Normal Subgroups of Symplectic Groups

```
Over Rings
```

L.N. VASERSTEIN

Max-Planck-Institut
für Mathematik
Gottfried-Claren-Str. 26 5300 Bonn 3
Federal Republic of Germany

Department of Mathematics The Pennsylvania State University
University Park, PA 16802
U.S.A.

Normal Subgroups of Symplectic Groups Over Rings

L.N. VASERSTEIN
Department of Mathematics, Penn State University, University Park. PA 16802, USA and
Max-Planck-Instilut für Mathematik, Bonn

Abstract

We consider a module with an alternating form over a commutative ring. Under certain conditions, which hold, for example, when the form is non-singular and the module is projective of rank ≥ 6 and contains a unimodular vector, we describe all subgroups of the symplectic group which are normalized by symplectic transvections. This generalizes many previous results of Dickson, Abe, Klingenberg, Bak, et el.

Key words: mormal subgroups, symplectic groups, alternating forms.

1. Introduction.

Let R be a commutative associative ring with 1 . For any integer $n \geq 1$, let $\operatorname{Sp}_{2 n} R$ be the standard symplectic group and $\mathrm{Ep}_{2 n} R$ its subgroup generated by elementary symplectic matrices [11], [37], [54], [62].

When R is a field, Dickson [20] proved that $\mathrm{Sp}_{2 n} R=\mathrm{Ep}_{2 n} R$ (by the way, the term "symplectic" was coined later, so Dickson wrote about "abelian linear groups $\operatorname{SA}(2 n, R)$ "). Moreover, he showed that this group modulo its center (which consists of $\pm 1_{2 n}$) is simple with the following three exeptions: R consists of 2 elements and $n=1$ (in this case $\mathrm{Sp}_{2 n} R=\mathrm{SL}_{2} R$ is isomorphic to the symmetric group S_{3}); R consists of 3 elements and $n=2$ (in this case $\mathrm{Sp}_{2 n} R$ is isomorphic to the alternating group A_{4}) R consists of 2 elements and $n=2$ (in this case, $\mathrm{S}_{2 n} R=\mathrm{Sp}_{4} R$ is isomorphic to the symmetric group S_{6}). In all these 3 cases, the commutator subgroup of $\mathrm{Sp}_{2 n} R=\mathrm{Ep}_{2 n} R$ is a proper non-central normal subgroup. See also [5], [21], [42] [46] about symplectic groups over fields.

Klingenberg [23] described all normal subgroups of $\mathrm{Sp}_{2 n} R$ for a local ring R such that the characteristic of the residue field $R / \operatorname{rad}(R)$ is not 2 and its cardinality is not 3. Abe [1] reduced the conditions on the local ring R to the following condition: the residue field has more than 3 elements when $n=1$ and more than two elements when $n=2$. When $2 R \neq R$, his answer involves some additive subgroups of R which are more general than ideals (he called them special submodules associated with ideals; later [3] the result were extended to other rings R). See also [13]- [17], [19], [25] [26] [31], [33]-[35], [43], [49]-[53] about $\mathrm{Sp}_{2 n}$ over local, semilocal, and other "zero-dimensional" rings R.

Mennicke [37] and Bass-Milnor-Serre [11] described all normal subgroups of $\mathrm{Sp}_{2 n} R$ when R is the ring of integers \mathbf{Z} or, more generally, a Dedikind ring of arithmetic type and $n \geq 2$. Note that the normal subgroup structure of $\mathrm{Sp}_{2} R=\mathrm{SL}_{2} R$ is very different and essentially intractable even when $R=\mathbb{Z}$ [27] - [30], [39], [40], [38] or another Dedikind ring of arithmetic type with finite $\mathrm{GL}_{1} R$ [18], [22], [41], [45].

The normal subgroup structure of $\mathrm{Sp}_{2 n} R$ for any R with "infinite" n was studied in [4], [9] , [32], [44], [61]. Bak [6] announced a description of all subgroups of $\mathrm{Sp}_{2 n} R$ when $n \geq 3$ and is greater than a certain dimension of R; see [7] for proofs.

Kopeiko [24] showed that $\mathrm{Ep}_{2 n} R$ is normal in $\mathrm{Sp}_{2 n} R$ for any R when $n \geq 2$. Later this was redescovered in part by Taddei [47].

Using localization and patching, a complete description of all subgroups H of $\mathrm{Sp}_{2 \pi} R$ which are normalized by $\mathrm{E}_{2 n} R$, was obtained in [58] in general context of Chavallwey groups, provided that $n \geq 2, R$ has no residue fields of 2 elements in the caee $n=2$, and
(1) for every element z of R there are r, s in R such that $z=2 r z+s z^{2}$.

The condition (1) is necessary for the standard description of those $H^{\prime \prime}$ s in terms of ideals of R, as can be seen from the case of local ring R (see [1], [3]). It was claimed in [58] that without the condition (1), a complete description of H 's is possible in more general terms. This was proved by Abe [2].

Here we improve on Abo's result extending it to symplectic groups of altemating forms F on R-modules V. Our proofs here use localization and patching. The approach to description of normal subgroups was introduced in [57] for general linear groups $\mathrm{GL}_{n} R, n \geq 3$. Later it was used for orthogonal [60] and Chevalley [2] , [46], [58] groups.

As a departure from the setting of [6], [7], [9], our R-module V need not be finitely generated or projective, and our alternating form F need not be non-singular. Instead of non-singularity, we impose another condition which is equivalent to non-singularity in the case of a finitely generated projective V.

Singular F on a finitely generated free V over local and semilocal rings R was studied in [13]-[16], [43]. The answer inviolves tableaux of ideals.

2. Statement of results

A alternating form F on an R-module V is a bilinear form F on V such that $F(\nu, v)=0$ for all v in V. We do not require that $F=Q-Q^{\mathrm{T}}$, i.e. $F(u, v)=Q(u, v)-Q(v, u)$ for all u, v in V, where Q is a bilinear form on V, although such a form Q exists when V is projective. Note that any alternating form F is skew-symmetric, i.e. $F(u, v)=-F(v, u)$ for all u, v in V.

The symplectic group $\mathrm{Sp}_{F} R$ is the group of all automorpisms of the R-module V which preserve an alternating form F. Let $\mathrm{Gp}_{F} R$ denote the group of all automorphisms which multiply the form by a unit of R.

For every e, u in V such that $F(e, u)=0$ and any x in R we define (following [56]) $\tau(e, u, x)$ in $\mathrm{Sp}_{F} R$ by
$\tau(e, u, x) v=v+u F(e, v)+e F(u, v)+e x F(e, v)$.
An element v of V is called F-unimodular if $F(V, v)=R$, i.e. $F(u, v)=1$ for some u in V. The elements $\tau(e, u, x)$ as above with unimodular e are called symplectic transvections. We denote by $\mathrm{Ep}_{F} R$ the subgroup of $\mathrm{Sp}_{F} R$ generated by all symplectic transvection. Clearly (see (14) below) $\mathrm{Ep}_{F} R$ is normal in $\mathrm{Gp}_{F} R$. Here we give another description of $\mathrm{Ep}_{F} R$, where a hyperbolic pair means a pair u, v of vectors with $F(u, v)=1$.

PROPOSITION 2. The group $E p_{F} R$ coincides with the subgroup of $\mathrm{Sp}_{F} R$ generated by all elements $\tau(e, 0, r)$, where $r \in R$ and $e \in V$ is either F-unimodular or orthogonal to a hyperbolic pair in V.

The main goal of this paper is to describe all subgroups H of $\mathrm{Gp}_{F} R$ normalized by $E p_{F} R$. It is much easier to describe the centralizer of $\mathrm{Ep}_{F} R$. If $\mathrm{Ep}_{F} R$ is trivial, its centralizer in $\mathrm{Gp}_{F} R$ is $\mathrm{Gp}_{F} R$. Otherwise, i.e. when an F-unimodular vector in V exists, i.e. the Witt index of F is at least 1 , we will show in Section 3 below that the centralizer consists of all scalar authomorphisms of V :

PROPOSITION 3. If V contains an F-unimodular vector, then the centralizer of $\mathrm{Ep}_{F} R$ in $\mathrm{Gp}_{F} R$ consists of all scalar authomorphisms of V, and hence coincides with the center of $\mathrm{Gp}_{F} R$.

We define a symplectic ideal of R as a pair (A, B), where A is an ideal of R and B is an additive subgroup of A such that $r^{2} b, 2 a, a^{2} r \in B$ for all r in R, b in B, and a in A.

Note that the condition (1) above is equivalent to the following: $B=A$ for every symplectic ideal (A, B) of R. Under different names, our symplectic ideals appeared first in $[1]$, and then in [2]) [3], [6], [7], [9], [10], [12], [31], [54], [56].

Given any symplectic ideal (A, B) of R and any vector e in V, we define $T\left(e_{;} A, B\right)$ as the subgroup of $\operatorname{Ep}_{F} R$ generated by all $\tau(e, 0, b)$ with b in B and by all $\tau(e, u a, 0)$ with a in A and u in V such that $F(e, u)=0$. It is easy to check (see the identity (12) below) that $T(e ; A, B)$ consists of all $\tau(e, u, r)$ with $u \in e^{\perp}, r \in|u|$, where $e^{\perp}=\{v \in V: F(e, v)=0\}$ is the orthogonal complement of e in V and where the map II: $V A \rightarrow A / B$ is defined by
$\left|\sum_{1 \leq i \leq n} v_{i} a_{i}\right|=B+\sum_{1 \leq i<j S n} F\left(v_{i} a_{i}, v_{j} a_{j}\right)$, where $v_{i} \in V, a_{i} \in A$.
It is easy to check that this is well-defined, i.e. $|v| \in A / B$ does not depend on choice of presentation $\nu=\sum v_{i} a_{i}$.

Let $\operatorname{Ep}_{F}(A, B)$ denote the subgroup of $\operatorname{Ep}_{F} R$ generated by all $T(e ; A, B)$, where e ranges over all F-unimodular vectors in V. Clearly, $\operatorname{Ep}_{F}(A, B)$ is a normal subgroup of $\operatorname{Sp}_{F} R$, and $\mathrm{Ep}_{F}(R, R)=\mathrm{Ep}_{F} R$.

THEOREM 4. Assume that $\operatorname{dim}(F \bmod P) \geq 4$ for every maximal ideals P of R. Let e_{1}, e_{2} be vectors in V with $F\left(e_{1}, e_{2}\right)=1$. Then the group $\mathrm{Ep}_{F} R$. is generated by its subgroups $T\left(e_{1}, R, R\right)$ and $T\left(e_{2}, R, R\right)$. Moreover, for any symplectic ideal (A, B) of R, the group $\mathrm{Ep}_{F}(A, B)$ coincides with the normal subgroup of $\mathrm{Ep}_{F} R$ generated by $T\left(e_{1}, R, R\right)$.

The condition $\operatorname{dim}(F \bmod P) \geq 2 m$ (used in Theorem 4 with $m=2$) means that there are vectors v_{i} in V such that the matrix $\left(F\left(v_{i}, v_{j}\right)_{1 \leq i j \leq 2 m}\right)$ over R is invertible modulo P. Since F is alternating, this number $2 m$ must be even. In the case of a non-singular F, the condition is equivalent to $\operatorname{dim}_{R / P} V / V P \geq 2 m$.

The dimension condition in the Theorem 3 is necessary. Without this condition, the first conclusion would give that $\mathrm{E}_{2} R=\mathrm{Ep}_{2} R$ is normal in $\mathrm{GL}_{2} R=\mathrm{Gp}_{2} R$, which is not true in general [18]. However $\mathrm{E}_{2} R$ is normal in $\mathrm{GL}_{2} R$ when $\mathrm{E}_{2} R=\mathrm{SL}_{2} R$ (which is the case under the first Bass stable range condition [8] and for some other rings [55]) or R is a topological ring with $\mathrm{GL}_{1} R$ open in R [59].

We define $\operatorname{Gp}_{F}(A, B)$ to be the set of all g in $\mathrm{Gp}_{F} R$ such that there is $\alpha \in \mathrm{GL}_{1} R$ and c $\in R$ such that $\left(c^{2}-\alpha\right) R \subset B, F(g u, g v)=\alpha F(u, v), g v-v c \in V A$ and $F(v c, g v)+B=\lg v-$ $v c I$ for all $u, v \in V$. It is easy to check that $\operatorname{Gp}_{F}(A, B)$ is a normal subgroup of $\mathrm{Gp}_{F}(R, R)=$ $\mathrm{Gp}_{F} R$. The group $\mathrm{Gp}_{F}(0,0)$ is the group of scalar automorphisms of V.

For any two subgroups H_{1} and H_{2} of a group G we denote by [H_{1}, H_{2}] the subgroup of G generated by all commutators $\left[h_{1}, h_{2}\right]=h_{1} h_{2} h_{1}^{-1} h_{2}^{-1}$ with h_{1} in H_{1} and h_{2} in H_{2}. It is easy to check that $\left[H_{1}, H_{2}\right.$] is normalized by both H_{1} and H_{2}. THEOREM 5. Assume that V contains an F-unimodular vector, that $\operatorname{dim}(F \bmod P) \geq 4$ for every maximal ideals P of R, and that $\operatorname{dim}(F \bmod P) \geq 6$ for every ideal P of index 2 in R. Then $\mathrm{Ep}_{F} R$ is generated by its subgroups $\tau(e, 0, R)$, where e ranges over all F-unimodular vectors e in \dot{V}. Moreover, for any symplectic ideal (A, B) of $R, \mathrm{Gp}_{F}(A, B)$ is the centralizer of $\mathrm{Ep}_{F} R$ in $\mathrm{Gp}_{F} R$ modulo $\mathrm{Ep}_{F}(A$, B), i.e. it consists of all g in $\mathrm{Gp}_{F} R$ such that $\left[g, \mathrm{Ep}_{F} R\right] \subset \mathrm{Ep}_{F}(A, B)$. COROLLARY 6. Under the conditions of Theorem 5 , for any symplectic ideal (A, B) of R, every subgroup H of $\mathrm{Gp}_{F}(A, B)$ containing $\mathrm{E}_{F}(A, B)$ is normalized by $\mathrm{Ep}_{F} R$. Moreover, for any symplectic tranvection g in $\mathrm{Gp}_{F} R$ and any h in H the commutator $[g, h]$ is product of symplectic transvections in H.

Indeed, by Theorem 5, $\left[\mathrm{Ep}_{F} R, H\right] \subset\left[\mathrm{Ep}_{F} R, \mathrm{Gp}_{F}(A, B)\right] \subset \mathrm{Ep}_{F}(A, B) \subset H$.

THEOREM 7. Under the conditions of Theorem 5,

$$
\mathrm{Ep}_{F}(A, B)=\left[\mathrm{Ep}_{F}(A, B), \mathrm{Ep}_{F} R\right]=\left[\mathrm{Ep}_{F}(A, B), \mathrm{Sp}_{F} R\right]=\left[\mathrm{Gp}_{F}(A, B), \mathrm{Ep}_{F} R\right]
$$

for every symplectic ideal (A, B) of R.

