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1. Introduction.

Normal Symplectic 2

Let R be a commutative associative ring with 1. For any integer n ~ 1, let SP2nR be the

standard symplectic group and Ep~ its subgroup generated by elementary symplectic matrices

[11], (37], [54], [62].

When R is a field, Dicksan [20] proved that SP2nR =EP2nR (by the way, the term

"syrnplectic" was coined later, so Dicksan wrote about lI abelian linear groups SA(2n, R)").

Moreover, he showed that this group modulo its eenter (which consists of ±12n) is simple with the

following three exeptions: R consists of 2 elements and n = 1 (in this case SpLJl? = S~R is

isomorphie to the symmetrie group S3); R consists of 3 elements and n = 2 (in this case Sp~

is isomorphie to the altemating group A~ R consists of 2 elements and n =2 (in this case,

Sp~ = SP4R is isomorphie to the symmetrie group S6)' In all these 3 cases, the commutator

subgroup of Sp~ = EJl2nR is a proper non-eentral nonnal subgroup. See also (5], (21], [42]

[46] about symplectie groups over fields.

Klingenberg [23] dcscribed all nonnal subgroups ofSp~ for a local ring R such that thc

characteristic of the residue field R/rad(R) is not 2 and its cardinality is not 3. Abc [1] reduced

the conditions on the local ring R to the following condition: the residue field has more than 3

elements when n = 1 and more than (Wo elements when n =2. When 2R ;t: R, his answer

involves same additive subgroups of R which are more general than ideals (he calIed them

special submodules associated with ideals; later [3] the result were extended to other rings R). See

also [13]- [17], [19], [25] [26] [31], [33]-[35], [43], [49]-[53] about SpZn aver local, semilocal,

and other "zero-dimensional" rings R.

Mennieke [37] and Bass-Milnor-Serre [11] describcd all nonna! subgroups of SP2nR when

R is the ring of integers Z or, more generally, a Dedikind ring of arithmetic type and n ~2.

Note that the nonna! subgroup structure of Sp~ = S~R is very different and essentially

incractable even when R = 2 [27] - [30], [39], [40], [38] cr anather Dcdikind ring of arithmetic

type with finite GL1R [18], [22], [41], [45].
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The nonnal subgroup structure of SP2nR for any R with "infinitell n was studied in [4],

[9] , [32], [44], [61]. Bale [6] announced adescription of aU subgroups of SP2nR when n ~ 3

and is greater than a certain dimension of R; see [7] for proofs.

Kopeiko [24] showed that Ep~ is nonnal in Sp'lt! for any R when n ~ 2. Later this

was redescovered in part by Taddci [47].

...
Using localization and patching, a compiete description of all subgroups H of SP2!I?

which are nonnalized by Ep~, was obtained in [58] in general context of Chavallwey groups,

provided that n 2: 2 ,R has no residue fields of 2 elements in the caee n = 2 , and

(1) for every element Z of R there are r, s in R such that z =2rz + sz?.

The condition (1) is necessary for the standard description of those H"s in terms of ideals of

R, as can be seen from the case of local ring R (see [1], [3]). It was claimed in [58] that without

the conditio~ (1), a camplete description of H's is possible in more general tenns. This was

proved by Abc [2].

Here we improve on Abo's result extending it to symplcctic groups of altemating fonns F

on R-rnodules V. Our proofs here use localizatian and patching. The approach to description of

nonnal subgroups was introduced in [57] for general linear groups GL" R, n 2: 3. Later it was

used for onhogonal [60] and Chevalley [2] , [46], [58] groups.

As a departure from thc setting of [6], [7], [9], our R-module V need not be finitely

generated or projective, and our altemating form F need not be non-singular. Instead of

non-singularity, we impose anather condition which is equivalent to non-singulariry in the case of a

finitely generated projective V.

Singular F on a finitely generated free V over local and semilocal rings R was studied in

[13]-[16], [43]. Thc answer inviolves tablcaux of ideals.
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2. Statement of results

A alternating form F on an R-module V is abilinear fonn F on V such that F(v, v) = 0

for all v in V. We da not require that F = Q - QT, Le. F(u, v) = Q(u, v) - Q(v, u) far all u, v in

V, where Q is abilinear form on V, although such a form Q exists when V is projective.

Note that any altemating fonn F is skew-symmetric, i.e. F(u, v) = -F(v, u) for all u, v in V.

The symplectic group SPFR is the group of a11 automorpisms of the R-module V which

preserve an altemating fonn F. Let GPFR denote the group of all automorphisms which multiply

the fann by a unit cf R.

For every e, u in V such that F(e, u) = 0 and any x in R we define (follawing [56])

't(e, u, x) in SppR by

't(e, u, x)v = v + uF(e, v) + eFeu, v) + exF(e, v).

An element v of V is called F-unimodular if F(V, v) =R, Le. F(u, v) =1 for same u in

V. Tbe elements 't(e, U, x) as above with unimodular e are called symplectic transvections. We

denotc by EPFR the subgroup of Sp~ generated by all symplectic transvection. Clearly (see

(14) below) Ep~ is normal in GPFR. Here we give another description cf Ep~, where a

hyperbolic pair means a pair U, v of vectors with F(u, v) =1.

PRoposmON 2. The group EPFR coincides with the subgroup of Sp~ generated by all

elements 't(e, 0, r), where r E R and e E V is either F-unimodular cr orthogonal to a

hyperbolic pair in V.

The main goal of this paper is to describe all subgroups H of Gpp-R nonnalizcd by EPFR.

It is much easier (0 describe the centralizer of EpFR . IfEp~ is trivial, its centtalizer in GpFR is

Gp~. Otherwise, i.e. whcn an F-unimodular vector in V exists, Le. the Witt index of F is at

least 1, we will show in Scetion 3 below that the centralizcr consists of all scalar authomorphisms

of V:
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PRoposmON 3. If V contains an F-unimodular vector, then the centralizer ofEPFR in GPFR

consists of all sealar authomorphisms of V, and hence coincides with the center of GPFR.

We defme a sympleclic ideal of R as a pair (A, B), where A is an ideal of R and B is an

additive subgroup of A such that ?-b,2a , a2r E B far all r in R, b in B, and a in A.

Note that the condition (1) above is equivalent to the following: B =A for every symplectic

ideal (A, B) of R. Under different names, our symplectic ideals appeared first in [1], and then in

[2]) [3], [6], [7], [9], [10], [12], [31], [54], [56].

Given any symplectic ideal (A, B) of R and any vector e in V, we define T(e-,A, B) as the

subgroup of EPFR generated by all tee, 0 ,b) with b in Band by aU tee, ua ,0) with a in A

and u in V such that F(e, u) = O. It is easy to check (see the identity (12) below) that T(e;A, B)

consists of all tee, U 1 r) with U E e l.A, r E lu I, where e 1. = (v e V: F(e, v) =0 } is the

orthogonal complement of e in V and where the map 11: VA ~ AlB is defmed by

I L, v:{li I = B + L, F(I,1:-(li' vja}, where Vi E V, ai E A.
lSiSn lSi<jSn

It is easy (0 check that this is well-defined, i.e. Iv 1E AlB daes not depend on choice of

presentation v = LV:{li .

Let Ep~A,B) denote the subgroup of Ep~ generated by alt T(e;A, B), where e ranges

ovcr all F-unimodular vectors in V. Clearly, EPF(A, B) is anormal subgroup of SPFR, and

EPF(R,R) = Ep~.

TIiEOREM 4. Assume that dim(F mod P) ~ 4 for every maximal ideals P of R. Let el' e2 be

vectors in V with F(el
'

e2) = 1. Then the group EPFR. is generated by its subgroups T(el' R, R)

and T(e21 R, R). Moreover, for any symplectie ideal (A, B) of R, the group Ep~A, B) eoincides

with the normal subgroup ofEp~ generated by T(el' R, R) .

Tbc condition dim(F mod P) 2: 2m (used in Theorem 4 with m = 2) means that there are

vecters Vi in V such that the matrix (F(vi' Vj)lSiJS2m) over R is invertible modulo P. Since F

is altemating, this number 2m must be even. In the case of a non-singular F, the condition is

equivalent to dimRlpVIVP 2: 2m.
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The dimension condition in the Theorem 3 is necessary. Without [his condition, [he first

conclusion would give that ~R = Ep2ß is nonnal in G~ =GP2R, which is not true in geneml

[18]. However &zR is nonnal in G~R when E,fl = S~R (which is the case under the first

Bass stable range condition [8] and for some other rings (55] ) cr R is a topological ring with

GL1R open in R [59].

