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#1. INTRODUCTION.
At the end of his address to the Congress of the Mathematicians in Nice I. R. Shafarevich

wrote: "En conclusion mentionnons le probléme extrément intéressant de la geneéralisation de
ces considérations aux varietétés algébriques de dimension quelconque et de classe canonique
nulle.” The articles [T1], [T2], [T3], [T4] and the present one are attempts to answer this
Problem.

We know that Kédhler manifolds with canonical class zero and finite fundamental groups are
devided into two classes namely Hyper-Kahlerian manifolds and Calabi-Yau manifolds. In both
cases we can define the so called Teichmiiller space, namelly all complex structures on a fixed
manifold modulo the action of the group of diffeomorphisms isotopic to the identity. Like in
the case of polarized abellian varieties and in the case of polarized K3 surfaces we proved that
the Teichmilller spaces of polarized Hyper-Kéahlerian manifolds are symmetric domains. More
precisely it is SO(2,b;—1)/SO(2)xSO(b,—1), like in the case of polarized K3 surfaces. (See
[T3]) and [T4].) In case of the so called Calabi-Yau manifolds the Teichmiiller space T(Mg)
turned out to be a Stein manifold on which the mapping class group T acts discretely. In this
paper we proved that each component of the moduli space of a Calabi-Yau manifold Mg is a
quasi-projective manifold defined over SpecZ. More over we constructed an analogue of the
"modular” height function on E(Mg)/T with a "logarithmic growth”. We will make some
comparison on conjectural leval with the deep Falting’s results about abellian varieties. (See
[F&W].) For definition of the height function and its properties see [L].

From the point of view of deformation theory manifolds with canonical class zero are
much simpler then manifolds with negative canonical class. On the other hand from point of
view of arithmetic it seems that algebraic manifolds defined over SpecZ with canonical class
zero are much more interesting then manifolds with negative canonical class. At the end of
this introduction we state some conjectures about the arithmetics of manifodls with canonical

class zero and defined over SpecZ.

1.1. Definition.
Suppose that Mg is a compact Kédhler manifolds such that a) HO(MO,Qi)zo for
0<i<n=dim-Mg=n>2 b) there exists a unique up to a constant holomorphic n-form wg(n,0)

on Mg which has no zeroes. Then we will call My a Calabi-Yau manifold.



1.2. Review of the results in [T2].

1.2.1. Definition. Let I(Mg) be the set of all integrable complex structures on Mg. Let
T(Mo):=1(Mo)/Diffg (Mo)
where Diffj-(Mo) is the group of the diffeomorphisms of Mg isotopic to the identity preserving
the orientation of Mg, then we call £(Mg) the Teichmiiller space of Mg.
In [T2]} we proved the following Theorem:
THEOREM 2.1.(See [T2].)

Each component of Z(Mg) is a non-singular complex manifold and
dimF(Mo)=dimH'(Mo,00)
In [T1] we showed that the Weil-Petersson metric which was introduced by Koiso can be

defined in the following way: We know that the tangent space To T(M,) of T(My) at a point
’ [2]
0€X(M,) that corresponds to M, can be identified with H'(M,,0,). Let p, and

€ HY(M,,0,), then the Weil-Petersson metric can be defined in the following way:
<mir>i=|) [y Loo(n O Al Tug(m,0)
Mo
where y; L wo(n,0) is a contraction of tensors. Notice that by the contraction with wg(n,0) we
get an isomorphisim:
i: HY(Mo,00)—HY1(M,,01)
[#; Lwo(n,0)] denote the class of cohomology of the form p;Lwo(n,0) in H"(M4,C), where L
means contraction of tensors.

One of the main Theorem proved in [T2] is:

THEOREM 4.1.(See [T2].)

The Weil-Petersson metric is a complete metric on each of the component of T(Mg).
Using THEOREM 4.1, we proved the following Theorem:
THEOREM 7.1.(See [T2].)

Each component of T(Mg) is Stein and contractible manifold.

1.3. Statement of the main results in this article.

1.3.1. Definition. [:=Diff T (Mo)/Diffd (Mo)

In {T2} it is proved that T acts dicretely on each of the components of T(My). From now

on we will fix one of the components of T(My).
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CONJECTURE.

