
MATHEMATICAL 

INSTANTON BUNDLES ON p2n+1 

by 

Christian Okonek 
and 

Heinz Spindler 

Max-Planck-Institut 
fUr Mathematik 
Gottfried-Claren-Str.26 
5300 Bonn 3 

Sonderforschungsbereich 170 
Geometrie und Analysis 
Bunsenstr. 3-5 

0-3400 G5ttingen 

MPI/SFB 85-15 



-1-

O. Introduction 

A mathematical instanton bundle with quantum number k on F3 

is by definition a holomorphic rank-2 bundle E with Chern poly­

nomial Ct(E) = (-1--)k which has natural cohomology Hq(E(l» 
1-t2 

in the range -3 ~ 1 :l o. These bundles are stable, hence tri-

vial on generic lines and have a symplectic structure which is 

unique up to multiplication with scalars [13]. 

Via the Penrose transformation a certain subset of these bund-

les corresponds to self-dual solutions of the SU(2) Yang-Mills 

equations on S4[1]. 

Recently the Penrose transformation has been generalized by 

Salamon [121. 

Salamon constructs for every quaternionic manifold M a twistor 

bundle 

tr: Z )0 M 

over M, such that the total space Z is a complex manifold 

[12]. If M=];)n 
E 

is the n-dimensional projective space over the 

quaternions E this twistor bundle is the well-known fibration 

Identifying ~2n+2 

..,.,,2n+l 
tr : =C 

with E n+1 
e 

n --.> .... P. • 
E 

one obtains a real structure 

& on p2n+l such that the real lines are precisely the fibres 
~ 

of 1T. 

The special case is just the usual Penrose trans-

formation. 
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This makes it reasonable to try to construct holomorphic 

2n-bundles on p~n+l using the fibration over p~ • 

Salamon proves the following result [12]: 

Let 

, i=O,l, ••• ,n , 

be E-linear mappings. For every 

n 
A (q) = l Ai qi • 

i=O 

Assume, that for all q €Bn +1 " {Ql 

-t 
(*) A(q) A(q) € GL(k,:R) • 

we have 

define 

Then there exists a holomorphic 2n-bundle E on JI?~n+l 

1 k with Chern polynomial Ct(E} = (~) , which is trivial on 
l-t 

the real lines n-1 ([q]) and has a symplectic structure. 

Two special cases of this construction are well-known. For 

k = 1, n ii: 1 one gets the so called Nullcorrelation bundles [9] • 

For n = 1, k ii: 1 this construction gives all mathematical in­

stanton bundles, which come from physics [13]. 

Unfortunately for k> 1, n> 1 the condition (*) is hard to 

check. Therefore it is not clear, that those bundles E really 

do exist. 

This remark was the starting point for our paper. 
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Let E be an algebraic rank-2n bundle on p~n+1 • 

We say, E is a mathematical ins tan ton bundle with quantum 

number k , if E is simple, has Chern polynomial 

c t (E) = (--L-)k 
1-t2 and natural cohomology Hq(E(l)} in the range 

-2n -1 :i 1 s 0 Furthermore we require that E has a symplectic 

structure and trivial splitting type. 

We shall prove, that the set MI 2n+1 (k) of isomorphism clas­
p 

ses of mathematical instanton bundles with quantum number k 

on p2n+1 
~ 

can be identified with a quotient 

MIp2n+1 (k) = SK(2n+2k) I GL(k,~) , 

where SK(2n+2k) denotes the variety of non-de~enerate simple 

symmetric Kronecker modules of rank 2n+2k (Definition 1.2). 

From geometric invarUmt theory it follows that the set 

MIs
2n+1 (k) of stable bundles in MI 2n+1 (k) carries the struc-

]p ]p 

ture of a quasi-projective variety (theorem 1.13). 

In the second part of the paper we prove that for all 

k ~ 1, n ~ 1 the moduli spaces HI 2n+1 (k) are non-empty, 
JP 

giving an explicit construction of an appropriate Kronecker 

module. 
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2n+1 1. Properties of Mathematical Instanton Bundles on P 

We use the notation of [91 with some minor changes. 