Since the group $\mathrm{Sp}_{4} \mathbb{Z} / 2 \mathbb{Z}=\mathrm{Ep}_{4} \mathbb{Z} / 2 \mathbb{Z}$ is not perfect, we have to require that the dimension of F modulo P is not 4 for any ideal P of index 2 in R. Note that the group $\mathrm{Ep}_{2} R=\mathrm{E}_{2} R$ is not perfect for small fields and for many other rings R.

By Corollary 6 , every subgroup H of $\mathrm{Gp}_{F}(A, B)$ containing $\mathrm{Ep}_{F}(A, B)$ is normalized by $\mathrm{Ep}_{F} R$. We want to prove the converse: for every subgroup H of $\mathrm{Gp}_{F} R$ which is normalized by $\mathrm{Ep}_{F} R$ there is a symplectic ideal (A, B) of R such that $\mathrm{Ep}_{F}(A, B) \subset H \subset \mathrm{Gp}_{F}(A, B)$. For this to be true, we will need some conditions on F, besides the existence of an F-unimodular vector in V.

First of all, as we did in Theorem 6, we want to exclude the case when $V=R^{2}$. In the case, there are non-standard normal subgroups of $\mathrm{Sp}_{F} R=\mathrm{SL}_{2} R$ (even for $R=\mathbb{Z}$ [27], [28], [30], [36], [39], [40], [41] and other small dimensional rings [18], [22], [29], [38]) unless we impose rather severe restrictions on R [17], [45], [59]. Since the group $\mathrm{Sp}_{4} \mathbb{Z} / 2 \mathbb{Z}$ has a non-standard normal subgroup (its commutator subgroup which is proper subgroup), we have to require that the dimension of F modulo P is not 4 for any ideal P of index 2 in R

Finally, we have to impose a condition on F which is weaker than its non-singularity. Namely, we will assume that $\mathrm{v} \in V F(v, V)$ for every vector v in V. That is, for every vector v there is a finite set of vectors u_{i}, w_{i} in V such that $v=\sum w_{i} F\left(v, u_{i}\right)$. When V is finitely generated projective, this condition is equivalent to the condition that F is non-singular, i.e. the assignement $u \mapsto F\left(u\right.$, ?) gives an bijection $V \rightarrow \operatorname{Hom}_{R}(V, R)$. In general, the condition means that the map $V / V A \rightarrow \operatorname{Hom}_{R / A}(V / A, R / A)$ is injective for every ideal A of R.

Here is the main result of this paper.
THEOREM 8. Under the conditions of Theorem 5 , assume that $v \in V F(v, V)$ for every vector v in V. Then a subgroup H of $\mathrm{Gp}_{F} R$ is normalized by $\mathrm{Ep}_{F} R$ if and only if $\mathrm{Ep}_{F}(A, B) \subset H$ $\subset G p_{F}(A, B)$ for a symplectic ideal (A, B) of R, and if and only if the commutator $[g, h]$ is a product of symplectic transvections in H for every symplectic tranvection g in $\operatorname{Gp}_{F} R$ and every h in H.

3. Proof of Proposition 2

First we list some easy to check relations for $\tau(e, u, x)$.. Let e, u, v be in V, x, y in R, and g in $G p(q, R)$. Assume that $F(e, u)=F(e, v)=0$. Then:
(9) $\tau(e, u, x) v=v$ when $F(u v)=0$; in particular, $\tau(e, u, x) e=e$;
(10) $\tau(e y, u, x)=\tau\left(e, u y, x y^{2}\right)$;
(11) $\tau(e, u+e y, x)=\tau(e, u, x+2 y)$;
(12) $\tau(e, u, 0)=\tau(u, e, 0)$;
(13) $\tau(e, u, x) \tau(e, v, y)=\tau(e, u+v, x+y+F(u, v))$;
in particular, $\tau(e, u, x)^{-1}=\tau(e,-u,-x)$;
(14) $\left.g \tau(e, u, x) g^{-1}=\tau(g e, g u / \alpha(g), x / \alpha(g))\right)$ for every g in $\operatorname{Gp}_{F} R$, where $\alpha(g) \in$ $\mathrm{GL}_{1} R$ is such that $F\left(g w, g w^{\prime}\right)=\alpha(g) F\left(w, w^{\prime}\right)$ for all w, w^{\prime} in V,
in particular,
(15) when $g e=e$ and $g \in \operatorname{Sp}_{F} R$ (i.e. $\alpha(g)=1$), we have $g \tau(e, u, x) g^{-1}=\tau(e, g u, x)$ and $[g, \tau(e, u, x)]=\tau(e, g u, x) \tau(e,-u,-x)=\tau(e, g u-u, F(u, g u))$.

Now we are ready to prove Proposition 2. Let H be the subgroup of $E p_{F} R$ generated by the subgroups $\tau(e, 0, R)$, where e ranges over all vectors e in V which are either F-unimodular or orthogonal to a hyperbolic pair in V. Clearly, H is a normal subgroup of $\mathrm{Gp}_{F} R$. We want to prove that $H=\mathrm{Ep}_{F} R$.

By the definition of $\mathrm{Ep}_{F} R$, it contains $\tau(e, 0, R)$ for every F-unomodular vector e in V. Let us show that $\mathrm{Ep}_{F} R \rightarrow \tau(e, 0, r)$ when $r \in R$ and e is orthogonal to a hyperbolic pair e_{1}, e_{2} in V. Indeed,
$\tau(e, 0, r)=\tau\left(e, e_{1}, 0\right) \tau\left(e, e_{2} r, 0\right) \tau\left(e,-e_{1}-e_{2} r, 0\right)$
$=\tau\left(e_{1}, e, 0\right) \tau\left(e_{2}, e r, 0\right) \tau\left(e_{1}+e_{2} r,-e, 0\right) \in \mathrm{Ep}_{F} R$ by (10), (12), (13), because the vectors e_{1}, e_{2}, and $e_{1}+e_{2} r$ are F-unimodular.

Thus, $H \subset \mathrm{Ep}_{F} R$. Let us show now that $\mathrm{Ep}_{F} R \subset H$.

By the definition of $\mathrm{E}_{F} R$, it suffices to show that $H \supset \mathrm{~T}(e, R, R)$ for any F-unimodular vector e in V, i.e. $H \ni \tau(e, u, r)$ for an arbitrary symplectic transvection $\tau(e, u, r)$, where u $\in e^{\perp}$ and $r \in R$.

We pick a vector e^{\prime} in V with $F\left(e, e^{\prime}\right)=1$, and set $r^{\prime}=F\left(u, e^{\prime}\right), v=u-e r^{\prime}$. Then $u=e r^{\prime}$ $+v$ with v orthogonal to both e and e^{\prime}. By (11),(13),

$$
\tau(e, u, r)=\tau(e, v, 0) \tau\left(e, 0, r+2 r^{\prime}\right) .
$$

So it remains to show that $\tau(e, v, 0) \in H$.

By (15),
$H \rightarrow\left[\tau(e, 0,1), \tau\left(v, e^{\prime}, 0\right)\right]=\tau(v, e,-1)$, hence
$H \ni \tau(v, e,-1) \tau(v, 0,1)=\tau(\nu, e, 0)=\tau(e, v, 0)$.

4. Proof of Proposition 3

In this section we assume that V contains an F-unimodular vector. We fix a hyperbolic pair e_{1}, e_{2} in V. So $F\left(e_{1}, e_{2}\right)=1$ and $e_{1} R+e_{2} R$ is a hyperbolic plane in V. Let $U=\left(e_{1} R+\right.$ $\left.e_{2} R\right)^{\perp}$ denote the orthogonal complement of $e_{1} R+e_{2} R$ in V. So $V=\left(e_{1} R+e_{2} R\right) \perp U$.

LEMMA 16. Under the conditions of Theorem 2, the centralizer of $T\left(e_{1}, R, R\right)$ in $\operatorname{Gp}_{F} R$, is Z_{1} $\mathrm{Gp}_{F}(0,0)$ where $\mathrm{Gp}_{F}(0,0) \subset \mathrm{Gp}_{F} R$, is the subgroup of all scalar authomorphisms of V and Z_{1} is the center of $T\left(e_{1}, R, R\right)$, which consists of $\tau\left(e_{1}, u, x\right)$) in $T\left(e_{1}, R, R\right)$, with $2 F(u, V)=0$.

Proof. Let g be in $\mathrm{Gp}_{F} R$ and commute with each element of $T\left(e_{1}, R, R\right)$. In particular, g $\tau\left(e_{1}, 0,1\right)=\tau\left(e_{1}, 0,1\right) g$, hence $g \tau\left(e_{1}, 0,1\right) e_{2}=\tau\left(e_{1}, 0,1\right) g e_{2}$, i.e. $g e_{2}+g e_{1}=g e_{2}+$ $e_{1} F\left(e_{1}, g e_{2}\right)$, i.e. $g e_{1}=e_{1} F\left(e_{1}, g e_{2}\right)$. Since the vector $g e_{1}$ is F-unimodular, it follows that $F\left(e_{1}, g e_{2}\right) R=R$. Replacing g by its scalar multipie $g F\left(e_{1}, g e_{2}\right)^{-1}$, we can assume that $g e_{1}=$ e_{1}. Since $F\left(\mathrm{ge}_{1}, \mathrm{ge}_{2}\right)=1$, the vector $g e_{2}$ has the form $g e_{2}=e_{2}+e_{1} \mathrm{c}+w$ with $c \in R$ and w $\in U$. So $g e_{2}=\tau\left(e_{1}, w, \mathrm{c}\right) e_{2}$. Set now $h=\tau\left(e_{1}, w, \mathrm{c}\right)^{-1} g$. Then $h e_{1}=e_{1}$ and $h e_{2}=e_{2}$, hence $h U=U$. The equality $g \tau\left(e_{1}, u, x\right) g^{-1}=\tau\left(e_{1}, u, x\right)$ for an arbitrary $\tau\left(e_{1}, u, x\right)$ in $T\left(e_{1}, R, R\right)$, with u in U takes the form
$\tau\left(e_{1}, h u, x+2 F(w, h u)\right)=\tau\left(e_{1}, u, x\right)$, hence $h=1, g=\tau\left(e_{1}, w, c\right)$, and $2 F(w, U)=0$. Thus, g (after it was multiplied by a scalar) belongs to the center of $T\left(e_{1}, R, R\right)$. Lemma 13 is proved.

Remark. The intersection of $\operatorname{Gp}_{F}(0,0)$ and Z_{1} is trivial.

Notation. For any vectors e, e^{\prime} in V, let $E\left(e, e^{\prime} ; R\right)$ denote the subgroup of $\mathrm{Sp}_{F} R$ generated by $T(e, R, R)$ and $T\left(e^{\prime}, R, R\right)$.

COROLLARY 17. The centralizer of $E\left(e_{1}, e_{2} ; R\right)$ in $G p_{F} R$. coincides with the group $G p_{F}(0,0)$ of scalar authomorphisms of V. In particular, $\mathrm{Gp}_{F}(0,0)$ is exactly the center of $G p_{F} R$.

Proof. Let $g \in G p_{F} R$ commute with every element of $T\left(e_{1}, R, R\right)$ and $T\left(e_{2}, R, R\right)$. By Lemma 13, $g \in T\left(e_{1}, R, R\right) \mathrm{Gp}_{F}(0,0) \cap T\left(e_{2}, R, R\right) \mathrm{Gp}_{F}(0,0)=\mathrm{Gp}_{F}(0,0)$. (Since $g e_{2} \in$ $e_{2} R$, the $T\left(e_{1}, A, A\right)$-component of g is 1 , so $g \in \operatorname{Gp}_{F}(0,0)$, i.e. g is multiplication by an invertible scalar on V.)

Remark. Corollary 17 contains Proposition 2 , because $E\left(e_{1}, e_{2} ; R\right) \subset E_{p_{F}} R$.

THEOREM 18. Assume that V contains an F-unimodular vector. Let (A, B) be a symplectic ideal of R and $g \in G p_{F} R$. If $\left[g, E p_{F} R\right] \in \mathrm{Gp}_{F}(A, B)$, then $g \in \mathrm{Gp}_{F}(A, B)$.

Proof. Applying Proposition 2 to $R / A, V / V A$, and $F(\bmod A)$ instead of R, V, and F and using that the map $\mathrm{Ep}_{F}(R) \rightarrow \mathrm{Ep}_{F}(R / A)$ is onto, we conclude that g is a scalar modulo A, i.e. there is $c \in R$ such that $g v-c v \in V A$ for all $v \in V$. In prticular $c^{2}-\alpha(g) \in A$, where $\alpha(\mathrm{g})=F\left(g e_{1}, g e_{2}\right) \in G L_{1} R$ is such that $F(g u, g v)=\alpha(g) F(u, v)$ for all $u, v \in V$.

We claim now that $\left(c^{2}-\alpha(g)\right) R \subset B$ and that $F\left(e_{1} c, g e_{1}\right)+B=\lg e_{1}-e_{1} c l$.
To prove this, we write $g e_{1}=e_{1} x+e_{2} y^{\prime}+w$ with $x=F\left(g e_{1}, e_{2}\right), y^{\prime}=F\left(e_{1}, g e_{2}\right)$, and w $\in U$. We have $x-c \in A, y^{\prime} \in A, w \in U A$. Now we pick $x^{\prime} \in R$ such that $x^{\prime}-1 \in A$ and $z \in\left|w x^{\prime}\right|$. We set $g^{\prime}=\tau\left(e_{2}, w c^{\prime}, z\right)$ with $\tau\left(e_{2}, w c^{\prime}, z\right) \in \mathrm{Ep}_{F}(A, B)$. We have $g^{\prime} e_{1}=$ $\tau\left(e_{2}, w c^{\prime}, z\right) g e_{1}=\tau\left(e_{2}, w c^{\prime}, z\right)\left(e_{1} x+e_{2} y^{\prime}+w\right)=e_{1} x+e_{2} y+w a$ with $a=1-x x^{\prime} \in A$ and $y=y^{\prime}-z \in A$.

Our claim takes the following form: $\left(x^{2}-\alpha(g)\right) R \subset B$ and that $x y \in B$.

For an arbitrary r in R we set $h=\left[g^{\prime}, \tau\left(e_{1}, 0, r\right)\right] \in \operatorname{Gp}_{F}(A, B)$. Then $\left.h e_{2}=\tau\left(g^{\prime} e_{1}, 0, r / \alpha(g)\right)\left(e_{2}-e_{1} r\right)=e_{2}-e_{1} r+g^{\prime} e_{1} F\left(g^{\prime} e_{1}, e_{2}-e_{1} r\right) r / \alpha(g)\right)$
$\left.=e_{2}\left(1+r x y / \alpha(g)+r^{2} y^{2} / \alpha(g)\right)+\mathrm{e}_{1}\left(\mathrm{rx}^{2} / \alpha(g)\right)-\mathrm{r}+\mathrm{r}^{2} \mathrm{xy} / \alpha(g)\right)+\operatorname{war}(\mathrm{x}+\mathrm{ry}) / \alpha(g)$.

