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o. Introduction

0.1. Basic problems. In this report, we review some recent results, eonjec­
tures, and teehniques related to the following questions.

Question 1. Let V be a (quasi )projeetive algebraie variety defined over a number
field k. How large is the set of rational points V (k )?

Question 2. Let 11 be a compact I(ähler manifold. How large is the set of rational
eurves in V, or the space of analytic maps pI -+ V?

WIore precisely, in the arithmetic setting we ehoose a height function h L : V(k) -+
R, and we want to understand the behavior of

Nv(H) := eard {x E V(k) I hL(x) ~ H} (0.1 )

as H -+ 00.

In the geometrie setting, we replace the (logarithmie) height by the degree of the
curve with respect to the Kähler dass, coinciding with ~ts volume with respect to
the Kähler metrie (vVirtinger's theorem). If the degree is bounded by H, the space
of rational eurves is a finite-dimensional complex space, and we might be interested
in the number of its irreducible components, their dimensions, their charaeteristie
numbers, ete.

0.2. A heuristic reasoning. In order to see what geometrie properties of V
influence the behavior of the two sets, let us start with the following naive reasoning.

Let 11 = V(nj d1, ... ,dr ) be a smooth eompiete interseetion in pn given by the
equations Fi(xo, ... , xn) = 0, i = 1, ... ,r, where Fi is a form of degree di.

0.2.1. Arithmetic setting. Assuming that Fi have integral coefficients we take Q
as the ground field. Every rational point is represented by a primitive (n + 1)-ule
of integer-valued coordinates x = (xo, ... , Xn) E Z~J~. A standard (exponential)
height funetion is h(x) = maxi(lxil).

There are about Hn+l prilnitive (11. + 1)-ples of height :S H. A form Pi takes
about Hdö vallles on this set. Assume that the probability of taking the zero value
is about H-dö, and that the eonditions F i = 0 are statistically independent. Then
we get a conjectural growth order

(?) (0.2)

for the number of points of the height ~ H in V(Q).

0.2.2. Geometrie setting. Now we will allow Fi to have cOlnplex coeffieients,
and endow V(C) with the metric induced by the Fubini-Study metric on pn. vVe
nonnalize it in such a way that a line in pn has degree (volume) l.

Consider a projective line pI = Proj C[to l ttl. Any map cp : pI --+ pn can be
written as
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where li are forms of some degree k ;::: 0 not vanishing identieally and relatively
pnme.

Denote by Mk(pn) the spaee of all (n + l)-ples of forms of degree k (exeept
(0, ... ,0)) up to a eommon sealar faetor. Obviously,

The spaee JVJk (pn) C Mk (pn) is Zariski open and dense.
Similarly, denote by Mk(V) the spaee of maps pI ~ V of degree k. Its closure

Mk(V) c Mk(pn) is defined by a system of polynomial equations on the eoeffieients
of !i's derived from

Fi(!o(to, t 1 ), • •• ,In(to, t 1 )) = 0; i = 1, ... ,r. (0.3)

Clearly, (0.3) furnishes kdi + 1 homogeneous equations of degree di eorresponding
to the rnonomials töt~di+l-a. It follows that

r r

dimJVJk(V) ;::: (n + l)(k + 1) - 1 - L(kdi + 1) = k(n + 1 - L dd + dirn V; (0.4)
i=1 i=1

r

deg.M"k(V) ~ I1 d~di+l.

i=1

(0.5)

0.3. Discussion. a). Sinee the geometrie degree of a eurve eorresponds to the
logarithmic height of a point (with respeet to the same ample dass), the r.h.s. of
(0.2) and (0.4) prediet the same qualitative behavior of the number of points, resp.
of the dimension of the space of maps, depending on the sign of n + 1 - L:~=1 di .

Now, this last number is essentially the anticanonical dass of V:

r

-!(v '" Ov(n + 1- Ld.)
i=1

(0.6)

in the Picard group of V.
Boldly extrapolating from the cOlnplete intersection ease, we may expect lllany

rational curves and points when -!(v is ample (V is a Fano manifold), and few
when !(v is ample. The intermediate case !(v = 0 fiUSt be more subtle.

For example, if we disregard the difference between Mk(V) and j\1k(V) anel
assume that (0.4) is an exact equality, we expect a dim(V)-dimensional family of
paraIlletrized rational curves on V of any clegree k. And if in addition dirn V = 3 =
dimAut pI, we expect only a finite number nk ofrational (unparametrized) curves
of clegree k belonging to V for all k ;::: 1. For quintics in pS, this was conjectured
by Clemens (cf. below).
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b). These expectations are fulfilled when dirn V = 1 that is, when V is a smooth
compact curve. More precisely, when -J(v is ample, genus of V is zero, V may be
a non-trivial form of pI over a non-closed field k which has no k-points. However,
after a quadratic extension of k, V will become pI, and the point count with respect
to an anticanonical height gives an asymptotic fonnula agreeing with (0.2). Ancl
the count of maps pI ~ pI is uneonstrainecl.

vVhen J(v = 0, one gets Nv (H) f'J c(log H) r /2 in view of the Mordell-Weil
theorem for elliptic curves, so that (0.2) is still valid if one interprets the r.h.s. as
"O(H~) tor any e > O~. And there are no maps pI ~ V of degree k 2: 1.

Finally, when J(v > 0 one gets lVv(H) = 0(1) (Faltings' theorem), and auy
parametri-zed rational curve is constant.

c). Starting with dimension two, the situation beeomes much more complex ancl
problematic. Let us start with geometry.

For smooth rn-dimensional Fano varieties, Mori proved that through every point
passes a rational curve of (-J(v )-elegree ::; 'm + 1). Moreover, any two points ean
be eonnected by a ehain of rational curves. But a quantitative picture of the spaee
Map(pI, V) remains unknown.

For general type varieties (I(v ample), we expect only a finite dimensional family
of unparametrized rational curves. However, this was proved only for varieties with
ample cotangent sheaf which is a eonsiderably stronger assumption.

Finally, for manifolds with J(v = 0 (and Kähler holonomy group SU), physicists
recently suggested a fascinating conjeetural framework for the eurve count which
we will review in the second part of this report.

Passing to the arithmetic case, let us notiee first that (0.2) can be proved by the
circle method aver Q when n + 1 is large in comparison with L: di and when the
necessary loeal conditions are satisfied (see below).

On the other hand, already for n = 3, 'r = 1, d = 3, (0.2) may fail for the following
reason: it prediets the linear growth for 1Vv(H), but V may contain a projective
line clefined over Q (there are 27 lines over Q) in which ease counting points only
on this line we already get Nv(H) 2: cH2 • Therefore, if anything like (0.2) may be
expected in general, we roust at least stabilize the situation by allowing ground fiel cl
extensions and deleting sorne proper subvarieties tending to accumulate points. Anel
in the case J(v = 0 we may have to delete infinitely many subvarieties to aehieve
the predieted O(H~) estimate.

We elaborate this program in Chapter 1 below. Hs goal, l'oughly speaking, lies
in establishing a (conjectural) direct relation between the distribution of rational
points on V and the geometry of rational curves on V.

In addition, there exists a weil known analogy between rational curves anel ra­
tional curves. In Arakelov geometry, rational points on V become "horizontal
arithmetical curves" on a Z-model of V, endowed with an Hermitean metric at
arithmetieal infinity. In the framework of this analogy, the height becomes literally
an arithmetical intersection index.

V..je want to draw attention to an unexplored aspect of this analogy: what in
arithmetics eorresponds to the local deformation theory of embedded curves"?

Here is a relevant fragment of the geometrie deformation theory. Below V de­
notes a quasiprojective variety definecl over an algebraically closed field k, and
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M ap (PI, V) is the locally closed finite quasiprojective scheme parametrizing mor­
phisms pI ~ V. For simplicity, in the next Proposition we consider only the
unobstructed case.

0.4. Proposition. Let <p be amorphism pI ~ V, [<p] E Map (PI, V) the
corresponding closed point, Tv the tangent sheaf to V.

11 H I (PI, <p* (Tv)) = 0, then [<p] is a smooth point, and the loeal dimen~llion 01
Map(pI, V) at [<p] equals dimHO(pI,<p*(Tv)).

Für a proof of a more general statement, see Mori [20].
Assume now that <p is an immersion, and V is smooth in a neighbourhood of

<p(PI). Then we have the following sequence of loeally free sheaves on pI:

o -+ 'pi ~ <p*(Tv) ~ N[lp] ~ 0 (0.7)

where JV[t.p] is the normal sheaf. Hence N[lp] l'"oJ EBi;lIO(md, s = dim(V). Recall also
that 'pi l'"oJ 0(2).

"'vVe ean nüw prove that (0.4) becomes exaet equality loeally on lVfap (PI, V) if
cp(V) is nieely immersed infinitesimally:

0.4.1. Corollary. Assume in addition that mi ~ -1 lor alt i = 1, ... , s - l.
Then [<p] is smooth, and

dim[t.pl Map(pI, V) = deg<p*(-I(v) + dim V

which coincides with the r.h.s. 01 (0.4) in the complete intersection case.

Proof. The smoothness of [<p] follows from Prop. 0.4. Put now

(0.8)

A = {ilmi = -1}, a = card(A),

B = {ilmi 2: O}, b = card(B).

Vve have a + b = s - 1 j deg <p *(-!(v) = 2 + 2:A mi + 2:B m j = 2 - a + 2:B 1ni

(take the determinant of (0.7)), and, again from (0.7),

dim[t.p] lvfap (pI, V) = dimHO(Tpl) +dimH)(N[t.pl) =

= 3 + I:)mi + 1) = 3 + b + L 'mi = 3 + b + deg <p* (-I(v) - 2 + a=
B B

diln V + deg <p*( -[(v).

In particular, when dirn V = 3 and -I(v = 0, every immersed curve with normal
sheaf O( -1) EB O( -1) must be isolated because the Ioeal dimension of the map space
equals dirn V = 3 and this is aceounted for by reparametrizations.

