) = −2(ζ3)∧(−1)k+1 = −2/ζ.
c) The integer n has no prime factor p ≡ 1 (mod 6) and it has a prime factor q ≡ −1

(mod 6).
There are three possibilities:

i) n = qk. Lemma 19a yields Φn(ζ6) = −(ζ6)∧(−1)k = ζ.
ii) n = qkn′ with 1 < n′ 6= 6 and q - n′. Lemma 19b implies Φn(ζ6) = (ζ6)∧((−1)kϕ(n′)).

Thus we have Φ2qk(ζ6) = −ζ. Let us assume n′ > 2. Now we compute ζ
ϕ(n′)
6 .

– If 3 - n′, then ζ
ϕ(n′)
6 = ζ

ϕ(n′)/2
3 = (ζ3)∧(−1)Ω(n′)−ω(n′)+1 and Φn(ζ6) = ζ.

– If 3 | n′, then ζ
ϕ(n′)
6 = ζ

ϕ(n′/3)
3 = (ζ3)∧(−1)Ω(n′)−ω(n′) and Φn(ζ6) = 1/ζ.

iii) n = 6qk. We have Φn(ζ6) = Φn/3(−1)/Φn/3(ζ6) = −q/ζ. �

Lemma 26. Let m ∈ {1, 2, 3, 4, 6} and n > m be integers. Then

|Φn(ξm)| =

{
p if n/m = pk is a prime power;

1 otherwise.

Proof. For m = 1, 2 the result follows by Lemma 4, respectively Lemma 7. So we may assume
that m ∈ {3, 4, 6} (and so n > m ≥ 3). Since deg Φn = ϕ(n) is even for n ≥ 4, it follows

by Lemma 13 that Φn(ζm) = ζ
ϕ(n)/2
m a, with a an integer. Letting the Galois automorphisms

of Q(ζm)/Q act on both sides of this identity we see that |Φn(ξm)| is an integer that is
independent of the specific choice of ξm. The result now follows from Theorem 9 and the
identity (9). �

Remark 27. Lemma 26 can also be deduced from Lemmas 4, 7, 23, 24 and 25.
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5.4. Calculation of Φn(ζ5). We use Corollary 22 and Lemma 16 to compute Φn(ζ5). One
can also compute Φn(ζm) for m ∈ {8, 10, 12} by a similar procedure. Nonetheless, the number
of possible cases significantly increases for those values of m.

Lemma 28. We have Φn(ζ5) = 1 except for the cases listed in the table below.

n Φn(ζ5)
1 ζ5 − 1
5 0

5pk p

qk −(ζ5)∧(−1)k

qkn1, q - n1 (ζ5)∧((−1)kϕ(n1))

n2 (−1)ϕ(n/5;n)ζ
ϕ(n)/2
5 |1 + ζ5|∧((−1)Ω(n)+12ω(n)−1)

5n1 eΛ(n1)/Φn1(ζ5)

Here p is 5 or a prime number congruent to 1 modulo 5 and q is a prime congruent to −1
modulo 5. The integers n1, n2 ≥ 2 are not divisible by 5 and verify

• p′ 6≡ 1 (mod 5) for every prime p′ dividing n1;
• p′ 6≡ ±1 (mod 5) for every prime p′ dividing n2.

Furthermore, k is an arbitrary positive integer.

Proof. The first two entries of the table follow by direct computation and hence we may
assume that n 6= 1, 5.

• In case ν5(n) ≥ 2 we have Φn(ζ5) = Φn/5(1), which yields 5 if n = 5k+1 and 1 otherwise.
• In case ν5(n) = 0 we separately consider three subcases:

a) The integer n has a prime factor p ≡ 1 (mod 5).
By Lemma 18 we obtain p if n = 5pk and 1 otherwise.

b) The integer n has no prime factor p ≡ 1 (mod 5) and it has a prime factor q ≡ −1
(mod 5). There are two possibilities:

i) n = qk. Lemma 19a yields Φn(ζ5) = −(ζ5)∧(−1)k.
ii) n = qkn′1 with q - n′1. Lemma 19b implies Φn(ζ5) = (ζ5)∧((−1)kϕ(n′)).

c) The integer n has no prime factor p ≡ ±1 (mod 5).

