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AO. Introduction.

Siu([18}, [21]) studied the complex—-analyticity of harmonic
maps from compact Kaehler manifolds into compact Kaehler
manifolds with strongly negative curvature tensor(see a1 for the
definition) or compact gquotients of irreducible symmetric bounded
domains. 1In particular, he obtained the following results

Theorem A.

Let £ : M+ N be a harmonic map from a compact Kaehler

-manifold into a compact Kaehler manifold with strongly negative

curvature tensor. Then, f is holomorphic or anfi:holomo:ghic if

Max rank_.df > 4.
M R =

Theorem B.

Let £ : M > N be a harmonic map from a compact Kaehler

manifold into a compact guotient of an irreducible symmetric

bounded domain D. Then, f is holomorphic or anti-holomorphic

if Max rankndf 2 2p(D) + 1, where
M

p(D'™) = (m-1)(n-1) + 1, p(D*™™) = (1/2)(n-2)(n-3) + 1, p(D*I")

= (1/2)a(n-1) + 1, p(DT") = 2, p(DF) =6, p(DL) = 11.



The number p(D) is important in this paper.

Definition 0.1.

Let N be an irreducible Hermitian symmetric space of

compact or non—compaét type. We define an integer p(N) as

follows
Type of N N of compact type pP(N) dimmN

Imn Gm,n(c) (m=-1)(n-1)+1 mn
= SU(m+n) /S{(U(m)xUn))

IIn S0(2n)/U(n) (1/2){n=-2)(n=-3)+1|(1/2)n(n-1)

IIIn Sp(n)/U(n) (1/2)n(n-1)+1 {(1/2)n(n+1)
n ‘ i :
Q(C) 2 n

X = S0(n+2)/S0(n)x50(2)

VA Es/épin(lo).'r 6 16

AvR Eg/Eg-T 11 27

Definition 0.2.

A map 1s called :-holomorphic if it is either holomorphic
or anti-holomorphic.

Let f M > N be a smooth map from a Kaehler manifold into

a Riemannian manifold. Then, f is called pluriharmonic if

(l,f)-part of the second fundamental form of f
identically(see g1).

vanishes

Hence, a pluriharmonic map is a harmonic




map, and if 'dimcm = 1, a pluriharmonic map is nothing but a

harmonic map. Obviously, a totally geodesic map is a
pluriharmonic map. Morecver, a holomorphic( or anti-holomorphic
) map is a pluriharmonic map if N is a Kaehlér manifold. If N
is a Kaehler manifold of which curvature tensor is strongly semi-
negative in the sense of Siu[18], any harmonic map from compact
Kaehler manifolds into N becomes a pluriharmonic map([20].

A harmonic map between compact Riemannian manifolds is
called stable if the second variation of the energy is non-
negative for every variation of the map. Lichnerowicz showed
that any holomorphic( or anti~holomorphic) map between compact
Kaehler manifolds is energy-minimizing in its homotopy class,
hence stable(see [23]}). From the second variation formula for
the energy integral[23], it is known that any harmonic map into a
Riemannian manifold of non-positive sectional curvature is
stable.

From Theorem B and theée points of views, it is natural to
ask that "Is any stable harmonic map(or pluriharmonic map) from
compact Kaehler manifolds into irreducible Hermitian symmetric

spaces of compact type N :-holomorphic (with some agssumptions
of p(N) ) 2".

There are some related results

Theorem C. ([2], [16]).

Any stable harmonic map from compact Riemann surface into

irreducible Hermitian symmetric space of compact type is :-
holomorphic.

We denote by cP” an n-dimensional complex projective space
with Fubini-Study metric.



Theorem D. ([24]).
Any stable pluriharmonic map from compact Kaehler manifold

into ¢P is :-holomorphic.
Theorem E. ([2]).

Any stable harmonic map from ¢p” into irreducible

Hermitian symmetric space of compact type N is s:-holomorphic.

The following result of the first author is used to prove
Theorem E
Theorem F. ([14]).

Any stable harmonic map from GPn' into _any Riemannian

manifold is pluriharmonic.
Remark 0.3.

The case where N = CP" in Theorem E is proved by the
~first author{14]. The special cases of Theorem C are treated in
[3]1, [4] and [19](see also [27]).

' We denote by 'cl(M) and bz(M) the first Chern class and

the second Betti number of M, respectively.

Our main results are the following

Theorem 2.13.
Let M be a compact Kaehler manifold with cl(M) > 0 and

bz(M] =1, Let f : M > N be a pluriharmonic map. Assume that

N has positive curvature on totally isotropic 2-planes. Then,

one of thg_follgwing.cases occurs

i) £ is a constant map,

ii) dimcM =1 and f is a branched minimal immersion.




For the definition of the "positive omn totally isotropic 2-

planes”, see 31,

Theorem 3.5.
Let f : M > N be a pluriharmonic(resp. harmonic) map from

an m(2 2)-dimensional compact Kaehler manifold with bz(M) =1

into _a Kaehler manifold with strongly positive(resp. negative)

curvature tensor. Then, f 1s :-holomorphic.

Theorem 3.9.
_ Let M be an m-dimensicnal compact Kaehler manifold with
cl(M) > 0 and bz(M) = 1 and let N be an irreducible

Hermitian symmetric space of compact type. If m > p(N) + 1;

then any pluriharmonic map from M into N igl t+-holomorphic.
Theorem 3.18.

Let M be a compact Kaehler manifold with cl(M) > 0 and

b2(M) = 1 and let N be a Kaehler manifold with dich = dimmﬁ.

Then, any pluriharmonic map from M into N is :-holomorphic.
Theorem 4.1.

Let M be an m-dimensional compact Kaehler manifold with

bz(M) = 1 and let N be_an irreducible Hermitian symmetric

space of compact type. If m > p(N), then any stable

pluriharmonic map from M into N i t+-holomorphic.

Theorem 4.3.

Let M be a compact Kaehler manifold with cl(M) > 0 and

bz(M) = 1 and let N be an irreducible Hermitian symmetric

space of compact type. Then, any stable pluriharmonic map from
M into N is t-holomorphic.




Combining Theorem F and the above results, we have the

various conclusions for the complex-analyticity and the constancy

of stable harmonic map from CPm, which are stated in 35.
In 86, we show that there exist stable{resp. unstable)
pluriharmonic, but non :t~holomorphic maps from compact Hermitian

symmetric spaces M with b2(M) = 2 (resp. bz(M) = 1) and dimcM

= p(N) into irreducible Hermitian symmetric space of compact

type N except for the case where N = cp”.
In A7, we show that any stable totally geodesic isometric

immersion between irreducible Hermitian symmetric spaces of

compact type is :-holomorphic.
In 48, we give a construction of non :-holomorphic

pluriharmonic maps into complex Grassmann manifolds using the
method of Eells and Wood(7], in particular, we make pluriharmonic
maps into complex Grassmann manifolds from holomorphic maps into

complex projective spaces.