Since $R y^{2} \subset B$, the equality $\left|h e_{2}-e_{2}\right|=F\left(h e_{2}, e_{2}\right)+B$ takes the form $r x^{2} / \alpha(g)-r \in B$, i.e. $r\left(x^{2}-\alpha(g)\right) \in B$.

We have proved that $\left(x^{2}-\alpha(g)\right) R \subset B$ which is equivalent to $\left(c^{2}-\alpha(g)\right) R \subset B$ because $x-c \in A$.

> Now we consider $h^{\prime 1} e_{2}=\left[\tau\left(e_{1}, 0, r\right), g^{\prime}\right] e_{2}=\tau\left(e_{1}, 0, r\right) \tau\left(g^{\prime} e_{1}, 0,-r / \alpha(g)\right) e_{2}$
> $=\tau\left(e_{1}, 0, r\right)\left(e_{2}-g^{\prime} e_{1} F\left(g^{\prime} e_{1}, e_{2}\right) r / \alpha(g)=e_{2}-g^{\prime} e_{1} r x / \alpha(g)+e_{1} F\left(e_{1}, e_{2}-g^{\prime} e_{1} r x / \alpha(g)\right) r\right.$
> $=e_{2}(1-r x y / \alpha(g))+e_{1}\left(r-r x^{2} / \alpha(g)-x y r^{2} / \alpha(g)\right)-w a r x / \alpha(g)$.

Since $R y^{2} \subset B$ and $\left(1-x^{2} / \alpha(g)\right) R \subset B$, the equality $\left|h^{-1} e_{2}-e_{2}\right|=F\left(h^{-1} e_{2}, e_{2}\right)+B$ takes the form $\left.x y r^{2} / \alpha(g)\right) \in B$. Setting $r=x$, we obtain that $x y \in B$.

Thus, our claim is proved. Similarly, $F(e c, g e)+B=\lg e-e c l$ for every F-unimodular vector e in V. Note that V is spanned by F-unimodular vectors. Namely, $v=e_{1} s+e_{2} t+w=e_{1}+e_{2} t$ $+w+e_{1}(s-1)$ for an arbitrary vector v in V, where $s, t \in R, w \in U$, and vectors $e_{1}+$ $e_{2} t+w$ and e_{1} are F-unimodular. So $F(e c, g e)+B=\mid g e-e d$ for every vector e in V. Thus, we have proved that $g \in \mathrm{Gp}_{F}(A, B)$.

Remark. Theorem 18 with $A=0$ implies Proposition 2.

5. Proof of Theorem 4

Let e_{1}, e_{2} and $U=\left(e_{1} R+e_{2} R\right)^{\perp}$ be as defined before Lemma 16. For any symplectic ideal (A, B) of R and any two vectors e, e^{\prime} in V, let $E\left(e, e^{\prime} ; R, A, B\right)$ denote the normal subgroup of $E\left(e, e^{\prime} ; R\right)$ (see the notation before Corollary 17) generated by $T(e ; A, B)$ and $T\left(e^{\prime}\right.$, $A, B)$. In particular, $E\left(e, e^{\prime} ; R, R, R\right)=E\left(e, e^{\prime} ; R\right)$

We want to prove that $E\left(e_{1}, e_{2} ; R, A, B\right)=\mathrm{Ep}_{F}(A, B)$, i.e. that $E\left(e_{1}, e_{2} ; R, A, B\right)$ does not depend on choice of a hyperbolic pair e_{1}, e_{2} under the conditions of Theorem 4. LEMMA 19. For any symplectic ideal (A, B) of R, any two vectors $e, e^{\prime} \in V$, and any vector $e^{\prime \prime} \in V$ orthogonal to e, e^{\prime} we have $E\left(e, e^{\prime} ; R, A, B\right) \supset T\left(e^{\prime \prime}, A s^{2}, B s^{2}\right)$, where $s=F\left(e, e^{\prime}\right)$.

Proof. Let $\tau\left(e^{\prime \prime}, u a s^{2}, b s^{2}\right) \in T\left(e^{\prime \prime}, A s^{2}, B s^{2}\right)$, where $u \in V, F\left(e^{\prime \prime}, u\right)=0, a \in A, b \in$ B. We have to prove that $\tau\left(e^{\prime \prime}, u s^{2}, b s^{2}\right) \in E\left(e, e^{n} ; R, A, B\right)$.

Case 1: $u=0$. Then $\tau\left(e^{\prime \prime}, u a s^{2}, b s^{2}\right)=\tau\left(e^{\prime \prime}, u a s^{2}, b s^{2}\right)=\tau\left(e^{\prime \prime}, 0, b s^{2}\right)=\tau\left(e^{\mu \prime},-e b s, b s^{2}\right)$ $\tau\left(e^{\prime \prime}, e b s, 0\right) \in E\left(e, e^{\prime} ; R, A, B\right)$, because $\tau\left(e^{\prime \prime},-e b s, b s^{2}\right)=\left[\tau(e, 0,-b), \tau\left(e^{\prime \prime}, e^{\prime}, 0\right)\right] \in$ $E\left(e, e^{\prime} ; R, A, B\right)$, where $\tau\left(e^{\prime \prime}, e^{\prime}, 0\right)=\tau\left(e^{\prime}, e^{\prime \prime}, 0\right) \in T\left(e^{\prime}, R, R\right)$ by (12), and $\tau\left(e^{\prime \prime}, e b s, 0\right)=\tau\left(e, e^{\prime \prime} b s z, 0\right) \in T(e ; A, B)$ also by (12).

General case. Set $r=F(e, u) \in R, r^{\prime}=F\left(e^{\prime}, u\right) \in R$ and $w=u s-e^{\prime} r+e r^{\prime}$. Then w is orthogonal to e, e^{\prime}, and $e^{\prime \prime}$.

By (13), $\tau\left(e^{\prime \prime} t, u a s^{2}, b s^{2}\right)=\tau\left(e^{\prime \prime}, u a s^{2}, b s^{2}\right)$
$=\tau\left(e^{\prime \prime}\right.$, was, 0$) \tau\left(e^{\prime \prime}, e^{\prime}\right.$ ars, 0$) \tau\left(e^{\prime \prime}\right.$, ear's, 0$) \tau\left(e^{\prime \prime}, 0, b^{\prime} s^{2}\right)$, where $b^{\prime}=b+r r^{\prime} s a^{2} \in B$.
By (12), $\tau\left(e^{\prime \prime}, e^{\prime} a r s, 0\right) \in T\left(e^{\prime} ; A x, B x\right) \subset E\left(e, e^{\prime} ; R, A, B\right)$ and
$\tau\left(e^{\prime \prime}\right.$, ear's, 0$) \in T(e ; A x, B x) \subset E\left(e, e^{\prime} ; R, A, B\right)$.
By Case $1, \tau\left(e, 0, b s^{2}\right) \in E\left(e, e^{\prime} ; R, A, B\right)$.
Moreover $\tau\left(e^{\prime \prime}\right.$ was, 0$)=\left[\tau(e, w a, 0), \tau\left(e^{\prime \prime}, e^{\prime}, 0\right)\right] \in E\left(e, e^{\prime} ; R, A, B\right)$, because
$\tau\left(e^{\prime \prime}, e^{\prime}, 0\right)=\tau\left(e^{\prime},-e^{\prime \prime}, 0\right) \in T\left(e^{\prime}, R, R\right)$ by (12).
Thus, $\tau\left(e{ }^{\prime \prime} t, u a s^{2}, b s^{2}\right) \in E\left(e, e^{\prime} ; R, A, B\right)$.
COROLLARY 20. For any symplectic ideal (A, B) of R, any two vectors $e, e^{\cdot} \in V$, and any two vectors $w, w^{\prime} \in V$ orthogonal to e, e^{\prime} we have $E\left(e, e^{\prime} ; R, A, B\right) \supset E\left(w s^{2}, w^{\prime} s^{2} ; R, A, B\right)$, where $s=F\left(e, e^{\prime}\right)$.

Proof. We have to prove that $g h g^{-1} \in E\left(e, e^{\prime} ; R, A, B\right)$ whenever $g \in E\left(w s^{2}, w^{\prime} s^{2}, R\right)$ and $h \in T\left(w s^{2}, A, B\right) \cup T\left(w s^{2}, A, B\right)$. By Lemma 19, $h \in E\left(e, e^{\prime} ; R, A, B\right)$ and $g \in$ $E\left(e, e^{\prime} ; R, R, R\right)=E\left(e, e^{\prime} ; R\right)$. So, $\mathrm{ghg}^{-1} \in E\left(e, e^{\prime} ; R, A, B\right)$.

LEMMA 21. Let P be a maximal ideal of R. Supose that $\operatorname{dim}(F \bmod P) \geq 4$. Let $e, e^{\prime} \in$ V and $F\left(e, e^{\prime}\right) \in S=R \backslash P$. Then there is $s \in S$ such that $E\left(e_{1}, e_{2} ; R, A, B\right) \supset T\left(e ; A s^{2}\right.$, $B s^{2}$) for all symplectic ideals (A, B) of R.

Proof. We write $e=v+u$ with $v \in e_{1} R+e_{2} R$ and $u \in U$.
If $F(U, u)$ intersects S, then we find v in U with $F(u, v)=s_{0} \in S$. By Corollary 20, $E\left(e_{1}, e_{2} ; R, A, B\right) \supset E(u, v ; R, A, B)$ and $E(u, v ; R, A, B) \supset T\left(e ; A s_{0}{ }^{2}, B s_{0}{ }^{2}\right)$. So
$E\left(e_{1}, e_{2} ; R, A, B\right) \supset T\left(e ; A s^{2}, B s^{2}\right)$ with $s=s_{0}$.
If $F(U, u)$ does not intersect S, i.e. $F(U, u)=F(V, u) \subset P$ then $F(V, v)$ intersects S. We find a vecot v^{\prime} in $e_{1} R+e_{2} R$ with $F\left(v, v^{\prime}\right)=s_{1} \in S$, and a pair $w, w^{\prime} \in U$ with $F\left(w, w^{\prime}\right)=$ $s_{2} \in S$. By Corollary 20,
$E\left(e_{1}, e_{2} ; R, A, B\right) \supset E\left(w, w^{\prime} ; R, A, B\right) \supset E\left(v s_{2}{ }^{2}, v^{\prime} s_{2}{ }^{2} ; R, A, B\right)$. By Lemma 19,
$E\left(v s_{2}{ }^{2}, v s_{2}{ }^{2} ; R, A, B\right) \supset T\left(e ; A s_{2}{ }^{2} s_{1}{ }^{8}, B s_{2}{ }^{2} s_{1}{ }^{8}\right)$.
So $E\left(e_{1}, e_{2} ; R, A, B\right) \supset T\left(e ; A s^{2}, B s^{2}\right)$ with $s=s_{2} s_{1}^{4} \in S$.
Now we can complete our proof of Theorem 4. We have to prove that $\tau(e, u a, b) \in$ $E\left(e_{1}, e_{2} ; R, A, B\right)$ for any F-unimodular vector $e \in V$, any vector $u \in V$ orthogonal to e, any $a \in A$, and any $b \in B$. By Lemma 21, for every maximal ideal P of R there is $s \in R$ outside P such that $E\left(e_{1}, e_{2} ; R, A, B\right) \supset \tau\left(e, u a R s^{2}, 0\right)$. Writing 1 as a linear combination of those s^{2}, we obtain an element of $\quad E\left(e_{1}, e_{2} ; R, A, B\right)$ of the form $\tau\left(e, u a, r a^{2}\right)$ with $r \in R$.

It remains to show that $\tau\left(e, 0, b^{\prime}\right) \in E\left(e_{1}, e_{2} ; R, A, B\right)$ with $b^{\prime}=b-r a^{2} \in B$. By Lemma 21, for every maximal ideal P of R there is $s \in R$ outside P such that $\tau\left(e, 0, b^{\prime} r^{2} s^{2}\right) \in E\left(e_{1}\right.$, $\left.e_{2} ; R, A, B\right)$ for all $r \in R$. Writing 1 as the square of a linear combination of those s, and using that $E\left(e_{1}, e_{2} ; R, A, B\right) \supset \tau\left(e, e b^{\prime} R, 0\right)=\tau\left(e, 0,2 b^{\prime} R\right)$, we obtain that $\tau\left(e, 0, b^{\prime}\right) \in$ $E\left(e_{1}, e_{2} ; R, A, B\right)$.

6. Proof of Theorem 5

To prove the first conclusion of the theorem we need only the following condition: $\operatorname{dim}(F$ $\bmod P) \geq 6$ for every maximal ideal P of R of index 2 . We denote by H the subgroup of $E p_{F} R$ generated by its subgroups $\tau(e, 0, R)$, where e ranges over all F-unimodular vectors e in V. Clearly, H is a normal subgroup of $\mathrm{Gp}_{F} R$. We want to prove that $H=\mathrm{Ep}_{F} R$. By the definition of $\mathrm{Ep}_{F} R$, it suffices to show that H contains an arbitrary symplectic transvection $\tau(e, u, r)$.

We pick a vector e^{\prime} in V with $F\left(e, e^{\prime}\right)=1$, and set $U^{\prime}=\left(e R+e^{\prime} R\right)^{\perp}, r^{\prime}=F\left(u, e^{\prime}\right), v=$ $u-e r^{\prime}$. Then $u=e r^{\prime}+v$ with v orthogonal to both e and e^{\prime}. By (11),(13),

$$
\tau(e, u, r)=\tau(e, v, 0) \tau\left(e, 0, r+2 r^{\prime}\right)
$$

So it remains to show that $\tau(e, v, 0) \in H$. It suffices to show that for every maximal ideal P of R there is $s \in S=R \backslash P$ such that $\tau\left(e, U^{\prime} s, 0\right) \subset H$.

If $\operatorname{card}(R / P) \neq 2$, then we pick $t_{0} \in R$ such that $t_{0}{ }^{2}-t_{0}=s \in S$. By (15), $H \quad \ni[\tau(e$, $\left.\left.0, t^{\prime}\right), \tau\left(v, e^{\prime} t, 0\right)\right]=\tau\left(\nu, e \pi t^{\prime},-t^{\prime} \tau^{2}\right)=f\left(t, t^{\prime}\right)$ for all $t, t^{\prime} \in R$ and all $v \in U^{\prime}$, hence
$H \exists f\left(t_{0}, 1\right)^{-1} \mathrm{f}\left(1, t_{0}{ }^{2}\right)=\tau\left(\nu, e\left(t_{0}{ }^{2}-t_{0}\right), 0\right)$
$=\tau(v, e s, 0)=\tau(e, v s, 0)$.
If $\operatorname{card}(R / P)=2$, then we use the condition of the theorem and pick two orthogonal pairs (ν, $\left.v^{\prime}\right),\left(w, w^{\prime}\right)$ in U^{\prime} with $s_{1}=F\left(v, v^{\prime}\right) \in S$ and $s_{2}=F\left(w, w^{\prime}\right) \in S$.