Corollary 22 shows |Φn(ζ5)| = |1+ζ5|∧((−1)Ω(n)+12ω(n)−1). The value Φn(ζ5) is obtained
by Lemma 16.

• In case ν5(n) = 1 we have Φn(ζ5) = Φn/5(1)/Φn/5(ζ5) = eΛ(n/5)/Φn/5(ζ5). �

6. The logarithmic derivative fn(z) of Φn(z)

In this section we consider the logarithmic derivative fn(z) of Φn(z). Thus

fn(z) = (log Φn(z))′ =
Φ′n(z)

Φn(z)
.

If we compute fn(ξm), then we can use the value Φn(ξm) to obtain Φ′n(ξm). First, we
calculate fn(±1) with elementary methods. Later, we apply the ideas presented in Section
4 to develop a general method for computing fn(ζm) when (n,m) = 1. Note that as a
consequence of (11) we can reduce the computation of fn(ζm) to the case when n and m are
coprime. Indeed for n = n1n2, where n1 =

∏
pe‖n, p -m p

e, we have

(12) fn(ξm) =
∑
d |n2

µ(n2/d)fn1(ξdm).



14 BART LOMIEJ BZDȨGA, ANDRÉS HERRERA-POYATOS AND PIETER MOREE

This method will be used to easily obtain fn(ζm) for m ∈ {3, 4, 6}.

Lemma 29. We have fn(1) = ϕ(n)/2 for n > 1 and fn(−1) = −ϕ(n)/2 for every n 6= 2.

Proof. The proof follows from applying Lemma 12 with f = Φn and d = ϕ(n). �

Corollary 30. We have

Φ′n(1) =


1 if n = 1;

pϕ(n)/2 if n = pe;

ϕ(n)/2 otherwise.

Φ′n(−1) =


1 if n = 2;

−pϕ(n)/2 if n = pe;

−ϕ(n)/2 otherwise.

Theorem 31. Let us assume that n,m > 1 are coprime. For all χ ∈ Ĝ(m) put

cχ(ξm) =
∑

g∈G(m)

ξ−1
m ξgm

1− ξgm
χ(g).

Then

fn(ξm) = − n

ϕ(m)

∑
χ∈Ĝ(m)

cχ(ξm)χ(n)
∏
p |n

(1− χ(p)

p
).

Proof. Logarithmic differentiation of (4) yields

fn(z) = −
∑
d |n

µ
(n
d

) dzd−1

1− zd
.

The function ξd−1
m /(1− ξdm) of variable d can be treated as a function G(m)→ C. Therefore

for all d | n we have
ξd−1
m

1− ξdm
=

1

ϕ(m)

∑
χ∈Ĝ(m)

cχ(ξm)χ(d).

Applying this to the above formula on fn we obtain

fn(ζm) = − 1

ϕ(m)

∑
χ∈Ĝ(m)

cχ(ξm)
∑
d |n

µ(
n

d
)dχ(d) = − 1

ϕ(m)

∑
χ∈Ĝ(m)

cχ(ξm)J1(χ;n).

The proof is completed by invoking Lemma 14 with k = 1. �

Corollary 32. Set m ∈ {3, 4, 6} and n > 1 coprime. We have

fn(ξm) =
ϕ(n)

2ξm

1− (−1)Ω(n−) 1 + ξm
1− ξm

∏
p |n−

p+ 1

p− 1

 ,

where n− is the product of the prime powers pk ‖ n with p ≡ −1 (mod m).

Proof. In case m ∈ {3, 4, 6} there are precisely two characters: the principal character χ1 and
the non-principal character χ2. A simple computation gives

cχ1(ξm) =
1− ξ−1

m

1− ξm
= −ξ−1

m , cχ2(ξm) =
1 + ξ−1

m

1− ξm
.

Theorem 31 yields

fn(ξm) =
ξ−1
m

2
n
∏
p |n

(1− 1

p
)− 1 + ξ−1

m

2(1− ξm)
nχ2(n)

∏
p |n

(1− χ2(p)

p
),
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which is easily rewritten in the desired way by noting that χ2(n) = (−1)Ω(n−). �

7. The result of Vaughan

We use Corollary 22 to give an alternative proof of the following theorem by Vaughan [17].

Theorem 33. Let An denote the height of Φn. There exist infinitely many integers n for
which

log logAn ≥ (log 2 + o(1))
log n

log logn
.