One can hope that the number of the components of £(M,) is equal to the number of Calabi-

Yau maniflds that are birationaly equivelent to M, but are not isomorphic to Mg.

1.3.2. Definition.

m(Mo):zz(Mo)/P
From a result of H. Cartan it follows that M(My) is a complex analytic space. In #2 of
this article we are going to prove the following Theorem:

THEOREM 2. (M) is a quasi-projective variety.

The proof of THEOREM 2. is based on the following result of Mok:
THEOREM (See {Mok].)

Suppose that X is a Stein manifold on which

A) there exists a I(&hler metric (g) such that: the holomorphic sectional curvature 3(g) of g is
such that —oo<c; <M(g)<cy, <0

B) On X a group T acts discretely and the fundamental domain of T has a finite volume with

respect to g. Then X/TI' is a quasi-projective variety.

In order to prove THEOREM 2.1. we need to chek conditions A) and B) of the theorem
proved by Mok. Condition A) follows from the explicit formulas of the curvature operator of
the Weil-Petersson metric obtained in [T1]. Condition B) follows from the Global Torelli
Theorem for Calabi-Yau manifolds proved in [T2] and the following deep result of Dennis
Sullivan:

THEOREM (See [Sul.)

Suppose that X is a compact Kéhler manifold of complex dimension >3, then
T:=Diff T (Mo)/Diffe (Mo)

is an arithmetic group.
In #3. we construct an ample line bundle £ over M(Mg), where T(My) is some
comactification of M(My). Let us describe this construction. We know from [T1] that there

exists an universal family of marked Calabi-Yau manifolds %— E{My). Let

L::w*w%/z(Mo).
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1.3.3. Definition,

On L we have a natural metric, namely from the definition of L it follows that the local
sections of L are holomorphic families of holomoerphic n forms on the Calabi-Yau manifolds
parametrized by T(Mp), i.e. w;(n,0), then
n(n-1)
H(wy(n,0)i=llug@005=(=1) 7 ("] wyn,0) A w0)
Mg
1.3.4. Remark.
Notice that directly from the definitions of I'y L and H it follows that L and H are invariant
under T'.

1.3.5. Definition,

From 1.3.4. it follows that we can define on M(My):=I(My)/I' 2:=1,L, where
1 E(Mg)—-M(My)

Since H is invariant under the action of I' it follows that H induced an Hemitian metric on
L. We will denote this metric again by H.
In order to formulate the next THIEOREM we need the following definition:
1.3.6. Definition.

Let X be a normal complex space, YCX a closed analytic subser such that U=X-Y is deuse in
X. If E is a vector bundle on X and < , > a hermitian metric on E/U, this metric has
logarithmic singularities along Y if the following holds: For y€Y, there exists a neighborhood
V of y in X, holomorphic functions f,...,fy on V with Y as common set of zeroes, and sections

ey,.--,er of E over U which form a basis of E/U, such that for some constants ¢;, ¢, >0,
c
| <ejoe;>[(2) <eylog(max(|f; ()]
-1 Cy
|det<ei,ej>|(z) 5c1|log(max(jfi(z)|)|
for zeUNV.
1.3.7. REMARKS:

a) The extension E of E/U is uniquely determined by this property, since local section of E/U

is holomorphic on X if and only if its norm grows at most logarithmically near Y.

b) The definition is essentially independent of the choice of the e; and fj. (See [F] and [M].)
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THEOREM 3.

a) The hermitian scalar product H on L has logarithmic singularities.
b) Let £ be the extension of £ defined as in the remark 1.3.7., then £ is an ample bundle on
M(Mg).

1.4. SOME REMARKS.

A natural generalization of a K3 surface in higher dimensions are the manifolds with
canonical class zero and finite fundamental group are Kahler manifolds with canonical class
zero. There are two types of such manifolds, namely Calabi-Yau manifolds and Hyper-
Kahlerian. We know that the moduli space of marked polarized Hyper-Kéhlerian manifolds is
isomorphic to SO(2,b2;1)/SO(2)xSO(b2-1), where b2:=dimcI{2(X,C). So one should consider

as a natural generalization of I{3 surfaces the Hyper-Kdhlerian manifolds.