We have $H \rightarrow\left[\tau(e, 0,1), \tau\left(v, e^{\prime}, 0\right)\right]=\tau(v, e,-1)$, hence
$H \ni\left[\tau\left(e^{\prime},-w^{\prime}, 0\right), \tau(v, e,-1)\right]=\tau\left(v, w^{\prime}, 0\right)$, and $H \quad \ni\left[\tau(w, e t, 0), \tau\left(v, w^{\prime}, 0\right)\right]=$ $\tau\left(\nu, e t s_{2}, 0\right)=\tau\left(e, v t s_{2}, 0\right)$ for all t in R.

Thus, $\tau\left(e, v s_{2} R, 0\right) \subset H$. For an arbitrary $u^{\prime} \in U^{\prime}$ we have $u^{\prime} s_{1}=v x+u^{\prime \prime}$ with $x=F\left(u^{\prime}\right.$, $\left.v^{\prime}\right)$ and $F\left(u^{\prime \prime}, v\right)=0$. We have
$\tau\left(e, u^{\prime \prime} s_{2} s_{1}, 0\right)=\left[\tau\left(u^{\prime \prime},-v^{\prime}, 0\right), \tau\left(e, v s_{2}, 0\right)\right] \in H$, hence
$\tau\left(e, u^{\prime} s, 0\right)=\tau\left(e, u^{\prime} s_{2} s_{1}^{2}, 0\right)=\tau\left(e, v s_{2} s_{1}, 0\right) \tau\left(e, u^{\prime \prime} s_{2} s_{1}, 0\right) \in H$ with $s=s_{2} s_{1}^{2} \in S=$ $R \backslash P$.

The first half of Theorem 5 is proved. Now we have the second half to prove.
By Theorem 3, we have only the inclusion $\left[\mathrm{Gp}_{F}(A, B), \mathrm{Ep}_{F} R\right] \subset \mathrm{Ep}_{F}(A, B)$ to prove. Note that both $\mathrm{Gp}_{F}(A, B)$ and $\mathrm{Ep}_{F} R$ normalize $\mathrm{Ep}_{F}(A, B)$.

By the first conclusion of the theorem, it suffices to show that $\left\{\mathrm{Gp}_{F}(A, B), \tau(\mathrm{e}, 0, R)\right\} \subset$ $\mathrm{Ep}_{F}(A, B)$ for any F-unimodular vector e in V. In other words, we want to prove that the subgroups $\mathrm{Gp}_{F}(A, B)$ and $\tau(e, 0, R)$ commute modulo $\mathrm{Ep}_{F}(A, B)$.

It suffices to show that for every maximal ideal P of R and any g in $\operatorname{Gp}_{F}(A, B)$ there is.s

$$
\in S=R \backslash P \text { such that }[g, \tau(e, 0, R s)] \subset \operatorname{Ep}_{F}(A, B)
$$

We will prove this using only the following condition: $\operatorname{dim}(F \bmod P) \geq 4$.
Case 1: there is w, w^{\prime} in V orthogonal to both e and $g e$ and such that $F\left(w, w^{\prime}\right)=s \in S=$ $R \backslash P$. Let $\alpha \in \mathrm{GL}_{1} \mathrm{R}$ and $c \in R$ be such that $\left(c^{2}-\alpha\right) R \subset B, F(g u, g v)=\alpha F(u, v), g v \cdot v c$ $\in V A$ and $F(v, g v)+B=|g v-v c|$ for all $u, v \in V$. For any r in R we write
$\tau(e c, 0, r s)=\tau(e c, w, 0) \tau\left(e c, w^{\prime} r, 0\right) \tau\left(e c,-w-w^{\prime} r, 0\right)$
$=\tau(w, e c, 0) \tau\left(w^{\prime}, e c r, 0\right) \tau\left(w+w^{\prime} r,-e c, 0\right)$
and $\tau(g e, 0, r s)=\tau(g e, w, 0) \tau\left(g e, w^{\prime} r, 0\right) \tau\left(g e,-w-w^{\prime} r, 0\right)$
$=\tau(w, g e, 0) \tau\left(w^{\prime}, g e r, 0\right) \tau\left(w+w^{\prime} r,-g e, 0\right)$, hence
$\tau(g e, 0, r s) \tau(e c, 0, r s)^{-1}$
$=\tau(w, g e, 0) \tau\left(w^{\prime}, g e r, 0\right) \tau\left(w+w^{\prime} r,-g e, 0\right)\left(\tau(w, e c, 0) \tau\left(w^{\prime}, e c r, 0\right) \tau\left(w+w^{\prime} r, \cdot e c, 0\right)\right)^{-1}$
$=h_{1}\left(g_{2} h_{2} g_{2}^{-1}\right)\left(g_{3} h_{3} g_{3}^{-1}\right)$, where
$h_{3}=\tau\left(w+w^{\prime} r,-g e, 0\right) \tau\left(w+w^{\prime} r,-e c, 0\right)^{-1}=\tau\left(w+w^{\prime} r, e c-g e,-F(g e, e c) \in \operatorname{Ep}_{F}(A, B)\right.$,
$g_{3}=\tau(w, e c, 0) \tau\left(w^{\prime}, e c r, 0\right) \in \mathrm{Ep}_{F} R$,
$h_{2}=\tau\left(w^{\prime}, g e r, 0\right) \tau\left(w^{\prime}, e c r, 0\right)^{-1}=\tau\left(w^{\prime}\right.$, ger - ecr, $-F($ ger , ecr $\left.)\right) \in E p_{F}(A, B)$,
$g_{2}=\tau(w, e c, 0) \in \mathrm{Ep}_{F} R$,
and $h_{1}=\tau(w, g e, 0) \tau(w, e c, 0)^{-1}=\tau(w, g e-e c,-F(g e, e c)) \in E p_{F}(A, B)$.

So $\tau(g e, 0, r s) \tau(e c, 0, r s)^{-1} \in \operatorname{Ep}_{F}(A, B)$, hence $[g, \tau(e, 0, \alpha r s)]$
$=g \tau(e, 0, \alpha r s) g^{-1} \tau(\mathrm{e}, 0, \alpha r s)^{-1}=\tau(g e, 0, r \mathrm{~s}) \tau(e, 0, \alpha r s)^{-1}$
$=\tau(g e, 0, r s) \tau(e c, 0, r s)^{-1}\left(\tau\left(e, 0, r s\left(c^{2}-\alpha\right)\right) \in \mathrm{Ep}_{F}(A, B)\right.$ for all r in R.
Thus, $[g, \tau(e, 0, R s)] \subset \mathrm{Ep}_{F}(A, B)$.

General case. We pick a vector $e^{\prime} \in V$ such that $F\left(e, e^{\prime}\right)=1$ and write $g e=e x+e^{\prime} y+u$ with $x=F\left(g e, e^{\prime}\right), y=F(e, g e) \in R, u \in U=\left(R e+R e^{\prime}\right)^{\perp}$. Since $g \in \operatorname{Gp}_{F}(A, B)$, we have $\left(x^{2}-\alpha(g)\right) R \subset B, y \in A, u \in U A$, and $x y+B=|u|$.

Set $h=\tau\left(e^{\prime}, u x / \alpha(g), x y / \alpha(g)\right)$. Then hge $=e x+e^{\prime} y a+u a$, where $\left.a=1-x^{2} / \alpha(g)\right)$, $a R=\left(x^{2}-\alpha(g)\right) R \subset B$. Note that $x y / \alpha(g)-x y(x / \alpha(g))^{2}=a x y / \alpha(g) \in B$, hence $h \in$ $\mathrm{Ep}_{F}(A, B)$. Since $g e=e x+e^{\prime} y+u$ is F-unimodular and $a-1 \in x R$, we can find $u^{\prime} \in U$ and $r \in R$ such that $y^{\prime}=y+F\left(u^{\prime}, u\right) a+r x \in S$. Set $h^{\prime}=\tau\left(e^{\prime}, u^{\prime} a, r \mathrm{a}\right) h \in \mathrm{E}_{F}(A, B)$. Then $h g e=e x+e^{\prime} a y^{\prime}+u a-u^{\prime} a$.

Now we pick v, v^{\prime} in U with $F\left(v, v^{\prime}\right) \in S$ and set $w=v y^{\prime}+e F\left(u-u^{\prime}, v\right)$, $w^{\prime}=v^{\prime} y^{\prime}$ $+e F\left(u-u^{\prime}, v^{\prime}\right)$. Then $F\left(w, w^{\prime}\right)=F\left(v, v^{\prime}\right) y^{\prime 2} \in S$ and $F(e, w)=F\left(e, w^{\prime}\right)=F(h g e, w)=$ $F\left(h g e, w^{\prime}\right)=0$. By Case 1. $[h g, \tau(e, 0, R s)] \subset \mathrm{Ep}_{F}(A, B)$ for some $s \in S$, hence $[g, \tau(e, 0, R s)] \subset \operatorname{Ep}_{F}(A, B)$.

7. Proof of Theorem 7

By Theorem 5, it suffices to prove that $\mathrm{Ep}_{F}(A, B) \subset \quad\left[\mathrm{Ep}_{F}(A, B), \mathrm{Ep}_{F} R\right]$, i.e. $T\left(e_{1}, A, B\right)$ $\subset\left[\mathrm{Ep}_{F}(A, B), \mathrm{E}_{F} R\right]$, i.e. $\tau\left(e_{1}, u a x, b\right) \in\left[\mathrm{Ep}_{F}(A, B), \mathrm{Ep}_{F} R\right]$ for all $u \in U=\left(e_{1} R+e_{2} R\right)^{\perp}$, $a \in A$, and $b \in B$, where e_{1}, e_{2} is a hyperbolic pair in V.
LEMMA 22. Under the condition of Theorem 4, for any maximal ideal P of R there is $s \in S=$ $R \backslash P$ such that $\tau\left(e_{1}, u a s, 2 s a^{\circ}+b s^{2}\right) \in\left[\operatorname{Ep}_{F}(A, B), \mathrm{Ep}_{F} R\right] \quad$ for all a, a^{\prime} in A and b in B.

Proof. We pick vectors $e_{3}, e_{4} \in U$ such that $s_{0}=F\left(e_{3}, e_{4}\right) \in S$.
Case 1: $a=b=0$. Then
$\tau\left(e_{1}\right.$, uas, $\left.2 s a^{\prime}+b s^{2}\right)=\tau\left(e_{1}, 02 s a^{\circ}\right)$
$=\left[\tau\left(e_{1}, e_{3} a^{\prime}, 0\right), \tau\left(e_{1}, e_{4}, 0\right)\right] \in\left[\operatorname{Ep}_{F}(A, B), \mathrm{Ep}_{F} R\right] \quad$ for $s=s_{0}=F\left(e_{3}, e_{4}\right) \in S$.

Case 2: $a^{\prime}=b=0$ and the image $\pi(u)$ of u in U_{P} is F_{P}-unimodular. We pick $v \in U$ such that $s^{\prime}=F(u, v) \in S$.

If $\operatorname{card}(R / P) \neq 2$, then we pick r in R with $r-r^{2} \in S$ and set $f(y, t)$
$=\tau\left(e_{1}\right.$, uasty, $\left.-y\left(a s^{\prime} t\right)^{2}\right)=\left[\tau(u, 0, y), \tau\left(e_{1}, v a t, 0\right)\right] \in\left[\mathrm{Ep}_{F}(A, B), \mathrm{Ep}_{F} R\right]$ for any r, t in R, where $\tau(u, 0, r) \in \mathrm{Ep}_{F} R$ by Lemma 19 with $x=1$. Now $f(1, r) f\left(r^{2}, 1\right)^{-1}=\tau\left(e_{1}\right.$, uas $\left.^{\prime}\left(r-r^{2}\right), 0\right) \in\left[\mathrm{Ep}_{F}(A, B), \mathrm{Ep}_{F} R\right]$.
So we are done with $s=s^{\prime}\left(r-r^{2}\right) \in S$.
If $\operatorname{card}(R / P)=2$, then $\operatorname{dim}(F \bmod P) \geq 6$ by the condition of Theorem 5 . So we can find e, e^{\prime} in U orthogonal to u, v so that $F\left(e, e^{\prime}\right) \in S$ Although e need not be F-unimodular, $\tau(e, u$, $0) \in \mathrm{Ep}_{F} R$ by Lemma 19 with $x=1$. So
$\tau\left(e_{1}\right.$, uas, 0$)=\left[\tau(e, u, 0), \tau\left(e_{1}, e^{\prime} a, 0\right)\right] \in\left[\mathrm{Ep}_{F}(A, B), \mathrm{Ep}_{F} R\right]$ for any $a \in A$, where $s=$ $F\left(e, e^{\prime}\right) \in S$.

Case 3: $u=0$ and $a^{\prime}=0$. Then $\left[\mathrm{Ep}_{F}(A, B), \mathrm{Ep}_{F} R\right] \quad$]
$\left[\tau\left(e_{3}, 0 b\right), \tau\left(e_{1}, e_{4}, 0\right)\right]=\tau\left(e_{1}, e_{3} b s_{0},-b s_{0}^{2}\right)$ for all $b \in B$.
On the other hand, by Case 2 there is $s_{1} \in S$ such that $\left[\operatorname{Ep}_{F}(A, B), \operatorname{Ep}_{F} R\right] \quad \ni \tau\left(e_{1}, e_{3} b s_{1}, 0\right)$ for all $b \in B$. So for $s=s_{0} s_{1}$ we obtain that $\left[\mathrm{E}_{p_{F}}(A, B), \mathrm{Ep}_{F} R\right] \quad \rightarrow$
$\tau\left(e_{1}, e_{3} b s, 0\right) \tau\left(e_{1}, e_{3} b s,-b s^{2}\right)^{-1}=\tau\left(e_{1}, 0, b s^{2}\right)$ for all $b \in B$.