Let V be a complex vector space of dimension 2n+2, n G!;1 , 

p = JP (V*) the associated projective space of lines in V. 

An algebraic vector bundle E on P has a symplectic struc-

ture, if there is an isomorphism 

tp : E ;. E* 

with tp* = -tp • 

If Eis simple, a symplecti:c structure is unique up to 

multiplication with scalars. 

We say that E has natural cohomology in the range 

r
1 

::i 1 ::i r
2 

I if for every 1 in that range at most one of 

the cohomology groups Hq(E(l» is non zero [6]. 

Definition 1.1. An algebraic rank-2n bundle E on JP is 

a mathematical instanton bundle with quantum number k G!; 1 

if it has the following properties: 

(1) the Chern polynomial of E is 

(ii) E has natural cohomology in the range -2n-1::i 1 ;S 0 

(iii) E has trivial splitting type 

(IV) E is simple 

(V) E has a symplectic structure 

Remark. (i)-(iv) are open properties but not (v) except 

in the case n = 1. 
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We denote the set of isomorphism classes of these bundles by 

MI 2 ,(k). 
JI? n+ 

Let H be a complex vector space of dimension k I 

a linear map. We define the adjoint 

v ~ H ----i~~ V* tiA H* 

of a by 

For every v E V let 

v** V* tiA H* -~>- H* 

be the evaluation mapping associated to v. 

Definition 1.2. A Kronecker module on H is a linear map 

with the following properties 

(i) a (v0-) : H ---i>-~V*QH* is injective for all vEV'{O}. 

(ii) v** 0 a: V* Q H* --..-> H* is surjective for all v E V, {O}. 
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The rank of the Kronecker module a is the rank of the 

linear map ex. 

A Kronecker module a is symmetric if the image of ex lies 

in the subspace s2H* c L (H,H*) of the symmetric bilinear forms 

on H, i.e. if ex is symplectic. 

If for almost all v
1

, v 2 € V the bilinear form ex (v1I\v2 ) is 

non-degenerate we call the Kronecker module ex non-degenerate. 

A Kronecker module a is simple, if for each pair 

it follows that 4>1 =4>2 = A idH • 

A Kronecker module a is called irreducible (cf. [7],[11]) 

if the following condition holds. 

If U c H , U' c H * are linear subspaces, such that 

U'*o, U':j:H* and a(v1I\v2 , (U) cU' for v 1 ,v2€V' than 

dim U <' dim U I • 

Remark. Property (i) is equivalent to (ii) for symmetric 

Kronecker modules. 

We want to associate to every mathematical instanton bundle 

with quantum number k on P = p2n+1 a non-degenerate simple 

symmetric Kronecker module of rank 2n+2k. 

Lemma 1.3. Let E be a rank-2n vector bundle with Chern poly­

nomial c t (E) = (~)k on P. 
1-t 

If E has natural cohomology in the range -2n-1:S 1 :s 0 I 

E is the cohomology bundle of a monad. 
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Proof. From the Riemann-Roch formula we find the Hilbert 

polynomial of E 

X (E (1» = 2n (1+2n+1) _ k (1+2n) . 
2n+1 2n-1 

The proof follows now from the Beilinson spectral sequence [9] 

--
for p+q = 0 
for p+q *' 0 

On ]I? = ]I? (V*) we have the Euler sequence 

Tensoring this sequence with H1 (E{-1}) and combining it with 

(1) we get the following commutative diagram 

o o o 
t 

o ~ H2n 
(E (-2n-1) ) aO(-1) 

~ 
4 H 1 (E ( -1 ) ) an ( 1 ) 

b + 
--?Io- H 1 (E) 9 (9 ->- 0 

~a' ~ ~= 
( 2) 0 ~ H 1 (E ( -1) an ( 1 » a e:> ~H1 (E(-1) }av*a(9~~H1 (E)90 ->-0 

ib l ! ~ 
o ~H1(E(-1»Q{)(1) ~ H 1 (E (-1) ) aD( 1) --?Io- o ->-0 

J ! 
o o o 
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The first row and the first column are monads with the same 

cohomology E • The remaining rows and columns are exact. 

