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REIDEMEISTER CLASSES AND TWISTED INNER REPRESENTATIONS

ALEXANDER FEL’SHTYN, NIKITA LUCHNIKOV, AND EVGENIJ TROITSKY

Abstract. As it is known from the previous research, the study of the structure and
counting of Reidemeister classes (twisted conjugacy classes) of an automorphism φ : G→ G,
i.e. classes x ∼ gxφ(g−1), is closely related to the study the twisted inner representation of
a discrete group G, i.e. a representation on `2(G) corresponding to the action g 7→ xgφ(x−1)
(x, g ∈ G) of G on itself. In the present paper we study twisted inner representations from
a more general point of view, but the questions under consideration are still close to the
important relations to Reidemeister classes.
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1. Introduction

Let ϕ : G→ G be an automorphism of of a (discrete) group G. The Reidemeister number
R(φ) is the number of Reidemeister classes, i.e. the equivalence classes of the following
relation

g ∼ xgφ(x−1), g, x ∈ G.
This field was extensively developed recently [7, 10, 11, 9, 30, 13, 23, 8, 12, 16, 28, 17] and
obtained numerous interesting applications not only in Topology, Dynamics and Group The-
ory, but also in the Non-commutative geometry [4] and even in the public key cryptography
[25, 26].

The inner representation γG of a group G (we consider in the present paper only discrete
groups and only unitary representations) was a subject of an intensive study in many papers.
It is defined as

[γG(x)](f)(g) = f(xgx−1), f ∈ `2(G), x, g ∈ G.
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Key words and phrases. Reidemeister number, twisted conjugacy class, (non) amenable group, residually
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The most developed directions are related to spectral comparison with regular representation
(see [20, 21, 22, 19, 15]) and to the study of inner amenability, i.e. the property 1G ≺ γG
(see [1, 5, 18, 29]).

The present paper is aimed to start the study and advertise the field related to a modifi-
cation of the notion of the inner representation, namely, the twisted inner representation γφG
defined by

γφG(x)(f)(g) = f(xgφ(x−1)), x, g ∈ G, f ∈ `2(G).

This notion and its elementary properties were used in [14] for the counting of Reidemeister
classes of an automorphism φ (considered as orbits of the corresponding twisted action of G
on itself).

In the present paper we study twisted inner representations from a more general point
of view, but the questions under consideration are still close to the important relations to
Reidemeister numbers discussed in the above cited papers.

After presenting preliminary results and giving definitions and known results in Sect. 2,
we discuss in Sect. 3 some weak containments of representations under consideration. In
particular, we prove under supposition of finiteness of stabilizers of φ-twisted action, that
γφG is weakly contained in the regular representation λG. In Sect. 4 we obtain a more strong

version of this statement: γφG ≺ λG if and only if the mentioned stabilizer Cφ(a) is amenable

for all a ∈ G. In Sect. 5 it is proved that λG ≺ γφG for any ICC group G. In Sect. 6
we consider an automorphism φ of a finitely generated residually finite group G with finite
Reidemeister number. Then G is φ-inner amenable in an appropriate sense if and only if it
is amenable. This differs from the case of inner amenability (i.e. Id-inner amenability).

The results of Sect. 4 and 5 are obtained by N.L., of Sect. 6 — by E.T. and of Sect. 3 —
by A.F. and E.T. jointly.

2. Preliminaries

Denote the stabilizers related to the twisted action of G on itself by

Sttwφ (g, h) := {k ∈ G | kgφ(k−1) = h}, Sttwφ (g) := Sttwφ (g, g).

In particular,

Sttwφ (e) = {k ∈ G | kφ(k−1) = e} = CG(φ)

(fixed elements of φ). Evidently, Sttwφ (g, h) = ∅ if h 6∈ {g}φ. Otherwise

Sttwφ (g, sgφ(s−1)) = {k ∈ G | kgφ(k−1) = sgφ(s−1)} = {k ∈ G | s−1kgφ(k−1s) = g},

i.e. Sttwφ (g, sgφ(s−1)) = s · Sttwφ (g) is a coset of this group. Thus

(1) |Sttwφ (g, sgφ(s−1))| = |Sttwφ (g)|.

Definition 2.1. A group G is called residually finite if for any finite set K ⊂ G, e 6∈ K,
there exists a normal group H of finite index such that H ∩K = ∅. Taking K formed by
g−1
i gj for some finite set K0 = {g1, . . . , gs} one obtains an epimorphism G → G/H onto a

finite group, which is injective on K0.

