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1. Introduption.

Let R be a commutative associative ring with 1. For any integer n2 1, let Sp,,R be the
standard symplectic group and Ep,,R its subgroup generated by elementary symplectic matrices
(11], [37], [54], [62].

When R is a field, Dickson [20] proved that Sp,,R = Ep,,R (by the way, the term
"symplectic" was coined later, so Dickson wrote about "abelian linear groups SA(2n, R)").
Moreover, he showed that this group modulo its center (which consists of t1,,) is simple with the
following three exeptions: R consists of 2 elements and 2 =1 (in this case Spy, R =SL,R is
isomorphic to the symmetric group §3); R consists of 3 elements and n = 2 (in this case Sp, R
is isomorphic to the alternating group A,) R consists of 2 elements and n = 2 (in this case,
Spy,R = SpyR is isomorphic to the symmetric group Sg ). In all these 3 cases, the commutator
subgroup of Sp,,R = Ep,,R is a proper non-central normal subgroup. See also (5], {21], {42]
[46] about symplectic groups over fields. _

Klingenberg [23] described all normal subgroups of Sp,,R for alocal ring R such that the
characteristic of the residue field R/frad(R) is not 2 ﬁnd its cardinality is not 3. Abe [1] reduced
the conditions on the local ring R to the following condition: the residue field has more than 3
elements when n = 1 and more than two elements when n =2, When 2R # R, his answer
involves some additive subgroups of R which are more general than ideals (he called them
special submodules associated with ideals; later (3] the result were extended to other rings R ). See
also [13]- (17], [19], (25] (26] [31], [33]-[35], [43], (49]-[53] about Sp,, over local, semilocal,
and other "zero-dimensional” rings R.

Mennicke [37] and Bass-Milnor-Serre [11] described all normal subgroups of Sp,,R when
R is the ring of integers £ or, more generally, a Dedikind ring of arithmetic type and n 22.
Note that the normal subgroup structure of Sp,R = SL,R is very different and essentially
intractable even when R = 2 [27] - [30], (39], [40], [38] or another Dedikind ring of arithmetic
type with finite GL;R [18], [22], [41], (45].



Vaserstein Normal Symplectic 3

The normal subgroup structure of Sp,,R forany R with "infinite" n was studied in {4],
(91, [32), [44], (61]. Bak [6] announced a description of all subgroups of Sp,,R when n 23
and is greater than a certain dimension of R; see (7] for proofs. i

Kopeiko {24] showed that Ep, R is normalin Sp,,R forany R when n2 2. Later this
was redescovered in part by Taddei [47].

Using localization and patching, a complete description of all subgroups 4 of Sp, R
which are normalized by Ep,,R , was obtained in [58] in general context of Chavallwey groups,
provided that 722, R has no residue fields of 2 elements in the caee n =2, and

(1) for every element z of R thereare r, s in R suchthat z =2rz + 522.

The condition (1) is necessary for the standard description of those A™s in terms of ideals of
R, as can be seen from the case of local ring R (see [1], [3]). It was claimed in [58] that without
the condition (1), a complete description of H 's is possible in more general terms. This was
proved by Abe [2]. ' :

Here we improve on Abo's result extending it to symplectic groups of alternating forms F
on R-modules V. Our proofs here use localization and patching. The approach to description of
normal subgroups was introduced in [57] for general linear groups GL, R, n 2 3. Later it was
used for orthogonal [60] and Chevalley (2], [46], [58] groups.

As a departure from the setting of {6], [7], [9], our R-module V need not be finitely
generated or projective, and our alternating form F need not be non-singular. Instead of
non-singularity, we impose another condition which is equivalent to non-singularity in the case of a
finitely generated projective V.

Singular F on a finitely generated free V over local and semilocal rings R was studied in
[13]-[16], (43]. The answer inviolves tableaux of ideals. '.
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2. Statement of results

A alternating form F onan R-module V is a bilinear form F on V such that F(v, v) =0
forall v in V. We do not require that F = Q - QT. ie. F(u,v)=Q(u,v)-Q(v,u) forall u,v in
V, where Q is a bilinear form on V, although such a form Q exists when V is projective.
Note that any altemating form F is skew-symmetric, i.e. F(u, v) = -F(v, u) forall u, v in V.

The symplectic group SpgR is the group of all automorpisms of the R-module V which
preserve an alternating form F.Let GpgR denote the group of all automorphisms which multiply
the form by a unit of R.

Forevery e, u in V suchthat Ffe, u)=0 and any xin R we define (following [56])
t(e, u, x) in SpeR by

(e, u,x)v= v+ uF(e, v) +eF(u, v)+exF(e, v).

Anelement v of V is called F-unimodular if F(V,v)=R,ie. F(u,v)=1 forsome u in
V. Theelements t(e, u, x) as above with unimodular e are called symplectic transvections. We
denote by EpgR the subgroup of SppR generated by all symplectic transvection. Clearly (see
(14) below) EppR is normal in GpgR. Here we give another description of EpgR, where a
hyperbolic pair means a pair u, v of vectors with F{u, v} =1.

PROPOSITION 2. The group EppR coincides with the subgroup of SprR generated by all
elements 1t(e,0,r), where r € R and e € V is either F-unimodular or orthogonal to a

hyperbolic pair in V.

The main goal of this paper is to describe ail subgroups H of GpeR normalized by EpgR .
It is much easier to describe the centralizer of EppR . If EpgR is trivial, its centralizer in GpgR is
GppR. Otherwise, i.e. when an F-unimodular vector in V exists, i.c. the Witt index of F is at
least 1, we will show in Section 3 below that the centralizer consists of all scalar authomorphisms
of V:
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PROPOSITION 3. If V contains an F-unimodular vector, then the centralizer of EpgR in GpeR
consists of all scalar authomorphisms of V, and hence coincides with the center of GpF:R.

We define a symplectic ideal of R as a pair (A, B), where A isanidealof R and B isan
additive subgroup of A such that r?b,2a,a%re B forall r inR, binB,anda in A.

Note that the condition (1) above is equivalent to the following: B = A for every symplectic
ideal (A, B) of R. Under different names, our symplectic ideals appeared first in [1], and then in
(2] {3, 61, {71, 191, [10], [12], [31], [54), (561.

Given any symplectic ideal (4, B) of R and any vector ¢ in V, we define T(e;A, B) as the
subgroup of EpzR generated by all t(e, 0 ,b) with b in B and by all t(e, ua,0) with @ inA
and # in V such that F(e, u) = 0. It is easy to check (see the identity (12) below) that T(e;4, B)
consists of all t(e, u,r) with ue etd, re ), where e - = {(veV:F(e,v)=0]}is the
orthogonal complement of e in V and where the map tI: VA — A/B is defined by

IZ va;l=B+ Z F(va;, vjaj), where v; € V, ;€ A

1Si<n 1Si<jsn

It is easy to check that this is well-defined, i.e. Ivle A/B does not depend on choice of
presentation v =2vg;.

Let Epg{(A, B) denote the subgroup of EpgR generated by all T(e:A, B), where e ranges
over all F-unimodular vectors in V. Clearly, Epz(A, B) is a normal subgroup of SpgR, and

Epg(R,R) = EpgR.

THEOREM 4. Assume that dim(F mod P) 2 4 for every maximal ideals P of R. Let ¢}, ¢, be
vectors in V with F(ey, e5) = 1. Then the group EpzR. is generated by its subgroups T(e|, R, R)
and T(e,, R, R). Moreover, for any symplectic ideal (4, B) of R, the group Epg{(A, B) coincides
with the normal subgroup of EpgzR generated by T(e,, R, R) .

The condition dim(F mod P) 22m (used in Theorem 4 with m = 2) means that there are
vectors v; in V' such that the matrix (F(v;, v)1<; j<om) Over R is invertible modulo P. Since F
is alternating, this number 2m must be even. In the case of a non-singular F, the condition is
équivalent to dimg,pV/IVP 2 2m. '
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The dimension condition in the Theorem 3 is necessary. Without this condition, the first
conclusion would give that E4R = Ep,R is normal in GL,R = Gp,R, which is not true in general
(18]. However E5R is normal in GL,R when E,R =SL,R (which is the case under the first
Bass stable range condition (8] and for some other rings [55] ) or R is a topological ring with
GL R openin R [59].

We define Gpg(A, B) to be the setof all g in GppR such that thereis ae GL|R and ¢
e R such that (c2 -Q)R<B,F(gu, gv)=aF(u,v),gv-vc €VA and F(vc,gv)+B = lgv -
ve | forall u,ve V. Itis easy to check that Gpg{A, B) is a normal subgroup of Gpg(R, R) =
GpgR. The group Gpg{0, 0) is the group of scalar automorphisms of V.