We defme Gp~A, B) to be the set of all g in GPr-R such that there is Cl E GL1R and c

ERsuch that (c2 -a)R cB, F(gu, gv) = oF(u, v), gv - vc eVA and F(vc, gv) + B = 'gv­

YC Ifor all u, ve V. It is easy to check that Gpr<A, B) is a nonna! subgroup of Gpp{R, R) =

Gp~. The group Gpp{O,O) is the group of scalar ~utomorphisms of V.

For any two subgroups H I and H2 of a group G we denate by [H 1 ,H2] the subgroup of

G generated by all commutators [hit ~] = hl~ hl ..l~-I with h1 in H 1 and ~ in H2. It is easy

to check that [H I' H2 ] is nonnalized by both H 1 and H2. THEOREM 5. Assume that V

contains an F-unimodular vector, that dim(F mod P) ~ 4 for every maximal ideals P of R, and

that d.im(F mod P) ~ 6 for every ideal P of index 2 in R. Then Ep~ is generated by its

subgroups 't(e, 0, R) t where e ranges over all F-unimodular vectors e in V. Moreover, for any

symplectic ideal (A, B) of R, Gpp{A, B) is the centralizer of EPFR in GPFR modulo Epp{A,

B), Le. it consists of al1 g in GPFR such that [g, EPFR] c Ep~A, B). COROLLARY 6.

Under the conditions ofTheorcm 5, for any symplectic ideal (A, B) of R, every subgroup H of

GPF(A, B) containing EPF(A, B) is normalized by EPFR. Moreover, for any symplcctic

tranvection g in Gp~ and any h in H the commutator [g, h] is product of symplectic

transvections in H.

Indeed, by Theorem 5, [EPr--R, H] c [EPFR, GPF(A, B)] c Ep~A, B) c H.

THEOREM 7. Under the conditions ofTheorcm 5,

Ep~A, B) = [Ep~A, B), EPFR] =[Epp{A, B), SPFR] = [Gpp{A, B), Ep~]

for every symplectic ideal (A, B) of R.
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Since the group SP42f22 =EP42122 is not perfect, we have to require that the dimension

of F modulo P is not 4 for any ideal P of index 2 in R. Note that the group EP2R = E2R is not

perfect for small fields and for many other rings R.

By Corollary 6, every subgroup H of Gpp-{A, B) containing EPF(A. B) is nonnalized by

EPFR. We want to prove the converse: for every subgroup H of GPFR which is nonnalized by

EPFR there is a symplectic ideal (A, B) of R such that EPr-<A, B) eHe GPF(A, B). For this

to be true, we will need same conditions on P, besid.es the existence of an F-unimodular vector in

V.
First of all, as we did in Theorem 6, we want to exclude the case when V = R2. In the case,

there are non-standard nonnal subgroups of Sp~ = SL.lR (even for R = 2 [27], [28], [30],

[36], [39], [40], [41] and other small dimensional rings [18], [22], [29], [38]) unless we impose

rather severe restrictions on R [17], [45], [59]. Sincc the group SP42f22 has a non-standard

normal subgroup (its commutator subgroup which is proper subgroup), we have to rcquire that the

"dimension of F modulo P is 00[.4 for any ideal P of index 2 in R

Finally, we have to impose a condition on F which is weaker than its non-singularity.

Namely, we will assumc that v E VF(v, V) for every vector v in V. That is, for every vector v

there is a finite set of vectors "i
'

wi in V such that v = Lwt"(v, Uj)' When V is finitely

generated projective, this condition is equivalent to the candition that F is non-singular, i.c. the

assignement " 1-+ F(u, ?) gives an bijection V -+ HomR(V' R). In general, the condition means

that the map V/VA -+ HomR/A(VIA, R/A) is injective for every ideal A of R.

Here is the main result of this paper.

TI-lEOREM 8. Under the conditions ofTheorem 5, assume that ve VF(v, V) fcr every vector v

in V. Then a subgroup H of Gp~ is nonnalizcd by EPFR if and onIy if EPr-<A, B) c H

c Gp~A, B) far a symplectic ideal (A, B) of R, and if and ooly if the commutator [g, h] is a

product of symplectic transvections in H forevery symplectic tranvcction g in GPFR and every

h in H.
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3. Proof of Proposition 2

First we list some easy to check relations far 't(e, u, x).. Let e, u, v be in V, x, y in R t and

g in Gp(q, R). Assume that F(e, u) =F(e, v) = O. Then:

(9) tee, u, x)v =v when F(u v) = 0; in particular, tee, u, x)e = e;

(10) t(ey, u, x) = tee, uy, xy2);

(11) tee, u + ey, x) = 'tee, u, x + 2y);

(12) t(e, u, 0) = 't(u, e, 0) ;

(13) tee, u, x)t(e, v, y) = 'tee, u + v, x + y + F(u, v) ;

in panicular, t(e, u, xr l =tee, AU, AX);

(14) g't(e, u , x)g-l = t(ge, gu/a(g) , xla(g)) for every g in GPFR, where arg) E

GL1R is such that F(gw, gw') = a(g)F(w, w') for all w, w' in V,

in particular,

(15) when ge = e and g E Sp~ (Le. a.(g) = 1), we have gt(e, u, x)gAl ='tee, gu, x)

and [g, tee, u, x)] = tee, gu, xrr(e, -u, -x) = tee, gu - u, F(u, gu)).

Now we are ready to prove Proposition 2. Let H be the subgroup ofEPFR generated by the

subgroups t(e, 0, R), where e ranges over all vectors e in V which are either F-unimodular cr

onhagonal to a hyperbolic pair in V. CIearly, H is anormal subgroup of GPFR. We want to

prove that H = EPFR.

By the definition of Ep~, it contains t(e, 0, R) far every' F-unomodular vector e in V.

Let us show that Ep~) tee, 0, r) when rE R and e is orthogonal to a hyperbolic pair el'

e2 in V. Indeed,

tee, 0, r) =tee, el' 0) tee, ~r, 0) tee, -eI -e2r, 0)

=t(el' e, 0) t(e2' er, 0) t( e. +e2r, ·e, 0) E Ep~ by (10), (12), (13), because the vectors

el' e2' and el + e2r are F-unimodular.
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Thus, He EPFR. Let us show now that EPFR eH.

By the definition of EPFR, it suffices to show that H => T(e, R, R) for any F-'unimodular

vector e in V, i.e. H ) 't(e, u, r) for an arbirrary symplectic traflsvection 't(e, u, r), where u

E e-L and r ER.

We pick a vector e'" in V with F(e, e') =1, and set r'" = F(u, e'), v =u • er"'. Theo u =er'"

+ v with v orthogonal to both e and e'. By (11),(13),

't(e, U, r) = 't(e, v, 0) 't(e, 0, r + 2r').

So it remains to show that 't(e, v, 0) E H.

By (15),

H ) [t(e, 0, 1), t(v, e', 0)] = t(vJ e, -1), hence

H 3 t(v, e, -1) 't(v, 0, 1) = 't(v, e, 0) = 't(~, v, 0) .
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In this seetion we assume that V eontains an F-unimodular vector. We fIX a hyperbolic pair

el' ez in V. So F(el' ez) =1 and elR + ezR is a hyperbolic plane in V. Let U = (elR +

ezR).l denate the onhogonal complement of elR + ezR in V. So V = (eiR + e2R) .1 U.

LEMMA 16. Undcr the conditions ofTheorem 2, the centralizer of T(el' R,R) in Gp~, is 2 1

Gp~O,O) where Gp~O,O) c Gp~, is the subgroup of all scalar authomorphisms of V and 21
is the center of T(e}, R,R), which consists of t(el' U, x) in T(el' R,R), with 2F(u, V) = O.

