PROBLEMS ON RATIONAL
POINTS AND RATIONAL CURVES
ON ALGEBRAIC VARIETIES

Yu. 1. Manin

MPI / 94-86

Max-Planck-Institut fiir Mathematik
Gottfried-Claren-StraBe 26
D-53225 Bonn

Germany






PROBLEMS ON RATIONAL POINTS AND RATIONAL CURVES
ON ALGEBRAIC VARIETIES

Yu.I.Manin
0. Introduction

0.1. Basic problems. In this report, we review some recent results, conjec-
tures, and techniques related to the following questions.

Question 1. Let V be a (quasi)projective algebraic variety defined over a number
field k. How large is the set of rational points V(k)?

Question 2. Let V be a compact Kahler manifold. How large is the set of rational
curves in V, or the space of analytic maps P! — V?

More precisely, in the arithmetic setting we choose a height function hy, : V/(k) —
R, and we want to understand the behavior of

Ny(H) :=card {z € V(k) | hp(z) < H} (0.1)

as H — .

In the geometric setting, we replace the (logarithmic) height by the degree of the
curve with respect to the Kéhler class, coinciding with its volume with respect to
the Kahler metric (Wirtinger’s theorem). If the degree is bounded by H, the space
of rational curves is a finite-dimensional complex space, and we might be interested
in the number of its irreducible components, their dimensions, their characteristic
numbers, etc.

0.2. A heuristic reasoning. In order to see what geometric properties of V'
influence the behavior of the two sets, let us start with the following naive reasoning.

Let V = V(n;dy,...,d;) be a smooth complete intersection in P™ given by the
equations Fi(zg,...,z,) =0, 1 =1,...,r, where F; is a form of degree d;.

0.2.1. Arithmetic setting. Assuming that F; have integral coefficients we take Q
as the ground field. Every rational point is represented by a primitive (n + 1)-ule
of integer-valued coordinates z = (zg,...,zn) € Z;:IL. A standard (exponential)
height function is h(z) = max;(|z;|).

There are about H™*! primitive (n + 1)-ples of height < H. A form F; takes
about H% values on this set. Assume that the probability of taking the zero value
is about H~%'  and that the conditions F; = 0 are statistically independent. Then
we get a conjectural growth order

Ny(H) ~ H*H-Xidi (9) (0.2)

for the number of points of the height < H in V(Q).

0.2.2. Geometric setting. Now we will allow F; to have complex coefficients,
and endow V(C) with the metric induced by the Fubini-Study metric on P". We
normalize it in such a way that a line in P" has degree (volume) 1.

Consider a projective line P* = Proj Clto,t;]. Any map ¢ : P! — P" can be
written as
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(to :tl) — (fo(to,fl) D fn(to,tl))

where f; are forms of some degree £ > 0 not vanishing identically and relatively
prime. )

Denote by M (P™) the space of all (n + 1)-ples of forms of degree k (except
(0,...,0)) up to a common scalar factor. Obviously,

Mk (P") = P+ (k+1)-1

The space M¥(P") C My(P") is Zariski open and dense.

Similarly, denote by M (V) the space of maps P! = V of degree k. Its closure
M (V) C M #(P") is defined by a system of polynomial equations on the coefficients
of fi’s derived from

E(fO(tht]):' . 7fﬂ(t01t1)) = 07 1= 1" ERE (03)

Clearly, (0.3) furnishes kd; + 1 homogeneous equations of degree d; corresponding
to the monomials #3¢5% 17 Tt follows that

dimMi(V) > (n+1)(k+1)— 1 — i(kd,- +1)=k(n+1- id,-) +dimV; (0.4)

i=1 i=1

r
deghi (V) < [ dr%+. (0.5)

=1

0.3. Discussion. a). Since the geometric degree of a curve corresponds to the
logarithmic height of a point (with respect to the same ample class), the r.h.s. of
(0.2) and (0.4) predict the same qualitative behavior of the number of points, resp.
of the dimension of the space of maps, depending on the sign of n +1 — Y_I_, d;.
Now, this last number 1s essentially the anticanonical class of V:

—~Ky 2 Ov(n+1-) d) (0.6)

=1

in the Picard group of V.

Boldly extrapolating from the complete intersection case, we may expect many
rational curves and points when —R'v is ample (V is a Fano manifold), and few
when 'y is ample. The intermediate case 'y = 0 must be more subtle.

For example, if we disregard the difference between M (V) and M(V) and
assume that (0.4) is an exact equality, we expect a dim(V)-dimensional family of
parametrized rational curves on V of any degree k. And if in addition dimV =3 =
dim Aut P!, we expect only a finite number n; of rational (unparametrized) curves
of degree k belonging to V for all & > 1. For quintics in P5, this was conjectured
by Clemens (cf. below).



b). These expectations are fulfilled when dim V' =1 that is, when V is a smooth
compact curve. More precisely, when —Kv is ample, genus of V is zero, V' may be
a non-trivial form of P! over a non-closed field k¥ which has no k-points. However,
after a quadratic extension of k, V will become P!, and the point count with respect
to an anticanonical height gives an asymptotic formula agreeing with (0.2). And
the count of maps P! — P! is unconstrained.

When Ky = 0, one gets Ny(H) ~ c(log H)/? in view of the Mordell-Weil
theorem for elliptic curves, so that (0.2) is still valid if one interprets the r.h.s. as
“O(H*®) for any e > 0". And there are no maps P! = V of degree k > 1.

Finally, when Kv > 0 one gets Ny(H) = O(1) (Faltings’ theorem), and any
parametri-zed rational curve is constant.

c). Starting with dimension two, the situation becomes much more complex and
problematic. Let us start with geometry.

For smooth m~dimensional Fano varieties, Mori proved that through every point
passes a rational curve of (—Kv)-degree < m + 1). Moreover, any two points can
be connected by a chain of rational curves. But a quantitative picture of the space
Map(P!, V) remains unknown.

For general type varieties (v ample), we expect only a finite dimensional family
of unparametrized rational curves. However, this was proved only for varieties with
ample cotangent sheaf which is a considerably stronger assumption.

Finally, for manifolds with Ky = 0 (and Kahler holonomy group SU), physicists
recently suggested a fascinating conjectural framework for the curve count which
we will review in the second part of this report.

Passing to the arithmetic case, let us notice first that {0.2) can be proved by the
circle method over Q when n + 1 is large in comparison with ) d; and when the
necessary local conditions are satisfied (see below).

On the other hand, already for n = 3,r = 1,d = 3, (0.2) may fail for the following
reason: it predicts the linear growth for Nv(H), but V may contain a projective
line defined over Q (there are 27 lines over Q) in which case counting points only
on this line we already get Ny (H) > cH?. Therefore, if anything like (0.2) may be
expected in general, we must at least stabilize the situation by allowing ground field
extensions and deleting some proper subvarieties tending to accumulate points. And
in the case Ky = 0 we may have to delete infinitely many subvarieties to achieve
the predicted O(H¢) estimate.

We elaborate this program in Chapter 1 below. Its goal, roughly speaking, lies
in establishing a (conjectural) direct relation between the distribution of rational
points on V and the geometry of rational curves on V.

In addition, there exists a well known analogy between rational curves and ra-
tional curves. In Arakelov geometry, rational points on V become “horizontal
arithmetical curves” on a Z-model of V, endowed with an Hermitean metric at
arithmetical infinity. In the framework of this analogy, the height becomes literally
an arithmetical intersection index.

We want to draw attention to an unexplored aspect of this analogy: what in
arithmetics corresponds to the local deformation theory of embedded curves?

Here is a relevant fragment of the geometric deformation theory. Below V de-
notes a quasiprojective variety defined over an algebraically closed field &, and
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Map (P!,V) is the locally closed finite quasiprojective scheme parametrizing mor-
phisms P! — V. For simplicity, in the next Proposition we consider only the
unobstructed case.

0.4. Proposition. Let ¢ be a morphism P! = V, [¢o] € Map (P!,V) the
corresponding closed point, Ty the tangent sheaf to V.

If HY(PY,p*(Tv)) = 0, then [¢] is a smooth point, and the local dimension of
Map(P*, V) at ] equals dim HO(P! p*(Tv)).

For a proof of a more general statement, see Mori [20].
Assume now that ¢ is an immersion, and V is smooth in a neighbourhood of
©(P'). Then we have the following sequence of locally free sheaves on P!:

0— Tp1 — 99'(TV) — N[<P] -0 (0.7)

where N, is the normal sheaf. Hence Nj, = ®{Z] O(m;), s = dim(V'). Recall also
that Tpr = O(2).

We can now prove that (0.4) becomes exact equality locally on Map (P!, V) if
(V') is nicely immersed infinitesimally:

0.4.1. Corollary. Assume in addition that m; > —1 foralli =1,...,s — 1.
Then [p] is smooth, and
dimy,) Map(P',V) = degp*(—~Kv) + dimV (0.8)

which coincides with the r.h.s. of (0.4) in the complete intersection case.

Proof. The smoothness of [¢] follows from Prop. 0.4. Put now
A = {tjm; = =1}, a = card(4),

B = {i|lm; 2 0}, b = card(B).

