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ARITHMETIC HEIGHT ON THE MODULI SPACE OF CALABI-YAU MANIFOLDS.

ANDREY NIKOLOV TODOROV

#1. INTRODUCTION.

At the end of his address to the Congress of the Mathematicians in Nice I. R. Shafarevich

wrote: "En condusion mentionnons le probl~me extrement interessant de la generalisation de

ces consid~rations aux varietetes algebriques de dimension quelconque et de classe canonique

nulle." The articles [Tl], [T2], [T3], [T4] and the present one are attempts to answer this

Problem.

We know that Kähler manifolds with canonical dass zero and finite fundamental groups are

devided into two cla.sses namely Hyper-Kählerian manifolds and Calabi-Yau manifolds. In both

cases we can define the so called Teichmüller space, namelly all complex structures on a fixed

manifold modulo the action of the group of diffeomorphisms isotopic to the identity. Like in

the case of polarized abellian varieties and in the case of polarized K3 surfaces we proved that

thc Teichmüller spaces of polarized Hyper-Kählerian manifolds are symmetrie domains. More

precisely it is SO(2,b 2 -1)/SO(2)xSO(b 2 -1), like in the case of polarized K3 surfaces. (See

[T3] and [T4].) In case of the so called Calabi-Yau manifolds the Teichmüller space ~(Mo)

turned out to be aStein manifold on which thc mapping class group r acts discretely. In this

paper we proved that each component of the moduli space of a Calabi-Yau manifold ~10 is a

quasi-projective manifold defined over Specl. More over we constructed an analogue of the

"modular" height function on ~(Mo)/r with a "logarithmic growth". \\Te will make some

comparison on conjeetural leval with the deep Falting's results about abellian varieties. (See

[F&W].) For definition of the height function and its properties see [L].

From the point of view of deformation theory manifolds with canonical class zero are

much simpler then manifolds with negative canonical class. On thc other hand from point of

view of arithmetic it seems that algebraic manifolds defined over Specl with canonical class

zero are much more interesting then manifolds with negative canonical dass. At the end of

this introduction we state some conjectures about the arithmetics of manifodls with canonical

class zero and defined over Specl.

1.1. Definition.

Suppose that Mo is a compact Kä hier manifolds such that a) HO(Mo,n i )=0 for

O<i<n=dimCMo=n>2 b) there exists a unique up to a constant holomorphic n-form wo(n,O)

on Mo which has no zeroes. Then we will call Mo a Calabi-Yau manifold.



1.2. Review of tbc reaults in [T2].

1.2.1. Definition. Let I(M o ) be the set of all integrable complex structures on Mo. Let

~(Mo):=I(Mo)/Difft(Mo)

where Difft(Mo ) ia the group of the diffeomorphisms of Mo isotopic to the identity preserving

the orientation of Mo, then we caB ~(Mo) thc Tcichmüllcr spacc of Mo.

In [T2J we proved the following Theorem:

THEOREM 2.1.(See [T2].)

Each component of ~(Mo) IS a non-singular complex manifold and

dimc~(Mo)=dimCH 1(Mo ,80 ),

In ·[Tl] we showed that the Weil-Peterason metric which was introduced by Koiso can be

dejined in the jollowing way: We know that the tangent spaee To,~(Mo) 0/ ~(Mo) at a point

OE~(Mo) that corresponds to Mo can be identijied with H1(A10 ,8 0 ). Let J-ll and

J-l'l E H1
( Mo ,8 0 ), then the Weil- Petersson metne ean be deJined in the Jollowing way:

<JJ1,JJ2>:=J[JJl.1..wo(n,O)]A(JJ2.1..wO (n,O)]

Mo

w here J-l i .1.. Wo (n ,0) ia a cont raction of tensors. Notice t hat by t hc cont raction \Vi th Wo ( n ,0) we

get an isomorphisim:

i: Hl(~10 ,80 ) _ Hn-l(Mo ,01 )

[J-li .1..wo(n,O)] denote the dass of cohomology of the form J-lj .1..wo(n,O) in Hn (I\10 'C), where .1..

means contraetion of tensors.

