Normal Subgroups of Symplectic Groups

Over Rings

L.N. VASERSTEIN

Max-Planck-Institut für Mathematik Gottfried-Claren-Str. 26 5300 Bonn 3 Federal Republic of Germany Department of Mathematics The Pennsylvania State University University Park, PA 16802 U.S.A.

MPI/88-5

.

.

Normal Subgroups of Symplectic Groups Over Rings

L.N. VASERSTEIN

Department of Mathematics, Penn State University, University Park, PA 16802, USA and Max-Planck-Institut für Mathematik, Bonn

Abstract. We consider a module with an alternating form over a commutative ring. Under certain conditions, which hold, for example, when the form is non-singular and the module is projective of rank ≥ 6 and contains a unimodular vector, we describe all subgroups of the symplectic group which are normalized by symplectic transvections. This generalizes many previous results of Dickson, Abe, Klingenberg, Bak, et el.

Key words: mormal subgroups, symplectic groups, alternating forms.

1. Introduction.

Let R be a commutative associative ring with 1. For any integer $n \ge 1$, let $\text{Sp}_{2n}R$ be the standard symplectic group and $\text{Ep}_{2n}R$ its subgroup generated by elementary symplectic matrices [11], [37], [54], [62].

When R is a field, Dickson [20] proved that $\text{Sp}_{2n}R = \text{Ep}_{2n}R$ (by the way, the term "symplectic" was coined later, so Dickson wrote about "abelian linear groups SA(2n, R)"). Moreover, he showed that this group modulo its center (which consists of $\pm 1_{2n}$) is simple with the following three exeptions: R consists of 2 elements and n = 1 (in this case $\text{Sp}_{2n}R = \text{SL}_2R$ is isomorphic to the symmetric group S_3); R consists of 3 elements and n = 2 (in this case $\text{Sp}_{2n}R$ is isomorphic to the alternating group A_4) R consists of 2 elements and n = 2 (in this case, $\text{Sp}_{2n}R = \text{Sp}_4R$ is isomorphic to the symmetric group S_6). In all these 3 cases, the commutator subgroup of $\text{Sp}_{2n}R = \text{Ep}_{2n}R$ is a proper non-central normal subgroup. See also [5], [21], [42] [46] about symplectic groups over fields.

Klingenberg [23] described all normal subgroups of $\text{Sp}_{2n}R$ for a local ring R such that the characteristic of the residue field R/rad(R) is not 2 and its cardinality is not 3. Abe [1] reduced the conditions on the local ring R to the following condition: the residue field has more than 3 elements when n = 1 and more than two elements when n = 2. When $2R \neq R$, his answer involves some additive subgroups of R which are more general than ideals (he called them special submodules associated with ideals; later [3] the result were extended to other rings R). See also [13]-[17], [19], [25] [26] [31], [33]-[35], [43], [49]-[53] about Sp_{2n} over local, semilocal, and other "zero-dimensional" rings R.

Mennicke [37] and Bass-Milnor-Serre [11] described all normal subgroups of $Sp_{2n}R$ when R is the ring of integers \mathbb{Z} or, more generally, a Dedikind ring of arithmetic type and $n \ge 2$. Note that the normal subgroup structure of $Sp_2R = SL_2R$ is very different and essentially intractable even when $R = \mathbb{Z}$ [27] - [30], [39], [40], [38] or another Dedikind ring of arithmetic type with finite GL_1R [18], [22], [41], [45]. The normal subgroup structure of $\text{Sp}_{2n}R$ for any R with "infinite" n was studied in [4], [9], [32], [44], [61]. Bak [6] announced a description of all subgroups of $\text{Sp}_{2n}R$ when $n \ge 3$ and is greater than a certain dimension of R; see [7] for proofs.

Kopeiko [24] showed that $Ep_{2n}R$ is normal in $Sp_{2n}R$ for any R when $n \ge 2$. Later this was redescovered in part by Taddei [47].

Using localization and patching, a complete description of all subgroups H of $\text{Sp}_{2n}R$ which are normalized by $\text{Ep}_{2n}R$, was obtained in [58] in general context of Chavallwey groups, provided that $n \ge 2$, R has no residue fields of 2 elements in the case n = 2, and

(1) for every element z of R there are r, s in R such that $z = 2rz + sz^2$.

The condition (1) is necessary for the standard description of those H's in terms of ideals of R, as can be seen from the case of local ring R (see [1], [3]). It was claimed in [58] that without the condition (1), a complete description of H's is possible in more general terms. This was proved by Abe [2].

Here we improve on Abo's result extending it to symplectic groups of alternating forms F on R-modules V. Our proofs here use localization and patching. The approach to description of normal subgroups was introduced in [57] for general linear groups $GL_n R$, $n \ge 3$. Later it was used for orthogonal [60] and Chevalley [2], [46], [58] groups.

As a departure from the setting of [6], [7], [9], our R-module V need not be finitely generated or projective, and our alternating form F need not be non-singular. Instead of non-singularity, we impose another condition which is equivalent to non-singularity in the case of a finitely generated projective V.

Singular F on a finitely generated free V over local and semilocal rings R was studied in [13]-[16], [43]. The answer inviolves tableaux of ideals.

Vaserstein

Normal

l Symplectic

2. Statement of results

A alternating form F on an R-module V is a bilinear form F on V such that F(v, v) = 0for all v in V. We do not require that $F = Q - Q^T$, i.e. F(u, v) = Q(u, v) - Q(v, u) for all u, v in V, where Q is a bilinear form on V, although such a form Q exists when V is projective. Note that any alternating form F is skew-symmetric, i.e. F(u, v) = -F(v, u) for all u, v in V.

The symplectic group $Sp_F R$ is the group of all automorphisms of the *R*-module *V* which preserve an alternating form *F*. Let $Gp_F R$ denote the group of all automorphisms which multiply the form by a unit of *R*.

For every e, u in V such that F(e, u) = 0 and any x in R we define (following [56]) $\tau(e, u, x)$ in $\text{Sp}_F R$ by

 $\tau(e, u, x)v = v + uF(e, v) + eF(u, v) + exF(e, v).$

An element v of V is called F-unimodular if F(V, v) = R, i.e. F(u, v) = 1 for some u in V. The elements $\tau(e, u, x)$ as above with unimodular e are called symplectic transvections. We denote by $\text{Ep}_F R$ the subgroup of $\text{Sp}_F R$ generated by all symplectic transvection. Clearly (see (14) below) $\text{Ep}_F R$ is normal in $\text{Gp}_F R$. Here we give another description of $\text{Ep}_F R$, where a hyperbolic pair means a pair u, v of vectors with F(u, v) = 1.

PROPOSITION 2. The group $\text{Ep}_F R$ coincides with the subgroup of $\text{Sp}_F R$ generated by all elements $\tau(e, 0, r)$, where $r \in R$ and $e \in V$ is either F-unimodular or orthogonal to a hyperbolic pair in V.

The main goal of this paper is to describe all subgroups H of $\operatorname{Gp}_F R$ normalized by $\operatorname{Ep}_F R$. It is much easier to describe the centralizer of $\operatorname{Ep}_F R$. If $\operatorname{Ep}_F R$ is trivial, its centralizer in $\operatorname{Gp}_F R$ is $\operatorname{Gp}_F R$. Otherwise, i.e. when an F-unimodular vector in V exists, i.e. the Witt index of F is at least 1, we will show in Section 3 below that the centralizer consists of all scalar authomorphisms of V: - . .

PROPOSITION 3. If V contains an F-unimodular vector, then the centralizer of $\text{Ep}_F R$ in $\text{Gp}_F R$ consists of all scalar authomorphisms of V, and hence coincides with the center of $\text{Gp}_F R$.

We define a symplectic ideal of R as a pair (A, B), where A is an ideal of R and B is an additive subgroup of A such that r^2b , 2a, $a^2r \in B$ for all r in R, b in B, and a in A.

Note that the condition (1) above is equivalent to the following: B = A for every symplectic ideal (A, B) of R. Under different names, our symplectic ideals appeared first in [1], and then in [2]) [3], [6], [7], [9], [10], [12], [31], [54], [56].

Given any symplectic ideal (A, B) of R and any vector e in V, we define T(e;A, B) as the subgroup of $\operatorname{Ep}_{F}R$ generated by all $\tau(e, 0, b)$ with b in B and by all $\tau(e, ua, 0)$ with a in A and u in V such that F(e, u) = 0. It is easy to check (see the identity (12) below) that T(e;A, B) consists of all $\tau(e, u, r)$ with $u \in e^{\perp}A$, $r \in |u|$, where $e^{\perp} = \{v \in V : F(e, v) = 0\}$ is the orthogonal complement of e in V and where the map 11: $VA \rightarrow A/B$ is defined by

 $|\sum_{1 \le i \le n} v_i a_i| = B + \sum_{1 \le i < j \le n} F(v_i a_i, v_j a_j), \text{ where } v_i \in V, a_i \in A.$

It is easy to check that this is well-defined, i.e. $|v| \in A/B$ does not depend on choice of presentation $v = \sum v_i a_i$.

Let $\operatorname{Ep}_F(A, B)$ denote the subgroup of $\operatorname{Ep}_F R$ generated by all T(e; A, B), where *e* ranges over all *F*-unimodular vectors in *V*. Clearly, $\operatorname{Ep}_F(A, B)$ is a normal subgroup of $\operatorname{Sp}_F R$, and $\operatorname{Ep}_F(R, R) = \operatorname{Ep}_F R$.

THEOREM 4. Assume that dim $(F \mod P) \ge 4$ for every maximal ideals P of R. Let e_1, e_2 be vectors in V with $F(e_1, e_2) = 1$. Then the group $\operatorname{Ep}_F R$ is generated by its subgroups $T(e_1, R, R)$ and $T(e_2, R, R)$. Moreover, for any symplectic ideal (A, B) of R, the group $\operatorname{Ep}_F(A, B)$ coincides with the normal subgroup of $\operatorname{Ep}_F R$ generated by $T(e_1, R, R)$.

The condition dim($F \mod P$) $\ge 2m$ (used in Theorem 4 with m = 2) means that there are vectors v_i in V such that the matrix $(F(v_i, v_j)_{1 \le i, j \le 2m})$ over R is invertible modulo P. Since F is alternating, this number 2m must be even. In the case of a non-singular F, the condition is equivalent to dim_{R/P}V/VP $\ge 2m$.

The dimension condition in the Theorem 3 is necessary. Without this condition, the first conclusion would give that $E_2R = Ep_2R$ is normal in $GL_2R = Gp_2R$, which is not true in general [18]. However E_2R is normal in GL_2R when $E_2R = SL_2R$ (which is the case under the first Bass stable range condition [8] and for some other rings [55]) or R is a topological ring with GL_1R open in R [59].

We define $\operatorname{Gp}_F(A, B)$ to be the set of all g in $\operatorname{Gp}_F R$ such that there is $\alpha \in \operatorname{GL}_1 R$ and $c \in R$ such that $(c^2 - \alpha)R \subset B$, $F(gu, gv) = \alpha F(u, v)$, $gv - vc \in VA$ and F(vc, gv) + B = |gv - vc| for all $u, v \in V$. It is easy to check that $\operatorname{Gp}_F(A, B)$ is a normal subgroup of $\operatorname{Gp}_F(R, R) = \operatorname{Gp}_F R$. The group $\operatorname{Gp}_F(0, 0)$ is the group of scalar automorphisms of V.

