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Supplement to the paper "Scalar curvature

of a metric with unit volume"
Osamu Kobayashi

In the above mentioned paper [4], the author showed an
inequality concerning the Yamabe number p(M), which is defined

(n-2) /n , where the supremum

as (M) = sup inf { R av dv
w(M) = sup ing Sy LA .

is taken over all conformal classes C of Riemannian metrics of

a compact n-manifold M, and Rg denotes the scalar curvature of

the metric g. The purpose of this note is to give a generalization

of it.

Theorem. (i) If M, and M, are compact manifolds of

dimension n 2 3, then
“(em] ™2+ [p,| P/ 2/m

b (M #M,) if p(M,) <0 and wiM,) € 0;

nv

min {p(M1),p(M2)§ otherwise.

(i) If M ig'gg'sn_1 bundle over S' with n 2 3, then p(M) =

w(s™) = n(n- 1)vol(st 12/,

1) = u(Sn) if

For example we can see u(sxs® Tpstxs™™
n 2 3, and so on. Also we get as a corollary that p(M,iM,) > 0
if p(M1)> 0 and p(M,)> 0. This corollary is originally due to

Schoen-Yau (6 ] and Gromov-Lawson [3J]. However our proof is

different from theirs and has the advantage of giving a gocd



estimate on the Yamabe number.

§1. Preliminaries.

For a conformal class C of Riemannian metrics on a compact

n-manifold M we set p(M,C) = inf
geC

fore p(M) = sgp p(M,C). Take two n-manifolds with conformal

(n=2}/n
SuRgav /1§ udvy) . There-

structures, say (M1,C1) and (M2,C2). Then we write (M,C) =
(M1,C1) 1L (MZ’CZ) if M is the disjoint union of M

Ci'=~{g|Mi; g€ C} for i =1, 2.

1 and MZ' and

Lemma 1.1. u((M1,C1)lL (M,,C,))

I'I'(M1 'C1) + p'(M?IC—)) E n = 2;

!n/z !n/2)2/n

={|pM,,CH) + |r,,C5)

=

0

-
’

and.p(Mz,Cz) <

min[u(M1,C1),u(M2,Cq)} otherwise.
Proof. A straightforward computation. @

Corollary 1.2. “(MiLLMZ)

pMg) + u(sz if n = 2;
= { =+ hmp|®/HPP 1 po) €0 and pM,) <05
min.{u(M1),u(M2}} otherwise.

Combining this with a theorem of Aubin [1; p. 13] , we get

Corollary 1.4. Ef_ﬁ is a k-fold covering of M then

BH) 2 p(MU .. M)
——

k-times



Here we cited the Aubin's result in the following form:

p(ﬁ',ﬁl) > u(M,C) for any conformal class C and its lift T if

k >2, dim M >3 and u(M,C) > 9. This fact also yields that
p(S1xSn-1) >'p(S1xSn-1,C) for any C if n 2?2 3, which we can
see also from our theorem (ii) because it is known 5] that

u(S1xSn-1,C) < u(Sn) for any C.

§2. Proof of Theorem.

Let M be a compact manifold of dimension n'Z 3, and
Py and P, two.points of M. We take off two small balls around
P4 and Py and then attach a handle instead, the handle being
topologically the product of a line segment. and Sn_1. The new
manifold obtained in this way will be denoted by M. For example

1. 1 on-1

n=1 yundle over S i.e., S'xS or the

if M = s” then M is an S
generalized Klein bottle. And if M = M1H_M2 and Py and p, are
taken from M1 and Mz.respectively, then M = MT#MZ' Therefore-
in order to prove Theorem it suffices to show p(M) 2 p(M)

because  of Corollary 1.2 and the fact that p(M) < u(Sn) for

all compact n-manifold M.
Now the proof proceeds as follows. Let € be an arbitral
positive number, which will be fixed throughout. First, we

take a conformal class C of M such that
(2.1) p(M,C) > p(M) - €.

Lemma 2.1. We may assume C is conformally flat around

the points P4 and Py




Proof. Pick a representative metric g€ C, then u(M,C)

is rewritten as

' 4—2:;5M(dfl 2av_ SMR £2av
(2.2) p(M,C) = inf 3 g . g g
£>0 ~<n n-e

(§yt™ ‘avy) ®

We shall denote the right side of (2.2) by p(g). That is, |
p(M,C) = plg) for gG.C. From the expression (2.2), it is not
hard to see that p is a continuous function of the space of all
smooth Riemannian metrics of M with respect to the topoiog'y that
two metrics are close if theirselves and their scalar curvature
‘fun_ctions are close to each other respectively in cO.

On the other hand, by Lemma 3.10. of 47, we can choose
another metric g', which may not be in C, such that g' is
conformally flat around Py and Py and that g' and Rg, are
sufficiently close to g and Rg respectively in c®.

