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Normalizers of maximal tori
and real forms of Lie groups

A.A. Gerasimov, D.R. Lebedev and S.V. Oblezin

Abstract. For a complex reductive Lie group G Tits defined an extension W T
G of the

corresponding Weyl group WG. The extended group is supplied with an embedding
into the normalizer NG(H) of the maximal torus H ⊂ G such that W T

G together with
H generate NG(H). We give an interpretation of the Tits classical construction in
terms of the maximal split real form G(R) ⊂ G(C), leading to a simple topological
description of W T

G . We also propose a different extension WU
G of the Weyl group WG

associated with the compact real form U ⊂ G(C). This results in a presentation of the
normalizer of maximal torus of the group extension U nGal(C/R) by the Galois group
Gal(C/R). We also describe explicitly the adjoint action of W T

G and WU
G on the Lie

algebra of G.

1 Introduction

In the standard approach to classification of complex semisimple Lie groups the problem is
reduced to an equivalent problem of classification of root data. In other words the root data,
i.e. the system of roots and coroots describing maximal tori H ⊂ G and the induced adjoint
action of h = Lie(H) on g = Lie(G), defines the corresponding semisimple Lie group up to
isomorphism. Curtis, Wiederhold and Williams [CWW] demonstrate that for classification
of compact connected semisimple Lie groups G it is enough to classify the normalizers NG(H)
of maximal tori H ⊂ G. The normalizer provides information on the action of the Weyl
group WG := NG(H)/H on H but this is not enough for classification as one needs the
precise structure of the extension of WG by H. Thus for the classification problem one
might replace an involved non-commutative object, semisimple Lie group by a finite group
extended by an abelian Lie group. The deep reason for this equivalence is not clear. One
perspective is to look at NG(H) as a kind of degeneration of G [CWW]. An apparently
related but more conceptual approach is based on attempts to look at NG(H) as the Lie
group G defined over some non-standard number field (closely akin to mysterious field F1

“with one element” introduced by Tits [T3] probably with regard to this subject). In this
way the equivalence of the classification problems for compact semisimple Lie groups and
normalizers looks like a manifestation of a general principle (due to C. Chevalley [C]) that
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classification of semisimple algebraic groups should not essentially depend on the nature of
the base local algebraically closed field.

The above reasoning suggests a more detailed study of group extension structure on
NG(H). The important fact is that this extension does not split in general [D], [T1], [T2],
[CWW], [AH] so to have a universal description of NG(H) one should look for a section of
the projection NG(H)→ WG realized by a minimal extension of WG. Such construction was
proposed by Demazure [D] and Tits [T1], [T2] and may be naturally formulated in terms

of the Tits extension W T
G of the Weyl group WG by Zrank(g)

2 . This construction allows an
explicit presentation of NG(H) by generators and relations.

Although the Tits construction is known for a long time there seems no simple natural
explanation for its precise form even in the case of the complex reductive group (for recent
discussions Tits groups see e.g. [N], [DW], [AH]). This paper is an attempt to understand the
Tits construction better. After reminding the general results on normalizers of maximal tori
in Section 2 we reconsider the Tits construction in Section 3. We stress that the Tits group
construction is defined for maximally split form G(R) ⊂ G(C) of complex semisimple group
G(C). This allows us to present in Proposition 3.1 a simple purely topological description
of the Tits extension of the Weyl group WG (our considerations appear to be very close to
the final section of [BT]). Taking into account the relevance of the real structure for Tits
description of maximal tori normalizers, we consider the opposite case of the real structure
on G(C) leading to maximal compact subgroup U ⊂ G(C). It turns out that in this case
there exists an analog of the Tits construction that takes into account the action of the Galois
group Gal(C/R). The main result of this paper is Theorem 4.1 in Section 4 describing the
structure of the maximal tori normalizers of compact connected semi-simple Lie groups. In
Section 5 we calculate explicitly the adjoint action of the Tits group and of its unitary analog
on the Lie algebra g = Lie(G). This action, in contrast with the adjoint action on h ⊂ g,
depends on the lift of WG into G. Finally in Section 6 we provide details of the proof of
Theorem 4.1.

Acknowledgements: The research of the second and of the third authors was supported
by RSF grant 16-11-10075. The work of the third author was partially supported by the
EPSRC grant EP/L000865/1. The third author is thankful to the Max Planck Institute for
Mathematics in Bonn, where his work on the project was started.

