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AO. Introduction.

Siu([18], [21]) studied the complex-analyticity of harmonie

maps from eompact Kaehler manifolds into eompact Kaehler

manifolds with strongly negative curvature teneor(see Al for the

definition) or compact quotients of irreducible symmetrie bounded

domains. In particular, he obtained the following results

Theorem A.

Let. f : M ~ N be a harmonie roap from a compact Kaehler

·manifold ioto a compaet Kaehler manifold with strongly negative

eurvature tensor. Then, f i8 holomorphic er anti-holomorphie if

Max rankjldf ~ 4.
M

Theorem B.

Let f: M ~ N be a harmonie roap from a compact Kaehler

manifold into a eompact quotient of an irreducible symmetrie

bounded domain D. Then, f ia holomorphic or anti-holomorphie

if Max ran~df ~ 2p(D) + 1, where
M

Im 11 111p(D ") = (m-l) (n-l) +. 1, p(D ft) = (1/2)(n-2)(n-3) + 1, p(D n}

. llz:: j( ~
= (1/2}n(n-l) + 1,. p(D ") = 2, p(D ) c. 6, p(D ) m 11.
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The number p(D) is important in this paper.

Definition 0.1.

Let N be an irreducible Hermitian symmetrie spaee of

eompact or non-compact type. We define an integer p(N) as

follows

Type of N N of compact type p(N) dima:N

I G (C) (m-l)(n-1)+1 mnmn m,n

= 5U(m+n)/5(U(m)xUb))

11 50(2n)/U(n) (1/2)(n-2)(n-~)+1 (1/2)n(n-l)n

III Sp(n)/U(n) (1/2)n(n-l)+~ (1/2}n(n+l).n

I[.n ~n(C) 2 n
~ SO{n+21/S0{n)x50{21

y. E6 /Spin ( 10) · T 6 16

li E7 /E6 ·T 11 27

Definition 0.2.

A map is called t-holomorphic if it 15 either holomorphic

or anti-holomorphie.

Let f: M ~ N be a smooth map from a Kaehler manifold into

a R1emannian manifold. Then, f 19 called pluriharmonic if

(l,i)-part of the second fundamental form of f vanishes

identically(see· Al). HencB', a pluriharmonic map 18 a harmonie
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map, and if dimCM = 1, a pluriharmonie map 1e nothing but a

harmonie map. Obviously, a totally geodesie map 1s a

pluriharmonie map. Moreover, a holomorphie( or anti-holomorphic

) map 1s a pluriharmonic map 1f N 18 a Kaehler man1fold. If N

1s a Kaehler manifold of whieh curvature tensor 1a strongly semi

negative in the sense of Siu[18], any harmonie map from compact

Kaehler manifolds into N beeomes a pluriharmonie map[20].

A harmonie map between eompact Riemannian manifolds 1s

ealled stable if the seeond variation of the energy 15 non

negative for every variation of the' map. Lichnerow1~z showed

that any holomorphie( or anti-holomorphie) map between compact

Kaehler manifolds i8 anergy-minimizing in its homotopy class,

hanee stable(see [23]). From the second variation formula for

the energy integral[23], it is known that any' harmonie map into a

Riemannian manifold of non-positive seetional curvature 1a

stable.

From Theorem Band these points of views, it 15 natural to

ask that "Is aoy stable harmonie map(or pluriharmonic mBp) from

compact Kaehler maoifolds ioto irreducible Hermitian symmetrie

spaees of eompact type N %-holomorphic (with some assumptions

of p(N) ) 7".

There· are· some· related results

Theorem c. ([ 2], [16]).

Any stable harmonie map from compact Riemann surface into

irreducible Hermitian symmetrie space of compact type 1s t

holomorphic.

We denote by Cpn an n-dimensional eomplex projective space'

with Fubini-Study metric.



4

Theorem D. ([24]).

Any stable pluriharmonie mae from eomeaet Kaehler manifold

ninto ~p 1s ±-holomorphic.

Theorem E. ([2]).

Any stable harmonie map from ~pn ioto irredueible

Hermitian symmetrie seace of eompaet type N i9 t-holomorphic.

The following result of the first author i5 used to prove

Theorem E
Theorem F. ([14]).

Any stahle harmonie map fram ~pn. into any Riemannian

manifold i5 pluriharmon1c.

Remark 0.3.

nThe ease where N ~ ~p in Theorem E 15 proved by the

first author[14]. The special cases- of Theorem C are treated in

[3], [4] and [19-] (see also [27]).

We denote by 'e
1

(M) and b 2 (M) the first ehern class and

the seeond Betti number of M, respeetively.

Dur main results are the following

Theorem 2.13.

Let M be a compact Kaehler manifold with c 1 (M) > 0 and

b
2

(M) = 1. Let f: M ~- N· be a pluriharmonic roae. Assume that

N has positive' curvature on totally isotropie 2-planes. Then ,

one of the following eassa oceurs

i) f 18 a' constant map,

11) djm~M = 1 and f 19 a· branched minimal immersion.
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For the definition of the "positive on totally isotropie 2

planes 11 , see Al.

Theorem 3.5.

Let f: M ~ N be a pluriharmonie(resp. harmonie) map from

~ m(~ 2)-dimensional eompact Kaehler manifold with b
2

(M) = 1

iuto a Kaehler mauifold with strongly positive(resp. negative)

eurvature tensor. Then, f is %-holomorphic.

Theorem 3.9.

M be an m-dimeosional compact Kaehler manifold with

and b 2 (M) s 1 and let N be an irreducible

Hermitian symmetrie spaee of compact type. II m > p(N) + 1,
:::I

then auy pluriharmonic roap fram M into N 1s %-holomarphic.

Theorem.3.l8.

Let M be a compaet Kaehler manifold with c
1

(M) ) 0 and

b 2 (M) = 1 end let N be a Kaehler manifold with dirneN = dimcM.

Then, aoy pluriharmonie mac fram M into N is %-holomorphic.

Theorem 4.1".

M be an rn-dimensional comeaet Kaehler manifold with

snd let N be an irredueible Hermitian symmetrie

space of compact type. 11' m ~ p(N), then aoy stable

pluriharmon1c mae fram M into N 1s t-holomorphic.

Theorem 4.3.

Let M be s· compaet Kaehler manifold wi th cl (M) > 0 and

b 2 {M) = 1 and let N be an irredue1ble Hermitian· symmetrie

space' of compact type. Then, any Btable plurjharmonic map from

M into N 15 ±-holomorphic.
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(A) •

Let
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Combining Theorem Fand, the above results, we have the

various conclusions for the complex-analyticity and the constancy

of stable harmonie map fram Cpm, which are stated in AS.