The simpiest example when this rnay oecur generically is that of a smooth quintic
threefold V. In fact, H. Clemens conjectured that a generic smooth quintic contaillS
only finitely many smooth rational curves of arbitrary degree k, and that all of theIn
have normal sheaf O( -1) EB O( -1). Sh. Katz proved partial rcsults in this direction:
see [14], [15].
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0.5. Problem. Establish an analog of the geometrie deformation theory for
embedded arithmetieal eurves.

Specifically,

0.6. Problem. Find eonditions on arithmetieal normal sheaf (ar higher order
infinitesimal neighborhoods) of an arithmetieal eurve whieh are neeessary for the
generie point of this eurve to lie on a rational eurve.

(We want to find an exact expression of the feeling that an arithmetical curve is
deformable only if its generic point lies on a rational curve).

0.7. Rational curves in other contexts. Besides algebraic geometry and
number theory, the study of rational curves was recently motivated by quantum
field theory and symplectic geometry. We will finish this Introduction with abrief
discussion of some relevant ideas.

0.7.1. Physics. Physicists start with aspace of maps Map (52, V) where the
target space V is endowed with a Riemannian metric 9, and an action functional
5: Map (52, V) -+ R.

V can be thought of as a space-time with a possibly non-trivial gravity field and
topology. Any cp: 52 --+ V defines a world-sheet of an one-dimensional object,
a "string", which replaces the classical image of point-particle. Alternatively, one
can think about 52 as a two-dimensional space-time in its own right. Then (V,g)
in a neighborhood of cp(S) represents classical fields on S.

Action of a virtual world-sheet cp: S2 --+ V is usually given by a Lagrangian
density which must be integrated over 52. Here we will look only at the simplest
action functional

S(<p) = r val (cp*(g)).
JS2 (0.9)

In other words, S( cp) is just the surface of the world sheet. Non-trivial stationary
points of this action are just minimal surfaces. The path integral quantization of
this theory in the stationary phase approximation involves a summation over these
minünal surfaces

Imagine now that (V, g) is not just a Riemannian manifold, but a complex KäWer
one. It is weH known that in this case minimal surfaces in V (actually, minimal
submanifolds of any dimension) are precisely complex subvarieties (Wirtinger's the­
oreIn).

A physical context in which V acquires a natural I{ähler structure arises in
string compactification models where V appears as a Planck size compact chunk
of space-time adding missing six real dimensions to the classical four-dimensional
space-time.

0.7.2. Symplectic geometry. The basic mathematical structure of the classi­
cal 111echanics is a tripIe (V 2

n , w, H) where V 2
n is a smooth manifold, w is a closed

non-degenerate 2-form on V 2 n, and H is a function on V called Hamiltonian. Given
such a tripie, we want to understand the geometry of the flow defined by the vector
field ..Y on V such that dH = ix (w). In particular, we want to know how a domain
of ini tial positions B c V may change with time.
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Any Hamiltonian flow preserves the symplectic volume v(B) == JB w n . On the
other hand, certain unstable flows like geodesie flows on hyperbolic manifolds se­
verely distort B: a sman ball eventually becomes spread all over V forming a
fractal·like structure. Nevertheless, (exp(tX)B,w) remains symplectomorphic to B
because Liex(w) == dix(w) + ixdw == O.

V.I.Arnold in the sixties suggested that exp(tX)B should satisfy some additional
constraints displaying then unknown "symplectic rigidity" properties.

NI. Gromov's work confirmed these expectations. He proved in particular that
the unit ball

2n n

(BI == {xl LX; < I}, W == L dXi !\ dXi+n)
i=l i=l

is not symplectomorphic to any open subset of

n

(VI-~ = {Xl lxi < 1 - c}, w == L dXi !\ dXi+n)'
i=l

Gronlov's argument involves rational curves in the foIlowing ingenious way. No­
tice first that in the example above we envision the two symplectic spaces BI
and Vl-o!: not in terms of w but rather in terms of the standard Euclidean rnet­
ric ds2 == 2:(dxd2. Hut if we are considering pairs (g,w) consisting of a qua­
dratic and an alternate form, say, on a linear space E, there is a natural sub­
dass of such pairs corresponding to Hermitean fonns, which can be character­
ized by the existence of a complex structure J : E --r E, J2 = -1 such that
w(Jx,y) == g(x,y), g(Jx,y) = -w(x,y).

Applying this to tangent spaces of a symplectic manifold (V, w) and shifting
attention from (w, g) to (w, J) we come to the foIlowing notion due to Gromov.

An almost complex structure J on V is tamed by w, if g(x, x) := w(Jx, x) > 0
for any tangent vector x, that is, if 9 + -lW define a Hermitean metric on the tangent
bundle to V. Now, even though J may be non-integrable, its restrietion on surfaces
is integrable, so that it makes perfect sense to speak about holomorphic maps
pI --r (V, J).

!vI.Gromov derives his results from a thorough study of such rational curves,
establishing existence of curves of smaH volume. (In a similaI' vein, rational curves
of smaIl degrees play the crucial role in the !vlori theory).

E.vVitten used Gromov:s construction as adeformation device allowing one to
correctly count the number of rational curves on Calabi-Yau manifolds: cf. also
[16].

This paper is structured as follows. §1 is devoted to the analytic methods to count
rational points on projective varieties, whereas §2 reviews the algebro-geometrie
approach. In §3 we turn to the curve count, explaining the sirnplest example of
Calabi-Yau mirrors. Finally, §4 is devoted to the explanation of toric rnirror con­
structions. For the most part 1 proofs are omitted.
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CHAPTER I
COUNTING RATIONAL POINTS

§1. Analytic methods

1.1. Heights on projective varieties. Let k be an algebraic number field.
Denote by Mk the set of all places of kj for v E k, let kv be the completion of k at
v. Define the local norm 1.1 v : k ~ --+ R· by the following condition: if jJ is a Haar
measure on kt, then jJ(aU) = lalvjJ(U) for each measurable subset U.

Let x E P n ( k) be a point in a projeetive space endowed wi th a homogeneous
coordinate system. If coordinates of x are (xo, . .. , xn), Xi E k, put

h(x) = II m~(lxilv).
1

vEM,.

The produet formula shows that this is weH defined.
NIore generally, let V be a projective variety defined over k, L = (L, s) a

pair consisting of a very ample invertible sheaf L and a finite set of sections
s = {so, ... sn} C f(V, L) generating L. For a point X E V(k) and an arbitrary
choice of a loeal seetion CI of L non-vanishing at x we put

(1.2)

For LI = (L 1 ,{st}),L2 = (L 2 ,{s;}), put L 1 0L2 = (L] 0L2 ,{st 0s;}). Then

hL10L2(X) = hLt (X)hL 2 (X). (1.3)

In particular, eonsider the anticanonieal height hW-l on pn(k) defined by the
(n + 1)-th tensor power of (O(I)j{xo"",x n }), Then hw-t(x) = h(x)n+l where
h(x) is given by (1.1).

\;Yhen s in the definition of L is replaced by another generating set of seetions, hL
is multiplied by exp(O(l)). The resulting set of height funetions consists of Weil's
heights. There is a different choice of additional strueture aHowing one to define
height funetions clirectly for non necessarily ampie sheaves: the Arakelov heights
are obtained by choosing an appropriate set of v-adic metrics 11.11 v on all L ® k 1J

and putting, for L = (L, {1I.llv}),

hL(x) = II IICI(x)ll~l.
vEAJJc

These heights are also multiplicative with respect to the obvious tensor product,
and up to exp 0 (1) are independent on the choice of Iocal metrics and coindde \vith
the respective vVeii heights.

For a subset U C V(k), put

Nu(Lj H) = card {x E UlhL(x) :s; H}. (1.4)

For ampie L, this number is always finite. We want to understand its behavior as
H --+ 00. In this seetion, we review Inain situations when an asymptotie formula
for (1.4) is known. In aH cases which I am aware of, such a formula is of the type

Nu(L; H) = cHßu(L)(log H)t u (L)(1 + 0(1)) (1.5)

far same eons tants c > 0, ßu (L) 2:: 0 l tu (L) ~ O. The archetypal result is the
fallowing theorem due to Schanuei:
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1.2. Theorem. Put d = [k : Q]. Then

-I { O(H 1
/

2 1og H)
Npn(k)(W ; H) = c(n, k)H + O(H1-1/d(n+l))

for d = n = 1,

otherwise;
(1.6)

(1. 7)

(1.8)

(1.10)

h (2rl+r21Tr1) n+l R
~ _ _ rl+ r 2-1

c(n, k) - ( ) 1/2 (n + 1) .
(k n + 1 D w

Here h denotes the class number 0/ k, (k its Dedekind zeta, r1 (resp. r2) is the nUffi­
ber 0/ its real (resp. complex) placesJ D is the absolute value 0/ the discriminant,
R the regulator, 1LJ the number 0/ mots 0/ unity in k.

The main feature of (1.6) is that Np n (k) (W -1 j H) grows asymptotically lin eady in
H, whatever the dimension n and the ground field kare. This became possible only
because we have chosen local norms 1.lv as Haar multipliers. Therefore the height
function (1.1) is non-invariant with respect to ground field extensions: if we replaee
k by k' :) k, h(x) becomes h'(x) = h(x)[k':k} so that pn(k) does not contribute
to the main term of the asymptotic formula for Npn(k/)(W-1; H) : essentially, we
count only "new points".

Sehanuel proved (1.7) by reducing the problem to that of counting lattice points
in a large domain. The volume of the domain furnishes the leading term, anel if
the boundary is not too bad, we get an asymptotic formula. We will now sketch an
alternate approach via zeta functions.