2 Normalizers of maximal tori and Weyl groups

We start with recalling the standard facts on normalizers of maximal tori and the associated
Weyl groups. Let G(C) be a complex semisimple Lie group, H ⊂ G(C) be a maximal torus
and NG(H) be its normalizer in G(C). Then there is the following exact sequence

1 −→ H −→ NG(H)
p−→ WG −→ 1, (2.1)

where p is the projection on the finite group WG := NG(H)/H, the Weyl group of G(C). The
Weyl group WG does not actually depend on the choice of H and thus produce an invariant
of G(C). Let g := Lie(G) and let I be the set of vertexes of the Dynkin diagram associated to
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G(C), where |I| = rank(g). Let (∆,∆∨) be the root-coroot system corresponding to G(C),
{αi, i ∈ I} be a set of positive simple roots and {α∨i , i ∈ I} be the corresponding set of
positive simple coroots. Let A = ‖aij‖, aij = 〈α∨i , αj〉 be the Cartan matrix of (∆, ∆∨). The
Weyl group WG has the simple description in terms of generators and relations. Precisely,
WG is generated by simple root reflections {si, i ∈ I} subjected to

s2
i = 1, (2.2)

sisjsi · · ·︸ ︷︷ ︸
mij

= sjsisj · · ·︸ ︷︷ ︸
mij

, i 6= j ∈ I,
(2.3)

where mij = 2, 3, 4, 6 for aijaji = 0, 1, 2, 3, respectively. Equivalently these relations may be
written in the Coxeter form:

s2
i = 1, (sisj)

mij = 1 , i 6= j ∈ I . (2.4)

The exact sequence (2.1) defines the canonical action of WG on H. The corresponding action
on the Lie algebra h = Lie(H) and on its dual is as follows

si(hj) = hj − 〈αi, α∨j 〉hi = hj − ajihi ,

si(αj) = αj − 〈αj, α∨i 〉αi = αj − aijαi .
(2.5)

Unfortunately the exact sequence (2.1) does not split in general, i.e. NG(H) is not necessary
isomorphic to a semi-direct product of WG and H. A peculiar situation in this regard is
described by the following result due to [CWW], [AH].

Theorem 2.1 Assume G is a simple complex Lie group and let Z(G) be the center of G.
Then modulo low rank isomorphisms of classical groups, the exact sequence (2.1) splits in
the following cases, and not otherwise:

• Type A` such that |Z(G)| is odd;

• Type B` for the adjoint form;

• Type D`, for all forms except Spin(2`);

• Type G2.

Thus to have an explicit description of the normalizer NG(H) one should look for a
minimal section of the projection map p in (2.1). In the following Section we provide the
construction of the resulting extension of the Weyl group by a finite group. Let us note that
for a normal finite subgroup G0 ⊂ G one has: if (2.1) splits for G then it splits for G/G0. In
the following for simplicity we consider only the case of simply-connected complex groups.
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3 Tits extension of Weyl group

To describe the extension (2.1) in terms of generators and relations Tits proposed the fol-
lowing extension W T

G of the Weyl group WG by a discrete group [T1], [T2] (closely related
results were obtained by Demazure [D]).

Definition 3.1 Let A = ‖aij‖ be the Cartan matrix corresponding to a semi-simple Lie
algebra g = Lie(G) and let mij = 2, 3, 4, 6 for aijaji = 0, 1, 2, 3, respectively. The Tits group

W T
G is an extension of the Weyl group WG by an abelian group Z|I|2 generated by {τi, θi, i ∈ I}

subjected to the following relations:

(τi)
2 = θi , θiθj = θjθi , θ2

i = 1 , (3.1)

τiθj = θ
−aji
i θjτi , (3.2)

τiτjτi · · ·︸ ︷︷ ︸
mij

= τjτiτj · · ·︸ ︷︷ ︸
mij

, i 6= j ,
(3.3)

where the abelian subgroup is generated by {θi, i ∈ I}.

Let {hi, ei, fi : i ∈ I} be the Chevalley-Serre generators of the Lie algebra g = Lie(G(C)),
satisfying the standard relations

[hi, ej] = aijej , [hi, fj] = −aijfj , [ei, fj] = δijhj , (3.4)

ad1−aij
ei

(ej) = 0, ad
1−aij
fi

(fj) = 0, (3.5)

where A = ‖aij‖ is the Cartan matrix i.e. aij = 〈α∨i , αj〉.
According to [BT] (see also [T1]) there exists a subset {ζi, i ∈ I} ⊂ H of canonical

elements of order two satisfying the following relations

si(ζj) = ζj ζ
−aji
i , i, j ∈ I , (3.6)

where si, i ∈ I are generators of the Weyl group WG (2.2), (2.3).

Theorem 3.1 (Demazure-Tits) Let W T
G be the Tits group associated with the complex

semi-simple Lie groups G(C), then the map

τi 7−→ ṡi := efi e−ei efi , θi 7−→ ζi , i ∈ I , (3.7)

defines a section of p in (2.1) by embedding the Tits group W T
G into NG(H). In particular,

the normalizer group NG(H) is generated by H and by the image of the Tits group under
(3.7), so that the following relations hold:

ṡihṡ
−1
i = si(h) , ∀h ∈ h = Lie(H) , i ∈ I. (3.8)
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Example 3.1 In the standard faithful two-dimensional representation φ : SL2(C)→ End(C2)
given by (6.3) we have

φ(ṡ) =

(
0 −1

1 0

)
, φ(ṡ)2 = φ(ζ) =

(
−1 0

0 −1

)
. (3.9)

The appearance of the Tits extension W T
G as a minimal section seems unmotivated.