General case. We write $u s_{0}=e_{3} t+e_{4} t^{\prime}+w=e_{3}+e_{4} t^{\prime}+w+e_{3}(t-1)$ with $t=F\left(u, e_{4}\right), t^{\prime}$ $=F\left(e_{3}, u\right) \in R$ and $w \in U$ orthogonal to both e_{3} and e_{4}. Then:
$\tau\left(e_{1}, 0,2 s_{0} a^{\prime}\right) \in\left[\mathrm{Ep}_{F}(A, B), \mathrm{Ep}_{F} R\right]$ for all a^{\prime} in A by Case 1 ;
$\tau\left(e_{1},\left(e_{3}+e_{4} t^{\prime}+w\right) a s_{1}, 0\right) \in\left[\mathrm{Ep}_{F}(A, B), \mathrm{Ep}_{F} R\right]$ for all $a \in A$ for a suitable $s_{1} \in S$ by Case 2;
$\tau\left(e_{1}, e_{3}(\mathrm{t}-1) a s_{2}, 0\right) \in\left[\mathrm{Ep}_{F}(A, B), \mathrm{Ep}_{F} R\right]$ for all $a \in A$ with a suitable $s_{2} \in S$ by Case $2 ;$
$\left[\mathrm{E}_{\mathrm{p}_{F}}(A, B), \mathrm{Ep}_{F} R\right] \rightarrow \tau\left(e_{1}, 0, b s_{3}{ }^{2}\right)$ for all $b \in \mathrm{~B}$ with a suitable s_{3} in S .
So for $s^{\prime}=s_{1} s_{2} s_{3} \in S$ and $s=s_{0} s_{1} s_{2} s_{3} \in S$ we obtain that $\tau\left(e_{1}\right.$, uas, $\left.2 s a^{\prime}+b s^{2}\right)$
$=\tau\left(e_{1}, 0,2 s a^{\prime}\right) \tau\left(e_{1},\left(e_{3}+e_{4} t^{\prime}+w\right) a s^{\prime}, 0\right) \tau\left(e_{1}, e_{3}(t-1) a s s^{\prime}, 0\right) \tau\left(e_{1}, 0, b s^{2}+t^{\prime}(t-1) a^{2} s s^{\prime}\right)$
$\in\left[\mathrm{Ep}_{F}(A, B), \mathrm{Ep}_{F} R\right]$ foir all a, a^{\prime} in A and b in B.
Lemma 22 is proved. Now, for fixed u, a, b, we set
$Y_{1}=\left\{r \in R: \tau\left(e_{1}, u a r, 0\right) \in\left[\mathrm{Ep}_{F}(A, B), \mathrm{Ep}_{F} R\right]\right\}$,
$Y_{2}=\left\{r \in R: \tau\left(e_{1}, 0,2 r a^{\prime}\right) \in\left[\mathrm{Ep}_{F}(A, B), \mathrm{Ep}_{p} R\right]\right\}$,
$Y_{3}=\left\{r \in R: \tau\left(e_{1}, 0, b 3^{2}\right) \in\left[\mathrm{Ep}_{F}(A, B), \mathrm{Ep}_{F} R\right]\right\}$.
By Lemma 22, each Y_{i} contains $R s$ for an element s outside an arbiitrary maximal ideal P of R. Clearly, Y_{1} and Y_{2} are additive subgroups of R. So $Y_{1}=Y_{2}=R$. Now it is clear that Y_{3} is an additive subgroups of R, hence $Y_{3}=R$.

Therefore, $\tau\left(e_{1}\right.$, uas, $\left.2 s a^{\prime}+b s^{2}\right)=\tau\left(e_{1}, u a r, 0\right) \tau\left(e_{1}, 0,2 r a^{\prime}\right) \tau\left(e_{1}, 0, b 3^{2}\right)$
$\in\left[\mathrm{Ep}_{F}(A, B), \mathrm{Ep}_{F} R\right]$.

8. Proof of Theorem 8

In this section we assume that there are vectors e_{1}, e_{2} in V with $F\left(e_{1}, e_{2}\right)=1$. As above, we set $U=\left(e_{1} R+e_{2} R\right)^{\perp}$.

Let H be a subgroup of $\mathrm{Gp}_{F} R$ normalized by $\mathrm{Ep}_{F} R$. Denote by A the ideal of R generated by all $F(U, u)$, where $u \in U$ and $\tau\left(e_{1}, u, r\right) \in H$ for some r in R (depending on u). Let B be the set of all $b \in R$ such that $\tau\left(e_{1}, 0, b\right) \in H$. Clearly, B is an additive subgroup of R.
LEMMA 23. $2 A \subset B$.
Proof. It suffices to show that $2 F(u, v) \in B$ whenever $u, v \in U, r \in R$, and $\tau\left(e_{1}, u, r\right)$ $\in H$. We have $H \supset\left[H, \mathrm{E}_{F} R\right] \ni\left[\tau\left(e_{1}, u, r\right), \tau\left(e_{1}, v, 0\right)\right]=\tau\left(e_{1}, 0,2 F(u, v)\right)$, hence $2 F(u, v)$ $\in B$ by the definition of B.

LEMMA 24. Suppose that $\operatorname{dim}(U \bmod P) \geq 2$ for every maximal ideal P of R. Then $B \subset A$.
Proof. The dimension condition means that 1 can be written as a sum of elements $F(u, v)$ with u, v in U. So it suffices to produce $\tau\left(e_{1}, v b F(u, v), *\right)$ in H for arbitrary u, v in U and b in B. We have $H \supset\left[H, \mathrm{Ep}_{F} R\right] \ni$
$\left[\tau\left(e_{2}, v, 0\right), \tau\left(e_{1}, 0, b\right)\right]=\left[\tau\left(e_{1}, 0,-b\right), \tau\left(v, e_{2}, 0\right)\right]$
$=\tau\left(v, e_{2}-e_{1} b, 0\right) \tau\left(v,-e_{2}, 0\right)=\tau\left(v,-e_{1} b,-b\right)$, hence
$H \ni\left[\tau\left(e_{1}, u, 0\right), \tau\left(v,-e_{1} b,-b\right)\right]=\tau\left(e_{1}, u, 0\right) \tau\left(e_{1}, \tau\left(v,-e_{1} b,-b\right) u, 0\right)$
$=\tau\left(e_{1}, u, 0\right) \tau\left(e_{1},-u+e_{1} F(v, u)+v b F(v, u), 0\right)=\tau\left(e_{1}, v b F(v, u),-b F(v, u)^{2}\right)$.
LEMMA 25. Under the condition of Lemma 24, for any $w \in U$ and any $a \in A$ there is $t \in R$ such that $\tau\left(e_{1}, w a, t\right) \in H$.

Proof. It suffices to consider the case $a=F(u, v)$, where $u, v \in U, r \in R, \tau\left(e_{1}, u, r\right)$ $\in H$. Set
$Y=\left\{s \in R: \tau\left(e_{1}\right.\right.$, was, $\left.t\right) \in H$ for some $\left.t \in R\right\}$.
We want to prove that $Y \ni 1$. Since Y is an additive subgroup of R, it suffices to show that $Y \supset R s$ for an element s of R outside an arbitrary maximal ideal P of R.

We pick e, e^{\prime} in V with $F\left(e, e^{\prime}\right)=s_{0}$ in $S=R \backslash P$. We write $w s_{0}=e z+e^{\prime} z^{\prime}+w^{\prime}$ with z $=F\left(w, e^{\prime}\right), z^{\prime}=F(e, w), w^{\prime}$ orthogonal to e, e^{\prime}. Similarly, we write $u s_{0}=e x+e^{\prime} x^{\prime}+u^{\prime}$ and $v s_{0}$ $=e y+e^{\prime} y^{\prime}+v^{\prime}$ with u^{\prime} and v^{\prime} orthogonal to e, e^{\prime}. Note that $F\left(u s_{0}, v s_{0}\right)=a s_{0}^{2}=y z^{\prime}-z y^{\prime}+$ $F\left(u^{\prime}, v^{\prime}\right)$.

By Lemma 19, $\tau\left(e, \nu^{\prime}, y\right), \tau\left(e^{\prime}, 0, c s_{0}\right) \in \mathrm{Ep}_{F} R$ for any c in R, so
$H \supset\left[\operatorname{Ep}_{F} R, H\right] \ni \quad\left[\tau\left(e, v^{\prime}, y\right), \tau\left(e_{1}, u, r\right)\right]=\tau\left(e_{1}, \tau\left(e, v^{\prime}, y\right) u, r\right) \tau\left(e_{1},-u,-r\right)$
$=\tau\left(e_{1},-e F\left(u^{\prime}, v\right)+e y x^{\prime}+\nu^{\prime} x^{\prime} s_{0}, ?\right.$, hence
$H \supset\left[\mathrm{Ep}_{F} R, H\right] \ni\left[\tau\left(e^{\prime}, 0, c s_{0}\right), \tau\left(e_{1},-e F\left(u^{\prime}, v\right)+e y x^{-}+v^{\prime} x^{\prime} s_{0}, ?\right)\right]$
$=\tau\left(e_{1}, e^{\prime} c s_{0}^{2}\left(F\left(u^{\prime}, v\right)-y x^{\prime}\right), ?\right)$.
Moreover, $H \supset\left[\operatorname{Ep}_{F} R, H\right] \ni\left[\tau\left(e^{\prime}, 0,1\right), \tau\left(e_{1}, u, r\right)\right]=\tau\left(e_{1},-e^{\prime} x, ?\right)$, hence $H \supset$ $\left[\mathrm{Ep}_{F} R, H\right] \ni \quad\left[\tau(e, 0,1), \tau\left(e_{1}, e^{\prime} x, ?\right)\right]=\tau\left(e_{1},-\operatorname{exx}_{0}, ?\right)$, hence $H \supset\left[\mathrm{Ep}_{F} R, H\right] \ni$
$\left[\tau\left(e^{\prime}, 0, c y\right), \tau\left(e_{1},-e x s_{0}, ?\right)\right]=\tau\left(e_{1}, e^{\prime} c x y^{\prime} s_{0}^{2}, ?\right)$. So H э
$\tau\left(e_{1}, e^{\prime} c s_{0}^{2}\left(F\left(u^{\prime}, v^{\prime}\right)-y x^{\prime}\right), ?\right) \tau\left(e_{1}, e^{\prime} c x y^{\prime} s_{0}^{2}, ?\right)=\tau\left(e_{1}, e^{\prime} c s_{0}^{2}\left(F\left(u^{\prime}, v^{\prime}\right)-y x^{\prime}+x y^{\prime}\right), ?\right)=$ $\tau\left(e_{1}, e^{\prime} \cos _{0}{ }^{4}, ?\right)$.

Recall that c here is an arbitrary element of R. So $H \ni \tau\left(e_{1}, e^{\prime} c\left(z^{\prime} s_{0}-1\right) a s_{0}{ }^{4}\right.$,?).
By Lemma 19, $\mathrm{f}=\tau(e, w, z) \in \mathrm{Ep}_{F} R$. So
$H \rightarrow f \tau\left(e_{1}, e^{\prime} \operatorname{cas}_{0}{ }^{4}, ?\right) f^{-1}=\tau\left(e_{1}, f e^{\prime} \operatorname{cas}_{0}{ }^{4}, ?\right)$.
Therefore $H \geqslant \tau\left(e_{1}, e^{\prime} c\left(z^{\prime} s_{0}-1\right) a s_{0}{ }^{4}, ?\right) \tau\left(e_{1}, f e^{\prime}{ }^{\prime}{ }^{4}{ }_{0}{ }^{4}\right.$, ?)
$=\tau\left(e_{1},\left(e^{\prime}\left(z^{\prime} s_{0}-1\right)+\tau(e, w, z) e^{\prime}\right) \operatorname{cas}_{0}{ }^{4}, ?\right)=\tau\left(e_{1}\right.$, wcas $\left._{0}{ }^{6}, ?\right)$.
Thus, $Y \supset R s$ with $s=s_{0}{ }^{6}$ in $S=R \backslash P$.

COROLLARY 26. Under the coditions of Theorem 5, (A, B) is a symplectic ideal of R.
Proof. Let $r \in R, a \in A, b \in B$. By Lemmas 23 and $24,2 a, \in B$ and $b \in A$. It remains to prove that $b r^{2}, r a^{2} \in B$.

To prove that $r a^{2} \in B$, it suffices to show that for any maximal ideal P of R there is $s \in$ $S=R \backslash P$ such that $a^{2} s R \subset B$

We pick vectors $e_{3}, e_{4} \in U$ such that $s_{0}=F\left(e_{3}, e_{4}\right) \in S$.

By Lemma 25, for any c in R we have $\tau\left(e_{1}, e_{4} c a, ?\right) \in H$. So for any d in R we have $H \supset\left[\mathrm{Ep}_{F} R, H\right] \ni \quad\left[\tau\left(e_{3}, 0, d\right), \tau\left(e_{1}, e_{4} c a, ?\right)\right]=\tau\left(e_{1}, \mathrm{e}_{3} a c d s_{0},-a^{2} c^{2} d s_{0}^{2}\right)=f(c, d)$.
So $H \ni f(c, d) f\left(1, d c^{2}\right)^{-1}=\tau\left(e_{1}, e_{3} a\left(c-c^{2}\right) d s_{0}, 0\right)$ and
$H \ni \tau\left(e_{1}, e_{3} a\left(c-c^{2}\right) d s_{0}, 0\right) f\left(c-c^{2}, d\right)^{-1}=\tau\left(e_{1}, 0, a^{2}\left(c-c^{2}\right)^{2} d s_{0}^{2}\right)$,
i.e. $a^{2}\left(c-c^{2}\right)^{2} d s_{0}^{2} \in B$.

If $\operatorname{card}(R / P) \neq 2$, we can choose c such that $c^{2}-c$ is in S, hence $a^{2} s R \subset B$ for $s=$ $\left(c-c^{2}\right)^{2} s_{0}^{2} \in S$.

If $\operatorname{card}(R / P)=2$, we pick vectors e, e^{\prime} in U orthogonal to e_{3}, e_{4} and such that $F\left(e, e^{\prime}\right)$ $\in S$. By Lemma 19, $\tau\left(e, e_{3} d, 0\right) \in \mathrm{Ep}_{F} R$. So $H \supset\left[\mathrm{Ep}_{F} R, H\right] \ni$
$\left[\tau\left(e, e_{3} d, 0\right), \tau\left(e_{1}, e a, ?\right)\right]=\tau\left(e_{1}, e_{3} a d F\left(e, e^{\prime}\right), 0\right)$, hence
$H \ni \mathrm{f}(1,-d F(e, e)) \tau\left(e_{1}, e_{3} a d F\left(e, e^{\prime}\right), 0\right)=\tau\left(e_{1}, 0, a^{2} d F\left(e, e^{\prime}\right) s_{0}{ }^{2}\right)$,
i.e. $s a^{2} R \subset B$ for $s=F\left(e, e^{\prime}\right) s_{0}^{2} \in S$.

We have proved that $r a^{2} \in B$.
Now we have to prove that $b r^{2} \in B$. Since $2 A \subset B$, it suffices to show that for any maximal ideal P of R there is $s \in S=R \backslash P$ such that $b r^{2} s^{2} \in B$.

Let e_{3} and e_{4} be as above. We have seen that for any $a \in A$ there is $s \in S$ such that
(27) $\tau\left(e_{1}, e_{3} a d s, 0\right) \in H$ for all $d \in R$.