We have a + b = s~ 1; degp*(-Kv) =2+ ,mi+ Y gmj=2—a+ Y gm;
(take the determinant of (0.7)), and, again from (0.7),

dimy,) Map (P!, V) = dim H%(Tp:) + dim H)(N[‘p]) =

=3+ (mi+1)=3+b+) mi=3+b+degp*(-Ky)—-2+a=
B B

dimV + deg " (- LKv).

In particular, when dim V' = 3 and — Ry = 0, every immersed curve with normal
sheaf O(—1)® O(—1) must be isolated because the local dimension of the map space
equals dim V' = 3 and this is accounted for by reparametrizations.

The simplest example when this may occur generically is that of a smooth quintic
threefold V. In fact, H. Clemens conjectured that a generic smooth quintic contains
only finitely many smooth rational curves of arbitrary degree k, and that all of them
have normal sheaf O(—1)®O(—1). Sh. Katz proved partial results in this direction:
see [14], [15].



0.5. Problem. FEstablish an analog of the geometric deformation theory for
embedded arithmetical curves.

Specifically,

0.6. Problem. Find conditions on arithmetical normal sheaf (or higher order
infinitesimal neighborhoods) of an arithmetical curve which are necessary for the
generic point of this curve to lie on a rational curve.

(We want to find an exact expression of the feeling that an arithmetical curve is
deformable only if its generic point lies on a rational curve).

0.7. Rational curves in other contexts. Besides algebraic geometry and
number theory, the study of rational curves was recently motivated by quantum
field theory and symplectic geometry. We will finish this Introduction with a brief
discussion of some relevant ideas.

0.7.1. Physics. Physicists start with a space of maps Map (52%,V) where the
target space V is endowed with a Riemannian metric ¢, and an action functional
S: Map (S%,V) - R.

V can be thought of as a space-time with a possibly non-trivial gravity field and
topology. Any ¢ : S? — V defines a world-sheet of an one-dimensional object,
a “string”, which replaces the classical image of point-particle. Alternatively, one
can think about S$% as a two-dimensional space-time in its own right. Then (V, g)
in a neighborhood of ¢(.S) represents classical fields on S.

Action of a virtual world-sheet ¢ : S? — V is usually given by a Lagrangian
density which must be integrated over 52, Here we will look only at the simplest
action functional

Ste) = [ vol (¢"(a)) (0.9)

In other words, S(y) is just the surface of the world sheet. Non-trivial stationary
points of this action are just minimal surfaces. The path integral quantization of
this theory in the stationary phase approximation involves a summation over these
minimal surfaces

Imagine now that (V, g) is not just a Riemannian manifold, but a complex Kahler
one. It is well known that in this case minimal surfaces in V (actually, minimal
submanifolds of any dimension) are precisely complex subvarieties (Wirtinger’s the-
orem).

A physical context in which V acquires a natural Kahler structure arises in
string compactification models where V' appears as a Planck size compact chunk
of space-time adding missing six real dimensions to the classical four-dimensional
space-time.

0.7.2. Symplectic geometry. The basic mathematical structure of the classi-
cal mechanics is a triple (V2",w, H) where V2" is a smooth manifold, w is a closed
non-degenerate 2—form on V?", and H is a function on V called Hamiltonian. Given
such a triple, we want to understand the geometry of the flow defined by the vector
field .X on V such that dH = :x(w). In particular, we want to know how a domain
of initial positions B C V may change with time.



Any Hamiltonian flow preserves the symplectic volume v(B) = [pw". On the
other hand, certain unstable flows like geodesic flows on hyperbolic manifolds se-
verely distort B: a small ball eventually becomes spread all over V forming a
fractal-like structure. Nevertheless, (exp(tX)B,w) remains symplectomorphic to B
because Liex{w) = dix(w) + ixdw = 0.

V.I.Arnold in the sixties suggested that exp(tX ) B should satisfy some additional
constraints displaying then unknown “symplectic rigidity” properties.

M.Gromov’s work confirmed these expectations. He proved in particular that
the unit ball

2n n
(B, = {z| Za:,2 <1}, w= Zd:z:; AdTitn)
i=1 i=1

is not symplectomorphic to any open subset of

(Viee = {z| lz] < 1 =€}, w =Y _ dz;i Adzign).

=1

Gromov’s argument involves rational curves in the following ingenious way. No-
tice first that in the example above we envision the two symplectic spaces B,
and V)_, not in terms of w but rather in terms of the standard Euclidean met-
ric ds? = Y (dz;)?. But if we are considering pairs (g,w) consisting of a qua-
dratic and an alternate form, say, on a linear space E, there is a natural sub-
class of such pairs corresponding to Hermitean forms, which can be character-
ized by the existence of a complex structure J : E — E, J? = —1 such that
w(Jz,y) = g(z,y), 9(Jz,y) = —w(z,y).

Applying this to tangent spaces of a symplectic manifold (V,w) and shifting
attention from (w, g) to (w,J) we come to the following notion due to Gromov.

An almost complex structure J on V is tamed by w, if g(z,z) := w(Jz,z) > 0
for any tangent vector z, that is, if g+ 1w define a Hermitean metric on the tangent
bundle to V. Now, even though J may be non-integrable, its restriction on surfaces
is integrable, so that it makes perfect sense to speak about holomorphic maps
P! = (V,J).

M.Gromov derives his results from a thorough study of such rational curves,
establishing existence of curves of small volume. (In a similar vein, rational curves
of small degrees play the crucial role in the Mori theory).

E.Witten used Gromov’s construction as a deformation device allowing one to
correctly count the number of rational curves on Calabi-Yau manifolds: cf. also
[16].

This paper is structured as follows. §1 is devoted to the analytic methods to count
rational points on projective varieties, whereas §2 reviews the algebro-geometric
approach. In §3 we turn to the curve count, explaining the simplest example of
Calabi-Yau mirrors. Finally, §4 is devoted to the explanation of toric mirror con-
structions. For the most part, proofs are omitted.



CHAPTER 1
COUNTING RATIONAL POINTS

§1. Analytic methods

1.1. Heights on projective varieties. Let k£ be an algebraic number field.
Denote by M; the set of all places of k; for v € k, let k, be the completion of k at
v. Define the local norm |.|, : k& — R* by the following condition: if i is a Haar
measure on k', then u(alU) = |a|,u(U) for each measurable subset U.

Let z € P™(k) be a point in a projective space endowed with a homogeneous

coordinate system. If coordinates of z are (zo,...,zn),z; € k, put
= H miax(|:z:,-|,,). (1.1)
vE M,

The product formula shows that this is well defined.

More generally, let V be a projective variety defined over k, L = (L,s) a
pair consisting of a very ample invertible sheaf L and a finite set of sections
s = {so,...sn} C I'(V,L) generating L. For a point z € V(k) and an arbitrary
choice of a local section ¢ of L non—vanishing at z we put

H ma.x (si/o)(z)]v)- (1.2)

vE M
For Ly = (Ly,{s}}), Ly = (L2, {s%}), put Ly @ Ly = (L1 ® L2, {s} ® s¢}). Then
hL1®L2(J") = hLl (I)hLz(I)‘ (1 3)

In particular, consider the anticanonical height h,-1 on P"(k) defined by the
(n + 1)-th tensor power of (O(1);{zq,...,zn}). Then h,-1(z) = h(z)**! where
h(z) is given by (1.1).

When s in the definition of L is replaced by another generating set of sections, hy,
is multiplied by exp(O(1)). The resulting set of height functions consists of Weil’s
heights. There is a different choice of additional structure allowing one to define
height functions directly for non necessarily ample sheaves: the Arakelov heights
are obtained by choosing an appropriate set of v-adic metrics ||.||, on all L @ &,
and putting, for L = (L, {{|.{+}),

hi(z) = ] llo(=)I5"
vE My
These heights are also multiplicative with respect to the obvious tensor product,
and up to exp O(1) are independent on the choice of local metrics and coincide with

the respective Weil heights.
For a subset U C V(k), put

Ny(L; H) = card {z € UlhrL(z) < H}. (1.4)
For ample L, this number is always finite. We want to understand its behavior as

H — oo. In this section, we review main situations when an asymptotic formula
for (1.4) is known. In all cases which I am aware of, such a formula is of the type

Ny(L; H) = cH"W(log H)v ) (1 4 o(1)) (1.5)

for some constants ¢ > 0,8u(L) > 0,ty(L) > 0. The archetypal result is the
following theorem due to Schanuel:



1.2. Theorem. Putd = [k: Q]. Then

O(Hl/2logH) for d=n=1
Non —]; H) = ,k H + { ’ 1.6
Pk (w ) = c(n, k) O(H'~/4n+1)  otherwise; (49
h 2T1+r27rr2 n+l1
k _ e 1'1+T2"1‘ .
H = e ( D2 ) Wt o

Here h denotes the class number of k, (i its Dedekind zeta, vy (resp. r2) is the num-
ber of its real (resp. complez) places, D is the absolute value of the discriminant,
R the regulator, w the number of roots of unity in k.