A) CONJECTURES ABOUT CALABI-YAU MANIFOLDS.
It is easy to see that M(My) is defined over Spec Z. So H defines an analogue of the

Falting’s height h on the moduli of polarized abelian varieties. So one can hope that the
analogue of Falting’s Theorem (Shafarcvich’s conjecture) will hold for Calabi-Yau manifolds
defined over Z, namely that the set S(M; p;,..,py ), where M is a Calabi-Yau manifold defined
over SpecZ and M has ”bad reduction” over the prime numbers p,,..,p;, then S is a finite set.
This conjecture should hold also for Hyper-I{dhlerian manifolds. The functional analogue of
Falting’s Theorem (Shafarevich’s conjecture) is not true for Hyper-Kahlerian manifolds. (See
[F] and [S&Z).) There are some evidence that the functional analogue of Falting’s Theorem
(Shafarevich’s conjecture) is true for Calabi-Yau manifolds.

B) CONJECTURES ABOUT HYPER-KAHLERIAN MANIFOLDS.

1.4.1. Definition.

Let X be a compact Kahler manifold such that HI(X,OX)=0 and let on X there exists a
unique up to a constant holomorphic two-form wx(2,0) which is non-degenerate at each xeX.

Then we will call X a hyper-Kihlerian manifold.
1.4.2. In [T3)] it was proved that the moduli space of all marked Hyper-Ké&hlerian manifolds
with a fixed polarization is isomorphic to SO(2,b;—1)/SO(2)xSO(b,—1), where a marked

Hyper-Kahlerian manifolds with a fixed polarization means a triple (X;él,..,ébz; L), where
61,..,6b2is a basis of H4(X,Z) and LeHl'l(X,R)ﬂHz(X,Z) is an imaginary part of a Kéhler

metric on X.
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1.4.3. Definition.

Let (X;él,..,ébz; L) and (Y;&l,..,ébz; L) be two marked polarized hyper-Kéahlerian manifolds
and suppose that under the period map they correspond to points x and y in
SO(2,b,—1)}/S0(2)x80(b,;—1). We will say that X is isogenous to Y if there exists a matrix
A€eS0O(2,b;—1;Q) such that Ax=y. Indeed A defines a homeomorphism

Ay Hy(X,Z)—=Hy(Y,2)
A very intersting question posed by Shafarevich and A. Weil is the following one: If A, is
induced by algebraic correspondence. {See [Sh] and [Weil].)

1.4.4. Conjectures.

a) Suppose that X and Y are defined over Z and suppose that L(X,s)=L(Y,s), then X is
isogenous Y, L{X,s) is the L-function of X.

b) S(X;p;,.-,Pk) is a finite set, where X is a hyper-Kahlerian manifold defined over SpecZ,
P1s--sPk are fixed prime numbers over which X mod p is singular.(The functional analogue of

Falting’s Theorem (Shﬁfarevich’s conjecture) is not true for Hyper-Kahlerian manifolds. {See

[F] and [S&Z].)

Remarks.

(i) This conjecture is an analogue to one of many famous results of Faltings. See [F].

(ii) Independently another proof of the quasiprojectivity of ¥(Mg) was given by Viehweg. (See
[V1], [V2] and [V3).)

Aknowlegments.

This work was done during my stay in Max-Plank Institute fiir Mathematik and my visit to
Tokyo Metropoliten University. [ want to thanks both institutions for finincial support and
excelent working conditions. I want to thank Serge Lang for stimulating conversations on some

of the topics of this paper.
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#2. PROOF OF THEOREM 2.1.
THEQREM 2. M(M,) is a quasi-projective variety, where (M) is defined in #1.3.
PROOF OF 2.1.:

We need to chek A) the holomorphic sectional curvature 3(g) of the Weil-Petersson metric
(g) has the following property:
—o0<c; <H(g)<c; <O

It was proved in [T1] and [Ti] that }%(g)<c¢,;<0, so we need to prove:
LEMMA A. —oo<c,<¥(g).

LEMMA B. T acts on T(M,) discretely and has a finite volume with respect to g.

As it was pointed out in the Introduction THEOREM 2 follows directly from a result of Mok.
(See [Mok].)

