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Supplement to the paper "Scal ar curvature

of ametrie with unit volume"

Osamu Kobayashi

In the above mentioned.paper (4J, the author showed an

inequality concerning the Yamabe.number ~(M) , which 18 defined

as ~~ (M) = sup inf JMR dv I (JMdv ) (n-2) In. , where the supremurn
C g~C 9 9 9

1s taken over all conformal classes C of Riemannian metries of

a cornpact n-manifold.M, and R denotes the scalar curvature of
g

the metric g. The purpose of th1s note is to give a generalization

of it.

Theorem. (1) If M1 and M2 are compact. manifolds of

dimension n ~ 3, then

[

- ( IJ.L (M
1
Hn/2. + (J.L (M~)( n/2) 2/n

~(M1#M2) ~ if ~(M1) ~ 0 and ~(M2) ~ 0;

min {IJ. (M1) dJ· (M2)I otherwise.

(ji) If M i5 'an"sn-1 bundle over 51 with n ~ 3, then JJ,(M) =

JJ..(Sn) = n(n- 1)Vol(5n (1»2/n .

n ~ 3, and so on. Also we get as a corollary that JJ.(M,9M2) ~ 0

if ~(M1» 0 and jJ.(M2) > O. This corollary is originally due to

Schoen-Yau C6] and Gromov-Lawson (3J. However our preef is

different from theirs and has the advantage of giving a good
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estimate on the Yamabe nurnber.

§1. Preliminaries.

For a conformal class C of Riemannian metries on a compact

There-n-manifold M we set ~L (M,C) = inf SMR dv I (5
M

dv ) (n-2) In
g~C g g g

Take two n-manifolds with conformalfore ~(M) = sup ~(M,C).
C

structures, say (M
1

,C
1

) and (M2 ,C 2). Then we write (M,C) =

(M
1

,C
1

) 1L (M
2

,C
2

) if M is the disjoint union of M
1

and M
2

, and

Ci "= { g IM.; g E C J for i = 1, 2.
~.

=

Lemma 1. 1 • J.L ( (M1 ' C 1 ) II (M"2' C2) )

~ (M 1 ,C,) + ~ (M
2

,C
2

) if n = 2;

-(I~(M"C1)ln/2 + 1~(I>i2,C2)(n/2)2/n if jJ.(M"C,) S 0

and. IJ. (MZ ,C 2) ~ 0;

otherwise.

Proof. A straightforward computation. 0

[
~ (M

1
) + p, (M

2
)" if n = 2;

= -(tjJ.(M,>ln/2 + 1JJ.(M2)ln/2)2/n if ~ (M,) ~ 0 and J.L (M2) ~ 0 ;

min f JJ. (M1 ) ,JJ. (M2) t otherwise.

Combining this with a theorem of Aubin [,; p. '3] , we get

IV
Corollary 1.4. If M 1s a k-fold covering of M then

""oJ

).i.(M) ,. JJ.(M.ll .•• .llM).
'---v---"
k-times
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Here we cited the Aubin's result in the following form:

~d4:'C) ,. ~'(M,C) for any confonnal' class C and its lift "C if

k ~ Z, dirn M ? 3 and ~ (M,C) ..,. O. This fact also yields that

~(S1xSn-1) > ~(S1xSn-1 ,C) for any C if n f 3, which we can

see also from our theorem (ü) because it is known'CSJ that

1 n-1 n
~ (S x s , C) < ~1 (S ) f or any C.

§z. Proof of Theorem.

Let M"be a compact manifold of dimension n'~ 3, and

P1 and Pz two.points of M. We take off. two small balls around

P1 and pZ' and then attach a handle instead, the handle being

n-1topologically the product of a line segment. and S • The new

manifold obtained in this way will be denoted by M. For example

if M = Sn then M i9 an sn-1 bundle over s1 i.e., s1 xsn-1 or the

generalized Klein bottle. And if M = M1llMz and PI and pZ are

taken from M
1

and M2 ,respectiyely, then M= M1#MZ. Therefore'

in order to prove Theorem it suffices to show ~(M) ~ ~(M)

because,of Corollary 1.2 and the fact that ~(M) < ~(Sn) for

all compact n-manifold M.

Now the proof proceeds as follows. Let ß be an arbitral

positive number, which will be fixed throughout. First, we

take a conformal class C of M such that

( 2. 1 ) ~(M,C) > ~(M) - t.

Lemma 2.1. We may assume C is conformally flat around
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Proof. Pick a representative metrie gE C, then J.1 (M ,C)

is rewritten as

J.1 (M ,C) = inf
f>O

(2.2)
4~SMldfl2dVg + SMRgf2dVg

2n n-2

<SMfn-2dVgl""""'il

We shall denote the right side of (2.2) by J.1(g). That is,

j.1(r-1,C) = J.1(g) for gE-C. From the expression (2.2), it 1s not

hard to see that J.1 is a eontinuous funetion of the spaee of all

smooth Riemannian metries of M with respect to the topology that

two metries are elose if theirselves and their sealar eurvature

functions are elose to eaeh other respectively in CO. '
. .