Corollary 1.4. Let E be a bundle as in 1.3. Then E is the 

cohomology of a monad 

Define H(E) = ~(E(-2n-l») t 

K(E) = H1(E(-1)8 0(1». 

Lemma 1.5. Let E be a bundle as in 1.3. A symplectic struc­

ture <p: E -+- E* induces a symplectic structure q: K(E) ~ K(E)* 

on K(E} such that E is the cohomology bundle of a self-dual 

monad 

a I a' *q 
(3) 0 -+-H(E)8~(-1) -+-K(E)8~ -+- H(E)*8(9(1} -+- 0 • 

Proof. From [9] it follows that the morphisms of E to E* 

correspond to morphisms of the associated monads. So <p in-

duces the following commutative diagram 

o -+-H(E)8 (!)(-1) _..;;;;a;....'_-;...;. K(E) 80.E;..H1 (E(-1» 80(1) -ilo-O 

!<P1 !'P2 !'P3 
o -+-S1 (E(-1»)*BO(-1) -+-K(E)*80-+-H(E)*80(1) » 0 

b' * a' * 

Now q-'P2 is the induced symplectic structure, and with <P3 

as an identification (Serre duality associated to the given 
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symplectic structure q» we get b I = a' .. q • 

Now let E be a rank-2n bundle on P with the properties 

(i) (ii) and (v) of definition 1.1. 

Wi th respect to some symplectic structure q>: E -.. E* we get 

a canonical identification g1(E(-1» ~H(E)*. The morphism 

a in the monad (1) can then be written as 

a=a : H(E) QO(-1) ---+ H(E)*QO (1). E,q> 

a is represented by a linear map 

ex = aE,tp: V Q H(E) ~V*Q H (E)" I 

which is the adjoint of a linear map 

,. 
claim: a is symplectic. 

proof. From (2) and (3) we get the following commutative 

diagram 

0 0 

t a ! 
H(E)Q<!>( -1) -> H (E) *Q n (1) 

~ tao 
a1 ! 

vaH (E) Qt!) a~K (E) Q (I') > V*QH (E) *Q (!) 

~ a'*q t w 

H (E) *Q ~(1) H (E) *Q (!)( 1) 

! 1 
0 0 
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It follows 'fa 1 = a'*q = (a 1r*)*q = 11" a* q and therefore 2 2 
a1 = a* q . 2 

Now by definition 
A 

a is equal to a 1
Q 2 and thus we have 

So we can consider a as a map Ii. 2V ----;... 52 H (E) * • 

We then obtain the following "symplectic" commutative diagram 

with exact columns 

o o 0 

(4) 

a ! b! 
o -?H(:E)~-l) ~H(E)*90(1) ~Hl(E)9(Q-;;" 0 

~ -~. ~ ~ ! ~! = 
o ~Hl(E)*9~~VeH(E)eO~v*eH(E)*G(?~H1(E)9(9~ 0 

t 

~ t t ! 
o ~ H 1 (E) *e (!)--+-H(E)m'{-1) --+o-H(E) *9 (9(1) o 

~ -b~ ~ -ill' ! 
o o o 

The second row of this diagram is also exact. 

Proposition 1.6. Let E be a rank-2n bundle on P with 

Chern polynomial c tE) = (~ )k 
t 1-t2 

and natural cohomolgy in 

the range -2n-l!it 1 :ii 0 , cp: E ~ E* a symplectic structure 

on E. Then the associated map 
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is a symmetric Kronecker module of rank 2n+2k. FUrther-

more we have: 

(i) a is simple if and only if E is simple 

(ii) a is non-degenerate if and only if E has trivial 

splitting type. 