For any two subgroups H, and H, of a group G we denote by [H,, H,] the subgroup of
G generated by all commutators [ky, hy ] =hyhy by lhy! with Ay in Hyand Ay in H,. Itis easy
to check that '[H 1» o ] is normalized by both H, and A,. THEOREM 5. Assume that V
contains an F-unimodular vector, that dim(F mod P) 2 4 for every maximal ideals P of R, and
that dim(F mod P)2 6 forevery ideal P of index 2 in R. Then EpgR is generated by its
subgroups t(e, 0, R) , where e ranges over all F-unimodular vectors e in V. Moreover, for any
symplectic ideal (A, B) of R, Gpg(A, B) is the centralizer of EpgR in GpgR modulo Epg(4,
B), i.e. it consists of all g in GpgR such that {g, EpzR] < Epg{A, B). COROLLARY 6.
Under the conditions of Theorem 5, for any symplectic ideal (A, B) of R, every subgroup H of
Gpg(A, B) containing Epg(A4, B) is normalized by EpzR. Moreover, for any symplectic
tranvection g in GppR and any h in H the commutator (g, #] is product of symplectic
transvections in H.

Indeed, by Theorem 5, [EpgR , H] < [EpgR, Gpg(A, B)] CEpr(A, B) C H.

THEOREM 7. Under the conditions of Theorem 5,
EprA, B) = [Epi(A, B), EpgR ] = [Epp(A, B), SpsR) = [Gpp(4, B), EpgR ]
for every symplectic ideal (4, B) of R.
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Since the group Sp,2/2Z =Ep,2/22 is not perfect, we have to require that the dimension
of F modulo P is not 4 for any ideal P of index 2 in R. Note that the group EpsR = E5R is not
perfect for small fields and for many other rings R. “

By Corollary 6, every subgroup A of Gpg(A, B) containing Epg(A, B) is normalized by
EprR. We want to prove the converse: for every subgroup H of GpgR which is normalized by
EpgR there is a symplectic ideal (4, 8) of R such that Ep(A, B) < H < Gpg(4, B). For this
to be true, we will need some conditions on F, besides the existence of an F-unimodular vector in
V.

First of all, as we did in Theorem 6, we want to exclude the case when V = RZ. In the case,
there are non-standard normal subgroups of SppR = SL,R (even for R=2 [27], [28], [30],
[36], [39], [40], (41] and other small dimensional rings [18], {22], [29], [38]) unless we impose
rather severe restrictions on R [17], [45], [59]. Since the group Sps2/22 has a non-standard
normal subgroup (its commutator subgroup which is proper subgroup), we have to require that the
‘dimension of F modulo P is not4 for any ideal P ofindex2in R .

Finally, we have to impose a condition on F which is weaker than its non-singularity.
Namely, we will assume that v € VF(v, V) for every vector v in V. That is, for every vector v
there is a finite set of vectors u;, w; in V such thatv = ZwiF(v, ;). When V is finitely
generated projective, this condition is equivalent to the condition that F is non-singular, i.e. the
assignement u P F(u, 7) gives an bijection V — Homg(V, R). In general, the condition means
that the map V/VA — Homp,,(V/A, R/A) is injective for every ideal A of R.

Here is the main result of this paper.

THEOREM 8. Under the conditions of Theorem 5, assume that v € VF(v, V) for every vector v
in V. Then a subgroup H of GppR is normalized by EpgR if and onlyif Epg{4,B) c H
< Gpg(4, B) for a symplectic ideal (A, B) of R, and if and only if the commutator (g, &) is a
product of symplectic transvections in A for every symplectic tranvection g in GpgR and every
hin H.
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3. Proof of Proposition 2

First we list some easy to check relations for (e, u, x).. Let e, &, v bein V,x,y in R, and
g in Gp(q, R). Assume that F(e, u) = F(e, v} = 0. Then:

(9 (e, u, x)v =v when F(uv) = 0;in particular, t(e, u, x)e =¢;

(10) T(ey, u, x) = t(e, uy, xy%);

(A1) (e, u + ey, x) = 1(e, u, x + 2y);

(12) e, u,0)= t(u,e,0);

(A3 te, u, x)t(e, v, y) = tle, u+ v, x+y + F(u, v)) ;

in particular, (e, u, x)"! =t(e, -u, -x);

(14) gtle, u, x)g"! = 1(ge, gwa(g) , x/c(g))) forevery g in GppR, where afg) €
GL(R is such that F(gw, gw’)= a(g)F(w, w’) forallw,w’ in V,

in particular, :

(15) when ge=e and g € SpgR (ie. ofg) = 1), we have gt(e, u, x)g’t = t(e, gu, x)
and (g, t(e, u, x)] = t(e, gu, x)tle, -u, -x) = tle, gu — u, F(u, guj).

Now we are ready to prove Proposition 2. Let 4 be the subgroup of EpgR generated by the
subgroups (e, 0, R), where e ranges over all vectors ¢ in V which are either F-unimodular or
orthogonal to a hyperbolic pair in V. Clearly, H is a normal subgroup of GppR. We want to
prove that H = EpgR.

By the definition of EpgR, it contains t(e, 0, R) for every F-unomodular vector ¢ inV.
Let us show that EpgzR 3  t(e,0,r) whenre R and e is orthogonal to a hyperbolic pair ¢,
e, in V. Indeed,

(e, 0, r) = e, ey, 0) e, eyr, 0) T(e, -€; -4r, 0)

=1(ey, &, 0) t(e,, er, 0) t( ey +eyr, -¢,0) € EpeR by (10), (12), (13), because the vectors
ey, €y, and e; + eyr are F-unimodular.
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Thus, H < EpgR. Let us show now that EpeR C A.

By the definition of EpgR, it suffices to show that H > T(e, R, R) for any F-unimodular
vector ¢ in V, i.e. H 3 t(e, u, r) for an arbitrary symplectic transvection t(e, u, r), where u
e etand r e R.

We pick a vector ¢” in V with F(e,e’)=1,andset r’'=F(u,e’},v=u-er’ . Then u=er’
+v with v orthogonal to both € ande”. By (11),(13),

e, u, r)= tle,v,0) te,0,r +2r").
So it remains to show that (e, v, 0) € H.
By (15),

H 3 [0, 1), tv,e’,0)]= 1(v, e -1), hence
H> tv,e,-1)1(»,0,1)= (v, ¢,0) = (e, v, 0).
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4. Proof of Proposition 3

In this section we assume that V contains an F-unimodular vector. We fix a hyperbolic pair
€,e, inV. So F(e|,e;) =1 and e;R +eyR is a hyperbolic planein V. Let U = (R +
ezR)-L denote the orthogonal complement of ;R +e;R in V. So V= (iR +¢e,R) LU.

LEMMA 16. Under the conditions of Theorem 2, the centralizer of T(e), R.R) in GpeR,is Z;
Gp{(0,0) where Gpg(0,0) € GpgR, is the subgroup of all scalar authomorphisms of V and Z,;
is the center of T(ey, R,R), which consists of t(e|, «, x)) in T(e, R,R), with 2F(u, V) = 0.

Proof.Let g bein GpgR and commute with each element of T(e;, R,R). In particular, g
te;, 0,1) = 1t(e;, 0, 1)g, hence gt(ey, 0, 1)e; =1(ey, 0, l)ge, . ic. ge, +gey = gey +
e F(ey, gey) , 1.e. gey = e(F(ey, gey). Since the vector ge, is F-unimodular, it follows that
F(e;, gey)R =R. Replacing g by its scalar multiple gF(e, gez)”l, we can assume that ge, =
e,. Since  F(gey, gep ) = 1, the vector ge, has the form gey =e, +eyc+w with ce R and w
e U.So ge; =1(e), w,cley. Setnow h=1(e;, w,c)'lg. Then he; =e, and he, = e,, hence
hU = U. The equality gt(e;, 4, .r)g'1 = T(e,u, x) for an arbirary t(e;,u, x) in T(e,, R,R), with
uin U takes the form

t(ey, hu, x + 2F(w, hu)) = 1t(e), u,x), hence h=1,¢g = t(e}, w, ¢), and 2F(w,U) = 0.
Thus, g (after it was multiplied by a scalar) belongs to the center of T(e,R,R). Lemma 13 is
proved.

Remark. The intersection of Gpg{0, 0) and Z, is trivial.
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Notation. For any vectors e, e¢’in V, let E(e, e”; R) denote the subgroup of SppR
generated by T{e, R, R) andT{e", R, R) .

COROLLARY 17. The centralizer of E(e,, e5, R)in GpgR. coincides with the group Gpg{0,0)
of scalar authomorphisms of V. In particular, Gp(0,0) is exactly the center of GpgR.

Proof. Let g e GppR commute with every element of T(ey, R, R) and T(e;,R,R). By
Lemma 13, g € T(e;,R,R)Gpg(0,0) M T(ey, R, R) Gp(0,0) = Gpg(0,0). (Since ge, €
esR, the T(e), A, A) -componentof g isl,so ge Gpg(0,0), ie. g is multiplication by an
invertible scalar on V.)

Remark. Corollary 17 contains Proposition 2, because  E(ey, e;, R) CEpgR.

THEOREM 18. Assume that V contains an F-unimodular vector. Let (A, B) be a symplectic
ideal of R and g € GppR. If [g,EpgR]€ Gpg(A, B),then g € Gpg(4, B).