On the other hand, by Lemma 3.10. of C4J, we ean choose

another metric g', whieh may not be in C, such that g' is

conformally flat around PI and P2' and that gl and Rg' are

sufficiently elose to g and R respeetively in Co.
g

Thus if we take the conformal elass C' of g' instead of C,

the proof is done. [J

So let us assume C is conformally flat around P1 and P2.

In particular, there are a function A E Ceo(M "[P1 ,P 2}). and

ge C such that g = e)..g 1s a complete metric of M\{P1,P2J and

that eaeh of two ends i5 isometrie to the half infinite cylinder

~ n-1l.0 ,00) xS .(1 ) • .For. convenience, we write

(2.3) ,..., [ . n-1 U·..., .- U n-1(M",{P1,P2},g)·, = O,OO)xS (1) (M,g) tO,Oi1)XS (1),

."V

where M i5 the complement of the' two cylinder5. We can glue
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IV ~ [ n-1 ft(M,g) and O,2Jxs (1), the product of th~ interval of length ~

with the unit (n-1)-sphere, along their boundaries to get a

smooth Riemannian manifold (M ,gJ.)' where -M-'is as mentioned at

the beginning of this section.

(2.4)
- ,..., I'J U n-1

(M , g.l ) = (M , g) rO , RJxS (1 ) •

inf
f'>O

(2.6)

Let CJ denote the conformal class to.which gR belongs, and we

have as before

2n n-2

<I f n -
2dV )Il

M gt

So, take a posi tive function f
R

E Coo(M) such that

and

2n
r f n-2dv = 1.
JM R.. g~

Lemma 2.2. There is ~ section, ~ {t1!xsn- 1 , in the

cylindrical part of M (cf. (2.4» such that

Sr} n-1 (tdfSl.1
2

+ f..( 2)dV n-1 < ~
t xS s.2

where A i5 a constant independent of f.

Proof. Put A1 = -miniO,min R"""g(X)lVO!(M,g)2/n. Then,
XEM

using Hölder's inequality we get from (2.5) that
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4
n

-
1 S \df \ 2dv

n-2 ro,ijxsn- 1 ~ gJ

< JJ. (M) + E. + A1 •

Therefore there is a tJ- E rO,R] such that

4n- 1S Idf 12dv (1) ( 2)S f 2dn-2 l 1 n-1 n n-1 + n- n- 1 2 V
tt...J xS ]I. S {tRi xsn - S"-1

<: (J.1 (M) + 2. + A
1

) / .R. ,

which proves the assertion wi th A = (n-2) (J.1 (M) + E.. + A1) / (n-1 ) . 0

Now we cut off' M on the section {tJ}Xsn- 1 , and attach two

half-infinite cylinders to it, so (M'[P1,P2},g) reappears. But

this time we describe it as follows

f ",..., t n-1 U - r } n-1 U C n-1'(2.7) . (M\ P1,P2) ,g) = O,oo)xS (1) (M'\.tjt xS ,gR,) O,o-)xS (1).

- f l n-1We think of the function fJt as. defined on M, 'ttI xS , and

extend it to ,the whole space M'[P1 ,P2J as follows: Let F1 be

Lipshitz function· of M'fp 1,P2\ such that

and

= )" (01 - t) 1'2 (x)
Ft(t,x) l

n-1f or (t, x) E [0, 1J x S ;

) n-1for (t,x) (f [l,~ x S ,.

wherefR. = f tl {t.d x Sn-1 E- C"(Sn-1). Now i t is easy to see

from (2.5) and Lemma 2.2 that
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(2.8)

where B is a constant independent of ~. Obviously from (2.6)

~e get

(2. 9) ,.. 1.

Therefore, we have

(2. 10) inf

<

where the infimum is taken over all nonnegative Lipshitz

functions F with compact support. It follows from the choice

of the metric g that the left side of (2.10) is equal to ~(M,C) .

Since E. can be chosen arbi trarily, we conclude j.J..(M) < j.J. (M) ,

which completes the proof. D

Remark 1. The argument in (4; §4] works weIl to prove

n/2 n/2 2/n
~ (M1#M2) ~ - ( (~(M1 )_ ) + (~(M2)_ ) ) , where means the

negative part, i.e., a_ = rnax[-a,ol. Actually this gives a

simpler proof than the above but cannot cover the case when

both j.J.(M1) and j.J.(M2 ) are positive, and hence the second part

of Theorem.
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Remark 2. The part (ii ) of" Theorem c an be proved in

another way too. Here we shall show it briefly. For

sirnplicity we assume M = S1 x sn-1., n ~ 3. Put gR =

dt2
+ go' where dt2 1s the metric of S1 with length(sl,dt 2 )

~ n-1
=~, and go i5 the standard.metric of 5 • Solving the

Yamabe problem for g~ , we get a positive function f j such

that Vol (ft gR) = 1 and the scalar curvature of f l g.2. 1s a

1 n-1constant equal to Jl (5 xS ,Cl)' CR being the conformal class

of gi. According to' a theorem of Gidas, Ni and Nirenberg

[2; Theorem 4 J, i t turns' out that the function f R depends .

only on the parameter t of 51. So the problem is reduced to

1 n-1an ODE, and then"'bY··a routine ··.argument we can see ~ (S x5 ,C,i)

n
~ ~ ( S ) as ~ ..... 00 •
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