One of the main Theorem proved in [T2] ia:

THEOREM 4.1.(See (T2].)

The Weil-Petersson metric ia a complete metric on each of tbc component of ~(Mo).

Using THEOREM 4.1. we proved the foBowing Theorem:

THEOREM 7.1.(See [T2].)

Each component of ~(Mo) ia Stein and contractible manifold.

1.3. Statement of the main results in this article.

1.3.1. Definition. r:=Diff+(Mo)/Difft (Mo)

In {T2} it ia proved that r acta dicretely on each of the components of ~(Mo)' From now

on we will fix one of the components of ~(Mo)'
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CONJECTURE.

One can hope that the number of the eomponents of ~(Mo) is equal to the number of Calabi

Yau maniflds that are hirationaly equivelent to Mo hut are not isomorphie to "Mo.

1.3.2. Definition.

!Dl(Mo):=~(Mo)/r

From a result of H. Cartan it follows that IDl(M o ) is a eomplex analytie space. In #2 of

this article we are going to prove the following Theorem:

THEOREM 2. IDl(Mo ) is a quasi-projeetive variety.

The proof of THEOREM 2. is based on the following result of r..1ok:

THEOREM (See [Mok].)

Suppose that X is aStein manifold on which

A) there exists a Kähler metric (g) such that: the holomorphic sectional eurvature %(g) of g is

Buch that -OO<Cl <%(g)$c2<O

B) On X a group r acts discretely and the fundamental domain of r has a finite volume with

respect to g. Then X/f is a quasi-projective variety.

In order to prove THEOREM 2.1. we need to chek conditions A) and B) of the theorem

proved by Mok. Condition A) follows from the explicit formulas of the curvature operator of

the Weil-Petersson metric obtained in [Tl]. Condition ß) follows from the Global Torelli

Theorem for Calabi-Yau manifolds proved in [T2] and the following deep result of Dennia

Sullivan:

THEOREM (See [Sti].)

Suppoae that X ia a compact Kähler manifold of complex dimension ~3, then

r:=Diff+(Mo)/Difft (Mo)

is an arithmetic group.

In #3. we conatruct an ample line bundle lover !Dl(Mo ), where !Ul(Ma ) is some

comactification of !Ul(Mo ). Let us describe this eonstruction. We know from [Tl] that there

exists an universal family of marked Calabi-Yau m anifolds 9; -+~(M0)' Let
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1.3.3. Definition.

On L we have a natural metric, namely from the definition of L it follows that the local

sections of L are holomorphic families of holomorphic n forms on the Calabi-Yau manifolds

parametrized by ~(Mo), Le. wt(n,O), then

n(n-l)

H(wt(n,0)):=llwt(n,0)112:=( -1)---r-(n)llJwt(n,O)l\wt(n,O)

Mo

1.3.4. Remark.

Notice that directly from the definitions of r, Land H it follows that Land H are invariant

under r.
1.3.5. Definition.

From 1.3.4. it follows that we can define on !Dl(Mo):=~(Mo)/r L:=T*L, where

T:~(Mo)-!D1(Mo)

Since H is invariant under the action of r it follows that H induced an Hemitian metric on

L. We will denote this metric again by H.

In order to formulate the next THEOREM we need the following definition:

1.3.6. Definition.

Let X be anormal complex space, YCX a closed analytic subser such that U=X-Y is dense in

X. If E: is a vector bundle on X and < , > a hermitian metric on E/U, this metric has

logarithmic singularities along Y if the following holds: For yEY I there exists a neigh borhood

V of y in X, holomorphic functions f1, ... ,fk on V with Y as common set of zeroes, and sections

el, ... ,e r of E: over U which form a basis of ~/U, such that for some constants Cl' c2 >0,

I<ei ,ej > I( z) ~clllog(max(Ifi(z)1 )lc2

1det<ci ,ej > 1(zr 1~ c1 110g(max( jfi (z) I) IC2

for zEUnV.