1.3. Zetas. Consider the following abstract setting. Let U be a finite or
countable set, hL : U -t~ a counting function (this means that Nu(L; H) defined
by (1.4) is finite for aH H). Assume moreover that Nu(Lj H) = O(HC

) for some
c> o. Put

Zu(Lj s) = L hL(X)--'.
xEU

The bettel' we understand the analytical properties of Zu (L; s ), the more precise
information about lVu (L; H) we can obtain. We will distinguish here foul' levels of
preClSlOll.

Level 0: Convergence abscisse. Put

ß = ßu(L) = inf {a I Zu(L;s) converges for Re(s) > a}. (1.9)

This is wen defined and invariant if one replaces h by exp(0 (1))h. In partieular, if
hL is a "Veil or Arakelov ample height, ß depends only on the isomorphism dass of
the relevant -ampie sheaf L.

It gives the foll~wing information about Nu(L; H):

{

-00 if U is finite;
ßu(L) =. 10 N (LoH) .11m sup g u, > 0 otherwlse.

logH -

In other words, if ß :2: 0, we have for all c > 0 :

{
O(Hß+~),

lVu(L; H) = (ßn H -~).
(1.11).



9

Level 1: a Tauberian situation. Assume that ß == ßu (L) > 0, and for sorne
t == tu(L) 2:: 0 we have

Zu(L; s) == (s - ß)-tG(s), (1.12)

(1.13)

where G(ß) # 0, and G(s) is holomorphic in a neighborhood of Re(s) 2:: ß. In this
ease

Nu(L; H) = ~~~i ~ (log H)'-l (1+ 0(1»).

In partieular, assume that U == U1 x··· xUm, hL(UI, ... ,um) == hL 1 (ud· .. hLm (Um).

Put ßi == ßUi(LJ), ti = tUi(Ld whenever they are defined, and ß= maxi (ßJ), J ==
{i Iß == ßi}. Using the zeta-deseription of these numbers, one readily sees that

ßu(L) = ß, tu(L) = L ti·
iEJ

(1.14)

Formula of the type (1.13) is valid for (U, hL) if the Tauberian eondition is assumed
only for Ui, hLi with i E J.

Level 2: analytic continuation to a larger haI/plane. Instead ofaxiomatizing the
situation, I will only remind the contour deformation technique. Let us start with
the formula valid for ß' > ß:

l
ß1 + iOO H6

Nu(LjH) = -Zu(Ljs)ds.
ß'-ioo s

(1.15 )

In favorable case, one ean integrate instead along a vertical line Re(s) == / < ß
adding the contribution of poles Zu(L; s) for / < Re(s) < ß'. This eontribution
constitutes the leading term of the asymptotics; it will be of the type cHßP(log H)
where P is a polynomial if Zu(Lj s) has a pole at s = ß as its only singularity in
/ < Re(s) < ß'. The integralover Re(s) == I will grow slower, possibly as O(Hß-(;),
if Zu has no more poles in Re(s) > /, and ean be appropriately majorized.

To accomplish the necessary estimates, one has sometimes to first replace Nu (L; s)

by an appropriate average, and the r.h.s. of (1.15) by something like J:'~/: 3 (~~ 1) Zu (L; s)
which converges bettel'.

Level S: explicit formulas. If one has a well-behaved meromorphie eontinuation
of Zu(L; s) to the whole eomplex plane, one can sometimes push ß' to -00 in (1.15)
and obtain apreeise formula for Nu(Lj H) as aseries over all poles of Zu(L; s).

1.4. A generalization of Schanuel's theorem. The behaviof of the height
zeta-function (1.8) is well understood only for two clases of projective manifolcls:
a) Abelian varietiesj b) homogeneous Fano manifolds.

If U == V(k), V is an Abelian variety, L is an ample symmetrie sheaf on V, one
eall use Neron-Tate's height hL to count points. Denote by VV the image of V(k) in

V(k) <9 R, and let t be the order of V(khors' Then hL(x) = exp(q(x mod V(khorH)
where q is a positive quadratie form on V(k)0R so that our zeta is a theta-function:

Zu(Lj s) = t L exp( -q(y)s).
yE\>V

(1.16)
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Hence, if r := rk V(k) > 0, we have ß > 0, and

NV(k)(Lj H) = elog r
/

2 H(l + 0(1)). (1.17)

Notiee that the eonvergenee abscisse Re(s) = 0 is also the natural boundary for
Zu (L j s). For abelian varieties, K v == 0 so that (1.1 7) matches our naive expeetation
(0.2).

Let us turn now to homogeneous Fano varieties.

1.4.1. Theorem. Every homogeneous Fano variety V is isomorphie to a gen­
eralized flag space P \ G where G is a semi-simple linear algebraic group, and P is
a k-rational conjugacy dass 01 parabolic subgroups.

If V(k) =1= 0, we can take P to be a parabolic subgroup defined over k.

For a proof, see Demazure [10].
Flag spaces P \ G admit a distinguished dass of heights which can be definecl in

terms of Arakelov metries invariant with respect to maximal compaet subgroups of
the adelie group of G. For such heights, the zeta funetion of V == P \ G beeomes
essentially one of the Langlands-Eisenstein series. Their deep theory developed by
Langlands allows one to use the technique of contour integration of the Level 3
above, and prove the following theorem, generalizing 1.2:

1.4.2. Theorem. 11 V is a homogeneous FanD variety with V(k) =f:. 0, then for
a distinguished anticanonical height we have

Nv(-KVj·H) == Hp(1ogH)(l + H-~) (1.18)

where E: > 0, and p is a polynomial 01 degree rk Pie(V) - 1.

For a proof, see [13]. In partieular, ßv(-Kv) == 1.
This theorem ean be extended to the distinguished heights corresponding to other

invertible L. It must be stressed however that, even for projeetive line, there are
natural situations when the relevant heights are not distinguished. This happens on
aecumulating Fano subvarieties, when a height is indueed from the ambient space:
see the next seetion. In the homogeneous case,the asymptotic is of the same form.
A very interesting question of eharacterization thc leading term coefficient directly
in terms of the antieanonical height was recently attacked by E. Peyre.

The simplest variety for which the analytic properties of Zu beyond the con­
vergence abscisse are unknown is the affine DeI Pezzo surface of degree 5 over Q
which can be obtained by blowing up foul' rational points on p2 and then deleting
all 10 exceptional curves. One reasoil for this may be a wrong choice of the fune­
tion itself. The lnirror conjecture on the curve count on, say, three-dimensional
quintics, furnishes analytic continuation for a geometrie version of the height zeta

where the contribution of the curve x is (log h(x) )3
1~~(~~. • rather than our simple­

minded h(x)-~. It would be quite irnportant to guess aversion of Zu(L; s) with
good analytic properties.

1.5. Circle method. We will now briefly explain a classical approach to
counting points whieh is efficient for Fano hypersurfaces and eomplete intersections
(mostly over Q) with many variables.
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Let X be a finite set, F : X -+ Z a function, e(a) = e21tin . Put

S(a) = S(.x,F)(a) = L e(aF(x)).
xEX

Then

eard {x E X I F(x} = O} = 11

S(a}da.

(1.19)

(1.20)

(1.21 )

A useful version of this formula refers to the ease of a vector function F = (F1 , . .. ,Fr) :
X -+ zr. Then a = (al,"" a r ) varies in a unit eube, aF(x) = L: D:iFi(X), S(a) is
again defined by (1.19), and

eard {x E X I F(x} = O} =11

...11

S(a}dal'" dar.

The eircle method, when it works, gives a justifieation to the following heuristic
principle:

1.5.1. Circle principle. Under favorable circumstances, there existB a finite
, a (i) (I (i) ( ')

set 0/ rational points a l = {~, ... , +} and small cubes I I centered at these
ql q..

points ("major arcs") such that

t ... t dal ... dar = L j ,S(a)dal'" dar + {a small remainder term}.Jo Jo i l(l)

To get some feeling of why it might be true, and what it implies, let us look at
the ease r = 1. First of all, the values of S(a) at rational points are related to the
distribution of values of F(x) modulo integers:

5(0} = eard(X}; 5(~} = eard {x I F(x) even} - eard {x I F(x) add};

S(~) = L e21tiap/qeard {x I F(x) =p mod q}.
q p mod q

And if X = [1, ... , N] with large lV, F(x) = x2 , then S( ~) is approximately
q

N X {a Gauss surn} deereasing as ~ for large q « N.
q yq

Hence we may expeet that S(Q') is relatively small (in eornparison with the
number lV of its summands) outside of a neighborhood of the set of rational points
with denominators bounded in terms of N.

In the classical additive problems with large number of summands k, the remain­
der term ean be effeetively damped as k -+ 00, because

(1.22)

For example, in vVaring's problem of degree n with k summands,

(X, F) = ([0, ... , [lvI 1
/"]], x~ + ... + xi: - M)
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so that

k 1 [MtI"]

eard {(X;) I ~ X? = M} =1e-Z1r ;nM ( ~ eZ1rnxn)k da.
i=l 0 x=o

Below we review some results of W. Schmidt [25] who applied the circle method
to the intersections of hypersurfaces in a projetive space aver Q. In fact, he worked
with the corresponding affine cone, but this only changes the coefficient in the
asymptotic formula.

1.5.2. The setting. Consider a finite system of r forms in s variables of degrees
2: 2:F = {Fb ... , Fr}, with integral coefficients. Let V be the variety {Fi = O}
in the affine space. Let rd be the number of forms af degree d, and T = 2:i 1'i.
W. Schmidt proved an asymptottic formula of the type (0.2) in the cases when
"the number of variables is large, and the forms are not too degenerate". Both
conditions are used as a refined substitute for the classical damping effect (1.22).
Let n5 state them more precisely.

A. Many variables. The basic bonnd is written in terms of the number

v(r2,'" ,Tk) = max {s I for some F and some prime p, F(Qp) = 0}.

In other words, s > V(i2,' .. ,;k), implies p-adic solvability for all p and aH F with
a given vector degree.