We will remind now some facts from Representation Theory and Harmonic Analysis (see
[3] and [2] for an effective introduction). (Left) regular representation λG is the unitary
representation of G on `2(G) by left translations. The completion C∗λ(G) of `1(G) by the
norm of B(`2(G) is called reduced group C∗-algebra of G. The completion C∗(G) of `1(G) by
the norm of all unitary representations is called (full) group C∗-algebra of G. The algebra
C∗λ(G) is a quotient of C∗(G).
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Non-degenerate representations of C∗(G) are exactly unitary representations of G, in

particular, Ĉ∗(G) = Ĝ. For a representation ρ of G we denote by C∗ρ the corresponding

representation of C∗(G), and by C∗Ker ρ the kernel of C∗ρ. One introduces on Ĝ the
Jacobson-Fell or hull-kernel topology defining the closure of a set X by the following formula

X = {[ρ] : C∗Kerρ ⊇
⋃

[π]∈X

C∗Kerπ}.

This topology can be described in terms of weak containment : a representation ρ is weakly
contained in representation π (we write ρ ≺ π) if diagonal matrix coefficients of ρ can be
approximated by linear combinations of diagonal matrix coefficients of π uniformly on finite
sets. Here a matrix coefficient of a representation ρ on a Hilbert space H is the function
g 7→ 〈ρ(g)ξ, η〉 on G for some fixed ξ, η ∈ H, and a diagonal one corresponds to ξ = η. Then
C∗Ker π ⊂ C∗Ker ρ if and only if ρ ≺ π. Since

C∗Ker(ρ1 ⊕ · · · ⊕ ρm) = ∩mi=1C
∗Ker ρi,

(2) ρ1 ⊕ · · · ⊕ ρm ≺ π if ρi ≺ π, i = 1, . . . ,m.

Lemma 2.2 (e.g. [2, Lemma F.1.3]). Let (π,H) and (ρ,K) be unitary representations of a
topological group G. Let V be a subset of H such that {π(x)χ |x ∈ G,χ ∈ V } is total in H.
The following are equivalent:

• π ≺ ρ;
• every function of positive type of the form 〈π(.)χ, χ〉 with χ ∈ V can be approxi-

mated, uniformly on compact subsets of G, by finite sums of functions of positive
type associated with ρ.

A particular case is:

Lemma 2.3. Suppose χ is a cyclic vector for π. Then π is weakly contained in ρ if and only
if the function g 7→ 〈π(g)χ, χ〉 can be approximated, uniformly on compact subsets of G, by
finite sums of functions of positive type associated with ρ.

An amenable group may be characterized in several equivalent ways (see e.g. [2]), in
particular:

• There exists an invariant mean on `∞(G).
• 1G ≺ λG, where 1G is the trivial 1-dimensional representation.
• C∗(G) = C∗λ(G).

We will need the notion of induced representation for a representation σ of a subgroup
K of a discrete group G on a Hilbert space Hσ. Consider the vector space V formed by
functions χ : G→ Hσ such that

(1) the support of χ is contained in a finite union of left cosets of G by K;
(2) χ(xk) = σ(k−1)χ(x) for any x ∈ G and k ∈ K.

Then the induced representation indGK σ of G on V is defined by(
indGK σ(g)χ

)
(x) = χ(g−1x).

More detail on the notion can be found e.g. in [2].

Example 2.4. If K = {e} and σ = 1K is the trivial 1-dimensional representation, then
indGK σ is the left regular representations λG.

Lemma 2.5 (see, e.g. [2]). Let K ⊂ H ⊂ G be subgroups.
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(i) Suppose, σ is a representation of K. Then the representations indGH
(
indHK σ

)
and indGK σ

are equivalent.
(ii) Let π ≺ ρ be representations of G. Then π|H ≺ ρ|H .

(iii) Let σ ≺ τ be representations of H. Then indGH σ ≺ indGH τ .
(iv) Let σ be a representation of H. Then σ ≺

(
indGH σ

)
|H .

(v) λG|H ≺ λH .

We will need the following class of groups:

Definition 2.6. A discrete group G is called an ICC-group (infinite conjugacy classes) if
each its conjugacy class (except of {e}) is infinite.

A group is ICC if and only if its regular representation is factorial [24].
Also we will need the following well known statement by B.Neumann [27]:

Lemma 2.7. Suppose, G has a finite coset cover

G = ∪ni=1gi Si,

where S1, . . . , Sn are some subgroups of G, not necessarily distinct. Then at least one of
these subgroups has finite index in G.