We will use this with a, d replaced by b, r. We have

$$
\begin{aligned}
& H \supset\left[H, \mathrm{E}_{F} R\right] \ni \quad\left[\tau\left(e_{1}, 0, b\right), \tau\left(e_{3}, e_{2} r, 0\right)\right] \tau\left(e_{1}, e_{3} b r s, 0\right) \\
& =\tau\left(e_{3}, e_{1} b r s,-b r^{2} s^{2}\right) \tau\left(e_{1}, e_{3} b r s, 0\right)=\tau\left(e_{3}, 0,-b r^{2} s^{2}\right), \text { hence } H \supset\left[H, E_{p_{F}} R\right] \ni \\
& {\left[\tau\left(e_{3}, 0,-b r^{2} s^{2}\right), \tau\left(e_{1}, e_{4}, 0\right)\right] \tau\left(e_{1}, e_{3} b r^{2} s^{2}, 0\right)} \\
& =\tau\left(e_{1},-e_{3} b r^{2} s^{2}, b r^{2} s^{2}\right) \tau\left(e_{1}, e_{3} b r^{2} s^{2}, 0\right) \\
& =\tau\left(e_{1}, 0, b r^{2} s^{2}\right) . \\
& \text { Thus, } b r^{2} s^{2} \in B .
\end{aligned}
$$

COROLLARY 28. Under the coditions of Theorem 5, $H \supset \mathrm{Ep}_{F}(A, B)$,

Proof. By Theorem 4, it suffices to show that $H \supset T\left(e_{1}, A, B\right)$. By the definition of B, $H \supset \tau\left(e_{1}, 0, B\right)$. So it remains to show that $\tau\left(e_{1}, w a, 0\right) \in H$ for any $u \in U$ and any $a \in A$.

Set $Y=\left(t \in R: \tau\left(e_{1}\right.\right.$, wat, 0$\left.) \in H\right\}$. We want to prove that $1 \in Y$. Since Y is closed under addition, it suffices to show that for any maximal ideal P of R there is an element $s^{\prime} \in S$ $=R \backslash P$ such that $R s^{\prime} \subset Y$.i.e. $\tau\left(e_{1}\right.$, was'r, 0$) \in H$ for all r in R.

Let $e_{3}, e_{4} \in U$ and $s_{0}=F\left(e_{3}, e_{4}\right) \in S$ be as in the proof of Corollary 24 above. We are going to use (26) again. We write $w s_{0}=e_{3} x+e_{4} y+w^{\prime}$ with $x, y \in R$ and $w^{\prime} \in U$ orthogonal to e_{3}, e_{4}. Then $w s_{0}^{2}=e_{3}\left(x s_{0}-1\right)+e_{3}+\mathrm{e}_{4} y s_{0}+w^{\prime} s_{0}=e_{3}\left(x s_{0}-1\right)+f e_{3}$, where $f=$ $\tau\left(e_{4},-w^{\prime},-y\right) \in \mathrm{Ep}_{F} R$ by Lemma 15.

By (27), $h_{1}=\tau\left(e_{1}, e_{3}\left(x s_{0}-1\right)\right.$ ars, 0$) \in H$ and $h_{2}=\tau\left(e_{1}, f e_{3}\right.$ ars, 0$)=\mathrm{f} \tau\left(e_{1}, e_{3}\right.$ ars, $0) \mathrm{f}^{-1} \in H$ for all r in R. Since $\left(x s_{0}-1\right) y s_{0} a^{2} r^{2} s^{2} \in R a^{2} \subset B$ by Corollary $24, h_{3}=\tau\left(e_{1}, 0\right.$, $\left.\left(x s_{0}-1\right) y s_{0} a^{2} r^{2} s^{2}\right) \in H$. So $\tau\left(e_{1}\right.$, warss $\left._{0}^{2}, 0\right)=h_{3} h_{2} h_{1} \in H$, hence $r s s_{0}^{2}=r s^{\circ} \in Y$ for all $r \in$ R, where $s^{\prime}=s s_{0}^{2} \in H$. Corollary 28 is proved.

Originally, our definition of A, B depended on choice of an F-unimodular vector e_{1}. However Corollary 28 shows that in fact it does not depend. We can also state it as follows; COROLLARY 29. Under the conditiuons of Theorem $5, \operatorname{Ep}_{F}(A, B)$ contains all symplectic transvections in H.

LEMMA 30. Under the conditions of Theorem 5, let $e \in U, v \in V, r, r^{\prime} \in R, F(e, v)=0$, and $\tau(e, v, r), \tau(e, 0, r) \in H$. Then $F(u, V) r_{0} \subset A$ and $r r_{0}{ }^{4} \in B$ for every $r_{0} \in F(e, V)$.

Proof. We pick a vector $e^{\prime} \in V$ such that $F\left(e, e^{\prime}\right)=r_{0}$. We have $H \supset\left[\mathrm{Ep}_{F} R, H\right] \ni$ $\left[\tau(e, 0, r), \tau\left(e_{1}, e^{\prime} t, 0\right)\right]=\tau\left(e_{1}, e r t r_{0},-r t^{2} r_{0}^{2}\right)=f(t)$ for ail t in R.

By its definition, $A \supset F\left(e r r_{0}, V\right) \supset R r r_{0}{ }^{2}$.
By Corollary $28, H \supset \mathrm{Ep}_{F}(A, B) \ni \tau\left(e_{1}, e r r_{0}^{2}, 0\right)$. So
$H \ni \tau\left(e_{1}, e r r_{0}{ }^{2}, 0\right) f\left(r_{0}\right)^{-1}=\tau\left(e_{1}, 0, r r_{0}{ }^{4}\right)$. By its definition, $B \ni r r_{0}{ }^{4}$.
Now we have the inclusiuon $F(u, V) r_{0} \subset A$ to prove. It suffices to show that for every maximal ideal P of R there is $s \in S=R \backslash P$ such that $s F(u, V) r_{0} \subset A$.

Pick any $v^{\prime} \in V$ and set $z=F\left(v, v^{\prime}\right)$. We have to prove that $r_{0} s z \in A$ for some $s \in S$ independent on v^{\prime}. We write $v^{\prime}=e_{1} x+e_{2} y+w$ with $x, y \in R$ and $w \in U$. Note that $F(e, w)$ $=0$ and $z=F\left(\nu, e_{1}\right) x+F\left(\nu, e_{2}\right) y+F(\nu, w)$.

We have:
$H \ni\left[\tau\left(e_{1}, 0, x\right), \tau(e, v, r)\right]=\tau\left(e, e_{1} F\left(e_{1}, v\right) x, ?\right)$;
$H \ni \quad\left[\tau\left(e_{2}, 0,1\right), \tau\left(e, v, r^{\prime}\right)\right]=\tau\left(e, e_{2} F\left(e_{2}, v\right), ?\right)$, hence
$H \ni\left[\tau\left(e_{1}, 0, y\right), \tau\left(e, e_{2} F\left(e_{2}, v\right), ?\right)\right]=\tau\left(e, e_{1} F\left(e_{2}, v\right) y, ?\right)$;
$H \ni\left[\tau\left(e_{2}, w, 0\right), \tau(e, v, r)\right]=\tau\left(e, e_{2} F(w, v)+w F\left(e_{2}, w\right), ?\right)$, hence
$H \ni\left[\tau\left(e_{1}, 0,1\right), \tau\left(e, e_{2} F(w, v)+w F\left(e_{2}, w\right), ?\right)\right]=\tau\left(e, e_{1} F(w, v), ?\right)$.
So $H \ni \tau\left(e, e_{1} F\left(e_{1}, v\right) x\right.$, ?) $\tau\left(e, e_{1} F\left(e_{2}, v\right) y\right.$, ?) $\tau\left(e, e_{1} F(w, v)\right.$, ?)
$=\tau\left(e, e_{1} F\left(v^{*}, v\right) x, ?\right)=\tau\left(e,-e_{1} z, ?\right)$.
If $\operatorname{card}(R / P) \neq 2$, we pick $t_{0} \in R$ with $s=t_{0}{ }^{2}-t_{0} \in S$. Then for any $t, t^{\prime} \in R$ we have $H \ni\left[\tau\left(e_{2}, 0, t\right), \tau\left(e,-e_{1} z, ?\right)\right]=\tau\left(e,-e_{2} t z,-t z^{2}\right)$, hence
$H \ni\left[\tau\left(e_{1}, 0, t\right), \tau\left(e,-e_{2} t z,-t z^{2}\right)\right]=\tau\left(e,-e_{1} t t^{\prime} z,-t^{2} t^{\prime} z^{2}\right)=f\left(t, t^{\prime}\right)$, and
$H \ni f\left(1, t_{0}^{2}\right) f\left(t_{0}, 1\right)^{-1}=\tau\left(e, e_{1} s z, 0\right)=\tau\left(e_{1}, e s z, 0\right)$.
Thus, $s z r_{0} \in A$ by the definition of A.

If $\operatorname{card}(R / P)=2$, we invoke the condition of Theorem 5 to find vectors $e_{3}, e_{4} \in U$ orthogonal to e, e^{\prime} with $s=F\left(e_{3}, e_{4}\right) \in S$. Then
$H \ni\left[\tau\left(e_{2}, e_{3}, 0\right), \tau\left(e,-e_{1} z, ?\right)\right]=\tau\left(e,-e_{3} z, 0\right)$, hence
$H \ni\left[\tau\left(e_{1}, e_{4}, 0\right), \tau\left(e,-e_{3} z, 0\right)\right]=\tau\left(e,-e_{1} s z, 0\right)=\tau\left(e_{1}, e s z, 0\right)$.
Thus, $s z r_{0} \in A$ by the definition of A.
LEMMA 31. Under the conditions of Theorem 8, let $h \in H$ and $h e=e c$ for some $c \in R$ and an F-unimodular vector $e \in V$. Then $h v-v c \in V A$ and $|h v-v c|=F(h v, v c)+B$ for all $v \in V$.

Proof. Clearly, $c \in \mathrm{GL}_{1} R$. For any vector u in V orthogonal to e and any scalar r in R we have
$H \rightarrow[h, \tau(e, u, r)]=\tau\left(e, h u c / \alpha(h)-u, r c^{2} / \alpha(h)-r-F(h u, u c) / \alpha(h)\right)$.
So (using Lemma 30 and a condition of Theorem 8) huc/ $\alpha(h)-u \subset V A$ and
$|h u c / \alpha(h)-u|=r c^{2} / \alpha(h)-r-F(h u, u c) / \alpha(h)+B \quad$ for all $u \in e^{\perp}$, hence (taking $u=0$) $R\left(\alpha(h)-c^{2}\right) \subset B$. It follows that $h u-u c \subset V A$ and $|h u-u c|=F(h u, u c)+B$ for all $u \in e^{\perp}$.

Pick a vector e^{\prime} in V with $F\left(e, e^{\prime}\right)=1$. We can write $h=\tau(e, u, r) h^{\prime}$, where $u \in V^{\prime}=$ $\left(e R+e^{\prime} R\right)^{\perp}, r \in R, h^{\prime} \in \operatorname{Gp}_{F}(A, B), h^{\prime} e=e c$, and $h^{\prime} e^{\prime}=e^{\prime} \alpha(h) / c, h^{\prime} v-v c \in V A$ and $\left|h^{\prime} v-v c\right|=F\left(h^{\prime} v, v c\right)+B$ for all v in V.

For any $w \in V^{\prime}$ we have $H \quad \ni[h, \tau(w, 0,1)]$, because $\tau(w, 0,1) \in \mathrm{Ep}_{F} R$, and $H \quad \ni$ $\left[h^{\prime}, \tau(w, 0,1)\right]$ by Theorem 5. So $H \quad \exists[\tau(e, u, r), \tau(w, 0,1)]=\tau(e, u, r) \tau(e,-u-w F(w, u),-r)$ $=\tau(e,-w F(w, u), ?)$, hence $w F(w, u) \in V A$. It follows that that $u \in V A$.

Incuding $\tau(e, u, r)$ into h^{\prime}, where $r^{\prime} \in|u|$, we are reduced to the case $u=0$. In this case, h $=\tau(e, 0, r) h^{\prime}$, and for any vector $w \in V^{\prime}$ we have $H \quad \ni\left[h, \tau\left(w, e^{\prime}, 0\right)\right]$ and $H \quad \ni$ $\left[h^{\prime}, \tau\left(w, e^{\prime}, 0\right)\right]$, hence $H \quad \geqslant\left[\tau(e, 0, r), \tau\left(w, e^{\prime}, 0\right)\right]=\tau(w, e r,-r)$. By Lemma 30, wr $\in V A$. So $U^{\prime} r \subset U^{\prime} A$, hence $r \in A$. Using Lemma 30 again, we conclude that $r \in B$. Thus, we can include we can include $\tau(e, 0, r)$ into h^{\prime}, i.e. we are reduced to the case when $h=h^{\prime}$.

LEMMA 32. Under the conditions of Theorem 8, let $h \in H \cap \mathrm{~S}_{F} R$. and $h w=w$ for a vector $w \in V$ which is orthogonal to a hyperbolic pair. Then $(h v-v) r_{0} \in V A$ and $\left|(h \nu-v) r_{0}\right| r_{0}{ }^{4}=$ $F(h v, v) r_{0}^{6}+B$ for all $v \in V$ orthogonal to w and all $r_{0} \in F(w, V)$.

Proof. We can assume that w is orthogonal to e_{1}, e_{2} i.c. $w \in U$. For any vector v in V orthogonal to w and any scalar r in R we have
$H \quad \exists[h, \tau(w, v, r)]=\tau(w, h \nu-v,-F(h \nu, v))$.
By Lemma 30, $(h v-v) r_{0} \in V A$. We pick now $z \in I(h v-v) r_{0} l$. Then
$H \ni \tau\left(w,(h v-v) r_{0}, z\right)$ and
$H \ni \tau\left(w,-h v r_{0}+v r_{0},-F\left(h v r_{0}, v r_{0}\right)\right)$, hence $H \ni \tau\left(w, 0, z-F\left(h v r_{0}, v r_{0}\right)\right)$.
By Lemma 30, $\left(z-F\left(h \nu r_{0}, v r_{0}\right)\right) r_{0}{ }^{4} \in B$.
Thus, $(h v-v) r_{0} \in V A$ and $l(h v-v) r_{0} \mid r_{0}^{4}=F(h v, v) r_{0}{ }^{6}+B$ for all $v \in w^{\perp}$.

LEMMA 33. Under the conditions of Theorem 8, assume that $A=0$. Then $H \subset \mathrm{Gp}_{F}(A, B)=$ $\mathrm{GP}_{F}(0,0)$.

Proof. Let $h \in H$. We write $h e_{1}=e_{1} x+e_{2} y+u$ with $x=F\left(h e_{1}, e_{2}\right), y=F\left(e_{1}, h e_{1}\right), u \in$ U. We set

$$
h^{\prime}=[h, \tau(e, 0,1)] \in H
$$

Case 1: $y=0$. Then $h^{\prime} e_{1}=e_{1}$. So $h^{\prime}=1$ by Lemma 31 with $A=0$. It follows that $u=0$. So $h e_{1}=e_{1} x$. By Lemma 31, $h \in \operatorname{Gp}_{F}(A, B)=\operatorname{Gp}_{F}(0,0)$

Case 2; $y^{2}=0$. Since $h^{\prime} e_{1}=e_{1}+h e_{1} y$, we have $h^{\prime} \in \operatorname{Gp}_{F}(A, B)=\operatorname{Gp}_{F}(0,0)$ by Case 1. It follows that $F\left(h^{\prime} e_{1}, e_{2}\right)=x y-1-x^{2}=0$ and $u x=0$, hence $x \in \mathrm{GL}_{1} R$, and $u=0$. So $h e_{1}$ $=e_{1} x$. By Lemma 31, $h \in \mathrm{Gp}_{F}(A, B)=\mathrm{Gp}_{F}(0,0)$.