1.3.7. REMARKS:

a) The extension ~ of ~/U is uniquely determined by this property, since local section of E/U
is holomorphic on X if and only if its norm grows at most logarithmically near Y.

b) The definition ia essentially independent of the choice of the ei and fj" (See [F] and [r..1].)
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THEOREM 3.

a) The hermitian sealar produet H on L has logarithmie singularities.

b) Let I be the extension of L defined as in the remark 1.3.7., then I is an ample bundle on

1.4. SaME REMARKS.

A natural generalization of a K3 surfaee in higher dimensions are the manifolds with

eanonieal dass zero and finite fundamental group are Kähler manifolds with eanonieal dass

zero. There are two types of such manifolds, namely Calabi-Yau manifolds and Hyper

Kählerian. We know that the moduli apaee of marked polarized Hyper-Kählerian manifolda is

isomorphie to SO(2,b2~1)/SO(2)xSO(b2-1),where b2:=dimCH2(X,C). So one should eonsider

as a natural generalization of K3 surfaces the Hyper- Kählerian manifolds.

A) CONJECTURES ABOUT CALABI-YAU MANIFOLDS.

It ia easy to see that !Jl(Mo ) is defmed over Spee Z. So H defmes an analogue of the

FaJting's height h on the moduli of polarized abelian varieties. So one ean hope that the

analogue of Falting's Theorem (Shafarcvieh's eonjeeture) will hold for Calabi-Yau manifolds

defined over Z, namely that the set SeM; Pl, .. ,Pk)' where M ia a Calabi-Yau manifold defined

over SpecZ and M has "bad reduction" over the prime numbers PI ,.. ,Pk' then S is a finite set.

This conjecture should hold also for Hyper-Kählerian manifolds. Tbe functional analogue of

FaJting's Theorem (S hafarcvich's conjecture) ia not t rue for I-Iyper- K ah lerian man ifolds. (See

[F] and [S&Z].) There are Borne evidence that the functional analogue of FaIting's Theorem

(Shafarevich 'a conjecture) ia true for Calabi-Yau manifolds.

B) CONJECTURES ABOUT HYPER-KÄIlLERIAN MANIFOLDS.

1.4.1. Definition.

Let X be a eompaet Kähler manifold such that H l (X,O'X)=O and let on X there exists a

unique up to a eonstant holomorphie two-form wX(2,O) whieh is non-degenerate at each xEX.

Then we will eall X a hyper-Kählerian manifold.

1.4.2. In [T3] it was proved that the moduli space of all marked Hyper-Kählerian manifolds

with a fixed polarization ia isomorphie to SO(2,b2-1)jSO(2)xSO(b2-1), where a marked

Hyper- Kä hlerian man ifolds wit h a fixed polarization means a tripIe (X;61 , •. ,6b ; L), where
2

61, •• ,6
b2

is a basis of H:J(X,Z) and LEH
1
,1(X,R)nH 2(X,Z) ia an imaginary part of a Kähler

metrie on X.
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1.4.3. Definition.

Let (X;Ol, .. ,ob i L) and (YjOl, .. ,ob j L) be two marked polarized hyper-Kählerian manifolds
2 2

and Buppose that under the period map they correspond to points x and y in

SO(2,b2 -1)/SO(2)xSO(b2 -1). We will say that X ia isogenous to Y if there exists a matrix

AESO(2,b 2 -1;Q) Buch that Ax=y. Indeed Adefines a homeomorphism

A*: H 2(X,I)-H 2(Y,l)

A very intersting question posed by Shafarevich and A. Weil is the following one: If A* is

induced by algebraic correspondence. (See [Sh] and [\'\Teil].)

1.4.4. Conjectures.

a) Suppose that X and Y are defined over land suppose that L(X,s)=L(Y,s), then X is

isogenous Y, L(X,s) is the L-function of X.

b) S(X;Pl, .. ,Pk) is a finite set, where X is a hyper-Kählerian manifold defined over Specl,

Pl, .. ,Pk are fixed prime numbers over which X mod p is singular.(The functional analogue of

Falting's Theorem (Shafarevich's conjecture) is not true for Hyper-Kahlerian manifolds. (See

[F] and [S&Z].)