3. Twisted inner representation

Our argument here partially follows [20].

Definition 3.1. Denote by γφG the twisted inner representation of G on `2(G), i.e.

γφG(x)(f)(g) = f(xgφ(x−1)), x, g ∈ G, f ∈ `2(G).

Denote Cφ(a) := Sttwφ (a), a ∈ G. Evidently, γφG decomposes into a direct sum of represen-

tations γφa being restrictions of γφG onto {a}φ (i.e. on `2({a}φ)).

Lemma 3.2. The representation γφa is equivalent to the induced representation indGCφ(a) 1Cφ(a).

Proof. Indeed, this induced representation T can be realized on `2(Cφ(a)\G) by the following
action [T (g)(f)](x) = f(xg), x ∈ Cφ(a)\G, g ∈ G, where Cφ(a)\G is the space of left cosets

by Cφ(a). Let us identify Cφ(a) \ G with {a}φ by i(Cφ(a) · g) = γφG(g)(a). Evidently, this
map is well defined and gives a unitary isomorphism

I : `2({a}φ)→ `2(Cφ(a) \G), I(f)(x) := f(i(x)).

Then
[I ◦ γφG(g)(f)](x) = [γφG(g)(f)](i(x)) = f(ghaφ((gh)−1)), x = Cφ(a) · h,

[T (g) ◦ I(f)](x) = I(f)(xg) = f(i(xg)) = f(γφG(hg)(a)) = f(ghaφ((gh)−1)).

Thus, I is an intertwining unitary. �

Theorem 3.3. Suppose, |Cφ(a)| < ∞, for any a ∈ G. Then γφG is weakly contained in the
regular representation λG.

Proof. The characteristic functions χCφ(a), a ∈ G, are positively definite functions associated

to λG, because they are finite sums of translations of δe. Hence, indGCφ(a) 1Cφ(a) ≺ λG (cf. [2,

E.4.4]). By Lemma 3.2 and the decomposition of γφG we obtain γφG ≺ λG. �

This situation naturally arises in the context of the counting of Reidemeister numbers, i.e.
the number of Reidemeister classes, i.e. classes x ∼ gxφ(g−1). Namely, in [14] the following
statement is proved:
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Proposition 3.4. Suppose, G is a finitely generated residually finite group and φ is its
automorphism with R(φ) <∞. Then |Cφ(a)| is uniformly bounded.

Sketch of the proof. First of all, one can prove (by [17]) the following estimation for an
automorphism of a finite group G:

|CG(φ)| 6 R(φ)R(φ)−1 < 2R(φ)2 .

Hence, for any automorphism ψ of a finite group G

(3)
√

log2 |CG(ψ)| 6 RG(ψ).

Let {x1, x2, . . . } = CΓ(φ). Then for every n we can find a characteristic subgroup Γn of finite
index in Γ such that the quotient map pn : Γ→ Γ/Γn =: Gn is injective on {x1, . . . , xn}. Let
φn : Gn → Gn be the induced automorphism. Then {pn(x1), . . . , pn(xn)} ⊂ CGn(φn), hence
(3) implies

RΓ(φ) > RGn(φn) >
√

log2 |CGn(φn)| >
√

log2 n.

Since n was arbitrary, we are done with CG(φ). As it is explained above, Cφ(a) = CG(τa ◦φ),
where τa is the inner automorphism defined by a and φ and τa◦φ have the same Reidemeister
numbers. �

4. Amenability and weak containment

Now we pass to a generalization of the above result on weak containment.

Theorem 4.1. For any discrete group G the following properties are equivalent

(i) γφG ≺ λG;
(ii) Cφ(a) is amenable for all a ∈ G.

Proof. (i)⇒(ii): From Lemma 3.2 we obtain

indGCφ(a) 1Cφ(a) ≺ λG.

By Lemma 2.5

1Cφ(a) ≺ (indGCφ(a) 1Cφ(a))|Cφ(a) ≺ λG|Cφ(a) ≺ λCφ(a).

Thus, Cφ(a) is amenable.
(ii)⇒(i): One has

1Cφ(a) ≺ λCφ(a).

By Lemma 2.5 and Example 2.4

indGCφ(a) 1Cφ(a) ≺ indGCφ(a)

(
ind

Cφ(a)

{e} 1{e}

)
.