For any two subgroups H_1 and H_2 of a group G we denote by $[H_1, H_2]$ the subgroup of G generated by all commutators $[h_1, h_2] = h_1 h_2 h_1^{-1} h_2^{-1}$ with h_1 in H_1 and h_2 in H_2 . It is easy to check that $[H_1, H_2]$ is normalized by both H_1 and H_2 . THEOREM 5. Assume that V contains an F-unimodular vector, that dim(F mod P) ≥ 4 for every maximal ideals P of R, and that dim(F mod P) ≥ 6 for every ideal P of index 2 in R. Then Ep_FR is generated by its subgroups $\tau(e, 0, R)$, where e ranges over all F-unimodular vectors e in V. Moreover, for any symplectic ideal (A, B) of R, $Gp_F(A, B)$ is the centralizer of Ep_FR in Gp_FR modulo $Ep_F(A, B)$, i.e. it consists of all g in Gp_FR such that $[g, Ep_FR] \subset Ep_F(A, B)$. COROLLARY 6. Under the conditions of Theorem 5, for any symplectic ideal (A, B) of R, every subgroup H of $Gp_F(A, B)$ containing $Ep_F(A, B)$ is normalized by Ep_FR . Moreover, for any symplectic tranvection g in Gp_FR and any h in H the commutator [g, h] is product of symplectic transvections in H.

Indeed, by Theorem 5, $[Ep_F R, H] \subset [Ep_F R, Gp_F(A, B)] \subset Ep_F(A, B) \subset H$.

THEOREM 7. Under the conditions of Theorem 5,

 $\operatorname{Ep}_{F}(A, B) = [\operatorname{Ep}_{F}(A, B), \operatorname{Ep}_{F}R] = [\operatorname{Ep}_{F}(A, B), \operatorname{Sp}_{F}R] = [\operatorname{Gp}_{F}(A, B), \operatorname{Ep}_{F}R]$ for every symplectic ideal (A, B) of R. Since the group $\text{Sp}_4 \mathbb{Z}/2\mathbb{Z} = \text{Ep}_4 \mathbb{Z}/2\mathbb{Z}$ is not perfect, we have to require that the dimension of F modulo P is not 4 for any ideal P of index 2 in R. Note that the group $\text{Ep}_2 R = \text{E}_2 R$ is not perfect for small fields and for many other rings R.

By Corollary 6, every subgroup H of $\operatorname{Gp}_F(A, B)$ containing $\operatorname{Ep}_F(A, B)$ is normalized by $\operatorname{Ep}_F R$. We want to prove the converse: for every subgroup H of $\operatorname{Gp}_F R$ which is normalized by $\operatorname{Ep}_F R$ there is a symplectic ideal (A, B) of R such that $\operatorname{Ep}_F(A, B) \subset H \subset \operatorname{Gp}_F(A, B)$. For this to be true, we will need some conditions on F, besides the existence of an F-unimodular vector in V.

First of all, as we did in Theorem 6, we want to exclude the case when $V = R^2$. In the case, there are non-standard normal subgroups of $\operatorname{Sp}_F R = \operatorname{SL}_2 R$ (even for $R = \mathbb{Z}$ [27], [28], [30], [36], [39], [40], [41] and other small dimensional rings [18], [22], [29], [38]) unless we impose rather severe restrictions on R [17], [45], [59]. Since the group $\operatorname{Sp}_4 \mathbb{Z}/2\mathbb{Z}$ has a non-standard normal subgroup (its commutator subgroup which is proper subgroup), we have to require that the dimension of F modulo P is not 4 for any ideal P of index 2 in R

Finally, we have to impose a condition on F which is weaker than its non-singularity. Namely, we will assume that $v \in VF(v, V)$ for every vector v in V. That is, for every vector v there is a finite set of vectors u_i , w_i in V such that $v = \sum w_i F(v, u_i)$. When V is finitely generated projective, this condition is equivalent to the condition that F is non-singular, i.e. the assignement $u \mapsto F(u, ?)$ gives an bijection $V \to \operatorname{Hom}_R(V, R)$. In general, the condition means that the map $V/VA \to \operatorname{Hom}_{R/A}(V/A, R/A)$ is injective for every ideal A of R.

Here is the main result of this paper.

THEOREM 8. Under the conditions of Theorem 5, assume that $v \in VF(v, V)$ for every vector vin V. Then a subgroup H of $\operatorname{Gp}_F R$ is normalized by $\operatorname{Ep}_F R$ if and only if $\operatorname{Ep}_F(A, B) \subset H$ $\subset \operatorname{Gp}_F(A, B)$ for a symplectic ideal (A, B) of R, and if and only if the commutator [g, h] is a product of symplectic transvections in H for every symplectic transection g in $\operatorname{Gp}_F R$ and every h in H. Vaserstein

Symplectic

3. Proof of Proposition 2

First we list some easy to check relations for $\tau(e, u, x)$. Let e, u, v be in V, x, y in R, and g in Gp(q, R). Assume that F(e, u) = F(e, v) = 0. Then:

(9) $\tau(e, u, x)v = v$ when F(u v) = 0; in particular, $\tau(e, u, x)e = e$; (10) $\tau(ey, u, x) = \tau(e, uy, xy^2)$; (11) $\tau(e, u + ey, x) = \tau(e, u, x + 2y)$; (12) $\tau(e, u, 0) = \tau(u, e, 0)$; (13) $\tau(e, u, x)\tau(e, v, y) = \tau(e, u + v, x + y + F(u, v))$; in particular, $\tau(e, u, x)^{-1} = \tau(e, -u, -x)$; (14) $g\tau(e, u, x)g^{-1} = \tau(ge, gu/\alpha(g), x/\alpha(g)))$ for every g in $\text{Gp}_F R$, where $\alpha(g) \in$ $\text{GL}_1 R$ is such that $F(gw, gw') = \alpha(g)F(w, w')$ for all w, w' in V,

in particular,

(15) when ge = e and $g \in \text{Sp}_F R$ (i.e. $\alpha(g) = 1$), we have $g\tau(e, u, x)g^{-1} = \tau(e, gu, x)$ and $[g, \tau(e, u, x)] = \tau(e, gu, x)\tau(e, -u, -x) = \tau(e, gu - u, F(u, gu)).$

Now we are ready to prove Proposition 2. Let H be the subgroup of $\text{Ep}_F R$ generated by the subgroups $\tau(e, 0, R)$, where e ranges over all vectors e in V which are either F-unimodular or orthogonal to a hyperbolic pair in V. Clearly, H is a normal subgroup of $\text{Gp}_F R$. We want to prove that $H = \text{Ep}_F R$.

By the definition of $\text{Ep}_F R$, it contains $\tau(e, 0, R)$ for every F-unomodular vector e in V. Let us show that $\text{Ep}_F R \ni \tau(e, 0, r)$ when $r \in R$ and e is orthogonal to a hyperbolic pair e_1 , e_2 in V. Indeed,

 $\tau(e, 0, r) = \tau(e, e_1, 0) \tau(e, e_2 r, 0) \tau(e, -e_1 - e_2 r, 0)$

 $= \tau(e_1, e, 0) \tau(e_2, er, 0) \tau(e_1 + e_2 r, -e, 0) \in Ep_F R$ by (10), (12), (13), because the vectors e_1, e_2 , and $e_1 + e_2 r$ are F-unimodular.

Thus, $H \subset Ep_F R$. Let us show now that $Ep_F R \subset H$.

By the definition of $\operatorname{Ep}_F R$, it suffices to show that $H \supset T(e, R, R)$ for any *F*-unimodular vector e in V, i.e. $H \ni \tau(e, u, r)$ for an arbitrary symplectic transvection $\tau(e, u, r)$, where $u \in e^{\perp}$ and $r \in R$.

We pick a vector e' in V with F(e, e') = 1, and set r' = F(u, e'), v = u - er'. Then u = er' + v with v orthogonal to both e and e'. By (11),(13),

 $\tau(e, u, r) = \tau(e, v, 0) \tau(e, 0, r + 2r').$

So it remains to show that $\tau(e, v, 0) \in H$.

By (15), $H \ni [\tau(e, 0, 1), \tau(v, e', 0)] = \tau(v, e, -1)$, hence $H \ni \tau(v, e, -1) \tau(v, 0, 1) = \tau(v, e, 0) = \tau(e, v, 0)$.

4. Proof of Proposition 3

In this section we assume that V contains an F-unimodular vector. We fix a hyperbolic pair e_1, e_2 in V. So $F(e_1, e_2) = 1$ and $e_1R + e_2R$ is a hyperbolic plane in V. Let $U = (e_1R + e_2R)^{\perp}$ denote the orthogonal complement of $e_1R + e_2R$ in V. So $V = (e_1R + e_2R) \perp U$.

LEMMA 16. Under the conditions of Theorem 2, the centralizer of $T(e_1, R, R)$ in $\text{Gp}_F R$, is Z_1 $\text{Gp}_F(0,0)$ where $\text{Gp}_F(0,0) \subset \text{Gp}_F R$, is the subgroup of all scalar authomorphisms of V and Z_1 is the center of $T(e_1, R, R)$, which consists of $\tau(e_1, u, x)$ in $T(e_1, R, R)$, with 2F(u, V) = 0.

Proof. Let g be in $\operatorname{Gp}_F R$ and commute with each element of $T(e_1, R, R)$. In particular, g $\tau(e_1, 0, 1) = \tau(e_1, 0, 1)g$, hence $g\tau(e_1, 0, 1)e_2 = \tau(e_1, 0, 1)ge_2$, i.e. $ge_2 + ge_1 = ge_2 + e_1F(e_1, ge_2)$, i.e. $ge_1 = e_1F(e_1, ge_2)$. Since the vector ge_1 is F-unimodular, it follows that $F(e_1, ge_2)R = R$. Replacing g by its scalar multiple $gF(e_1, ge_2)^{-1}$, we can assume that $ge_1 = e_1$. Since $F(ge_1, ge_2) = 1$, the vector ge_2 has the form $ge_2 = e_2 + e_1c + w$ with $c \in R$ and $w \in U$. So $ge_2 = \tau(e_1, w, c)e_2$. Set now $h = \tau(e_1, w, c)^{-1}g$. Then $he_1 = e_1$ and $he_2 = e_2$, hence hU = U. The equality $g\tau(e_1, u, x)g^{-1} = \tau(e_1, u, x)$ for an arbitrary $\tau(e_1, u, x)$ in $T(e_1, R, R)$, with u in U takes the form

 $\tau(e_1, hu, x + 2F(w, hu)) = \tau(e_1, u, x)$, hence $h = 1, g = \tau(e_1, w, c)$, and 2F(w, U) = 0. Thus, g (after it was multiplied by a scalar) belongs to the center of $T(e_1, R, R)$. Lemma 13 is proved.

Remark. The intersection of $Gp_F(0, 0)$ and Z_1 is trivial.

Notation. For any vectors e, e' in V, let E(e, e'; R) denote the subgroup of $Sp_F R$ generated by T(e, R, R) and T(e', R, R).

COROLLARY 17. The centralizer of $E(e_1, e_2; R)$ in $Gp_F R$. coincides with the group $Gp_F(0,0)$ of scalar authomorphisms of V. In particular, $Gp_F(0,0)$ is exactly the center of $Gp_F R$.

Proof. Let $g \in Gp_F R$ commute with every element of $T(e_1, R, R)$ and $T(e_2, R, R)$. By Lemma 13, $g \in T(e_1, R, R) \operatorname{Gp}_F(0,0) \cap T(e_2, R, R) \operatorname{Gp}_F(0,0) = \operatorname{Gp}_F(0,0)$. (Since $ge_2 \in e_2R$, the $T(e_1, A, A)$ -component of g is 1, so $g \in \operatorname{Gp}_F(0,0)$, i.e. g is multiplication by an invertible scalar on V.)

Remark. Corollary 17 contains Proposition 2, because $E(e_1, e_2; R) \subset Ep_F R$.

THEOREM 18. Assume that V contains an F-unimodular vector. Let (A, B) be a symplectic ideal of R and $g \in \text{Gp}_F R$. If $[g, \text{Ep}_F R] \in \text{Gp}_F(A, B)$, then $g \in \text{Gp}_F(A, B)$.