Remarks.

(i) This conjecture is an analogue to one of many famous results of Faltings. See (F].

(ii) Independently another proof of thc quasiprojectivity of ~Uvlo) was given by Viehweg. (See

[VI], [V2] and [V3J.)

A knowlegments.

This work was done during my stay in Max-Plank Institute für Mathematik and my visit to

Tokyo Metropoliten University. I want to thanks both institutions for finincial support and

excelent working conditions. I want to thank Serge Lang for stimulating conversations on some

of the topics of this paper.
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#2. PROOF OF THEOREM 2.1.

THEOREM 2. !ITt(Mo ) is a quasi-projective variety, where !ITt(Mo ) is defmed in #1.3.

PROOF OF 2.1.:

We need to chek A) the holomorphic sectional curvature %(g) of the Weil-Petersson metric

(g) has the following property:

-oo<c2<%(g)::;cl <0

It was proved in [Tl) and [Ti] that %(g)::;cl <0, so we need to prove:

LEMMA A. -OO<c2<Jt(g).

LEMMA B. r acts on ~(~10) discretely and has a finite volume with respect to g.

As it was pointed out in the Introduction THEOREM 2 follows directly from a result of Mok.

(See [Mok).)

PROOF OF LEMMA A:

The proof of PROPOSITION A is based on some facts stated and proved in [T1]&[T2]. Let

me remind these facts. First we will fix a polarization on Mo, i.e. we are going to consider a

- pair (M,L), where r..1 is a Calabi-Yau manifold, LEH 1
.
1(r..1,Z) and L corresponds to an ample

divisor on M. From the fundamental result of Yau, namely the solution of Calabi conjecture,

we get that for each tE~(Mo) which corresponds to a Calabi-Yau manifold L determines a

Ricd flat metric g(t) such that Im(g(t))=L. Let us fix oE~(Mo) that corresponds to :Mo and

let g -ß(O) be the Yau metrie, Le. the Ried flat metric that corresponds to L. Let "8* be the
0',

eonjugate oprator ofa with respeet to g -ß(O) on the space r(~10,e0ng,1). Let
0',

{9lj ,zJ ,.... ,Zjn }

be a finite covering of Mo where each open set ia with fixed coordinate system.

such that 11,11 2 =1 there exixts a constant C>O such that for all functions (lj)~ we have:

~1(,j )~ I::; C
J

REMARK. The constant depends on the covering {9l i} of :Mo and the choice of {dzj}. We

will use later a new basis of n~·OI9l.' namely {eh}.
J
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PROOF of Proposition A.1.:

This Proposition follows immediately from the eompactness of Mo and the conditions

,EH1(M o ,6o ) such that 11111 2 =1.

Q.E.D.

PROPOSITION A.2. IJt(g)1:s; C2
, W here C is defined in Proposition A.1.

PROOF of Proposition A.2.:

Let 'k for k=I, .. ,N be an orthonormal basis of 1-1]1(Mo ,80 ). Let

(A.2.1.)
N

</J:=</J(t1,.. ,tN):=L 'ktk+~8*G[4J(tl,.. ,t N),4J(t 1,.. ,t N)] Er(Mo,n~,l ~eo)
k=l

where G is the Green operator with respect to the Yau metric g -ß(O). It was proved in [Tl]
0',

that we have for 4J(t1,.. ,tN)

(A.2.2.)

Le. 4J:=4J(t 1
, .. ,t N) defines integrable complex structures. t\.1ore over in [T2] it was proved that

4J(t 1
, •• ,tN ) is defined for all (t1, .. ,tN)EC N. Let (zJ, ... ,zj) be a loeal coordinate system in CUj

such that

(A.2.3.) wo(n,O)l cu =dz~ 1\ ... l\dz!1
j J J

and wo(n,O) is a holomorphic n-form on Mo such that

(A.2.4.) wo(n,O)l\wo(n,O) =vol(g -ß(O»
(t,

«A.2.4.) was proved in [T2].) We can view 4J(t 1
, ..,tN)Er(Mo,Hom(n~'o,n~,l ». \\Te define

(A.2.5.)