Proo/. Let g be in Gp~ and commute with each clement of T(eI' R,R). In particular, g

t(el'O, 1) =: t(e!,O, l)g, hence g t(el' 0, l)ez = t(el' 0, l)ge2 ' Le. ge2 + gel = ge2 +

~IF(el' ge2) ,i.e. gel = eIF(el' gez). Since the vector gel is F-unimodular, it follows that

F(et, ge2)R =R. Replacing g by its scalar multiple gF(el' gezt1, we ean assume that gel =

el' Since F(geI' geZ) = I, thevectQr gez has the fonn gez = ez + eIe + w with cER and w

E U. So ge2 = t(el' w, c)e2' Set now h =t(el' w, erlg. Then hel =~l and hez =: eZ' hence

hU =U. The equality gt(el' u, x)g-I =tee l'U' x) for an arbitrary t(el ,u, x) in T(e}, R,R), wi th

u in U takes the form

t(et, hu, x + 2F(w, hu) = t(el' u,x), hence h = I, g = t(el' w, c), and 2F(w,U) =O.

Thus, g (after it was multiplied by a scalar) belangs to the center of T(el,R,R). Lemma 13 is

proved.

Remark. The intersection of Gp~O, 0) and 2 1 is trivial.
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Notation. For any vectors e, e' in V, let E(e, e'; R) denote the subgroup of SPFR

generated by T(e, R, R) and T(e', R, R) .

COROLLARY 17. The centralizer of E(e I , e2; R) in GPFR. coincides with the group Gp~O,O)

of scalar authomorphisms of V. In particular, Gp~O,O) is exact1y the center of GPFR.

Proof Let g e Gp~ commute with every element of T(e l , R, R) and T(e2' R, R). By

Lemma 13, g E T(el' Rfl) Gp~O,O) (l T(e2' R, R) GpIO,O) = GPF(O,O). (Since ge2 E

e2R, the T(el' A, A) -eomponent of g is 1, so g E GpIO,O), Le. g is muldplication by an

invertible scalar on V.)

Remark. Corollary 17 contains Proposition 2, because E(eI' e2; R) c EPFR .

THEOREM 18. Assume that V contains an F-unimodular vector. Let (A, B) be a symplectic

ideal cf R and g E Gp~. If [g, EPr-R] e Gp~A, B), then g E Gpr-<A, B). .

Proof Applying Proposition 2 to RIA, VIVA, and F (mod A) instead of R, V, and Fand

using that the map Epp{R>' ~ Ep~RJA) is onto, we conclude that g is a scalar modulo A, i.e.

there is ceR such that gv - cv e VA for all v e V. In prticular Cl - a.(g) E A, where

a(g) =FCget, ge2) E GL}R is such that F(gu, gv) = a(g) F(u, v) for alt U,v e V.

We claim now that (Cl- ai.g»R c B and that F(etc, gel) + B = Igel - el cl.

To prove this, we write g~t = etX + ev" + w with x =F(gel' e2)' y' =F(et, ge2)' and w

e U. We have x .. e e A, y' e A, w e UA. Now we pick x' eRsuch that .xx' - 1 E A

and Z E Iwx
i I. We set g':::! 't(~, we

i

, z) with t(e2' we
i

, z) E EpIA, B). We have g 'eI =

t(e2' we', z)gel = t(e2' we', z) (e}x + eiY
i + w) = elx + e2Y + wa with a::: 1 - xx' E A and

y=y'.. z E A.
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Our claim takes the following fonn: (x2 -a(g»R c Band that xy E B.

For an arbitrary r in R we set h =[g", 't(el' 0,')] E Gp~A, B). Then

he2 = 't(g "eIl 0, r/a(g))(e2 - elr) = e2 - el' + g "eI F(g"el ' e2 - el' )r /a(g»

= e2(l + rxy/a(g) + ,2y2/a.(g)) :+- el(rx2/aJ..g» - r +M.y/a.(g» + war(x + ry)/a(g).

Since Ry2 c B, the equality Ihe2 - e2 1= F(he2, e2) +B takes the form ,r./a(g) -, E 8.

i.e. r(x2 - a(g» E B.

We have proved that (;!l- a(g»R c B which is equivalent to (,;2 - a(g»R c B because

Xe C E A.

Now we consider he1e2 = ['t(el' 0, r), g" ]e2 = "t(el' 0, r) 't(g "eI' 0, er/a.(g»e2

= 't(el' 0, r) (e2- g"el F(g"el ' e2)r/a(g) = e2- g "etrxJa.(g) + elFe el' e2- g "elrxla,(g»,

=e2(1 - rxy/a(g» + el(r - rx2/a(g) - xy,2/ a(g» - warx/a.(g).

Since Ry. c B and (1 - ill a(g»)R c B, the equality Ihele2 ee2' =F( h-1e2 . e2 ) + B

takes [he fonn xy,2/ a.(g» E B. Setting r =x, we obtain that xy E B.

Thus, out claim is proved. Similarly, F(ee, ge) + B =Ige -eel for every F-unimodular vector

e in V. Note that V is spanned by F-unimodular vecters. Namely, v =eIs + e2t + w =el + e2t

+ w + eies - 1) fer an arbitrary vector v in V, wherc s, t E R, w e U, and vectors el +

e2t + wand el are F-unimodular. So F(ee, ge) +B =Ige - eet for every vecter e in V. Thus,

we have proved that g E Gpp{A, B).

Remark. Theorem 18 with A =°implies Proposition 2.
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Let eI' e2 and U = (eiR + e2R)1. be as defined before Lemma 16. For any symplectic

ideal (A, B) of R and any two vectors e, e" in V, let E(e,e'; R, A, B) denote ehe normal

subgroup of E(e,e"; R) (see ehe notation before Corollary 17) generated by T(e; A, B) and T(e",

A, B). In particular, E(e,e"; R, R, R) = E(e,e"; R)

We want to prove ehat E( eI' e2; R, A, B) =Ep}01'A, B), Le. ehat E(el' ~2; R, A, B) does not

depend on choice of a hyperbolic pair eI' e2 under the conditions of Theorem 4. LEMMA 19. For

any symplectic ideal (A, B) 01R, any two vectors e, e" E V, anti any v~ctor e'" E V orthogonal

to e, e" we hav~ E(e,e"; R, A, B) ::> T(e "', Ail, Bil), where s =F(e,e").

Proof. Let t(e "', uail, b?) E T(e "", A?, Bs'Z), where u e V, F(e "", u) =0, a e A, b e
B. We have to prove that t(e"", uail, bSl) E E(e,e"; R, A, B) .

Case 1: u = O. Tben t(e "', uail, bs2) = t(e '" , uail, b?) =t(e "', 0, bil) =t(e "", -ebs, bs2)

'tee "", ebs, 0) E E(e,e"; R, A,B), because t(e "", ~ebs, bs2) = [tee, 0, -b), 't(e "", e", 0)] E

E(e,e";R,A,B), where 't(e"', e", O)=t(e", ~"', 0)" E T(e',R,R) by(12),and

t(e"", ebs, 0) ='tee, e"'bsz, 0) E T(e; A, B) also by (12).

General case. Set r = F(~, u) ER, r" = F(e", u) e R and w = us - e"r + er". Theo w is

onhogonal to e , e ", and e "".

By (13), 'C(e '"t, uail, bil) = t(e '" , uail, bs'l)

ES 't(e"", was, 0) t(e"', e"ars, 0) t(e"", ear"s, 0) 't(e"', 0, b"s2), wherc b"=b + ""sa2 e B.

By (12), t(e"", e"ars, O)e T(e"; Ax, Bx) c E(e,e"; R, A, B) and

't(e"", ear"s, 0) e T(e; Ar. Bx) c E(e,e"; R, A, B) .

By Case I, tee, 0, b "s2) E E(e,e "; R, A, B) .

Moreover t(e'" was,O)::: [t(e, wa, 0), t(e"", e", 0)] E E(e,e"; R, A, B) , " because

t(e "", e ", O)::::l t(e ", _e"", O)e T(e ", R,R) by (12).

Thus, t(e ""t, uas 2 , bs2 ) e E(e,e"; R, A, B).

