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0. Introduction.

Assume that M is a real analytic manifold. Then every coordinate patch U C R"
can be thickened to obtain an open set CUU C C". Since the coordinate changes of
M are real analytic maps, they can be extended holomorphically to such enlarged
domains (by taking power series expansions and by possible shrinking CU to get
convergence) and thus they can be used as holomorphic transition functions for a
complex manifold CM.

If one does this procedure carefully, the obtained complex manifold will be Haus-
dorff. The complex conjugation of C* induces a conjugation on CM, i.e. an anti-
holomorphic involution, whose fixed point set is precisely M. (See [Wh-Br].) This
complexification process makes it possible to extend real analytic objects (func-
tions, metrics, connections etc.) given on M to obtain holomorphic ones on the
complexification.

This idea has been very fruitful in twistor theory for instance. H. Grauert also
used this complexification in his famous proof about embeddability of abstract real
analytic manifolds. (See [Gra).)

Despite of its naturality the above procedure also has some drawbacks. Namely
it is not canonical, it really depends on the choices we have made along the con-
struction procedure and CM is only unique as a germ of complex manifolds.

Recently another approach arose and has been studied in several papers. (See
[Le-Sz), [Le2], [Gu-S], [St1 and 2] and [Sz2 and 3].) The idea is that with an extra
piece of information, a Riemannian metric g on M, one is really able to define a
canonical complex manifold X associated to (M, g). The underlying differentiable
manifold structure of X is a certain disk bundle over M. More precisely, let r be
a positive real number. Then T"M will denote the set of vectors in the tangent
bundle of M that have length less than r. We also allow r to be infinite, when
T™M will simply mean the tangent bundle of M. With the help of the metric, it
is possible to define (if r is small enough, M is compact and the metric is also real
analytic) a canonical (called adapted) complex manifold structure on T"M. (See
Section 3. for details.)

Many interesting properties of these structures were revealed in the above men-
tioned papers. Among others, the g-norm-square function is strictly plurisubhar-
monic on T"M and thus it is a potential function for a Kahler metric x,. The
restriction of this metric to the zero section in TM gives back the original metric g.
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Therefore the complex manifold (T7M, &4) can be thought of as a canonical Kahler
extension of (M, g).

The organisation of the paper is as follows. In Section 1. and 2. we recall some
notations concerning the symplectic structure of the tangent bundle. In Section 3.
we give a precise definition of the adapted complex structures together with listing
some of their properties we are going to use later on in the paper. In Section 4.
we explicitely calculate the metric x, in some special frame that was introduced in
Section 2. With Section 5. we start our systematic study of the Kahler manifolds
(T™M, k4). Among others we prove the following result (Theorem 5.3).

Theorem A. Let (M,g) and (N,h) be two n-dimensional compact Riemannian
manifolds and 0 < r,3 < oo. Assume that adapted complex structure exists on
T™M and T°N. Denote by £, and «y, the induced Kahler metrics. Suppose there
exists an

®:(T"M,k,) — (T*N, K1),

biholomorphic isometry. Then r = s. Denote by f the restriction of ® to M. Then
f maps M isometrically onto N and the induced map f, agrees with ® on the whole
tube. :

~ Section 6. treats the automorphisms of tubes T"M which have finite radius. In
section 7. we prove a similar rigidity result (Theorem 7.1).

Theorem B. Let (M,g¢) and (N, h) be compact Riemannian manifolds. Assume
that adapted complex structure exists on TM and TN. Suppose that H'(M,R) =
0. Denote by x, and k), the induced Kahler metrics. Let

Q. (TM,ky) — (TN, rp),

be a biholomorphic isometry. Then ® maps M diffeomorphically onto N, the
restriction map

f = (I’|M : (M,g) E— (Na h):

is an isometry and ® = f,.

Section 8. treats the isometry group action on the tangent bundle of a Riemann-
ian manifold. Our main result here is the following (Theorem 8.8).