PROOF OF LEMMA A:

The proof of PROPOSITION A is based on some facts stated and proved in [T1])&[T2]. Let

me remind these facts. First we will fix a polarization on Mg, i.e. we are going to consider a
“pair (M,L), where M is a Calabi-Yau manifold, LGHI'I(M,Z) and L corresponds to an ample
divisor on M. From the fundamental result of Yau, namely the solution of Calabi conjecture,
we get that for each t€X(Mg) which corresponds to a Calabi-Yau manifold L determines a

Ricci flat metric g(t) such that Im(g(t))=L. Let us fix c€X(Mg) that corresponds to My and

let g, B(O) be the Yau metric, i.e. the Ricci flat metric that corresponds to L. Let 8* be the
3
conjugate oprator of § with respect to g, E(O) on the space I‘(Mo,®®9g'1). Let

1 n
{Qlj,zj yoenZ] }

be a finite covering of My where each open set is with fixed coordinate system.

PROPOSITION A.1l.

For any yeH!(Mg,00) where 7. = Z(7j)% :z?@aﬁ,
b oap J

such that ||v||*=1 there exixts a constant C>0 such that for all functions (7j)% we have:

lpgi<e

REMARK. The constant depends on the covering {CU.i} of My and the choice of {dzj} We

will use later a new basis of ch,'olcu', namely {OL}.
J
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PROOF of Proposition A.l.:

This Proposition follows immediately from the compactness of Mgy and the conditions
veH!(Mg,04) such that ||y||*=1.
Q.E.D.

PROPOSITION A.2. |¥(g)|<C?, where C is defined in Proposition A.1.
PROOF of Proposition A.2.:
Let v, for k=1,..,N be an orthonormal basis of H'(Mg,00). Let

N
(A2.1)  $i=g(th o tN)=D 0 v K+ ET* Lot tN),8(t .t )] €T (Mo, 08 ©00)
k=1

where G is the Green operator with respect to the Yau metric g, E(O) It was proved in [T1)
b
that we have for ¢(t!,..,tN)

(A.2.2)) Eqs(tl,..,t“)):%[qb(tl,..,tN)),¢(t1,..,tN)]
l.e. ¢:=¢(t1,..,tN) defines integrable complex structures. More over in [T2] it was proved that
qS(tl,..,tN) is defined for all (tl,..,tN)ECN. Let (zjl,...,zi') be a local coordinate system in cU.j
such that
.1 n
(A.2.3) wo(n,O)lqu_dzj /\...Adzj
and we(n,0) is a holomorphic n-form on Mg such that
(A.2.4.) wo(n,0)Awe(n,0) =vol(ga B(O))
((A.2.4.) was proved in [T2].) We can view ¢(t1,..,tN)EI‘(MO,Hom(Qé'O,Qg'l }). We define

(A.2.5) At(dz}‘):=dzj¥‘+¢(dzj¥‘), where ¢ is defined in (A.2.1.)

In {T1] the following lemma was proved:
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(A.2.6.) LEMMA. (See [T1]&[T2].)

wt(n,O):z(At(dzjl))A..A(At(dzjl)) is a globally defined holomorphic n-form for each t€XT(Mgy)
on M.
(A.2.7.) LEMMA. (See [T2).)

For each t€¥(Mg) which corresponds to a Calabi-Yau manifold there exist forms of type (1,0)
{Oit}, i=1,..,n such that

@) <ol @{_ >=c(t)d

where < , > is the scalar product defined by the Calabi-Yau metric (gaﬁ(t)) on M, and c(t) is
a finction on E(Mg) such that c(0)=1 and ¢(t)>0. Moreover we have

(ii) OfA..AOY=w(n,0)

(A.2.8.) LEMMA. (See’[T2].)
Let us define B, in the following way Bt(@ig)zei & Bt(OL)zelt for i=1,..,n, then B;=A, as

linear operators.
Clearly we have At(G},)=At(AEi(9}))). Next we define At_t0:=At-A;i.
In the basis {..,e};,..,ei ,..} the matrix of At-to has the following assymptotic expension:
i i N k_ K i N k_ k
At-to(et)zet0+2 (t ‘to)’rto k(et0)+0(z (t*-t5)%)
k=1 ’ k=1

where {7t0,k}€Hl(Mto’eto)’ more over all matrices 7t0,k are identical to the matrices of
7}, €} (Mo,0,) written in the basis {eg,..,eg,e_é,..,ég}
(A.2.9.) REMARKS.