Proof. Let x be large and n be a product of all primes p ≤ x satisfying p ≡ ±2 (mod 5). By
two equivalent versions of the prime number theorem for arithmetic progressions we have

log n =
∑

p≤x, p≡±2 (mod 5)

log p ∼ x

2
,

respectively

ω(n) =
∑

p≤x, p≡±2 (mod 5)

1 ∼ x

2 log x
.

It follows that log log n ∼ log x and so

(13) ω(n) ∼ log n

log logn

as x (and hence n) tends to infinity. Recall that by Corollary 22 we have

log |Φn(ξ5)| = (−2)ω(n)−1 log |1 + ξ5|.
One checks that there is a primitive fifth root of unity ζ for which log |1 + ζ| > 0, but also
one for which log |1 + ζ| < 0. Thus we can choose a primitive fifth root of unity zn for which
log |Φn(zn)| > 0. By Corollary 22 and the asymptotic equality (13) we infer that there is an
x0 such that for all x ≥ x0 the corresponding n satisfies log |Φn(zn)| > log n. It follows that
for x ≥ x0 (and hence n) tending to infinity the asymptotic inequality

log logAn ≥ log log

(
|Φn(zn)|

n

)
= (log 2 + o(1))

log n

log logn

holds true, where the first inequality is a consequence of (1). �

8. Application to Kronecker polynomials

A Kronecker polynomial is a monic polynomial with integer coefficients having all of its roots
on or inside the unit disc. The following result of Kronecker relates Kronecker polynomials
with cyclotomic polynomials.

Lemma 34 (Kronecker, 1857; cf. [6]). If f is a Kronecker polynomial with f(0) 6= 0, then
all roots of f are actually on the unit circle and f factorizes over the rationals as a product of
cyclotomic polynomials.

By this result and the fact that cyclotomic polynomials are monic and irreducible we can
factorize a Kronecker polynomial f(x) into irreducibles as

(14) f(x) = xe
∏
d∈D

Φd(x)ed ,

with e ≥ 0, D a finite set and each ed ≥ 1.
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Corollary 35. Let f be a Kronecker polynomial with f(0) 6= 0. Let k be such that Φk
1 ‖ f . If

k is even, then f is self-reciprocal, otherwise f is anti self-reciprocal.

Proof. Recall that Φ1 is anti self-reciprocal and Φd is self-reciprocal for d ≥ 2. �

In light of Corollary 35 one can apply the results of Section 2.6 to Kronecker polynomials.

Proposition 36. Let f be a Kronecker polynomial with f(0) 6= 0. Then
a) f(1) ≥ 0.
b) If f(1) 6= 0, then f(−1) ≥ 0. Furthermore, if f(−1) > 0, then f(x) > 0 for all x ∈ R.

Proof.
a) We have f(1) ≥ 0 by (14) and Lemma 4.
b) If f(1) 6= 0, then 1 6∈ D. We have Φn(−1) ≥ 0 for every n > 1 by Lemma 7. Hence we
obtain f(−1) ≥ 0. Furthermore, if f(−1) > 0, then 2 6∈ D. Let x ∈ R. We have Φn(x) > 0
for every n > 2 and, consequently, f(x) > 0. �

Using Lemma 34 and the results of Section 5 one can obtain some information about the
factorization and the values of Kronecker polynomials.

Lemma 37. Let m ∈ {1, 2, 3, 4, 6}. Suppose that f is of the form (14) and, moreover, satisfies
minD > m. Then

|f(ξm)| =
∏
d∈D

m|d, Λ(d/m)6=0

|Φd(ξm)|ed = exp
( ∑
d∈D, m|d

edΛ(d/m)
)
∈ Z>0.

The following result is a reformulation of the latter, but with D assumed to be unknown.

Lemma 38. Let f be a Kronecker polynomial and m ∈ {1, 2, 3, 4, 6}. Let us also assume that
f(ζd) 6= 0 for every d ≤ m. Then |f(ξm)| is an integer and each of its prime factors q is
contributed by a divisor Φd of f with d = mqt for some t ≥ 1.

These lemmas are easily proved on using Lemma 26 and weaker versions of them have
already been applied to cyclotomic numerical semigroups [4].
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