In {Tl] the following lemma was proved:

page8



(A.2.6.) LEMMA. (See [T1]&[T2].)

wt(n,O):=(At(dzJ))A .. A(At(dzj)) is a globally defined holomorphic n-form for each tE~(Mo)

(A.2.7.) LEMMA. (See [T2].)

For each tE~(Mo) which corresponds to a Calabi-Yau manifold there exist forms of type (1,0)

{e~}, i=l,.. ,n such that

(i)

where < , > is the scalar product defined by the Calabi-Yau metric (ga/3(t)) on Mt and c(t) is

a finction on ~(Mo) such that c(O)=l and c(t»O. Moreover we have

(ii)

(A.2.8.) LEMMA. (See"[T2].)

Let us define Bt in the following way Bt(e~)=e~ & Bt(e~)=8I for i=l, .. ,n, then Bt=At as

linear operators.

In the basis {..,eL.. ,eL..} the matrix of A t-to has the following assymptotic expension:

where {fto,k}EH1(Mto,eto)' more over all matrices fto,k are idcntical to the matrices of

fk EH1(Mo ,80 ) written in the basis {e~,.. ,eg,e6,.. ,8g}

(A.2.9.) REMARKS.

1.) Let

(A.2.9.1) ft k:= L (ft k)~ E? 0(8t')*, where(8t')* js the dual of et'.
, o:,ß"

So the matrix of f t ,k in the basis {8t,.. ,et,et,.. ,et} will be ( f t,k)~ ). Since for {e~} we

have
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(A.2.9.2)

we get that

(A.2.9.3)

<6Le{>=e(t)6.-;- e(t»O
IJ

11) Siu proved in [Siu] the following results: If 't k is a harmonie tensor with respect to the,
Ried flat metrie then we have

(A.2.9.4) (See also [N].)

From (A.2.9.4.) Siu deduee the following result: Let $-t'U be the Kuranishi family of

manifolds with a Ried flat metrie defined by 4> whieh fulfills

(A.2.1.)
N

4>:=4>(t1,.. ,tN ):=L 'ktk+~D*G[q)(tl,.. ,tN),4>(t l
, .. ,tN

)] er(I\1 0 ,og,1 ®6o )
k=l

(It was proved in [Tl] that automatieally eP fulfills

(A.2.2.)

where 'k EH 1 (I\1 0 ,6o ) for aB k, Le. 'k are harmonie tensors with respeet to a Ried flat metrie.

(g -ß(O)). Suppose that on $-t'lL we have a family of Ried flat met ries (g -ß(t)) such that
0', 0',

the dass of the cohomology [Im(g -ß(t))]=L, i.e is fixed, then
0',

(A.2.9.5.) 3t(Im(gO',j3(t))l t =o=Ü (See also [N].)

From this result and from the fact that for each t e~(I\1o) we have that 't k are harmonie,
tensors with respect to -the Ricci flat met ries (g -ß (t)) it foBows that

0',

(A.2.9.6.) tft(Im(g -ß(t))=ü
0',

whieh means that for all te~(Mo) Im(g -ß(t)) define one and the same symplectie structure
0',

on Mo, Le.

(A.2.9.7.) Im(g -ß (t) )=const
0',

pagelO



From (A.2.9.7.) it follows that:

(A.2.9.8.)

so

1t(vol(g -p(t))=O
0',

(A.2.9.9.) vol(g -p(t))=ei A.. A8t' Aei A.. A8t'=vol(g -p(O))=86A.. Aeg A85 A.. Aeg
0', (l,

FACT 1.

Then

is a harmonie form with respect to the Calabi-Yau metric g -ß(to ).
0',

FACT 2.

We have the foBowing identity:

FACT 3.