In A6, we show that there exist stable(resp. unstable)

pluriharmonic, but non ±-holomorphic maps from compact Hermitian

symmetrie spaces M with b 2 (M) = 2 (reep. b 2 (M) = 1) and dim~M

= p(N) into irreducible Hermitian symmetrie space of compact

ntype N except tor the ease where N a CP .

In A7, we show that any stable totally geodesie isometrie

immersion between irreducible Hermitian symmetrie spaces of

compact type 15 ±-holomorphic.'

In AS, we give a construetion of non ±-holomorphic

pluriharmonie maps into complex Grassmann manifolds using the

method of Eells and Wood[7], in particular, we· make pluriharmonie

maps into complex Grassmann manifolds from holomorphic maps into'

complex projective 'spaces.

Basic notations and definitions.

Pluriharmanic maps.

f : M ~ N be' a smooth map tram a complex manifold into

a Riemannian manifold. Let TMC and TNm be the

complexifications of the tangent bundles of M and N,

repectively'. We have

where' the fibre 1 0TM' (resp.x at XEM ia the R(resp.
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-J=T)-eigenspace of the complex structure tensor of M. We

•denote by T M the dual bundle of TM. The differential f. of

f extends by complex linearity to f.

interpreted as a homomorphism from TME to f-1TN~. He denote

by df this homomorphism. We may define the bundle mapa af:

TM1 ,O ~ f-1TN~ and af : TMO,l ~ f-1TNC . Let vf be the pull-

back connection on f- 1TN, which 1a extended by complex linearity

to f-1TN~. By this connection and a-operator of M, we may

def ine the a-exterior derivative of af = (afA
.), which is an

f-1TNC-valued (l,l)-form on M and, denoted by

by

11

V . af', is def ined

( 1 . 2 )

where· 1s the Chr1stoffel symbol of N.

1-

In the' same way, we may define' the a-exterior derivative V af

of äf, wh'ich is also an f- 1
TN,

C-valued {l,l)-form on M.

"Alternatively, V af ie defined by

( 1 .3)
lt f 1 0

(VW3f)(Z) m VW(3f(Z)) - af(äwz) for any Z, W E C~{TM ' )

Then, f 15 called pluriharmonic if
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TI

(1.4) Q af = 0 .

"Now, assume that M 1s a Kaehler manifold. Set Q ~ Q + Q .

Qdf i8 called the second fundamental form of f. It iso known

that

( 1 .5) for any V, w- e CCO (TMlI:) ,

that 1a, Vdf is asymmetrie C-b1linear form. Thus, f 19 ealled

pluriharmonie if (1,1)-part of the second fundamental form of f

vanishes identically. In terms of loeal complex coordinate

system (z1) of M, (1.4) is rewritten ae

( 1 .6) Qjfr ~ 0 for any 1 < i,j ~ m m dimcM ,.=

where Qa/az j and f~ af/az i By ( 1 . 5) ,. haveQj = :es . we
~

QjfI Cl Q-f and 'Vjf i
:::Il Qifj .i j

(B). Curvature conditions.

Let (H, g) be' an m-dimensional Riemannian manifold. We

denote by < ,> (real) inner product of tensor bundles of M

indueed by 9 and by ,) the' complex extension of <, >.

Def ine' the Herm! tian inner product «,» by

(1.7) ,«u, v» = Cu, v) .

. The curvature tensor R of (M, g) ia defined by
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x, Y e TM ,

where V is the Riemannian connection of (M, g).

The sectional curvature K i9 defined by

(1.9) K:2 K(a)

= <R(X, Y)Y, X> ,

where a = span.{X, Y}

p e M. We denote by Q

15 defined by

i9 a 2-dimensional Bubspace of T M,
P

the curvature operator of (M, g), which

(1.10) <Q(XAY), ZhW> = <R(X, Y)W, Z>, X,Y,Z,W E T M.
p

The complex extension of Q to A2TM~' 1a also denoted by Q.

Definition 1.11.

Let a be a, complex 2-dimensional subspace of tt
TM, PEM.

P

Then, the complex sectional curvature for a, denoted by K(o),

1a defined by

. (1.12) K(a) D «Q(ZhW), ZhW»,

where- {Z, W}- is' a unitary basis of a.
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Remark 1.13.

If 0 1a real, i.e.,

sectional curvature K(o).

o ~ 0, K(a) 1a nothing but a

If Q > 0 (resp. > 0, < 0, < 0),= c

then K > 0 (resp. >0, <0, <0).= ::::s

Definition 1.14.

An element Z E T M~ ia called isotropie if (Z, Z) = 0 .p

1s ealled

Z e a.

Then, 0T MI:.
P

for any

be a eomplex subapace ofo

totally isotropie if (Z, Z) = 0

Definition 1.15.

We say that (M, g) has positive (resp. non-negative,

negative, non-positive) curvature on totally isotropie 2-planes

Let

for any totally isotropieif K(a) > 0 (reep. ~ 0, < 0, ~ 0)

2-dimensional complex subspace a of T Ha:
p

and any pE M.

Remark 1.16.

Sy [12.], the following are known,

1) If M haB positive eurvature operator, then M has positive

eurvature on totally isotropie 2-planes.

2) If (1/4)6 < K < 6, where' 6 ia a positive funetion on M,
c::z

then M has positive eurvature on totally isotropie 2-planes.

Example 1.17.

Let (M, g) be 8' symmetrie space of compaet type(resp.

non-compact type). Then, Q > 0 (reep. < 0). In particular,
1:1 =

(M, g) has non-negative (resp. non-positive) complex sectional

curvature.

Now, assume· that (M, g) 1a a Kaehler manifold. We have

the decomposition
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A2TMC = h(2,0)TM + A(l,l)TM + A(0,2)TM

Sy the Kaehler identity of M, we have

Example 1.18.

If M = Cpm(resp. CHm), then Q(1,1) > 0 (reep. < 0),

where CHm 19 an m-dimensional complex hyperbolic space.

Remark 1.19.

a:
If CI = spanC{Z, W} C TpM , where {Z, W} 1a a unitary

basis for CI, then

= «Q(l,l)(z(l,O)AW(O,l)_ W(l,O)hZ(O,l»,

Z(l,O)hW(O,l)_ w(l,O)AZ(O,l»> .

where· Z(p,q) 19 the' (p,q)-part(p,q = 0 or 1) of the vector Z.

Definition 1.20. ([18]).

We say that (M, g) has very strongly positive (resp.

semi-positive, negative, semi-negative) curvature tensor if



Q(l,l) > 0 (reep.