Proof. Since a has to be injective on fibres we see from 

(4) that a is a symmetric Kronecker module. The rank of 

~ is dim(V9H(E) - h 1 (E) = 2n+2k • 

(i) follows immediately from 

Lemma 1.7. Let H~ , 
~ Hi be complex vector spaces I i=1,2,3, 

and ° ~H1Q (0(-1) 
a 

( 1 ) 
b 

° M '" ~H2Qn ~H3Q(9~ , 

M' '" ° -->H1Q (9(-1) 
a' 

->H29 n ( 1 ) 
b' 
~H3Q(Q-4- ° 

monads. Let H-:::: Hom·(M,M' ) be the following complex. Hi is 

the complex vector space of all homomorphisms M -->M' of 

degree i; the differentials d i : Hi ---> Hi+1 are defined 

by 

dO(x,y,z) :::: (a' x-ya, b'y - zb) , 

d 1 (x,y) =b'x+ya. 

Then there exist canonical isomorphisms 

where E ::::' ker b / im a , E' '" ker b' I im a I • 
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Especially we have 

Hom(E,E') ~ ker dO = {homomorphisms of 

complexes M -+- M' } . 

Pro,of. [1 0 1 • 

(ii) follows from the following more precise result (cf.[9] 

II.4.2.3) • 

Lemma 1.8. Let E, et. be as in proposition 1.6. 

If L ell? is the line def ined by v 1 ' v 2 t: V, V 1/\ V 2 =I: 0, then 

the restriction EL of E to L is trivial if and only if the 

symmetric bilinear form a(v,l\v2 } on H(E) is non-degene-

rate, i.e. 

Proof. Let W e V be the subspace genera ted by v 1 and v 2 ' 

et.(V 1AV
2

) can be considered as linear map 

with adjoint 

W2H(E) -+ W*2H(E)* • 

Restricting the monad (a,b) in (4) to L and combining 

with the exact sequence 
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we get the following short exact sequence of complexes of vec-

tor bundles on L. 

0 0 0 

~ at t b' ~ 
L ~H1 (E)9(9L o ---70- H'Q~(-1) ---;:.. H (E) *9 (V IW) *90

L 
~O 

! a
L 

!, ~ 1 1= 
0 ~H(E)Q~(-1) ~ H{E)*QU(1)L --+H (E)Q (OL ----?-- 0 

~ ~ 1, ~ 
o ~Hft9~(-1) --+ H(E}*9U

L
(1) 0 

t ! !, 
0 0 0 

From this we obtain the long exact cohomology sequence 

One easily sees that EL is trivial if and only if a
L

· is 

surjective. But is nothing else than the map associated 

to (a )..... and so 'it 
W L 

is surjective iff aw is non-degene-

rate. This completes the proof of the lenuna and of the propo­

sition. 

Remark •. tV $2n-2 The above proof also shows that EL= «i
L
( 1)$ elL $()L (-1) 

Now let H,W be fixed complex vector spaces of dimension k, 

2n(k-1) respectively. 
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Proposition 1.9. Let 2 2 a : A V ----+- S H* be a simple symmetric 

Kronecker module of rank 2n+2k on H. Then a defines a 

monad M(a) 

whose cohomology bundle E(a) is simple, has Chern polynomial 

ct(E(a» = (1~t2)k and natural cohomology in the range 

-2n-l ;$ 1 ;$ 0 • 

Furthermore a induces a symplectic structure 

<p : E(a) -- E(a) * on E(a) such that 

a suitable isomorphism g: H ~ H (E) • 

'" ". 

a = g* a g E,q> 

Proof. The first part of the proposition is clear. 

with 

From (5) we get a commutative diagram analogous to (4). The 

corresponding connecting homomorphism 

a: E(a)* = Hl (M(a)*) ~ H2 (M(a» = E(a) 

gives us a symplectic structure q> = a -1 • 

Now the identity id: E ~ E induces isomorphisms 

Since 
... 
a E,q> 

such that 

... 
and a are symplectic we get 

... .... 
and thus (gi 9,)* a = a(g~ g1) • 

By assumption a is simple and so we have 
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g~ 9 1= ),2 idH for some ), E e, {OJ • 

Taking 1 g =- g A 1 we are done. 