Proof. Applying Proposition 2 to R/A, V/VA, and $F \pmod{A}$ instead of R, V, and F and using that the map $\operatorname{Ep}_{F}(R) \to \operatorname{Ep}_{F}(R/A)$ is onto, we conclude that g is a scalar modulo A, i.e. there is $c \in R$ such that $gv - cv \in VA$ for all $v \in V$. In prticular $c^{2} - \alpha(g) \in A$, where $\alpha(g) = F(ge_{1}, ge_{2}) \in \operatorname{GL}_{1}R$ is such that $F(gu, gv) = \alpha(g) F(u, v)$ for all $u, v \in V$.

We claim now that $(c^2 - \alpha(g))R \subset B$ and that $F(e_1c, ge_1) + B = |ge_1 - e_1c|$.

To prove this, we write $ge_1 = e_1x + e_2y' + w$ with $x = F(ge_1, e_2)$, $y' = F(e_1, ge_2)$, and $w \in U$. We have $x \cdot c \in A$, $y' \in A$, $w \in UA$. Now we pick $x' \in R$ such that $xx' \cdot 1 \in A$ and $z \in |wx'|$. We set $g' = \tau(e_2, wc', z)$ with $\tau(e_2, wc', z) \in Ep_F(A, B)$. We have $g'e_1 = \tau(e_2, wc', z)ge_1 = \tau(e_2, wc', z)$ ($e_1x + e_2y' + w$) = $e_1x + e_2y + wa$ with $a = 1 - xx' \in A$ and $y = y' \cdot z \in A$.

Our claim takes the following form: $(x^2 - \alpha(g))R \subset B$ and that $xy \in B$.

For an arbitrary r in R we set $h = [g', \tau(e_1, 0, r)] \in \operatorname{Gp}_F(A, B)$. Then $he_2 = \tau(g'e_1, 0, r/\alpha(g))(e_2 - e_1r) = e_2 - e_1r + g'e_1 F(g'e_1, e_2 - e_1r) r / \alpha(g))$ $= e_2(1 + rxy/\alpha(g) + r^2y^2/\alpha(g)) + e_1(rx^2/\alpha(g)) - r + r^2xy/\alpha(g)) + war(x + ry)/\alpha(g).$

Since $Ry^2 \subset B$, the equality $|he_2 - e_2| = F(he_2, e_2) + B$ takes the form $rx^2/\alpha(g) - r \in B$, i.e. $r(x^2 - \alpha(g)) \in B$.

We have proved that $(x^2 - \alpha(g))R \subset B$ which is equivalent to $(c^2 - \alpha(g))R \subset B$ because $x - c \in A$.

Now we consider
$$h^{-1}e_2 = [\tau(e_1, 0, r), g']e_2 = \tau(e_1, 0, r) \tau(g'e_1, 0, -r/\alpha(g))e_2$$

= $\tau(e_1, 0, r) (e_2 - g'e_1 F(g'e_1, e_2)r/\alpha(g) = e_2 - g'e_1 rx/\alpha(g) + e_1 F(e_1, e_2 - g'e_1 rx/\alpha(g))r$
= $e_2(1 - rxy/\alpha(g)) + e_1(r - rx^2/\alpha(g) - xyr^2/\alpha(g)) - warx/\alpha(g).$

Since $Ry^2 \subset B$ and $(1 - x^2/\alpha(g))R \subset B$, the equality $|h^{-1}e_2 - e_2| = F(h^{-1}e_2, e_2) + B$ takes the form $xyr^2/\alpha(g) \in B$. Setting r = x, we obtain that $xy \in B$.

Thus, our claim is proved. Similarly, F(ec, ge) + B = |ge - ec| for every F-unimodular vector e in V. Note that V is spanned by F-unimodular vectors. Namely, $v = e_1s + e_2t + w = e_1 + e_2t + w + e_1(s-1)$ for an arbitrary vector v in V, where $s, t \in R, w \in U$, and vectors $e_1 + e_2t + w$ and e_1 are F-unimodular. So F(ec, ge) + B = |ge - ec| for every vector e in V. Thus, we have proved that $g \in Gp_F(A, B)$.

Remark. Theorem 18 with A = 0 implies Proposition 2.

5. Proof of Theorem 4

Let e_1, e_2 and $U = (e_1R + e_2R)^{\perp}$ be as defined before Lemma 16. For any symplectic ideal (A, B) of R and any two vectors e, e' in V, let E(e,e'; R, A, B) denote the normal subgroup of E(e,e'; R) (see the notation before Corollary 17) generated by T(e; A, B) and T(e', A, B). In particular, E(e,e'; R, R, R) = E(e,e'; R)

We want to prove that $E(e_1, e_2; R, A, B) = Ep_F(A, B)$, i.e. that $E(e_1, e_2; R, A, B)$ does not depend on choice of a hyperbolic pair e_1, e_2 under the conditions of Theorem 4. LEMMA 19. For any symplectic ideal (A, B) of R, any two vectors $e, e^- \in V$, and any vector $e^{-} \in V$ orthogonal to e, e^- we have $E(e,e^-; R, A, B) \supset T(e^{-}, As^2, Bs^2)$, where $s = F(e,e^-)$.

Proof. Let $\tau(e^{\prime\prime}, uas^2, bs^2) \in T(e^{\prime\prime}, As^2, Bs^2)$, where $u \in V, F(e^{\prime\prime}, u) = 0, a \in A, b \in B$. We have to prove that $\tau(e^{\prime\prime}, uas^2, bs^2) \in E(e,e^{\prime}; R, A, B)$.

Case 1: u = 0. Then $\tau(e^{\prime\prime}, uas^2, bs^2) = \tau(e^{\prime\prime}, uas^2, bs^2) = \tau(e^{\prime\prime}, 0, bs^2) = \tau(e^{\prime\prime}, -ebs, bs^2)$ $\tau(e^{\prime\prime}, ebs, 0) \in E(e, e^{\prime}; R, A, B)$, because $\tau(e^{\prime\prime}, -ebs, bs^2) = [\tau(e, 0, -b), \tau(e^{\prime\prime}, e^{\prime}, 0)] \in E(e, e^{\prime}; R, A, B)$, where $\tau(e^{\prime\prime}, e^{\prime}, 0) = \tau(e^{\prime}, e^{\prime\prime}, 0) \in T(e^{\prime}, R, R)$ by (12), and $\tau(e^{\prime\prime}, ebs, 0) = \tau(e, e^{\prime}bsz, 0) \in T(e; A, B)$ also by (12).

General case. Set $r = F(e, u) \in R$, $r' = F(e', u) \in R$ and w = us - e'r + er'. Then w is orthogonal to e, e', and e''.

By (13), $\tau(e^{\tau}t, uas^2, bs^2) = \tau(e^{\tau}, uas^2, bs^2)$

= $\tau(e^{-\tau}, was, 0) \tau(e^{-\tau}, e^{-\tau}ars, 0) \tau(e^{-\tau}, ear^{-\tau}s, 0) \tau(e^{-\tau}, 0, b^{-\tau}s^2)$, where $b^{-\tau} = b + rr^{-\tau}sa^2 \in B$. By (12), $\tau(e^{-\tau}, e^{-\tau}ars, 0) \in T(e^{-\tau}; Ax, Bx) \subset E(e, e^{-\tau}; R, A, B)$ and

 $\tau(e^{\prime\prime}, ear(s, 0) \in T(e; Ax, Bx) \subset E(e, e^{\prime}; R, A, B).$

By Case 1, $\tau(e, 0, b's^2) \in E(e, e'; R, A, B)$.

Moreover $\tau(e^{\prime\prime}, was, 0) = [\tau(e, wa, 0), \tau(e^{\prime\prime}, e^{\prime}, 0)] \in E(e, e^{\prime}; R, A, B)$, because $\tau(e^{\prime\prime}, e^{\prime}, 0) = \tau(e^{\prime}, -e^{\prime\prime}, 0) \in T(e^{\prime}, R, R)$ by (12).

Thus, $\tau(e^{t}, uas^2, bs^2) \in E(e,e^{t}; R, A, B)$.

COROLLARY 20. For any symplectic ideal (A, B) of R, any two vectors $e, e^{-} \in V$, and any two vectors $w, w^{-} \in V$ orthogonal to $e, e^{-} we$ have $E(e,e^{-}; R, A, B) \supset E(ws^{2}, w^{-}s^{2}; R, A, B)$, where $s = F(e,e^{-})$.

Proof. We have to prove that $ghg^{-1} \in E(e,e'; R, A, B)$ whenever $g \in E(ws^2, w's^2, R)$ and $h \in T(ws^2, A, B) \cup T(ws^2, A, B)$. By Lemma 19, $h \in E(e,e'; R, A, B)$ and $g \in E(e,e'; R, R, R) = E(e,e'; R)$. So, $ghg^{-1} \in E(e,e'; R, A, B)$.

LEMMA 21. Let P be a maximal ideal of R. Suppose that dim(F mod P) ≥ 4 . Let $e, e' \in V$ and $F(e, e') \in S = R \setminus P$. Then there is $s \in S$ such that $E(e_1, e_2; R, A, B) \supset T(e; As^2, Bs^2)$ for all symplectic ideals (A, B) of R.

Proof. We write e = v + u with $v \in e_1R + e_2R$ and $u \in U$.

If F(U, u) intersects S, then we find v in U with $F(u, v) = s_0 \in S$. By Corollary 20, $E(e_1, e_2; R, A, B) \supset E(u, v; R, A, B)$ and $E(u, v; R, A, B) \supset T(e; As_0^2, Bs_0^2)$. So

 $E(e_1, e_2; R, A, B) \supset T(e; As^2, Bs^2)$ with $s = s_0$.

If F(U, u) does not intersect S, i.e. $F(U, u) = F(V, u) \subset P$ then F(V, v) intersects S. We find a vecot v' in $e_1R + e_2R$ with $F(v, v') = s_1 \in S$, and a pair $w, w' \in U$ with $F(w, w') = s_2 \in S$. By Corollary 20,

 $E(e_1, e_2; R, A, B) \supset E(w, w'; R, A, B) \supset E(vs_2^2, v's_2^2; R, A, B)$. By Lemma 19, $E(vs_2^2, v's_2^2; R, A, B) \supset T(e; As_2^2s_1^8, Bs_2^2s_1^8).$ So $E(e_1, e_2; R, A, B) \supset T(e; As^2, Bs^2)$ with $s = s_2s_1^4 \in S$.

Now we can complete our proof of Theorem 4. We have to prove that $\tau(e, ua, b) \in E(e_1, e_2; R, A, B)$ for any *F*-unimodular vector $e \in V$, any vector $u \in V$ orthogonal to *e*, any $a \in A$, and any $b \in B$. By Lemma 21, for every maximal ideal *P* of *R* there is $s \in R$ outside *P* such that $E(e_1, e_2; R, A, B) \supset \tau(e, uaRs^2, 0)$. Writing 1 as a linear combination of those s^2 , we obtain an element of $E(e_1, e_2; R, A, B)$ of the form $\tau(e, ua, ra^2)$ with $r \in R$.

It remains to show that $\tau(e, 0, b') \in E(e_1, e_2; R, A, B)$ with $b'=b - ra^2 \in B$. By Lemma 21, for every maximal ideal P of R there is $s \in R$ outside P such that $\tau(e, 0, b'r^2s^2) \in E(e_1, e_2; R, A, B)$ for all $r \in R$. Writing 1 as the square of a linear combination of those s, and using that $E(e_1, e_2; R, A, B) \supset \tau(e, eb'R, 0) = \tau(e, 0, 2b'R)$, we obtain that $\tau(e, 0, b') \in E(e_1, e_2; R, A, B)$.