Proof. Applying Proposition 2 to R/A, V/VA, and F (mod A) instead of R, V, and Fand
using that the map Epg(R) — Epp{R/A) is onto, we conclude that g is a scalar modulo 4, i.e.
thereis ¢ € R suchthat gv-cv e VA forall v e V. In prticular ¢2 - a(g) e A, where
a(g) = F(gey, gep) € GLR is such that F(gu, gv)= a(g) F(u,v) forall uyv e V.

We claim now that (c2 -(g))R < B and that F(e,c, ge)) +B =Ige, - ¢|cl.

To prove this, we write ge, = e;x + e,y”+w with x=F(ge|, e5),y = F(ey, ge,), and w
€ U Wehave x-¢c €4,y e A,w € UA.Nowwepick x” € R suchthat x’-1 € A
and z € lwx’l. Weset g"= tey, we’, z) with t(e,y, we’,z) € Epg{4, B). We have ge =
T(ep, we', 2)gey = Teg, we', Z) (egx+ ey +w) = e x+e,y+wa with a=1-xx" € Aand
y=y-z € A.
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Our claim takes the following form: (2 - a(g)R € B and that xy € 8.

For an arbitrary r in R weset k=[g", ey, 0, )] € Gpg(A, B). Then
hey = t(g’e), 0, rfa(g))ey - er) =ey-eyr+ gey F(g’el , €y - ey )rjo(g))
= ey(1 + rxyla(g) + riy*a(g)) + ey (rx2/ag)) - T +r2xy/ax(g)) + war(x + ry)/a(g).

Since Ry? < B, the equality lhe, - e, | = F(he,, e;) + B takes the form rx®fa(g) -r € B,
ie. r(x2-0(g)) € B.

We have proved that 2 - a(g))R < B which is equivalent to (c?- a(g))R < B because
x-¢c €A.

Now we consider h'les = [ 1(ey,0,7), g le;= Tley, 0, 1) ©(g ey, 0, -rfalg))e,
= e, 0, r) (e4- g'ey F(g'ey, exr/0(g) = eqy- g'eyrxiafg) + e\F( ey, ey- g eyrx/o(g))r
= ex(1 - ry/ou@)) + e, (r - x¥/aug) - xyr?/ alg)) - warx/a(g).

Since Ry? <B and (1 -x¥a(g))R < B, the equality li'le, -e, 1= F( h'ley . e5) + B
takes the form xyr%/ a(g)) € B. Setting r =x, we obtain that xy € B.

Thus, our claim is proved. Similarly, F(ec, ge) + B = Ige -ec! for every F-unimodular vector
e in V. Note that V is spanned by F-unimodular vectors. Namely, v =¢s5 + egt + w= ey +eot
+w +e(s - 1) for an arbiary vector v in V, where 5,t € R, w € U, and vectors ey +
eyt +w and e are F-unimodular. So F(ec, ge) + B =lge - ecl for every vector ¢ in V. Thus,
we have proved that g € Gpg{(4, B).

Remark. Theorem 18 with A =0 implies Proposition 2.
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5. Proof of Theorem 4

Lete,epand U= (¢g,R+ ezR)-L be as defined before Lemma 16. For any symplectic
ideal (A, B) of R and any two vectors ¢,¢” in V, let E(e,e’; R, A, B) denote the normal
subgroup of E(e,e”; R) (see the notation before Corollary 17) generated by T(e; A, B) and T(e",
A, B). In particular, E(e,e; R, R,R)=E(e.e’; R)

We want to prove that E( e,, e5, R, A, B) = Epg{(A, B), i.e. that E(e, ¢,; R, A, B) does not
depend on choice of a hyperbolic pair e, e, under the conditions of Theorem 4. LEMMA 19. For
any symplectic ideal (A, B) of R, any two vectors e, e’ €V, and any vector e”” € V orthogonal
to e, e we have E(e,e’; R, A, B) D T(e”, As?, Bs?), where s =Fl(e,e’).

Proof. Let t(e”, uas?, bs?) € T(e”, As?, Bs?), where u € V,F(e”, u)=0,a¢c A, be
B. We have to prove that t(e”", uas?, bs?)e Efee’; R, A, B).

Case 1:u=0. Then t(e”, uas?, bs?) =t(e’", uas?, bs?) =1(e”, 0, bs?) = 1(e”, -ebs, bs?)
t(e’’, ebs,0) € Efee’; R, A,B), because t(e’’, -ebs, bs?) = [1(e, 0, -b), e’ e’ 0)] e
E(ee; R, A, B), where t(e™’, ¢’, O)=1(e’, ¢, 0) € T(e’,R, R) by (12), and
t(e”’, ebs, 0) =t(e, e""bsz, 0) € T(e; A, B) also by (12).

General case. Setr=F(e,u)e R,r'=F(e,uye R andw=us-er+er’. Then w is
orthogonal toe ,e’,and e ™",

By (13), t(e’t, uas?, bs?) =1(e”", uas?, bs?)

= (e’ was, 0) 1(e”’, e’ars, 0) 1(e”", ear’s, 0) tle”", 0, b’s%), where b =b + rr'sa’e B.

By (12), t(e”, e ars, O)e T(e"; Ax, Bx) c E(e,e’; R, A, B) and

e, ear’s,0)e T(e;Ax, Bx) cE(ee’ R, A, B).

By Case 1, t(e, 0, b’sz) € E(ee’ R A B).

Moreover t(e”” was, 0) = [t(e, wa, 0), t{e”,e",0)]€ E(e,e’ R, A, B), because

e, e, 0)= t(e’,-e”,0)e T(e’, R,R) by (12).

Thus, t(e’’t, uas?, bs?) e E(ee”; R, A, B).

COROLLARY 20. For any symplectic ideal (A, B) of R, any two vectors e, e’ €V, and any
two vectors w, w’ € V orthogonal to e, e’ we have E(ee’; R, A, B) o E(ws?, w's2; R, A, B),
where s=F(e,e’).
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Proof. We have to prove that ghg'! € E(e,e’; R, A, B) whenever g & E(wsZ, w’s?, R) and
h e T(ws?, A, B) U T(ws2, A, B). By Lemma 19, h € E(ee’ R, A, B) and g €
E(e,e’; R, RR)=E(e,e”; R). So, ghg'1 € E(ee’; R, A B).

LEMMA 21. Let P be a maximal ideal of R . Supose that dim(F mod P)24. Let ¢,e” €
V and F(e,e’)e S=R \ P.Then thereis se § suchthat Efe|, ey R, A, B) o T(e; As?,
Bs?) for all symplectic ideals (A, B) of R.

Proof. We write e=v +u with ve e\R+ ¢;R and u e U.

If F(U, u) intersects S, then we find v in U with F(u, v) =55 € S. By Corollary 20,
E(e),ey; R, A, B) O E(u,v; R, A, B)and E(u,v; R, A, B)D T(e; Asoz, Bsoz). So

E(e, ey R, A, B) DT(e; As?, Bs2) with s =5,

If F(U, u) does not intersect S, i.e. F(U, u) = F(V, u) cP then F(V, v)intersects S. We
finda vecot v” in e R+ e;R with F(v,v’) = 5, € §, and a pair w, w e U with F(w, w’)=
sy € S. By Corollary 20,

E(e;, ey R, A, B) > E(w,w R, A B) D E(vsy%,v's,% R, A, B) . By Lemma 19,

E(vsy2, v'sy% R, A, B)D T(e; Asy’s,3, Bsy2s,8).

So E(ey, ey R, A, B) DT(e; As? Bs?) withs=sys,%e S.

Now we can complete our proof of Theorem 4. We have to prove that  t(e, ua, b) €
E(e, e5; R, A, B) for any F-unimodular vector e€ V, any vector 4 € V orthogonal to e, any
ae A,andany be B.ByLemma 21, for every maximal ideal P of R thereis s€ R outside
P suchthat E(e,,e,'R, A, B) O 1le, uaRs?, 0). Writing 1 as a linear combination of those s2.
we obtain an element of E(e,, e5, R, A, B) of the form (e, ua, raz) with re R.

It remains to show that 1(e,0,b")e E(e|, ey R, A, B) with b'=b- ra* e B. By Lemma
21, for every maximal ideal P of R thereis s € R outside P such that t(e, O,b'rzsl)e E(e,,
e, R, A B) forall r € R. Writing 1 as the square of a linear combination of those s, and
using that E(e, ey R, A, B) O 1le, ebR,0) =1(e, 0,26R ), we obtain that 1(e, 0, b )e
E(e\,e5, R, A, B).
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6. Proof of Theorem 5

To prove the first conclusion of the theorem we need only the following condition: dim(F
mod P) 2 6 for every maximal ideal P of R of index 2. We denote by # the subgroup of EpgR
generated by its subgroups (e, 0, R), where e ranges over all F-unimodular vectors ¢ in V.
Clearly, H is a normal subgroup of GpgR. We want to prove that H = EpgR . By the definition
of EpgR, it suffices to show that A contains an arbitrary symplectic transvection (e, &, r) .

We pick a vector ¢” in V with F(e,e)=1,andset U =(eR + eR) L r=Flue)v =
u-er’. Then u=er’+v with v orthogonal to both ¢ and e”. By (11),(13),

(e, u,r)= (e, v,0) 1(e,0,r +2r°).