However the construction of W T
G may be elucidated by considering the maximally split real

form G(R) ⊂ G(C) of G(C). For the maximal split real form G(R) ⊂ G(C) there is an
analog of (2.1)

1 −→ H(R) −→ NG(R)(H(R))
p−→ WG −→ 1, (3.10)

with the real form maximal torus given by the intersection

H(R) = H ∩G(R), (3.11)

of the complex maximal torus with maximally split real subgroup. Thus a section of (3.10)
provides a section of (2.1). The group H(R) allows the product decomposition

H(R) = MA, M := H(R) ∩K, (3.12)

where K ⊂ G(R) is a maximal compact subgroup of G(R), M is isomorphic to the group

Z|I|2 and A is an abelian connected exponential group A = exp(a). Therefore H(R) is not
connected and consists of 2|I| components. Hence the group M may be identified with the
discrete group of connected components of H(R)

M = π0(H(R)). (3.13)

Considering the groups of connected components of the topological groups entering (3.10)
we obtain the induced exact sequence

1 −→ π0(H(R)) −→ π0(NG(R)(H(R))) −→ WG −→ 1. (3.14)

Explicitly the groups of connected components may be identified with the quotients by the
connected normal subgroup A

1 −→M −→ NG(R)(H(R))/A
p−→ WG −→ 1 , (3.15)

and we have the exact sequence

1 −→ A −→ NG(R)(H(R)) −→ π0(NG(R)(H(R))) −→ 1. (3.16)

Lemma 3.1 The exact sequence (3.16) splits and thus π0(NG(R)(H(R))) allows an embed-
ding into NG(R)(H(R)).
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Proof. The extension (3.16) is an instance of extensions of π0(NG(R)(H(R))) by A. Such
extensions are classified by the group H2(π0(NG(R)(H(R))), A). The triviality of this group
follows from the fact that A is an exponential group and the second cohomology of any finite
group with coefficients in a free module is trivial. Thus the extension (3.16) is necessarily
trivial and therefor there exists the required embedding. 2

Proposition 3.1 The following isomorphism holds

π0(NG(R)(H(R))) ' W T
G . (3.17)

Proof. Let us take into account that the images ṡi, ζi, i ∈ I of Tits generators belong to the
maximally split real subgroup G(R) ⊂ G(C). Then by Theorem 3.1 the normalizer group
NG(R)(H(R)) is generated by H(R) and the image of W T

G under the homomorphism (3.7) is
given by the semidirect product H(R)oW T

G over M . Considering the connected components
we arrive at (3.17). 2

Example 3.2 For maximal split form SL2(R) ⊂ SL2(C) we have

H(R) =

{(
λ 0

0 λ−1

)
, λ ∈ R∗

}
, H(R) = MA , (3.18)

A =

{(
λ 0

0 λ−1

)
, λ ∈ R+

}
, M = {±Id} . (3.19)

Elements g ∈ NSL2(R)(H(R)) are defined by the condition that for each λ ∈ R∗ there exists a

λ̃ ∈ R∗ such that

g

(
λ 0

0 λ−1

)
=

(
λ̃ 0

0 λ̃−1

)
g g =

(
a b

c d

)
, ad− bc = 1. (3.20)

It is easy to check directly that the normalizer group NSL2(R)(H(R)) is a union of two com-
ponents

NSL2(H(R)) = N1 tNs, (3.21)

where N1 is a set of diagonal elements (c = b = 0, ad = 1 6= 0) and Ns is the set of
anti-diagonal (a = d = 0, cb = −1) elements. Each of these groups splits further into two
connected components

N1 = N+
1 tN−1 , Ns = N+

s tN−s , (3.22)

depending on the sign of the non-zero elements in the last row.

The group π0(NSL2(R)(H(R))) consists of four elements corresponding to the classes of
N±1 , N±s and is isomorphic to the quotient of NSL2(R)(H(R)) by A ' R+. It is useful to pick
the following parameterization of the connected components

N+
1 = A, N+

s = ṡA, N−1 = θA, N−s = θṡA , (3.23)
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where

ṡ =

(
0 −1

1 0

)
, θ = ṡ2 =

(
−1 0

0 −1

)
, θṡ =

(
0 1

−1 0

)
. (3.24)

It is easy to check directly that the group π0(NSL2(R)(H(R))) generated by classes N±1,s coin-
cides with the finite group generated by ṡ in accordance with (3.17).