Al. Basic notations and definitions.
(A). Pluriharmonic maps.

Let f : M » N be a smooth map from a complex manifold into

a Riemannian manifold. Let TMc and TNG be the
complexifications of the tangent bundles of M and N,

repectively. We have

(1.1) TM® = TM¥ /0 4+ oM0r1

0,1

where the fibre Tle’o(resp. 'I‘x ) at xeM is the J-1(resp.



—J—l)-eigenspace of the complex structure tensor of M. We
denote by T M the dual bundle of TM. The differential f, of

f extends by complex linearity to £, : TMc - TNC; which may be

interpreted as a homomorphism from TMd= to f-lTﬂc. We denote

by df this homomorphism. We may define the bundle maps 3f

0,1 -1..C £

™% 5 £7'en® ana 3 : M@t L £ Let ¢f be the puil-

back connection on f-lTN, which is extended by complex linearity

1.0

to £ "TN’. By this connection and 3-operator of M, we may

define the g3-exterior derivative of g f = (3fA), which is an

f-lTNc-valued ]1,1)-form on M and denoted by ¢ .3f, is defined
by

" - (A A - B __C
(1.2) ¢ af = 3af" + x[go3f Adf

where rgc = rgcnf is the Christoffel symbol of N.

t .
In the same way, we may define the 3-exterior derivative ©¢ jf

1

of 3f, which is also an £ TNm~valued (1,1)-form on M.

"
Alternatively, v 3f is defined by

(1.3) (vg9f)(2) = UE(3£(Z)) - af(3z2) for any 2z, W € c® (')

Then, f is called pluriharmonic if




1w

(1.4) v af =0

t tt

Now, assume that M is a Kaehler manifold. Set ¢ = v + v

9df is called the second fundamental form of f. It is known
that
(1.5) (9,df) (W) = (v df)(V) for any V, w ec®(m%),

that is, 9df is a symmetric C-bilinear form. Thus, f is called

pluriharmonic if (1,1)-part of the second fundamental form of

vanishes identically. In terms of local complex coordinate

system (zi) of M, (1.4) is rewritten as

(1.6) iji = Q for any 1.5 1i,j g m= dimcM ,

where Vj = v, J and f} = 3f/azl. By (1.5), we have

a/3z
ijz = VIfj and iji = Vifj .

(B). Curvature conditions.

Let (M, g) be an m~-dimensional Riemannian manifold. We
denote by < , > (real) inner product of tensor bundles of M

induced by g and by ( , ) the complex extension of < , >,
Define the Hermitian inner product << , >> by

(1.7) <<u, v>> = (u, v} .

- The curvature tensor R of (M, g) is defined by

£



(1.8) R(X, ¥) = [Vy, 9y] X, YETM ,

T Vix, vy

where ¢ 1is the Riemannian connection of (M, g).

The sectional curvature K is defined by
(1.9) K = K(g)
= <R(X, Y)Y, X> ,

where g = spann{x, Y} is a 2-dimensional subspace of TpM,

p€E€M. We denote by Q the curvature operator of (M, g}, which
is defined by

(1.10) <Q(XAY), ZAW> = <R(X, Y)W, 2>, X,¥,2,H € TM.

The complex extension of Q to AzTMc

Definition 1.11.

is also_denoted by Q.

Let ¢ be a complex 2-dimensional subspace of TPMG, peM.

Then, the complex sectional curvature for ¢, denoted by E(a).
is defined by

(1.12) R(g) = <<Q(ZAW), ZAW>>,

where (2, W) 1is a unitary basis of g.
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Remark 1.13.

If ¢ is real, i.e., g = g, K(g) is nothing but a
sectional curvature K(g). If Q > O (resp. > 0, < 0, < 0},
then K > 0 (resp. 20, <0, £0).

Definition 1.14.

An element 2Z € TpMc is called isotropic if (Z, Z) = 0

Let ¢ be a complex subspace of TpMc. Then, ¢ is called

totally isotropic if (Z, Z) = 0 for any Ze€g.
Definition 1.15.

We say that (M, g) has positive (resp. non-negative,

negative, non-positive) curvature on totally isotropic 2-planes

if K(g) > 0 (resp. 20, <0, £0) for any totally isotropic

2-dimensional complex subspace g of TPMc and any pé€EM.

Remark 1.16.

By [(12], the following are known
1} If M has positive curvature operator, then M has positive
curvature on totally isotropic 2-planes,.

2) If (1/4)s < K g 6, where s is a positive function on M,

then M has positive curvature on totally isotropic 2-planes.
Example 1.17. _ 4
Let (M, g) be a symmetric space of compact type(resp.

non-compact type). Then, Q 2 0 (resp. £ 0). In particular,

(M, g} has non-negative (resp. non-positive) complex sectional

curvature.

Now, assume that (M, g) is a Kaehler manifold. We have

the decomposition
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A2TME = £ 1200y 4 f(1eD)py 4 400020y

By the Kaehler identity of M, we have

(1,1)

set Q 2q : Al lpy , A0l gy

Example 1.18,.

If M = CPm(resp. CHm), then Q(l'l)

> 0 (resp. < 0),

where CH"™ is an m-dimensional complex hyperbolic space.
Remark 1,19.

If o = spang(Z, W} C TPMG, where {Z, W} is a unitary

basis for ¢, then

(1,1)

K(g) = <<Q (ZAH) , ZAW>>

= <<t M zamy 11,z (10255

= <cQf1r1) (201,00, (0,1) _ (1,0}, ,(0,1),

2(1.0) (0,1) _ L(1,0) ,(0,1)

where- z(p,q) is the (p,g)~part(p,gq = 0 or 1) of the vector

Definition 1.20. ([18]).

We say that (M, g) has very strongly positive (resp.

semi-positive, negative, semi-negative) curvature tensor if




frme—
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(1,1)

Q >0 (resp. 2 0, <0, £ 0) .

Definition 1.21. ([18]).

We say that (M, g) has strongly positive (resp. semi-
positive, negative, semi-negative) curvature tensor if

<<Q(1'1)(E): £>> > 0 (resp. > 0, < 0, £ 0) for any

1,0

£ = ZIAW1 + ZzAW2 »« 0 , Zl, Zz, Wl, W2 (= TpM " and any

p € M. .
Example 1.22.

CPm(resp. CHm) has very strongly positive (resp. negative)

curvature tensor.

A2. Constancy of pluriharmonic maps into
Riemannian manifolds.
Let (M, g, J) and (N, h) be a Kaehler manifold and a
Riemannian manifold, respectively. Let f : M + N be a

pluriharmonic map. We define a smooth section « of 'gT*Mc
by

»
(2.1) w(X, ¥Y) = (£ h)(JX, ¥) for any X, YET’me, any xe€M.