COROLLARY 20. For any symp/ectic ideal (A, B) o[ R, any !Wo vectors e, e" E V, and any

(Wo vectors w, w" E V orthogonal to e, e" we have E(e,e "; R, A, B) ::> E(ws2, w"Sl; R, A, B),

wh.ere s = F(e,e ').
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Proof. We have to prove that ghg- t E E(e,e'; R, A, B) whenever gE E(w?, w'?, R) and

h E T(ws2,A,B) UT(w?,A,B). ByLemma 19, h E E(e,e';R,A, B) and g e

E(e,e'; R, R,R) = E(e,e'; R). So, ghg- 1 E E(e,e'; R, A, B) .

LEMMA 21. Let P be a maximal ideal of R . Supase that dim(F mod P) ~ 4. Let e, e' E

V and F(e, e') E S =R \ P. Then there is SES such that E(el' e2; R, A, B) ~ T(e; As2,

Bs2) far all sympiectic ideals (A, B) of R.

Proof. We write e =v + u wich v E elR + e2R and U E U.

If F(U, u) intersects S, then we find v in U wich F(u, v) = So E S. By Corollary 20,

E(el' e2; R, A, B) ~ E(u, v; R, A, B) and E(u, v; R, A, B) ~ T(e; As0
2, 8s0

2). So

E(el' e2; R, A, B) ~ T(e; ASl, Bs2) with S =so'
lf F(U, u) does not intersect S, Le. F(U, u) =F(V, u) cP ehen F(V, v) intersects S. We

find a vecot v' in elR + e2R with F(v, v')!= SI E S, and a pair w, w' E U with F(w, w') =
s2 E S. BYCorollary 20,

E(el'~; R, A, B) ~ E(w, w'; R, A, B) => E(vS22, v'S22; R, A, B) . By Lemma 19,

E(vsz2, v'sZ2; R, A, B)::J T(e; As2
2s18, Bs2

2S t8).

So E(el' e2; R, A, B) ~ T(e; A?, B?) with S =$ZSI4 E S.

Now we can campiete our proof cf Theorem 4. We have to prove that 'tee, ua, b) E

E(el' e2; R, A, B) for any F-unimodular vector e E V, any vector u E V orthogonal to e, any

a E A, and any beB. By Lemma 21, for every maximal ideal P of R therc is se R outside

P such that E(el' e2: R, A, B) => 'tee, uaR.? 0). Writing 1 as a linear combination of those SZ,
we obtain an element of E(el' eZ; R, A, B) of the form 'tee, ua, rel-) wich re R.

It remains to show that 'tee, 0, b')e E(el' e2; R, A, B) with b'= b - ra2 e B. By Lemma

21, forevery maximal ideal P of R there is se R outside P such that 'tee, 0, b',2il) e E(el'

e2; R, A, B) for al1 r e R. Writing 1 as ehe square of a linear combination of those s, and

using that E(el' eZ; R, A, B) => tee, eb'R, 0) ='tee, 0, 2b'R), we obtain that 'tee, 0, b')e

E(el' e2: R, A, B) .
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Ta prove the fIrSt conclusion of the theorem we need only the following condition: dim(F

mod P) ~ 6 for every maximal ideal P of R of index 2. We denote by H the subgroup of EPFR

generated by its subgroups t(e, 0, R) I where e ranges Qver all F-unimodular vectors e in V.

Clearly, H is a nonna! subgroup of GPFR. We want to prove that H = EPFR. By the definition

of Ep~, it suffices to show that H contains an arbitrary symplectic transvection t(e, u, r) .

We pick a vector e' in V with F(e, e') =1, and set U' = (eR + e'R).L, r' =F(u, e'), Y =
U - er'. Then u =er' + v with v anhogonal to both e and e i. By (11),(13),

t(e, u, r) = '[(e, v, 0) t(~, 0, r + 2r').

So it remains to show thac '[(e, v, 0) E H. It suffices to show that for every maximal ideal P

of R therc is SES =R\P such that t(e, U's, 0) eH.

If card(R/P) * 2, then we pick to ERsuch that t02 - to = SES. By (15), H )- [t(e,

0, t'), t(v, eit, 0)] = t(v, ett', -t'~) =f(t, t') for all t, t
i

E Rand all Y EU', hence

H 3fl..ro, ly t f(l, (02) =t(v, e( t02 - tO)' 0)

= t(v, es, 0) = t(e, VS, 0) .

If card(R/P) =2, then we usc the candition of the theorem and pick two onhogonal pairs (v,

v'), (w, w') in U' with SI =F(v, v') e S and s2 =F(w, w i

) e S.

We have H 3 ['[(e, 0, 1), 't(v, e', 0)] = t(v, e, -1), hence

H ) [t(e i

, -w', 0), 't(v, e, -1)] = t(v, w', 0), and H 3 [t(w, el, 0), '[(v, W', 0) ] =

t(v, elS2' 0) = t(e, vts2' 0) for all t in R.

Thus, t(e, Vs'J!?, 0) eH. For an arbitrary u i E U' we have u iSt =YX + Uii with x =F(u',

v') andF(u", v) = O. We have

t(e, u "S~t' 0)= [ t(u", -v', 0), tee, VS2' 0)] e H, hence

t(~J u 's, 0) = tee, u' S~12, 0) =t(e, VXS~t, 0) "C(e, u °S2S!' 0) E H with s = S~t2 e S =
R\P.
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The fU"St half ofTheorem 5 is proved.. Now we have the second half to prove.

By Theorem 3, we have only the indusion [Gpr-<A, B), EPFR] c EPF(A, B)

to prove. Note that both Gpr-<A, B) and Ep~ normalize EPF(A, B).

By the first conclusion of the theorem, it suffices to show that [GPF(A, B), tee, 0, R)I c

Ep,,:(A, B) for any F-unimodular vector e in V. In other words, we want to prove that the

subgroups Gpp(A, B) and t(e, 0, R) commute modulo Epp(A, B).

Ir suffices (0 show that for every maximal ideal P of Rand any g in Gpr-<A, B) there is s

E S =R \ P such that [g, tee, 0, Rs)) c EPr-<A, B) .

We will prove this using only the following condition: dim(F mod P) ~ 4 .

Case 1: therc is w, w'" in V orthogonal to bath e and ge and such that F(w, w') =seS =

R \ P. Let er. E GL1R and cER be such that (Cl - er.)R c B, F(gu. gv) = aP(u, v) , gv • vc

eVA and F(v,gv)+B= Igv-vclforall ~VE V. Forany r inR wewrite

t(ee, 0, rs) = 't(ee, W, 0) t(ee,w 'r, 0) 't(ee, -w -w'r, 0)

= t(w,ee, 0) t(w',eer, 0) t(w + w'r, -ec,O)

and t(ge, 0, rs) ='t(ge, w, 0) 'tCge,w"'r,O) t(ge,·w -w"'r,O)

= t(w,ge, 0) t(w"',ger,O) t(w + w'r, -ge, 0), hence

t(ge, 0, rs) t(ee, 0, rsy1

=t(t:V,ge, 0) t(w"',ger, 0) t(w + w'r,·ge, 0) (t(w,ee, 0) t(w"',ecr, 0) t(w + w'r, ·ee, 0) r l

= h1(g2~2-1) (g3h~3-1), where

h3 = t(w + w'r, -ge, 0) t(w + w'r, -ee ,0) -1= t(w + w'r, ec - ge,- F(ge, ec) E EPr-<A, B) ,

g3 =t(w,ec, 0) t(w"',ecr,O) e EppR,

~ = t(w"', ger, 0) t(w',eer,O).. l =t(w', ger - ecr, -F(ger, ecr) ) E Epp{A, B) ,

82 =t(w,ec, 0) E EPFR,

and h1 = t(w, ge, 0) t(w, ec, or1 = t(w, ge - ec, ~F(ge, ec)e Ep~A, B).
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So 't(ge, 0, rs) 't(ec, 0, rsr l E EPF(A, B), hence [g, 'tee, 0, ars)]

= g 'tee, 0, ars)g-l 'tee, 0, wsr I ='t(ge, 0, rs) 'tee, 0, arsr l

='t(ge, 0, rs) 't(ec, 0, rsr l ('t(e, 0, rs(c2 - Cl» E EPF(A, B) for all r in R.

Thus, [g, 'tee, 0, Rs)] c EPr-CA, B) .