6. Proof of Theorem 5

To prove the first conclusion of the theorem we need only the following condition: dim $(F \mod P) \ge 6$ for every maximal ideal P of R of index 2. We denote by H the subgroup of $\operatorname{Ep}_F R$ generated by its subgroups $\tau(e, 0, R)$, where e ranges over all F-unimodular vectors e in V. Clearly, H is a normal subgroup of $\operatorname{Gp}_F R$. We want to prove that $H = \operatorname{Ep}_F R$. By the definition of $\operatorname{Ep}_F R$, it suffices to show that H contains an arbitrary symplectic transvection $\tau(e, u, r)$.

We pick a vector e' in V with F(e, e') = 1, and set $U' = (eR + e'R)^{\perp}$, r' = F(u, e'), v = u - er'. Then u = er' + v with v orthogonal to both e and e'. By (11),(13),

 $\tau(e, u, r) = \tau(e, v, 0) \tau(e, 0, r + 2r').$

So it remains to show that $\tau(e, v, 0) \in H$. It suffices to show that for every maximal ideal P of R there is $s \in S = R \setminus P$ such that $\tau(e, U's, 0) \subset H$.

If $\operatorname{card}(R/P) \neq 2$, then we pick $t_0 \in R$ such that $t_0^2 \cdot t_0 = s \in S$. By (15), $H \ni [\tau(e, 0, t'), \tau(v, e't, 0)] = \tau(v, ett', -t't^2) = f(t, t')$ for all $t, t' \in R$ and all $v \in U'$, hence

 $H \ni f(t_0, 1)^{-1}f(1, t_0^2) = \tau(v, e(t_0^2 - t_0), 0)$

 $= \tau(v, es, 0) = \tau(e, vs, 0)$.

If card(R/P) = 2, then we use the condition of the theorem and pick two orthogonal pairs (v, v'), (w, w') in U' with $s_1 = F(v, v') \in S$ and $s_2 = F(w, w') \in S$.

We have $H \ni [\tau(e, 0, 1), \tau(v, e', 0)] = \tau(v, e, -1)$, hence

 $H \ni [\tau(e', -w', 0), \tau(v, e, -1)] = \tau(v, w', 0), \text{ and } H \ni [\tau(w, et, 0), \tau(v, w', 0)] = \tau(v, ets_2, 0) = \tau(e, vts_2, 0) \text{ for all } t \text{ in } R.$

Thus, $\tau(e, vs_2R, 0) \subset H$. For an arbitrary $u' \in U'$ we have $u's_1 = vx + u''$ with x = F(u', v') and F(u'', v) = 0. We have

 $\tau(e, u's_2s_1, 0) = [\tau(u'', -v', 0), \tau(e, vs_2, 0)] \in H$, hence

 $\tau(e, u's, 0) = \tau(e, u's_2s_1^2, 0) = \tau(e, vxs_2s_1, 0) \ \tau(e, u's_2s_1, 0) \in H \text{ with } s = s_2s_1^2 \in S = R \setminus P.$

The first half of Theorem 5 is proved. Now we have the second half to prove.

By Theorem 3, we have only the inclusion $[Gp_F(A, B), Ep_F R] \subset Ep_F(A, B)$

to prove. Note that both $\operatorname{Gp}_F(A, B)$ and $\operatorname{Ep}_F R$ normalize $\operatorname{Ep}_F(A, B)$.

By the first conclusion of the theorem, it suffices to show that $[Gp_F(A, B), \tau(e, 0, R)] \subset Ep_F(A, B)$ for any *F*-unimodular vector *e* in *V*. In other words, we want to prove that the subgroups $Gp_F(A, B)$ and $\tau(e, 0, R)$ commute modulo $Ep_F(A, B)$.

It suffices to show that for every maximal ideal P of R and any g in $\operatorname{Gp}_F(A, B)$ there is $s \in S = R \setminus P$ such that $[g, \tau(e, 0, Rs)] \subset \operatorname{Ep}_F(A, B)$.

We will prove this using only the following condition: $\dim(F \mod P) \ge 4$.

Case 1: there is w, w' in V orthogonal to both e and ge and such that $F(w, w') = s \in S = R \setminus P$. Let $\alpha \in GL_1R$ and $c \in R$ be such that $(c^2 - \alpha)R \subset B$, $F(gu, gv) = \alpha F(u, v)$, $gv - vc \in VA$ and F(v, gv) + B = |gv - vc| for all $u, v \in V$. For any r in R we write

$$\tau(ec, 0, rs) = \tau(ec, w, 0) \tau(ec, w'r, 0) \tau(ec, -w - w'r, 0)$$

 $= \tau(w,ec, 0) \tau(w',ecr, 0) \tau(w+w'r, -ec, 0)$

and $\tau(ge, 0, rs) = \tau(ge, w, 0) \tau(ge, w'r, 0) \tau(ge, -w - w'r, 0)$

 $= \tau(w,ge, 0) \tau(w',ger,0) \tau(w + w'r, -ge, 0)$, hence

 $\tau(ge, 0, rs) \tau(ec, 0, rs)^{-1}$

 $= \tau(w,ge, 0) \tau(w',ger, 0) \tau(w + w'r,-ge, 0) (\tau(w,ec, 0) \tau(w',ecr, 0) \tau(w + w'r, -ec, 0))^{-1}$ = $h_1(g_2h_2g_2^{-1}) (g_3h_3g_3^{-1})$, where

 $h_3 = \tau(w + w'r, -ge, 0) \tau(w + w'r, -ec, 0)^{-1} = \tau(w + w'r, ec - ge, -F(ge, ec) \in \operatorname{Ep}_F(A, B), g_3 = \tau(w, ec, 0) \tau(w', ecr, 0) \in \operatorname{Ep}_F R,$

$$h_2 = \tau(w', ger, 0) \tau(w', ecr, 0)^{-1} = \tau(w', ger - ecr, -F(ger, ecr)) \in \operatorname{Ep}_F(A, B),$$

 $g_2 = \tau(w, ec, 0) \in Ep_F R$,

and $h_1 = \tau(w, ge, 0) \tau(w, ec, 0)^{-1} = \tau(w, ge - ec, -F(ge, ec)) \in Ep_F(A, B)$.

So $\tau(ge, 0, rs) \tau(ec, 0, rs)^{-1} \in \operatorname{Ep}_{F}(A, B)$, hence $[g, \tau(e, 0, \alpha rs)]$ = $g \tau(e, 0, \alpha rs)g^{-1} \tau(e, 0, \alpha rs)^{-1} = \tau(ge, 0, rs) \tau(e, 0, \alpha rs)^{-1}$ = $\tau(ge, 0, rs) \tau(ec, 0, rs)^{-1} (\tau(e, 0, rs(c^{2} - \alpha))) \in \operatorname{Ep}_{F}(A, B)$ for all r in R. Thus, $[g, \tau(e, 0, Rs)] \subset \operatorname{Ep}_{F}(A, B)$.

General case. We pick a vector $e' \in V$ such that F(e, e') = 1 and write ge = ex + e'y + uwith x = F(ge, e'), $y = F(e, ge) \in R$, $u \in U = (Re + Re')^{\perp}$. Since $g \in \operatorname{Gp}_F(A, B)$, we have $(x^2 - \alpha(g))R \subset B$, $y \in A$, $u \in UA$, and xy + B = |u|.

Set $h = \tau(e', ux/\alpha(g), xy/\alpha(g))$. Then hge = ex + e'ya + ua, where $a = 1 - x^2/\alpha(g))$, $aR = (x^2 - \alpha(g))R \subset B$. Note that $xy/\alpha(g) - xy(x/\alpha(g))^2 = axy/\alpha(g) \in B$, hence $h \in Ep_F(A,B)$. Since ge = ex + e'y + u is F-unimodular and $a - 1 \in xR$, we can find $u' \in U$ and $r \in R$ such that $y' = y + F(u', u)a + rx \in S$. Set $h' = \tau(e', u'a, ra)h \in Ep_F(A,B)$. Then hge = ex + e'ay' + ua - u'a.

Now we pick v, v' in U with $F(v, v') \in S$ and set w = vy' + eF(u - u', v), w' = v'y' + eF(u - u', v'). Then $F(w, w') = F(v, v')y'^2 \in S$ and F(e, w) = F(e, w') = F(hge,w) = F(hge, w') = 0. By Case 1. $[hg, \tau(e, 0, Rs)] \subset \operatorname{Ep}_F(A, B)$ for some $s \in S$, hence $[g, \tau(e, 0, Rs)] \subset \operatorname{Ep}_F(A, B)$.

7. Proof of Theorem 7

By Theorem 5, it suffices to prove that $\operatorname{Ep}_{F}(A, B) \subset [\operatorname{Ep}_{F}(A, B), \operatorname{Ep}_{F}R]$, i.e. $T(e_{1}, A, B)$ $\subset [\operatorname{Ep}_F(A, B), \operatorname{Ep}_F R], \text{ i.e. } \tau(e_1, uax, b) \in [\operatorname{Ep}_F(A, B), \operatorname{Ep}_F R] \text{ for all } u \in U = (e_1 R + e_2 R)^{\perp},$ $a \in A$, and $b \in B$, where e_1, e_2 is a hyperbolic pair in V.

LEMMA 22. Under the condition of Theorem 4, for any maximal ideal P of R there is $s \in S =$ $R \setminus P$ such that $\tau(e_1, uas, 2sa' + bs^2) \in [Ep_F(A, B), Ep_F R]$ for all a, a' in A and b in B. *Proof.* We pick vectors $e_3, e_4 \in U$ such that $s_0 = F(e_3, e_4) \in S$. Case 1: a = b = 0. Then $\tau(e_1, uas, 2sa^+ + bs^2) = \tau(e_1, 0 2sa^+)$ $= [\tau(e_1, e_3 a', 0), \tau(e_1, e_4, 0)] \in [Ep_F(A, B), Ep_F R] \quad \text{for } s = s_0 = F(e_3, e_4) \in S.$

Case 2:a' = b = 0 and the image $\pi(u)$ of u in U_P is F_P -unimodular. We pick $v \in U$ such that $s' = F(u, v) \in S$.

If card(R/P) $\neq 2$, then we pick r in R with $r - r^2 \in S$ and set f(y,t)

= $\tau(e_1, uasty, -y(as't)^2) = [\tau(u, 0, y), \tau(e_1, vat, 0)] \in [Ep_F(A, B), Ep_F R]$ for any r,t in R, where $\tau(u, 0, r) \in Ep_F R$ by Lemma 19 with x = 1. Now

 $f(1,r)f(r^2, 1)^{-1} = \tau(e_1, uas'(r - r^2), 0) \in [Ep_F(A, B), Ep_F R].$

So we are done with $s = s'(r - r^2) \in S$.

If card(R/P) = 2, then $dim(F \mod P) \ge 6$ by the condition of Theorem 5. So we can find e, e' in U orthogonal to u, v so that $F(e, e') \in S$ Although e need not be F-unimodular, $\tau(e, u, e') \in S$ 0) $\in Ep_F R$ by Lemma 19 with x = 1. So

 $\tau(e_1, uas, 0) = [\tau(e, u, 0), \tau(e_1, e'a, 0)] \in [Ep_F(A, B), Ep_F R] \text{ for any } a \in A, \text{ where } s =$ $F(e, e') \in S$.

Case 3: u = 0 and a' = 0. Then $[Ep_F(A, B), Ep_F R] \rightarrow$

 $[\tau(e_3, 0 b), \tau(e_1, e_4, 0)] = \tau(e_1, e_3 b s_0, -b s_0^2)$ for all $b \in B$.

On the other hand, by Case 2 there is $s_1 \in S$ such that $[Ep_F(A, B), Ep_F R] \ni \tau(e_1, e_3 b s_1, 0)$ for all $b \in B$. So for $s = s_0 s_1$ we obtain that $[Ep_F(A, B), Ep_F R] \ni$

 $\tau(e_1, e_3 bs, 0) \tau(e_1, e_3 bs, -bs^2)^{-1} = \tau(e_1, 0, bs^2)$ for all $b \in B$.