4 Weyl group extensions for compact real forms

As we have demonstrated in the previous Section the Tits group extension W T
G appears

quite naturally if we consider the totally split real subgroup G(R) ⊂ G(C). This motivates
to look for analogs of the Tits construction associated with other real forms of G(C). Here
we consider the connected compact real form U ⊂ G(C) of the Lie group G(C)

U = {g ∈ G(C)| g†g = 1} , (4.1)

where g → g† is the composition of the Cartan involution and complex conjugation. Let us
extend U by considering the semidirect product

UΓ := (U n Γ) ⊂ GΓ := G(C) n Γ . (4.2)

Here Γ := Gal(C/R) = Z2 is the Galois group of R generated by γ, γ2 = 1 so that γ acts by
complex conjugation:

γ λ γ−1 = λ̄, ∀λ ∈ C. (4.3)

In the following we chose the generators ei, fi, hi, i ∈ I to be real and thus commuting with
γ.

Definition 4.1 Let WU
G be a group generated by {σi, σ̄i, ηi; i ∈ I} subjected to

σ2
i = σ̄2

i = 1 , σiσ̄i = σ̄iσi = ηi , i ∈ I ,

σiηj = ηjη
−aji
i σi , σ̄iηj = ηjη

−aji
i σ̄i , i 6= j ∈ I , aij 6= 0 ,

(4.4)

σiσj · · ·︸ ︷︷ ︸
mij

= σ̄jσ̄i · · ·︸ ︷︷ ︸
mij

, i 6= j ∈ I ,
(4.5)

where in (4.5) mij = 2, 3, 4, 6 for aijaji = 0, 1, 2, 3.

The group WU
G has outer automorphism:

γ : σi ←→ σ̄i , (4.6)

which we will consider below as an extension of complex conjugation γ onto WU
G . Now the

group WU
G n Γ can be presented via generators {σi, i ∈ I} and γ and relations (4.4), (4.5)

with σ̄i := γσiγ.
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Lemma 4.1 (i) The elements ηi = σiσ̄i are real of order two and pairwise commute:

η2
i = 1, ηiηj = ηjηi , i, j ∈ I . (4.7)

(ii) For aij = 0 the following relations hold:

σiσjσ̄j = σjσ̄jσi, σ̄iσjσ̄j = σjσ̄jσ̄i , (4.8)

completing the set of relations (4.4) for all allowed values of aij.

Proof. (i) For the first relation in (4.7) we have

(σiσ̄i)
2 = σiσ̄iσiσ̄i = σiσ̄iσ̄iσi = 1. (4.9)

The second relation in (4.7) follows from the set of identities:

σiσ̄iσjσ̄j = σi σjσ̄j(σiσ̄i)
−aij σ̄i = σjσ̄j(σiσ̄i)

−2aijσiσ̄i = σjσ̄jσiσ̄i. (4.10)

(ii) For (4.8) we have

σi σjσ̄j = σ̄jσ̄iσ̄j = σ̄jσjσi, (4.11)

where have used the basic relation (4.5) twice

σiσj = σ̄jσ̄i , σ̄iσ̄j = σjσi , aij = aji = 0. (4.12)

This completes our proof. 2

Lemma 4.2 For any i, j ∈ I such that aij = −1, −3 the following holds:

σiσj · · ·σi︸ ︷︷ ︸
mij

= σ̄iσ̄j · · · σ̄i︸ ︷︷ ︸
mij

,
(4.13)

and thus

σiσj · · ·σi︸ ︷︷ ︸
mij

= σjσi · · ·σj︸ ︷︷ ︸
mij

.
(4.14)

Proof. Note that for aij = −1,−3 we have

σ̄iσ̄jσ̄iσiσjσi = σ̄iσ̄j ηi σjσi = σ̄i(σ̄jσj) ηiη
−aij
j σi = σ̄i ηiη

1−aij
j σi

= σ̄iσiη
−1
i = ηiη

−1
i = 1 ,

(4.15)

which entails

σ̄iσ̄jσ̄i = σiσjσi . (4.16)

The assertion then follows from (4.16). 2

Let us note that there exists a slightly different but equivalent definition of the extended
Weyl group WU

G which directly follows from Definition 4.1, Lemma 4.1 and Lemma 4.2.
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Corollary 4.1 The group WU
G is defined by the following set {σi, σ̄i; i ∈ I} of generators

subjected to

σ2
i = σ̄2

i = 1 , σiσ̄i = σ̄iσi , i ∈ I ;

σiσj = σ̄jσ̄i, i, j ∈ I , aij = aji = 0;

σjσiσj = σ̄jσ̄iσ̄j = σiσjσi = σ̄iσ̄jσ̄i, i, j ∈ I , aij = aji = −1 ,

(4.17)