So it remains to show that t(e, v, 0) € H. It suffices to show that for every maximal ideal P
of R thereiss € S =R\P suchthat 1(e, Us,0) CH.

If card(R/P) # 2, then we pick fg € R such that roz -tg=s €§.By(5,H > [tle,
0.t°), v, et,0)]= t(v,en’,-t'2)=f(r,t") forall ,1" € R andall v € U, hence

H 3 flg, 17, 19 = t(v, e( 152 - 1), 0)

= 1(v, es5, 0) = 1(e, vs, 0).

If card(R/P) = 2, then we use the condition of the theorem and pick two orthogonal pairs (v,
v}, (w,w)in U'with s, =F(v,v}) € § ands,=F(w,w’) €.

Wehave H 3 [1t(e,0,1), t(v,e", 0)]= t(v, e, -1), hence

H 3 ([te,-w,0), tv,e,-1)]= v, w',0),and H 3 [t(w,et,0), (v, w’,0)]=

(v, elts,, 0) = t(e, vts,, 0) forall ¢ in R.
' Thus, t(e, vsoR, 0) < H. For an arbitrary u“€ U”we have usy =vx+u” with x=F(u’,
v’)and F(u”",v)=0. We have
e, u 58, 0= [ t(u™, -v", 0), (e, vsy, 0)] € H, hence
e, u’s, 0) =e, u” 55,2, 0) = t(e, vxsysy, 0) e, U 'sps;, 0) € H with s=s,52¢€ §=
R\P.
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The first half of Theorem § is proved. Now we have the second half to prove.

By Theorem 3, we have only the inclusion [Gpg{A, B), EpgR ] C Epr(A, B)
to prove. Note that both Gpg(4, B) and EpeR nommalize Epz(4, B).

By the first conclusion of the theorem, it suffices to show that {Gpp(A, B), t(e, 0, R)| <
Epg{(A, B) for any F-unimodular vector e in V. In other words, we want to prove that the
subgroups Gpg{A, B) and t(e, 0, R) commute modulo Epp{4, B).

It suffices to show that for every maximal ideal P of R and any g in Gpg(4, B) thereis s

€ § =R\ P such that g, t(e, 0, Rs)] < Epg(A, B).

We will prove this using only the following condition: dim(F mod P) =4 .

Case 1: there is w, w”in V orthogonal to both e and ge and such that F(w,w’)=5 ¢ S =
R\ P.Let e GL\R and ce R be such that (cZ - )R c B, F(gu, gv) = aF(u, v), gv - vc
e€VA and F(v,gv)+B=lgv-vciforall u,ve V. Forany r inR we write

t(ec, 0, rs) = t(ec, w, 0) t(ec,wr, 0) t(ec, -w -w'r, 0)

= t{w,ec, 0) t(wecr, 0) t(w+ wT, -ec,0)

and 1(ge, 0, rs) = t(ge, w, 0) t(ge,w’r,0) t(ge,-w -wr,0)

=1(w,ge, 0) t(w’,ger,0) tlw + w7, -ge, 0), hence

t(ge, 0, rs) tlec, 0, rs)!

=tw,ge, 0) t(w’.ger, 0) ww + w'r,-ge, 0) (t(w,ec, 0) w(w’ecr, 0) tw + wr, -ec, 0) )}

= h(8ahygy™) (g3h383™"), where

hy=1(w+wT, -ge,0) t(w +wT, -ec ,0) l=t(w+wT, ec - ge,- F(ge, ec)e Epg(A, B),

g3 =Ttuw,ec, 0) tw’ecr0) € EpgR,

hy = t(w’, ger, 0) (w’ecr,0)! =t(w’, ger - ecr, -F(ger,ecr))e Epg(A, B),

g8y ="(w,ec,0) € EpgR,

and hy = t(w, ge, 0) tw, ec, 0)1 = t(w, ge - ec, -Fl(ge, ec))e EpdA, B).



Vaserstein Normal Symplectic 17

So t(ge,0,rs)tlec, 0,rs)l € Epg(4, B), hence [g, (e, 0, ors)]
=g 1(e, 0, ars)g”! t(e, 0, ars)y’! = 1(ge, 0, rs) (e, 0, cwrs)’!

=1(ge, 0, rs) t(ec, 0, rs)"! (t(e, 0, rs(c - @) € Epgp(A, B) forall r in R,
Thus, (g, t(e, 0, Rs)] < Epg(4, B).

General case. We pick a vector ¢” € V such that F(e,e’)=1and write ge=ex+ey+u
with x = F(ge, e’), y=F(e,ge)e R, u € U=(Re +Re” YL, Since g € Gpg(4, B), we have
(x2-a(g)R c B,y €A, u € UA, and xy +B =lul.

Set h= t(e’, ux/o(g), xy/o(g) ). Then hge = ex +e’ya + ua, where a=1 —xZ/oc(g)),
aR = (x%2 - a(g))R < B. Note that xy/a(g) — xy(x/a(g))? = axy/a(g) € B, hence he
Epg(A,B). Since ge =ex+e’y+u is F-unimodular and a-1 € xR, wecan find " e U
and r € R suchthaty’= y+F(u’,u)a +rx € S. Set h"= t(e’, u'a, ra)h € Epg(A,B). Then
hge= ex+e‘ay’+ua-ua.

Now we pick v, v' in U with F(v,v’) € § andset w=vy +eF(u-u’",v),w’ =vy”’
+eF(u—-u’,v’). Then F(w, w’)=F(v,v)y2e S and F(e, w)= F(e, w’) =F(hgew) =
F(hge, w’) = 0. By Case 1. [hg, t(e, 0, Rs)] < Epg{4, B) for some s € §, hence

g, Te, 0, Rs)] < Ep(A.B). ‘
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7. Proof of Theorem 7

By Theorem 5, it suffices to prove that Epg(4, B) © [Epg{4, B), EpgR], ie. T(e}, A, B)
< [Epg(4, B), EppR], i.e. t(e, uax, b) € [Epg{A, B), EpgR] forall u e U= (R + ezR)J-,
ae A ,and b € B, where ¢, e; is a hyperbolic pair in V.

LEMMA 22. Under the condition of Theorem 4, for any maximal ideal P of R thereis s € S =
R\ P suchthat (e, uas, 2sa” +bs?) e [Epp{A, B), EpzR] forall a,a” inA and b in B.

Proof. We pick vectors e3, ¢4 € U such that 59 = F(es, e4) € §.

Case 1: a=b=0.Then

ey, uas, 2sa’ +bs?) =1(e;, 025a”)

=[1(e;, e3a”,0), (e}, ¢4, 0] € [Epe(A, B), EpgR] for s= s59= F(e3, ¢e4) €§.

Case 2:a” = b=0and the image n(u) of u in Up is Fp-unimodular. We pick v e U
such that s" =F(u,v) € §. '

If card(R/P) # 2, then we pick ~ in R with r- P2 e S and set )

= t(ey, uasty, -y(as 1)) = [t(u, 0,y), te,, vat, 0)] € [Epg(A, B), EpgR] forany rt in
R, where t(u, 0,r) € EpeR by Lemma 19 with x = 1. Now

AL 1) = ey, uas(r-r%),0) € [Epg(A, B), EppR] .

So we are done with s=s7(r-r2)e S.

If card(R/P) =2, then dim(F mod P) 2 6 by the condition of Theorem 5. So we can find e,
e’ in U orthogonal to u, v sothat F(e,e’) e § Although e need not be F-unimodular, t(e, u,
0) € EpgR by Lemma 19 withx = 1. So

(e, uas, 0) = [tle, u, 0), t(e, e’a, 0)] € (Eps{A, B), EppR] forany ae A, where s =
Fle,e’)e § .
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Case 3:u=0and a"=0. Then [Epg(A, B), EppR] 3

[t(e3, 0 b), (e, e4, 0)] = e, e3bsy, -bso ) forall be B.

On the other hand, by Case 2 there is 5, € S such that [Epg(A, B), EppR] > r(el,e3bsl,0)
forall b e B. So for s =535, we obtain that [Epg(A, B), EppR] 3

ey, e3b5.0)tle;, e3bs, -bs?) !t = (e, 0, bs?) for all be B.

General case. We write usg=est+eyd +w=ey+eqt’+w+ey(t-1) with t=F(u, ey), t’
=F(e;,u) € R and we U orthogonal to both ey and e4. Then:

(e, 0, 25qa”) € (Epg(A, B), EpgR] foralla” in A by Case 1;

(e, (e3 + g+ wiasy, 0) € [Epg(A, B), EpgR] forall a € A for a suitable 5y €S by
Case 2; »

(e, e4(t - 1)as,, 0) € [Epe(A, B), EppR] foralla € A with a suitable 5, € § by Case 2;

(Epe(A, B), EppR] 3 ey, 0, bs;?) forall be B with asuitable 55 in S,

So for 5°=5,5,5;€ S and 5 =sp515,57€ S we obtain that (e, uas, 25a” +bs?)