Now let SKy(H) CL(A
2 

y,S2H*) denote the set of all non-degene­

rate simple symmetric Kronecker modules of rank 2n+2k. 

We consider the natural action 

of GL(H) on L (iv, s2H*) , where g* a g is defined by 

SKveHl is GL (H) - invariant. 

Proposition 1.10. The map a ~ E(a) induces a bijection 

Proof. If E is a mathematical instanton bundle, <p: E ~ E* 

a symplectic structure on E, 9 : H -> H (E) an isomorphism, then 
,.. .... 
a = g* a 9 defines a Kronecker module E,q> a E SKy (H) with 

E ( a) ';; E~ , thus q, is surjective. The injectivity of fol-

lows by the same argument as at the end of the proof of propo-

sitton 1.9 .• 

Now we want to show, that the set MI;2n+l(k) of isomorphism 

classes of stable mathematical instanton bundles with quantum 
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number k carries the structure of a quasi-projective variety. 

Let P = P(L(A2V, S2H*) *) 

L(A2V, s2H*) • 

be the projective space of lines in 

We consider the closed subspace 

x c P 

consisting of all points [a] EP which satisfy the rank condition 

.... 
rk a ~ 2n+2k 

X is SL(H)-invariant under the natural action of SL(H) on p, 

Let Xs(Xss ) be the open set of (semi-)stable points in X 

with respect to SL(H) in the sense of Mumford [8]. Then the 

quotient Xss/SL(H) exists and is a projective variety. 

XS/SL(H) is an open subspape of Xss/SL(H) [8] • 

In order to show that is an open subset of 

XS/SL(H) we need the following two lemmata. 

Lemma 1.11. Let a E SKV(H) be a Kronecker module, E = E (0) 

the associated instanton bundle. If E is stable, then a 

is irreducible. 

Proof. First we recall that E is stable if there doesn't 

exist any subsheaf F c: E with 0 < rk F < rg E and c 1 (F) ~ 0 • 

The proof is now essentially the same as the proof of Le potier 

[11] and so we omit it. 
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Lemma 1.12. A Kronecker module a E SKV (H) is irreducible if 

and only if the point [a] E X is stable with respect to 

SL (H) • 

Proof. Again we omit the proof since the proof of Hulek[7] 

generalizes without difficulty to our case. 

Now let SK~ (H) C SKV (H) be the set of Kronecker modules be­

longing to stable bundles, P(SK~(H») the corresponding 

SL(H)-invariant open subset of X. 

From Lemma 1.11 and Lemma 1.12 we know that F(SK~(H»)C XS 

and we get 

Theorem 1.13. The map a ~ E (a) ~nduces a bijection 

1/1 : JP (SK~(H) / SL (H) --+ MIs 2n+1 (k) 
]I? 

~ induces the structure of a quasi-projective variety on 

s 
MI 2n+1 (k) 0; 

P 
With this structure s MI 2n+1 {k) 

F 
is a coarse 

moduli space for stable mathematical instanton bundles with 

quantum number k is a 

natural compactification of M~2n+1(k) • 

Let ~ = Grass2 (V) be the grassmannian of lines in JP, 

IS = {[v1"v2 ] I v 1,v2 EV, V 1"V2:fO} C F(A2V*). 

Let a be an element of SKV(H) • With a we associate. 

a theta-characteristic on G . 
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We have the canonical inclusion 

The composition with 

defines a morphism 

Since a is non-degenerate ea 

e (a) = coker 6 (-1) a 

is a monomorphism and 

is a sheaf on ~ with support on the set SE(a) of jumping 

lines of E(a). 

We call e(a) the theta-characteristic associated to a. 