B. Degenemcy. The degeneracy is measured in terms of the tensor rank, weIl
known in the computational complexity theory. Specifically, for one form F put

h(F) = min {h I there exist non - constant forms At, B}, .. . ,Ah , B h E Q[Xl" .. ,X.'l]

such that F = AIBI +... +AhBh}.

For a system of farms of the same degree F = {Fi}, put

Finally, for a general system of forms put hd = h(degree d part of F).

1.5.3. Theorem. Assume that
a). hd 2: 24dd~;dkv(r2"'" ik).

b). dirn V(R) 2: s - 2:7=2 rio

Then the number 0/ integral points 0/ V in {Ixd ::; H} IS

where the constant IL > 0 is a product 0/ loeal densities.

Turning to the base of the cone V, we again see the linear growth rate with
respect to an anticanonical height, at least when this base is only mildly singular
so that the anticanonical sheaf exists and is given by the same formula as for the
smooth complete intersections.
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§2. Algebra-geometrie methods

2.1. Aeeumulating subvarieties. The analytic methods deseribed in §1 work
efficiently only for those Fano varieties whieh are either homogeneous or complete
interseetions with many variables (or, more invariantly, of large index). Moreover,
their suceess seems to be connected with the fact that the rational points are uni­
formly distributed with respect to a natural Tamagawa measure.

Algebro-geometrie data suggest that generally we may not expeet such a unifor­
mity, and that rational points tend to eoncentrate upon proper subvarieties. Below
we will discuss several ways to make this idea preeise. Let U he a quasiprojeetive
variety over a number field k.

a. Zariski tOTwlogy. Deuote by V the closure of U(k) in Zariski topology. If
a eompaetifieation of U is a curve of genus> 1, then V is a proper subvariety
of U. This faney way to state Faltings' theorem leads to the generalized Mordell
eonjecture: we expect that V is a proper subvariety of U whenever U is bira­
tionally equivalent to a variety of general type. Roughly speaking, this means that
the deseription of U(k) can be divided into two subproblems: to understand the
distribution of rational points on varieties with K ::; 0, and to understand the
distribution of such subvarieties in varieties of general type.

This pattern is charaeteristie for all definitions of aeeumulation.

b. Hausdorff topology. Let k = Q. B. Mazur recently suggested that U( Q)
may be Hausdorff dense in the space of R-points of its Zariski closure 11. If this is
universally true, it implies that Z cannot be a Q-Diophantine subset subset of Q
so that not all Q-enumerable subsets are Q-Diaphantine. (Recall that E c Q7l is
Q-Diophantine if it is a projection of U(Q) C Qn+m for same affine U defined aver
Q).In particular, Nlatiyasevich's strategy of proving the algorithlnic undecidability
af Diophantine equations over Z would not work for Q.

c. Measure theory. Again for simplicity working over Q consider the limit

of the averaged delta-distributions over rational points Xi E U(Q) ordered, say,
by increasing height. If such a lilnit exists, the support of 11. provides a nation of
accumulating subset which may be finer than the topological closure.

d. Point count according to the TKJlynomial growth rate. The following notion
was suggested in [4]: choose a height function h L on (a projective closure of) U
and call a Zariski closed subset V C U accumulating w.r.t. hL if

ßu(L) = ßv(L) > ßu\v(L),

where the growth order ß is defined by (1. 9) or equivalently (1.10). One easily sees
that there exists a nnique minimal aceumulating subset VI; putting UI = U \ VI
and applying the salne reasoning ta U1 ete, one gets a sequenee of Zariski open
subsets

(2.1 )
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such that Ui \ Ui+l is the minimal hL-aeeumulating subset in Ui. A deseription of
(2.1) and of the eorresponding growth order sequenee

(2.2)

is the natural first goal in understanding U(k ), whieh ean be best at taeked by
algebra-geometrie means.

We will now report on the results of [18], [19] eoneerning mostly Fano varieties,
in partieular surfaees and threefolds.

2.2. Invariant 0' and reductions. Let V be a projeetive manifold (we ean
also allow mild singularities). Denote by N~ff (resp. N~mple) the closure of the
cone generated by effeetive (resp. ampIe) classes in N S (V) @ R where N S is the
Neron-Severi group. For an invertible sheaf L, put

o:(L) = inf{p/q I p,q E Z,q > O,p[L] +qKv E N~ff}'

If V is Fano and L is ample then o(L) > O. The fo11owing two results allow us
to reduce in certain cases the calculation of ßu(L) to that of ßu( -Kv), if O'(L) is
considered as a computable geometrie invariant.

2.2.1. Theorem on the upper bound. a). Por every e > 0, there exists a
dense Zariski open subset U(e) C V such that for all U C U(e) we have

ßu(L) :::; O'(L )ßu(-l(v) + e. (2.3)

b). If in addition O'(L) is rational (and positive), there exists a dense open subset
U c V such that for all U' c U we have

ßu I ( L) ::; 0' ( L )ßu (- J(V ). (2.4)

Proof. a). Take p/q very elose to O'(L) such that p[L] + qKv is effective. Then
p/q = o(L) +1] with small1] > O. Denote by U(p, q) the eomplement to the support
of base points and fixed components of IpL + qJ(V I. For a11 x E U(p, q)(k), we have

hpL+qg(x) ~ c' > 0 i.e. hL(x) > ch~K·(X), so that

ßU(p,q)(L) :::; 'E.ßU(p,q)(-l(v) = (o(L) + 1])ßU(p,q)(-l(v).
q

b). If 0' = p/q, we can put U = U(p, q).

Remark. This Theorem shows that it is important to know whether O'(L) is
rational for all alnple L on Fano manifolds. This is true for sUlfaces in view of
the Mori polyhedrality theorem and the convex duality of N;f f and N~mple' For
threefolds, V. V. Batyrev showed that it is a (rather non-trivial) consequence of
Mori's technique. In lügher dimensions, this is an open problem.
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2.2.2. Theorem on the lower bound. Giuen an ample L on a Fano mani/old
V J assume that

a(L){L] + Kv E aN~mple n aN;//. (2.5)

Then a (L) is rational. A ssume in addition that a (L )(L] +](v := I belongs to exactly
one face 0/ aN~mple 0/ codimension one. Then the contraction rnorphism associated
to this face has a fiber F which is a non-singular Fano uariety 0/ dimension 2:: 1,
and we haue tor any U :> V:

ßu(L) ~ a(L)ßUnF(-KF)' (2.6)

The condition (2.5) is a strong one. However, if it is not satisfied for L, one can
sometimes ameliorate the situation by an appropriate birational modification of V.

Whenever both inequalities (2.4) and (2.6) hold, we can get the best possible
result ßu (L) = a(L) in the case when ßu (- ]() = 1 for appropriate open subsets
of subsets of V and F. We have already notieed in §1 that analytic methods when
applieable give exaetly this result. We will show below that this also seems to be
a tendeney for surfaees and threefolds, but only after deleting the accumulating
subvarieties.

The following results heavily depend upon classification theorems. Geometrie
classification is done over a closed ground field; we generally dispose of subtier
problems by passing to a fini te extension of the ground field.

2.3. DeI Pezzo surfaces. Fano manifolds of dimension two are called the deI
Pezzo surfaces. They split into ten deformation families. Two of them are homo­
geneous (P2 and pI X PI) so that point count on them reduces to the Sehanuel's
theorem. Family {Va}, 1 ~ a :S 8, consists of surfaces that can be obtained by
blowing up a points on p2 in a sufficiently general position. We call a surface Va
split (over k), if these a points can be chosen k-rational.

Every surface Va eontains a finite number of exceptional curves ("lines"); they
are all k-rational if Va is split. Denote by Ua the complement to these lines, and
put Aa = Va \ Ua. The following Theorem is proved in (181:

2.3.1. Theorem. Let Va be SlJZit. Then
a). ßAa(-](V) = 2.
b). We haue the /ollowing estimates tor ßuA ( -]{v) := ßa.
For k = Q: ßl = ... = ß4 = 1;ßs :S 5/4;ß6 :S 5/3.
Far general k: ßI = ... = ß3 = 1; ß4 :S 6/5; ßs :S 3/2.

The results for (l = 5 and a = 6 have especially clirect Diophantine interpretation,
since Vs is an interseetion of two quadrics in p4, and V6 is a cubic in p3. vVe see
that if alllines on these surfaces are rational they are accumulating, and, for k = Q,
thc remainder term NU

a
(-](, H) is O(HS / 4+t:) (resp. O{HS / 3+t:)).

A proof of Theorem 2.3.1 given in [18] consists of two parts. The cases a :S
4 are treated directly, by representing Va as a blow-up of p2, comparing height
on 11:1 with height on p2, and using explicit number-theoretical properties of the
height. The remaining cases are treated via an inductive reasoning which shows

that ßa+l ::; ~=~ßa'
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2.4. Fano threefolds. This case was treated in [19] where the following linear
lower bound was established:

2.4.1. Theorem. For any Fano three/old V over a number field k and any
Zariski open dense subset U C V, there exists a finite extension k' 0/ k such that i/
k" contains k', then N U0k" (J(, H) > eH tor some c > 0 and large H. In Pßrticular,

ßU0k ll 2: 1.

The proof is based upon a description of all 104 deformation families of Fano
threefolds obtained by Fano, Iskovskih, Shokurov, Mori, and Mukai. Studying this
description, one can derive the following:

2.4.2. Main Lemma. Every Fano three/old over a closure 0/ the ground field
becomes isomorphic to a member 0/ at least one 0/ the /ollowing /amilies:

a). A generalized flag space P \ G.
b). A Fano three/old covered by ro tional curves C with (I(V .C) :::; 2.
c). A blow.tLp 0/ varieties 0/ the previous two groups.

Group a) is treated via Eisenstein series. For the group b), it suffices to count
points on a single rational curve invoking the Schanuel theorem. Finally, a blow up
diminishes the anticanonical height in the complement of the exceptional set and
increases the number of such points of bounded height.