General case. We pick a vector e; E V such that F(e, e;) = 1 and write ge =ex + e) + lt

with x =F(ge, e;), y =F(e, ge) E R, U E U = (Re + Re; ).L. Since gE Gpr-<A, B), we have

(X2 -Cl(g»R c B ,y E A, U EVA, and:cy +B = luL

Set h = 'tee;, ux/a(g), xy/a(g». Then hge = ex + e)a + lla, where a = l-x2/a(g» ,

aR = (x2 - a(g»R c B. Note that ry/a(g) -xy(x/a(g»2 = axy/a(g) E H, hence hE

EPF(A,B). Since ge = ex + e) + u is F-unimodular and a - 1 E xR, we can find u; E U

and r ERsuch thac y; = y + F(u;, u)a + rx E S. Set h; = 'tee;, u ;a, ra)h E EPr-<A,B). Then

hge= ex+e;ay'+ua-u'a.

Now we pick v, v; in U with F(v, v;) E S and set w = vy; + eFeu - u;, v), w; =v);

+ eF(u- u;, v'). Tben F(w, w;) =F(v, v;)y;2 E S and F(e, w) = F(e, w;) = F(hge,w) =
F(hge, w') =O. By Case 1. [hg, 'tee, 0, Rs)] c Epp(A, B) for same SE 5, hence

[g, 'tee, 0, Rs)] c Epp{A,B).
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7. Proof of Theorem 7

By Theorem 5, it suffices [0 prove that EpF(A, B) c [Ep~A, B), EPFR], i.e. T(el l A, B)

c [EPF(A, B), EPFR], i.e. t(el' uax, b) E [EpP(A, B), EPFR] for all U E U = (eiR + e2R)..L,

a E A, and bEB, where e l , e2 is a hyperbolic pair in V.

LEMMA 22. Under the condition of Theorem 4, for any maximal ideal P of R there is SES =
R \ P such that t(el' UQS, 2sa' +bs2) E [Ep~A, B), EPFR] for all a, a' in A and b in B.

Proof We pick vectors e3' e4 E U such that So = F(e3' e.J E S.

Case 1: a = b = O. Then

t(el' uas, lsa' +bs2) =t(el' 0 2sa')

= ['t(el' e3 a' , 0), t(el' e4' 0)] E [Ep~A, B), EPFR] for s = So = F( e3' e~ ES.

Case 2:a' = b =0 and the image 1t(u) of u in Up is Fp-unimodular. We pick v E U

such that s' =F(u, v) E S.

If card(R/P);c 2, then we pick r in R with r -,2 E S and set f(y,t)

= t(el' uasty, -y(as '02) = [t(u, 0, y), t(el' val, 0)] E [Ep~A, B), Ep~] for any r,t in

R, where t(u, 0, r) E EPFR by Lemma 19 with x = 1. Now

f(l,r)f(,2, lr i = t(el' uas'(r - ,.2),0) E [Ep~A, B), EPFR] .

So we are done with s =s'(r.,.2) ES.

Ir eard(R/?) = 2, then dim(F mod P) ~ 6 by the condition ofTheorem 5. So we can find e,

e' in U orthogonal to u, v so that F(e, ~') E S Although e need not be F-unimodular, tee, u,

0) E Ep~ by Lemma 19 with x =1. So

t(el' UDS, 0) = [tee, u, 0), t(el' e 'a, 0)] E [Ep~A, B), Epr-Rl for any a e A, where s =
F(e, e') ES.
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Case 3: u =0 and a ~ =O. Then [Ep~A, B), EPFR] J

[t(e3' 0 b), t(e!, e4' 0)] =t(e!, e3bsO' .bsQ
2) far all bEB.

On the other hand, by Case 2 there is s! E S such that [EPF(A, 8), EPFR] 3 t(e!, e3bs!,0)

for all beB. So for s = SOS! we obtnin that [EPF(A, B), EPFR] J

t(el' e3bs,0)t(el' e3bs, -bs2r! =t(el' 0, bs2) for all bEB.

General case. We write USo =e3t + e4t'" + w =e3 + e4t~ + w + e) (t· 1) with t =F(u, e4)' t~

=F(e), u) E Rand W E U onhogonal to both e3 and e4. Then:

t(el' 0, 2raa~) E [Ep~A" 8), EPFR] for all a~ in A by Case 1;

t(el' (e3 + e4t~+ w)as), 0) e [Epr-<A, B), Ep~] for all a E A for a suitable SI eS by

Case 2;

t(el' e3(t - l)as2' 0) e [Epr-<A, B), EPFR] for all a E A with a suitable s2 E S by Case 2;

[Ep~A, B), EPr-RJ J t(e), 0, b532) for alt beB with a suitable 53 in S.

So for s'" =s)s2s3E S and S =SOSIS2S3 e S we obtain that t(el' UQS, 2sa ~ +bSl)

=t(el' 0, 2ra"') t(el' (e3 + e4t~+ w)as~,O) -t(el' e3(t - l)ass~, 0) t(el' O,b? +t~ (r - 1)a2ss~)

e [Ep~A, 8), EPFR] fair all a, a ~ in A and b in B.

Lemma 22 is proved. Now, for fixed u, a ,h, we set

YI = (r ER: t(el' uar, 0) e [Epp{A, B), Ep~] ),

Y2 = (r eR: t(e l , 0, 2ra~) E [Epp{A, 8), Ep~] },

Y3 = (r eR: t(el' 0, b32) E [EpP{A, B), EPFR] ).

By Lemma 22, each Yi contains Rs for an element s outside an arbiitrary maximal ideal P

of R. Clearly, Yt and Y2 are additive subgroups of R. So YI =Y2 = R. Now it is clear that Y3

is an additive subgroups of R, hence Y3 = R.

Therefore , t(e), uas, 2ra ~ +b$2) =t(el' uar, 0) t(el' 0, 2ra") t(el' 0, b32)

E [Epp{A, B), EPFR] "
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In this secnon we assume that there are vectars el' e2 in V with F(el' e2) = 1. As above,

we set U = (etR + ezR ).1.

Let H be a subgroup of Gp~ nonnalized by EPFR. Denote by A the ideal of R

generated by all F(U, u), where u E U and t(el' u, r) E H for same r in R (depending on

u). Let B be the set of all b eRsuch that t(e t, 0, b) E H. Clearly, B is an additive subgroup

of R.
LEMMA 23. 2A c B.

Proo! It suffices to show that 2F(u,v) E B whenever u,V E U, r E R, and t(el' u, r)

E H. We have H => [H, Ep~] 3 [ t(et, u, r), t(el' v, 0)] = t(e 1,0, 2F(u,Y», hence 2F(u,Y)

E B by the definition of B.

LEMMA 24. Suppase that dim(U mod P) ~ 2 for every maximal ideal P of R. Then B' cA.

Proof. The dimension canditian means that 1 can be written as a sum of elements F(u, v)

with u, v in U. So it suffices to produce t(e l, vbF(u,v), *) in H far arbitrary u,v in U and

b in B. We have H => [H, EPFR] 3

[t(ez,v, 0), t(et, 0, b) ] = [t(el' 0, ·b), t(V, e2' 0)]

= t(v, eZ .. etb, 0) t(v, -e2' 0)= t(v,· etb, ·b), hence

H 3 [t(el' u, 0) ,t(v, - etb, -b) ] = t(et, U, 0) t(et, .. 't(v, .. e1b, -b) u, 0)

= t(el' U, 0) t(el'-u +e1F(v, u) +vbF(v, U), 0)= t(et, vbF(v, u), ..bF(v, u)2).

LEMMA 25. Under the canditian afLemma 24, far any W E U and any a E A therc is t e R

such that t(el' wa,t) e H.

Proo! It suffices to cansider the case a =F(u, v), where u, v e U, rE R, t(el' u, r)

e H. Set

y =(s eR: t(el' was, t) e H for some t eR}.

We want to prove that Y 3 1. Since Y is an additive subgroup of R, it suffices (0 show thaI

Y => Rs far an element s of R outside an arbirrary maximal ideal P of R.
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We pick e, e ~ in V with F(e, e~) =So in S = R \P. We write wSo =ez + e ~z ~ + w~ with z

= F(w, e~), z~= F(e, w), w~ onhogonal to e, e~. Similarly, we write USo = ex + e~x~ +.u ~ and vsO

= ey + e ~y ~ + v ~ with u~and v' onhogonal to e, e~. Note that F(usrp vSo)= as02 = yz ~- zy ~ +

F(ll~, v~).