The main feature of (1.6) is that Npny)(w™!; H) grows asymptotically linearly in
H, whatever the dimension n and the ground field k are. This became possible only
because we have chosen local norms |.|, as Haar multipliers. Therefore the height
function (1.1) is non-invariant with respect to ground field extensions: if we replace
k by k' O k, h(z) becomes h'(z) = h(z)¥'**! so that P"(k) does not contribute
to the main term of the asymptotic formula for Npny(w™!; H) : essentially, we
count only “new points”.

Schanuel proved (1.7) by reducing the problem to that of counting lattice points
in a large domain. The volume of the domain furnishes the leading term, and if
the boundary is not too bad, we get an asymptotic formula. We will now sketch an
alternate approach via zeta functions.

1.3. Zetas. Consider the following abstract setting. Let U be a finite or
countable set, hr, : U — R a counting function (this means that Ny (L; H) defined
by (1.4) is finite for all H). Assume moreover that Ny(L; H) = O(H®) for some

¢ > 0. Put
Zy(Lis) = > hu(z)™". (1.8)
el

The better we understand the analytical properties of Zy(L;s), the more precise
information about Ny (L; H) we can obtain. We will distinguish here four levels of
precision.

Level 0: Convergence abscisse. Put
B = Pu(L) = inf {¢ | Zu(L;s) converges for Re(s) > o}. (1.9)

This is well defined and invariant if one replaces h by exp(O(1))h. In particular, if
hi is a Weil or Arakelov ample height, 3 depends only on the isomorphism class of
the relevant ample sheaf L.
It gives the following information about Ny(L; H):
—oo if U is finite;

L)= :
Pu(L) { lim sup &%‘ﬁ > 0 otherwise.

In other words, if 8 > 0, we havefor alle > 0:

O(HP*e),
QHA-¢).

(1.10)

Ny(L:H) = { (1.11).
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Level 1: a Tauberian situation. Assume that § = Gy(L) > 0, and for some
t = ty(L) > 0 we have

Zu(Lss) = (s - B)*G(s), (L12)
where G(8) # 0, and G(s) is holomorphic in a neighborhood of Re(s) > 5. In this
case

G(B) HP -1
Ny(L; H) = —*~—(log H 1 +0o(1)). 1.13
(L H) = T - (log. B (1 +o(1) (1.13)
In particular, assume that U = Uy -+ - XUp, hp(u1, ..., um) =~hL1(u1) coohn, (Um).

Put 8; = Pu,(Li), ti = ty;(L;) whenever they are defined, and § = max; (5;),J =
{1 | 8 = B;}. Using the zeta-description of these numbers, one readily sees that

Bu(l) =8, ty(L)=>) t. (1.14)

icJ

Formula of the type (1.13) is valid for (U, hy) if the Tauberian condition is assumed
only for U;, hy,; with : € J.

Level 2: analytic continuation to a larger halfplane. Instead of axiomatizing the
situation, I will only remind the contour deformation technique. Let us start with

the formula valid for 8’ > §:

Nu(Li H) = /ﬁ T H L s)ds. (1.15)

B —ioco S

In favorable case, one can integrate instead along a vertical line Re(s) = v <
adding the contribution of poles Zy(L;s) for 4 < Re(s) < B'. This contribution
constitutes the leading term of the asymptotics; it will be of the type cH? P(log H)
where P is a polynomial if Zy(L;s) has a pole at s = 3 as its only singularity in
v < Re(s) < f'. The integral over Re(s) = v will grow slower, possibly as O( H#~¢),
if Zy has no more poles in Re(s) > 4, and can be appropriately majorized.

To accomplish the necessary estimates, one has sometimes to first replace Ny (L; s)

by an appropriate average, and the r.h.s. of (1.15) by something like gj—if: ﬁT)ZU(L; s)

which converges better.

Level 8: ezplicit formulas. If one has a well-behaved meromorphic continuation
of Zy(L; s) to the whole complex plane, one can sometimes push 8’ to —oo in (1.15)
and obtain a precise formula for Ny (L; H) as a series over all poles of Zy(L;s).

1.4. A generalization of Schanuel’s theorem. The behavior of the height
zeta-function (1.8) is well understood only for two clases of projective manifolds:
a) Abelian varieties; b) homogeneous Fano manifolds.

If U =V(k),V is an Abelian variety, L is an ample symmetric sheaf on V, one
can use Néron-Tate’s height A, to count points. Denote by W the image of V(k) in
V(k)® R, and let t be the order of V(k)iors. Then flL(m) = exp(q(z mod V(k)ors)
where g is a positive quadratic form on V(k)®R so that our zeta is a theta-function:

Zy(Lis) =1t ) exp(—q(y)s). (1.16)
yeW
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Hence, if r :=rk V(k) > 0, we have 3 > 0, and
Nyoy(L; H) = clog™? H(1 + o(1)). (1.17)

Notice that the convergence abscisse Re(s) = 0 is also the natural boundary for
Zy(L; s). For abelian varieties, Ky = 0 so that (1.17) matches our naive expectation
(0.2).

Let us turn now to homogeneous Fano varieties.

1.4.1. Theorem. Fuery homogeneous Fano variety V 1is isomorphic to a gen-
eralized flag space P\ G where G is a semi-simple linear algebraic group, and P is
a k-rational conjugacy class of parabolic subgroups.

If V(k) # 0, we can take P to be a parabolic subgroup defined over k.

For a proof, see Demazure [10].

Flag spaces P\ G admit a distinguished class of heights which can be defined in
terms of Arakelov metrics invariant with respect to maximal compact subgroups of
the adelic group of G. For such heights, the zeta function of V = P\ G becomes
essentially one of the Langlands-Eisenstein series. Their deep theory developed by
Langlands allows one to use the technique of contour integration of the Level 3
above, and prove the following theorem, generalizing 1.2:

1.4.2. Theorem. If V is a homogeneous Fano variety with V(k) # @, then for
a distinguished anticanonical height we have

Ny(—-Kvy;H)=Hp(logH)(1+ H™*) (1.18)
where € > 0, and p is a polynomial of degree rk Pic(V) — 1.

For a proof, see [13]. In particular, Sy (—Ky) = 1.

This theorem can be extended to the distinguished heights corresponding to other
invertible L. It must be stressed however that, even for projective line, there are
natural situations when the relevant heights are not distinguished. This happens on
accumulating Fano subvarieties, when a height is induced from the ambient space:
see the next section. In the homogeneous case,the asymptotic is of the same form.
A very interesting question of characterization the leading term coefficient directly
in terms of the anticanonical height was recently attacked by E. Peyre.

The simplest variety for which the analytic properties of Zy beyond the con-
vergence abscisse are unknown is the affine Del Pezzo surface of degree 5 over Q
which can be obtained by blowing up four rational points on P? and then deleting
all 10 exceptional curves. One reason for this may be a wrong choice of the func-
tion itself. The mirror conjecture on the curve count on, say, three-dimensional
quintics, furnishes analytic continuation for a geometric version of the height zeta

where the contribution of the curve z is (log A(z))? lf—(h’ir—)L_ rather than our simple-
minded h(z)7*. It would be quite important to guess a version of Zy(L;s) with
good analytic properties.

1.5. Circle method. We will now briefly explain a classical approach to
counting points which is efficient for Fano hypersurfaces and complete intersections
(mostly over Q) with many variables.
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Let X be a finite set, F': X — Z a function, e(a) = ¢*™*, Put

S(e) = Six,p(a) = Y _ e(aF(z)). (1.19)

z€X
Then .
card {z € X | F(z) =0} = j S{a)da. (1.20)
0
A useful version of this formula refers to the case of a vector function F = (F,..., F;):

X — Z7. Then a = (ay,...,a,) varies in a unit cube, aF(z) = Y_ a;Fi(z), S(a) is
again defined by (1.19), and

1 1
card {z € X | F(z) =0} = /0 /0 S(a)day ... da,. (1.21)

The circle method, when it works, gives a justification to the following heuristic
principle:
1.5.1. Circle principle. Under favorable circumstances, there ezists a finite
. . - (i) (i) ,
set of rational points o' = {5};5-,...,1;-,—} and small cubes I centered at these
9 r

points (“major arcs”) such that
1 1
/ / day...da, = Z S(a)day . ..day + {a small remainder term}.
0 0 —~ J10

To get some feeling of why it might be true, and what it implies, let us look at
the case r = 1. First of all, the values of S(a) at rational points are related to the
distribution of values of F(z) modulo integers:

S(0) = card(X); S(%) = card {z | F(z) even} — card {z | F(z) odd};

a

S(q) = Z e?™P/9card {z | F(z) = p mod g¢}.

p mod g
And if X = [1,...,N] with large N, F(z) = z?, then 5(%) is approximately
% x {a Gauss sum} decreasing as % for large g < N.

Hence we may expect that S(«) is relatively small (in comparison with the
number N of its summands) outside of a neighborhood of the set of rational points
with denominators bounded in terms of N.

In the classical additive problems with large number of summands k, the remain-
der term can be effectively damped as k — oo, because

S(‘\’k,pl+...+ph)(a) = S(x’p)(a)k, F,' =Fo pr;. (1.22)
For example, in Waring’s problem of degree n with & summands,

(X, F)=([0,...,[M'")},z + - + 2} — M)
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so that
A N 1
card {(z;) | ZI? = M} =/ e—?maM( Z e"z”‘“’")kda.
=1 0 =0

Below we review some results of W. Schmidt [25] who applied the circle method
to the intersections of hypersurfaces in a projetive space over Q. In fact, he worked
with the corresponding affine cone, but this only changes the coefficient in the
asymptotic formula.