L) Let
(A.2.9.1) Ve ki E(7t,k)% 6)75 ®(6?)*, where(©{)* is the dual of ©F.
af

So the matrix of v, ) in the basis {O%,.., g,@,..,e_g} will be ((-yt k)% ) Since for {Gt} we

have
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(A.2.9.2) <ol ,e{>=c(t)aid_. c(t)>0
we get that

(A.2.9.3) (7t,k )%=(7t,k)a B’ where 15 ,F:Zlg‘u,a‘f%
’J:

IT) Siu proved in [Siu] the following results: If 7¢ i '8 @ harmonic tensor with respect to the
b

Ricci flat metric then we have

(A.2.9.4) (Yt,k)a,ﬁz("'t,k)ﬁ,a' (See also [N].)

From (A.2.9.4.) Siu deduce the following result: Let %— U be the Kuranishi family of
manifolds with a Ricci flat metric defined by ¢ which fulfills

N -
(A.2.1.) ¢:=¢(t1,..,tN):=Z7ktk+%0*G[¢(t1,..,tN),d:(tl,..,tN)]eI‘(MO,Qg'l®@0)
k=1
(It was proved in [T1] that automatically ¢ fulfills
(A2.2) Tt =BLA(E o tN)), 81 M)

where v €H'(My,0,) for all k, i.e. 7y are harmonic tensors with respect to a Ricci flat metric.

(ga —(0)). Suppose that on —U we have a family of Ricci flat metrics (ga E(t)) such that
? bl

the class of the cohomology [Im(ga E(t))}:L, i.e is fixed, then
(A.2.9.5.) d-it(lm(ga ﬁ(t))lt‘:o:o (See also [N].)

From this result and from the fact that for each te¥(My) we have that 74k are harmonic

tensors with respect to the Ricci flat metrics (ga B(l:)) it follows that
2

d =
(A.2.9.6.) a—t(lm(ga,-ﬁ(t))_O
which means that for all te T (My) Im(ga E(t)) define one and the same symplectic structure
on My, i.e.
(A.2.9.7.) Im(ga,—g(t))zconst
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From (A.2.9.7.) it follows that:

(A.2.9.8.) ad-t-:(vol(ga’ﬁ(t))zo

SO

(A.2.9.9.) vol(ga,ﬁ(t))=®% A..ABAO} A../\G)E:vol(ga,ﬁ(ﬂ)):@é A..AOJABLA..AOD

e are going to summerize the main facts that we are going to use:

FACT 1.
Suppose that vo€H(Mg,04) and
u0:=2qu%@‘]°®(9}3)*
i
Then

”to:=Z”0':ij'Ato(eJ;’)®(Ato(e}j))*
hJ

is a harmonic form with respect to the Calabi-Yau metric g, -ﬁ(tc’)'
FACT 2.
We have the following identity:

(A2VOJ.(O%,A..AOB))A((A21/0J_(G)cl,/\..A@S)):

=|—.~__§th(:’0)” (A2VtoJ.(Ato(e%,)A..AAto(eg))A((A2yo¢(At0(@é)A..AAtO(eg))

FACT 3.

The forms A%vq J_(Ato(eg',)/\../\Ato(@g) are primitive with respect to the Calabi-Yau
metrics g, E(tO) for all to€X(Mg).

PROOF OF FACT 3:
We know that utoeﬂ'ﬂl(Mto,Oto). Let

uto(t):=utot+%Gtoﬁ;‘;[uto(t),uto(t)]

pagell



We know that ”to(t) automatically fulfills the inegrability condition:
By v ()=Blvg () (8]

Let
2
v, (B):=vy tHvE tit....

On the other hand in [T] it was proved that:
wt(n,O):=(((—3%O+uto(t)(®%o))/\..A(Ggo-i-vto(t)(e?o)))
for each t is a holomorphic n-form on M, defined by uto(t). It is easy to see that:

(*) wt(n,O):zwto(n,O)-}-t(Vto .Lwto(n,O))+t2(Vt20 _Lwto(n,O)—(/\zvto .J_wto(n,O))+)0(t3)
(See [T1].)