2.5. Length of arithmetical stratiflcation. We conjecture that for Fano
manifolds, the length of the sequence (2.1) of the eomplements to aecumulating
subsets is always finite. However, it ean be arbitrarily long:

2.5.1. Proposition. For evenJ n 2:: I, there exists a FanD mani/old W 0/
dimension 2n over Q and an ample invertible sheaf L on it such thai the sequence
(2.1) tor (W, L) is 0/ length 2: 27n + 1.

Proof. For n = 1, take for W a split deI Pezzo surface Vs . Representing
it as a blow.up of six rational points on p2, denote by A the inverse image of
OP2 (1), and by lI, ... ,l27 the exeeptional classes, of w hieh lI, ... ,ls are represented
by inverse images of blown up points. Choose a large positive integer N and
small positive integers t:I, ... ,es. Take for L a class approximately proportional to
-](v: L = 3NA - (N - edlI - ... - (N - es)ls. Choose the parameters (lV, ed
in such a way that (Li, L) #- (Lj, L) for all i #- j; 1 :::; i,j :::; 27; (Li, L) < ~N.

Theorem 2.3.1 then shows that the 27 lines will be conseeutive accumulating
subvarieties l with the growth orclers (L~';)' and the eomplement to them will have

ß < -IN, so that the total length is at least 28.

For n 2: 2, take n pairs (Vi, Li) of this type. Arrange parameters (lVi, € ~ , ... , E~ )

in such a way that the spectra of the growth orders for various (Vi, Ld do not
intersect. Then put vV = VI X ... X Vn , L = pri (Lt} ® ... 0 pr~ (Ln)' From (1.14)
one easily sees that the spectrum of the growth orders will have length at least
27n + 1 (one ean even get 28n - 1).

2.5.2. Conjecture. 1/ V is a mani/old with !(v = 0 on which there exist
rational curves 0/ arbitrarily high degree defined over a fixed number fieldJ then
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the arithmetical stmtification with respect to any ample sheaf L is infinite, and the
consecutive growth orders tend to zero.

The first non-trivial case of this conjecture is furnished by certain quartic sur­
faces, and more general K3-surfaces. In this case, the accumulating subVBIieties
fiust consist of unions of rational curves of consecutive L-degrees.

However, the problem of understanding rational curves on ](3-surfaces is dif­
ficult, in particular because it is "unstable": even the rank of the Picard group
depends on the moduli. It is expected that some stabilization occurs starting with
tree-dimensional Calabi-Yau manifolds. We will devote the next Chapter to the
highly speculative and fascinating picture whose contours were discovered by physi­
cists.
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CHAPTER 11

COUNTING RATIONAL CURVES

§3. Calabi..Yau manifolds and mirror conjecture

3.1. Classiftcation of manifolds with Kv = O. In this Chapter, we diseuss
some conjectural identities involving, on the one hand, characteristic series for the
numbers of rational curves of all degrees on certain manifolds V with ]{v = 0, and
on the other hand, hypergeometric functions expressing periods of "mirror dual"
manifolds W in appropriate loeal coordinates. Prom the physieal viewpoint, such
identities mean that certain correlation funetions of astring propagating on V
coincide with other eorrelation functions of astring propagating on Wj the passage
from V to W involves also a Lagrangian change ("A- and B- models" of Witten
[26]).

Recent physicalliterature eontains a wealth of generalizations of these identities
involving curves of arbitrary genus on varieties with J(v ~ 0. However, no single
case of these conjectures has been rigorously proved. Therefore we have decided to
concentrate upon the simplest case, that of Calabi-Yau threefolds.

In the framework of I(ähler geometry, they ean be introduced by means of the
following classification theorem. Let us call a I(ähler manifold V irreducible if no
finite unramified cover of V can be represented as a non-trivial direct product.

3.1.1. Theorem. For any compact Kähler mani/old V with J(v = 0, there
exists a finite unramified cover V' and its decomposition into irreducible /actors

V' ~ II Ti X II Sj x II Ck
i j k

such that
a). Ti are Kähler tori.
b). Sj are eomplex symplectic mani/olds, (i.e. they admit ever1jwhere non­

degenerate closed holomorphie 2-/orm), but not tori.
e). Ck are neither tori, flor sym]Jlectic.

Irredueible I(ähler manifolds of the type C k ean be ealled Calabi- Yauj in the
physicalliterature this name is sometimes applied to any manifold with J(v = 0.
The smallest dimension of a complex torus is 1, of a sympleetic manifold 2 (any
symplectic surface is a J(3-surface); strictly Calabi-Yau manifolds occur first in
dimension three. Classification of Calabi-Yau threefolds is a wide open problem;
one eIoes not know even whether they belong to a finite number of deformation
families. Most of known examples are constructed as anticanonical hypersurfaces
of Fano varieties VV, or more generally, as "anticanonieal eomplete intersections":
V=niDi , L,iDi E I-J(wj.

Every Kähler manifold belongs to the realm of three geometries: Riemannian,
symplectic, and cOlnplex (or algebraic). Theorem 3.1.1 is basically a Riemannian
statement (de Rhaln theorem on the holonomy groups). The curve count, seemingly
a pure eomplex problem, at present can be properly approached only froln the
symplectic direction revealing its "quasi-topologieal" nature.
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In this report we will eoneentrate upon algebro-geometrie aspeets of this vast
and eomplex pieture.

3.2. .The structure of the mirror conjecture. Consider a Calabi-Yau
threefold V and a eomplete Ioeal deformation family Wz , z E Z of Calabi-Yau
threefolds. We will say that V and ltVz are mirror related if a eertain eharae­
teristie funetion F eounting maps 'P : pI -+ V eoincides with another funetion
G deseribing the variation of the periods of Wz • The funetion G depends on
hll (V) eomplex arguments whieh refleet the degree of r.p with respeet to a basis
of Pie(V) = H ll (V, C) n H 2 (V, Z). The funetion G depends on hI2 (Wz ) arguments
beeause this is the dimension of Z. Henee we must have h11 (V) = h12 (Wz ).

To make this all precise, we start wi th the notion of pre-mirror data.

3.2.1. Definition. The premirror data eonsist 01 the lollowing objeets:
i). A pair (V, vVz) as above.
ii). A loeal isomorphism q : Z = Z(ltV) c Mod(vV) -+ U = U(V) C Pic(V) 0 C

where Mod(W) is the moouli spaee 01 W.
iii). A loeal trivialization: w : LW -+ Oz where LW is the invertible sheaf on Z

whose geometrie fiber at z E Z is HO(Wz , nfvl:)'
We assume in addition that Pie(Wz ) is canonically trivialized ouer Z, and that

U is eontained in the tube domain Pic(V) ® R + iI( where K is the cone s]Janned
by am]Jle (or Kähler) classes.

3.2.2. Counting curves on V and function F. Given premirror data 3.2.1,
we proeeed a.s follows.

The holomorphic tangent sheaf Tu to U(V) is eanonically trivialized beeause U is
a domain in the eomplex veetor spaee Pic(V)0C = H2 (V, C) : Tu = Pie(V)®Ou.
We define the Ou-linear map

by

F: S3(Tu) -+ Ou (3.1)

e21ri (C,H)

F(H, EI 0 E 2 0 E 3 ) = (E1E 2E 3 ) + L 1 _ e21ri (C,H} (CI, E 1)(C, E 2 )(C, E 3 ). (3.2)
C

Here HEU; Ei E Pie(V) are interpreted as vector fields on U; (,) means the
interseetion index, or cup-product; finally, C runs over rational curves in V.

However, the sum in the r.h.s. of (3.2) ean be understood literally only if aH
rational eurves in V are isolated and have the normal sheaf O( -1) ffi O( -1). Other­
wise the loeal eontributions of rational eurves ean be formally defined by a general
position argument involving adeformation of the eomplex strueture of V whieh
makes it non-integrable. More generally, this argument leads to the introduction
of the so ealled Gromov-Witten invariants and quantum eohomology rings. AI­
though these nations belong to the most signifieant geometrie diseoveries made by
quantum field theorists, we have to omit their discussion beeause of the lack of
mathematieally rigorous treatment.
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3.2.3. Calculating periods of Wand function G. For the loeal family
tr: W. --t Z, we have denoted by ! the sheaf Rtr$ntv. /Z of holomorphic volume
forms on the fibers of 11". We will now define an Oz-linear map

G: S3(Tz) -+ !-2 (3.3)

as a symbol map of a Pieard-Fuchs operator, 01' infinitesimal variation of Hodge
structure.

Speeifieally, eonsider the exaet sequence

o--t 'TvVjZ --t Tw --t tr$(Tz) -+ O.

Its boundary map is the Kodaira-Speneer morphism

(3.4)

which is an isomorphism if Z is a versal deformation.

The eonvolution map i: Tw/z x nt;,/z -+ n~~ induces a pairing

R 1 11"$ (i)·. R 1tr" IV\ Rq 7r {')P -+ Rq+ 1 tr (')p-1
• I w/z 'O'Oz .HW/ Z .H.WjZ'

01' a Oz-map
R1 tr. Twjz -+ End(-lll)(EBplqRq11".(n~jz))·

Iterating this map three times we get

(3.5)

Aetually, this map is symmetrie because according to Ph. Griffiths it is the symbol
map of the Gauss-Manin connection extended to the differential operators of order
3. Using the relative Serre duality, one can identify the r.h.s. of (3.5) with !-2.
Finally, eornposing (3.5) with the I(odaira-Speneer map 53 (Tz) -+ 53 (R 111"$ Tw/Z ),

we ohtain the funetion G in (3.5).

3.2.4. Definition. The premirror data 3.2.1 are called mirror data i/, after the
identification 0/ U(V) and Z(W) vio q and trivialization 0/ L-2 via w, Fand G
coincide.