The forms A2vo.l..(Ato(86)A .. AAtoceg) are primitive with respeet to the Calabi-Yau

met ries g -ßCto ) for aB toE~CMo).
0',

PRDDY DF FACT 3:

We know that v t ED-D 1 (rVl t ,et ). Let
o 0 0
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We know that lI
to

(t) automatically fultills the inegrability condition:

8to lIto (t ):=~[lIto(t), lI t o (t)]

Let

lIt (t):=lIt t+lIF e+....o 0 0

On the other hand in [T] it was proved that:

for each t ia a holomorphic n-form on Mt defined by lIto (t). It is easy to see that:

(>I<) wt(n,O):=wto (n,O)+t( lI to .lwto (n,O) )+t2
( lIFo .lwto (n ,0) -( /\ 211to .1 Wt

o
(n,O))+ )O(t 3

)

(See [Tl].)

Clearly wt(n,O) is a primitive form with respect to Im(g -ß(t)) for each t. This means that:
0',

wt(n,O).l(Im(g -ß(t))*=O
u,

From Im(g -ß(t))=Im(g -ß(to )) for each t and the definition of a primitive form and from
0', U,

(*) we get :

Le. (/\2 11t .lwt (n,O)) is a primitive form·for each t o '
o 0

Q.E.D.

After thjs prelimenary work ~~~ 12 prove Q.!!! estimate:

PROOF OFI%(g)l:5c2, where C is defined in Proposition A.l.:

The proof is based on the computation of the curvature tensor of the Weil-Petersson metric

done in [Tl], namely we proved that the holomorphic sectional curvature at a point

toE~(Mo) that corresponds to a Calabi-Yau manifold

lI t ETt """(M ):=H1(M t ,et ) is equalo o,~ t o 0 0
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where 1111to 11 2 =1 and [/\ 2 11to ..lWt
o

(n,O)] means the dass of cohomology of the form

/\ 211t
o

..1 Wt
o

(n,O).

(Let me remind that we can view 11 as a section of r(~1to,Hom(n~~On~~1))so /\2 11to makes

sence. Here all norms are with respect to the Calabi-Yau metric ga,j3(to ).)

Clearly we are going use formula (A.T.), Factl, Faet2 and Fact3 in order to prove our

estimate. From (A.l.) and Fact 2 we get

(A.II.)
n(n-l)

8(-1 (--1 - k ; 2) (A"Vt ~Wtofn.ü»«Vt=
t o

for any t o and t 1E~(Mo). From the definition of /\ 2 11 and the constant C defined int 1
PROPOSITION A.l. we get that

(A.III.)

From Fact 3, Le. that /\ 211t ..lWt (0,0) is a primitive form we get that:
o 0

(A.VI.)

From the Hodge decomposition of /\ 2 11t ..1 wt (n,O), i.e.
o 0

(A.V.)

we get that

2 2 -
/\ 1I t ..lwt (n,O)=H(/\ 1I t ..lWt (n,ü))+Ot Jlt

o 0 0 0 0 0
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CA.VI.)

On the other hand we have

(A.VII.)

118H(1\2Vto..LWto(n,ü))112 (The norm 1111 is with respect to Calabi-Yau metric.)

So from CA.I.), (A.III), (A.VI) &. (A.VII.) we get that

I't(g)):5 M.

Q.E.D.

PROOF OF LEMMA B:

Let me remind to the reader the definition of r:=Diff+ (Mo)/Difft (Mo)' This group has a

natural representation in Hn(Mo,Z) and this represeutatiou preserve the cup-product. In [T2]

it was proved that r acts on ~(Mo) discretely. Let me denote by r 0 the subgroup of

Aut(nn(Mo,Z)) which preserve the cup-product. Let Go bc the the idenity component of the

group of the automorphisms of HU(Mo,R) which preserve the cup product. From a Theorem of

Borel and Harish-Chandra we know that vol(Go/r0)<00 with respect to the Haar

measure.(See [B&H]. From the theorem of Sullivan about the arithmeticity of r it follows that

vol(Go/r)<oo. (See [Su].) From the global Torelli Theorem for Calabi-Yau manifolds (See

[T2]) , i.e. ~(Mo)cGo/K, where K ia a compact subgroup of Go, the fact that the Weil

Petersson metric is a restriction of a left invariant metric on Go/K aod vol(Go/r)<oo we get

that:

vol(~(Mo)/r)<00

with respect to the Weil-Petersson metric.