Thus, by Lemmas 2.5 and 3.2 one has

γφa
∼= indGCφ(a) 1Cφ(a) ≺ indGCφ(a)

(
ind

Cφ(a)

{e} 1{e}

)
∼= indG{e} 1{e} ∼= λG.

Finally,
∑
γφa = γφG implies γφG ≺ λG. �

The place of the following result is more understandable, if we consider the center as the
intersection of stabilizers of the inner action.

Theorem 4.2. Suppose, λG ≺ γφG. Then the center Z(G) has a trivial intersection with the
fixed point subgroup CG(φ), i.e. Z(G) ∩ CG(φ) = {e}.
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Proof. Suppose, there exists h ∈ G, h 6= e, h ∈ Z(G)∩CG(φ). We will show that on the finite
set F := {e, h} the positive definite function χe associated with λG can not be approximated

by sums of positive definite functions associated with γφG. Indeed, suppose f ∈ `2(G) and ψ

is a positive definite function associated with γφG and f . Since h ∈ Z(G) ∩ CG(φ), one has

ψ(h) = 〈γφG(h)f, f〉 =
∑
x∈G

f(hxφ(h−1))f(x)

=
∑
x∈G

f(x)f(x) = 〈f, f〉 = 〈γφG(e)f, f〉 = ψ(e).

Thus, all positive definite functions associated with γφG, have the same values at e and h.

Thus, χe can not be approximated on F . Hence, λG 6≺ γφG. A contradiction. �

5. The case of ICC groups

ICC groups play an important role both in the theory of inner representations and in the
theory of Reidemeister classes. For them we can obtain the “inverse” weak containment.

Theorem 5.1. Let G be an ICC group. Then λG ≺ γφG.

Proof. The delta function of unity δe is a cyclic vector for λG while χe is a positive definite
function associated with λG and δe. By Lemma 2.3 it is sufficient to show that for any finite
subset F ⊂ G there exists an element a ∈ G such that

χCφ(a)|F = χe|F .

Equivalently, for any finite subset F ⊂ G, such that e 6∈ F , there exists an element a ∈ G
such that

Cφ(a) ∩ F = ∅.

Suppose the opposite: a finite set F = {f1, . . . , fn} (fi 6= e, i = 1, . . . , n) has a non-empty
intersection with each Cφ(a). Thus, for any a ∈ G there exists i(a) such that

fi(a)aφ(f−1
i(a)) = a,

or

a−1fi(a)a = φ(fi(a)).

Thus, any element of G belongs to one of relative stabilizers of the inner action of G on
itself:

a ∈ St(fi, φ(fi)) := {g ∈ G | g−1fig = φ(fi)} = giSt(fi, fi),

where gi is an element of G, and St(fi, fi) is a subgroup (see identities before formula (1) in
the case φ = Id). Hence,

G = ∪ni=1giSt(fi).

By Lemma 2.7 one of St(fi, fi) has finite index in G. Thus, the orbit of this fi under the
inner action is finite. I.e. its conjugacy class is finite, while fi 6= e. A contradiction with
ICC. �
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6. φ-inner amenability

We say that G is φ-inner amenable, if 1G ≺ γφG.
The relation of this notion to the usual amenability differs drastically from that of inner

amenability, as the following statement shows.

Theorem 6.1. Let G be a finitely generated residually finite group. Suppose, R(φ) <∞ for
some automorphism φ : G→ G. Then G is amenable if and only if it is φ-inner amenable.

Proof. Suppose, G is φ-inner amenable. Thus, by Theorem 3.3 and Proposition 3.4

1G ≺ γφG ≺ λG.

For the converse we need a slightly more subtle argument. First of all, by Lemma 3.2

γφa
∼= indGCφ(a) 1Cφ(a)

∼= λG/Cφ(a),

where the last representation is the quasi-regular one (action on cosets and respectively, on
`2(G/Cφ(a)). The last isomorphism is well known (cf. e.g. [2]) and in fact is a part of the
proof of Lemma 3.2.

By [6, 1o, b), p.16], since Cφ(a) is finite, in particular, amenable, the amenability of G

implies amenability of G/Cφ(a), i.e. 1G ≺ λG/Cφ(a). Since γφG is a direct sum of a finite

number of such representations, one has 1G ≺ γφG. �

Remark 6.2. In fact, we use only amenability of Cφ(a), not just the finiteness. Thus, one
can obtain from the results of Sections 4 and 5 some generalizations of the above theorem.
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