Case 3: $y^{3}=0$. Since $h^{\prime} e_{1}=e_{1}+h e_{1} y$, we have $h^{\prime} \in \operatorname{Gp}_{F}(A, B)=\operatorname{Gp}_{F}(0,0)$ by Case 2. It follows that $F\left(h^{\prime} e_{1}, e_{2}\right)=x y-1-x^{2}=0$ and $u x=0$, hence $x \in \mathrm{GL}_{1} R$, and $u=0$. So he $e_{1}=$ $e_{1} x$. By Lemma 31, $h \in \operatorname{Gp}_{F}(A, B)=\operatorname{Gp}_{F}(0,0)$.

Case 4: $y^{3} \neq 0$. Then there is a maximal ideal P of R such that $y^{3} s \neq 0$ for all $\mathrm{s} \in S=R \backslash$ P. We pick a pair v, v^{\prime} of vectors in U with $r_{0}=F\left(v, v^{\prime}\right) \in S$, and set $w=e_{1} F(u, v)+v . y$. Then $F\left(e_{1}, w\right)=F\left(h e_{1}, w\right)=0, h^{\prime} w=w$. and $F(w, V) \ni y^{2} r_{0} \in S y^{2}$. By Lemma 32, ($h^{\prime} e_{1}$. e_{1}) $\mathrm{y}^{2} r_{0}=0$, hence $y^{3} r_{0}=0$ (because $h^{\prime} e_{1}-e_{1}=h e_{1} r y$).

So Case 4 is impossible.

LEMMA 34. Under the conditions of Theorem $8, H \subset \operatorname{Gp}_{F}(A, A)$
Proof. We want to prove that the image of H modulo A consists of scalar automorphisms of R / A-module $V / V A$. Indeed, otherwise, applying Lemma 33 to this module instead of V, we would obtain a non-trivial symplectic transvection in the image of H modulo A. (We used that the image of $E_{p_{F}} R$ modulo A contains all symplectic transvections of $(V / V A, F \bmod A)$.)

So H would contain an element of the form $\tau(e, u, r) g$, where $\tau(e, u, r)$ is a symplectic transvection in $\mathrm{Ep}_{F} R$ which is non-trivial modulo A and where g is trivial modulo A, hence g $\in \operatorname{Gp}_{F}(A, A)$. We pick a vector $e^{\cdot} \in V$ with $F\left(e, e^{\prime}\right)=1$ and set $U^{\prime}=\left(e R+e^{\cdot} R\right)^{\perp}$. We can assume that $u \in U^{\prime}$.

By Lemma 19, $\tau(w, 0,1) \in \mathrm{Ep}_{F} R$ for any $w \in U^{\prime}$, hence $[\tau(w, 0,1), g] \in \mathrm{Ep}_{F}(A, A)$ by Theorem 5. It follows that $\tau(e, w F(w, u), ?)=[\tau(w, 0,1), \tau(e, u, r)] \in H E p_{F}(A, A)$. By Corollary 29, applyed to $H \mathrm{Ep}_{F}(A, A)$ instead of H, we obtain that $F(w, u) \in A$. So $F\left(U^{\prime}, u\right)$ $\subset A$, hence $u \in U A$.

Including $\tau(e, u, 0)$ into g, we are reduced to the case $u=0$. In this case we have
$\tau(w,-e r, ?)=\left[\tau\left(w, e^{\prime}, 0\right), \tau(e, u, r)\right] \in H \mathrm{Ep}_{F}(A, A)$, hence $r F(w, U) \subset A$ for ail $w \in U^{\prime}$ by Corollary 29. It follows that $r \in A$. This is a contradiction.

LEMMA 35. Under the conditions of Theorem 8, let $g \in \mathrm{Gp}_{F} R$ and $g e_{1}=e_{1} x+e_{2} a^{\prime}+u a$ with $u \in U A, a, a^{\prime} \in A, x \in R$, and $x a^{\prime} \in B$. Then $\tau\left(g e_{1}, 0, r\right) \tau\left(e_{1} x, 0,-r\right) \in \mathrm{Ep}_{F}(A, B)$ for all r $\in R$.

Proof. It suffices to show that for each maximal ideal P of R there is $s \in S=R \backslash P$ such that $\tau\left(g e_{1}, 0, r s\right) \tau\left(e_{1} x, 0,-r s\right) \in \mathrm{Ep}_{F}(A, B)$ for all $r \in R$.

Case i: there is w, w^{\prime} in V orthogonal to both e_{1} and $g e_{1}$ and such that $F\left(w, w^{\prime}\right)=s \in S$ $=R \backslash P$. For any r in R we write

```
\(\tau\left(e_{1} x, 0, r s\right)=\tau\left(e_{1} x, w, 0\right) \tau\left(e_{1} x, w^{\prime} r, 0\right) \tau\left(e_{1} x,-w-w^{\prime} r, 0\right)\)
\(=\tau\left(w, e_{1} x, 0\right) \tau\left(w^{\prime}, e_{1} x r, 0\right) \tau\left(w+w^{\prime} r,-e_{1} x, 0\right)\) and \(\tau\left(g e_{1}, 0, r s\right)\)
\(=\tau\left(g e_{1}, w, 0\right) \tau\left(g e_{1}, w^{\prime} r, 0\right) \tau\left(g e_{1}, w^{\prime}-w^{\prime} r, 0\right)=\tau\left(w, g e_{1}, 0\right) \tau\left(w^{\prime}, g e_{1} r, 0\right) \tau\left(w+w^{\prime} r,-g e_{1}, 0\right)\),
```

hence $\tau\left(g e_{1}, 0, r s\right) \tau\left(e_{1} x, 0, r s\right)^{-1}$
$=\tau\left(w, g e_{1}, 0\right) \tau\left(w^{\prime}, g e_{1} r, 0\right) \tau\left(w+w^{\prime} r,-g e_{1}, 0\right)\left(\tau\left(w, e_{1} x, 0\right) \tau\left(w^{\prime}, e_{1} x r, 0\right) \tau\left(w+w^{\prime} r,-e_{1} x, 0\right)\right)^{-1}$
$=h_{1}\left(g_{2} h_{2} g_{2}^{-1}\right)\left(g_{3} h_{3} g_{3}^{-1}\right)$, where
$h_{3}=\tau\left(w+w^{\prime} r,-g e_{1}, 0\right) \tau\left(w+w^{\prime} r,-e_{1} x, 0\right)^{-1}=\tau\left(w+w^{\prime} r, e_{1} x-g e_{1}, F\left(g e_{1}, e_{1} x\right) \in\right.$
$\mathrm{Ep}_{F}(A, B), g_{3}=\tau\left(w, e_{1} x, 0\right) \tau\left(w^{\prime}, e_{1} x r, 0\right) \in \mathrm{Ep}_{F} R$,
$h_{2}=\tau\left(w^{\prime}, g e_{1} r, 0\right) \tau\left(w^{\prime}, e_{1} x r, 0\right)^{-1}=\tau\left(w^{\prime}, g e_{1} r-e_{1} x r,-F\left(g e_{1} r, e_{1} x r\right)\right) \in \mathrm{Ep}_{F}(A, B)$,
$g_{2}=\tau\left(w, e_{1} x, 0\right) \in \mathrm{Ep}_{F} R$, and $h_{1}=\tau\left(w, g e_{1}, 0\right) \tau\left(w, e_{1} x, 0\right)^{-1}$
$=\tau\left(w, g e_{1}-e_{1} x,-F\left(g e_{1}, e_{1} x\right)\right) \in \operatorname{Ep}_{F}(A, B)$.
So $\tau\left(g e_{1}, 0, r s\right) \tau\left(e_{1} x, 0, r s\right)^{-1} \in \operatorname{Ep}_{F}(A, B)$.

Case 2: $F(V, u)$ intersects S. Then we can find w^{\prime} in U such that $F\left(u, w^{\prime}\right)=s \in S$ and set $w=u$. The vectors w, w^{\prime} are orthogonal to both e_{1} and $g e_{1}$, se we are done by Case 1 .

Case 3: $a^{\prime} \in S$. Then we find vectors v, v^{\prime} in U such that $F\left(v, v^{\prime}\right) \in S$ and set $w=$ $e_{1} F(u, v)+v a^{\prime}, w^{\prime}=e_{1} F\left(u, v^{\prime}\right)+v^{\prime} a$. Then $F\left(w, w^{\prime}\right)=F\left(v, v^{\prime}\right) a^{\prime 2} \in S$ and the vectors w, w^{\prime} are orthogonal to both e_{1} and $g e_{1}$, se we are done by Case 1 .

Case 4: $x \in S$. Then we can find $v \in U$ such that both $F(v, U)$ and $F(u-v x, v)$ intersects S. Set $g^{\prime}=\tau\left(e_{2}, v a, 0\right) g$, so $g^{\prime} e_{1}=e_{1} x+e_{2}\left(a^{\prime}+F(v a, u a)\right)+(u-v x) a$. By Case 2 , there is $s_{1} \in S=R \backslash P$ such that $\tau\left(g^{\prime} e_{1}, 0, r s_{1}\right) \tau\left(e_{1} x, 0,-r s_{1}\right) \in \operatorname{Ep}_{F}(A, B)$ for all $r \in R$. Conjugating this by $\tau\left(e_{2}, v a, 0\right)$, we obtain that $\tau\left(g e_{1}, 0, r s_{1}\right) \tau\left(\tau\left(e_{2},-v a, 0\right) e_{1} x, 0,-r s_{1}\right) \in$ $\mathrm{Ep}_{F}(A, B)$ for all r in R.

On the other hand, we can apply Case 2 to $g=\tau\left(e_{2},-v a, 0\right)$ and conclude that $\tau\left(\tau\left(e_{2},-v a\right.\right.$, $\left.0) e_{1}, 0, r s_{2}\right) \tau\left(e_{1}, 0,-r s_{2}\right) \in E_{p_{F}}(A, B)$ for some s_{2} in S and all r in R.

So $\tau(g e, 0, r s) \tau(e x, 0,-r s)=\tau\left(g e, 0, r s_{1} s_{2}\right) \tau\left(e x, 0,-r s_{1} s_{2}\right)$
$=\left(\tau\left(g e_{1}, 0, r s_{2} s_{1}\right) \tau\left(\tau\left(e_{2},-v a, 0\right) e_{1} x, 0,-r s_{2} s_{1}\right)\right)$
$\cdot\left(\tau\left(\tau\left(e_{2},-v a, 0\right) e_{1}, 0, x^{2} s_{1} r s_{2}\right) \tau\left(e_{1}, 0,-x^{2} s_{1} r s_{2}\right)\right)$
$\in \mathrm{Ep}_{F}(A, B)$ for all $r \in R$.
General case. Since $g e_{1}$ is F-unimodular, Cases 2, 3, 4 cover all possibilities.

LEMMA 36. Under the conditions of Theorem 8, let $e \in V$ be F-unimodular, $h \in H, c \in R$ and $h \nu-v c \in V A$ for all $v \in V$. Then
(36) $(F(h e, e c)+t) r^{2} \alpha(h)^{2}+c^{2}\left(c^{2}-\alpha(h)\right) r \in B$ for all $r \in R$ and all $t \in|h e-e c|$.

Proof. Note that in the presence of a hyperbolic pair e, e^{j}, the element $\alpha(h) \in \operatorname{GL}_{1} R$ (such that $F(h u, h v)=\alpha(h) F(u, v)$ for all u, v in V is unique and equal to $F\left(h e, h e^{\prime}\right)$. By Lemma 34, $h \in \operatorname{Gp}_{F}(A, A)$, i.e. there is $c \in R$ such that $g \nu-\nu c \in V A$ for all $v \in V$. Such an element c is not unique, but its coset $c+A$ is unique (under the conditions of Theorem 8), $c+A \in$ $\mathrm{GL}_{1} R / A$, and $c^{2}-\alpha(h) \in A$. Note also the the relation (36) we want to prove does not depend on choice of c in the coset $c+A$ or on choice t in the coset $|h e-e c| \in A / B$. It suffices to consider the case $e=e_{1}$.

We write $h e_{1}=e_{1} x+e_{2} y+u$ with $x=F\left(h e_{1} . e_{2}\right) \in c+A, y=F\left(e_{1}, h e_{1}\right) \in A, u \in U A$, where $U=\left(R e_{1}+R e_{2}\right)^{\perp}$.

Pick $z \in|u|$. Then $t \equiv(x-c) y+z(\bmod B)$, hence $F(h e, e c)+t \equiv x y+z(\bmod B)$.
Since $c^{2}-\alpha(h) \in A, a=1-x x^{\prime} \in A$ for $x^{\prime}=x / \alpha(h)$.
Set $f=\tau\left(e_{2}, u x^{\prime}, z x^{\prime 2}\right) \in T\left(e_{2}, A, B\right)$. Then $f h e_{1}=e_{1} x+e_{2} y^{\prime}+u a$ with $y^{\prime}=y-z x x^{\prime 2}$ $\in A$. Note that $R\left(1-\left(x x^{\prime}\right)^{2}\right)=R\left(2 a-a^{2}\right) \subset B$, hence $F(h e, e c)+t \equiv x y+z \equiv x y^{\prime}(\bmod B)$. (Recall that $2 A+a^{2} R \subset B$.)

Set now $z^{\prime}=x^{\prime} y^{\prime}(1+a) \in A$ and $f^{\prime}=\tau\left(e_{2}, 0, z^{\prime}\right) \in T\left(e_{2}, A, A\right)$. Then $g e_{1}=f^{\prime} f h e_{1}=$ $e_{1} x+e_{2} a^{\prime}+u a$, where $g=f^{\prime} f h \in \operatorname{Gp}_{F}(A, A)$ and $a^{\prime}=y^{\prime} a^{2}$, so $a^{\prime} R \subset B$.