σiσjσiσj = σiσ̄jσiσ̄j = σ̄jσ̄iσ̄jσ̄i = σjσ̄iσjσ̄i , i, j ∈ I , aji = −2 , (4.18)

σiσjσiσjσiσj = σ̄iσ̄jσ̄iσjσiσj = σ̄iσ̄jσ̄iσ̄jσ̄iσ̄j =

= σ̄jσ̄iσ̄jσ̄iσ̄jσ̄i = σ̄jσ̄iσ̄jσiσjσi = σjσiσjσiσjσi , i, j ∈ I , aji = −3 .
(4.19)

Proposition 4.1 The group WU
G is an extension

1 −→ R −→ WU
G −→ WG −→ 1 , (4.20)

of WG by the commutative group R = Z|I|2 identified with the subgroup of WU
G generated by

elements

ηi := σiσ̄i , i ∈ I . (4.21)

Proof. Due to the following relations

σi = ηiσ̄i , σi ηj = ηj η
−aji
i σi, (4.22)

each element of WU
G may be represented as a product of some η’s times the product of some

σ’s. Taking the quotient over the relations ηi = 1 we recover the defining relations (2.2),
(2.3) of WG. 2

The Z|I|2 -extension (4.20) basically arises due to the following simple fact. Given a com-
plex invertable operator a with real square satisfying the relation aā = 1 it defines an element
a2 of order two

(a2)2 = (ā2)2 = id. (4.23)

In the considered case we have σi = aiγ and the required properties of ai follows from the
first line in (4.4).

The following analog of Theorem 3.1 is the main result of this Note (the proof is given
in Section 6).

Theorem 4.1 Let U ⊂ G(C) be a maximal compact subgroup of the complex semi-simple
Lie group. Let (∆,WG) be a root system for the corresponding Lie algebra g = Lie(G) with
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the Cartan matrix A = ‖aij‖. Let γ be the generator of the Galois group Γ = Gal(C/R) of
the field R of real numbers. Then the following map

σi 7−→ ςi := eıπ(ei+fi)/2 γ, σ̄i 7−→ ς̄i := e−ıπ(ei+fi)/2 γ,

ηi 7−→ ξi := eıπhi , i ∈ I,
(4.24)

defines a homomorphim WU
G −→ UΓ where UΓ is defined by (4.2). The elements ςi, i ∈ I

and γ together with the maximal torus H generate NG(H) n Γ.

Let us stress that there is a clear analogy between the two cases. On the one hand we
have ςi ∈ Uγ ⊂ G(C)γ, U being a maximal compact subgroup of G(C) and on the other
hand we have ṡi ∈ K ⊂ G(R), K being the maximal compact subgroup of G(R). The last
statement follows form the relation

ṡTi ṡi = 1, i ∈ I, (4.25)

where index T denotes the standard Cartan involution interchanging ei and fi for each i ∈ I.
The elements ηi = σiσ̄i are real

γ(σiσ̄i)γ = σ̄iσi = σiσ̄i. (4.26)

and pairwise commute. Moreover ςi and ς̄i are in Uγ and thus their products are in U . From
this we may infer that the images of θi and ηi, i ∈ I in (3.7) and (4.24) both belong to the
same triple intersection

M = H ∩ U ∩G(R) = H(R) ∩G(R). (4.27)

In a sense WU
G looks like a complex analog of the real discrete group W T

G where the relation
τ 2
i = θi is replaced by σiσ̄i = ηi.

5 Adjoint action of the extended Weyl groups

While the action of WG on the maximal commutative subalgebra h = Lie(H) is defined
canonically (2.5) and does not depend on a lift of WG into NG(H) its action on the whole
Lie algebra g = Lie(G) does depend on the lift. Above we have considered two extensions of
the Weyl group WG together with their homomorphisms into the corresponding Lie group.
Here we describe their induced adjoint actions on g.

Proposition 5.1 The adjoint action of the Tits group W T
G on the Lie algebra g = Lie(G)

via homomorphism (3.7) is given by

ṡi ei ṡ
−1
i = −fi, ṡi fi ṡ

−1
i = −ei , (5.1)

ṡi ej ṡ
−1
i = ej, ṡi fj ṡ

−1
i = fj, aij = 0 , (5.2)
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ṡi ej ṡ
−1
i =

(−1)|aij |

|aij|!
[
ei, [. . . [ei︸ ︷︷ ︸
|aij |

, ej] . . .]
]
,

ṡi fj ṡ
−1
i =

1

|aij|!
[
fi, [. . . [fi︸ ︷︷ ︸
|aij |

, fj] . . .]
]
, i 6= j .