=1ey, 0, 25a”) ey, (e5 + et "+ w)as’,0) “tley, e(¢t - Vass’, 0) t(e;, 065 +¢" (¢ - ass”)

€ (Epg(A, B), EpgR] foirall g,a” in A and b in B. ~

Lemma 22 is proved. Now, for fixed u, a ,b, we set

Yi=(re R:t(e, uar,0) € [Eps{A, B), EpgRl },

Yo={re R:t(e}, 0,2ra’") e [(EpgA, B), EpeR] },

Yy=(re R:1e;, 0, b3%) e [EpiA, B), EpgR] ).

By Lemma 22, each Y; contains Rs for an element s outside an arbiitrary maximal ideal P
of R. Clearly, Y, and Y, are additive subgroups of R.So Y, =Y, =R. Now it is clear that Y5
is an additive subgroups of R, hence Y3 =R.

Therefore, t(e;, uas, 2sa’ +bs?) = t(ey, uar, 0) te,, 0, 2ra”) ey, 0, b32)

e [Epg{A, B), EpgR] .
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8. Proof of Theorem 8

In this section we assume that there are vectors ey, €, in V with F(e|, ;) = 1. As above,
we set U=(g|R+eyR) 1

Let H be a subgroup of GpgR normalized by EpgR . Denote by A the ideal of R
generated by all F(U, u), where u € U and (e, u,r) € H forsome rinR (depending on
u). Let B bethesetofall & € R such that t(e}, 0,0) € H. Clearly, B is an additive subgroup
of R.
LEMMA 23.24 < B.

Proof. It suffices to show that 2F(u,v) € B whenever uv e U,r € R,and (e, u,r)
€ H.Wehave H O [H,EpgR] 3 [ tley, u, 1), tley, v, 0)] = t(e,0, 2F(u,v)), hence 2F(u,v)
€ B by the definition of B.

LEMMA 24. Suppose that dim(U mod P) 2 2 for every maximal ideal P of R. Then B cA.

Proof. The dimension condition means that 1 can be written as a sum of elements F(u, v)
with «, v in U. So it suffices to produce (e, vbF(u,v), *)in H for arbitrary u,v in U and
b in B. Wehave H D [H,EpgR] 3

[t(eyv, 0), ey, 0,5) 1= [t(ey, 0, -b), t(v, ey, 0)]

= U, &5 - €1b, 0) (v, -e5, 0)= (v, - ¢{b, -b), hence

H 3[ ey, u,0), (v, - b, -b) 1= t(ey, u, 0) tey,- t(v, - eb, -b) u, 0)

= ey, u, 0) tey,-u +e F(v, u) +vbF(v, u), 0)= (e, vbF(v, u), -bF(v, u)z).
LEMMA 25. Under the condidon of Lemma 24, forany w € Uandanya € A thereis r € R
such that t(e), wa,) € H.

Proof. It suffices to consider the case a = F(u, v), where u,v € U,re R, (e, 4,r)
€ H. Set

Y={s € R:1(e;, was, 1) € H forsome ¢ € R)}.

We want to prove that ¥ 3 1. Since Y is an additive subgroup of R, it suffices to show thal
Y D Rs foranelement s of R outside an arbitrary maximal ideal P of R.
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We pick e,e” in V with F(e,e’) =sqin S§=R\P. We write wsg=ez+e2"+w’ with z
=F(w, e’), 2’= F(e, w), w” orthogonal t0 e, e”. Similarly, we write usg=ex +ex"+u’and vs,
=ey+e’y +v’ with uand v’ orthogonal to e, ¢”. Note that F(usg, vsg)= 0502 =yz-zy' +
Flu',v’).

By Lemma 19, t(e,v", y), e’ 0, csg) € EpgR forany c in R, so

HD [EpgR, H] 3>  [tlev’, y), tey, u, Nl= ey, tev’, yu, r) e, -u, -r)

=1e, -eF(u’, v") +eyx" +vx’sy, 7), hence

H> [EppR, H] 3 [(e’, 0, csg), ey, -eF(u’, v) +eyx +vx’sy, 7]

= ey, e’csoz(F(u‘, v)-yx’), 7).

Moreover, H > [EpgR, H] 3 [t(e’, 0, 1), T(ey, 4, N] = ey, -ex, 7), hence H D
[EpeR, H] 3 [t(e, 0, 1), (e, -ex, 1) ]= (e, -exsg, 7)., hence H O [EpgR, H] >

(t(e”, 0, cy?, ey, -exsy N = tley, e’c;xy’soz, N.So H > '

ey, e’csoz(F(u‘, v)-yx°), 7) (e, e’cxy ’.\'02, N= ey, e’csoz(F(u’, vi-yx+xy7), )=
ey, e’ca.r04, N.

Recall that ¢ here is an arbitrary element of R. So-H 3 (e, ec(z’sy - asy®, 7).

By Lemma 19, f = t(e, w, z) € EpgR . So

H 3f(e, e’caso"', ?)f'1= ey, fe 'cas04, N.

Therefore H > (e, e’c(z’sy - 1)asy®, ?) ey, fecasyt, 7)

= tley, (e(27sy- 1) + e, w, 2)e") ca304, N = 1(ey, wcas06, M.

Thus, ¥ DRs with s=5,8 in S=R \P.

COROLLARY 26. Under the coditions of Theorem 5, (A, B) is a symplectic ideal of R.
Proof. let re R,a e A, b € B.ByLemmas23and 24, 2a,€ B and b e A. It

remains to prove that brZ, ra® € B.
To prove that ra? € B, it suffices to show that for any maximal ideal P of R thereis s €

S=R\P suchthata’Rc B .
We pick vectors e3, ¢4 € U such that 55 = F(eq, ¢4) € S.
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By Lemma 25, forany ¢ in R we have t(e), e4ca, 7)€ H.Soforany 4 in R we have

H> [EpgR, H] 3 [‘L‘(e3,0 d), ey, escaN] = ey, esacdsy, -a’cdsy?) = fic, d).

So H 3f(c, d)f1, dc?) ! = (e, esa(c- cP)dsy, 0) and

H 3 e, esa(c- cPdsg, 0)c~c2, d) '=1e,, 0, a¥(c ~c2)%dsq?)

ie. az(c —cz)zds 2¢ B.

If card(R/P) # 2, we can choosc such that ¢2— ¢ isin S, hence a®sR < B for s =
(c -cz)zsoze S.

If card(R/P) =2, we pick vectors ¢, e in U orthogonal to es, ¢4 and such that F(e, ¢’)
€ §. ByLemmal9, 1t(e,eyd, 0) € EpeR. SoH O [EpgR, H] 3

[t(e, esd, 0), ey, e, N] = ey, e3adF(e, €°), 0), hence

H 3f(1, -dF(e, e))tle,, esadF(e, €°), 0) =1(e,, 0, a%dF(e, e’)sy),
ie.sa’Rc B for s= Fle, e‘)soze S.

We have proved that ra* € B.

Now we have to prove that br> € B. Since 24 < B, it suffices to show that for any
maximal ideal P of R thereis s € S=R\ P suchthat br’s2e B.

Let e5 and e, be as above. We have seen that forany @ € A thereis s € § such that
(27) t(e,, e3ads,0)e H forall de R.
We will use this with a, d replaced by b, r. We have
HD [H,EpgR] 3> [1(ey, 0, D), t(es, eyr, 0)] ey, e3brs, 0)
= ey, e1brs, - br¥s?)t(e,, e3brs,0) = ©ey, 0, - br2s?), hence H > [H, EppR] 3
[t(e3, O, -br2s?), tey, e4, 0] ey, e5br3s?, 0)
= ey, -63br%s2, bris?) t(ey, e3br?s2,0)
= 1(ey, 0, bris?).
Thus, brse B.
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COROLLARY 28. Under the coditions of Theorem 5, H > Epg(4, B),

Proof. By Theorem 4, it suffices to show that H > T(ey, A, B). By the definition of B,
H o (e, 0,B). So it remains to show that (e}, wa,0) € H forany u € U and any a €A.

Set Y={t € R:1t(e, wat,0) € H}. We want to prove that 1 & Y. Since Y is closed
under addition, it suffices to show that for any maximal ideal P of R thereis anelement s°e §
=R\Psuchthat Rs’ < Y.ie. t(e; wasr,0)e H forall r in R.

Let e3,e4€ U and sy=F(e3, e9) € S be as in the proof of Corollary 24 above. We are
going to use (26) again. We write wsg=e;x +e,y+w’ with X,y € R and w’ e U
orthogonal to e;, ¢4 . Then w502 = e3(xsg -1) + 3 +eqysy + W'sy = e3(xsg -1) +fey, where f=
t(eq,-w’, -y) € EppR by Lemma 15.

By 27), hy = (e, esxsg-llars, 0)e H and hy = 1(ey, fesars, 0) = frley, ezars,
0Ofle H forall r in R. Since (xsq-1)ysga?r’s2e Ra? B by Corollary 24, k3= 1(e;, 0,
(xsq -1)3.'50112r2.s'2 e H.So1(e, warssoz, 0) = hghyhy € H ,hence r:rso2 =rs’ €Y forall re
R, where 5°=s55> € H . Corollary 28 is proved.