Thus if we take the conformal class C' of g' instead of C,

the proof is done. 0

So let us assume C is conformally flat around )2 and Py-
In particular, there are a function )\GC”(M\{p1,p2} ) and
g&C such that § = elg is a complete metric of M\{p1 P} and
that each of two ends is isometric to the half infinite cylinder

fo ,oo)xsn-'1'(1) . .For. convenience, we write
(2.3)  (MN{p,,p,},%) = [0,%xs”™ (1)U (M, 5V Lo, x5 (1),

where M is the complement of the two cylinders. We can glue



(M,3) and [0,21xs™ 1 (1), the product of the interval of length }
with the unit (n-1)-sphere, along their boundaries to get a
smooth Riemannian manifold (ﬂ,ql), where M is as mentioned at

the beginning of this section.
D] by - ~ o~ U ' n_1
(2.4) (M,gl) = (M,q) fo,21xs (1).

Let Cg denote the conformal class to. which gR belongs, and we

have as before

-1 2 2
4T S_ldf[ dv_  + S_R £°av
(,Co) = inf — M % H% %
K R £50 2n n-2 *
(j_fn-zdv ) B
M q&

So, take a positive function fl € Cm(ﬁ) such that

(2.5) 471' |as, IR fl dv < p(i,Cp) + € pii) €,
and
2n .
(2.6) g_ flmdv = 1.
. M g‘l
Lemma 2.2. There is a section, say {;2}xsn'1, in the

cylindrical part of M (cf. (2.4)) such that
S A
fe} xs™”

jag, | 2 2
qUagg[© + £ )dvsn_1 < =,
where A is a constant independent of f£.

2

/n

Proof. Put A, = —mln{O min Rﬂ(x)}Vol(M,g)2 Then,

! xeM
using Hoélder's inequality we get from (2.5) that



n=1

4——

n_1\df3_\2dvg + _(n—1)(n—2J 2qy

( I
n=2Jro AJxS % o qxs” 1R 9
< u(ﬁ) +£ + A1 .

f 2dv

Therefore there is a £y €[0,R] such that
n—1S | 2
4= ag, | “av + (n-1) (n=2)
n-2 n-1 2 n-1 n-17-2 -
{t,} xs s ft o} xs g"!

< (lJ-(l"-‘U + €+ A1)/£r

which proves the assertion with A = (n=2) (p(M) + & + A1)/(n-1) i

Now we cut off M on the section {t,} xsP1

, and attach two
half-infinite cylinders to it, so (M\{p1 ,pz},"é) reappears. But

this time we describe it as follows

(2.7) (M\fp1 ,p2§ ;g) = [0,0) xs? 1 (1) U(ﬁ\{tg} xs™1 ,gR)U Co,m xs™ 1 (1) .

We think of the function f; as defined on Maftot xs™ 1, and

extend it to ‘the whole space M\fp1 'P,} as follows: Let Fy be

Lipshitz function of ﬁ\fp1 ,p2§ such that

_ = n-1
Fl = fl on M\{tﬂx S
and
(1- )%, (x) for (t,x)e[0,1]xs"";
Fl(t,x) = n-1
0 for (t,x) € [l,ﬂ")xs ,
Yo _ 09 n=1 Ce s
where fg = fil{tg} < s 1 € C (S ). Now it is easy to see

from (2.5) and Lemma 2.2 that



-1 2. . 2
2.8 4822 ar,|“dve '+ j F, “d
(2-8) 45=2dmte, ,pz}‘ A

-1 2 2
= 49—f {df,| “dv_ + { R dv
n-2 i Rl 9 Sﬁ glfi Y

2 _
8 (n-1) v 2 2(n-1} {(n"-4n+16) ¥ 2
" 327 dgn-1 |65, | W1t 3m-2) =152 -1
< uii) +€ + B
1
where B is a constant independent of {. Obviously from (2.6)

we’get on

_ n-2
(2.9) §M\{p1,p2}FR dv > 1.

Therefore, we have

n-1g 2 2
q—o dF |~d + F dvas
n-2 M\[p1 ,pz’;l \ "'5 SM\{P1 Pt l 5 VY

2n n-2

F2gy,) T
M\{p, /P,} vg)

(2.10) inf

(
g }J-(IT” +Er

where the infimum is taken over all nonnegative Lipshitz
functions F with compact support. It follows from the choice
of the metric § that the left side of (2.10) is equal to p(M,Ci.
Since £ can be chosen arbitrarily, we conclude p(M) < p(M),

which completes the proof. DO

Remark 1. The argument in [4; §4] works well to prove

B M) 2 = () )P 2 n/2)2/n

+ (u(M,)]) , where _ means the
negative part, i.e., a_ = max{-a,0%. Actually this gives a
simpler proof than the above but cannot cover the case when
both u(M1) and p(Mz).are positive, and hence the second part

of Theorem.



Remark 2. The part (i) of Theorem can be proved in

another way too. Here we shall show it briefly. For

simplicity we assume M = S1>cSn-T, n 2 3. Put gp =

dt2 * gy where dt2 is the metric of S1 with 1ength(Sl,dt2)

= {, and g, is the standard metric of s?™'.  solving the

Yamabe problem for gg + we get a positive function fg such

that Vol(flg!) = 1 and the scalar curvature of fag2 is a

n-1

constant equal to u(S1xS +Cg) » Co being the conformal class

of gg - According to a theorem of Gidas, Ni and Nirenberg

[2; Theorem 47, it turns out that the function f, depends

only on the parameter t of S1. So the problem is reduced to

n-1

an ODE, and then by a routine argument we can see u(S1xS ,Cﬂ)

- p(sn) as f oo,
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