Clearly w(n,0) is a primitive form with respect to Im(ga,—(t)) for each t. This means that:

wy(,0) L(Im(g,, 5(6))*=0

From Im(ga B(t)):lm(ga F(tO)) for each t and the definition of a primitive form and from
(*) we get :

(Afwg, J—“’to(“,o))-L(Im(sa,ﬁ(ﬁo))*=0

i.e. (Azuto_l_wto(n,o)) is a primitive form- for each tg.

Q.E.D.

After this prelimenary work we are readv o prove our estimate;

PROOF OF|¥(g)|<C?, where C is defined in Proposition A.1l.:

The proof i3 based on the computation of the curvature tensor of the Weil-Petersson metric
done in [T1], namely we proved that the holomorphic sectional curvature at a point

to€X(My) that corresponds to a Calabi-Yau manifold Mto in the direction
.—H! H
ytoeTto,ﬂf(Mto)'_H (Mto,eto) is equal
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n{n-1)

(AL) 8(—1)"2—<4-_1)“'1m J (A Lwy (nOIA[ATY Lwy (n,0)] =1
o Mt

1o}

where |]ut0||2=1 and [/\zutoJ_wto(n,O)] means the class of cohomology of the form

2
A VtoJ‘wto(n’O)'
1,0,0,1
to Pty
sence. Here all norms are with respect to the Calabi-Yau metric g, F(to).
y

Let me remind that we can view v as a section of I‘(Mto,Hom(Q )) so /'\Zuto makes

Clearly we are going use formula (A.l.), Factl, Fact2 and Fact3 in order to prove our

estimate. From (A.1.) and Fact 2 we get

n{n-1)
(A.IL) 8(=1) 2 (y=n»l

I (szto_Lwto(n,()))/\(/\zutoi.uto(n,O) ):

1
2
ENCOING

(o)

n{n-1)
=8(— 1)l 1 v w, (n 2y w, (n
=Sy T MI (A2, Loy, (00)) (W, Ty (0))
ty

for any to and t,€X(Mg). From the definition of /\2vt1 and the constant C defined in
PROPOSITION A.l. we get that

n{n-1)

(A.IIL) |s;(—1)T(J—_1)“'1”(‘;t (1n’0)” J(Azuto_Lwto(n,O))/\(AQVtOJ.wto(n,O))|502
o M,

From Fact 3, i.e. that AzutoJ.wto(n,O) is a primitive form we get that:

(A.VL) 'Ilwt (Sn ol J (APry, Lwg (10)A(A vy Lwy (n,0) N=l1Ayy Lwg (0,0)]17
o TN M
tO

From the Hodge decomposition of A2vt0iwto(n,0), i.e.

(A.V.) A%tolwto(n,0)=u(A’utolwto(n,O)HB‘to Bt
we get that
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(AVL)  |BH(A%vy_ Lwy (nODI*+I8T,_p, |I*=

n{n-1)
2 n-1 1 2 2 2
18(=1) 2 (4=0) GO J (At Loy, (0.0))A( APy Loy (n0))]
o) Mto
On the other hand we have
n{n-1) 1
— - 1 2 2_
(A.VII) |8(—1) 2 (‘\l“"l)n m J [Azuto_l.wto(n,O)]/\[/\ Vto_]_wto(n,())][ =
o M
to

||8H(/\2Vt0J_a..:to(n,()))||2 (The norm || || is with respect to Calabi-Yau metric.)

So from (A.1L), (A.III), (A.VI) & (A.VIL.) we get that
13%6(g)) <M.
Q.E.D.
PROOF OF LEMMA B:
Let me remind to the reader the definition of I‘:=Diff+(M0)/Diffg_(Mo). This group has a

natural representation in H"(Mg,Z) and this representation preserve the cup-product. In [T2]
it was proved that T' acts on FE(My) discretely. Let me denote by [y the subgroup of
Aut(H™(My,2Z)) which preserve the cup-product. Let G be the the idenity component of the
group of the automorphisms of H"(Mg,R) which preserve the cup product. From a Theorem of
Borel and Harish-Chandra we know that vol(Go/Tp)<oo with respect to the Haar
measure.(See [B&H]. From the theorem of Sullivan about the arithmeticity of ' it follows that
vol(Go/T)<oo. (See [Su].) From the global Torelli Theorem for Calabi-Yau manifolds (See
[T2]), i.e. T(Mo)CGo/K, where K is a compact subgroup of Gy, the fact that the Weil-
Petersson metric is a restriction of a left invariant metric on Go/K and vol(Gqy/T)<oco we get
that:
vol(F(Mg)/T) <o
with respect to the Weil-Petersson metric.