Originally, our definition of A, B depended on choice of an F-unimodular vector e;.
However Corollary 28 shows that in fact it does not depend. We can also state it as follows;
COROLLARY 29. Under the conditivons of Theorem 5, Epg(A, B) contains all symplectic
transvections in H.
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LEMMA 30. Under the conditions of Theorem 5,let e € U,ve V,r,r’ e R, F(e,v) =0, and
e, v, r), e, 0,r)e H. Then F(u, Vjry < A and rro4 € B forevery rye Fle, V).

Proof. We pick a vector e¢” € V such that Ffe, e’)=ry. Wehave H D [EpgR, H] 3
[te, 0,r), ey, et 0= ey, ertrg, -ri’ry?) =f(t) forall ¢ in R.

By its definition, A D F(erry, V) O Rrroz.

By Corollary 28, H o Epg(A, B) 3 t(ey, erry?, 0). So

H > e, erroz. 0 j(ro)'l =1(¢,, 0, rro"'). By its definition, B 3 rr04.

Now we have the inclusivon F(u, V)ry < A to prove. It suffices to show that for every
maximal ideal P of R thereis s € §=R\P suchthat sFfu, V)ry C A.

Pick any v°e V and set z= F(v, v’). We have to prove that ropsze A forsome se §
independent on v’ We write v'=¢;x+ey+w with x,y € Rand w € U. Note that F(e, w)
=0and z=F(v, e )x+ F(v, ey)y + F(v, w).

We have:

H > [t(e;,0,x),tle, v, r)] = 1le, e, F(ey, vix, ?);

H> [te),0,1),te, v, r")]=1(e, exF(ey,v),7), hence

H 3 [t(ey, 0, y), e, e,F(ey,v), D] = e, e1F(ey, v)y, 1,

H3 [teyw, 0), tle,v, r)] = 1(e, e3F(w,v) + wF(e,, w), 7), hence

H 3 [te}, 0, 1), tle, e,F (w,v) + wF(e,y, w), D] = (e, e,F(w, v), 7).

SoH 3 t(e, e\F(eq,vix, ?) e, e,F(ey, v)y, 7) e, e F(w, v), )

=1e, e F(viv)x, 7)) =1(e, -€;2, 7).

If card(R/P) # 2, we pick fye R with s=r4>-1, € S.Thenforany 1,1°e R we have

H 3[t(ey, 0, 1), te, -6z, Nl= e, -ep1z, -1z2), hence

H> [te1,0,1), Ue, -eytz, -12%) 1= tle, -e ez, -1%t'2%) = f{z, °), and

H 3 fil, 12t 1)l = t(e, €452,0) = (e, esz, 0).

Thus, szrg e A by the definition of A.
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If card(R/P) = 2, we invoke the condition of Theorem 5 to find vectors ey,e4€ U
orthogonal to ¢, ¢ with s =F(es, ¢4) € S. Then

H 3 [te,y, 4, 0), T(e, -€y2, N]= T(e, -e32, 0), hence

H > [t(e, e4, 0), (e, -e32, 0)]= (e, -¢52, 0) = (e, esz, 0).

Thus, szrge A by the definition of A.
LEMMA 31. Under the conditions of Theorem 8, let he H and he =ec forsome ce Randan
F-unimodular vector ¢ € V. Thenhv-vc € VA and I|hv-vcl=F(hv,vc)+B forall ve V.

Proof. Clearly, c € GLR. For any vector u in V orthogonal to e and any scalar r in R
we have

H 3[h, te u, )= e, huc/a(h) - u, rc2/alh) - r - F(hu, uc)oalh)).

So (using Lemma 30 and a condition of Theorem 8) huc/ou(h) - u < VA and

lhuc/o(h) - ul = rczla.(h) -r-F(hu, uc)/a(h) + B forall u € el hence (taking u=0)
R(a(h) -c?) < B.Itfollows that hu - uc « VA and lhu - ucl = F(hu, uc) + B forall u e e

Pick a vector ¢ in V with F(e, e’} =1. We can write h= t(e, u, r)h’, where ue V '=
eR+eR)L, r e R, h' e Gpr{A, B), h'e=ec,and h'e"=e’a(h)/c, hv-vc € VA and
lhv -vel=F(hv,vc)+ B forall v in V.

Forany w € V“we have H 3 [h, t(w, 0, 1)], because t(w, 0, 1)¢ EpgR,and H >
[#°, t(w, 0, 1)] by Theorem 5. So H 3{ t(e, u, r), t(w, 0, 1)] = (e, u, r) we, -u - wF(w,u), -r)
=1(e, - wF(w,u), 1), hence wF(w,u) e VA. It follows that that u e VA.

Incuding t(e, u, r’) into A", where r”e lul, we are reduced to the case u = 0. In this case, 4
= 1{e,0,h°, and foranyvector w € V ' wehave H 3 [Ah tw, e, 0)] and H >
(A", t(w, e°,0)], hence H 3 [t(e,0,r), t(w,e’,0)] = t(w, er, -r). By Lemma 30, wr eVA.
So Ur « U"A,hence r € A. Using Lemma 30 again, we conclude that » € B. Thus, we can
include we can include (e, 0, r) into 27, i.e. we are reduced to the case when h=h".
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LEMMA 32. Under the conditions of Theorem 8, let he H M SppR. and Aw = w for a vector
w & V which is orthogonal to a hyperbolic pair. Then (hv - v)ry € VA and I(/v - v}r0!r04 =
F(hv, v)r05 +B forall v € Vorthogonalto w and all rye F(w, V).

Proof. We can assume that w is orthogonal to e, e, i.e. w € U. Forany vector v in V
orthogonal to w and any scalar r in R we have

H 3[h, t(w,v, )] = t(w, hv - v, - F(hv, v)).

By Lemma 30, (hv-vjry € VA. Wepicknow z€ I(hv-v)ryl. Then

H 3 t(w, (hv -v)rg, z)and

H 3 t(w,-hvrg+vry, - F(hvrg, vrg) ), hence H 3 t(w, 0, z-F(hvry, vrg)).

By Lemma 30, (z - F(hvry, "’0))’04 € B.

Thus, (kv -v)ry € VA andl(hv - v)rgirg* = F(hv, v)re8 + B forall v e wt.

LEMMA 33. Under the conditions of Theorem 8, assume that A =0. Then H < Gpg(4, B) =
Gpg(0, 0).

Proof.Let he H. We write he; =e\x + ey +u with x=F(he|, e,), y =F(e|, he)), u €
U. We set

h'= [h, (e, 0,1)] € H

Case 1:y=0.Then h'ey =¢;. So h"=1 by Lemma 31 with A = 0. It follows that u =0.
So hey=ex. By Lemma 31, & € Gpg(4, B) = Gpg(0, 0)

Case2;y? =0. Since h'e; =e, + heyy, we have h’ & Gpg(A, B) = Gpg(0, 0) by Case 1.
It follows that F(h'e), ;) =xy-1-x2=0and ux =0, hence x € GLR, and u =0. So he,
=ex. By Lemma 31, 4 € Gpg(4, B) = Gpg(0, 0).

Case 3:y% = 0. Since h'e; = ey + heyy,wehave h” € Gpp(A, B) =Gpg(0, 0) by Case 2. It
follows that F(h'e),e;) =xy-1-x*=0and ux =0, hence x & GLR, and u=0.S0 he =
ex. By Lemma 31, & € Gpg(4, B) = Gpg(0, 0).
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Case 4: y3 # 0. Then there is a maximal ideal P of R such that y’s #0forall se S=R\
P. We pick a pair v, v'of vectors in U with ry=F(v,v’) € S,and set w = e F(u, v)+v.y.
Then Fle, w) = F(he;, w)=0,h'w=w.and F(w, V) 3 y’rye Sy>. By Lemma 32, (h'ey -
er) y2r0 =0, hence y3r0 =0 (because h’ey - e = hery).

So Case 4 is impossible.

LEMMA 34. Under the conditions of Theorem 8, H < Gpg(4, A)

" Proof. We want to prove that the image of H modulo A consists of scalar automorphisms
of R/A-module V/VA. Indeed, otherwise, applying Lemma 33 to this module instead of V, we
would obtain a non-trivial symplectic transvection in the image of H modulo A. (We used that the
image of EpzR modulo A contains all symplectic ransvections of (V/VA, F mod A). )

So H would contain an element of the form (e, u, r) g, where (e, u, r) is a symplectic
transvection in EpgR which is non-trivial modulo A and where g is trivial modulo A, hence g
€ Gpg{(A, A). We pick a vector e e V with Ffe,e’)=1and set U" =(eR + e R)*. We can
‘assume that ue U".

By Lemma 19, t(w, 0, 1) € EpgR forany we U’ hence [t(w,O0, 1), g] € Epg(A, A) by
Theorem 5. It follows that t(e,wF(w, u), ) = [t(w, 0, 1), te, u, )] € H Epg(A, A). By
Corollary 29, applyed to H Epg(A, A) instead of H, we obtain that F(w, u) € A. So F(U", u)
C A, hence u e UA.