By Lemma 19, 't(e,v~, y), t(e', 0, cso) E Ep~ for any c in R, so

H~ [EPFR,1I]) ['t(~,v~, y), 't(el' u, r)]= 't(el' 't(e,v~, y)u, r) t(et, -u, -r)

= 't(el' -eFeu', v) + ey,,' + vx'so, 1), hence

H:::> [EPFR, H]) [ t(e', 0, cso), 't(el' -eF(u', V) + eyx ~ + v ~x ~so ' 1)]

= t(el' e~cso2(F(u",v")- yx"), 1).

Moreover, H:::> [EPFR, H] 3 [tee', 0, ,1), t(el' u, r)] = t(el' -e 'x, 1), hence H::>

[EPr-R, H] 3 ['t(e,O, I), t(el' -ex, 1)]= t(el' -us(}t 1). hence H ::> [EPFR, H] 3

[t(e',O, cy"). t(el' -exs(}1 1)] = t(el' e"~"s02, 1). So H), .

t(e., e 'cs02(F(u ", v")- yx"), 1) t(el' e"cxy "s02, 1)= t(el' e 'cso2(F(u ", v ')- yx'+ xy "), 1) =

't(el' e"casO4, ?).

Recall that c here is an arbitrary element of R. So,H 3 t(el' e"e(z 'sO - l)asO4, 1) .

By Lemma 19, f =tee, w, z) e EppR. So

H )!T.(el' e"cas04, ?}f-I= t(e.,!e"cas04, ?).

Therefore H 3 t(el' e'c(z"so - l)as04, ?) t(el,!e'cas04, ?)

=t(er,(e"(z"so-I)+t(e,w,z)e')caso4, 1)= t(.ßl,wcas06, 1).

Thus, Y:::> Rs with s =s06 in S = R \P.

COROLLARY 26. Under the coditions ofTheorem S. (A, B) is a symplectic ideal of R.

Proof. Let r E R, a E A, bEB. By Lemmas 23 and 24, 2a, E Band b E A. It

remains to prove that b,.2, ra2 E B.

To prove that ra2 e B f it suffices to show that for any maximal ideal P of R there is s E

S =R \ P such that a2sR c B .

We pick vectors e3' e4 e U such that So = F(e3' e,J e S.
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By Lemma 25, for any c in R we have t(el' e4ca, ?) E H. So for any d in R we have

H::> [EPFR, H];) [t(e3'0, d), t(el' e4ea ,?)] = t(el' e3acdsO' -a2e2dso
2) = fee,. d).

So H '3f(e, d)Jtl, dc'lyl = t(el' e3a(e- c2)dso' 0) and .

H '3 't(e l, e3a(e- Cl)fiso, O)fi:c-c2, d)-l = t(e l , 0, a2(e -Cl)2dso
2) ,

2 _7 2 2 ..
Le. a (e -e-) dsO E B.

If eard(R/P) *" 2, we ean ehoose c such that c2 - c is in S, hence a2sR c B for S =

(e -Cl)2sQ2 E S.

lf card(R/P) =2, we pick vectors e, e' in U onhogonal to e3' e4 and such that F(e, e')

E S. By Lemma 19, tee, e3d, 0) E Ep~. So H => [EPFR, H] ;)

[tee, e3d, 0), t(e l , e1l, ?)] = t(el' e3adF(e, e'), 0), hence

H ;) fO, -dF(e, e')t(el , e~(e, e '), 0) = t(e l , 0, a2dF(e, e')so2),

Le. sa2R c B for s = F(e, e,)so2 E S.

We have proved that rdl E B.

Now we have to prove that b,2 E B. Since 24. c B, it suffices to shoV( that for any

maximal ideal P of R there is SES =R \ P such that br'lSl E B.

Let e3 and e4 be as above. We have seen ~at for any a E A there is SES such that

(27) t(e l , e3ads, 0) E H for all dER.

We will use this with a, d replaced by b". We have

!! => [H, EPFR];) ['t(el' 0, b), t(e3' ez', 0)) t(el' e3brs, 0)

= t(e3' elbrs, - b,.2s2)t(el' e3brs,0) :::: t(e3' 0, - b,2s2), hence H => [H, Ep~] ;)

[t(e3' 0, -b,.2s2), t(el' e~ 0)] t(el • e3br2s2, 0)

= t(el' -e3 br2s2, b,.2Sl) t(~l' e3b,.2s2,O)

= t(e I' 0, br'ls2).

Thus, b,.2s2 E B.
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COROLLARY 28. Under the coditions ofTheorem 5, H ::> EPF(A, B),

Proof By Theorem 4, it suffices to show that H ::> T(el' A, B). By the definition of B,

H :::> 't(el l O~). So it remains to show that t(et, wa, 0) E H for any U E U and any a eA.

Set Y = (t e R: 't(el' wat, 0) eH}. We want to prove that 1 E Y. Since Y is closed

under addition, it suffices to show that for any maximal ideal P of R there is an element s' E S

= R\P such that Rs' c Y. Le. t(et, was'r, 0) E H for all r in R.

Let e3' e4 E U and So = F(e3' e~ E S be as in the proof of Corollary 24 above. We are

going to use (26) again. We write wsO =e3x + e4Y + w' with x, Y E R and w' e U

onhogonal to e3' e4 . Then wso2 = e3(xsO -1) + e3 + e4Yso + w'sO = e3(xsO -1) +Je3 ' where J=
t(e4'-w', -y) e EPFR by Lemma 15.

By (27), h1 = 't(el' e3(xsO -1)ars, 0) e H and ~ = t(el,Je3ars, 0) = fr(el' e3ars,

O)f'"l e H .for all r in R. Since (xso -1)ysaa2,.2s2 E Ra2 cB by Corollary 24, h3 ::::1 't(elIO,

(xso -1)YSaa2,.2s2) EH. So t(~ll warsso2, 0) = h3~hl E H I hencc rsso2 = rs' E Y for all re

R, where s" = ssO2 eH. Corollary 28 is proved.

Originally, aur defmition of A, B depended on choice of an F-unimodular vector el'

However Corollary 28 shows that in fact it does not depend. We can also state it as follows;

COROLLARY 29. Under the conditiuons of Theorem 5, Ep~A, B) contains all symplectic

transvections in H.
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LEMMA 30. Under the conditions of Theorem 5, let e E V, v E V, " ," E R, F(e, v) = 0, and

tee, v, '), tee, 0, ,) E H. Thcn F(u, V)ro c A and "04 E B for every '0 E F(e, V).

P,oo/. We pick a vector e ~ E V such that F(e, e~) = rO' We have H ::::> [EPFR, H] :3

[tee, 0, r), t(el' e"I, 0)]= t(el' ertrO' -rt2'02) =[(r) for all r in R.

By its definition, A::::> F(errO' V) ::::> R"02.

By CoroIIary 28, H ::::> Epp-{A, B) 3 t(el' err02, 0). So

H 3 't(el,err02,O)JtrOrl='t(el,O,rr04).Byitsdefinition, B 3 rr04.

Now we have the inclusiuon F(u, V)ro c A to prove. It suffices to show that for every

maximal ideal P of R therc is SES =R \P such that sF(u, V)rO c A.

Pick any v" E V and set z =F(v, v"). We have to prove that rosz E A for same SES

independent on v". We write v" =elx + e2Y + w with x,y E R and W E V. Note that F(e, w)

=0 and z =F(v, el)x + F(v, eZ)Y + F(v, w).

Wehave:

H 3 ['t(el' 0, x) , 'tee, v, r')] ='tee, eIF(et, v)x, 1);

H 3 ['t(e2'O, 1) , 'tee, v, r')] = 'tee, e2F(e2' v), 7), hence

H 3 ['t(eI' 0, y), 'tee, ezF(e2'v), 1)] ::: tee, etF(e2' v)y, 1);

H 3 ['t(e2'w, 0), t(e,v, r')] = tee, e2F(w,v) + wF(ez, w), 7), hence

H 3 [t(eI'O, 1), t(e, e2F(w,v) + wF(e2' w), 1)] =tee, elF(w, v), ?).