12

> 0, < 0, < 0) .
:cl :I

Definition 1.21. ([18]).

Ws' say that (M, g) has stronglv positive (resp. semi

positive, negative, semi-negative) curvature tensor if

«Q(l,l)(F.), f.» > 0 (reep. > 0, < 0, < 0)
:cl :=

for any

~ D ZlhWl + Z2AW2 ~ 0, Zl' Z2' Wl , W2 E Tp M
1

'0 and any

p e M.

Example 1.22.

~pm(resp. CHm) has very strongly positive- (resp. negative)

curvature tensor.

A2. Constancy of pluriharmonic maps into

Riemannian manifolds.

Let (M, g, J) and (N, h) be a Kaehler manifold and a

Riemannian manifold, respectively. Let f: M ~. N be a

pluriharmonic map. We define a smooth section ~ of ~T·MC

by

( 2 . 1 ) •
~(X, Y) a (f h)(JX, Y) for any X, ye T M4:, any

x
xE M.

Then, M b d d (2,0)+ (1,1)+ (0,2)_ can e' ecompose aa w m ~ ~ w

according to the decompos~tion



Note that
( 1 , 1 )

111

13

18 areal '(l,l)-form on M ,given by

(1,1) C1 i Jw a v-l~i jh(f., f~)dz Adz, ~ J

Lemma 2. 2. ([ 14 ] ) .

1.11 (2,O):::Il 111 (0,2) 18 a holomorphic section of ~T*M1 ,0,

and w(l,1) 18 a nonnegative closed real (l,l)-form on M.

Lemma 2.3.

Let M be a compact Kaehler manifold with c1(M) > O.

Then, '" = 1.11(1,1)

Proof. The solution of Yau for Calabi conjecture[26]

ensures an existence- of a Kaehler metric on M with positive

R1cci curvature. Using a formula of Bochner type with respect to

this Kaehler metric,'we can show a nonexistence of nonzero

holomorphic sections of ~T*Ml,O. By Lemma 2.2, we get w(2,O)~

(0,2)
111 111 o. Thus, '"

( 1 , 1 )
CI' 111 • Q.E.D.

Proposition 2.4.

Let M be an m-dimensional compact Kaehler manifold with

b
2

(M) = 1 and f : M ~ N be a pluriharmonic map.

(1) !t rankcaf < m· 2a M, then.f ia a constant map.

(2') If cl (H) > 0 and f. 15 nonconstant, then there exists an

open subset U of M such that

(i) f: U ~ N Is, an immersion,
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*(11) (U, f h) 18 a Kaehler manifold, and

*(li1) f: (U, f h) ~ N 13 a pluriharmonic isometric immersion.

Proof. Assume that af i8 not injective at every point of

M. Then, we have

(~(1,1)}m = w(l,l)h ... h~(1,1) _ 0 on M,
""'--- ----..... ...----'

11\" times

Hence, [~(l,l)]m = 0 as an element of *H (M, Jl). Since

1, we have [w(1,1)] = 0 as an element'of

ia a closed real (1,1)-form cohomologous to 0, there exists a

real smooth function ~ on M such that ~(1,1) = J=Taa~.

By the non-negativfty of' ( 1 , 1 )
l.II , ~ 1s a subharmonie function on

.M, hence constant. Thus-, WB' have ( 1 , 1 )
= 0, which implies thateil

a·f :l:I o. Therefore:, f 18 a conatant map. Then,- we get ( 1) •

Next, we show ( 2) • By Lemma 2.3, we have

h( (af) (TxM1,O), ,(äf) (TxMO,l» :l:I 0 for any XE M. Therefore,

rank1df Q 2rankmaf at aaeh point of M. If rankRdf < 2m on

M, then rankCaf < m on M, and by (1), f 18 a constant map,

whieh is, B, contradiction. Hanee, rankRdf ~,2m on some open

subset of M. By Lemma' 2. 2 and 2.3, we get (i), (1 i ) and (i i i) .

Q.E.D.
Remark 2.5.

If (N, h) iso ~ real analytic Riemann1an manifold, we can

take the above open subset U of M so that U 1a dense in M

and M \ U 19 areal analytic subvariety of M.
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Por later use, we prepare the following lemma

Lemma 2.6.

!f f : M ~ (H, h) 18 a harmonie map from a Kaehler

manifold into a Riemannian manifold, then, with respect to loeal

unitary frame fields on M, we have

where NH i8 the eurvature tensor of N.

Proof. Since f is harmonie, WB have

~.V~h(fi' f.) ~ ~.h(fi' Q~fj) for any 1 ~ j ~ m = dim~M .
.l~ J .1 .1' \LO

Thus,

On the' other hand, by the harmonicity of fand the Rieei

identity, we· get

ThUB, we have (2. 7) .. Q.E.D.
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Note that QiCh(f i , f j > ~ 0 for any 1 < i,j,k < m if f i5
l:It

a plur.iharmonie map. Sinee (f*h) (2,0) CI 0 if and only if

h (f. , f . > = 0 for any 1 < i,j ~ m CI, dimG:M, we have
.1 J CI

Corollary 2.8.

Let f: M ~ (N, h) be a harmonie map from a Kaehler

manifold into a Riemannian manifold with non-positive complex

seetional eurvature. If

pluriharmonie.

• (2 0)(f h) , CI 0, then'. f i s

We recall the definitions of lIisot ropy fl, "total isotropy"

and "positivity er negativity on totally isotropie 2-planes n •

The eendition that N has positive' (or negative) curvature' on

totally isotropie 2-planes i8 always satisfied if dim N < 3.
=

By Lemma 2.3, we have

Lemma 2.9.

Let M be' a compact Kaehler manifold with c 1 (M) > O. Let

f : M ~ (N, h) be a pluriharmonic rosp ioto a Riemannian

manifold. Then, df(T M.1,O)
x ja a totally isotropie subspaee of

a:
T f (x)N. for any xe M.

Proposition 2.10.

Let f: M ~. (N, h) be' a pluriharmonic map trom a Kaehler

manifold into a Riemannian manifold. lt N has positive(or

negative) curvature operator, then

2!! M.
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Further if M ja eompaet, m = dim~M.~ 2 and b 2 (M) = 1, then f

i8 a censtant map.

Proof. Sy (2.7),

where' NQ is the eurvature operator of N. Sinee N has

positive (ar negative) eurvature operator, we have

for any 1 < i,j < m •
::::::Il =

Thua, rankc:(Jf ~ 1. The' last statement of Proposi tion 2. 10

fellows fram Proposition 2.4 (1). Q.E.D.