Then, w can be decomposed as ¢ = u(2'0)+ w(1'1)+ w(0,2)

according to the decomposition

* : * L 3 » .. - »
FT M =@Ml % 4 (M %r v i MO Igr M 0y & FrMOr L,
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(1,1)
w

Note that is a real (1,1)~form on M .given by

ETEIR J:Tui{jh(fi’ f})dzihdzj .
Lemma 2.2. ([14]).

w(2'0)= w(0,2) is a holomorphic section of 6'1'*!41'0.

m(l'l) is a nonnegative closed real (1,1)-form on M.

Lemma 2.3.
Let M be a compact Kaehler manifold with cl(M) > 0.

Then, w = w(l'l) .

Proof. The solution of Yau for Calabi conjecture[26]
ensures an existence of a Kaehler metric on M with positive
Ricci curvature. Using a formula of Bochner type with respect to
this Kaehler metric, we can show a nonexistence of nonzero

L J
holomorphic sections of QfT M0, By Lemma 2.2, we get w(2’0)=

(0,2) (1,1)
w @ .

m 0, Thus, w = Q.E.D.

Proposition 2.4.

Let M be an m-dimensional compact Kaehler manifold with

bz(M) =1 and f : M N be a pluriharmonic map.

(1) If rankcaf <m on M, then . f is a constant map.

(2) If CI(M) >0 and {f is nonconstant, then there exists an

open subset U of M such that

(i) £ : U+ N 1s an immersion,



ST

.M, hence constant. Thus, we have
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(ii) (U, £ h) is a Kaehler manifold, and

(ii1) £ : (U, f‘h) + N is a pluriharmonic isometric immersion.

Proof. Assume that 3f is not injective at every point of

M. Then, we have

[u(l,l)]m ='u(1'1)A Au(l'l) =0 on M,
\___w_______/
m -~ times
(1,1),m * .
Hence, [w 1" = 0 as an element of H (M, R). Since bz(M) =
(1,1) : 2
1, we have f[w ] = 0 as an element of H"(M, R). Since g

is a closed real (1,1)-form cohomologous to 0, there exists a

real smooth function ¢ on M such that u{l'l) = J-laﬁw.

u(l'l). ¢ is a subharmonic function on

w(l'l)

By the non-negativity of

= 0, which implies that
9f = 0., Therefcore, £ 1is a constant map. Then, we get (1}.

Next, we show {2). By Lemma 2.3, we have

h((af)(Tle’o). (sf)(TxMo'l)) = 0 for any xe€M. Therefore,

rankndf a Zrankcaf at each point of H, If rankndf < 2m on

M, then rankcaf <m on M, and by (1), £ is a constant map,
which is a contradiction. Hence, randef = 2m on some open

subset of M. By Lemma 2.2 and 2.3, we get (i), (ii) and (iii).
Q.E.D,.
Remark 2.8,
If (N, h) is a real analytic Riemannian manifold, we can
take the above open subset U of M so that U 1is dense in M
and M\ U is a real analytic subvariety of M.
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For later use, we prepare the following lemma

Lemma 2.6.

If £f : M- (N, h) is a harmonic map from_a Kaehler

manifold into a Riemannian manifold, then, with respect to local -

unitary frame fields on M, we have

(2.7) zi'3v3v3h(fi. fj)

= uv3£;1% - uh(€;, (R£7, £3)£)) ,

where NR is the curvature tensor of N.

Proof. Since f is harmonic, we have

uivzh(fi, fj) = zih(fi, v;fj) . forany 1 < j <m= dimCM.

Thus,
xi,jVEVIh(fi! fj)

. - 2 . — p—
lejfil + Lh(fi. vjvifj) .

On the other hand, by the harmonicity of £ and the Ricci
identity, we get

HjV3VIfj = = ENR(fI- fs)fj

Thus, we have (2.7).
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m if f

A

Note that th(fi, £f;}) =0 for any 1 ¢ i,j.k

J

=
a pluriharmonic map. Since (f h)(2,0) = 0 if and only if
h(fi' fj) =0 forany 1< 1i,j S m= dimcM, we have

Corollary 2.8.
Let £ : M+ (N, h) be a harmonic map from a Kaehler

manifold into a Riemannian manifold with non-positive complex

»
sectional curvature. If (f h)(Z,O) = 0, then f is
pluriharmonic.
We recall the definitions of "isotropy", "total isotropy"

and "positivity or negativity on totally isotropic 2-planes".
The condition that N has positive (or negative) curvature on

totally isotropic 2-planes is always satisfied if dim N < 3.

By Lemma 2.3, we have

Lemma 2.9.

Let M be a compact Kaehler manifold with cl(M) > 0. Le

f : M> (N, h) be a pluriharmonic map into a Riemannian

manifold. Then, df(Tle'o

) is a totally isotropic subspace of

is

t

c
Tf(x)N' for any ;:eM.

Proposition 2.10.

Let £ : M +» (N, h) be a pluriharmonic map from a Kaehler

manifold into a Riemannian manifold. If N has positive(or

negative) curvature operator, then

rankcaf <1 on M,
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Further if M 1is compact, m = dimcM 2 2 and bz(M) = 1, then

is a constant map.
Proof. By (2.7),

0 = xh(fi, NR(fE' £=)f

3 E5)

= Eh(NQ(fEAfj)I fiﬁfj) ’

where NQ is the curvature operator of N. Since N has:

positive (or negative) curvature operator, we have

fiAfj = 0 for any 154, gm.
Thus, rankcaf £ 1 . The last statement of Proposition 2.10
follows from Proposition 2.4 (1). Q.E.D.

Proposition 2.11,
Let M be a compact Kaehler manifold with cl(M) > 0. Let

f : M» N be a pluriharmonic map. Assume that N has positive

(or negative) curvature on totally isotropic 2-planes. Then,

rankcaf $1 on M.

Proocf. By Lemma 2.9, spanc{fi. fj} for 1 i n'j £ m is

A

a totally isotropic 2-planes. Then, the proof of Proposition
2.10 yields the conclusion. Q.E.D.

Remark 2.12. .rankcaf 51 implies rankndf s 2.
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By Propositions 2.4, 2.11 and the well-known facts for
harmonic maps of Riemann spheres(see.[Y], see also A3 in [25]),
we obtain

Theorem 2.13.

Let M be a compact Kaehler manifold with c,(M) >0 and

bz(M) =1, Let f£f : M+ N be a pluriharmonic map. Assume that

N has positive curvature on totally isotropic 2-planes.

Then,

one of the following cases occurs

(i) £ is a constant map,

{i1) dimcM = 1 and f is a branched minimal immersion.

283. Complex-analyticity and constancy of pluriharmonic maps
into Kaehler manifolds.

Let £f : M+ N be a smooth map between Kashler manifolds.