1.5.2. The setting. Consider a finite system of r forms in s variables of degrees
> 2:F = {F,...,F,}, with integral coefficients. Let V' be the variety {F; = 0}
in the affine space. Let ryq be the number of forms of degree d, and r = 3, 7;.
W. Schmidt proved an asymptottic formula of the type (0.2) in the cases when
"the number of variables is large, and the forms are not too degenerate”. Both
conditions are used as a refined substitute for the classical damping effect (1.22).
Let us state them more precisely.

A. Many variables. The basic bound is written in terms of the number
v(r2,...,rx) = max {s | for some F and some prime p, F(Q,) = 0}.

In other words, s > v(rs,...,7&), implies p-adic solvability for all p and all F' with
a given vector degree.

B. Degeneracy. The degeneracy is measured in terms of the tensor rank, well
known in the computational complexity theory. Specifically, for one form F put

h(F) = min {h | there exist non — constant forms Ay, By, ..., As, By € Q[z1,...,z,]

such that F = 4By + -+ + Ay By }.
For a system of forms of the same degree F = {F}}, put

h(F) =min {h(}_ciFi) | ci € Q}.

Finally, for a general system of forms put hq = h(degree d part of F).

1.5.3. Theorem. Assume that
a). hg 2 24dd!rdkv(r2, ce s TE).
b). dim V(R) > s — b, .

Then the number of integral points of V in {|z;| < H} 1s
pH"ET(1 4+ O(H™®)), € >0,

where the constant p > 0 1s a product of local densities.

Turning to the base of the cone V', we again see the linear growth rate with
respect to an anticanonical height, at least when this base is only mildly singular
so that the anticanonical sheaf exists and is given by the same formula as for the
smooth complete intersections.
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§2. Algebro-geometric methods

2.1. Accumulating subvarieties. The analytic methods described in §1 work
efficiently only for those Fano varieties which are either homogeneous or complete
intersections with many variables (or, more invariantly, of large index). Moreover,
their success seems to be connected with the fact that the rational points are uni-
formly distributed with respect to a natural Tamagawa measure.

Algebro-geometric data suggest that generally we may not expect such a unifor-
mity, and that rational points tend to concentrate upon proper subvarieties. Below
we will discuss several ways to make this idea precise. Let U be a quasiprojective
variety over a number field k.

a. Zarisks topology. Denote by V the closure of U(k) in Zariski topology. If
a compactification of U is a curve of genus > 1, then V is a proper subvariety
of U. This fancy way to state Faltings’ theorem leads to the generalized Mordell
conjecture: we expect that V is a proper subvariety of U whenever U is bira-
tionally equivalent to a variety of general type. Roughly speaking, this means that
the description of U(k) can be divided into two subproblems: to understand the
distribution of rational points on varieties with K < 0, and to understand the
distribution of such subvarieties in varieties of general type.

This pattern is characteristic for all definitions of accumulation.

b. Hausdorff topology. Let k& = Q. B. Mazur recently suggested that U(Q)
may be Hausdorff dense in the space of R-points of its Zariski closure V. If this is
universally true, it implies that Z cannot be a Q-Diophantine subset subset of Q
so that not all Q-enumerable subsets are Q-Diophantine. (Recall that £ C Q" is
Q-Diophantine if it is a projection of U(Q) C Q™**™ for some affine U defined over
Q).In particular, Matiyasevich’s strategy of proving the algorithmic undecidability
of Diophantine equations over Z would not work for Q.

¢. Measure theory. Again for simplicity working over Q consider the limit

N
= 1 -1 .
= v s
of the averaged delta-distributions over rational points z; € U(Q) ordered, say,

by increasing height. If such a limit exists, the support of p provides a notion of
accumulating subset which may be finer than the topological closure.

d. Point count according to the polynomial growth rate. The following notion
was suggested in [4]: choose a height function hy on (a projective closure of) U
and call a Zariski closed subset V C U accumulating w.r.t. hy if

Bu(L) = Bv(L) > Bu\v(L),

where the growth order (7 is defined by (1.9) or equivalently (1.10). One easily sees
that there exists a unique minimal accumulating subset Vi; putting Uy, = U \ 1
and applying the same reasoning to U; etc, one gets a sequence of Zariski open

subsets
Usg=UDU, DU, D... (2.1)
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such that U; \ Ui+ is the minimal hp-accumulating subset in U;. A description of
(2.1) and of the corresponding growth order sequence

Buo(L) > Buy (L) > Pu,(L) > ... (2.2)

is the natural first goal in understanding U(k), which can be best attacked by
algebro-geometric means.

We will now report on the results of [18], [19] concerning mostly Fano varieties,
in particular surfaces and threefolds.

2.2. Invariant o and reductions. Let V be a projective manifold (we can
also allow mild singularities). Denote by N/, (resp. ijple) the closure of the
cone generated by effective (resp. ample) classes in NS(V) ® R where NS is the

Néron-Severi group. For an invertible sheaf L, put

o(L) =inf{p/q | p,q€Z,q>0,p[L] +qKv € NJ;;}.

If V is Fano and L is ample then a{(L) > 0. The following two results allow us
to reduce in certain cases the calculation of Sy(L) to that of Sy(—Kv), if a(L) is
considered as a computable geometric invariant.

2.2.1. Theorem on the upper bound. a). For every ¢ > 0, there ezists a
dense Zariski open subset U(e) C V such that for all U C U(e) we have

ﬁu(L) < a(L)ﬁu(-—I&'v) + €. (2.3)

b). If in addition (L) ts rational (and positive), there ezists a dense open subset
U C V such that for all U’ C U we have

Bu:(L) < a(L)Bu(—Kv). (24)

Proof. a). Take p/q very close to a(L) such that p[L] + ¢Kv is effective. Then
p/q = a(L)+n with small n > 0. Denote by U(p, g) the complement to the support
of base points and fixed components of |pL + ¢Kv|. For all z € U(p, ¢)(k), we have

hprtqr(z) > > 01e hy(z) > chi/}:—(m), so that

Bupay(L) < gﬁwp.q)(~ffv) = (a(L) + 1)Buip.g(—Kv).

b). If &« = p/q, we can put U = U(p, q).

Remark. This Theorem shows that it is important to know whether (L)} is
rational for all ample L on Fano manifolds. This is true for surfaces in view of
the Mori polyhedrality theorem and the convex duality of N/;; and NV, ample- FoOr
threefolds, V. V. Batyrev showed that it is a (rather non-trivial) consequence of

Mori’s technique. In higher dimensions, this is an open problem.
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2.2.2. Theorem on the lower bound. Given an ample L on a Fano mansfold
V, assume that

a(L)[L] + Kv € N} ppie NN, (2.5)

Then a(L) is rational. Assume in addition that a(L)[L]4+ Ky =1 belongs to ezactly
one face of 3]’\’;"”,,e of codimension one. Then the contraction morphism associated
to this face has a fiber F which is a non-singular Fano variety of dimension > 1,

and we have for any U D V:

Bu(L) 2 a(L)Bunr(-KF). (2.6)

The condition (2.5) is a strong one. However, if it is not satisfied for L, one can
sometimes ameliorate the situation by an appropriate birational modification of V.

Whenever both inequalities (2.4) and (2.6) hold, we can get the best possible
result fy(L) = a(L) in the case when y(—R) = 1 for appropriate open subsets
of subsets of V and F. We have already noticed in §1 that analytic methods when
applicable give exactly this result. We will show below that this also seems to be
a tendency for surfaces and threefolds, but only after deleting the accumulating
subvarieties.

The following results heavily depend upon classification theorems. Geometric
classification is done over a closed ground field; we generally dispose of subtler
problems by passing to a finite extension of the ground field.

2.3. Del Pezzo surfaces. Fano manifolds of dimension two are called the del
Pezzo surfaces. They split into ten deformation families. Two of them are homo-
geneous (P? and P! x P!) so that point count on them reduces to the Schanuel’s
theorem. Family {V,},1 < a < 8, consists of surfaces that can be obtained by
blowing up a points on P? in a sufficiently general position. We call a surface V,
split (over k), if these a points can be chosen k—rational.

Every surface V,, contains a finite number of exceptional curves (“lines”); they
are all k—rational if V, is split. Denote by U, the complement to these lines, and
put A, = V, \ U,. The following Theorem is proved in [18]:

2.3.1. Theorem. Let V, be split. Then

a). Ba,(—Kv)=2.

b). We have the following estimates for By, (—Kv) := f,.
Fork=Q: 0= =04 =105 <5/4;8s < 5/3.

For general k: 0y =--- =03 =1;84 <G6/5;0s < 3/2.

The results for « = 5 and a = 6 have especially direct Diophantine interpretation,
since V5 is an intersection of two quadrics in P*, and V; is a cubic in P?. We see
that if all lines on these surfaces are rational they are accumulating, and, for &£ = Q,
the remainder term Ny, (=IC, H) is O(H%/4*¢) (resp. O(H3/3+¢)).