Proposition 2.11.

Let M be a compact Kaehler manifold with e 1 (M) > O. Let

f : M ~ N be a pluriharmonic map. Assume that N has positive

(or negative) eurvature on totally' isotropie 2-planes. Then,

rankCaf ~ 1 2B M.

Proof. Sy Lemma~ 2. 9, spane (f i' f j) for 1 ~ i '" j ~ m

a· totally isotropie 2-planes. Then, the proof of Proposition

2.10 yields the eonclusion. Q~E.D.

Remark 2.12. .rankcaf ~ 1 implies rank.df ~ 2.

is
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Sy Propositions 2.4, 2 •.11 and the well-known facts for

harmonie maps of Riemann spheres(see [7], see also A3 in [25]),

we obtain

Theorem 2.13.

Let M be a compact Kaehler manifold with ,cl(M) > 0 and

b
2

(M) = 1. Let f: M ~ N be a pluriharmonie map. Assume that

N has positive eurvature on totally isotropie 2-planes. Then,

one of the following cases oeeurs

(i) f 1s a constant map,

(ii) dimCM ~ 1 and f is a branehed minimal immersion.

A3. Complex-analyticity and constaney of pluriharmonic maps

into Kaehler manifolds.

Let f: M + H be a smooth map between Kaehler manifolds.

Let (z i) and (wO:) be' loeal complex coordinate systems for M

and

that

N, respectively, and put fB ~ w«of.

fis- pluriharmonie if and only if

By Al, it is clear

for any 1 < i,j < m = dim~M,
=:::1 \11

1 < B < n a dim~N .=.= ...

It iso also clear that Qjfi ~ QI f ; = Q1f~ ·

In [24], modifying the' proof of Theorem B, the following 1s

obtained
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Theorem G.

Let f: M ~ N be a pluriharmonic map from a Kaehler

manirold iota an irreducible Hermitian symmetrie spaee of eompact

or non-eompaet type. Then, f 1s t-holomorphie if

Max rankRdf ~ 2p(N) + 1.
M

Let f: M ~ N be a harmonie map from a Kaehler manifold

inta a Kaehler manifold with the Kaehler metric h. Then, by

Lemma 2.6, denoting by

tensor of N', we get

R- 
N «8"6

the component of the eurvature

where iso the' eurvature operator of N' and fl,O (resp.
i

f~' 1) ia the (1,0) .( reep.
- ~

(O,l))-component of the vector f ..
~

Uaing (3.2), we can prove Theorem G for the ease where N- = ~pn

or

applied.

In fact,. the smarter equation(see A3 in [24]) can be

However, the constancy of the' holomorphie sectional

curvature of or i8 not essential, that is, we have

r .

Proposition 3.3.

Let f: M ~ N· be a pluriharmonic map from an m-dimensional

Kaehler' manifold into a Kaehler manifold with strongly positive
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or negative curvature tensor. Then, one of the following cases

occurs

(i) f i5 ~-holomorphic,

(ii) rankCaf ~ 1 2e M.

Proof. From the proof of Theorem G, it i8 enough to prove

that if rankc3f ~ 2 at some point p e M, then f ia ~-

holomorphic at p. Since f i8 pluriharmonic, by (3.2) and the

strong positivity or negativity of the curvature tensor of N, we.

obtain

(3.4) f~,OAf~,l- f~,OAfi,l = 0 for any

We may assume that m > 2., Suppoae that=

1 < i,j < m •= c:II

f ia non :1:-

ho lomorphic at p e. M. At p, there' exist the indices- i and k

1 ° 0 1such that f
i

' ~,O,- f
k

' ~. 0. Moreover, we may assurne that

i ~,k. Otherwise, we have rankCaf ~ 1 at p. By (3.4), we

. have f 1 ,0· '0
k ~ « f O,l 0. ,. .

~
Thus-, (3.4) implies that for any fixed

,index j (1 ~ j ~ m),

= c

f O ,l. CI fO« 1
j C i,

Hence, rankcaf ~ 1 at p.

for some c E a:.

Q.E.D.

Theorem 3.5.

Let f: M ~ N be a pluriharmonic (resp. harmonie) map

from m(~ 2)-dimensional compact Kaehler manlfold with b
2

(M) = 1
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iota a Kaehler maoifold with strongly positive(resp. negative)

eurvature tensor. Then, f ia ±-holomorphic.

Proof. First, note that any harmonie map from eompact

Kaehler manifold into a Kaehler manifold with strongly

seminegative eurvature t~nsor becomes a pluriharmonic map(see

[20]). Sy Proposition 3.3, f i8 ±-holomorphic or rankCaf ~ 1

on M. If rankc3f ~ 1 on M, by m ~ 2 and Proposition 2.4, f

is a constant map. Q.E.D.

f .

Let (N, h) be an irreducible Hermitian symmetrie space of

noncompact type. Then, it ia known [20] that N' has strongly

seminegative eurvature tensor. Then, by Corollary (2.8) (er

(3.2» and Theorem- G, we obtain

Theorem 3.6.

Let f: M' ~ (N, h) be a smooth map from a Kaehler manifold

iota an irreducible Hermitian symmetrie space of non-compact

type. Assume· that Max rank.df ~ 2p(N) + 1. Then, the following
M

conditions are mutuallv eguivalent

(i) f 18 ±-holomorphic,

(ii) f 18 pluriharmonic,

(li1) f 1a harmonie and (f*h)(2,O)~ o.

Since an isometrie immersion f satisfies· (f*h) (2,0)= 0,

we get

Corollary 3.7. -([24]).

Anv isometrie minimal immersion from a- Kaehler' manifold M

into an irreduc1ble Hermitian symmetrie space N of non-compaet

type 1a ±-holomorphic if dimcM ~ p(N) + 1.
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Remark 3.8.

The condition (f·h)(2,O)~ 0 1s satisfied if c
1

(M) > 0 by

Lemma 2.3. However, it 1s known that any harmonie map from a

'compact manifold with positive Ricci curvature into a manifold

with non-positive seetional curvature must be constant.

Theorem G and Proposition 2.4 yields

Theorem 3.9.

Let M be" a compact Kaehler manifold with e 1 (M) > 0 and

b
2

(M) ~"1. Let N be an irreducible Hermitian symmetrie space

of compact type. Then, any pluriharmonic map from M into N

is ±-holomorphic if dim~M ~ p(N) + 1.

Lemma 3.10.