General case. We write $us_0 = e_3t + e_4t' + w = e_3 + e_4t' + w + e_3(t-1)$ with $t = F(u, e_4), t' = F(e_3, u) \in R$ and $w \in U$ orthogonal to both e_3 and e_4 . Then:

 $\tau(e_1, 0, 2s_0a') \in [Ep_F(A, B), Ep_FR]$ for all a' in A by Case 1;

 $\tau(e_1, (e_3 + e_4t' + w)as_1, 0) \in [Ep_F(A, B), Ep_FR]$ for all $a \in A$ for a suitable $s_1 \in S$ by Case 2;

 $\tau(e_1, e_3(t-1)as_2, 0) \in [Ep_F(A, B), Ep_FR]$ for all $a \in A$ with a suitable $s_2 \in S$ by Case 2; $[Ep_F(A, B), Ep_FR] \ni \tau(e_1, 0, bs_3^2)$ for all $b \in B$ with a suitable s_3 in S. So for $s' = s_1s_2s_3 \in S$ and $s = s_0s_1s_2s_3 \in S$ we obtain that $\tau(e_1, uas, 2sa' + bs^2)$

 $= \tau(e_1, 0, 2sa^{\prime}) \tau(e_1, (e_3 + e_4t^{\prime} + w)as^{\prime}, 0) \cdot \tau(e_1, e_3(t-1)ass^{\prime}, 0) \tau(e_1, 0, bs^2 + t^{\prime}(t-1)a^2ss^{\prime}) \in [Ep_F(A, B), Ep_FR] \text{ foir all } a, a^{\prime} \text{ in } A \text{ and } b \text{ in } B.$

Lemma 22 is proved. Now, for fixed u, a, b, we set

 $Y_1 = \{ r \in R : \tau(e_1, uar, 0) \in [Ep_F(A, B), Ep_F R] \},\$

 $Y_2 = \{r \in R : \tau(e_1, 0, 2ra') \in [\text{Ep}_F(A, B), \text{Ep}_F R] \},\$

 $Y_3 = \{ r \in R : \tau(e_1, 0, b3^2) \in [\text{Ep}_F(A, B), \text{Ep}_F R] \}.$

By Lemma 22, each Y_i contains Rs for an element s outside an arbitrary maximal ideal P of R. Clearly, Y_1 and Y_2 are additive subgroups of R. So $Y_1 = Y_2 = R$. Now it is clear that Y_3 is an additive subgroups of R, hence $Y_3 = R$.

Therefore, $\tau(e_1, uas, 2sa^+ + bs^2) = \tau(e_1, uar, 0) \tau(e_1, 0, 2ra^+) \tau(e_1, 0, b3^2)$ $\in [Ep_F(A, B), Ep_FR]$.

8. Proof of Theorem 8

In this section we assume that there are vectors e_1, e_2 in V with $F(e_1, e_2) = 1$. As above, we set $U = (e_1R + e_2R)^{\perp}$.

Let *H* be a subgroup of $\operatorname{Gp}_F R$ normalized by $\operatorname{Ep}_F R$. Denote by *A* the ideal of *R* generated by all F(U, u), where $u \in U$ and $\tau(e_1, u, r) \in H$ for some r in *R* (depending on u). Let *B* be the set of all $b \in R$ such that $\tau(e_1, 0, b) \in H$. Clearly, *B* is an additive subgroup of *R*.

LEMMA 23. $2A \subset B$.

Proof. It suffices to show that $2F(u,v) \in B$ whenever $u,v \in U, r \in R$, and $\tau(e_1, u, r) \in H$. We have $H \supset [H, Ep_F R] \ni [\tau(e_1, u, r), \tau(e_1, v, 0)] = \tau(e_1, 0, 2F(u,v))$, hence $2F(u,v) \in B$ by the definition of B.

LEMMA 24. Suppose that dim $(U \mod P) \ge 2$ for every maximal ideal P of R. Then $B^{\circ} \subset A$.

Proof. The dimension condition means that 1 can be written as a sum of elements F(u, v) with u, v in U. So it suffices to produce $\tau(e_1, vbF(u,v), *)$ in H for arbitrary u, v in U and b in B. We have $H \supset [H, Ep_F R] \ni$

 $[\tau(e_2, \nu, 0), \tau(e_1, 0, b)] = [\tau(e_1, 0, -b), \tau(\nu, e_2, 0)]$

= $\tau(v, e_2 - e_1b, 0) \tau(v, -e_2, 0) = \tau(v, -e_1b, -b)$, hence

 $H \ni [\tau(e_1, u, 0), \tau(v, -e_1b, -b)] = \tau(e_1, u, 0) \tau(e_1, -\tau(v, -e_1b, -b) u, 0)$

 $= \tau(e_1, u, 0) \tau(e_1, -u + e_1 F(v, u) + vbF(v, u), 0) = \tau(e_1, vbF(v, u), -bF(v, u)^2).$

LEMMA 25. Under the condition of Lemma 24, for any $w \in U$ and any $a \in A$ there is $t \in R$ such that $\tau(e_1, wa, t) \in H$.

Proof. It suffices to consider the case a = F(u, v), where $u, v \in U, r \in R$, $\tau(e_1, u, r) \in H$. Set

 $Y = \{s \in R : \tau(e_1, was, t) \in H \text{ for some } t \in R\}.$

We want to prove that $Y \ni 1$. Since Y is an additive subgroup of R, it suffices to show that $Y \supset Rs$ for an element s of R outside an arbitrary maximal ideal P of R.

We pick e, e' in V with $F(e, e') = s_0$ in $S = R \setminus P$. We write $ws_0 = ez + e'z' + w'$ with z = F(w, e'), z' = F(e, w), w' orthogonal to e, e'. Similarly, we write $us_0 = ex + e'x' + u'$ and $vs_0 = ey + e'y' + v'$ with u'and v' orthogonal to e, e'. Note that $F(us_0, vs_0) = as_0^2 = yz' - zy' + F(u', v')$.

By Lemma 19, $\tau(e, v', y)$, $\tau(e', 0, cs_0) \in Ep_F R$ for any c in R, so $H \supset [Ep_F R, H] \ni [\tau(e, v', y), \tau(e_1, u, r)] = \tau(e_1, \tau(e, v', y)u, r) \tau(e_1, -u, -r)$ $= \tau(e_1, -eF(u', v') + eyx' + v'x's_0, ?)$, hence $H \supset [Ep_F R, H] \ni [\tau(e', 0, cs_0), \tau(e_1, -eF(u', v') + eyx' + v'x's_0, ?)]$ $= \tau(e_1, e'cs_0^2(F(u', v') - yx'), ?)$. Moreover, $H \supset [Ep_F R, H] \ni [\tau(e', 0, 1), \tau(e_1, u, r)] = \tau(e_1, -e'x, ?)$, hence $H \supset$ $[Ep_F R, H] \ni [\tau(e, 0, 1), \tau(e_1, -e'x, ?)] = \tau(e_1, -exs_0, ?)$, hence $H \supset [Ep_F R, H] \ni$ $[\tau(e', 0, cy'), \tau(e_1, -exs_0, ?)] = \tau(e_1, e'cxy's_0^2, ?)$. So $H \ni$ $\tau(e_1, e'cs_0^2(F(u', v') - yx'), ?) \tau(e_1, e'cxy's_0^2, ?) = \tau(e_1, e'cs_0^2(F(u', v') - yx' + xy'), ?) =$ $\tau(e_1, e'cas_0^4, ?)$. Recall that c here is an arbitrary element of R. So $H \ni \tau(e_1, e'c(z's_0 - 1)as_0^4, ?)$.

Recall that c here is an arbitrary element of R. So H $\ni \tau(e_1, e_2(z_{s_0} - 1)as_0^{-1}, ?)$. By Lemma 19, $f = \tau(e, w, z) \in Ep_F R$. So $H \ni f \tau(e_1, e_2 cas_0^4, ?)f^{-1} = \tau(e_1, fe_2 cas_0^4, ?)$. Therefore $H \ni \tau(e_1, e_2 c(z_{s_0} - 1)as_0^4, ?) \tau(e_1, fe_2 cas_0^4, ?)$ $= \tau(e_1, (e_2 (z_{s_0} - 1) + \tau(e, w, z)e_2) cas_0^4, ?) = \tau(e_1, w cas_0^6, ?)$. Thus, $Y \supset Rs$ with $s = s_0^6$ in $S = R \setminus P$.

COROLLARY 26. Under the coditions of Theorem 5, (A, B) is a symplectic ideal of R.

Proof. Let $r \in R$, $a \in A$, $b \in B$. By Lemmas 23 and 24, $2a \in B$ and $b \in A$. It remains to prove that br^2 , $ra^2 \in B$.

To prove that $ra^2 \in B$, it suffices to show that for any maximal ideal P of R there is $s \in S = R \setminus P$ such that $a^2 s R \subset B$.

We pick vectors $e_3, e_4 \in U$ such that $s_0 = F(e_3, e_4) \in S$.

By Lemma 25, for any c in R we have $\tau(e_1, e_4ca, ?) \in H$. So for any d in R we have $H \supset [Ep_F R, H] \ni [\tau(e_3, 0, d), \tau(e_1, e_4ca, ?)] = \tau(e_1, e_3acds_0, -a^2c^2ds_0^2) = f(c, d)$. So $H \ni f(c, d)f(1, dc^2)^{-1} = \tau(e_1, e_3a(c-c^2)ds_0, 0)$ and $H \ni \tau(e_1, e_3a(c-c^2)ds_0, 0)f(c-c^2, d)^{-1} = \tau(e_1, 0, a^2(c-c^2)^2ds_0^2)$, i.e. $a^2(c-c^2)^2ds_0^2 \in B$. If $card(R/P) \neq 2$, we can choose c such that $c^2 - c$ is in S, hence $a^2sR \subset B$ for s =

If $\operatorname{card}(R/P) \neq 2$, we can choose c such that $c^2 - c$ is in S, hence $a^2SR \subset B$ for $s = (c - c^2)^2 s_0^2 \in S$.

If $\operatorname{card}(R/P) = 2$, we pick vectors e, e' in U orthogonal to e_3, e_4 and such that $F(e, e') \in S$. By Lemma 19, $\tau(e, e_3d, 0) \in \operatorname{Ep}_F R$. So $H \supset [\operatorname{Ep}_F R, H] \ni$

 $[\tau(e, e_3d, 0), \tau(e_1, e a, ?)] = \tau(e_1, e_3adF(e, e'), 0)$, hence

 $H \ni f(1, -dF(e, e'))\tau(e_1, e_3adF(e, e'), 0) = \tau(e_1, 0, a^2dF(e, e')s_0^2),$

i.e. $sa^2R \subset B$ for $s = F(e, e')s_0^2 \in S$.

We have proved that $ra^2 \in B$.

Now we have to prove that $br^2 \in B$. Since $2A \subset B$, it suffices to show that for any maximal ideal P of R there is $s \in S = R \setminus P$ such that $br^2s^2 \in B$.

Let e_3 and e_4 be as above. We have seen that for any $a \in A$ there is $s \in S$ such that (27) $\tau(e_1, e_3ads, 0) \in H$ for all $d \in R$. We will use this with a, d replaced by b, r. We have $H \supset [H, \operatorname{Ep}_F R] \ni [\tau(e_1, 0, b), \tau(e_3, e_2r, 0)] \tau(e_1, e_3brs, 0)$ $= \tau(e_3, e_1brs, -br^2s^2)\tau(e_1, e_3brs, 0) = \tau(e_3, 0, -br^2s^2)$, hence $H \supset [H, \operatorname{Ep}_F R] \ni$ $[\tau(e_3, 0, -br^2s^2), \tau(e_1, e_4, 0)] \tau(e_1, e_3br^2s^2, 0)$ $= \tau(e_1, -e_3br^2s^2, br^2s^2) \tau(e_1, e_3br^2s^2, 0)$ $= \tau(e_1, 0, br^2s^2)$. Thus, $br^2s^2 \in B$. COROLLARY 28. Under the coditions of Theorem 5, $H \supset Ep_F(A, B)$,

Proof. By Theorem 4, it suffices to show that $H \supset T(e_1, A, B)$. By the definition of B, $H \supset \tau(e_1, 0, B)$. So it remains to show that $\tau(e_1, wa, 0) \in H$ for any $u \in U$ and any $a \in A$.