Lemma 1.14. Let be Kronecker modules with 

associated theLa-charakteristics e,e' . 

e and e t are isomorphic if and only if a and a' lie 

in the same GL(H)-orbit. 

Proof. From a' = g* a g we get the following commutative 

diagram 
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o --+ H ~ (!;let ( 1 ) --.>- H* ~t!><t ~ 0(1 ) ~ 0 

11-
1 k !~ 

o~ H ~O<t (-1) ~ H* ~(9ct ~ 0 1(1 ) ~ O. 

Conversely an isomorphi.sm 1JI: 0 ~ 0 I induces isomorphisms 

Since a' is simple we get 

with a suitable scalar A. 

a' = g* a g if we put 

and 

g =.! g* 
A 1 

is a hypersurface of degree k with equa-

tion det a (v 1 J\ V 2) = 0 • 

Since E(a) always has jumping lines of higher order [4] the 

sheaf e(a) can't be invertible on SEta) • 

From proposition 1.10 we see that we can define a theta-charac-

teristic eE for every mathematical instanton bundle E. 

0E determines E up to isomorphism. 
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2. Existence of Mathematical Instanton Bundles on p2n+l 

The purpose of this secti~n is to show that the sets 

are non-empty for all k~l, n~1 • 

Proposition 1.10 shows, that it is sufficient to construct a 

non-degenerate simple symmetric Kronecker module a of 

rank 2n+2k. 

By definition a is a linear map 

a 

We choose a basis in H and represent a by a k x k-matrix 

A with entries in A2V*, 

A = (A .) iJ i,j=1, ••• ,k , A E A2V* • 
ij 

First we have to express the properties of a in terms of A. 

Identifying A2V* with the space of symplectic linear maps 

we define for every vEV* a vector 

We then get 

Lemma 2.1. Let a: A2V ~ L(H,H*) be a linear map, 

A • (Aij) a matrix, which represents a with respect to 
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a basis of H. a is a symmetric Kronecker module of 

rank 2n+2k if and only if A has the following properties 

(i) Aij = Aji V i,j 

(ii) For all v€V'{O} we have in II.k {V*E9k) 

(iii) rk A = 2n+2k, wh~re we consider A as a linear map 

a is non-degenerate iff the following holds 

a is simple iff A has the property 

(v) AX = YA for complex kxk-matrices X,Y implies 

x = Y = A.Ik • 

Now let A be a matrix with the properties (i)-(iii) • 

Then A defines a monad 

---:> 0 

where m = 2n (k-1) • 

The morphism a is given by A and b is given by a 

mxk - matrix 

B= (v ij) i = 1, ••• I m 

j= 1, ••• ,k 

with entries in V. 

, v ij € V , 
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defines an epimorphism Lemma 2.2. A matrix 

b : n ( 1 ) E&k --j)- t/Jm if and only if for all 

). = (). l' • •• , Am} € ~ ..... {O} we have 

m m 
(vi) (1: AVi)A( 1: AV.)*O 

p=1 1.I p 1.I=1 J,I l.IJ 

for at least on pair 1:i i, j :i k • 

Proof. b is an epimorphism if and only if b* is injective 

in each fibre. This is condition (vi). 

Proposition 2.3. Let k ~ 2. Choose a basis 

{e1, ••• ,en +1, f 1, ••• , f n+1 } for V. We define 

( 

f2 . 
fl-

- ~n+1 
and 

e e' 
f ft 

f· fl 

• 
B = 

• 
• 

e e t 

f fl 

Then B def ines an epimorphism b: n ( 1 ) E&k --+ (!) em • 

Proof. We have to verify the condition (vi). 
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Let 

i i n i i n 
Ai = (;\'1'··" An) E ~ I }.Ii = hI 1,···, lJ n ) E ([! , i"" 1, .•• , k-1, 

If Bi denotes the ith column of B we must show that 

xB i A xB. = 
J 

0 E A
2

V V i(; j 

implies x=D . 
Define i >. . :: 0, 

J 
\-I~ = 0 

J 
if j :i 0 or j ~ n+1 or i~k . 