A proof of Theorem 2.3.1 given in [18] consists of two parts. The cases a <
4 are treated directly, by representing V, as a blow-up of P?, comparing height
on V, with height on P?, and using explicit number-theoretical properties of the
height. The remaining cases are treated via an inductive reasoning which shows

that JBa-H < :;l:_:ﬁa-
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2.4. Fano threefolds. This case was treated in [19] where the following linear
lower bound was established:

2.4.1. Theorem. For any Fano threefold V over a number field k and any
Zariski open dense subset U C V, there ezists a finite eztension k' of k such that if
k" contains k', then Nygin (i, H) > cH for some ¢ > 0 and large H. In particular,

Bugr = 1.

The proof is based upon a description of all 104 deformation families of Fano
threefolds obtained by Fano, Iskovskih, Shokurov, Mori, and Mukai. Studying this
description, one can derive the following:

2.4.2. Main Lemma. Every Fano threefold over a closure of the ground field
becomes isomorphic to a member of at least one of the following families:

a). A generalized flag space P\ G.

b). A Fano threefold covered by rational curves C with (Ky.C) < 2.

c). A blow-up of varieties of the previous two groups.

Group a) is treated via Eisenstein series. For the group b), it suffices to count
points on a single rational curve invoking the Schanuel theorem. Finally, a blow up
diminishes the anticanonical height in the complement of the exceptional set and
increases the number of such points of bounded height.

2.5. Length of arithmetical stratification. We conjecture that for Fano
manifolds, the length of the sequence (2.1) of the complements to accumulating
subsets is always finite. However, it can be arbitrarily long:

2.5.1. Proposition. For every n > 1, there ezists a Fano manifold W of
dimension 2n over Q and an ample invertible sheaf L on it such that the sequence

(2.1) for (W, L) is of length > 27Tn + 1.

Proof. For n = 1, take for W a split del Pezzo surface V5. Representing
it as a blow-up of six rational points on P?, denote by A the inverse image of
Op2(1), and by 1y, ..., 27 the exceptional classes, of which ,,...,[s are represented
by inverse images of blown up points. Choose a large positive integer N and
small positive integers €1,...,€¢. Take for L a class approximately proportional to
—Ky: L=3NA—-(N-¢)h - - —(N —e¢g)lsg. Choose the parameters (N, ¢;)
in such a way that (;,L) # (I;,L) forall i # j;1 < 4,5 <27;(;,L) < &N.

Theorem 2.3.1 then shows that the 27 lines will be consecutive accumulating
subvarieties, with the growth orders TLL!T’ and the complement to them will have
g < 3—i’v, so that the total length is at least 28.

For n > 2, take n pairs (V;, L;) of this type. Arrange parameters (N;,el, ..., ek)
in such a way that the spectra of the growth orders for various (V;, L;) do not
intersect. Then put W =V; x--- x V,,L=prj(L,)® - @ pri(L,). From (1.14)
one easily sees that the spectrum of the growth orders will have length at least
27n 4+ 1 (one can even get 28n — 1).

2.5.2. Conjecture. If V 13 a manifold with Ky = 0 on which there ezist
rational curves of arbitrarily high degree defined over a fired number field, then
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the arithmetical stratification with respect to any ample sheaf L is infinite, and the
consecutive growth orders tend to zero.

The first non-trivial case of this conjecture is furnished by certain quartic sur-
faces, and more general K3—surfaces. In this case, the accumulating subvarieties
must consist of unions of rational curves of consecutive L—degrees.

However, the problem of understanding rational curves on K 3—surfaces is dif-
ficult, in particular because it is “unstable”: even the rank of the Picard group
depends on the moduli. It is expected that some stabilization occurs starting with
tree-dimensional Calabi-Yau manifolds. We will devote the next Chapter to the
highly speculative and fascinating picture whose contours were discovered by physi-
cists.
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CHAPTER I1
COUNTING RATIONAL CURVES

§3. Calabi-Yau manifolds and mirror conjecture

3.1. Classiflcation of manifolds with Kv = 0. In this Chapter, we discuss
some conjectural identities involving, on the one hand, characteristic series for the
numbers of rational curves of all degrees on certain manifolds V' with Ky = 0, and
on the other hand, hypergeometric functions expressing periods of “mirror dual”
manifolds W in appropriate local coordinates. From the physical viewpoint, such
identities mean that certain correlation functions of a string propagating on V
coincide with other correlation functions of a string propagating on W; the passage
from V to W involves also a Lagrangian change (“A—- and B- models” of Witten
[26]).

Recent physical literature contains a wealth of generalizations of these identities
involving curves of arbitrary genus on varieties with Ky < 0. However, no single
case of these conjectures has been rigorously proved. Therefore we have decided to
concentrate upon the simplest case, that of Calabi-Yau threefolds.

In the framework of Kahler geometry, they can be introduced by means of the
following classification theorem. Let us call a Kahler manifold V' irreducible if no
finite unramified cover of V can be represented as a non-trivial direct product.

3.1.1. Theorem. For any compact Kahler manifold V with Ky = 0, there
eTists a finite unramified cover V' and its decomposition into irreducible factors

V’EHT; XHSJ' ><1:[Ck
i i

such that

a). T; are Kdhler tori.

b). S; are complex symplectic manifolds, (i.e. they admit everywhere non-
degenerate closed holomorphic 2~form), but not tori.

c). Cx are neither tori, nor symplectic.

Irreducible Kéhler manifolds of the type Cy can be called Calabi-Yay; in the
physical literature this name is sometimes applied to any manifold with Ky = 0.
The smallest dimension of a complex torus is 1, of a symplectic manifold 2 (any
symplectic surface is a I 3-surface); strictly Calabi-Yau manifolds occur first in
dimension three. Classification of Calabi-Yau threefolds is a wide open problem;
one does not know even whether they belong to a finite number of deformation
families. Most of known examples are constructed as anticanonical hypersurfaces
of Fano varieties W, or more generally, as “anticanonical complete intersections”:
V =n; Dy, Zi D; ¢ | - Ifw‘.

Every Kahler manifold belongs to the realm of three geometries: Riemannian,
symplectic, and complex (or algebraic). Theorem 3.1.1 is basically a Riemannian
statement (de Rham theorem on the holonomy groups). The curve count, seemingly
a pure complex problem, at present can be properly approached only from the
symplectic direction revealing its “quasi-topological” nature.
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In this report we will concentrate upon algebro-geometric aspects of this vast
and complex picture.

3.2. The structure of the mirror conjecture. Consider a Calabi-Yau
threefold V and a complete local deformation family W,,z € Z of Calabi-Yau
threefolds. We will say that V and W, are mirror related if a certain charac-
teristic function F counting maps ¢ : P! = V coincides with another function
G describing the variation of the periods of W,. The function G depends on
h'1(V) complex arguments which reflect the degree of ¢ with respect to a basis
of Pie(V) = H'Y(V,CYn H%(V,Z). The function G depends on h!?(W,) arguments
because this is the dimension of Z. Hence we must have A!!(V) = h13(W,).

To make this all precise, we start with the notion of pre-mirror data.

3.2.1. Definition. The premsrror data consist of the following objects:

1). A pair (V,W,) as above.

i1). A local isomorphism q: Z = Z(W) C Mod(W) - U =U(V) CPic(V)® C
where Mod(W) is the moduls space of W.

i11). A local trivialization: w: Lw —» Oz where L is the invertible sheaf on Z
whose geometric fiber at z € Z 13 HY(W.,Q}y, ).

We assume in addition that Pic(W.) 1s canonically trivialized over Z, and that

U is contained in the tube domain Pic(V) ® R + iK where K 1is the cone spanned
by ample (or Kdhler) classes.

3.2.2. Counting curves on V and function F. Given premirror data 3.2.1,
we proceed as follows.

The holomorphic tangent sheaf Ty to U(V') is canonically trivialized because U is
a domain in the complex vector space Pic(V)@C = H*(V,C) : Ty = Pic(V)®Oy.
We define the Oy-linear map

F: S3Ty) - Oy (3.1)

by

2mi{C,H}
F(H,E\ ® E2 ® Ey) = (E\E2Eg) + > mwj, E))(C, E2)(C, E3). (3.2)
C

Here H € U; E; € Pic(V) are interpreted as vector fields on U; (,) means the
intersection index, or cup-product; finally, C runs over rational curves in V.

However, the sum in the r.h.s. of (3.2) can be understood literally only if all
rational curves in V are isolated and have the normal sheaf O(—1)® O(—1). Other-
wise the local contributions of rational curves can be formally defined by a general
position argument involving a deformation of the complex structure of V' which
makes it non-integrable. More generally, this argument leads to the introduction
of the so called Gromov-Witten invariants and quantum cohomology rings. Al-
though these notions belong to the most significant geometric discoveries made by
quantum field theorists, we have to omit their discussion because of the lack of
mathematically rigorous treatment.
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3.2.3. Calculating periods of W and function G. For the local family
w: W — Z, we have denoted by L the sheaf RTr.QW /2 of holomorphic volume
forms on the fibers of 7. We will now define an O z-linear map

G: S%(Tz) = L2 (3.3)

as a symbol map of a Picard-Fuchs operator, or infinitesimal variation of Hodge
structure.