Including t(e, u, 0) into g, we are reduced to the case u =0. In this case we have

T(w,-er,?) = [t(w,e", 0), tle.u,r)] € HEpg(A, A), hence rF(w, U)c A forall we U~
by Corollary 29. It follows that » € A. This is a contradiction.

LEMMA 35. Under the conditions of Theorem 8, let ¢ € GpgR and ge| = e;x + eya” + ua with
uelUAaa e€AxeR andxa” € B. Then t(ge, 0, r)t(eyx, 0,-r) € Epg(4, B) forall r
€ R. ,

Proof. It suffices to show that for each maximal ideal P of R thereis seS=R\P such
that t(ge,, 0, rs)t(e,x, 0, -rs) € Epg{A, B) forall r € R.
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Case 1:thereis w, w” in V orthogonal to both ¢, and ge, and such that F(w,w’}=5 € §
=R\ P. Forany r inR we write

t(eyx, 0, rs) = t(eyx, w, 0) Wex,wr, 0) ey, -w-w'r, 0)

= 1(w,ex,0) tw’exr,0) tw+ w7, -2,x,0) and t(gey, 0, rs)

=1(gey, w, 0) t1(ge,w T,0) T(ge,,-w -wr,0)= t(w,ge;, 0) t(w',ge, r,0) tlw + wr, -ge,, 0),
hence 1t(ge;, 0, rs) t(e;x, 0, rsyl
=1(w,gey, 0) W(w'.ge,r, 0) tlw + w'r,-ge;, 0) (t(w,ex, 0) Tw’,e x r, 0) t(w + wr, -e.x, 0) )}

= hy(gahygy™") (g3h383™"), where

hy=tw +w7r, -ge, 0)tlw +w'r, -ex O0)yl=tw+ wr, ex - gey,- F(ge, exx)e
Epr(A, B), g3=1tw,ex, 0) uw'e\xr,0) € EpgeR,

hy = tw’, ger,0) t(w'exr, 0yl =1(w’, geyr-exr, -F(geyr,eixr)) e Epg(A, B),

g2 =Tw,ex,0) € EpgR, and hy = t(w, ge|, 0) t(w, e\x, 0)!

= T(w, ge, - eyx, -F(gey, e1x )) € Epg(A, B).

So 1t(gey, 0, rs) tlex, 0, rsyle EpiA, B).

Case 2: F(V, u) intersects S. Then we can find w’ in U such that F(u, w’)=s € §
and set w = u. The vectors w, w”are orthogonal to both ¢, and ge,, se we are done by Case 1.

Case 3: a” € §S. Then we find vectors v, v" in U suchthat F(v, v’)e S andset w=
e\Flu, v}+va’, w' =e,F(u,v’)+va Then F(w, w’) = F(v, v’)a’2 e § and the vectors w, w”
are orthogonal to both ¢; and ge,, se we are done by Case 1.

Case 4:xe §. Then we can find v € U such that both F(v, U} and F(u - vx, V)
intersects S. Set g'=1(ey, va, 0)g, s0 g'e; =¢x +ey(a” + F(va, ua)) + (u - vx)a. By Case 2,
there is 5y € § =R\ P such that t(g’e;, 0, r s{)t(eyx, O, -rs|) € Epg{A, B) forall r € R.
Conjugating this by t(e,, va, 0), we obtain that t(ge,, 0, rs)t( t(ey, -va, 0) e\x, 0, -rs;) €
Epp(A, B) forall r in R.
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On the other hand, we can apply Case 2 to g = t(e,, -va,0) and conclude that t(t(e,, -va,
0)ey, 0, rsy)t(e;, 0, -rs5) € Epg{(A, B) for some spin § and all r in R.

So t(ge, 0, rs)t(ex, 0,-rs) =1(ge, 0, r5;5, )t(ex, 0,-r5,5,)

=(t(ge,, 0, rsps)T( ey, -va, 0) eyx, 0, -rsosy))

«( H(t(ey, -va, 0) ey, 0, x2s,rs7)t(ey, 0, -x2s,rs5,) )

€ EpF(A, B) forall r € R.

General case. Since ge, is F-unimodular, Cases 2, 3, 4 cover all possibilities.

LEMMA 36. Under the conditions of Theorem 8, let ¢ €V be F-unimodular, ke H,ce R
and iv -v¢ €VA forall v € V. Then

(36) (F(he, ec) + Dréa(h)? + c2(c2- o(h))r € B forall re R andall re lhe-ec|.

Proof. Note that in the presence of a hyperbolic pair e, &7, the element a(h) € GLlR (such
that F(hu, hv}=a(h) F(u,v) forall u, v in V) is unique and equal to F(he, he’). By Lemma 34,
h € Gpp{4, A), i.e. thereis c€ R suchthat gv-vc € VA forall ve V. Such an element ¢
is not unique, but its coset ¢ + A is unique (under the conditions of Theorem 8), c + A €
GL,R/A, and c2- afh) € A. Note also the the relation (36) we want to prove does not depend
on choice of ¢ in the coset ¢+ A or on choice ¢ in the coset lhe - ec | € A/B. It suffices to
consider the case e = ¢;.

We write hey =ex+ey+u with x=F(he,.e;)e c+A,y=F(e,he))e A, u € UA,
where U = (Re, + Rep)*.

Pick z€ lul. Then t= (x-c)y+z (mod B), hence F(he, ec)+t =xy + z (mod B).

Since c2-afh)e A, a=1-xx"e A for x" = x/a(h).

Set f= tey, ux’, zx"2)e T(ey, A, B). Then fhe, = ex+epy” +ua withy =y - zox’ 2
€ A . Note that R(l-(xt’)z) =R(2a - az) < B, hence F(he,ec)+t =xy+ 2z =xy° (mod B).
(Recall that 24 +a?R < B.)

Setnow z"=xy(l1 +a)e Aandf "=1(e,,0,z°) e T(e; AA). Then ge, =ffhe; =
e\ x +eqa’+ ua, where g =ffh € Gpp(4, A) and a’=ya*so aR c B.
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By Lemma 35, t(ge;, 0, N1t(e;x, 0, -r) € Epg(4, B) forall r e R. Note that

(g, (e, 0, g)r)] = t(g ey, 0, (e, 0, - alg)r)

= 1(ge,, 0, r)t(eyx, 0, -r) Tey, 0% — afg)r)

e EpglA, B) (e, 0-(x% - afg))) forall r in R.

Since he H, [H,EpgR] € H and f € Epg(A, B) < H, itfollows that k(r) =

(", wey. 0, afg)r)] ey, Orx® —afg)r) € H forallre R. '

Since k(r) fixes every vector in U, we can use Lemma 32 and conclude that lk(r)es ~ ¢4 | =
F(k(r)ey,ey) +B, ie. dd”eB, where '

Krles=ed+e,d’ ie.d=F(k(r)ey,e)) and d” =F(e|, k(r)ey).

Set rr=q(g)r=a(h)r e R andr”’ = r,rz—a(g)r =rx2 -ofh)r € A. Since f*= 1(e,,0,2z")
€ T(e,y, AA), :

k(r) ={f", ©(ey, 0,r")Itey, 0,r"")= t(fe, 0. )t( e, 0, r"=r").

So kir)e,=1(fe;,0,r Ye|(r"~r’)+ey

=e(r”=r)+ey+ feyrF(feey, eyr"-r’)+ey)

=eyr” =r’) +ey +(e =2 )’ (@ (r’"-r’) +1)=ed+e,d” withd =r"+
rz{r’-=r’) and d° = I—r’z’—r'z’z(r"-r’).

Sodd” € -2 r'2 +r” +z°2R c z7r°2+r” +B, because z" € A. Since dd” € B, we
conclude that z7°2+r”" € B.Sozr%22 +r”x* € B, ie. xy (l+ayr'%%+r"x e B,
i.e. y’r’2x+x2r" € B

Recall now that x—c € A, F(he, ec)+t =xy” (mod B), r'=qa(h)r,and r”"= rx? -
ofh)r. Thus, we obtain (36). ‘

Now we can conclude our proof of Theorem 8. Pick 7y € lhe; -e\c| and ty e lhe, —eycl
Then ¢ + o + Flhey—ec,hey—exc)e lh(e) +e9)-(e) +ey)cl. We apply Lemma 35 to
e=-e),e=e),and e=e; +e,. Using that Fhe - e c, hey—eyc)

= afh) + c2 - F(he,, exc ) - Fle;c.hey)

= afh) + 2 - F(h(ey + ep), () +ey)c) + F(hey , e c) + F(hey, exc), and that

24 c B, we obtain that ofh) +c2 +c2(c2 - afh))re B forall r € R, hence ¢’ 2c3(c? ~
o(h))R B forall ¢” eR. Picking ¢’ such that cc”- 1 € A, we conclude that (2 - a(M)R <
B.. Now Lemma 35 gives that F(he, ec) + t € B for all F-unimodular vectors e € V. Since V
is spanned by its F-unimodular vectors, we conclude that & € Gpg(4, B).