Q.E.D.

From LEMMA A, LEMMA Band the THEOREM OF MOK it follows that ~(Mo)/r is

quasiprojective manifold.
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#3. THE ARITHMETIC HEIGHT ON ~(~1o)'

THEOREM 3.

a) The hermitian scalar product H on L has logarithmic singularities.

b) Let I be the extension of L defined as in the remark 1.3.7., then I is an ample bundle on

9J1(Mo ).

(L, land H are defined in the introduction.)

PROOF OF THEOREM 3.A.:

We have proved that the Weil-Petersson metric g on ~(Mo) has a bounded away from zero

and -00 holomorphic sectional curvature, i.c.

(3.A.1.)

On the other hand it was proved in [Tl] and [Ti] that

(3.A.2.) 8Blog H=g

Let ~(Mo) be a projective variety such that Doo:=~(Mo)\~(Mo)is a divisor with normal

crossings. Such compactification of ~(Mo) exists since ~(Mo) is a quasi-projective variety and

by the famous theorem of Hironaka. (See [H].) Let tED oo and let ~N be a

polycylinder(Ll=unit disk and N=dim~(~1o)) such that LlNC~(Mo)' Since D oo is is a divisor

with normal crossings we get that

(3.A.3.)

Hence:

(3.AA.) bNn~(~1o=(~*)kx~N-k

From (3.A.1.), (3.A.2) ,(3.A.3.) and the fact that g is a complete metric in ~(Mo) we get that

g behaves like Poincare metric on (b*)kxbN-k, Le. there exist constarrts C3 and c4 such that:

(3.A.5.)

which means that if u is a Tangent vector and P is the Poincare metric, then

C3 P( u,u) :5g(u,u) :5c4 P(u,u)
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Let me remind that the Poincare metric on the unit disc is given by

(3.A.6.)

From here we get immediately that g has logarithmic singularities.

Q.E.D.

PROOF OF THEOREM 3.B.:

From the results of [M] and THEOREM 3.A. it foUows that we can prolonged uniquely 1. to

I on some compactification ml(M o ) of IDl(Mo ). Again in [M] it was proved that cI(I,H) as a

form is correctly defined as a current. In [Tl] it was proved that

naalog H=g

where g ia the Weil-Petrsson metric. So cI(I,H) is a positive current. From here and

Moishezon-Nakai criterium for ampleness we conclute that I is an ample divisor on the

projective variety !Dl(Mo ).

Q.E.D.

REMARKA.

We need to prove that IDl(Mo ) is defined over Specl. For this we need to use Geometrie

Invariant theory. (See [F&M].) Indeed formally 9Jl(Mo ):=SjPG8....(No ) where S is the
N

component of the Hilbert scheme of aU non-singular Calabi-Yau manifolds in pe 1 that

contain Mo. From general theory of Grothendieck we know that S is defined over Specl. On

the other hand PGL(N1+1) is an open subset of Proj Z[aoo,.·,aN N ]. Clearly 1. is a PGII....(N I+1]
I I

linearized ample sheaf on S. From the arguments of Mumford in Proposition 7.4. on page 135

of [F&M] we get that !IJl(~10) is defined over Specl.

REMARK B.

Since I is an ample bundle aod H(t) is an Hermitian metric on I with logarithmic

singularities, then H(t) defines a nice height funetion h(t) on !meMo)' For the properties of the

height function with logarithmic singularities see [F&W]. Namely Faltings proved the following

theorem:

THEOREM. (See [F].)

Suppose that QCK is a finite extension and hex) is a height function with logarithmic

singularities on a quasi-projective manifold X(K)\Y(K), then the number of points

xEX(K)\Y(K) with h(x)~c is finite.
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