Set $Y = \{t \in R: \tau(e_1, wat, 0) \in H\}$. We want to prove that $1 \in Y$. Since Y is closed under addition, it suffices to show that for any maximal ideal P of R there is an element $s' \in S$ $= R \setminus P$ such that $Rs' \subset Y$. i.e. $\tau(e_1, was'r, 0) \in H$ for all r in R.

Let $e_3, e_4 \in U$ and $s_0 = F(e_3, e_4) \in S$ be as in the proof of Corollary 24 above. We are going to use (26) again. We write $ws_0 = e_3x + e_4y + w'$ with $x, y \in R$ and $w' \in U$ orthogonal to e_3, e_4 . Then $ws_0^2 = e_3(xs_0 - 1) + e_3 + e_4ys_0 + w's_0 = e_3(xs_0 - 1) + fe_3$, where $f = \tau(e_4, -w', -y) \in Ep_F R$ by Lemma 15.

By (27), $h_1 = \tau(e_1, e_3(xs_0 - 1)ars, 0) \in H$ and $h_2 = \tau(e_1, fe_3ars, 0) = f\tau(e_1, e_3ars, 0)f^{-1} \in H$ for all r in R. Since $(xs_0 - 1)ys_0a^2r^2s^2 \in Ra^2 \subset B$ by Corollary 24, $h_3 = \tau(e_1, 0, (xs_0 - 1)ys_0a^2r^2s^2) \in H$. So $\tau(e_1, warss_0^2, 0) = h_3h_2h_1 \in H$, hence $rss_0^2 = rs' \in Y$ for all $r \in R$, where $s' = ss_0^2 \in H$. Corollary 28 is proved.

Originally, our definition of A, B depended on choice of an F-unimodular vector e_1 . However Corollary 28 shows that in fact it does not depend. We can also state it as follows; COROLLARY 29. Under the conditions of Theorem 5, $Ep_F(A, B)$ contains all symplectic transvections in H. LEMMA 30. Under the conditions of Theorem 5, let $e \in U, v \in V, r, r' \in R, F(e, v) = 0$, and $\tau(e, v, r), \tau(e, 0, r) \in H$. Then $F(u, V)r_0 \subset A$ and $rr_0^4 \in B$ for every $r_0 \in F(e, V)$.

Proof. We pick a vector $e' \in V$ such that $F(e, e') = r_0$. We have $H \supset [Ep_F R, H] \ni$ $[\tau(e, 0, r), \tau(e_1, e't, 0)] = \tau(e_1, ertr_0, -rt^2r_0^2) = f(t)$ for all t in R.

By its definition, $A \supset F(err_0, V) \supset Rrr_0^2$.

By Corollary 28, $H \supset \text{Ep}_F(A, B) \ni \tau(e_1, err_0^2, 0)$. So

 $H \ni \tau(e_1, err_0^2, 0) f(r_0)^{-1} = \tau(e_1, 0, rr_0^4)$. By its definition, $B \ni rr_0^4$.

Now we have the inclusion $F(u, V)r_0 \subset A$ to prove. It suffices to show that for every maximal ideal P of R there is $s \in S = R \setminus P$ such that $sF(u, V)r_0 \subset A$.

Pick any $v' \in V$ and set z = F(v, v'). We have to prove that $r_0 sz \in A$ for some $s \in S$ independent on v'. We write $v' = e_1 x + e_2 y + w$ with $x, y \in R$ and $w \in U$. Note that F(e, w)= 0 and $z = F(v, e_1)x + F(v, e_2)y + F(v, w)$.

We have:

$$\begin{array}{l} H \ni [\tau(e_1, 0, x), \tau(e, v, r')] = \tau(e, e_1F(e_1, v)x, ?); \\ H \ni [\tau(e_2, 0, 1), \tau(e, v, r')] = \tau(e, e_2F(e_2, v), ?), \text{ hence} \\ H \ni [\tau(e_1, 0, y), \tau(e, e_2F(e_2, v), ?)] = \tau(e, e_1F(e_2, v)y, ?); \\ H \ni [\tau(e_2, w, 0), \tau(e, v, r')] = \tau(e, e_2F(w, v) + wF(e_2, w), ?), \text{ hence} \\ H \ni [\tau(e_1, 0, 1), \tau(e, e_2F(w, v) + wF(e_2, w), ?)] = \tau(e, e_1F(w, v), ?). \\ \text{So } H \ni \tau(e, e_1F(e_1, v)x, ?) \tau(e, e_1F(e_2, v)y, ?) \tau(e, e_1F(w, v), ?) \\ = \tau(e, e_1F(v', v)x, ?) = \tau(e, -e_1z, ?) . \\ \text{If } \operatorname{card}(R/P) \neq 2, \text{ we pick } t_0 \in R \text{ with } s = t_0^2 - t_0 \in S. \text{ Then for any } t, t' \in R \text{ we have} \\ H \ni [\tau(e_1, 0, t), \tau(e, -e_1z, ?)] = \tau(e, -e_1tt'z, -t^2t'z^2) = f(t, t'), \text{ and} \\ H \ni f(1, t_0^2)f(t_0, 1)^{-1} = \tau(e, e_1sz, 0) = \tau(e_1, esz, 0). \\ \end{array}$$

24

If card(R/P) = 2, we invoke the condition of Theorem 5 to find vectors $e_3, e_4 \in U$ orthogonal to e, e' with $s = F(e_3, e_4) \in S$. Then

 $H \ni [\tau(e_2, e_3, 0), \tau(e, -e_1z, ?)] = \tau(e, -e_3z, 0)$, hence

 $H \ni [\tau(e_1, e_4, 0), \tau(e, -e_3z, 0)] = \tau(e, -e_1sz, 0) = \tau(e_1, esz, 0).$

Thus, $szr_0 \in A$ by the definition of A.

LEMMA 31. Under the conditions of Theorem 8, let $h \in H$ and he = ec for some $c \in R$ and an *F*-unimodular vector $e \in V$. Then $hv - vc \in VA$ and |hv - vc| = F(hv, vc) + B for all $v \in V$.

Proof. Clearly, $c \in GL_1R$. For any vector u in V orthogonal to e and any scalar r in R we have

 $H \rightarrow [h, \tau(e, u, r)] = \tau(e, huc/\alpha(h) - u, rc^2/\alpha(h) - r - F(hu, uc)/\alpha(h)).$

So (using Lemma 30 and a condition of Theorem 8) $huc/\alpha(h) - u \subset VA$ and

 $|huc/\alpha(h) - u| = rc^2/\alpha(h) - r - F(hu, uc)/\alpha(h) + B$ for all $u \in e^{\perp}$, hence (taking u = 0) $R(\alpha(h) - c^2) \subset B$. It follows that $hu - uc \subset VA$ and |hu - uc| = F(hu, uc) + B for all $u \in e^{\perp}$.

Pick a vector e' in V with F(e, e') = 1. We can write $h = \tau(e, u, r)h'$, where $u \in V' = (eR + e'R)^{\perp}$, $r \in R$, $h' \in \operatorname{Gp}_{F}(A, B)$, h'e = ec, and $h'e' = e'\alpha(h)/c$, $h'v - vc \in VA$ and |h'v - vc| = F(h'v, vc) + B for all v in V.

For any $w \in V'$ we have $H \ni [h, \tau(w, 0, 1)]$, because $\tau(w, 0, 1) \in Ep_F R$, and $H \ni [h', \tau(w, 0, 1)]$ by Theorem 5. So $H \ni [\tau(e, u, r), \tau(w, 0, 1)] = \tau(e, u, r) \tau(e, -u - wF(w, u), -r) = \tau(e, -wF(w, u), ?)$, hence $wF(w, u) \in VA$. It follows that that $u \in VA$.

Incuding $\tau(e, u, r')$ into h', where $r' \in |u|$, we are reduced to the case u = 0. In this case, $h = \tau(e, 0, r)h'$, and for any vector $w \in V'$ we have $H \ni [h, \tau(w, e', 0)]$ and $H \ni [h', \tau(w, e', 0)]$, hence $H \ni [\tau(e, 0, r), \tau(w, e', 0)] = \tau(w, er, -r)$. By Lemma 30, $wr \in VA$. So $U'r \subset U'A$, hence $r \in A$. Using Lemma 30 again, we conclude that $r \in B$. Thus, we can include we can include $\tau(e, 0, r)$ into h', i.e. we are reduced to the case when h = h'. LEMMA 32. Under the conditions of Theorem 8, let $h \in H \cap \text{Sp}_F R$, and hw = w for a vector $w \in V$ which is orthogonal to a hyperbolic pair. Then $(hv - v)r_0 \in VA$ and $|(hv - v)r_0|r_0^4 = F(hv, v)r_0^6 + B$ for all $v \in V$ orthogonal to w and all $r_0 \in F(w, V)$.

Proof. We can assume that w is orthogonal to e_1, e_2 i.e. $w \in U$. For any vector v in V orthogonal to w and any scalar r in R we have

 $H \ni [h, \tau(w, v, r)] = \tau(w, hv - v, -F(hv, v)).$ By Lemma 30, $(hv - v)r_0 \in VA$. We pick now $z \in [(hv - v)r_0]$. Then $H \ni \tau(w, (hv - v)r_0, z)$ and $H \ni \tau(w, -hv r_0 + vr_0, -F(hvr_0, vr_0))$, hence $H \ni \tau(w, 0, z - F(hvr_0, vr_0))$. By Lemma 30, $(z - F(hvr_0, vr_0))r_0^4 \in B$. Thus, $(hv - v)r_0 \in VA$ and $[(hv - v)r_0]r_0^4 = F(hv, v)r_0^6 + B$ for all $v \in w^{\perp}$.

LEMMA 33. Under the conditions of Theorem 8, assume that A = 0. Then $H \subset \text{Gp}_F(A, B) = \text{Gp}_F(0, 0)$.

Proof. Let $h \in H$. We write $he_1 = e_1x + e_2y + u$ with $x = F(he_1, e_2)$, $y = F(e_1, he_1)$, $u \in U$. We set

 $h' = [h, \tau(e, 0, 1)] \in H$

Case 1: y = 0. Then $h'e_1 = e_1$. So h' = 1 by Lemma 31 with A = 0. It follows that u = 0. So $he_1 = e_1x$. By Lemma 31, $h \in \operatorname{Gp}_F(A, B) = \operatorname{Gp}_F(0, 0)$

Case 2; $y^2 = 0$. Since $h'e_1 = e_1 + he_1y$, we have $h' \in \operatorname{Gp}_F(A, B) = \operatorname{Gp}_F(0, 0)$ by Case 1. It follows that $F(h'e_1, e_2) = xy - 1 - x^2 = 0$ and ux = 0, hence $x \in \operatorname{GL}_1R$, and u = 0. So $he_1 = e_1x$. By Lemma 31, $h \in \operatorname{Gp}_F(A, B) = \operatorname{Gp}_F(0, 0)$.

Case 3: $y^3 = 0$. Since $h'e_1 = e_1 + he_1y$, we have $h' \in \operatorname{Gp}_F(A, B) = \operatorname{Gp}_F(0, 0)$ by Case 2. It follows that $F(h'e_1, e_2) = xy - 1 - x^2 = 0$ and ux = 0, hence $x \in \operatorname{GL}_1R$, and u = 0. So $he_1 = e_1x$. By Lemma 31, $h \in \operatorname{Gp}_F(A, B) = \operatorname{Gp}_F(0, 0)$.