So H 3 t(e, eIF(e!,v).x, 7) tee, etF(e2' v)y, 7) t(e, elF(w, v), 7)

=t(e, e1F(v',v)x, ?) =tee, ·etz, ?) .

If caro(R/P) ~ 2, we pick to E R with s = 102 - 10 E S. Then for any I, l' E R we have

H 3 ['t(e2' 0, I), tee, -elz, 1)]= tee, ·e2tz, _tz2), hence

H 3 ['t(e!, 0, 1'), tee, -e2tz, .tz2)]= tee, -eI u"z, .(1.t'z2) =fit, t'), and

H 3 Al, to2)fT..to, Ir l = tee, elsz,O) = t(el' esz, 0).

Thus, szrO E A by the defmition of A.
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If card(R/P) = 2, we invoke the condition of Theorem 5 to find vectors e3' e4 E U

orthogonal to e, ~' with s =F(e3' e~ E ß. Theo

H ) [t(e2' e3' 0), tee, -elz, ?)]= tee, -e3z, 0), hence

H ) [t(el' e4' 0), 'tee, -e3z, 0)]= tee, ·elsz, 0) = t(el' esz, 0).

Thus, szrO E A by the definition of A.

LEMr-AA 31. Under the ,conditions of Theorem 8, let h E Hand he =ec for some cER and an

F-unimcxiular vector e e V. Theo hv - VC E VA and lhv· vc 1= F(hv, YC ) + B for all Y E V.

Proof Clearly, ce GL1R. For any vector u in V orthogonal to e and any scalar r in R

we have

H ) [h, 'tee, u, r)] = tee, lwc/a.(h) - u, rCl/a.(h) - r· F(hu, uc}/a.{h)).

So (using Lemma 30 and a candition afTheorem 8) huc/a.(h) - u c VA and

lhu.c/a(h) - uI = rCl/a.{h) - r - F(hu, uc)/a.(h) + B for all U E e.1, hence (taking u = 0)

R( a.(h) - c2) c B. It follows that hu - uc c VA and Ihu - ucl =F(hu, uc) + B for all u E e.1.

Pick a vector e' in V with F(e, e') = 1. We can write h = 'tee, u, r)h' , where U E V'=

(eR+e'R).1, r E R, h' E Gpri:A,B),h'e=ec,and h'e'=e'a.(h)/c, h'y-vc E VA and

Ih 'y - vc I =F(h 'Y J Yc) + B for all Y in V.

For any W E V ' we have H 3 [h, 't(w, 0, 1)], because t(w, 0, l)e EPFR, and H )

[h', t(w, 0, 1)] by Theorem 5. So H ) [ tee, U, r), t(w, 0, 1)] ='tee, U, r) tee, ·u - wF(w,u), .r)

='tee, - wF(w,u), 7), hence wF(w,u) EVA. It follows that that U EVA.

Incuding tee, u, r') into h', where r' E lul, we are reduced to the case u = O. In this ease, h

= tee, 0, r)h', and for any vector W E V' we have H 3 [h, t(w, e', 0)] and H 3

[h', t(W, e', 0)], hence H 3 ['t(~, 0, r), 't(w, e', 0)] = t(w, er, ·r). By Lemma 30, wr EVA.

So U'r c U'A, hence r e A. Using Lemma 30 again, we conclude that r E B. Thus, we ean

include we ean include 'tee, 0, r) inta h' , Le. we are reduced to the ease when h = h~,
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LEMMA 32. Under the conditions ofTheorem 8, let hE H n SPFR. and hw =w fQr, a vector

w E V which is orthogonal to a hyperbolic pair. Then (hv - v)ro E VA and I(ltv • v}rolr04 =

F(hv, v}r06 + B for all v E Vonhogonal to wand all rO E F(w, V).

Proof We can assurne thac w is orthogonal (0 el' e2 Le. W E U. For any vector v in V

orthogonal to w and any scalar r in R we have

H ;) [h, t(w, v, r)] = 't(w, hv - v, - F(hv, v}).

By Lemma 30, (hv - v),O e VA . We pick now Z E I(hv - v)ro I. Theo

H ;) t(w, (hv - v),O' z) and

H 3 t(w, -hv,O + v,O' - F(hv,O' v,~), hence' H 3 t(w, 0, Z - F(hvrO' vro».

By Lemma 30, (z - F(hvro' v'O»'04 E B.

Thus, (hv - v),O E VA and I(hv - v)'Olro4 =F(hv, v)r06 + B far all v E. w.1.

LEM~ 33. Under thc conditions ofThcorem 8, assumc that A =0. Then H c GPF(A , B) =
Gp;"o, 0).

Prao! Let hE H. We write hel = elx + e2Y + u with x= F(hel' e2)' y = F(el' he"l)' U E

U. We set

h'= [h,t(e,O, 1)] EH

Case 1: y =O. Then h'el ::: el' So h' =1 by Lemma 31 with A =O. It follows that u = O.

So hel = etx. By Lemma 31, h E Gp~A, B) = GPF<0, 0)

Case 2;:r =O. Since h'~l =el + he1y, we have h' E Gpr-<A, B) =Gpr-<O, 0) by Case 1.

It follows that F(h'el' e2) =xy .. 1 .. x?- =°and ux =0, hencc x E GLIR, and u = 0. So hel

= elx. By Lemma 31, h e Gp~A, B) = Gp~O, 0).

Case 3: y3 = O. Sincc h 'eI =et + hely, we havc h' E Gp~A, B) = GPÄO, 0) by Case 2. It

follows that F(h '~l' e2) =xy - 1 - xl =°and u.x =0, hence x E. GLIR, and u =O. So hel =

elx, By Lemma 31, h E GpF<A, B) =Gp~O, 0).
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Case 4: y3 ~ O. Then there is a maximal ideal P of R such that rs ~ 0 for all SES =R \

P. We pick a pair y, y' of vectors in U with rO =F(v, v') E S, and set w =e1F(u, v) + Y.y.

Then F(el' w) = F(he l , w) = O. h'w = w. and F(w, V) 3 y2ro E Sr. By Lemma 32,- (h'el·

el) y2ro =0, hence y3ro =0 (because h'el - el= helry)·

So ease 4 is impossible.

LEMMA 34. Under the conditions ofTheorem 8. H c Gp~A, A)

· Proof. We want to prove that the image of H modulo A consists of sealar automorphisms

of R/A-module V/VA. Indeed, otherwise. applying Lemma 33 to this module instead of V, we

would obtain a non-trivial symplectie rransvection in the image of H modulo A. \'Ne used that the

image of Ep~ modulo A contains all symplectic traßsvections of (VIVA, F mod A). )

So H would contain an element of the fonn 'tee, u, r) g, where 't(e, U, r) is a symplectic

transvection in EPFR which is non-trivial modulo A and wherc g is trivial modulo A, hence g

E Gp~A, A). We pick a vector e' E V with F(e, e'') =1 and set U' =(eR + e'R).L. We can

assurne that U EU'.

By Lemma 19, t(w, 0, 1) E EPFR for any W EU', henee [t(w, 0, 1), g] e Ep~A, A) by

Theorem 5. It follows that t(e,wF(w, u), ?) = ['t(w, 0, 1), tee, U, r) ] e H EPF(A, A). By

Corollary 29, applyed to H EPF(A, A) instead of H, we obtain that F(w, u) E A. So F(U', u)

c A, henee U EVA.

Including tee, U, 0) inta g, we are reduced to the case U = O. In this case we have

t(w,·er, ?) = [t(w,e',O), t(e,u,r)] E H Ep~A, A), henee rF(w, U) c A for all W E U'

by Corollary 29. Ir follows that r e A. This is a contradiction.

LEMMA 35. Under the conditions ofTheorem 8, let g E GPFR and gel = elx + e2a' + ua with

U E UA, a, a' E A, x E R, and xa' E B. Then t(gel' 0, r)'t(elx, O,-r) E EPr-<A, B) far all r

ER.