Let M' be" a compact Kaehler manifold with c
1

(M) > 0 and

let (N', h) be a Kaehler manifold. If f: M .. N i5 a

"pluriharmonie map« then

(3.11)

Proof. Define a smooth section by

-
~ij = ~haef~f~. Since f 1s pluriharmon1c, we obtain

= 0 ,
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that is, ~ ia a holomorphic section of ~T*M1,O. Sy the same

way ae Lemma 2.3, we see that ~ Q 0 . Q.E.D.

Proposition 3.12.

Let M be as in Lemma 3.10. Let H be aRiemann surface.

Then, any pluriharmonic map from M into N ia ±-holomorphic.

Proof. Since dimCN = 1, by (3.11), we obtain

f~f~ ~ 0
~ J

which implies that

for any

f 1s

1 < i,j < m,= =
t-holomorphic at aach point of M. If



2.4

Lemma 3.14.

Let f: M ~ (N, h) be a pluriharmonic map fram a compact

Kaehler manifald into a Kaehler manifold. Then,

W :::11

1
and eil =2

are nonnegative closed real (1,1)-forms on M.

-Proof. Let a be' the exterior differential operator whieh

sends (p,q)-forms to (p,Q+l)-forms. We have

(3.15) = -

Q.E.D.

- -
• - J-1~h -{fa(Q-fß ) - f~(Q-fß)}. ~B i j k ~ k j",

by the plurifarmonicity of f.

-aCll 1 is' skew-symmetr ie wi th respeet to the' indices j and

k. On the ether hand, the right hand side' of (3.15) 1s symmetrie

-wi th respect to the. indices j and k. Thus, a", 1 :::I O. S-inee

w1 18 real, we get dW 1 a O. In the' same way as the ease of w
I

'

we may treat ~2.

Proposition 3.16.

Let f: M ~,N be a pluriharmonic ma? fram rn-dimensional

compaet Kaehler manifold with b 2 (M) = 1 into a Kaehler
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manifold. If rankc (3fa ) < m (resp .. rankc(äfa ) < m) ~ M,

then, f 1s ant1-holomorphic(resp. holomorphic.).

Proof. Let ~ h a ä i Jw = v-1~ -f f-dz Adz1 aB i j ·
If

on M, by Lemma 3.14 we see that

*of H (M, R). In the same way as the proof of Proposition 2.4,

we obtain w
1

= 0, which implies that f 1s ant1-holomorphic.

If we replace ~1 by w2 of Lemma 3.14,

we get the holomorphicity of f. Q.E.D.

Corollary 3.17.

Let f: M ~ H be as in Proposition 3.16. lf dimtN <

dimCM, then f 1s a constant map.

Theorem 3.18.

Let f: M ~ N be a pluriharmonic map fram a compact

Kaehler manifold with c 1 (M) > 0 and b 2 (M) ~ 1· into a Kaehler

manifold. Assume that dim~M - dimeN. Then, f i5 ±

holomorphic.

Proof. Let dimcM = dirneN = m. By Lemma 3.10, we have

(3.19) f or any 1 ~ i, j ~, m,

where we- have used unitary basis of N. If f ia not anti

holomorphic, then, by Proposition 3.16, there exists an open

subset U of M' such that rankc (3fa ) = m- on U. ThuB,
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(f~) ie the non-singular mxm-matrix on U. Therefore, (3.19)

implies that f is holomorphic on U. Then, 5i~'s unique

continuation theorem yields the holomorphicity of f. Q.E.D.

A4. Complex-analyticity of stable pluriharmonic maps.

If a pluriharmonic map f ia stable as a harmonie map, then

WB say that f 15 a stable pluriharmonic map. In this seetion,

we investigate the complex-analyt'ieity of stable pluriharmonic

mape from certain compact Kaehler manifolds into an irreducible

Hermitian symmetrie spaces of eompaet type. First, we state the'

following

Theorem H. [24].

Let f: M ~ N be a stable pluriharmonie map from a compaet

Kaehler manifold into an. irreducible Hermitian symmetrie space of

'compact type. Assume that

Max{rank~(af~) + rankC(äf a )} ~ p(N) + 1.
M

Then, f i8 ~-holomorphie.

It can be verified that the' condition Max rankRdf ~ 2p(N) +
M

1 implies the condition Max{rankc(af~) + rankc(äf~)} ~ p(N) + 1
M

n(see [24]). If N ~ CP , then Theorem H ia reduced to Theorem D.

Theorem, H i5 used to prove· the following
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Theorem 4.1.

Let M be an m-dimensional compact Kaehler manifold with

b
2

(M) = 1 and let N be an irreducible Hermitian symmetrie

spaee of compact type. !f m, p(N), then any stable

pluriharmonie map f fram M into N ia t-holomorphie.

Proof. Assume that f ia non t-holomorphie. Then, by

Theorem H we have

on M.

On the other hand, by Proposition 3.16, there exjsts an open

subset U of M Buch that. rankc(af a ) c m on U, which,

together with (4.2), yields

> m=
on U.

Therefore, jf m > p(N), f=
1a holomorphic on U. Then, by Siu's

uni~ue continuation theorem, f 1s holomorphie, whieh is a·

contradiction. Q.E.D.

Theorem 4.3.

Let M be' a compact Kaehler manifold with c
1

(M) > 0 and

b 2 (M) =. 1 and let N. be' an· irreducible Hermi tian symmetric

space' of compact type.. Then, any stable pluriharmonie map from

M into N ia t-holomorphic.



28

Ta prave Theorem 4.3, we need the following lemma

Lemma 4.4. [16].

11 f : M ~ H ia a stahle harmonie map fram a eompact

Kaehler manifold into an irreducihle Hermitian symmetrie space of

compact type, then, with respect to unitary basis of M, we have

(4.5) ~ (faf~ + fBfg) = 0 for any 1 < a, B ~ n = dim~N.
i i i i i - a - ~

Proof. This 18 an immediate consequence of Proposition 1 in

,[16](see (1.5) of p.387 in [16]). Q.E.D.

Proof of Theorem 4.3. We u~e unitary bases of M and N.

Sy Lemma 3.10, we· get

(4.6) for any 1 < i, j ~ m = dim~M.

Since f is a. stable pluriharmonic map, by Lemma 4.4, the

equation (4.5) holde. The equation (4.5) and (4.6) yield

(4.7)
- -

~ fgfafBfß ~ 0
ce,S,l i j i k for any 1 ~ j, k ~ m.

'WB' put t;1j, == ~·cefIfj. If f 1s not holomorphic, by Proposition

3.16, there exists an open Bubset U of M' such that

rankc(äf a ) == m on U. Therefore, ~ a

mxm-hermitian matrix at each point of

(~ .. ) i~ the non-singular
1J

U. Then, (4.7) implies

that f 1a anti-holomorphic on U. This, together with Siu's

unique- eontinuat ion theorem', yields the anti-holomorph1ei ty
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Q.E.D.