By Lemma 35, $\tau\left(g e_{1}, 0, r\right) \tau\left(e_{1} x, 0,-r\right) \in \mathrm{Ep}_{F}(A, B)$ for all $r \in R$. Note that
$\left[g, \tau\left(e_{1}, 0, \alpha(g) r\right)\right]=\tau\left(g e_{1}, 0, r\right) \tau\left(e_{1}, 0,-\alpha(g) r\right)$
$=\tau\left(g e_{1}, 0, r\right) \tau\left(e_{1} x, 0,-r\right) \tau\left(e_{1}, 0, r x^{2}-\alpha(g) r\right)$
$\in \operatorname{Ep}_{F}(A, B) \tau\left(e_{1}, 0, r\left(x^{2}-\alpha(g)\right)\right)$ for all r in R.
Since $h \in H,\left[H, \mathrm{Ep}_{F} R\right] \subset H$ and $f \in \mathrm{Ep}_{F}(A, B) \subset H$, it follows that $k(r)=$ (f $\left.f^{\prime}, \tau\left(e_{1}, 0, \alpha(g) r\right)\right] \tau\left(e_{1}, 0, r x^{2}-\alpha(g) r\right) \in H$ for all $r \in R$.
Since $k(r)$ fixes every vector in U, we can use Lemma 32 and conclude that $\left|k(r) e_{2}-e_{2}\right|=$ $F\left(k(r) e_{2}, e_{2}\right)+B$, i.e. $d d^{\prime} \in B$, where
$k(r) e_{2}=\mathrm{e}_{1} d+e_{2} d^{\prime}$, i.e. $d=F\left(k(r) e_{2}, e_{2}\right)$ and $d^{\prime}=F\left(e_{1}, k(r) e_{2}\right)$.
Set $r^{\prime}=\alpha(g) r=\alpha(h) r \in R$ and $r^{\prime \prime}=r x^{2}-\alpha(g) r=r x^{2}-\alpha(h) r \in A$. Since $f^{\prime}=\tau\left(e_{2}, 0, z^{\prime}\right)$ $\in T\left(e_{2}, A, A\right)$,
$k(r)=\left[f^{\prime}, \tau\left(e_{1}, 0, r^{\prime}\right)\right] \tau\left(e_{1}, 0, r^{\prime \prime}\right)=\tau\left(f^{\prime} e_{1}, 0, r^{\prime}\right) \tau\left(e_{1}, 0, r^{\prime \prime}-r^{\prime}\right)$.
So $k(r) e_{2}=\tau\left(f^{\prime} e_{1}, 0, r^{\prime}\right)\left(e_{1}\left(r^{\prime \prime}-r^{\prime}\right)+e_{2}\right)$
$=e_{1}\left(r^{\prime \prime}-r^{\prime}\right)+e_{2}+f^{\prime} e_{1} r^{\prime} F\left(f^{\prime} e_{1}, e_{1}\left(r^{\prime \prime}-r^{\prime}\right)+e_{2}\right)$
$=e_{1}\left(r^{\prime \prime}-r^{\prime}\right)+e_{2}+\left(e_{1}-e_{2} z\right) r^{\prime}\left(z^{\prime}\left(r^{\prime \prime}-r^{\prime}\right)+1\right)=e_{1} d+e_{2} d^{\prime} \quad$ with $d=r^{\prime \prime}+$ $r^{\prime} z^{\prime}\left(r^{\prime \prime \prime}-r^{\prime}\right)$ and $d^{\prime}=1-r^{\prime} z^{\prime}-r^{\prime} z^{\prime 2}\left(r^{\prime \prime}-r^{\prime}\right)$.

So $d d^{\prime} \in-z^{\prime} r^{\prime 2}+r^{\prime \prime}+z^{\prime 2} R \subset z^{\prime} r^{\prime 2}+r^{\prime \prime}+B$, because $z^{\prime} \in A$. Since $d d^{\prime} \in B$, we conclude that $z^{\prime} r^{\prime 2}+r^{\prime \prime} \in B$. So $z^{\prime} r^{2} x^{2}+r^{\prime \prime} x^{2} \in B$, i.e. $x^{\prime} y^{\prime}(1+a) r^{\prime} x^{2}+r^{\prime \prime} x^{2} \in B$, i.e. $y^{\prime} r^{\prime 2} x+x^{2} r^{\prime \prime} \in B$

Recall now that $x-c \in A, F(h e, e c)+t \equiv x y^{\prime}(\bmod B), r^{\prime}=\alpha(h) r$, and $r^{\prime \prime}=r x^{2}-$ $\alpha(h) r$. Thus, we obtain (36).

Now we can conclude our proof of Theorem 8. Pick $t_{1} \in\left|h e_{1}-e_{1} c\right|$ and $t_{2} \in\left|h e_{2}-e_{2} c\right|$. Then $t_{1}+t_{2}+F\left(h e_{1}-e_{1} c, h e_{2}-e_{2} c\right) \in\left|h\left(e_{1}+e_{2}\right)-\left(e_{1}+e_{2}\right) c\right|$. We apply Lemma 35 to $e=-e_{2}, e=e_{1}$, and $e=e_{1}+e_{2}$. Using that $F\left(h e_{1}-e_{1} c, h e_{2}-e_{2} c\right)$
$=\alpha(h)+c^{2}-F\left(h e_{1}, e_{2} c\right)-F\left(e_{1} c, h e_{2}\right)$
$=\alpha(h)+c^{2}-F\left(h\left(e_{1}+e_{2}\right),\left(e_{1}+e_{2}\right) c\right)+F\left(h e_{1}, e_{1} c\right)+F\left(h e_{2}, e_{2} c\right)$, and that
$2 A \subset B$, we obtain that $\alpha(h)+c^{2}+c^{2}\left(c^{2}-\alpha(h)\right) r \in B$ for all $r \in R$, hence $c^{2} c^{2}\left(c^{2}-\right.$ $\alpha(h)) R \subset B$ for all $c^{\prime} \in R$. Picking c^{\prime} such that $c c^{\prime}-1 \in A$, we conclude that $\left(c^{2}-\alpha(h)\right) R \subset$ B.. Now Lemma 35 gives that $F(h e, e c)+t \in B$ for all F-unimodular vectors $e \in V$. Since V is spanned by its F-unimodular vectors, we conclude that $h \in \mathrm{Gp}_{F}(A, B)$.

References

1. E.Abe, Chevalley groups over local rings, Tohoku Math. J. 21 (1969), 474-494.
2. E.Abe, Normal subgroups of Chevalley groups over commutative rings, preprint.
3. E.Abe and K.Suzuki, On normal subgroups of Chevalley groups over commutative rings, Tohoku Math. J. 28 (1976), 185-198.
4. D.G. Arrell. The subnormal subgroup structure of the infinite symplectic group, Proc.Edinb.Math.Soc. 25 (1982), 209-216.
5. E. Artin, Geometric Algebra, Willey-Interscience, New York, 1957.
6. A.Bak, On modules with quadratic forms, in Springer Lecture Notes Math. 108 (1969), 55-66:
7. A.Bak, The stable structure of quadratic modules, preprint, 1971
8. H. Bass, K-theory and stable algebra, IHES Publ.Math. 22 (1964), 485-544; 5-60.
9. H. Bass, Unitary algebraic K-theory, in Springer Lecture Notes Math. 343 (1973), 57-205 .
10. H. Bass, L_{3} of finite abelian groups, Ann. Math. 99 (1974), 118-153.
11. H.Bass, J.Milnor and J.-P.Serre, Solution of the congruence subgroup problem for SL $_{\mathbf{n}}(\mathrm{n} \geq 3)$ and $\mathrm{Sp}_{2 \mathrm{n}}(\mathrm{n} \geq 2)$, IHES Publ.Math. 33 (1967), 59-137.
12. H.Bass and W.Parson, Some hybrid symplectic group phenonema, J. Algebra .53:2 (1978), 327-333.
13. C.N. Chang, The structure of the symplectic group over an unramified dyadic field, J. Algebra 30 (1974), 42-50. MR 49\#9096.
14. C.N. Chang, The structure of symplectic groups over the integers of dyadic fields, J. Algebra 34 (1975), 172-187. MR 52\#592.
15. C.N. Chang, The structure of the symplectic group over semi-local domains, J.Algebra 35 (1975), 457-476. MR 51\#5793.
16. C.N. Chang and C.K. Cheng, Symplectic groups over principal ideal domains, J.Algebra 41 (1976), 455-472 . MR 54\#12649.
17. D.L.Costa and G.E. Keller, On the normal subgroups of $\operatorname{SL}(2, A)$, preprint.
18. P.M.Cohn, On the structure of GL_{2} of a ring, IHES Publ. Math. 30 (1966), 5-53.
19. J.Dennin and D.L. MccQuillan, A note on the classical groups over semi-local rings, Proc.Roy.Irish Acad. S.A. 68 (1969), 1-4. RZh 1970.2A220, 3A249.
20. L.E.Dickson, Theory of linear groups in arbitrary field Trans Amer. Math. Soc 2 (1901), 363-394.
21. J.Dieudonne, La géomérrie des groupes classiques, 3nd ed. Erg.der Math.und Grenz. Band 5, Springer Verlag 1971.
22. F.Grunewald and S.Schwemer, Free non-abelian quotient of SL_{2} over the order of imaginary quadratic number field, J.Algebra 69 (1981), 298-304,
23. W.Klingenber, Symplectic groups over local rings, Am. J. Math. 85 (1963), 232-240.
24. V.LKopeiko, Stabilization of symplectic groups over polynomial rings, Mat.Sb 106:1 (1978), 94-107.
25. N.H.J. Lacroix, Two-dimensional linear groups over local rings, Can.J.Math. 21 (1969),106-135. MR 38\#5939.
26. N.H.J. Lacroix and C.Levesque, Sur les sous-groupes normaux de SL_{2} sur un anneau local, Can. Math. Bull. 26:2 (1983), 209-219.
27. A.W.Mason, Lattice subgroups of normal subgroups of genus zero of the modular group, Proc.London Math.Soc. 24 (1972), 449-469. MR\#3635.
28. A.W.Mason, Anomalous normal subgroups of the modular group, Comm. Algebra 11 (1983), 2555-2573.
29. A.W.Mason, Anomalous normal subgroups of $\mathrm{SL}_{2} \mathrm{~K}[\mathrm{x}]$, Quart.J.Math. 36:143 (1985) 345-358.
30. A.W.Mason, Free quations SL $_{2}$, Proc.Cambr.Phyl.Soc. 101:3 (1987). 421-429.
31. A.W.Mason, $\mathrm{On} \mathrm{GL}_{2}$ of a local ring in which 2 is not a unit, Can.Math.Bull. 26:2 (1987), 209-219. Z 589.20032.
32. G.Maxwell, Infinite symplectic groups over rings, Comment.Math.Helv. 47 (1972), 254-259.
33. B.R. McDonald, Geometric algebra over local rings, New York-Basel, Marcel Dekker, 1976.
34. B.R. McDonald, Linear algebra over commutative rings, New York-Basel, Marcel Dekker,1984.
35. B.R. McDonald and Kirkwood B., The symplectic group over a ring with one in its stable range, Pacific J.Math. 92:1 (1981), 11-125.
36. D.L. McQuillan, Class of normal congruence subgroups of the modular group, Am.J.Math. 87 (1965), 285-296,
37. J.L. Mennicke, Zur Theorie der Siegelschen Modulkgruppe, Math.Ann. 159 (1965), 115-129; MR 31 \#5903.
38. B.Fine and M.Newman,The normal subgroup structure of the Picard group Trans. Amer. Math. Soc 302:2 (1987), 769-786.
39. M.Newman, Normal congruence subgroups of the modular group, Am.J.Math. 85 (1963), 419-427.
40. M.Newman, A complete description of normal subgroups of genus one of the modular group, Am.J.Math. 86 (1964), 17-24.
41. M.Newman, Free subgroups and normal subgroups of the modular group, Ill.Math.J. 8 (1964), 262-265.
42. O.T. O'Meara, Lectures on symplectic groups, Amer. Math. Soc. Math.Surveys, No 16, 1978.
43. C.R. Riehm, Structure of the symplectic group over a valuation ring, Am.J.Math. 88 (1966),106-128.
44. E.F. Robertson, Some properties of $\mathrm{Sp}_{\Omega}(\mathrm{R})$, J.London Math.Soc. (2)4 (1971), 65-78.
45. J.-P. Serre, Le proble`me des groupes de congruences pour SL $_{2}$, Ann. Math. 92 (1970),489-527.MR42\#7671=225-3822.
46. R. Steinberg, Lectures on Chevalley groups, Yale U. 1967.
47. G.Taddei, Invariance du sous-groupe symplectique elementarire dans le groupe symplectique sur un anneau, C.R. Acad.Sc. Paris 295 (1982), 1-47.
48. G.Taddei, Normalité des groupes élémentare dans les groupes de Chevalley sur un anneau,Cont.Math. Amer. Math. Soc 55, part II (1986), 693-710.
49. X.P. Tang and J.B. An, The structure of symplectic groups over semilocal rings, Acta Math.Sinica (N.S.) 1:1 (1985), 1-15.

Vaserstein Normal Symplectic 34
50. S. Tazhetdinov, Subnormal structure of two-dimensional linear groups over local rings, Alg. Logic 22:6 (1983), 707-713.
51. S. Tazhetdinov, Subnormal structure of symplectic groups over local rings, Mat.Zarmetki 37:2 (1985), 289-298= Math.Notes, p.164-169.
52. S. Tazhetdinov, Subnormal structure of two-dimensional linear groups over rings that are close to fields Alg. Logic $24: 4,414-425$
53. S. Tazhetdinov, Normal structure of symplectic groups over rings of stable rank 1, Mat.Zametki 39:4 (1986),512-517.
54. L.N. Vaserstein, Stabilization for unitary and orthogonal groups over a ring with involution, Mat.Sb. 81:3 (1970), 328-351 = Math.USSR Sbornik 10, p.307-326.
55. L.N. Vaserstein, On the group SL_{2} over Dedekind rings of arithmetic type, Mat.Sbornik 89:2 (1972), 312-322 = Math. USSR Sbornik 18, 321-332.MR 55\#8253. Z359.20027. RZh 1973.2A369.
56. L.N. Vaserstein, Stabilization for classical groups over rings, Mat.Sbornik 93:2 (1974), 268-295 = Math. USSR Sbomik 22, 271-303.MR 49\#2974. Z287.18015, 305.18007. RZh 1974.9A454.
57. L.N. Vaserstein, On normal subgroups of GL_{n} over a ring, in Springer Lecture Notes Math. 854 (1980), 456-465.
58. L.N. Vaserstein, On normal subgroups of Chevalley groups over commutative rings, Tohoku Math. J. 38 (1986), 219-230.
59. L.N. Vaserstein, Normal subgroups of the general linear groups over Banach algebras, J. Pure Appl. Algebra 41:1 (1986), 99-112. Z589.20030.
60. L.N. Vaserstein, Normal subgroups of orthogonal groups over commutative rings, Amer. J. Math. to appear.
61. L.N. Vaserstein and A.Mikhalev, On normal subgroups of orthogonal groups over rings with involution, Algebra i Log. 9:6 (1970), 629-632 = Algebra \& Logic 9, p.375-377.
62. L.N. Vaserstein and A.A.Suslin, Serre's problem on projective modules over polynomial rings and algebraic K-theory, Izv.Akad.Nauk, ser.mat. 40:5 (1976), 993-1054 = Math.USSR Izv. 10:5, 937-1001. MR 56\#5560. Z338.13015, 319.13009. RZh 1972.2A459.