. Let (zi) and (w®) be local complex coordinate systems for M

and N, respectively, and put f* = w® f. By Al, it is clear
that f is pluriharmonic if and only if

(3.1) vifg = 0

for any 1 hY i,j gm= dimcM, 1 L aine= dimeN

~Ff% = e
= vifj vifj

It is also clear that £

IR |

Y3
In [24], modifying the proof of Theorem B, the following is
obtained
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Theorem G.
Let £ : M+ N be a pluriharmonic map from a Kaehler

manifold into an irreducible Hermitian symmetric space of compact

or non-compact type. Then, f is :-holomorphic if

Max rankndf 2 2p(N) + 1.
M

Let £f : M+ N be a harmonic map from a Kéehler manifold
into a Kaehler manifold with the Kaehler metric h. Then, by

Lemma 2.6, denoting by NR— the component of the curvature

aBY 6
tensor of N, we get

(3.2) BVEVIh(fio fj)

= yloe 2 _ . a_ _ a8 _ 8 Y6 _ £Y E
lejfil LNRGBYG(f . £ f £V)Y(E3 fj fjfi) ’

b i1
2
= 8]03fi|
. (1,1),.1,0 1,0,.,0,1 21,0 0,1 ;1,0 0,1
xh(Q (£ Afj £57 ALy £ Afj fj AE ),
where NQ(I'I) is the curvature operator of N and fi'o (resp.

1) is the (1,0) (resp. (0,1))-component of the vector fi

Using (3.2), we can prove Theorem G for the case where N = cp”

or CHn. In fact, the smarter equation(see 23 in [24]) can be

applied. However, the constancy of the holomorphic sectional

curvature of CPn or CHnV is not essential, that is, we have

Proposition 3.3.

Let £ : M + N be a pluriharmonic map from an m-dimensional

Kaehler manifold into a Kaehler manifold with strongly positive
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or negative curvature tensor. Then, one of the following cases
‘occurs '

(i) £ is s-holomorphic,
{(ii) rankcaf 1 on M,

Proof. From the proof of Theorem G, it is enough to prove
that if rankcaf 2 2 at some point p €M, then f is -

holomorphic at p. Since f is pluriharmonic, by (3.2) and the
strong positivity or negativity of the curvature tensor of N, we.
obtain '

1'0 100 0'1

(3.4) £33 - £1%e0t =0 foramy 1g5i,5gm.

We may assﬁme'that m > 2. Suppose that f is non -

holomorphic at peM. At p, there exist the indices. i and k

1,0 0,1
i k

i w k. Otherwise, we have rankmaf £1 at p. By (3.4), we

such that f w 0, £ » 0. Moreover, we may assume that

have £.'% w0, £2'7 » 0. Thus, (3.4) implies that for any fixed
index j (1 < j & m),
1,0 _ _ (1,0
fj c fi ,
fg'l‘ﬂ c fg'l for some c €C.
Hence, rankcaf ¢ 1 at p. Q.E.D.

Theorem 3.5.

Let £ : M+ N be a pluriharmonic (resp. harmonic) map

from m(> 2)-dimensional compact Kaehler manifold with bz(M) =1
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into_a Kaehler manifold with strongly positive(resp. negative)
curvature tensor. Then, f 1is t-holomorphic.

Proof. First, note that any harmonic map from compact
Kaehler manifold into a Kaehler manifold with strongly
seminegative curvature tensor becomes a pluriharmonic map(see

{20]). By Proposition 3.3, £ is :-holomorphic or rankmaf 21

on M. If rankcaf £1 on M, by m > 2 and Proposition 2.4, £

is a constant map. Q.E.D.

Let (N, h) be an irreducible Hermitian symmetric space of
noncompact type. Then, it is known [20] that N has strongly
seminegative curvature tensor. Then, by Corollary (2.8) (or
(3.2)) and Theorem G, we obtain ‘

Theorem 3.6.

Let f : M (N, h) be a smooth map from a Kaehler manifold

into an irreducible Hermitian symmetric space of-non-compact

type. Assume that Max rank,df > 2p(N) + 1. Then, the following

M R
conditions are mutually equivalent

(i) £ is s-holomorphic,
{ii}) f is pluriharmonic,

*.,(2,0)
(iii) £ 4is harmonic and (£f h) = 0,

Since an isometric immersion f satisfies (f‘h)(2'0)= o,
we get

Corollary 3.7. '([24]).

Any isometric minimal immersion from a Kaehler manifold M

into an irreducible Hermitian symmetric space N of non-compact

type is t~holomorphic if dimcM 2 p(N) + 1.
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Remark 3.8.
*®
The condition (£ h){2'%'= 0 is satisfied if c (M) > 0 by

Lemma 2.3. However, it is known that any harmonic map from a
‘compact manifold with positive Ricci curvature into a manifold

with non-positive sectional curvature must be constant.

Theorem G and Proposition 2.4 yields
Theorem 3.9.
Let M be a compact Kaehler manifold with cl(M) > 0 and

bz(M) =1, Let N be an irreducible Hermitian symmetric space

of compact type. Then, any pluriharmonic map from M into N
is t-holomorphic if dimCM 2 p(N} + 1. '

Lemma 3.10.

Let M be a compact Kaehler manifold with cl(M) > 0 and

let (N, h) be a Kaeh;gr‘manifold. If £f: M> N is a
pluriharmonic map, then

o _geeBa 1 h
(3.11) xh c£3flaz'@az’ = o .

x*
Proof. Define a smooth section g = (cij) of ch M1'0 by

o _gaeB .
;ij Lhuﬁfifj . Since f is pluriharmonic, we obtain

VEei; = nhaé{(vifg)fg + fg(vifg})
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that is, ¢ is a holomorphic section of Q&T.Ml'o. By the same
way as Lemma 2.3, we see that ¢ = 0 . Q.E.D.
Proposition 3.12.
Let M be as in Lemma 3.10. Let N be a Riemann surface.
Then, any pluriharmonic map from M into N is +~holomorphic,

Proof. Since dich =1, by (3.11), we obtain
1.1 ' .
fifj = 0 for any 1 <4,j §m,

which implies that f is i:-holomorphic at each point of M. If

f is :-holomorphic on some open subset of M, then Siu’s unique
continuation theorem{[18] yields :-holomorphicity of £. Q.E.D.
Remark 3.13. )

Proposition 3.12 for the case where dimcM = 1 .is due to

Eells and Wood[6].
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Lemma 3.14.
Let £ : M » (N, h) be a pluriharmonic map from a compact

Kaehler manifold into a Kaehler manifold. Then,

3 =_,_Bgi J
W, 1Lhu8fifjdz Adz

= — * — @ é i
lbhuBfifjdz Adz

ml and

are nonnegative closed real (1,1)-forms on M.