(5.3)

Proof. Relations (5.1) are actually relations for sl2 Lie subalgebras generated by (ei, hi, fi)
and may easily be checked using for example the standard faithful representation (6.3).
Relations (5.2) trivially follow from the Lie algebra relations (3.4). Thus we need to prove
(5.3). Let us define ṡi(a) := ṡi a ṡ

−1
i . For the conjugated generators we have

[hk, ṡi(ej)] = ṡi([hsi(k), ej]) = 〈si(α∨k ), αj〉 ṡi(ej) = (akj − akiaij)ṡi(ej) , (5.4)

[hk, ṡi(fj)] = ṡi([hsi(k), fj]) = −〈si(α∨k ), αj〉 ṡi(fj) = −(akj − akiaij)ṡi(fj) . (5.5)

These relations fix the r.h.s. of (5.3) up to coefficients. Let us calculate the coefficients by
taking into account only the terms of the right weights. We have

ṡi(ej) = efie−eiefi ej e
−fieeie−fi =

(−1)|aij |

|aij|!

(
ad
|aij |
efieie−fi

(ej)
)

+ · · · , (5.6)

where we have used the Serre relations (3.5) and denote by · · · the terms of the “wrong”
weight. Taking into account

efieie
−fi = ei + · · · , (5.7)

we obtain the first relation in (5.3). The second relation is obtained quite similarly using
the isomorphism (for a proof see Lemme 6.1)

efie−eiefi = e−eiefie−ei . (5.8)

In this case we have

ṡi(fj) = e−eiefie−ei fj e
eie−fieei =

1

|aij|!

(
ad
|aij |
e−eifieei

(fj)
)

+ · · · . (5.9)

Taking into account

e−eifie
ei = fi + · · · , (5.10)

we obtain the second relation in (5.3). 2

Let us stress that there is a simple way to get rid of sign factors in (5.1) and (5.3). Define
a new set of generators ẽi = −ei, f̃i = fi. Then we have

ṡi ẽi ṡ
−1
i = f̃i , ṡi f̃i ṡ

−1
i = ẽi , (5.11)

ṡi ẽj ṡ
−1
i = ẽj , ṡi f̃j ṡ

−1
i = f̃j , aij = 0 , (5.12)

11



ṡi ẽj ṡ
−1
i =

1

|aij|!
[
ẽi, [. . . [ẽi︸ ︷︷ ︸
|aij |

, ẽj] . . .]
]
,

ṡi f̃j ṡ
−1
i =

1

|aij|!
[
f̃i, [. . . [f̃i︸ ︷︷ ︸
|aij |

, f̃j] . . .]
]
, i 6= j .

(5.13)

Now we describe the action on g of the Weyl group extension WU
G introduced in Section

4. It is convenient to express it in terms of purely imaginary generators ıei, ıfi, i ∈ I.

Proposition 5.2 The elements of the group WU
G act on the Lie algebra g = Lie(G) via

homomorphism (4.24) as follows

ςi (ıei) ς
−1
i = − ıfi , ςi (ıfi) ς

−1
i = − ıei , (5.14)

and

ςi (ıej) ς
−1
i = −ıej, ςi (ıfj) ς

−1
i = −ıfj, aij = 0 , (5.15)

ςi (ıej) ς
−1
i = − 1

|aij|!
[
ıei, [. . . [ıei︸ ︷︷ ︸
|aij |

, ıej] . . .]
]
,

ςi (ıfj) ς
−1
i = − 1

|aij|!
[
ıfi, [. . . [ıfi︸ ︷︷ ︸
|aij |

, ıfj] . . .]
]
, i 6= j .

(5.16)

Proof. Taking into account (3.4) we have

eıπt adhi (ej) = ej e
ıπtaij , eıπt adhi (fj) = fj e

−ıπtaij . (5.17)

Using the representation

ςi = ṡie
ıπhi/2γ, (5.18)

and Proposition 3.1 we obtain (5.16) and (5.14). 2

6 Proof of Theorem 4.1

We start the proof by establishing a precise relation of the generators (4.24) to the Tits
generators.

Lemma 6.1 The following identities hold

ṡi := efi e−ei efi = e−ei efi e−ei = eıπhi/4 eıπ(ei+fi)/2 e−ıπhi/4,

ṡ2
i = eıπhi ,

(6.1)

and thus the generators defined by (4.24) may be represented as follows

ςi = e−ıπhi/4 ṡi e
ıπhi/4γ. (6.2)
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Proof. The identities (6.1) follow from the corresponding relations for SL2 ⊂ G. Thus to
prove (6.1) we might use the standard two-dimensional faithful representation φ : SL2 →
End(C2)

φ(e) =

(
0 1

0 0

)
, φ(f) =

(
0 0

1 0

)
, φ(h) =

(
1 0

0 −1

)
. (6.3)

Direct calculations show that

φ
(
ef e−e ef

)
= φ

(
e−e ef e−e

)
=

(
0 −1

1 0

)
, (6.4)

φ
(
e−e ef e−e e−e ef e−e

)
=

(
−1 0

0 −1

)
= φ

(
eıπh
)
, (6.5)

φ
(
e−ıπh/4ef e−e efeıπh/4

)
= φ

(
eıπ(e+f)/2

)
=

(
0 ı

ı 0

)
. (6.6)

Then (6.1) follows from the faithfulness of φ. 2

The proof of Theorem 4.1 is provided by a series of Lemmas below.