Q.E.D.

From LEMMA A, LEMMA B and the THEOREM OF MOK it follows that I(Mg)/I is

quasiprojective manifold.
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#3. THE ARITHMETIC HEIGHT ON Z(Mg).

THEOREM 3.

&) The hermitian scalar product H on £ has logarithmic singularities.

b) Let L be the extension of L defined as in the remark 1.3.7., then Z is an ample bundle on
M(Mo).

(£, Z and H are defined in the introduction.)

PROOF OF THEOREM 3.A.:

We have proved that the Weil-Petersson metric g on (M) has a bounded away from zero
and —oo holomorphic sectional curvature, i.e.

(3.A.1.) —oco< e, <H(g)<c, <0

On the other hand it was proved in [T1] and [Ti] that
(3.A.2.) ddlog H=g

Let T(Mgy) be a projective variety such that Dog:=T(M)\T(My) is a divisor with normal
crossings. Such compactification of T(My) exists since E(Mg) is a quasi-projective variety and
by the famous theorem of Hironaka. (See [H].) Let t€Do, and let AN be a
polycylinder(A=unit disk and N=dimZ(M,)) such that ANCT(M,). Since Dy is is a divisor

with normal crossings we get that

= union of coordinate hyperplanes
(3.4.3) A”mx(Mo)\Z(Mo)={zl=o,..,zk=o YR }
Hence:
(3.A.4.) ANAT(Mo=(a*)*xaN K

From (3.A.1.), (3.A.2) ,(3.A.3.) and the fact that g is a complete metric in T(Mg) we get that

g behaves like Poincare metric on (A*)kx/_\N'k, i.e. there exist constants c; and c, such that:

(3.A5) ¢ (i gl f: ldz) )<g<e (i ldzl i jdz|)
A5 . 1N<g< .
bzl (oglm)* i 4y NSHlal® oglai))® 54y

which means that if u is a Tangent vector and P is the Poincare metric, then

cgp(u,u)Sg(u,u)$c4P(u,u)
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Let me remind that the Poincare metric on the unit disc is given by

|dz;)

(3.4.6.) 27 (loglz)?

From here we get immediately that g has logarithmic singularities.

Q.E.D.

PROOF OF THEOREM 3.B.:
From the results of [M] and THEOREM 3.A. it follows that we can prolonged uniquely L to

T on some compactification M(My) of M(My). Again in [M] it was proved that ¢,(£,H) as a
form is correctly defined as a current. In [T1] it was proved that

J-180log H=g
where g is the Weil-Petrsson metric. So ¢;(Z,H) is a positive current. From here and
Moishezon-Nakai criterium for ampleness we conclute that £ is an ample divisor on the
projective variety m.

Q.E.D.

REMARK A.
We need to prove that M(My) is defined over SpecZ. For this we need to use Geometric
Invariant theory. (See [F&M].) Indeed formally TM(Mg):=S/PGL(Ny) where S is the
component of the Hilbert scheme of all non-singular Calabi-Yau manifolds in PCN1 that
contain Mg. From general theory of Grothendieck we know that S is defined over SpecZ. On
the other hand PGL(N,+1) is an open subset of Proj Z[aoo,..,aNlNl]. Clearly £ is a PGL(N,+1]
linearized ample sheaf on S. From the arguments of Mumford in Proposition 7.4. on page 135

of [F&M)] we get that M(My) is defined over SpecZ.

REMARK B.

Since £ is an ample bundle and H(t) is an Hermitian metric on £ with logarithmic
singularities, then H(t) defines a nice height function h(t) on M(Mg). For the properties of the
height function with logarithmic singularities see [F&W]. Namely Faltings proved the following
theorem:

THEOREM. (See [F].)

Suppose that QCK is a finite extension and h(x) is a height function with logarithmic
singularities on a quasi-projective manifold X(K)\Y(K), then the number of points

x€X(K)\Y(K) with h(x)<c is finite.
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