Remark 4.8.

In Theorem 4.3, if dimCM = 1, Theorem 4.3 1s conta1ned in

Theorem C. If N a Cpn, Theorem 4.3 i& contained in Theorem D.

If N a ~n(n > 3) (eomplex hyperquadric), Theorem 4.3 i9 contained=

in Theorem 4.1.

AS. Complex-analytic1ty and constancy of stable harmonie

maps from CpM.

In this section, we state the immediate eonsquenees of

Theorem F and the results in A2 - A4.

Theorem 5.1.

Let f: Epm ~. N be a stable harmonie map into a Riemannian

manifold. Assume' that N haB positive- curvature on totally

isotropie 2-planes with dim N ~ 4 ~ N has positive Ricci

curvature w1th dim N a 3. Then, f 15 constant.

Proof.

Moore[ 12] .

conclusion.

If m ~ 1, Theorem 5.1 1a due to Micallef and

If m > 2, Theorem' Fand Theorem 2.13 yield the=
Q.E.D.

We conjecture that "If f: M ~ N 18 a stable harmonie map

tram s' compact Riemannian manitold ioto a simply connected

compact Riemann1an manifold with 1/4 < K < 1= dim N > 3,=

where K 1s the sectional curvature of N, then, f ~

constant.". This 18 the harminic map version of Lawson-Simons'
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eonjecture[11]. Refer to [9], [17] for other partial answers to

this conjeeture.

Theorem 5.2.

mLet f: CP ~ N be a stable harmonie roap into a Kaehler

manifold with stronglv positive curvature tensor. Then, f ia

±-holomorphic.

Proof. The ease where m = 1 18 due to Siu and Yau[22].

If m > 2, Theorem F and Theorem 3.5 yield. the conclusion.=
Q.E.D.

Problem. Let N be a Kaehler manifold with positive

holomorphic bisectional eurvature (or 1/2-pinehed holomorphic

-sectional curvature H, i.e., 1/2 < H ~ 1). Then, i9 any stable

harmonie map' mf : ~p ~ N ±-holomorphic 7 .

Theorem F, Corollary 3.17 and Theorem 3.18 yield

Theorem 5.3.

mLet. f : CP ~- N be a stable harmonie map into a Kaehler

manifold. Assume· that dimeN m m (resp. dirneN.< m). Then, f

is ±-holomorphic (resp. constant).

Moreover, Theorem· F and Theorem 4.3 yield

Theorem 5.4~

Any stahle harmonie map fram Cpm ioto an irreducible

Hermitian symmetrie spaee cf eompact type 18 t~holomorphic.

Theorem 5.4 ia nothing but Theorem E.



31

A6. Examples of stable er unstable pluriharmonic

but non t-holomorphic maps.,

Let f: (M, g) ~ (N, h) be an isometrie immersion between

Kaehler manifolds. Then, f 1s ealled Kaehler immersion if it i9

holomorphic. If we denote by ~N the Kaehler form of N, then

•f 18 ealled totallv real if f ~N a 0 on M. He show the

following seven examples(c.f. [5]).

Example 1. N = G2 (C), p(N) = (m-1)(2-1) + 1 = m.,m

Let M~' ~m. Then, dim~M m p(N). Let

mh z:::l gof : G2 _f_....+ SO(m+2)/S(O(2)><O(m)) 9 ) G
2

(C),,m

where f ia a· covering map and g 19 a totally real, totally

geodesie isometrie immersion. Then, h 19 non ±-holomorphie,

pluriharmon1e map. This, example shows that Theorem 3.9 and

Corollary 3 in [24] are best posaible for N = G
2

(~).,m

Moreover, h ia unstable aa a harmonie map by Theorem 4.3. Thus,

.the assumption of the stabil! ty in Theorem 4. 1 ean not be'

excluded for N = G
2

(C).,m

Let f: M' = Mi><M2 ~ N. be a totally geodesie Kaehler'

immersion from a· reducible Kaehler manifold into a' Kaehler

manifold. Then, f 18 a stable pluriharmonic map. If we define

a new Kaehler strueture' on M so that f 1s not' . ±-holomorphic,

we obtain a non t-holomorphie, stable pluriharmonie map because

th~ stability and the total geodesieity of f depend on the'

Riemannian' structures of M and N only. Now, the following i9

a list of totally geodesie Kaehler immersions. f from reducible
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Hermitian symmetrie spaces .M into an irredueible Hermitian

nsymmetrie spaces N· of eompact type exeept for N = CP. In the

following examples, dimCM = p(N) holde, henee' the assumption of

b
2

(M) ~ 1 in Theorem 4.1 and Theorem 4.3 ean not be exeluded.

Thus, Theorem H 15 also best pOBsible.

Example 2. nH = Q , p(N) m 2.

1 1f : M = CP xCP ~. n .
Then, dimCM = p(N).

Example 3. N a G (C), peR) = (p-1)(q-1) + 1.p,q

f : M = Gk k(C)xG k k(C) ~ G (~) (0 < k < P < q),, p- ,q- p,q = =

2
dim~M- = (p-k) (q-k)+ k. If k = 1, dimCM ~ p(N).

Example 4·. N = 50(2n)/U(n), p(N) = (1/2)(n-2)(n-3) + 1.

f : M =. (50(2k)/U(k) })({50(2(n-k) )/U(n-k)} ~ 50(2n)/U(n)

(0 < k < n) ,

dimcM' = (1/2)k(k-1) + (1/2)(n-k)(n-k-l). If k = 2,

dimcM = p(N).

Example 5. N =' 5p (n) /U (n), p (H) = (1/2) n (n-1) + 1.

f : M'= (Sp(k)/U(k)}x{Sp(n-k)/U(n-k)} + 5p(n}/U(n)

(0 < k < n) ,

dima:M = (1/2)k(k+1) + (1/2)(n-k)(n-k+l). If k:l 1,

dimcM' m p (H) .
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Example 6. N = E6 /Spin(10) •.T, p(N) ~ 6.

f : M = cp1xmp5 ~ Ea/Spin(10).T .

Then, dimCM = p(N).

1 10
f : M = CP x~ ~ 1 7 /E6 ·T .

Then, dim~M =. p(N).

These examples 2 - 7 satisfy c 1 (M) > 0 and b 2 (M) = 2.

A7. Totally geodesie isometrie immersions between

irreducible Hermitian symmetrie spaces of eompact type.