Lemma 6.2 The following relations hold

ς2
i = 1, i ∈ I . (6.7)

Proof. Direct calculation gives

ς2
i = e−ıπhi/4ṡie

ıπhi/4 γe−ıπhi/4ṡie
ıπhi/4 γ = e−ıπhi/4ṡie

ıπhi/4 eıπhi/4ṡie
−ıπhi/4 = (6.8)

e−ıπhi/4ṡie
ıπhi/2 ṡie

−ıπhi/4 = e−ıπhi/4e−ıπhi/2 e−ıπhi/4 ṡ2
i = e−ıπhi · eıπhi = 1 . (6.9)

2

Lemma 6.3 For any i, j ∈ I such that aij = aji = 0 the following relations hold

(ςiςj) = γ (ςjςi)γ . (6.10)

Proof. We have

ςiςj = e−ıπhi/4ṡie
ıπhi/4 γ e−ıπhj/4ṡje

ıπhj/4 γ = e−ıπhi/4ṡie
ıπ(hi+hj)/4 ṡje

−ıπhj/4 (6.11)

= e−ıπhi/4eıπ(−hi+hj)/4 ṡie
ıπhj/4 ṡj = e−ıπhi/4eıπ(−hi+hj)/4 eıπhj/4 ṡiṡj = eıπ(hj−hi)/2 ṡiṡj,

13



On the other hand

ςjςi = eıπ(hi−hj)/2 ṡj ṡi = eıπ(hi−hj)/2 ṡiṡj = eıπ(hi−hj)/2 e−ıπ(hj−hi)/2 ςiςj = eıπ(hi−hj) ςiςj,

and thus

ςiςj = eıπ(hj+hi) ςjςi = ςjςi e
ıπ(hj+hi), (6.12)

where we have used the fact that in U the following identity holds

e2πıhi = 1 , i ∈ I. (6.13)

It is easy to check that

γςiγ = eıπhiςi, γςiςjγ = eıπ(hi+hj)ςiςj. (6.14)

Now (6.10) follows from (6.12) and (6.14). 2

Lemma 6.4 For any i, j ∈ I such that aij = aji = −1 the following relations hold

ςiςjςi = γςjςiςjγ. (6.15)

Proof. We have

ςiςjςi = e−ıπhi/4ṡie
ıπhi/4 γe−ıπhj/4ṡje

ıπhj/4 γe−ıπhi/4ṡie
ıπhi/4 γ (6.16)

= e−ıπhi/4ṡie
ıπhi/4 eıπhj/4ṡje

−ıπhj/4 e−ıπhi/4ṡie
ıπhi/4 γ. (6.17)

Using explicit form of the Weyl group action

si(hj) = hj + hi = sj(hi), aij = aji = −1, (6.18)

we obtain

ςiςjςi = e−ıπhi/4ṡie
ıπ(hi+hj)/4 ṡje

−ıπ(hj+hi)/4 ṡie
ıπhi/4 γ = (6.19)

= e−ıπhi/4eıπ(−hi+hj+hi)/4ṡi ṡje
−ıπ(hj+2hi)/4 ṡiγ = (6.20)

= eıπ(hj−hi)/4e−ıπ(−(hj+hi)+2(−hi+hj+hi))/4ṡiṡj ṡiγ = ṡiṡj ṡiγ. (6.21)

The required identity follows from the identity ṡiṡj ṡi = ṡj ṡiṡj (consequence of (3.3) and
(3.7) for aij = aji = −1) and the relation

γςjςiςjγ = γṡj ṡiṡj = ṡj ṡiṡjγ = ςjςiςj. (6.22)

2
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Lemma 6.5 For any i, j ∈ I such that aji = −2 the following relations hold

(ςiςj)
2 = γ(ςjςi)

2γ . (6.23)

Proof. We have

ςiςj = e−ıπhi/4ṡie
ıπhi/4 γ e−ıπhj/4ṡje

ıπhj/4 γ = e−ıπhi/4ṡie
ıπ(hi+hj)/4 ṡje

−ıπhj/4 (6.24)

= e−ıπhi/4eıπ(−hi+(hj+2hi))/4 ṡie
ıπhj/4 ṡj = eıπ(hj+hi)/2 ṡiṡj, (6.25)

where we take into account

si(hj) = hj − 〈αi, α∨j 〉hi = hj + 2hi ,

sj(hi) = hi − 〈αj, α∨i 〉hj = hi + hj .
(6.26)