3.3. Example. For V a generic quintic hypersurface, the relevant mirror data
were given in the ground-breaking paper by Ph. Candelas, X. de la üssa, P. Green,
and L. Parkes [9]. In this case, hll(V) = 1, and Z is a neighborhood of zero in C,
with complex coordinate z. Evaluating (3.2) on the positive generator H of Pic(V)
(hyperplane section) multiplied by t in upper plane, and on EI = Ez = E3 = H
they get a function F (q), q = e21l'i t of the form

(3.G)
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where nk is the number of rational curves of degree k (with appropriate multiplic­
ities).

The mirror map z t-+ q( z) := e2tri t( r) is calculated to be

"CO ~lf?i ~(N)5-5N zN_ ~ -1/5) L.JN=O !
t(z) - - . log(5z + --..-;....~~-5N--.I-~----

21n L:~=o N! .5-5N zN
(3.7)

'\(0) = 0, '\(N) = -
5N 1

L m
m=N+l

Put

The function G( z) is

~ (5N)! -SN N
fo(z) = ;':0 (N!)5 5 z.

(3.8)

Finally, the mirror identity states that

F(q(z)) == G(z)

in a neighborhood of zero.

This identity says that two eubic differentials F(q)(dq/q)3 and

5 (dZ) 3

(1 - z)fo(z)2 z

(3.9)

are one and the same differential written in different loeal coordinates q( z) and z
respectively. This reminds one a Schwarz deritivative related to the linear differen­
tial operators of the second order and projective connections. In fact, this analogy
can be made quite precise. The relevant differential operator annihilates fo(z): for

D d. b .= z- It ean e wntten as
dz

L = D4
- 5-4 (5D + 1)(5D + 2)(5D + 3)(5D +4),

and log(55 q( Z ) / z) is a quotient of two solutions of the equation L f = O.

In the remaining part of this report, we will explain Batyrev's construction of
toric premirror data.
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§4. Toric mirrors

4.1. Convex geometry. Let M, N be a pair of free abelian groups of finite
rank r = d + 1 endowed with a pairing (,): M x N -+ Z making them dual to
each other.

In MR = M ® R, NR = N ® R consider a pair of convex compact closed
polyhedra 0 M C MR , 0 N C NR. Each of them is an intersection of a finite set of
closed halfspaces.

4.1.1. Definition. a). OM,ON are dual, if

oM = {m E MR I(m, n) ~ -1 for a1l nEO N },

<:) N = {n E NRI(m, n) ~ -1 for all m E 0 M }. (4.1)

b). (0M, 0 N) form a mirror pair if they are dual and have integml vertices.

If we start with any convex compact closed polyhedron <:) N and define (; M by
the first line of (4.1), it will also be such a polyhedron, and the second condition
will be satisfied automatically. Duality of (<:) M, <:) N) induces an inclusion reversing
isomorphism between the posets of faces of <) M and 0 N .

If in addition ÖN has integral vertices, then codimension one faces of 0 M are
defined by equations of the type (m, ni) = -1, ni E N, hut vertices of (;M need not
be integral. This is an additional (and restrictive) condition. It can be expressed
via point count in (aÖ N) n N. Specifically, there exists a polynomial of degree
r = dimNR, l(a), such that card (aON n N) = [(a) for all integral positive a.

T. Hihi proved that <)M has integral vertices iff l(-a - 1) = (-l)rl(a) for all a.
V. Batyrev calls members of mirror pairs reflexive polyhedra.

4.1.2. Lem ma. 1f ((; .\f ,On) form a mirror pair, they contain origin which is
their only interior ])()int.

Proof. From (4.1), it is obvious that 0 E OM,O E ON, and that 0 does not lie
on the boundary.

In order to see that, say, (; M does not contain any more integral interior points,
represent 0 M as a union of cones u(E) = ntE(O,IjiE where E runs over aU codi­
mension one faces of 0 M .

Auy interior point mo E (; M belongs to some toE,O < to < 1. If mo lies in the
face (m, nE) = -1, nE E N, we have (rn,o, HE) = -to. If ffio is integral, we roust
have to = 0, that is mo = O.

4.1.3. Classification results. For every r, there exists only a finite number
of reflexive polyhedra, but they are completely enumerated only for r = 1 and 2.
There are 16 of them for r = 2, hundreds for r = 3, and thousands for r = 4.

Here is one example for general r: put j\1 = zr, ei = the i-th coordinate vector,

O!vl = convex envelope of {eI,'" ,er,-(el + ... + er)}' (4.2)

For JV = zr and standard pairing we cnn easily check that

(; N = (-1, ... , -1) + convex envelope of {(, + 1)ell'" , (, + 1)er , O}. (4.3)
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4.2. Affine toric mirrors. Given a pair of dual lattices M, N as in 4.1, we
can construct a pair of tori. Writing elements of M (resp. lV) multiplicatively as
xm (resp. yn) we put

T(N) = 5pec C[xMJ, T(M) = 5pec C[yN].

For Gm := 5pec [t, t- I ] we have the following canonical identifications:

N = Horn (Gm,T(N)), M = Horn (T(N),Gm)

and similarly for T(M).
Given in addition a mirror pair of polyhedra (0 M ,ON), we put

VM = 80M nM = OM nM \ {O}. (4.4)

and similarly for vN.

4.2.1. Definition. The /ollowing two /amilies 0/ affine hypersur/aces zn the
tori T(lvf), T(lV) are called affine mirrors 0/ each other:

v(0 1\-1) = VN : 1 - :L am X m = 0 (in T (N) ),
mEvM

V(ON) = VM : 1 - :L bnyn = 0 (in T(A1)).
nEVN

(4.5)

(4.6)

Notice that 1 in (4.5), (4.6) is actually xo, resp. yO, corresponding to 0 E

ÖM,ÖN.
A word about our notation. Eventually we will construct toric premirror data

as in 3.2.1, where V will be a partial compactification of the family VN and vV
that of family VM. We try to furnish the principal relevant objects by indices
M, resp. lV, in such a way that an object covariantly depended on its index. 50
T(N) covariantly depends on its lattice of one-parametric subgroups N, and VN is
a family of hypersurfaces in T(N), etc.

4.2.2. Example. In the notation of 4.1.3, put xe; = Xi in M and ye; = Yi In

N. Then:

V1\-1 :

r

1 - a + L aixi = 0,
Xl ... Ir ;=1

1 1 ~ VI v,. - 0- LYI .. 'Y r - ,
YI ... Yr v

(4.7)

(4.8)

v = (VI, •.• , Vr) =f. (1, ... , 1); 0 ~ :L Vi:::; 'r + 1, Vi 2:: O.
i

lf we compactify T(A1) to a projective space by introducing homogeneous coor­
dinates Yi = Yi/Yo, (4.8) becomes the complete linear system of hypersurfaces uf
degree r + 1 in pr:

V M: L BJlYdl.o
... Y/l

,. = 0, L li-i = r + l,ft; ;::: 0.
Il

(4.9)
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For r 2: 4, they are Calabi-Yau manifolds outside the discriminantallocus defined
by a universal polynomial in coefficients BIJ: D(BIJ) = O. For r = 3 (resp. T = 2),
they are quartic J(3-surfaces and cubic plane curves respectively. We have hll = 1
for V M. On the other hand, (4.7) is actually a one-parametric family since ai 's
can be made constant by rescaling Xi 'So After same variable change in (4.7) and
a suitable compactification, we obtain in this way for r = 4 the quintic mirrors of
3.4.

In order to discuss in a more systematic way compactifications both in the torie
spaces T (M), T (N) and the coefficient spaces a m , bn we will briefly recall some
constructions of toric geometry.

4.3. Toric (partial) compactifications. Let L be a lattice of finite rank,
(T C LR a closed convex cone with vertex in origin. We will be working only with
cones finitely generated by a family of elements of L. Put (Tt = {l* E Litl(l*, l) 2:
ofor all l E (T}, and

An' = Spec (EBIEul Cx1
).

The affine variety Au contains T(L), i.e. (Jt n L * generates L * as a group, iff (1 is
strictly convex that is, does not contain a non-trivial subspace. The natural action
of T(L) upon itself extends to the action T(L) x Au -+ Au. So Au is a partial toric
compactification of T (L) .

A more general construction of of compactifications is obtained if one glues
together Acr 's for an appropriate family of cones. Such families are called fans. For
HS, a fan .6. in LR is a finite family of strictly convex cones, containing all faces of
all its elements and such that the intersection of any two cones is a face" of each of
them. We put

P(.6.) = II Au/(natural equivalence relation).
uEA

When 1.6.1 := UcrEA(T = LR, P(.6.) is a complete toric variety which can be consid­
ered as a natural generalization üf projective space.

4.4. Compactifying members of affine families VN , Vhl • Für a reflexive
polyhedron OAI, denote by F(OM) the set of OM-compatible fans ~M in MR, i.e.
fans satisfying the following conditions:

4.4.1. Definition. .6.M is OAI-compatible if
a). Every j·cone of ~M is generated by some m E VA1. and e.very "m E VM

generates some 1-cone 0/ .6. M .

b). DoM is simplicial, i.e. every d-dimensional cone of .6.1\1. is generated by d
1-cones.

c). Do M is projective, i. e. th ere existB a strictly conv ex IIIn ction 1] : !vIR -+ R
linear on evenJ cone of .6.A1..

The property b) implies that P (.6. M) has only abelian quotient singularities. In
c), 7] is called strictly convex (w.r.t . .6.1\1) if it is convex, and every nUl.Ximal subset
of l'lR on which it is linear is a coue of maximal dimension of .6.1\1.. The property
c) implies that P(.6. j\tf) is a projective variety.

The set F( 0 M ) is obviously finite. Less obvious but true is that it is non-empty
(condi tion c) can be satisfied).
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4.4.2. Definition. Given a mirror pair (<) M, <) N), a pair 0/ fans b.M E
F( <) Al), b.N E F( <> N), the Calabi- Yau /amilies 0/ the eorresponding torie pre­
mirror data eonsist 0/ fiber eompactijied /amilies V N C P(b.N) = T(N), V M C

P(b.A1) = T(M).