Proof. Let 3 be the exterior differential operator which
sends (p,q)-forms to (p,g+l)~-forms. We have

(3.15) (5&1)13E = - U3wig + vi“i}

= - J=Ixh_c(£5(v3£8) - £3 (vg£5))

by the plurifarmonicity of f£f.

§u1 is skew-symmetric with respect to the indices j and

k. On the other hand, the right hand side of (3.15) is symmetric

with respect to the indices j and k. Thus, 5"1 = Q. Since

wy is real, we get dul = 0. In the same way as the case of Wy
we may treat wg - Q.E.D.

Proposition 3.16.

Let £ : M » N be a pluriharmonic map from m-dimensional
compact Kaehler manifold with bz(M) = 1 into a Kaehler
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manifold. If rankc(afa) < m (resp. .rankG(Sfa) <m ) on M,
then, f is anti-holomorphic({resp. holomorphic.]}.

= -— . - « é i 3 I [+ 4
thanifjdz AdzY. If rankc(af ) < m

on M, by Lemma 3.14 we see that [ull

Proof. Let wy

B oa [wT] = 0 as an element

of H'(M, R). In the same way as the proof of Proposition 2.4,
we obtain wy = 0, which implies that £f is anti-holomorphic.

If we replace Wy by w, of Lemma 3.14,

we get the hﬁlomorphicity of f. Q.E.D.

Corollary 3.17.
Let f : M> N be as in Proposition 3.16. If dim, N <

dimeM, then f 1is a constant map.

Theorem 3.18.
Let £ : M3 N be a pluriharmonic map from a compact
Kaehler manifold with cl(M) > 0 and bz(M) =2 1- into a Kaehler

manifold. Assume that dimmM = dim N. Then, f is -

holomorphic.
Proof. Let dimcM = dimCN = m. By Lemma 3.10, we have

(3.19) x £f%€% =0 forany 1 < i,j < m,
(Iij ) = =

where we have used unitary basis of N. If £f is not anti-

holomorphic, then, by Proposition 3.16, there exists an open

subset U of M such that rankc(af“) = m on U. Thus,
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(fz) is the non-singular mxm-matrix on U. Therefore, (3.19)

implies that f is holomorphic on U. Then, Siu’s unique
continuation theorem yields the holomorphicity of f. Q.E.D.

A4. Complex-analyticity of stable pluriharmonic maps.

If a pluriharmonic map f is stable as a harmonic map, then
we say that £ 1is a stable pluriharmonic map. In this section,
we investigate the complex-analyticity of stable pluriharmonic
maps from certain compact Kaehler manifolds into an irreducible
Hermitian symmetric spaces of compact type. First, we state the
following

Theorem H. [24].

Let £ : M > N be a stable pluriharmonic map from a compact

Kaehler manifold into an irreducible Hermitian symmetric space of

‘compact type. Assume that

Max{rankc(af“) + rankc(gf“)} > p(N) + 1.
M

Then, £ 1is t-holomorphic.

It can be verified that the condition Max rank.df > 2p(N) +

M R
1 implies the condition Max{rankc(af“) + rankc(sf“)} > p(N) + 1
v =
(see [24]). If N = CPn, then Theorem H is reduced to Theorem D,

Theorem H is used to prove the following
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Theorem 4.1.
Let M be an m-dimensional compact Kaehler manifold with

bz(M) = 1 and let N be an irreducible Hermitian symmetric

space of compact type. If m > p(N), then any stable

pluriharmonic map f from M into N is :-holomorphic.

Proof. Assume that f is non :-holomorphic. Then, by

Theorem H we have

(4.2) rankc(afa) + rankc(SE“) < P(N) on M,
On the other hand, by Proposition 3.16, there exists an open
subset U of M such that rankc(af“) =m on U, which,

together with (4.2), yields

P(N) 2 rankg(af®) + rankg(af%)

on U.
Therefore, if m > p(N}, f is holomorphic on U. Then, by Siu's

unique continuation theorem, £ is holomorphic, which is a
contradiction. ‘ Q.E.D.
| Theorem 4.3.

Let M Dbe a compact Kaehler manifold with ¢, (M) > 0 and

bz(M) =1 and let N be an irreducible Hermitian symmetric

space of compact type. Then, any stable pluriharmonic map from

M into N is :-holomorphic.
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To prove Theorem 4.3, we need the following lemma
Lemma 4.4. [16].

If £ : M»> N is a stable harmonic map from a compact
Kaehler manifold into an irreducible Hermitian symmetric space of

compact type, then, with respect toc unitary basis of M, we have

. ag Bg= = i
(4.5) z.i(fifi + fifi) 0 for any 1 £ «, 8 £ N d;ch.

Proof. This is an immediate consequence of Proposition 1 in
[16])(see (1.5) of p.387 in [16]). Q.E.D.

Proof of Theorem 4.3. We use unitary bases of M and N.
By Lemma 3.10, we get

(4.6) x £f5£f% =0 for any 1 < i, j < m = dim M.
« 173 . = = C

Since f is a stable pluriharmconic map, by Lemma 4.4, the
eguation (4.5) holds. The equatlion (4.5) and (4.6) yield

. gracBeB .
{4.7) La,B,ififjfifk 0 for any 1 $J, k gm.
We put 3y = udfff; . If £ is not holomorphic, by Proposition

3.16, there exists an open subset U of M such that

rankc(ﬁf“) = m on U. Therefore, g = (cij) is. the non-singular

mxm-hermitian matrix at each point of U. Then, (4.7) implies

that f is anti-holomorphic on U. This, together with Siu’'s

unique continuation theorem, yields the anti-holomorphicity
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of £ . Q.E.D.

Remark 4.8.

In Theorem 4.3, if dimbM = 1, Theorem 4.3 is contained in
Theorem C. If N = CPn, Theorem 4.3 1s contained in Thecrem D.
If N = Qn(n 2 3)(complex hyperquadric), Theorem 4.3 is contained

in Theorem 4.1.

5. Complex-analyticity and constancy of stable harmonic

maps from cp™.
In this section, we state the immediate consguences of
Theorem F and the results in A2 ~ 34.

Theorem 5.1.

Let f : CPm + N be a stable harmonic map into a Riemannian

manifold. Assume that N has positive curvature on totally

isotropic 2-planes with dim N > 4 or N has_positive Ricci

curvature with dim N = 3. Then, f is constant,
Proof. If m = 1, Theorem 5.1 is due to Micallef and
Moore[12])]. If m 2 2, Theorem F and Theorem 2.13 yield the

conclusion. Q.E.D.

We conjecture that "If f : M + N is a stable harmonic map

from a compact Riemannian manifold into a simply connected

compact Riemannian manifold with 1/4 < K £1 and dim N > 3,

where K is the sectional curvature of N, then, £ is

constant.". This is the harminic map version of Lawson-Simons'
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conjecture[11]. Refer to [9], [17] for other partial answers to

this conjecture.