Case 4: $y^3 \neq 0$. Then there is a maximal ideal P of R such that $y^3s \neq 0$ for all $s \in S = R \setminus P$. We pick a pair v, v of vectors in U with $r_0 = F(v, v') \in S$, and set $w = e_1F(u, v) + v.y$. Then $F(e_1, w) = F(he_1, w) = 0$, h'w = w. and $F(w, V) \ni y^2r_0 \in Sy^2$. By Lemma 32, $(h'e_1 - e_1)y^2r_0 = 0$, hence $y^3r_0 = 0$ (because $h'e_1 - e_1 = he_1ry$).

So Case 4 is impossible.

LEMMA 34. Under the conditions of Theorem 8, $H \subset \operatorname{Gp}_F(A, A)$

Proof. We want to prove that the image of H modulo A consists of scalar automorphisms of R/A-module V/VA. Indeed, otherwise, applying Lemma 33 to this module instead of V, we would obtain a non-trivial symplectic transvection in the image of H modulo A. (We used that the image of Ep_FR modulo A contains all symplectic transvections of $(V/VA, F \mod A)$.)

So H would contain an element of the form $\tau(e, u, r) g$, where $\tau(e, u, r)$ is a symplectic transvection in $\text{Ep}_F R$ which is non-trivial modulo A and where g is trivial modulo A, hence $g \in \text{Gp}_F(A, A)$. We pick a vector $e' \in V$ with F(e, e') = 1 and set $U' = (eR + e'R)^{\perp}$. We can assume that $u \in U'$.

By Lemma 19, $\tau(w, 0, 1) \in \text{Ep}_F R$ for any $w \in U'$, hence $[\tau(w, 0, 1), g] \in \text{Ep}_F(A, A)$ by Theorem 5. It follows that $\tau(e, wF(w, u), ?) = [\tau(w, 0, 1), \tau(e, u, r)] \in H \text{Ep}_F(A, A)$. By Corollary 29, applyed to $H \text{Ep}_F(A, A)$ instead of H, we obtain that $F(w, u) \in A$. So $F(U', u) \subset A$, hence $u \in UA$.

Including $\tau(e, u, 0)$ into g, we are reduced to the case u = 0. In this case we have

 $\tau(w, er, ?) = [\tau(w, e', 0), \tau(e, u, r)] \in H \operatorname{Ep}_F(A, A)$, hence $rF(w, U) \subset A$ for all $w \in U'$ by Corollary 29. It follows that $r \in A$. This is a contradiction.

LEMMA 35. Under the conditions of Theorem 8, let $g \in \text{Gp}_F R$ and $ge_1 = e_1 x + e_2 a' + ua$ with $u \in UA$, $a, a' \in A, x \in R$, and $xa' \in B$. Then $\tau(ge_1, 0, r)\tau(e_1x, 0, -r) \in \text{Ep}_F(A, B)$ for all $r \in R$.

Proof. It suffices to show that for each maximal ideal P of R there is $s \in S = R \setminus P$ such that $\tau(ge_1, 0, rs)\tau(e_1x, 0, -rs) \in Ep_F(A, B)$ for all $r \in R$.

27

Case 1: there is w, w' in V orthogonal to both e_1 and ge_1 and such that $F(w, w') = s \in S$ = $R \setminus P$. For any r in R we write

 $\tau(e_1x, 0, rs) = \tau(e_1x, w, 0) \ \tau(e_1x, w'r, 0) \ \tau(e_1x, -w - w'r, 0)$

= $\tau(w,e_1x, 0) \tau(w',e_1xr, 0) \tau(w + w'r, -e_1x, 0)$ and $\tau(ge_1, 0, rs)$

 $= \tau(ge_1, w, 0) \tau(ge_1, w'r, 0) \tau(ge_1, -w - w'r, 0) = \tau(w, ge_1, 0) \tau(w', ge_1, r, 0) \tau(w + w'r, -ge_1, 0),$ hence $\tau(ge_1, 0, rs) \tau(e_1x, 0, rs)^{-1}$

$$= \tau(w,ge_1, 0) \tau(w,ge_1r, 0) \tau(w + w, r, -ge_1, 0) (\tau(w,e_1x, 0) \tau(w,e_1xr, 0) \tau(w + w, r, -e_1x, 0))^{-1}$$

= $h_1(g_2h_2g_2^{-1}) (g_3h_3g_3^{-1})$, where

 $h_3 = \tau(w + w'r, -ge_1, 0) \tau(w + w'r, -e_1x, 0)^{-1} = \tau(w + w'r, e_1x - ge_1, -F(ge_1, e_1x) \in Ep_F(A, B), g_3 = \tau(w, e_1x, 0) \tau(w', e_1xr, 0) \in Ep_F R,$

 $\begin{aligned} h_2 &= \tau(w', ge_1r, 0) \ \tau(w', e_1x r, 0)^{-1} &= \tau(w', ge_1r - e_1xr, -F(ge_1r, e_1xr)) \in & \text{Ep}_F(A, B), \\ g_2 &= \tau(w, e_1x, 0) \in & \text{Ep}_F R, \text{ and } h_1 &= \tau(w, ge_1, 0) \ \tau(w, e_1x, 0)^{-1} \end{aligned}$

 $= \tau(w, ge_1 - e_1x, -F(ge_1, e_1x)) \in Ep_F(A, B).$

So $\tau(ge_1, 0, rs) \tau(e_1x, 0, rs)^{-1} \in Ep_F(A, B).$

Case 2: F(V, u) intersects S. Then we can find w' in U such that $F(u, w') = s \in S$ and set w = u. The vectors w, w' are orthogonal to both e_1 and ge_1 , se we are done by Case 1.

Case 3: $a' \in S$. Then we find vectors v, v' in U such that $F(v, v') \in S$ and set $w = e_1F(u, v) + va'$, $w' = e_1F(u, v') + v'a$. Then $F(w, w') = F(v, v')a'^2 \in S$ and the vectors w, w' are orthogonal to both e_1 and ge_1 , se we are done by Case 1.

Case 4: $x \in S$. Then we can find $v \in U$ such that both F(v, U) and F(u - vx, V)intersects S. Set $g' = \tau(e_2, va, 0)g$, so $g'e_1 = e_1x + e_2(a' + F(va, ua)) + (u - vx)a$. By Case 2, there is $s_1 \in S = R \setminus P$ such that $\tau(g'e_1, 0, rs_1)\tau(e_1x, 0, -rs_1) \in Ep_F(A, B)$ for all $r \in R$. Conjugating this by $\tau(e_2, va, 0)$, we obtain that $\tau(ge_1, 0, rs_1)\tau(\tau(e_2, -va, 0)e_1x, 0, -rs_1) \in Ep_F(A, B)$ for all r in R. On the other hand, we can apply Case 2 to $g = \tau(e_2, -va, 0)$ and conclude that $\tau(\tau(e_2, -va, 0)e_1, 0, rs_2)\tau(e_1, 0, -rs_2) \in Ep_F(A, B)$ for some s_2 in S and all r in R.

So $\tau(ge, 0, rs)\tau(ex, 0, -rs) = \tau(ge, 0, rs_1s_2)\tau(ex, 0, -rs_1s_2)$ = $(\tau(ge_1, 0, rs_2s_1)\tau(\tau(e_2, -va, 0) e_1x, 0, -rs_2s_1))$ · $(\tau(\tau(e_2, -va, 0) e_1, 0, x^2s_1rs_2)\tau(e_1, 0, -x^2s_1rs_2))$ $\in Ep_F(A, B)$ for all $r \in R$. General case. Since ge_1 is F-unimodular, Cases 2, 3, 4 cover all possibilities.

LEMMA 36. Under the conditions of Theorem 8, let $e \in V$ be F-unimodular, $h \in H$, $c \in R$ and $hv \cdot vc \in VA$ for all $v \in V$. Then

(36) $(F(he, ec) + t)r^2\alpha(h)^2 + c^2(c^2 - \alpha(h))r \in B$ for all $r \in R$ and all $t \in |he - ec|$.

Proof. Note that in the presence of a hyperbolic pair e, e', the element $\alpha(h) \in \operatorname{GL}_1 R$ (such that $F(hu, hv) = \alpha(h) F(u, v)$ for all u, v in V) is unique and equal to F(he, he'). By Lemma 34, $h \in \operatorname{Gp}_F(A, A)$, i.e. there is $c \in R$ such that $gv \cdot vc \in VA$ for all $v \in V$. Such an element c is not unique, but its coset c + A is unique (under the conditions of Theorem 8), $c + A \in \operatorname{GL}_1 R/A$, and $c^2 \cdot \alpha(h) \in A$. Note also the the relation (36) we want to prove does not depend on choice of c in the coset c + A or on choice t in the coset $|he - ec| \in A/B$. It suffices to consider the case $e = e_1$.

We write $he_1 = e_1x + e_2y + u$ with $x = F(he_1, e_2) \in c + A$, $y = F(e_1, he_1) \in A$, $u \in UA$, where $U = (Re_1 + Re_2)^{\perp}$.

Pick $z \in |u|$. Then $t \equiv (x - c)y + z \pmod{B}$, hence $F(he, ec) + t \equiv xy + z \pmod{B}$. Since $c^2 - \alpha(h) \in A$, $a \equiv 1 - xx' \in A$ for $x' \equiv x/\alpha(h)$.

Set $f = \tau(e_2, ux', zx'^2) \in T(e_2, A, B)$. Then $fhe_1 = e_1x + e_2y' + ua$ with $y' = y - zxx'^2 \in A$. Note that $R(1-(xx')^2) = R(2a - a^2) \subset B$, hence $F(he, ec) + t \equiv xy + z \equiv xy' \pmod{B}$. (Recall that $2A + a^2R \subset B$.)

Set now $z' = x'y'(1 + a) \in A$ and $f' = \tau(e_2, 0, z') \in T(e_2, A, A)$. Then $ge_1 = f'fhe_1 = e_1x + e_2a' + ua$, where $g = f'fh \in Gp_F(A, A)$ and $a' = y'a^2$, so $a'R \subset B$.

By Lemma 35, $\tau(ge_1, 0, r)\tau(e_1x, 0, -r) \in Ep_F(A, B)$ for all $r \in R$. Note that $[g, \tau(e_1, 0, \alpha(g)r)] = \tau(ge_1, 0, r)\tau(e_1, 0, -\alpha(g)r)$ $= \tau(ge_1, 0, r)\tau(e_1x, 0, -r)\tau(e_1, 0, rx^2 - \alpha(g)r)$ $\in Ep_F(A, B)\tau(e_1, 0, r(x^2 - \alpha(g)))$ for all r in R. Since $h \in H$, $[H, Ep_FR] \subset H$ and $f \in Ep_F(A, B) \subset H$, it follows that k(r) = $[f', \tau(e_1, 0, \alpha(g)r)]\tau(e_1, 0, rx^2 - \alpha(g)r) \in H$ for all $r \in R$. Since k(r) fixes every vector in U, we can use Lemma 32 and conclude that $|k(r)e_2 - e_2| =$ $F(k(r)e_2, e_2) + B$, i.e. $dd' \in B$, where $k(r)e_2 = e_1d + e_2d'$, i.e. $d = F(k(r)e_2, e_2)$ and $d' = F(e_1, k(r)e_2)$. Set $r' = \alpha(g)r = \alpha(h)r \in R$ and $r'' = rx^2 - \alpha(g)r = rx^2 - \alpha(h)r \in A$. Since $f' = \tau(e_2, 0, z')$ $\in T(e_2, A, A)$, $k(r) = [f', \tau(e_1, 0, r')]\tau(e_1, 0, r'') = \tau(f'e_1, 0, r')\tau(e_1, 0, r'' - r')$.