Vaserstein Normal Symplectic 31

References

1. E.Abe, Chevalley groups over local rings, Tohoku Math. J. 21 (1969), 474-494.

2. E.Abe, Normal subgroups of Chevalley groups over commutative rings, preprint.

3. E.Abe and K.Suzuki, On normal subgroups of Chevalley groups over commutative rings,
Tohoku Math. J. 28 (1976), 185-198.

4, D.G. Arrell. The subnormal subgroup structure of the infinite symplectic group,
Proc.Edinb.Math.Soc. 25 (1982), 209-216.

5. E. Artin, Geometric Algebra, Willey-Interscience, New York, 1957.

6. A.Bak, On modules with quadratic forms, in Springer Lecture Notes Math. 108 (1969), 55-66.

N

A.Bak, The stable structure of quadratic modules, preprint, 1971
. H. Bass, K-theory and stable algebra, [HES Publ.Math. 22 (1964), 485-544; 5-60.

oo

9. H. Bass, Unitary algebraic K-theory, in Springer Lecture Notes Math. 343 (1973), 57-205 .

10. H. Bass, L5 of finite abelian groups, Ann. Math. 99 (1974), 118- 153.

11. H.Bass, J.Milnor and J.-P.Serre, Solution of the congruence subgroup problem for SL; (n23)
and Sp,, (n22), IHES Publ.Math. 33 (1967), 59-137.

12. H.Bass and W.Parson, Some hybrid symplectic group phenonema,J. Algebra .53:2 (1978),
327-333. _

1 3. C.N. Chang, The structure of the symplectic group over an unramified dyadic field, J. Algebra
30 (1974), 42-50. MR 49#9096.

14. C.N. Chang, The structure of symplectic groups over the integers of dyadic fields, J. Algebra
34 (1975), 172-187. MR 52#592.

15. C.N. Chang, The structure of the symplectic group over semi-local domains, J.Algebra 35
(1975), 457-476. MR 51#5793.

16. C.N. Chang and C.K. Cheng, Symplectic groups over principal ideal domains, J.Algebra 41
(1976), 455-472 . MR 54#12649.



Vaserstein Normal Symplectic 32

17. D.L.Costa and G.E. Keller, On the normal subgroups of SL(2, A), preprint.
18. P.M.Cohn, On the structure of GL, of a ring, [HES Publ. Math. 30 (1966), 5-533.

19. J.Dennin and D.L. MccQuillan, A note on the classical groups over semi-local rings,
Proc.Roy.Irish Acad. S.A. 68 (1969), 1-4. RZh 1970.2A220, 3A249.

20. L.E.Dickson, Theory of linear groups in arbitrary field Trans Amer. Math. Soc 2 (1901),
363-394.

21. J.Dieudonne, La géométrie des groupes classiques, 3nd ed. Erg.der Math.und Grenz. Band 5,
Springer Verlag 1971.

22. F.Grunewald and S.Schwemer, Free non-abelian quotient of SL, over the order of imaginary
quadratic number field, J.Algebra 69 (1981), 298-304,

23. W.Klingenber, Symplectic groups over local rings, Am. J. Math. 85 (1963), 232-240.

24. V.LKopeiko, Stabilization of symplectic groups over polynomial rings, Mat.Sb 106:1 (1978),
94-107. :

25. N.H.J. Lacroix, Two-dimensional linear groups over local rings, Can.J.Math. 21
(1969),106-135. MR 38#5939.

26. N.H.J. Lacroix and C.Levesque, Sur les sous-groupes normaux de SL, sur un anneau local,
Can. Math. Bull. 26:2 (1983), 209-219.

27. A.W.Mason, Lattice subgroups of normal subgroups of genus zero of the modular group,
Proc.London Math.Soc. 24 (1972), 449-469. MR#3635.

28. A.W.Mason, Anomalous normal subgroups of the modular group, Comm. Algebra 11 (1983),
2555-2573. '

29. A.W.Mason, Anomalous normal subgroups of SL,K[x], Quart.J.Math. 36:143 (1985)
345-358. .

30. A.W.Mason, Free quations SL,, Proc.Cambr.Phyl.Soc. 101:3 (1987). 421-429.

31. A.W.Mason, On GL, of a local ring in which 2 is not a unit, Can.Math.Bull. 26:2 (1987),
209-219. Z 589.20032. )

32. G.Maxwell, Infinite symplectic groups over rings, Comment.Math.Helv. 47 (1972), 254-259.



Vaserstein Normal Symplectic A 33

33.
34,

33.

36.

37.

38.

39.

40.

41.

42.
43.

44,
45,

46.
47.

48.

49.

B.R. McDonald, Geometric algebra over local rings, New York-Basel, Marcel Dekker, 1976.
B.R. McDonald, Linear algebra over commutative rings, New York-Basel, Marcel _
Dekker,1984.

B.R. McDonald and Kirkwood B., The symplectic group over a ring with one in its stable
range, Pacific J.Math. 92:1 (1981), 11-125.

D.L. McQuillan, Class of normal congruence subgroups of the modular group, Am.J.Math. 87
(1965), 285-296,

J.L. Mennicke, Zur Theorie der Siegelschen Modulkgruppe, Math.Ann. 159 (1965), 115-129;
MR 31 #5903.

B.Fine and M.Newman,The normal subgroup structure of the Picard group Trans. Amer. Math.
Soc 302:2 (1987), 769-786.

M.Newman, Normal congruence subgroups of the modular group, Am.J.Math. 85 (1963),
419-427.

M.Newman, A complete description of normal subgroups of genus one of the modular group,
Am.J.Math. 86 (1964), 17-24. ‘

M.Newman, Free subgroups and normal subgroups of the modular group, Ill.Math.J. 8 (1964),
262-265.

O.T. O'Meara, Lectures on symplectic groups, Amer. Math. Soc. Math.Surveys, No 16, 1978.
C.R. Riehm, Stucture of the symplectic group over a valuation ring, Am.J.Math. 88
(1966),106-128.

E.F. Robertson, Some properties of Spn(R), J.London Math.Soc. (2)4 (1971), 65-78.

J.-P. Serre, Le proble me des groupes de congruences pour SL,, Ann. Math. 92
(1970),489-527 MR42#7671=225-3822.

R. Steinberg, Lectures on Chevalley groups, Yale U. 1967.

G.Taddei, Invariance du sous-groupe symplectique elementarire dans le groupe symplectique
sur un anneau, C.R. Acad.Sc. Paris 295 (1982), 1-47.

G.Taddei, Normalité des groupes élémentare dans les groupes de Chevalley sur un
anneau,Cont.Math. Amer. Math. Soc 55, part II (1986), 693-710.

X.P. Tang and J.B. An, The structure of symplectic groups over semilocal rings, Acta
Math.Sinica (N.S.) 1:1 (1985), 1-15.



Vaserstein Normal Symplectic 34

50. S. Tazhetdinov, Subnormal structure of two-dimensional linear groups over local rings, Alg.
Logic 22:6 (1983), 707-713.

51. S. Tazhetdinov, Subnormal structure of symplectic groups over local rings, Mat.Zametki 37:2
(1985), 289-298= Math.Notes, p.164-169.

52. S. Tazhetdinov, Subnormal structure of two- dimensional linear groups over rings that are
close to fields Alg. Logic 24:4,414-425

53. S. Tazhetdinov, Normal structure of symplectic groups over rings of stable rank 1, Mat.Zametki
39:4 (1986),512-517.

54. L.N. Vaserstein, Stabilization for unitary and orthogonal groups over a ring with involution,
Mat.Sb. 81:3 (1970), 328-351 = Math.USSR Sbornik 10, p.307-326.

55. L.N. Vaserstein, On the group SL, over Dedekind rings of arithmetic type, Mat.Sbornik 89:2
(1972), 312-322 = Math. USSR Sbornik 18, 321-332.MR 55#8253. Z359.20027. RZh
1973.2A369. '

56. L.N. Vaserstein, Stabilization for classical groups over rings, Mat.Sbornik 93:2 (1974),
268-295 = Math. USSR Sbomik 22, 271-303.MR 49#2974. 2287.18015, 305.18007. RZh
1974.9A454. '

57. L.N. Vaserstein, On normal subgroups of GL, over a ring, in Springer Lecture Notes Math.
854 (1980), 456-465.

58. L.N. Vaserstein, On normal subgroups of Chevalley groups over commutative rings, Tohoku
Math. J. 38 (1986), 219-230.

59. L.N. Vaserstein, Normal subgroups of the general linear groups over Banach algebras, J. Pure
Appl. Algebra 41:1 (1986), 99-112. Z589.20030.

60. L.N. Vaserstein, Normal subgroups of orthogonal groups over commutative rings, Amer. J.
Math, to appear.

61. L.N. Vaserstein and A.Mikhalev, On normal subgroups of orthogonal groups over rings with
involution, Algebra i Log. 9:6 (1970), 629-632 = Algebra & Logic 9, p.375-377.

62. L.N. Vaserstein and A.A.Suslin, Serre's problem on projective modules over polynomial rings
and algebraic K-theory, Izv.Akad.Nauk, ser.mat. 40:5 (1976), 993-1054 = Math.USSR Izv.
10:5, 937-1001. MR 56#5560. Z338.13015, 319.13009. RZh 1972.2A459. :