Let M and N be a eompact Riemannian manifold and

Riemannian manifold, respectively. Let f : M ~ N be· a totally

geodesie isometrie immersion. We denote by IdM the identity

map of M. Then, we' have

Proposition 7.1.

f 1s stable as a· harmonie me? if and onlv if f 15 stable

as a minimal immersion and IdM 19 stahle as a harmonie mep.

Proof. Any smooth section. V of C·(f-1T~) is represented

as



34

where NM ia the normal bundle of f. He- denote by L f , LId
M

and Jaeobi operators of harmonie map f, identity map aa a

harmonie map and minimal immersion f, respeetively(for the

Jaeobi operators, see [11], [14]). Sinee f ia totally geodesie

isometrie immersion, it i5 easy to verify that

Lf(V) = (df)LI~(VT) + L~(VN)

This and the total geodesicity of f yield

Q.E.D.

If M ia a eompaet Kaehler manifold, then Id
M

15

holomorphie, henee' stable. Thus, we obtain

Proposition 7.2.

Let f: M ~ N be' a totally geodesie isometrie immersion of

a eompaet Kaehler manifold into a Riemannian manlfold. Then, f

19 stahle as a harmonie map if and only if it 1s stable as a

minimal immersion.

By Proposition' 7.2 and Theorem 4.3, we obtain

Theorem 7.3.

Any stable totally geodesie isometrie immersion between

irreducible' Hermitian symmetrie spaces of eompaet type 1s ±

holomorphic.

Remark 7.4.

Let f: M ~ N: be' a totally geodesie map between Riemannian

manifolds. If M ia irredueible in the sense of da Rham, then

f ia homothetie. By Theorem 2 in [2], if f: M ~. N 15 a
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stable harmonie immersion fram a eompact Riemannian manifold into

an irreducible Hermitian symmetrie space of eompact type, then M

- -1i8 even-dimensional and J ~ df oJNedf, where J N 18 the

complex structure tensor of N, ia a complex structure and

hermitian with respect to the given metric on M. Thus, if f

1s totally geodesie, ws have VJ. 0, that ia, if f: M ~ N ~

astahle totallv geodesie isometrie immersion of a compact

Riemannian manifold ioto an irreducible- Hermitian symmetrie space

of compact type, then there exists a unique Kaehler structure on

M such that f 18 holomorphic with respect to this Kaehler

structure.



36

AB. A construction of non t-holomorphic, pluriharmonic maps

into complex Grassmann manifolds

In this section, we give a method of manufacturing

pluriharmonic maps into complex GrBssmann manifolds fram

holomorphic maps ioto complex projective space with Fubini-Study

metries.

Let ~pn be an n-dimensional c9mplex projective space with

constant holomorphic sectional curvature c and L ~ Cpn be the

universal line bundle. L is naturally regarded 'as a holomorphic

1ine subbundle of the trivial bundle 0;:0+11:1 Cpnx o:n+1. We denote

•by L the dual bundle of L. Let <, > denot~s the' standard

0+1 ~
Hermitian inner product of ~ . We denote by L the

o~thogonal cemplement of L in Cn +1 with respect to <, >.

W~ have a natural exact sequence·

where i denotes the inclusion and j denotes the Hermitian

projection. We endew' each bundle with the natural Hermitian

connected structure induced fram < , >. There' ia a linear

isomorphism

such that

n 1,0 • ..Lh : T(CP) ~ L~L preserving the' connections

(c/2)g(Z, W) = <h(Z), h(W» for Z, WE'T(4:pn)l,o,

where 9 ia the' Kaehler metric of Cpn.

nLet f: M ~ CP be a smooth map fram a manifold M.

Consider the> exact sequence' of the pull back bundles :
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Set E - f- l (L*.c'\""n+l). Th ti i (1) E Cl» (E)- '0'''' e sec on • f l:a 1s called

the universal lift of f(c.f. [7]), where 1 denotes the

identity section of f-l(L·~L). Denote by D the induced

connect1on of E. The curvature form RE of the connection D

19 given by

for K, Y E T M, where- CIJ 19 a fundamental 2-form of
p

defined by ~(u,- v) = g(Ju, v). Then, we have

n
(ll:P , g)

for X e TMC,

where' (df) 1,0 denotes. the (1,0) -component of df. Assume that

M is a complex manifold. f. iso holomorphic(resp. anti

holomorphic) if and only if

Let f : M ~ Cpn be a·, holomorphic map. We def ine' the oscula t ~ng_

spaces a10ng the map f . At each p eH, we define Ok(f) ( k E Z,
P

k > 0) by
a
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o0 ( f) ::I i ( f - 1 ( L *lX)L» , ,
p p

z , ... Z E T Ml , 0 0 __<i __<k }1 i p ,

CEp

Put

Note- that ÖO(f) 1:1 (f-1L) . Set Ra .. M and Rk • ( pt=,R
k

_
1

;
p p

dirn Ök(f) 15 maximal. } for k > 1 . Then, there exists uniquely
p =

a posi tive' integer d Buch that Öd - 1 (f)· C Öd(f) and Öd(f) =P .. P P

for any p E R
d

and any i > 1.
::::I

Such integer d 1a

called the' osculating degree of the holomorphic map f and

denoted by d::::l d(f). Note that Rd • Rd + 1 ::I •••• This open

subset Rd of M will be' denoted by R and called the set of

regular points of M. Let Ök(f) denote the complex vector

subbundle of over with, the fibre' Ök(f).
p

It 1s

standard to check the' fo~lowing lemma

Lemma 8.3.

(i) . M \ Rk 19 a complex analytic subvariety of M.
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( ~~) Lf O-k(f) = O-k+l(f) R th O-k(f) O-k+i(f).. .. ~ k' ----.!!!!. =

(111)

i > o.=

R

(iv)

(V )

18 a holomorphic vector subbundle of ~n+1 ~ R.

i5 full, that Is, the image of f i8 not eontained

. . t· b f ~pn, then we have O-d(f) =~n any proper prOJBC ~ve su space 0 ~

«:n+1 ~ R

Proof. Let 0 ~ 1 ~ k and Z, Zl' .•. , Zl be loeal smooth

sections of TM1,O ovar R. For any pE C·(f-1L),

Is- a Ioeal smooth section of Öi +1
(f) C Ök+1 (f), where ( . ) L

denotes the Hermitian projection of (. r to the universal line

bundle L. From'"this we get (i). Sy (8.1) and (8.2) we compute
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(DZDZ1 ··· DZi~f)(P)

L+ (D ••• DZ tf)«aZp) )
Zl i

From this we get (ii).

s (D • • • DZ DZtf)(p) mod Öi(f)
Zl i

s 0 mod Öi(f) .