Thus we have

ςiςjςiςj = eıπ(hj+hi)/2 ṡiṡje
ıπ(hj+hi)/2 ṡiṡj = eıπ(hj+hi)/2 ṡi e

ıπ(−hj+(hi+hj))/2 ṡj ṡiṡj =

= eıπ(hi+hj)/2 ṡi e
ıπhi/2 ṡj ṡiṡj = eıπ(hj+hi)/2 e−ıπhi/2 ṡiṡj ṡiṡj = eıπhj/2 ṡiṡj ṡiṡj. (6.27)

Similarly we have

ςjςi = e−ıπhj/4ṡje
ıπhj/4 γ e−ıπhi/4ṡie

ıπhi/4 γ = e−ıπhj/4ṡje
ıπ(hj+hi)/4 ṡie

−ıπhi/4 (6.28)

= e−ıπhj/4eıπ(−hj+(hi+hj)) ṡje
ıπhi/4 ṡi = eıπhi/2 ṡj ṡi , (6.29)

where we use the Weyl group relations (6.26). Thus we have

ςjςiςjςi = eıπhi/2 ṡj ṡie
ıπhi/2 ṡj ṡi = eıπhi/2 ṡj e

−ıπhi/2 ṡiṡj ṡi = (6.30)

= eıπhi/2 e−ıπ(hi+hj)/2 ṡj ṡiṡiṡj = e−ıπhj/2 ṡj ṡiṡj ṡi = eıπhj/2 ṡj ṡiṡj ṡi. (6.31)

Thus we prove the relation using (ṡiṡj)
2 = (ṡj ṡi)

2. 2

Lemma 6.6 For any i, j ∈ I such that aji = −3 the following relations hold

(ςiςj)
3 = γ(ςjςi)

3γ . (6.32)

Proof. We have

ςiςj = e−ıπhi/4ṡie
ıπhi/4 γ e−ıπhj/4ṡje

ıπhj/4 γ = e−ıπhi/4ṡie
ıπ(hi+hj)/4 ṡje

−ıπhj/4 (6.33)

= e−ıπhi/4eıπ(−hi+(hj+3hi))/4 ṡie
ıπhj/4 ṡj = eıπ(hj+2hi)/2 ṡiṡj , (6.34)
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where we take into account the following relations

si(hj) = hj − 〈αi, α∨j 〉hi = hj + 3hi ,

sj(hi) = hi − 〈αj, α∨i 〉hj = hi + hj .
(6.35)

Thus we have

(ςiςj)
3 = eıπ(hj+2hi)/2 ṡiṡje

ıπ(hj+2hi)/2 ṡiṡje
ıπ(hj+2hi)/2 ṡiṡj

= eıπ(hj+2hi)/2 eıπ sisj(hj+2hi)/2 (ṡiṡj)
2eıπ(hj+2hi)/2 ṡiṡj

= eıπ(hj+2hi)/2 eıπ sisj(hj+2hi)/2 eıπ (sisj)2(hj+2hi)/2 (ṡiṡj)
3 ,

(6.36)

which due to

sisj(2hi + hj) = hi + hj , (sisj)
2(2hi + hj) = −hi , (6.37)

results into

(ςiςj)
3 = eıπ(hj+2hi)/2 eıπ(hi+hj)/2 e−ıπhi/2 (ṡiṡj)

3 = eıπ(hi+hj) (ṡiṡj)
3 .

Similarly, we find out

ςjςi = e−πıhj/2ṡjγ e
−πıhi/2ṡiγ = e−πıhj/2ṡj e

πıhi/2ṡi = eπıhi/2 ṡj ṡi , (6.38)

where we applied (6.35). Then we derive

(ςjςi)
3 = eπıhi/2 ṡj ṡie

πıhi/2 ṡj ṡie
πıhi/2 ṡj ṡi

= eπıhi/2 eπısjsi(hi)/2 (ṡj ṡi)
2eπıhi/2 ṡj ṡi = eπıhi/2 eπısjsi(hi)/2 eπı(sjsi)

2(hi)/2 (ṡj ṡi)
3 ,

(6.39)

which due to

sjsi(hi) = −hi − hj (sjsi)
2(hi) = −2hi − hj , (6.40)

results into

(ςjςi)
3 = eπıhi/2 e−πı(hi+hj)/2 e−πı(2hi+hj)/2 (ṡj ṡi)

3 = e−πı(hi+hj) (ṡj ṡi)
3 , (6.41)

and therefore

γ(ςjςi)
3 γ = eπı(hi+hj) (ṡj ṡi)

3 . (6.42)

This completes the proof. 2

Combining the previous Lemmas we obtain the proof of Theorem 4.1.
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