Proof It suffices to show that far each maximal ideal P of R there is SES = R \ P such

that t(gel' 0, rs)t(elx, 0, ·rs) E Ep~A, 8) for all r E R.
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Case 1: there is w, w' in V orthogonal to both el and gel and such that F(w, w') = SES

=R \ P. For any r in R we write

t(elx, 0, rs) =t(elx, w, 0) t(elx,w 'r, 0) t(elx, -w -w'r, 0)

= t(w,elx, 0) t(w',e1x r, 0) 't(w + w'r, -elx,O) and t(gel' 0, rs)

='t(gel' w, 0) t(gel,w'r,O) t(gel'-w -w'r,O)= t(w,ge l , 0) t(w',ge l r,O) t(w + w'r, -gel' 0),

hence t(gel' 0, rs) t(elx, 0, rsy 1

= t(w,gel' 0) t(w',gelr, 0) t(w + w'r,-gel' 0) (t(w,elx, 0) t(w',elx r, 0) t(w + w'r, -elx, 0) r 1

= hl(g2~g2-1) (g3h383-1), where

h3 = t(w + w'r, -gel' 0) t(w + w'r, -elx ,Ot1= t(w + w'r, elx - gel'- F(gel' elx) E

Ep~A, B), g3 = t(w,elx, 0) t(w',elx r, 0) E Epp-R,

h...z = t(w', gelr, 0) t(w',elx r, oy 1=t(w', gelr - elxr, -F(gelr, elxr) ) E Ep~A, B),

g2 =t(w,elx, 0) E EppR, and hl = t(w, gel' 0) t(w, elx, Or l

= t(w, gel - elx , -F(geI' elx » E EPr-<A, B).

So t(geI' 0, rs) t(elx, 0, rsr 1
E EPr-CA, B).

Case 2: F(V, u) intersects S. Then we can find w' in U such that F(u, w') =SES

and set w =u. The vectors w, w' are orthogonal to both el and gel' se we are done by Case 1.

Case 3: a' eS. Then we find vectors v, y' in U such that F(v, v') E S and set w =

eIF(u, v) + va', w" = e1F(u, v') + v'a. Then F(w, w') =F(v, v")a"2 e S and the vectors w, w'
J

are orthogonal to both el and geI' se we are done by Case 1.

Case 4: XE S. Then we can find v E U such that bath F(v, U) and F(u - vx, V)

intersects S. Set g'= t(e2' va, O)g, so g 'eI = eix + e2(a' + F(va, ua» + (u - vx)a. By Case 2,

there is sI eS =R \P such that t(g'eI' 0, r st)t(elx, 0, -rsl) e Ep~A, B) for al1 r e R.

Conjugating this by t(e2' va, 0), we obtain that t(ge l , 0, rSI)t( t(e2' -va, 0) etX, 0, -rsl) E

EpF(A, B) for all r in R.
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On the other hand, we can apply Case 2 (0 g =t(e2' -va,O) and conclude that t(t(e2' ~va,

O)el' 0, rS2)t(el' 0, -,s2) E EPr-<A, B) for same s2 in S and all f in R.

So t(ge, 0, fS)t(ex, O,-,s) = t(ge, 0, fs1s2 )t(ex, 0,-fS I52)

=('t(gel' 0, rS251)t( t(e2' -va, 0) eIx , 0, -rs~I»

o( t(t(e2' -va, 0) et, 0, x2SIfs2)t(el' 0, .x2S1fS2) )

E EPr-<A, B) for all r E R.

General case. Since gel is F-unimodular, Cases 2, 3,4 cover all possibilities.

LEMMA 36. Under the conditions of Theorem 8, let e E V be F-unimodular, hE H, cER

and hv - VC EVA for all v E V. Then

(36) (F(he, ec) + t),2a(h)2 + c2(t? - a.(h»r E B for all rE Rand all tE lhe - ec I.

Proo! Note that in the presence of a hyperbolic pair e, e", the element a.(h) e GL1R (such

that F(hu, hv) =a(h) F(u, v) for all u, v in V) is unique and e'qual ro F(he, he"). By Lemma 34,

h e Gpr<A, A), Le. there is cER such that gv ~ VC E VA for all v E V. Such an element C

is not unique, but its coset c + A is unique (undcr the conditions of Theorem 8), c + A E

GLIR/A, and Cl .. a.(h) E A. Note also the the relation (36) we want to prove does not depcnd

on choice of c in the coset c + A or on choice t in the coset lhe - ee I E AlB. It suffices ro

considcr the casc e = e1.

We write hel =elx + e1J + u with x =F(he l . ~) e e + A, Y =F(el' he I ) E A, u e UA,

where U = (Re. + Re2'Y-.

Pick Z E luL Then rs (x - c)y + z (mod B), hence F(he, ee) + t =xy + Z (mcxi B).

Since Cl .. a(h) E A, a = 1 -xx" e A for x" = x/a.(h).

Set f = t{e2' ux ", zx" 2)e T(~,A, B). Then /he l = elx + e'})" + ua with y" = y - zxx" 2

E A. Note that R(1-(xx")2) =R(2a - a2) c B, hence F(he, ee) + t =X)' + Z sxy" (mod B).

(Recall that 2A + a2R eS.)

Set now z" = x"y "(1 + a) E A andf "= 't(e2' 0, z") e T(e2' A,A). Then gel = f'lhe1 ::::I

elx+~a"+ ua,whereg=ffh E Gp~A,A)and a"=y"Ql, so a"R c B.
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By Lemma 35, t(gel' 0, r)t(elx, 0, ·r) e EPr-<A, B) far all r E R. Note that

[g, t( e l , 0, a(g)r)] = t(g el' 0, r)t(el' 0, - a(g)r)

='((gel' 0, r)t(elx, 0, -r) t(el' 0,rx2 - a.(g)r)

E EPr-<A, B) t(el' 0,r(x2 - a(g)) for all r in R.

Since hE H, [H, EPFR] c H and f E EPF(A, B) c H, it follows that k(r) =

rt.., t(el' 0, a(g)r)] t(el' o,al - a(g)r) E H for all rE R.

Since k(r) fIXes every vector in U, we can use Lemma 32 and conclude that lk(,)ez - ezl =

F( k(,)ez I ez) +B, Le. dd" eB, where

k(r)ez =eId + ezd", i.e. d =F(k(r)ez, ez) and d" =F(el' k(,)ez) .

Sct ,"= a.(g)' = a(h), e R and , .... =ril- a(g)' =ri2 - a(h), E A. Sincef" = t(ez, 0, z")

E T(ez, A,A),

k(r) =ff", t(el' 0,," )]t(e!, 0,' .... )= tlfe!, O,r" )t( el' 0, r ....-r .. ).

So k(,)ez = "e(je!, 0, ")(el(r .... - ,") + e2)

=el(' - ,") +~ + retr"F(j'el' eI(r .... -r") + e2)

= el(' - ,") + ez + (eI - e2 z')," (z" (r .... - ,") + 1) = eId + ezd" with d = , .... +

r ..z ..(' .... - ,") and d" = 1- ,"z" - ,"z .. 2(," - ,").

So dd' e _z", .. 2 + , .... + z.. 2R c z"," 2 + , .... + B, because z" E A . Since dd" E B, wc

concludethat z .., .. 2+, .... e B.Soz ..,/l.:x;2+,.... x;2 E B, i.c. x"y"(l +a), .. 2x2 +, .... x;2 E B,

i.c. Y "," 2x + x;2,.... e B

Recall now that x - c e A, F(he, ec) + t =xy" (mod B), ," =aCh), , and , .... =,x2 _

a(h),. Thus, we obtain (36).

Now we can conclude our proof cfTheorem 8. Pick t 1 E lhe1 - elc I and /2 E Ihez - e2c I.

Then t 1 + t2 + F(he1 - eIc, he2 - ezc) e Ih(el + e2)- (eI + ez)c I. Wc apply Lemma 35 to

e = ·ez' e = el' and e = el +~. Using that F(he l - el c, heZ- eZc )

= a(h) + Cl -F(he}, e2c ) - F(etc,he2)

= a(h) + Cl- F(h(et + ez), (eI + eZ)c) + F(hel ' elc) + F(hez, e2c), and that

2A c B, we obtain that a(h) + c2 + c2(Cl - a(h»r E B far all , E R, hence c" 2c2(c2­

a(h»R c B far a11 c" eR. Picking c" such that cc" - 1 E A, we canclude that (Cl - a(h»)R c

H... Naw Lemma 35 gives that F(he, ec) + tE B far all F·unimodular vectors e E V. Since V

is spanned by its F-unimodular vectors, we conclude that h E GPF(A, B).
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