Specifically, consider the exact sequence
0= Twiz = Tw =7 (Tz) =0
Its boundary map is the Kodaira-Spencer morphism
Tz = R'n.Twyz (3.4)

which is an isomorphism if Z is a versal deformation.

The convolution map i : T,z ¥ QI;V/Z — Q'{V—/lz induces a pairing
R'm(i): R'mTwz Qo, RIm.Q, , — R™ Q‘.:V/’Z,

or a Oz-map
R'mTwz = End ™0 (@,,,RI7. (@), 5))-

[terating this map three times we get
(R'm.Twyz)®* — Hom (w.(waz),R:‘?r.((Ow)). (3.5)

Actually, this map is symmetric because according to Ph. Griffiths it is the symbol
map of the Gauss-Manin connection extended to the differential operators of order
3. Using the relative Serre duality, one can identify the r.h.s. of (3.5) with £~2.
Finally, composing (3.5) with the Kodaira-Spencer map $3(7z) — S*(R'n.Tw)z),
we obtain the function G in (3.5).

3.2.4. Definition. The premirror data 3.2.1 are called mirror data if, after the
identification of U(V) and Z(W) via q and trivialization of L™? via w, F and G

coincide.

3.3. Example. For V a generic quintic hypersurface, the relevant mirror data
were given in the ground-breaking paper by Ph. Candelas, X. de la Ossa, P. Green,
and L. Parkes [9]. In this case, R'1(V) = 1, and Z is a neighborhood of zero in C,
with complex coordinate z. Evaluating (3.2) on the positive generator H of Pic(V)
(hyperplane section) multiplied by ¢ in upper plane, and on Fy = E; = E3 = H
they get a function F(q),q = €™ of the form

21'r1kt

=95 + anlﬁ 21r|kt (36)
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where ny is the number of rational curves of degree k (with appropriate multiplic-
ities).

The mirror map z — ¢(z) := e*™*(%) s calculated to be

5 _1/5 zoh?=0 %A(N)E)_SNzN
t(z) = —o—log(527""") + e O TR (3.7)
! EN:O (ﬁfls 2
5N 1
M0)=0, A(N) == > —.
m=N+1
Put
— (BN) _sn n
folz) = Z 5%z,
= (N1)5
The function G(z) is
G(z) = 5fo(2)7*(1 - z)_l(ZWiZdZ(Zz) )73, (3.8)
Finally, the mirror identity states that
F(q(2)) = G(2) (3.9)

in a neighborhood of zero.
This identity says that two cubic differentials F(q)(dq/q)® and

= (5)

are one and the same differential written in different local coordinates ¢(z) and =
respectively. This reminds one a Schwarz deritivative related to the linear differen-
tial operators of the second order and projective connections. In fact, this analogy
can be made quite precise. The relevant differential operator annihilates fo(z): for

D = 2— it can be written as
z

L=D*-5"*5D+1)(5D +2)(5D + 3)(5D + 4),

and log(5°q(z)/z) is a quotient of two solutions of the equation Lf = 0.
g

In the remaining part of this report, we will explain Batyrev’s construction of
toric premirror data.
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84. Toric mirrors

4.1. Convex geometry. Let M, N be a pair of free abelian groups of finite
rank r = d + 1 endowed with a pairing (,) : M x N — Z making them dual to
each other.

In Mp = M @R, Ng = N @ R consider a pair of convex compact closed
polyhedra $ar C Mg, On C Nmr. Each of them is an intersection of a finite set of
closed halfspaces.

4.1.1. Definition. a). $a, OnN are dual, if
Om ={m € Mr|(m,n) > —1forall n e dn},

On={n€ Nr|{m,n}) > —1forall me {p}. (4.1)
b). (Om,ON) form a mirror pair if they are dual and have integral vertices.

If we start with any convex compact closed polyhedron ¢ n and define $pr by
the first line of (4.1), it will also be such a polyhedron, and the second condition
will be satisfied automatically. Duality of ({ar, O n) induces an inclusion reversing
isomorphism between the posets of faces of ¢ and ¢ n.

If in addition ¢ has integral vertices, then codimension one faces of (s are
defined by equations of the type (m,n;) = —1, n; € N, but vertices of {3 need not
be integral. This is an additional (and restrictive) condition. It can be expressed
via point count in (aQn) N N. Specifically, there exists a polynomial of degree
r = dim Ng, {(a), such that card (aQn N N) = l(a) for all integral positive a.

T. Hibi proved that ¢ has integral vertices iff {{(—a — 1) = (=1)"l(a) for all a.

V. Batyrev calls members of mirror pairs reflezive polyhedra.

4.1.2. Lemma. If (Qar,$n) form a mirror pair, they contain origin which 1s
thetr only interior point.

Proof. From (4.1), it is obvious that 0 € $s,0 € On, and that 0 does not lie
on the boundary.

In order to see that, say, ¢ar does not contain any more integral interior points,
represent { s as a union of cones o(E) = Nygp,1jtE where E runs over all codi-
mension one faces of $pr.

Any interior point mg € {p belongs to some £ E,0 < tp < 1. If mg lies in the
face (m,ng) = —1,ng € N, we have (mg,ng) = —to. If mo is integral, we must
have tg = 0, that is mg = 0.

4.1.3. Classification results. For every r, there exists only a finite number
of reflexive polyhedra, but they are completely enumerated only for r = 1 and 2.
There are 16 of them for r = 2, hundreds for r = 3, and thousands for r = 4.

Here is one example for general r: put M = 27, e; = the :-th coordinate vector,

O = convex envelope of {e;,...,e,,—(ey + - -+ €,)}. (4.2)
For N = 7" and standard pairing we can easily check that

¢On = (-1,...,—1) 4 convex envelope of {(r + l)ey,...,(r +1)e,,0}.  (4.3)
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4.2. Affine toric mirrors. Given a pair of dual lattices M, N as in 4.1, we

can construct a pair of tori. Writing elements of M (resp. N) multiplicatively as
m

z™ (resp. y") we put
T(N) = Spec C[z™], T(M) = Spec C[y"].
For G, := Spec [t,t~!] we have the following canonical identifications:
N = Hom (Gm, T(N)), M = Hom (T(N),Gm)

and similarly for T(M).
Given in addition a mirror pair of polyhedra (¢, On), we put

vy =00 N M = Oy N M\ {0} (4.4)

and similarly for vy.

4.2.1. Definition. The follouing two families of affine hypersurfaces in the
tort T(M),T(N) are called affine mirrors of each other:

V(Ou)=Vn:l1= >  amzg™ =0 (in T(N)), (4.5)
MEVAf

V(On)=Var:l= ) buy" =0 (in T(M)). (4.6)
ncvy

Notice that 1 in (4.5), (4.6) is actually z°, resp. ¥°, corresponding to 0 €
OmM,ON.

A word about our notation. Eventually we will construct toric premirror data
as in 3.2.1, where V will be a partial compactification of the family Vy and W
that of family Vis. We try to furnish the principal relevant objects by indices
M, resp. N, in such a way that an object covariantly depended on its index. So
T(N) covariantly depends on its lattice of one-parametric subgroups N, and Vy is
a family of hypersurfaces in T(N), etc.

4.2.2. Example. In the notation of 4.1.3, put z% = z; in M and y* =y, in
N. Then:

r
a

V- 1— ———— izi =0, 4.7

N $1...Ir+§a$ 0 ( )

1
Vaar 1- Yty =0, 4.8
yl.”yrng Y (4.8)

ve= (v £ (L1 0 i <rtl, 1 20,
1

If we compactify T(M) to a projective space by introducing homogeneous coor-
dinates y; = Y;/Y0, (4.8) becomes the complete linear system of hypersurfaces of
degree r + 1 in P":

Ve ZB,,Y&""...YJ" =0,Z,{£.’=r+l,u; > 0. (4.9)

Fi
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For r > 4, they are Calabi-Yau manifolds outside the discriminantal locus defined
by a universal polynomial in coefficients B, : D(B,) =0. For r = 3 (resp. r = 2),
they are quartic K 3-surfaces and cubic plane curves respectively. We have hl! =1
for V. On the other hand, (4.7) is actually a one—parametric family since a;’s
can be made constant by rescaling z;’s. After some variable change in (4.7) and
a suitable compactification, we obtain in this way for r = 4 the quintic mirrors of
3.4.

In order to discuss in a more systematic way compactifications both in the toric
spaces T(M),T(N) and the coefficient spaces an,b, we will briefly recall some
constructions of toric geometry.

4.3. Toric (partial) compactifications. Let L be a lattice of finite rank,
o C Lp a closed convex cone with vertex in origin. We will be working only with
cones finitely generated by a family of elements of L. Put o' = {I* € L |({*,1) >
0 for alll € ¢}, and
A, = Spec (Bigot C:r').

The affine variety A, contains T(L), i.e. o' N L* generates L* as a group, iff o is
strictly convez that is, does not contain a non-trivial subspace. The natural action
of T(L) upon itself extends to the action T(L) x A, = A,. So A, is a partial toric
compactification of T'(L).