Then we compute 

n-l-1 
(>.i-1 + Ai) 

nt1 i-1 i) x Bi= 1: e\1 -I- 1: (\-Iv -I- f 
v \I \)=1 \I' v 

v=1 

Assume now x B. A X B. = 0 Vi, j. 
~ J 

We show by induction, that then 

This is true for i ~ 0 by definition. For the induction step 

we assume 

induction on v. If 

for all 

i 
A\I+1 

and show using descending 

vanishes the coefficient of 

is 

These coefficients vanish. We form the alternating sum and get 

, i-l-j 
+ A • 

\1-1-) 
::: 0 • 
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This proves the proposition. 

If we can find a matrix A= (A
ij

) E (A 2V*)k xk which has the 

three properties 

(i) Aij = Aji I 

(ii) A1 (v)" ••• A Ak(v) =1= 0 for vEV ...... {O} , 

(iii) I B A = 0 , 

A will define a symmetric Kronecker module of rank 2n+2k. 

Consider the vector space PB of matrices A E (A 2v*) kxk 

with (i) and (iii) I • It is easy to define a basis for this 

vector space. 

Proposition 2.4. Let Z = (z1"'" z ) E Ie 2n+2k-1 
2n+2k-1 and 

I , Z2k-j Z2k-j+1 ••. Z2k-j+n 

A', (z) ;::: 
J 

• 
Z2k-j+2n 

o -Aj(Z») 
Aj (z) 0 
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A(z} = 

~(z) ... A2k- 1 (z) 

The map z ~ A(z) is an isomorphism .::2n+2k-1 ---;.. P 
B 

Proof. Identifying Aij with a skew-symmetric 

(2n+2) x (2n+2) - matrix c~ndition (iii) I means: 

the column of equals the column of 

-A'+1 . 1. , J for \I = 1, ••. I n and v = n + 2 , ••• I 2n + 1 . 

The proof is now straightforward. 

Now we use this isomorphism to define A. 

If {e } is the standard basis of ~2n+2k-1 1"'·' e:2n+2k-1 

we define 

for k ~ n 

A = for k = n+1 

for k > n+1 

Proposition 2.5. The matrix A defined in (8) has the proper-

ty (ii) • 

Proof. It is sufficient to prove that the equation 
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11. •• II. = 0 

has only the trivial solution A = 0 • 

This is equivalent to the following claim: 

If all k-minors of the k(n+1) x k - matrix 

AI A 
1 A' A 2 ... AkA 

A' A 
A' A 

:: 2 

.. 

\ Ak A ... Aik-1 A 

vanish, it follows, :that A = 0 • 

To prove this claim, one has to consider the two cases 

k ~ n+1 , k > n+1 separately. Writing out the matrices A I A 

in each of these two cases it is only a matter of patience 

to check the claim. 

We can now use the matrix A in (8) to construct an algebraic 

rank - 2n bundle 

ct(EA) = (-1-)k 
1-t2 

on p2n+1 with Chern polynomial 

has a symplectic structure and natu-

ral cohomology in the range -2n-1 ::!i 1 ::!i 0 It remains to 

verify, that E 
A 

1s simple and trivial on generic lines, 

i.e. that A has the properties (v) and (iv) in lemma 2.1. 

(v) can be checked directly. To prove (iv), it is sufficient 
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such 

that the k x k - matrix 

t btAla ±btAka -b AI a , 2 

btA'a 
2 

A(v,"v2 } = 

• 

±btAka 
. 

-btAik_,a ... 

is non-degenerate. 

For example if k;:;; n+1 we get 

10 1 

1 • o 

The case k > n+ 1 is similar. 

This was the final step in proving. 

Theorem 2.6. For every k ~ 1, n;;: 1 there exist mathematical 

instanton bundles with quantum number k on F2n+1. 
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