Q.E.D.

Hext we prepare' twistor fibrations of complex flag manifolds

onto a complex Grassmann manifold. Let F = F(n
1

, n
2

; n+1)

denote the' complex flag. manifold U(n+l)/U(n1 )xU(n
2
-n1 )xU(n+l-n

2
)

, where· 0 ~ n 1 ~ D2 ~ n+1. A point in F may be viewed aB a

pair (V, W) of an n1-dimensional complex subspace V of ~n+l

and an n 2-dimensional complex subspace W of En +1 satisfying

VC W. There are' three tautological subbundles Tl' T
2

, T3 of

the trivial bundle FxCn+1 with the fibre at b = (V, W) E F

belng given by It is

well~known that the complexlfied tangent bundle TF~ of F i8

naturally iso~orphic to

GL(n+l,~) acts on p' via
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a(V, W) = (a(V), a(W» E F

for a E GL (n+l, a:) and (V, W) E F •

PGL(n+1,~) acts effectively on F. F 1s expressed as a

complex homogeneous space PGL(n+l, CliP, where Pis. a

.parabolic subgroup of PGL(n+l, Cl. We equip F with the

complex structure via this expression as a complex homogeneous

space·. H1th respect to this complex structure, the (1,0)- and

(O,l)-tangent spaces of F are given by

We denote by h(i,j) the Hermitian metric on Horn (T i' T j)

induced fram the flat Hermitian metric on FxCn + 1 . For each pair

~ = (F.
1

, ~2) of positive real numbers, the Herrnitian metric

h~ ~ f. 1h(1,2) + (~1+ f. 2 )h(1,3) + f. 2h (2,3)

on TF1 ,O defines a Kaehler metric on F (c.f. [1]). With

respect to this Kaehler metric, U(n+l) acte isometrically' on F.

hf. 19 an Einstein-Kaehler metric if and only if

( 1 ) f > 0 L t G ( ,..n+ 1 ) cl t
~ = c n 2 , n+ - n 1 or some c . e r ~ eno e a

'complex Grassmann manifold U(n+1.) /U (r) ><U (n+l-r), 'of r

dimensional complex Bubspaces- cf en + 1 and T denote a



42

tautological subbundle of the" trivial bundle

G (Cn +1 ) has a natural symmetrie Kaehler manifold strueture such
r

that the (l,Q)-tangent spaces of are given by

For a pair (n
1

, n
2

) of integers with 0 ~ n 1 < n 2 < n+l, define

n+l) ---+' G (Cn + 1 )
r

by n (V, w) = VJ.n w
where

for (V, W) e F,

Then, we endow F with a homogeneous

Kaehler metric ( f.l~ ~2) such that n is a homogeneous

Vb) be the horizontal(resp. vertical) subspace" of

Riemannian submersion and we have Let Hb (resp.

TbF with

respect to the' Riemannian submersion n. We have an orthogonal

direct sum

where

( 8 • 7 )
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and

The action of PGL(n+1, C) on F preserves the horizontal

distribution H. Let M be a complex manifold and f: M ~ Cpn

be a full holomorphic map with the oseulating degree d. Fix a

pair (s, t) of integers with -1 < s < t < d. Define a amoothlllI _

map f t: R ~ F = F(n(e), n(t)s, n+1 ) by

for pER;

where'
-9 . -t

0(5) = rank~O (f), n(t) s rankCO (f) and

Note that f~~tTl = äS(f) and f;~t(Tl~T2) = Öt(f) .

Lemma. 8.8.

(i) ~s,t: R ~ F 19 a holomorphie map.

(ii) f 19 horizontal with respect to the fibration rrs,t F ~

Proof. Set f =. f
B,t' Let Z be a Ioeal smooth section of

TM!'O Rover . By the holomorphicity of fand Lemma 8.. 4,
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(8.10)

(8.11)

From (8.11) we have

Let and Differentiating

Sy (8.10), we· have

(8.13)

By (8.9), (8'.12) and (8.13) we' see that (df) (Z) 19 a local

--1 --1
smooth section of f· Hom(T

1
, T2 ) E9 f Hom(T

2
, T3 ) ovar R.

From (8.5) and (8.7) WB' conclude- that f 18 horizontal and

holomorphic. Q.E.D.

Proposition 8.14,.

Let p' be a Kaehler manifold and n : F ~ N be a

Riemannian submersion of F onto' a Riemannian manifold N. lf-
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-~ : M ~ F 19 a horizontal holomorph1c map from a complex

manifold M, then ~ m IT 0 ~ : M ~. N 18 a pluriharmonic map.

Proof. By a formula of a Riemannian submersion and the

pluriharmonicity of ~, for any loeal smooth seetion Z, W of

TM1,O,

-
~ dn(Q~(d~(Z))) - dn(a~(äwz))

::: 0 .

Q.E.D.

Set ~s,t
::IIl n o f .

S·, t

Theorem 8.15.

( i ) q,s,t 19 a pluriharmonic map.

(li) s = -1 if and only if 4t s ,t

(111) t ::s d if and onlv if q,
B,t

18 holamorphie.

18 ant1-holomorphlc.

Proof. (1) i8 due· to Lemma 8.8 and Proposition 8.14. We

show (li) and (li1)
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(1i) '51, t ia holomorphic ~ (df s , t) (TM
1

, 0) C f~~ tHom(T2' T3 )

(lil) ~s,t is anti-holomorphic

1 0 -1
( df B , t ) (TM ' ) C f s , t Hom ( Tl' T2 )

Theorem 8.16.

Q.E.D.

a
For each, a e PGL (n+l, ~), qt s, t ~ ,,( a. f B, t )

1a also pluriharmonic.

Proof. Since PGL(n+l, C) acta holomorphically on Fand

this action preserves the horizontal distribution on F,

aaf t is also holomorphic and horizontal. Q.~.D.s,
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Remark 8.17.

(1) Our a~gument is inspired by the werk of Eells and Wood

[7] . In case of dim«:M:::I 1 and t = 8+1,. this 1e a result of

[7]. The maps ~-1,1 and ~O,l were studied by Nishikawa[13]

and Ishihara[lO], respectively. Guest[8] investigated the

harmenicity of ~ +1 for a flag manifold M ~ GIT .s,s

(2) The first author[15] constructed aseries of harmonic'

maps fram each campact homogeneous Kaehler manifold' into a

complex projective space, which are- neither ±-holomorphic ncr

totally real.
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