Remark. Since P(b.M), P(b.N) have only abelian quotient singularities, its
(anti)canonical divisor is Q-Cartier. Families V N, V M are precisely anticanonical
systems of divisors. For r = 4 (d = 3), their generie members are nonsingular
Calabi-Yau manifolds; for d ~ 4 they are generalized Calabi-Yau varieties with
mild singularities.

4.5. Secondary lattices and tori. The equations (4.5) (resp. (4.6)) show that
points of v M (resp. v N) define some one-parametrie deformations of hyperstufaees
V N (resp. V M) represented by eoefficients a m , m E VM (resp. bn , n E VN).

On the other hand, aeeording to 4.4.1 a), these points correspond bijeetively to
l-cones of 6.M (resp. b.N) that is, to the irreducible divisors Dm at infinity of
Pie P(b.M) (resp. Pie P(b.N)) whieh in turn define one-parametrie subgroups in
Pie P(ßM) (resp. Pie P(~N)) and by restrietion, on members of VM (resp. VN).

This is the first approximation to the second part of the premirror data where
we need spaees parametrizing simultaneously members of V N and elements of
Pie P(~N) (9 C, and vice versa.

To get the seeond approximation, we want to take into aeeount that am , mEvM,

can never parametrize V N effeetively beeause the whole linear system is aeted upon
by T(N). Similarly, rays in Pie P(b.M) 0 C generated by Dm, m E VM, eannot be
linearly independent beeause divisors of monomials reduee to zero in Pie.

In order to proeeed systematieally, we have to eonstruet new pairs of lattices and
tori.

4.5.1. Secondary lattices. Denote by Z[VMJ the free abelian group generated
by vNI, and similarly for vN. Let Rel( 11M) be the kernel of the natural homomor­
prnsm Z[VM] -4 M: L:mEuM cm['m] f-+ L: cmm, and similarly for N. The image

of this homomorphism lVI C !vI is a lattice of finite index in M, and similarly we
define N C N. Thus we have exact sequences

(4.10)

(4.11 )

Denote by LN (resp. L M) the lattice dual to Rel(VM) (resp. Rel(VN)). Since (4.10)
and (4.11) split, the dual sequences are exaet. Identifying Z(VM)* (resp. Z(VN )*)
with space of funetions ZUM (resp. ZUN) and putting M* = N', N* = M', we get
exact sequences

o --+ N' -4 Z"M --+ L -4 0N , (4.12)

(4.13)

Clearly, N C N' C NQ, !vI C !vI' C AIQ. The embedding N -4 Z"M is just the
restrietion to VA'! of lV as the group of functions on lvI, and similarly for lV.



26

4.5.2. Positive cones. Denote by Rel>o(vN) the semigroup of relations with

non-negative coefficients, and by Rel~o(vN) the respective cone in R[VN)' Denote
by cM C LM 0 R the image of R~ in LM 0 R. Spaces Rel(vL) 0 Rand LM 0 R
are dual. Using the standard facts of convex duality, one sees that

We will now construct tori T(LN), T(LM) and show that they naturally parametrize
simultaneously pre-mirror pairs (moduli spacejcomplexified Picard group), 01' at
least some subspaces of the latter, when toric linear systems do not form locally
versal families. Then we will use cones cM, cN in order to construct their partial
compactifications crucial for understanding the mirror map.

4.6. Theorem. There exist two natural maps

(4.14)

T(LN)(C) -+ PiC(VM) es? C (4.15)

and similarly with (M, N) reversed. (The second map is multivalued: see (4.16)
below).

Proof. a). By definition,

T(LN) = Spec [LN] = Spec C[Rel(vh1)]'

vVriting Rel (vA1 ) multiplicatively, we identify it with the group of monomials TI mEv AI a':;t
such that I: Cmffi = 0, Cm E Z.

For a point ~ E T(N)(C), put ~m = xm(~) E C·. The natural action of
T(N): x m l---1' ~mxm, am l---1' c-mam leaves (4.5) invariant, and C[Rel(vA1)] can be
identified with the span of T(N)-invariant monomials in am . Hence C-points of
T(L N ) bijectively correspond to the T(N)-orbits of hypersurfaces in V N defined
by equations with all a m =1= o. This defines (4.14).

More algebraically, we have an affine hypersurface (4.5) in T(ZV M ) x T(N) which
is inVill'iant with respect to the described T(lV)-action. The affine quotient gives a
hypersurface in T(ZVM) x T(N)jT(N), which can be identified with T(LN) x T(N')
by choosing a splitting of (4.12). There is a natural isogeny T(N) -+ T(N') which
allows one to lift this hypersurface back to T(LN) X T(lv).

b). For an arbitrary torus T(L), we have a natural identification L 0 C =
Lie T(L)(C) which defines the exponential map exp: L 0 C -+ T(L)(C). Vve can
explicitly define an inverse map

log: T(L)(C) -t L0R+i10Rj2rriL

whose real part is



(4.16)
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and imaginary part is

L* 3 m l--t iarg x m (1J) E R/(21TiZ).

On the other hand, (4.12) up to isogeny coincides with

so that we have a natural isomorphism

whereas LN C PiC(P(ßM)) 0 R is a lattice commensurable with PiC(P(ßM)) (and
coinciding \vith it ifvM generates exactly M over Z as one sees from (4.10), (4.12)).
So finally \ve get, combining with res: PiC(P(ßM)) --t Pic(V M):

res 0 log; T(LN )(e) -+ PiC(P(ßlW)) 0 R EB PiC(P(ßM)) 0 Ri/21TiLN

--t Pic(V M) EB Pic(V A1) 0 Ri/21Ti res(LN)'

This is our multivalued map (4.15).

4.7. Partial compactiftcation. The cone t,N C LN 0 R dual to c:kr =
Rel>o(vM) ® R defines the affine toric variety A~N ::> T(N) whose function ring is
just-the span of T(N)-invariant monomials n a~"' with C m :2:: O. Hence it contains
in particular the point am = 0 for all m which defines the maximally degenerate
anticanonical hypersurfaces in P(.6N), the surn of all divisors at infinity.

We will use this degeneration below in order to trivialize the bundle of holomor­
phic volume forms on fibers of FN by choosing a form with period 1 along a specific
invariant cycle in the neighborhood of the degenerate hypersurface.

Now we proceed to refine the compactification A~N by taking into account various
possible choices of .6M E F{ <> M ).

For the proof of the following result, see Oda-Park [23]. Consider the cone of
convex functions on j\l 0 R linear on all cones of ßM. Restrict them on RVM

and then consider the image of the resul ting cone in LN 0 R. Denote this image
t,(.6. M ) C LN 0 R.

4.8. Proposition. a). e(.6M) is a closed convex finite polyhedml cone in LN 0
R. Under the identification LN 0 R = PiC(P(ßM ))R it coincides with the closure
of the ample cone of PiC(P(.6M )).

b). All cones c:(.6 M ) for .6 M E F( (> ~,r) and their faces form a finite convex
polyhedral fan f( (> M) with support c: N" the cones c(ßM) themselves are all cones
0/ maximal dimension of this fan.

In this way we get the following diagram of spaces:

The closed point p~ N E A~ N corresponding to Um = 0, mEvM, is covered by the
closed points .

Pdt::.,.r) E Ad~M)' L:J.M E F( <> M ).
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Of course, the similar picture of partial compactifications of T(LM) takes place
in the mirror setting. We now look at (parts of) T(L M )(C) a.s aspace parametrizing
(parts of) PiC(P(~N)) ® C for various ~N E F( <> M) and therefore furnishing the
arguments of the flffiction F counting rational curves on the members of various
compactified families V N = V N(JN). From this vantage point, the cones c(~N)

correspond to various convergence domains of the same function which in its G­
avatar depends on the moduli of V M and does not see any difference between
various compactifications ~N.

vVe will now make this more precise.

4.9. Curve counting function. We want to define an analog of the function
F (see 3.3) in our situation.

vVe will choose a fan ~N E F( <> N) and count rational curves C on a hypersurface
V E 1- Kp(~N)], 01' more precisely, parametrized rational curves which are non­
constant maps 'Pe: pI -t V.

Every such curve defines a Z-valued function on PiC(P(~N)): l- r-+ deg 'Pc(l-).
Hence we get a Z-valued function on LA1 which we denote, together with its ex­
tension to LM 0 C, by Ze. It is non-negative on the ample eone of PiC(P(~N))R)
that is on c(~N) C L M 0 R. Instead of logarithm, consider the function

Put

Define also

The positivity property above implies the foHowing fact:

Iqe(e)1 < 1 for aH 'Pe and aU eE U(~N) C T(LM )(e),

Iqe(e)l-+ 0 as Im(t(e)) -t 00 in c(~N).

Consider now the holomorphic tangent vector bundle TT(LA1 )(e). It can be canon­
ically trivialized by invariant vector fields. Restricting upon U(~N) we get

Finally we define (now assuming diln(P(oN)) = 4:

" qe(e)F~N(e;El,E2,E3) = (e;(E1 E2E3 ) +~ 1- (e) (lc,EI)(lc,E2)(lc,E3 )).

c qC

VVe remind to the reader that algebro-geometrie aspects of summing over C's are
far from being firmly established: see (15), [16J, [1].
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Consider now the open embedding

The closure U(ßN) of U(ßN) in A~(~N)(C) contains the maximal degeneracy point
P~(~N)' and all qC extend to this point and ~ish there so that

\Ve expect that F~N is meromorphic in the interior of U(ßN)'
Let us put now

4.9.1. Question. Does there ezist a meromorphic function F~ on S3(T) whose
restrietion on U(ON) coincides with F~N?

Ir the answer to this question is positive, this means that counting curves on a set
of flops of anticanonical toric hypersurfaces reduces to choosing various branches
of the same analytic characteristic function.