A more general construction of of compactifications is obtained if one glues
together A,’s for an appropriate family of cones. Such families are called fans. For
us, a fan A in Lgr is a finite family of strictly convex cones, containing all faces of
all its elements and such that the intersection of any two cones is a face of each of
them. We put

P(A) = H A, /(natural equivalence relation).
agEA

When |A| := Uyeao = Lr, P(A) is a complete toric variety which can be consid-
ered as a natural generalization of projective space.

4.4. Compactifying members of affine families Vy,Vy;. For a reflexive
polyhedron { s, denote by F({ar) the set of ¢ pr-compatible fans Ay in Mg, i.e.
fans satisfying the following conditions:

4.4.1. Definition. Ajys s $pr-compatible if

a). Buvery I-cone of Ap 1s generated by some m € vpr. and every m € vy
generates some 1-cone of Ay

b). Ay 1s ssmplicial, i.e. every d—dimensional cone of Ay is generated by d
I-cones.

¢). Ap is projective, i.e. there ezists a strictly conver functionn: Mr — R
Linear on every cone of Ayy.

The property b) implies that P(Ays) has only abelian quotient singularities. In
c), 1 is called strictly convex (w.r.t. Aas) if it is convex, and every maximal subset
of Mg on which it is linear is a cone of maximal dimension of Ays. The property
¢) implies that P(Aps) is a projective variety.

The set F({ ) is obviously finite. Less obvious but true is that it is non-empty
(condition c) can be satisfied).
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4.4.2. Definition. Given a mirror pair (O, ON), a6 pair of fans Ay €
F(Oum), An € F(On), the Calabi-Yau families of the corresponding toric pre-
mirror data consist of fiber compactified families Vy C P(AN) = T(N), Vy C
P(Apm) =T(M).

Remark. Since P(Au),P(An) have only abelian quotient singularities, its
(anti)canonical divisor is Q-Cartier. Families V ,V p are precisely anticanonical
systems of divisors. For r = 4 (d = 3), their generic members are nonsingular
Calabi—Yau manifolds; for d > 4 they are generalized Calabi—Yau varieties with
mild singularities.

4.5. Secondary lattices and tori. The equations (4.5) (resp. (4.6)) show that
points of vps (resp. vn) define some one-parametric deformations of hypersurfaces
VN (resp. V a) represented by coefficients a,,m € vy (resp. bp,n € vy).

On the other hand, according to 4.4.1 a), these points correspond bijectively to
l-cones of Aps (resp. Apy) that is, to the irreducible divisors D, at infinity of
Pic P(Ap) (resp. Pic P(Apn)) which in turn define one-parametric subgroups in
Pic P(Ap) (resp. Pic P(Ay)) and by restriction, on members of Vs (resp. V n).

This is the first approximation to the second part of the premirror data where
we need spaces parametrizing simultaneously members of Vy and elements of
Pic P(An) ® C, and vice versa.

To get the second approximation, we want to take into account that a,,, m € vay,
can never parametrize V v effectively because the whole linear system is acted upon
by T(N). Similarly, rays in Pic P(Aj) ® C generated by D,,, m € vps, cannot be
linearly independent because divisors of monomials reduce to zero in Pic.

In order to proceed systematically, we have to construct new pairs of lattices and
tori.

4.5.1. Secondary lattices. Denote by Z[vas] the free abelian group generated
by vas, and similarly for vy. Let Rel(vas) be the kernel of the natural homomor-
phism Z[vy] = M 2 37 . cm[m] = Y cmm, and similarly for N. The image
of this homomorphism M C M is a lattice of finite index in M, and similarly we
define N C N. Thus we have exact sequences

0 — Rel(vy) = Z{vy] = M = 0, (4.10)

0 — Rel(vy) = Z[vy] - N = 0. (4.11)

Denote by Ly (resp. Ljs) the lattice dual to Rel(var) (resp. Rel(vn)). Since (4.10)
and (4.11) split, the dual sequences are exact. Identifying Z(vps)* (resp. Z(vn)*)
with space of functions Z"M (resp. Z"N) and putting M* =N’ N* = M', we get
exact sequences

0N = Z"™ — Ly — 0, (4.12)

0> M = 2" — Ly — 0. (4.13)

Clearly, N C N' C Nq, M C M' C Mq. The embedding N — Z"M is just the
restriction to var of N as the group of functions on M, and similarly for V.
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4.5.2. Positive cones. Denote by Rel>o(vy) the semigroup of relations with
non-negative coefficients, and by Rel¥;(vy) the respective cone in Rfvn]. Denote
by epr C Ly @ R the image of R} in Lyt @ R. Spaces Rel(vy)® Rand Lyy ® R
are dual. Using the standard facts of convex duality, one sees that

Relgo(vw) = ¢l Relgo(w) =¢l.

We will now construct tori T(Ly ), T(L pr) and show that they naturally parametrize
simultaneously pre-mirror pairs (moduli space/complexified Picard group), or at
least some subspaces of the latter, when toric linear systems do not form locally
versal families. Then we will use cones €7,£n In order to construct their partial
compactifications crucial for understanding the mirror map.

4.6. Theorem. There ezist two natural maps
T(Ln)(C) = Mod(V y), (4.14)

T(Ln)(C) — PiC(T/_M) ®C (4.15)

and stmilarly with (M, N) reversed. (The second map 1s multivalued: see (4.16)
below).

Proof. a). By definition,
T(Ln) = Spec [L}] = Spec C[Rel(var)].

Writing Rel(vas ) multiplicatively, we identify it with the group of monomials ]
such that > ¢nm =0,¢cpm € Z.

For a point £ € T(N)(C), put €™ = z™(£) € C*. The natural action of
T(N): 2™ £Mz™, ay = € Mam leaves (4.5) invariant, and C[Rel(vas)] can be
identified with the span of T(/NV)-invariant monomials in a,,. Hence C-points of
T(Ln) bijectively correspond to the T(N)-orbits of hypersurfaces in V defined
by equations with all a,, # 0. This defines (4.14).

More algebraically, we have an affine hypersurface (4.5) in T(Z"™ ) x T(N) which
is invariant with respect to the described T'(N)-action. The affine quotient gives a
hypersurface in T(Z"* ) x T(N)/T(N), which can be identified with T(Ly)x T(N')
by choosing a splitting of (4.12). There is a natural isogeny T(N) — T(N') which
allows one to lift this hypersurface back to T(Ly) x T(N).

MEVAS

b). For an arbitrary torus T(L), we have a natural identification L @ C =
Lie T(L)(C) which defines the exponential map exp: L @ C — T(L)(C). We can

explicitly define an inverse map
log: T(LY(C) > LR+ Q@R/2mL
whose real part is

L*3mwrlog |z (n)] € R, n € T(L)(C),

Crn
ay
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and imaginary part is
L* 35 mwmiarg 2™ (n) € R/(2mZ).
On the other hand, (4.12) up to isogeny coincides with
0 — Div2_(P(Ap)) = Diveo (P(Anm)) = Pic(P(Apy)) = 0
so that we have a natural isomorphism
Ly ®R =Pic(P(Au)) @R

whereas Ly C Pic(P(Aum)) ® R is a lattice commensurable with Pic(P(Aar)) (and
coinciding with it if vas generates exactly M over Z as one sees from (4.10), (4.12)).
So finally we get, combining with res: Pic(P(Ap)) — Pic(V p):

resolog: T(Ln)(C) — Pic(P(Aym)) @ R® Pic(P(Apy)) @ Ri/2miLly

— Pic(Var) @ Pic(V ) ® Ri/2mi res(Ly). (4.16)
This is our multivalued map (4.15).

4.7. Partial compactification. The cone ey C Ly ® R dual to e}y =
Rel>o(var) ® R defines the affine toric variety A,y O T(N) whose function ring is
just the span of T'(N)~invariant monomials [[ af? with ¢, > 0. Hence it contains
in particular the point a, = 0 for all m which defines the maximally degenerate
anticanonical hypersurfaces in P(Ay), the sum of all divisors at infinity.

We will use this degeneration below in order to trivialize the bundle of holomor-
phic volume forms on fibers of Vv by choosing a form with period 1 along a specific
invariant cycle in the neighborhood of the degenerate hypersurface.

Now we proceed to refine the compactification A, by taking into account various
possible choices of Ay € F(Oar).

For the proof of the following result, see Oda—Park [23]. Consider the cone of
convex functions on M @ R linear on all cones of Aps. Restrict them on R"™
and then consider the image of the resulting cone in Ly ® R. Denote this image
E(A M) CLy®R.

4.8. Proposition. a). e(Apr) i3 a closed convez finite polyhedral cone in Ly ®
R. Under the identification Ly @ R = Pic(P{Aas))r it coincides with the closure
of the ample cone of Pic(P(Axr)).

b). All cones e(Ap) for Ay € F(Opr) and their faces form a finite convez
polyhedral fan f(Qa) with support en; the cones e(Apr) themselves are all cones
of mazimal dimension of this fan.

In this way we get the following diagram of spaces:

P(f(Om)) =Vayerom Ae(an) = Ay = A(LN).