Thecrem 5.2.

Let f : CP® + N be a stable harmonic map into a Kaehler

manifold with strongly positive curvature tensor. Then, f is

+-holomorphic.
Proof. The case where m =1 is due to Siu and Yau[22].

If m 2 2, Theorem F and Theorem 3.5 yield the conclusion.

Q.E.D.

Problem. Let N be a Kaehler manifold with positive

holomorphic bisectional curvature (or 1/2-pinéhed holomorphic

sectional curvature H, i.e., 1/2 < H < 1). Then, is any stable

harmonic map f : cP™ 4 N ¢-holomorphic 7

Theorem F, Corollary 3.17 and Theorem 3.18 yield
Theorem 5.3.

Let f : ¢ 3 N be a stable harmonic map into a Kaehler

manifold. Assume that dich = m (resp. dich-< m). Then, f£

is t-holomorphic (resp. constant).

Moreover, Theorem F and Theorem 4.3 yield

Theorem 5.4.

Any stable harmonic map from ¢P™ into an irreducible

Hermitian symmetric space of compact type is 2:-holomorphic.

Theorem 5.4 is nothing but Theorem E.
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A6. Examples of stable or unstable pluriharmonic
but non :-holomorphic maps.
Let £ : (M, g) » (N, h) be an isometric immersion between
Kaehler manifolds. Then, f is called Kaehler immersion if it is

holomorphic. If we denote by the Kaehler form of N, then

“N

£ is called totally real if f- = 0 on M. We show the

“N
following seven examples(c.f. [5]).

Example 1. N = G2 ln(G), P{N) = (m-1)(2-1) + 1 = m.

Let M = Q™. Then, dimM = p(N). Let

h o= gof : Q" —E—3 SO(m+2)/5(0(2)x0(m)) —L—3 G, (C),

Al

where f 1is a covering map and g is a totally real, totally
geodesic isometric immersion. Then, h is non t-holomorphic,
pluriharmonic map. This example shows that Theorem 3.9 and

Corollary 3 in [24] are best possible for N = G2 m(G).

Moreover, h is unstable as a harmonic map by Theorem 4.3. Thus,
the assumption of the stability in Theorem 4.1 can not be
excluded for N = 62 m(CJ.

Let £ : M = Mixhz + N be a totally geodesic Kaehler

immersion from a reducible Kaehler manifold into a Kaehler
manifold. Then, f is a stable pluriharmonic maﬁ} If we define
a new Kaehler structure on M 80 that f is not ' :i~-holomorphic,
we obtain a non t-holomorphic, stable pluriharmonic map because
the stability and the total geodesicity of f depend on the
Riemannian structures of M and N only. Now, the following is

a list of totally geodesic Kaehler immersions f from reducible
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Hermitian symmetric spaces M into an irreducible Hermitian

symmetric spaces N of compact type except for N = tP™. In the

following examples, dimcM = p(N) holds, hence the assumption of
bz(M) = 1 in Theorem 4.1 and Theorem 4.3 can not be excluded.

Thus, Theorem H is also best possible,.

Example 2. N = Q, p(N) = 2.

£ : M = ¢PixcP} 4 N .

Then, dimcM = n(N).

Example 3. N = G _(€), p(N) = (p-1)(g-1) + 1.

f : M= Gk'k(C)pr_k'q_k(G) + Gp q(c) (0 <k L p g aqa).

dimgM = (p~k) (q-k)+ k2., If k=1, dimgM = p(N).

Example 4. N = S0(2n)/U(n), p(N) = (1/2)(n-2)(n-3) + 1.

f : M = {SO0(2k)/U(k)}x{S0(2(n-k))/U(n-k)} = Sd(2n)/U(n)
(0 <k < n) ,
dimCM'u (1/2)k(k-1) + (1/2){n~-k})(n~-k=-1). If k = 2,

dimeM = p(N).

Example 5. N = Sp(n)/U(n), p{(N}) = (1/2)n(n-1) + 1.

f : M= (Sp(k)/U(k)}x{Sp(n-k)/U(n-k)} + Sp(n)/U(n)
{0 < k < n) ,
dimcM = (1/2)Yk(k+1) + (1/2)(n-k})(n-k+1). If k = 1,

dimcM'm p(N).
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Example 6. N = ES/Spin(lo)mT, p(N} = 6.

£: M= cpixer® o Eg/SPin(10)-T .

Then, dimcM = p(N).

Example 7. N = E_/E..T, p(N) = 11.

_ el 10
£ : M=¢€P'xQ o+ E /E.T

Then, dimcM = p(N).

These examples 2 ~ 7 satisfy CI(M) > 0 and bz(M) = 2.

A7. Totally andesic isometric immersions between
irreducible Hermitian symmetric spaces of compact type.
Let M and N be a compact Riemannian manifold and
Riemannian manifold, respectively. Let f : M » N be a totally

geodesic isometric immersion. We denote by IdM the identity

map of M. Then, we have

Proposition 7.1.
f is stable as a harmonic map if and only if f is stable

as a minimal immersion and IdM is stable as a harmonic map.

1

Proof. Any smooth section V of C"(f Tﬁ) is represented

v = de(vl) + VN, viec®(tM), vNec®(nM),
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where NM is the normal bundle of f. We denote by Lf, LId
. , M
énd L? Jacobi operators of harmonic map £, identity map as a

harmonic map and minimal immersion £, respectively(for the
Jacobi operators, see [11], [14]). Since f 1s totally geodesic

isometric immersion, it is easy to verify that

Tdy

This and the total geodesicity of f vyield

Lo (V) = (df)L vy + L?(VN) , v € c®(£ TN .

Lf = L dM Q.E.D.

If M is a compact Kaehler manifold, then IdM is

holomorphic, hence stable. Thus, we obtain

Proposition 7.2. '
Let f : M s> N be a totally geodesic isometric immersion of

a_compact Kaehler manifold into a Riemannian manifold. Then, f

is stable as a harmonic map if and bnlygif it _is stable as a

minimal immersion.