So
$$k(r)e_2 = \tau(f'e_1, 0, r')(e_1(r'' - r') + e_2)$$

= $e_1(r'' - r') + e_2 + f'e_1r'F(f'e_1, e_1(r'' - r') + e_2)$
= $e_1(r'' - r') + e_2 + (e_1 - e_2 z')r'(z'(r'' - r') + 1) = e_1d + e_2d'$ with $d = r'' + r'z'(r'' - r')$ and $d' = 1 - r'z' - r'z'^2(r'' - r')$.

So $dd' \in -z'r'^2 + r'' + z'^2 R \subset z'r'^2 + r'' + B$, because $z' \in A$. Since $dd' \in B$, we conclude that $z'r'^2 + r'' \in B$. So $z'r'^2 x^2 + r'' x^2 \in B$, i.e. $x'y'(1+a)r'^2 x^2 + r'' x^2 \in B$, i.e. $y'r'^2 x + x^2 r'' \in B$

Recall now that $x - c \in A$, $F(he, ec) + t \equiv xy' \pmod{B}$, $r' = \alpha(h)r$, and $r'' = rx^2 - \alpha(h)r$. Thus, we obtain (36).

Now we can conclude our proof of Theorem 8. Pick $t_1 \in |he_1 - e_1c|$ and $t_2 \in |he_2 - e_2c|$. Then $t_1 + t_2 + F(he_1 - e_1c, he_2 - e_2c) \in |h(e_1 + e_2) - (e_1 + e_2)c|$. We apply Lemma 35 to $e = -e_2, e = e_1$, and $e = e_1 + e_2$. Using that $F(he_1 - e_1c, he_2 - e_2c)$

 $= \alpha(h) + c^2 - F(he_1, e_2c) - F(e_1c, he_2)$

 $= \alpha(h) + c^2 - F(h(e_1 + e_2)), (e_1 + e_2)c) + F(he_1, e_1c) + F(he_2, e_2c),$ and that

 $2A \subset B$, we obtain that $\alpha(h) + c^2 + c^2(c^2 - \alpha(h))r \in B$ for all $r \in R$, hence $c'^2c^2(c^2 - \alpha(h))R \subset B$ for all $c' \in R$. Picking c'such that $cc' - 1 \in A$, we conclude that $(c^2 - \alpha(h))R \subset B$. Now Lemma 35 gives that $F(he, ec) + t \in B$ for all F-unimodular vectors $e \in V$. Since V is spanned by its F-unimodular vectors, we conclude that $h \in \operatorname{Gp}_F(A, B)$.

Symplectic

References

- 1. E.Abe, Chevalley groups over local rings, Tohoku Math. J. 21 (1969), 474-494.
- 2. E.Abe, Normal subgroups of Chevalley groups over commutative rings, preprint.
- 3. E.Abe and K.Suzuki, On normal subgroups of Chevalley groups over commutative rings, Tohoku Math. J. 28 (1976), 185-198.
- 4. D.G. Arrell. The subnormal subgroup structure of the infinite symplectic group, Proc.Edinb.Math.Soc. 25 (1982), 209-216.
- 5. E. Artin, Geometric Algebra, Willey-Interscience, New York, 1957.
- 6. A.Bak, On modules with quadratic forms, in Springer Lecture Notes Math. 108 (1969), 55-66.
- 7. A.Bak, The stable structure of quadratic modules, preprint, 1971
- 8. H. Bass, K-theory and stable algebra, IHES Publ.Math. 22 (1964), 485-544; 5-60.
- 9. H. Bass, Unitary algebraic K-theory, in Springer Lecture Notes Math. 343 (1973), 57-205.
- 10. H. Bass, L₃ of finite abelian groups, Ann. Math. 99 (1974), 118-153.
- 11. H.Bass, J.Milnor and J.-P.Serre, Solution of the congruence subgroup problem for SL_n (n≥3) and Sp_{2n} (n≥2), IHES Publ.Math. 33 (1967), 59-137.
- 12. H.Bass and W.Parson, Some hybrid symplectic group phenonema, J. Algebra .53:2 (1978), 327-333.
- C.N. Chang, The structure of the symplectic group over an unramified dyadic field, J. Algebra 30 (1974), 42-50. MR 49#9096.
- 14. C.N. Chang, The structure of symplectic groups over the integers of dyadic fields, J. Algebra 34 (1975), 172-187. MR 52#592.
- 15. C.N. Chang, The structure of the symplectic group over semi-local domains, J.Algebra 35 (1975), 457-476. MR 51#5793.
- 16. C.N. Chang and C.K. Cheng, Symplectic groups over principal ideal domains, J.Algebra 41 (1976), 455-472. MR 54#12649.

- 17. D.L.Costa and G.E. Keller, On the normal subgroups of SL(2, A), preprint.
- 18. P.M.Cohn, On the structure of GL₂ of a ring, IHES Publ. Math. 30 (1966), 5-53.
- 19. J.Dennin and D.L. MccQuillan, A note on the classical groups over semi-local rings, Proc.Roy.Irish Acad. S.A. 68 (1969), 1-4. RZh 1970.2A220, 3A249.
- 20. L.E.Dickson, Theory of linear groups in arbitrary field Trans Amer. Math. Soc 2 (1901), 363-394.
- 21. J.Dieudonne, La géométrie des groupes classiques, 3nd ed. Erg.der Math.und Grenz. Band 5, Springer Verlag 1971.
- 22. F.Grunewald and S.Schwerner, Free non-abelian quotient of SL₂ over the order of imaginary quadratic number field, J.Algebra 69 (1981), 298-304,
- 23. W.Klingenber, Symplectic groups over local rings, Am. J. Math. 85 (1963), 232-240.
- 24. V.LKopeiko, Stabilization of symplectic groups over polynomial rings, Mat.Sb 106:1 (1978), 94-107.
- 25. N.H.J. Lacroix, Two-dimensional linear groups over local rings, Can.J.Math. 21 (1969),106-135. MR 38#5939.
- 26. N.H.J. Lacroix and C.Levesque, Sur les sous-groupes normaux de SL₂ sur un anneau local, Can. Math. Bull. 26:2 (1983), 209-219.
- 27. A.W.Mason, Lattice subgroups of normal subgroups of genus zero of the modular group, Proc.London Math.Soc. 24 (1972), 449-469. MR#3635.
- 28. A.W.Mason, Anomalous normal subgroups of the modular group, Comm. Algebra 11 (1983), 2555-2573.
- 29. A.W.Mason, Anomalous normal subgroups of SL₂K[x], Quart.J.Math. 36:143 (1985) 345-358.
- 30. A.W.Mason, Free quations SL₂, Proc.Cambr.Phyl.Soc. 101:3 (1987). 421-429.
- 31. A.W.Mason, On GL₂ of a local ring in which 2 is not a unit, Can.Math.Bull. 26:2 (1987), 209-219. Z 589.20032.
- 32. G.Maxwell, Infinite symplectic groups over rings, Comment.Math.Helv. 47 (1972), 254-259.

- 33. B.R. McDonald, Geometric algebra over local rings, New York-Basel, Marcel Dekker, 1976.
- 35. B.R. McDonald and Kirkwood B., The symplectic group over a ring with one in its stable range, Pacific J.Math. 92:1 (1981), 11-125.
- 36. D.L. McQuillan, Class of normal congruence subgroups of the modular group, Am.J.Math. 87 (1965), 285-296,
- J.L. Mennicke, Zur Theorie der Siegelschen Modulkgruppe, Math.Ann. 159 (1965), 115-129; MR 31 #5903.
- 38. B.Fine and M.Newman, The normal subgroup structure of the Picard group Trans. Amer. Math. Soc 302:2 (1987), 769-786.
- 39. M.Newman, Normal congruence subgroups of the modular group, Am.J.Math. 85 (1963), 419-427.
- 40. M.Newman, A complete description of normal subgroups of genus one of the modular group, Am.J.Math. 86 (1964), 17-24.
- 41. M.Newman, Free subgroups and normal subgroups of the modular group, Ill.Math.J. 8 (1964), 262-265.
- 42. O.T. O'Meara, Lectures on symplectic groups, Amer. Math. Soc. Math.Surveys, No 16, 1978.
- 43. C.R. Riehm, Structure of the symplectic group over a valuation ring, Am.J.Math. 88 (1966),106-128.
- \sim 44. E.F. Robertson, Some properties of Sp_Ω(R), J.London Math.Soc. (2)4 (1971), 65-78.
 - 45. J.-P. Serre, Le proble`me des groupes de congruences pour SL₂, Ann. Math. 92 (1970),489-527.MR42#7671=225-3822.
 - 46. R. Steinberg, Lectures on Chevalley groups, Yale U. 1967.
 - 47. G.Taddei, Invariance du sous-groupe symplectique elementarire dans le groupe symplectique sur un anneau, C.R. Acad.Sc. Paris 295 (1982), 1-47.
 - 48. G.Taddei, Normalité des groupes élémentare dans les groupes de Chevalley sur un anneau, Cont. Math. Amer. Math. Soc 55, part II (1986), 693-710.
 - 49. X.P. Tang and J.B. An, The structure of symplectic groups over semilocal rings, Acta Math.Sinica (N.S.) 1:1 (1985), 1-15.

- 50. S. Tazhetdinov, Subnormal structure of two-dimensional linear groups over local rings, Alg. Logic 22:6 (1983), 707-713.
- 51. S. Tazhetdinov, Subnormal structure of symplectic groups over local rings, Mat.Zametki 37:2 (1985), 289-298= Math.Notes, p.164-169.
- 52. S. Tazhetdinov, Subnormal structure of two- dimensional linear groups over rings that are close to fields Alg. Logic 24:4,414-425
- 53. S. Tazhetdinov, Normal structure of symplectic groups over rings of stable rank 1, Mat.Zametki 39:4 (1986),512-517.
- 54. L.N. Vaserstein, Stabilization for unitary and orthogonal groups over a ring with involution, Mat.Sb. 81:3 (1970), 328-351 = Math.USSR Sbornik 10, p.307-326.
- 55. L.N. Vaserstein, On the group SL₂ over Dedekind rings of arithmetic type, Mat.Sbornik 89:2 (1972), 312-322 = Math. USSR Sbornik 18, 321-332.MR 55#8253. Z359.20027. RZh 1973.2A369.
- 56. L.N. Vaserstein, Stabilization for classical groups over rings, Mat.Sbornik 93:2 (1974),
 268-295 = Math. USSR Sbornik 22, 271-303.MR 49#2974. Z287.18015, 305.18007. RZh 1974.9A454.
- 57. L.N. Vaserstein, On normal subgroups of GL_n over a ring, in Springer Lecture Notes Math. 854 (1980), 456-465.
- 58. L.N. Vaserstein, On normal subgroups of Chevalley groups over commutative rings, Tohoku Math. J. 38 (1986), 219-230.
- 59. L.N. Vaserstein, Normal subgroups of the general linear groups over Banach algebras, J. Pure Appl. Algebra 41:1 (1986), 99-112. Z589.20030.
- 60. L.N. Vaserstein, Normal subgroups of orthogonal groups over commutative rings, Amer. J. Math. to appear.
- 61. L.N. Vaserstein and A.Mikhalev, On normal subgroups of orthogonal groups over rings with involution, Algebra i Log. 9:6 (1970), 629-632 = Algebra & Logic 9, p.375-377.
- L.N. Vaserstein and A.A.Suslin, Serre's problem on projective modules over polynomial rings and algebraic K-theory, Izv.Akad.Nauk, ser.mat. 40:5 (1976), 993-1054 = Math.USSR Izv. 10:5, 937-1001. MR 56#5560. Z338.13015, 319.13009. RZh 1972.2A459.