The closed point p,, € A,, corresponding to a,, = 0, m € vpy, 1s covered by the
closed points '
Pe(an) € Ae(ayy Aum € F(Om).
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Of course, the similar picture of partial compactifications of T(Lys) takes place
in the mirror setting. We now look at (parts of) T(L s )(C) as a space parametrizing
(parts of) Pic(P(An)) ® C for various Ay € F({ ) and therefore furnishing the
arguments of the function F' counting rational curves on the members of various
compactified families Vy = Vn(dn). From this vantage point, the cones e(Ay)
correspond to various convergence domains of the same function which in its G-
avatar depends on the moduli of Vs and does not see any difference between
various compactifications Ay.

We will now make this more precise.

4.9. Curve counting function. We want to define an analog of the function
F (see 3.3) in our situation.

We will choose a fan Ay € F({ n) and count rational curves C on a hypersurface
V € | — Kp(An)|, or more precisely, parametrized rational curves which are non-
constant maps p¢: P! = V.

Every such curve defines a Z-valued function on Pic(P(Ay)) : £ — deg o5 (L).
Hence we get a Z-valued function on Ljs which we denote, together with its ex-
tension to Ly ® C, by I¢. It is non-negative on the ample cone of Pic(P(An))r)
that is on e(An) C Lar ® R. Instead of logarithm, consider the function

1
t = 9—7-T—flog : T(Lm)(C) > L @R/Lys +iLy @R,

-

Put |
gc: T(Lpm)(C) = C*, q¢c = e2millc ).

Define also
U(AN) =t~ (Ly @ R/Lys +ic(An)) C T(Lar)(C).
The positivity property above implies the following fact:
lgc(€)| < 1 for all ¢ and all € € U(An) C T(La)(C),

lgc(€)] = 0 as Im(¢(€)) = oo in e(AN).

Consider now the holomorphic tangent vector bundle TT(Lj)(C). It can be canon-
ically trivialized by invariant vector fields. Restricting upon U(Ay) we get

TU(AN) = UAn) x Ly @ C.
Finally we define (now assuming dim(P(dn)) = 4:
Fay: SHTU(AN)) =U(AN) x S} (L ®C) = U(AN) x C,

: — (6:(E\ E. _4c(é)
Fan(& Ey, B, Ea) = (§(E1 E2 Es) + ; 1= 40(6) (le, Ex){lc, B2)(lc, Es)).

We remind to the reader that algebro-geometric aspects of summing over C’s are
far from being firmly established: see [15], [16], [1].
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Consider now the open embedding

U(AN) CT(Lm)(C) C Aean)(C) 3 pean)-

The closure U(Ay) of U{AN) in A.(ay)(C) contains the maximal degeneracy point
Pe(ay), and all g¢ extend to this point and vanish there so that

Fan(Pean)s Br, Ea, E3) = (EyEo E3).

We expect that Fa, is meromorphic in the interior of U(An).
Let us put now

U(ON) = t-l(LM ® R/LM + IEM) = UANEF(ON)U(AN)~
4.9.1. Question. Does there ezist a meromorphic function Fa on §3(T) whose

restriction on U(QN) coincides with Fa, ?

If the answer to this question is positive, this means that counting curves on a set
of flops of anticanonical toric hypersurfaces reduces to choosing various branches
of the same analytic characteristic function.

4.10. Periods of the mirror family. We now want to define the function G on
apart Z of T(Las)(C) considered as a moduli space for (compactified) hypersurfaces

in T(M).
We will assume that there exists a fan Ay € F(Qp) such that the generic
member of Vpr = | — K'p(a,,)| is smooth. For d =3 (r = 4) any Ay will do.

For Z we will take U(A ) = T(Lar)\D(Ap) where D(A ) is the discriminantal
divisor of non-smooth anticanonical hypersurfaces.

In this way we get as in 3.3 (W = V)
G: SS(TU(AM)) — L7,

where L is the sheaf of holomorphic volume forms.

4.10.1. Trivialization of £. To make it, we must choose a section w of W*Q‘{JV/Z;

it suffices to define it up to sign. Following D. Morrison [21], [22] we suggest to
do it by choosing an appropriate invariant cycle v in the local system of homology

groups Hy(Var,a,Z), a € T(Lar)\ D(Apr) = U(Apm). A complete understanding of
the situation requires a description of the relevant modular group representation

(T (Aum), a) = Aut(Hy(Var.as Z))

which we lack at the moment. However the following prescription fits all the ex-
amples.

a). Invariant cycle. Consider a (d + 1)-dimensional topological torus vp =
(51)4+1 ¢ T(M)(C) given by |z"| = 1 for all n € N. Denote by U C U(Ap) the
set of points @ = {a,|n € vy} in U(Ap) for which 2nei l@n| < 1. This means
that ‘

YN Ve =0foraecl,
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so that
[v7] € Hav1(P(A M), VM,a; Z).

If d is odd (e.g. d = 3) we have a surjective map
0: Hit1(P(Am),VM,a) = Ha(Va,a)-

Denote by 7, the image of [yr] in Ha(Vp,qa, Z). By construction, it is monodromy
invariant over at least U C T(L3s)(C). Recall that geometrically 8 can be described
as follows. Take a small tubular neighborhood 7(Vys4) in P(Apg), then 7(Var,.) \
Vi, restricts to an S'—fibration o(Vas,e) C 7(Vas,e) over Varq. For a cycle v in
VM. a, take its inverse image v’ in 0(Va,0). Then 9(v') = .

b). Residue map. Denote by Q4+ (log Vi) the sheaf of meromorphic forms
wp on P(A ) with pole of order € 1 on Vs ,. There exists a well defined map

res : HO(P(AM),Qd+l(10g Vae)) = HO(VM.M Q‘tl/M,ﬂ)
for which

1 /
— | wp = res(wp).
2m J, By

¢). Trivialization of L. Choose wp 4 in such a way that

/ wp,e = 2m1, 1. €. / res(wp,) =1
T a

and trivialize £ by choosing w, = res(wp o) as a unit section. Changing orientation
of vr results in changing the sign of w,.

d). An ezplicit calculation of wp,,. On the affine chart T(Ly) x T(M) with

coordinates (an,z;') where n € vy, ni,...744) is a basis of IV, we can put

wpa=(1- Z anz™) 'zl A A I;_:_ldI{1+1.

ncvy

Forae U , we can expand this and easily calculate:

(z—ml)d—H/ wpa=14 > (D i) J] a?/i(n)! = Q(a)

IEReIZ(uN) n€uvy n€vy

so that finally

We = WI‘CS(WPIG).

4.11. Concluding remarks. We have now completed the construction of the
toric pre-mirror data. This construction has however two drawbacks.

The first is that T(Las) (resp. T(Ln))) not always parametrize the whole Mod
(resp. Pic) spaces. This is however true when Aut P(A s )has T(M) as its connected



31

component. And in general we can hope that partial toric pre-mirrors constructed
here extend to complete mirror data.

The second is that we lack a general definition of the mirror maps ¢q. The identity
map of T(Ly) (resp. T(Las)) certainly is not the correct one; as examples suggest,
it is “tangent” to the correct one.

Educated guesses about g in various situations were made in (22}, [5], [9].

Addendum
(July 1994)

This report was written about a year ago. This version is only slightly revised
and corrected.

Here is a list of some new results related to the questions discussed in the paper.

Counting points. E. Peyre [24] formulated a fairly precise conjecture about the
constant c in (1.5) for anticanonical heights. He defined a Tamagawa measure that
depends on a choice of the anticanonical height; the relevant Tamagawa number
is the main ingredient of his constant. He has verified his prediction for certain
small blow ups. He has also checked that it agrees with previous calculations for
generalized flag varieties and the singular series for complete intersections furnished
by the circle method. One remaining indeterminacy concerns the contribution of
the Brauer group and/or more general obstructions of local-to—global type.

P. Salberger (paper in preparation) has shown that P? with four blown up points
over Q and deleted exceptional curves has O(H (logH)*) points of height < H. His
method is a refinement of that in [18]. A very careful strategy of estimates allows
him to save one logarithm; unfortunately, it falls short of giving an asymptotic
formula.

V. V. Batyrev and Yu. Tschinkel (paper in preparation) established the ex-
pected analytic properties of the height zeta function of toric varieties, at least for
anisotropic tori. They developed a generalization of the Tate method which proved
to be very efficient for studying this problem. In particular their constant has the
same general structure as Peyre’s one, with clearly visible contribution from the
local-to—global obstructions.

Counting curves. An axiomatic treatment of the so called Gromov-Witten
classes which is the mathematical basis of curve counting is given in

M. Kontsevich, Yu. Manin. Gromov-Witten classes, quantum cohomology, and
enumerative geometry. Preprint MPI, 1994 (to appear in Comm. Math. Phys.)

This paper also contains a detailed discussion of the Fano case, which we omitted
here concentrating on the Calabi—Yau varieties.

The existence theorems for Gromov-Witten classes in the context of symplectic
geometry are proved in

Y. Ruan, G. Tian. Mathematical theory of quantum cohomology. Preprint, 1994.
See also

A. Givental, B. Kim. Quantum cohomology of flag manifolds and Toda lattices.
Preprint hep-th/9312096
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M. Kontsevich developed a very promising algebro—geometric approach to the
curve counting and derived precise formulas in

M. Kontsevich. Enumeration of rational curves via torus actions. Preprint MPI,
1994.
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