By Proposition 7.2 and Theorem 4.3, we obtain

Theorem 7.3. _

Any stable totallv geodesic isometric immersion between
irreducible Hermitian symmetric spaces of compact_ tyge is -
‘holomorphic. ‘

Remark 7.4. '

Let £ : M + N be a totally geodesic map between Riemannian
manifolds. If M is irreducible in the sense of de Rham, then
f is homothetic. By Theorem 2 in (2], if f : M » N is a
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stable harmonic immersion from a compact Riemannian manifold into
an irreducible Hermitian symmetric space of compact type, then M

is even-dimensional and J = df_loJN-df, where J

complex structure tensor of N, is a complex structure and

is the

hermitian with respect to the given metric on M. Thus, if f

is totally geodesic, we have 9¢J = 0, that is, if f : M > N is

a_stable totally geodesic isometric immersion of a compact

Riemannian manifold into an irreducible Hermitian symmetric space

of compact type, tgeh there exists a unigue Kaehler structure on-

M such that f is holomorphic with respect to this Kaehler

structure.
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A8. A construction of non t-holomorphic, pluriharmonic maps
into complex Grassmann manifolds
In this section, we give a method of manufacturing
pluriharmonic maps into complex Grassmann manifolds from
holomorphic maps into complex projective space with Fubini-Study

metrics.
Let CP"” be an n-dimensiocnal complex projective space with

constant holomorphic secticnal curvature c¢c and L -» cP® be the
universal line bundle. L is naturally regarded as a holomorphic

line subbundle of the trivial bundle §n+1= cp"'x ¢n+1' We denote

x
by L the dual bundle of L. Let < , > denotes the standard

Hermitian inner product of Gn+1. We denote by ﬂL the

orthogonal complement of L in g“+1 with respect to < , >,

We have a natural exact sequence :

* * )
0 — L'oL == L™t 4 Lot — o

where i denotes the inclusion and j denotes the Hermitian
projection. We endow each bundle with the natural Hermitian

connected structure induced from < , ». There is a linear

nl1,0

=
isomorphism h : T(CP) 4.I.®L* preserving the connections

such that (c/2)g(Z, W) = <h(Z), h(W)> for 2, weT(cp™) 1’9,
where g 1is the Kaehler metric of cp™.

Let f : M » CP® be a smooth map from a manifold M.

Consider the exact sequence of the pull back bundles
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0 — £71L®L) — £ uRe™) — o) — o

- * )
set E = £ Y (L oc? = i(1) €C®(E) is called

}). The section Qf

the universal lift of f(c.f. [7]), where 1 denotes the

- L
identity section of f£ 1(L<$L). Denote by D the induced

E

connection of E. The curvature form R of the connection D

is given by

1

(8.1) RY(X, ¥) = (c/2)y=1(£f 'w) (X, ¥)-Idg

for X, YtETpM, where » is a fundamental 2-form of (CP", g)

‘defined by w{(u, v) = g(Ju, v). Then, we have

c

n(ag)}'%x)) = o for X e TME,

x%e

where: (df)l’0 denotes the (1,0)-component of df. Assume that
M is a complex manifold. £ is holomorphic(resp. anti-
holomorphic) if and only if

0

(8.2) Dzo'f = 0 (resp. D = Q) for any ZE.TMI' .

z%f
Let £ : M » cp® be a holomorphic map. We define the osculating
spaces along the map f. At each peM, we define O];(f) ( kez,

k 2 0) by
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0 - -1, * .
O (£) = 1(£7(LAL)) .

k 1,0 .
Op(f) = spanc{Dzl --DziQE : 21, o Zie TPM , Oélék }
E
- P
=k k ' k -1,
Put Op(f) Im(op(f)} Spane{ {(p) P(f) pe(f ,L)p}
C cn+1

=0 -1
Note that Op(f) (£ L)p . Set Ro M and Rk C p(&Rk_l
dim ag(f) is maximal } for k 2 1. Then, there exists unigquely

a positive integer d ‘such that O 1

d- C-—d ~d
‘ 0 d O (f) =
p (£) 5 p(f) an p()
~d+1i i

Op (f) for any péRd and any 2 1. Such integer d is

called the osculating degree of the holomorphic map f and

denoted by d = d(f). Note that Rd = Rd+1 = +«++ , This open

subsget Rd of M will be denoted by R and called the set of

regular points of M. Let ak(f) denote the complex vector

subbundle of g"*l' over Rk with the fibre 5;(f). It is

standard to check the following lemma
Lemma 8.3.

(i) . M\Rk is a complex analytic subvariety of M
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(i) 1£ 8%(£) = 8°"1(£) over R, then &%(f) = &' (f) for

(1i1) £ 'L = 8%¢#) - 6l(g) C...< 5971 ¢) - 5%(f) over R

~

(f) is_a holomorphic vector subbundle of ¢"*! over R.

(ivy O
(V) If £ is full, that is, the image of f 1is not contained

in _any proper projective subspace of CPn, then we have 6d(f) =

: Cn+1 Qver ﬁ

Lemma 8.4.
For each peR and any ZG.TMJ"O .

(1) a,c(85(£)) < ™8 (),

(11) a5e”(8%(£)) < c™ (8" (£)).

Proof. Let 0 < i < k and 2, Z.,, ++-, 2 be local smooth
= = 1 i

sections of TMl'o over R. For any op E.C"(f-lL),

9,{((D, --- D, &.)(p) } = (DD, -+ D, &) (p)
z''7z, Z,'f z°z, z,'f

L
+ (D, ---D, ¢:)((3,p)")
Zl Zi 4 A

is a local smooth section of 0-71(f) C 35*1(f), where ( . )F

denotes the Hermitian projection of ( - ) +to the universal line

bundle L. From this we get (i). By (8.1) and (8.2) we compute
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93((Dg =+ Dz #¢)(#)) = (D3D; --- D 94} (p)

L
+ (Dzl-.. Dzi°f)((32"’ )

n

(D, -+ D, Dz )(p) mod B (f)

2y i

0 mod Bi(f) .

W

From this we get (ii). Q.E.D.

Next we prepare twistor fibrations of complex flag manifolds

onto a complex Grassmann manifold. Let F = F(nl, n n+1)

n ¢
denote the complex flag manifold U(n+1)/U(n1)xU(n2-n1)xU(n+1—n2)

, where O £ n, £n, <n+tl. A point in F may be viewed as a

1 2

pair (V, W) of an nl-dimensional complex subspace V of ¢n+1

and an nz—dimensional complex subspace W of Cn+1 satisfying

VC W. There are three tautological subbundles Tl' T2, T3 of
n+1

the trivial bundle Fx¢C with the fibre at b = (V, W) & F

being given by (T v, (T = v'nw, (Ty)y, = W . It is

1)p = 2)p

waell~-known that the complexified tangent bundle TFc of F is
‘naturally isomorphic to

< Hom(Ti, Tj)

GL(n+1, €) acts on F via



41

a(V, W) = (a(V), a(W)) € F

for a€GL{n+l, €) and (V, WY& F .

PGL(n+1, €) acts effectively on F. F 13 expressed as a
complex homogeneous space PGL(n+l, €)/P, where P is a
.parabolic subgroup of PGL(n+l, €). We equip F with the
complex structure via this expression as a complex homogeneous
space. With respect to this complex structure, the (1,0)- and

{0,1)-tangent spaces of F are given by

(8.5) tTF'0

= Hom(Tl, T2) D Hom(T,, T,) [4%) Hom(Tz. T3) '

0,1
(8.6) TF o Hom(Tz, Tl) @ Hom(Ta,. Tl) @ Hom(Ta, T2)

We denote by h the Hermitian metric on Hom(Ti, T.)