4.10. Periods ofthe mirror family. We now want to define the function Gon
apart Z of T( LM ) (C) considered as a moduli space for (compactified) hypersurfaces
in T(lvI).

\Ve will assume that there exists a fan ßM E F(0 Al) such that the generic
member of V M = 1-!{p(~M)1 is smooth. For d = 3 (r = 4) any ßM will do.

For Z we will take U(~M) = T(LM )\D(ßM) where D(~M) is the discriminantal
divisor of non-smooth anticanonical hypersurfaces.

In this way we get as in 3.3 (ltV = V M):

where.c is the sheaf of holomorphic volume forms.

4.10.1. Trivialization of L. To make it, we must choose a seetion w of 7r*ntv/zi
it suffices to define it up to sign. Following D. Morrison [21], [22] we suggest to
do it by choosing an appropriate invariant cycle , in the local system of hOlllOlogy
groups Hd(VM,a, Z), a E T(L M ) \ D(f:l J\1) = U(f:lM)' A complete understanding of
the situation requires a description of the relevant modular group representation

which we lack at the moment. However the following prescription fits all the ex­
amples.

a). Invariant cycle. Consider a (d + 1)-dimensional topological torus ,T =
(SI )11+1 C T(.Nf)(C) given by Ix n I = 1 for all n E N. Denote by U C U(ßM) the

set ofpoints a = {anln E VN} in U(ß.lvt) for which EnEülanl < 1. This lueans
that ,T n ~\1.11 = 0 for a E iJ,
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so that

H d is odd (e.g. d = 3) we have a surjeetive map

Denote by ,a the image of [,T] in Hd(VM,a, Z). By construction, it is monodromy

invariant over at least Ü C T(L M HC). Recall that geometrically 8 ean be described
as follows. Take a small tubular neighborhood r(VM,a) in P{.6M), then r(VM,a) \
VM,a restriets to an Sl-fibration a(VM,a) C r(VM,a) over VM,a. For a eycle , in
VM,al take its inverse image " in a(VM,a)' Then 8(,') = ,.

b). Residue map. Denote by Qd+1(log VM,a) the sheaf of meromorphic forms
wp on P(.6M) with pole of order ~ 1 on VM,a' There exists a wen defined map

for whieh

2
1 . j Wp = ( res(wp ).
?Tl i lai

c). Trivialization of.c. Choose wP,a in such a way that

1 WP" = 2rri, i. e. 1res(wp .• l = 1
iT ia

and trivialize .c by choosing W a = res(wp,a) as a unit seetion. Changing orientation
of 'YT results in changing the sign of Wa.

d). An explicit calculation of wP,a. On the affine chart T(L N ) x T(M) with
coordinates (an, x7 i

) where n E VN, nI"" nd+1 is a basis of lV, we ean put

(1 ""' n)-l -ld -1 dWp,R = - L...J anx Xl Xl A ... A X d+ 1 Xd+1·

nEvN

For a EU, we ean expand this and easily ealculate:

so that finally

4.11. Concluding remarks. \Ve have now completed the construction of the
toric pre-mirror data. This construction has however two drawbacks.

The first is that T(L M ) (resp. T(LN))) not always parametrize the whole lvlod
(resp. Pic) spaces. This is however true when Aut P(.6. M )has T(lvI) as its connectecl
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eomponent. And in general we cau hope that partial torie pre-mirrors eonstructed
here extend to complete mirror data.

The seeond is that we lack a general definition of the mirror maps q. The identity
map of T(LN) (resp. T(LM)) eertainly is not the eorrect one; aB examples suggest,
it is "tangent" to the correet one.

Edueated guesses about q in various situations were made in [22], [5], [9].

Addendum

(July 1994)

This report was written about a year ago. This version is only slightly revised
and corrected.

Here is a list of some new results related to the questions discussed in the paper.

Counting points. E. Peyre [24] formulated a fairly precise conjecture about the
constant c in (1.5) for anticanonical heights. He defined a Tamagawa measure that
depends on a choiee of the antieanonieal height; the relevant Tamagawa number
is the main ingredient of his constant. He has verified his predietion for certain
small blow ups. He has also checked that it agrees with previous ealeulations for
generalized fiag varieties and the singular series for eomplete interseetions furnished
by the circle method. One remaining indeterminaey eoncerns the eontribution of
the Brauer group and/or more general obstruetions of loeal-to-global type.

P. Salberger (paper in preparation) has shown that p2 with foul' blown up points
over Q and deleted exceptional curves has O(H(logH)4) points of height ::; H. His
method is a refinement of that in [18]. A very careful strategy of estimates allows
him to save one logarithm; unfortunately, it falls short of giving an asymptotic
formula.

V. V. Batyrev and Yu. Tsehinkel (paper in preparation) established the ex­
peeted analytic properties of the height zeta function of torie varieties, at least for
anisotropie tori. They developed a generalization of the Tate method which proved
to be very efficient for studying this problem. In particular their constant has the
same general structure as Peyre's one, with clearly visible eontribution from the
loeal-to-globaI 0 bstruetions.

Counting curves. An axiomatic treatment of the so called Gromov-Witten
classes whieh is the mathematieal basis of curve counting is given in

M. I(ontsevich, Yu. Manin. Gromov- Witten classes, quantum cohomology, and
enumerative geometnJ. Preprint MPI, 19!J4 (to appear in Comm. Math. Phys.)

This paper also contains a detailed diseussion of the Fano ease, which we omitted
here concentrating on the Calabi-Yau varieties.

The existenee theorems for Gromov-vVitten classes in the context of synlplectie
geolnetry are proved in

Y. Ruan, G. Tian. Mathematical theory of quantum cohomology. Preprint, 1994.

See also

A. Givental, B. IGm. Quantum cohomology of fiag manifolds and Toda lattices.
Preprint hep-th/9312096



32

M. I(ontsevich developed a very promising algebro-geometric approach to the
curve counting and derived precise formulas in

NI. Kontsevich. Enumeration 01 rational curves via torus actions. Preprint MPI,
1994.



33

References

[1] Aspinwall P., Morrison D. Topologieal field theory and rational eurves. Comm.
Math. Phys., 151 (1993), 245-262.

[2] Batyrev V.V. Dual polyhedra and mirror symmetry /or Calabi- Yau hypersur­
/aees in tone vaneties. Essen University preprint, 1992.

[3] Batyrev V.V. Variation 0/ mixed Hodge struetures 0/ affine hypersur/aces in
algebraie tori. Essen University preprint, 1992.

[4] Batyrev V.V., Manin Yu.I. Sur le nombre des points rotionnels de hauteur
bornee des varietes algebriques. Math. Ann., Bd. 286 (1990), 27-43.

[5] Batyrev V.V., van Straten D. Generolized hypergeometrie /unetions and ratio­
nal eurves on Calabi~Yau eomplete interseetions in torie varieties. Preprint Essen
University, 1993.

[6] Batyrev V.V. Quantum eohomologv rings 0/ tone mani/olds. Preprint MSRI,
1993.

[7] Bershadsky M., Cecatti S., Ooguri H., Vafa C. Holomorphie anomalies in
topologieal field theories. Preprint HUTP-93/AG08.

[8] Bershadsky M., Cecotti S., Ooguri H., Vafa C. Kodaira-Spencer theory 0/
gravity and exact results /01' quantum string amplitudes. Preprint HUTP-93/A025.

[9] Candelas P., de la Ossa X., Green P.S., Parkes L. A pair 0/ Calabi- Yau
mani/olds as an exaetly solub le supercon/ormal theory. Nuel. Phys ., B359 (1991),
21-74.

[10] Demazure M. Automorphismes et de/ormations des varietes de Bord. Inv.
Math., 39 (1977), 179-186.

[11] Ellingsrud G., Stromme S.A. The number 0/ twisted eub ie eurves on the
general quintic three/old. In: [12], 181-240.

[12] Essays on mirror mani/olds. Ed. by Sh.-T. Yau. International Press, Hong
I(ong, 1992.

[13] Franke J., Manin Yu.I., Tschinkel Yu. Rational points 0/ bounded height on
Fano varieties. luv. Math. 95 (1989), 421-435.

[14] I(atz Sh. On the finiteness 0/ rational curves on quintic three/olds. Camp.
1tlath., 60 (1986), 151-162.

[15] Katz Sh. Rational curves on Calabi- Yau three/olds. In: [12], 168-180.

[16] I(ontsevich NI. Aoo-algebra$ in mirror symmetry. Talk at the Bonn Arbeit­
stagung, 1993.

[17] Libgober A., Teitelbaum J. Lines on Calabi- Yau complete intersections,
mirror symmetry, and Picard-F1Lchs equations. Duke M.J, Int. Math. Res. Notices,
1(1993), 29.

[18] !vIanin Yu.I., Tsehinkel Yu. Points 0/ bonnded height on dei Pezzo sur/aces.
Camp. 1tIath., 85 (1993), 315-332.

[19] Manin Yu.I. Note8 on the arithmetic 0/ Fano three/olds. COIUp. Math., 85
(1993),37-55.



34

(20] Mori S. Three/olds whose canonical bundles are not numerically effective.
Ann. of Math., 116 (1982), 133-176.

{21] Morrison D. Mirror symmetry and rational curves on quintic :J-/olds: A
guide tor mathematicians. Duke University preprint, 1991.

[22] Morrison D. Picard-Fuchs equations and mirror maps lor hypersurlaces. In:
[12], 241-264.

[23] Oda T., Park H.S. Linear Gale trans/orm and GelJand-Kapmnov-Zelevinsky
decomposition. Töhoku Math. Journ.,43 (1991), 375-399.

[24] Peyre E. Hauteurs et mesures de Tamagawa sur les varietes de FanD. Max­
Planck-Inst. Preprint 1993.

[25] Schmidt W.M. The density 01 integer ]XJints on homogeneous varieties. Acta
Math., 154 (1985), 243-296.

[26] Witten E. Mirror maniJolds and topological field theory. In: [12], 265-278.