(i.3)

induced from the flat Hermitlan metric on Fxe™t

J

1. For each pair

£ = (ﬁl, 52) of positive real numbers, the Hermitian metric

h +

g = 8qhy,0) * (Bt By)h 5y + Eoh 4,

on TF1’0 defines a Kaehler metric on P (c.f. [i]). With

respect to this Kaehler metric, U(n+l) acts isometrically ocn F.

hF is an Einstein-Kaehler metric if and only if

n+l - n for some ¢ > 0. Let Gr(cn+1) dencote a

2’ 1)

bomplex Grassmann manifold U(n+l)/U(r)xU{n+l-r). of r-

£ = c(n

dimensional complex subspaces. of Cn+1 and T denote a
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n+1 n+1

tautological subbundle of the trivial bundle Gr(c } =T

Gr(c“+1) has a natural symmetric Kaehler manifold structure such

1

that the (1,0)-tangent spaces of Gr(cn+ ) are given by

n+1)1,0

L.
TGr(C = Hom(T, T )

For a pair (nl. nz) of integers with 0 < n, < n, $¢ n+l, define

n+1
n + F = F(nl, n, ; n+l) ——9p Gr(c )
by n(V, W) = V'nW for (V, W) € F,
where r = n, = n,. Then, we endow F with a homogeneous
Kaehler metric ( Elﬂ &2) such that 5y 18 a homogeneous
Riemannian submersion and we have n—lT = T, . Let H_ (resp.

2 b
Vb) be the horizontal(resp. vertical) subspace of TbF with

respect to the Riemannian submersion j . We have an orthogonal

direct sum

5 = 1€ @ v° ,

where
{8.7)

Hc = (Hom(Tl, T2)@Hom(T2, Ta))@(Hom(Tz_. Tl)@Hom(Ts,Tz))
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and
[\
V' = Hom(Tl, T3)®Hom(T3. Tl)

The action of PGL(n+1, €) on F preserves the horizontal

digstribution H. Let M be a complex manifold and £ : M - cp™
be a full holomorphic map with the osculating degree d. Fix a
pair (s, t) of integers with -1 ¢ s < t < d. Define a smooth

map f R+ F = F(n(s), n(t) ; n+1) by

g,t

£5 ¢ (P) = (B3(£), O(£)) for p &R

where n(s) = rank 3°(£), n(t) = rank 8" (£) and B 1(f) = (0}.

-1 =3 -1 =t
Note that fs,tTI = 07 (f) and fs,t(TlﬁaTz) = 07 (f)

Lemma 8.8.

(if fs,t : R+ P is a holomoiphic map.
(ii) fs,t is horizontal with respect to the fibration n : F -
6_(¢™"!), where r = a(t) - n(s) 3 1.

Proof. Set f =‘fs,t' Let Z be a local smooth section of
TM?'O over R. By the holomorphicity of f and Lemma 8.4,

(8.9) azc’i?'lrl)cz c‘]f'lrl) @)C”(f-lTé) ,
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(8.10) c°(f'1T1)C: C”(f'lTl) .

9z
(8.11) a3c®(F N1, @T,)) C c™(F 1T, ®T,))

From (8.11) we have

(8.12) azc”(f'lra)c: c°(f'lra) .

Let v, € ¢c®(E!r)) and v, € c“(f‘lrz) . Differentiating
<V1, V2> =0 by 32 . we have <32V1, V2> + <V1, an2> = 0,
By (8.10), we have <32V1, V2> = 0 . Hence, we get

<V1, an2> = 0 . Thus,

(8.13) azc‘(E'lrz)c: c”(f'lrf ) = c°(?'1T2)eB c”(f‘lra)

By (8.9), (8.12) and (8.13) we see that (df)(Z) is a local

==1 1l

smooth section of f. Hom(Tl, Tz)EB £ Hom(Tz, T3) over R.

From (8.5) and (8.7) we conclude that £ is horizontal and
holomorphic. Q.E.D.

Proposition B8.14.
Let F be a Kaehler manifold and 5 : F + N be a

Riemannian submersion of F onto a Riemannian manifold N. If
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M+ F is a horizontal holomorphic map from a complex

manifold M, then ¢ = yo¢ : M + N is a pluriharmonic_map.

™

(1)

1,

Proof. By a formula of a Riemannian submersion and the

pluriharmonicity of ¢, for any local smooth section Z, W
0
L - 2 _ _-
(v 82)(2) = vg(ae(2)) - 3% (ag2)
= 9%(dn(33(2))) - 30 (552)
= dn(vE(83(2))) - dn(a3(azZ))
= dn ((v99) (Z))
= 0
Q.E.D

Set ¢3,t = 5o fS',t

Theorem 8.15.

°s N is a pluriharmonic map,

s = -1 if and only if ¢ is holomorphic.

(ii)

s, t

(iii) t = d if and only if L is anti-holomorphic.

Proof, (i) is due to Lemma 8.8 and Proposition 8.14.

show (1i) and (iii) :

of

We
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- " 1,0 -1
(ii) vg ¢ 18 holomorphic & (dfs't)(m )Cfs'tHom(Tz. Ty)

=) azc“’(f;ltwl)cc“(f;ltrl) for any 2 € c®(mM1'9)

& 9,07(8%(£)) C ¢ (8%(£))  for amy z ec”(mM'O)

& 8%(f) = 8%t (f) & 8°%(f) = (0) &) s = -1

(1ii) gt is anti-holomorphic

& (dfs't)(TMl'o) Cf;:}tHom(Tl, T,)

-1

2,C"(£,1,7,) C c®(¢ ' 1)  for any z €c®(M''?)

3

= azc“(a"(f))Cc"(B"(f)) for any Zz € c®(tM>'9)

& Y =8 & te=a.

Theorem 8.16.

+
For each a € PGL(n+1, €), ¢:'t =l avf; ) : Mo G (" 1

is also pluriharmonic.

Proof. Since PGL(n+1, €) acts holomorphically on F and

this action preserves the horizontal distribution on F,

aufs t is also holomorphic and horizontal. Q.E.D.
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Remark 8.17.
(1) Our argument is inspired by the work of Eells and Wood

[7]. In case of dimcM = 1 and t = s+l, this . is a result of

[7]. The maps and ¢ were studied by Nishikawa[13]

®-1,1 0,1
and Ishihara[10], respectively. Guest[8] investigated the

harmonicity of ¢ for a flag manifold M = G/T

s,8+1
(2) The first author{15] constructed a series of harmonic

maps from each compact homogeneous Kaehler manifold into a

complex projective space, which are neither g—hoiomorphic nor

totally real.
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