Theorem C. Let (M,g) be a compact Riemannian manifold that admits an adap-
ted complex structure on its entire tangent bundle. Denote by G the unit compo-
nent of the compact Lie group Isom(M, g). Consider G as a transformation group,
acting on TM by the induced action. This G-action extends to a group action of
the complexified group Gc¢, and the transformation map

GexTM —TM

is holomorphic. The subgroup of G¢ that consists of elements acting trivially on
TM is discrete.
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1. Parallel vector fields.

Let us first recall a few notations concerning the symplectic structure of the
tangent bundle of a Riemannian manifold. (See [Kl] as a general source of infor-
mation.)

In this paper M™ will always denote a smooth n—dimensional manifold. The
tangent bundle of M will be TM and = : TM — M will stand for the bundle
projection map. If M" is equipped with a Riemannian metric g, then TM will
inherit a symplectic structure from the cotangent bundle of M as follows.

Define the canonical 1-form © on TM by

(©,v) := g(z,7.v), ve T, M.

Then Q := dO is a symplectic form on TM. Denote by p the smooth function on
TM which is g—length squared. For simplicity, from now on we will assume that
(M, g) is complete.

The geodesic flow ¢, : TM — TM is the Hamiltonian flow induced by the
Hamiltonian p. Let v : R — M be a geodesic. The image of TR \ R under the
induced map «, : TR — TM is a two dimensional surface. As « runs through all
the geodesics in M, these surfaces define a foliation of TM \ M. We call this the
Riemann foliation.

For a v : R — M geodesic, a parallel vector field £ along 7, is a vector field along
the map ~. (i.e. a section of the pullback bundle (7. )*(TM)), such that there exists
a smooth family v, : R = M of geodesics with y9 = v and

d

o e=¢

t=0

If 0, is the zero vector in the tangent space T, R, then £(o) := £(0,) is tangential
to the zero section in TM. Indeed,

d
= E‘Yt(a)

£(0) = 7u(00)

Y

t=0 t=0

is a Jacobi field along . Parallel vector fields can be thought of as canonical
extensions of Jacobi fields on M to TM.

Since any point z € TM \ M determines a unique geodesic v : R — M such that
4(0) = z, it follows that given a vector 0 # v € TyR and a vector £ € T, ,(TM),
there exists a unique parallel vector field ¢ along v, with £(v) = €.
~ For areal number s define the map N, : TM — TM by multiplying every vector
in each fibre with s. For a non-zero s, N, will be a diffeomorphism. Parallel vector
fields along 7. can be characterised by the following invariance property

(11) Ns#& = 61 ¢a¢£ = 6 seR.
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(See [Le-Sz, Proposition 6.1]). The relation of the symplectic form 2 and N,, ¢, is
also quite simple,

(1.2) N'Q=sQ, ¢'0=0 seR.

2. Symplectic frames.

The metric ¢ determines the Levi-Civita connection on TM and thus a splitting
of T.(TM), (z € TM) into vertical and horizontal subspaces. The vertical sub-
space is simply the fiber Tp(,j)M which canonically sits in T;(TM). The horizontal
subspace is the kernel of some projection T;(TM) — Tn;)M. The collection of
these projections is the connection map K : T(TM) — TM.

Denote by H, the horizontal subspace at the point 2 € TM. The tangent space
of the zero section in TM at a point 0,,, € T,, M can (and with a little abuse of
notation will be) identified with 7,, M. With this identification in mind we obtain
that for any z € TM, the map

Te: Hy — Ty M

is an isomorphism of vector spaces. With the help of this isomorphism we can
talk about the horizontal lift of a vector v € Tr(,)M into a vector ¥ € H,(T M),
meaning that ¥ and v under =, correspond. Vertical lift of v € Tyr(;) M is given by
the canonical imbedding of the fiber Ty (,yM, into T,(TM).

Recall that for a symplectic vector space (V2",w), a 2n-tuple of vectors,
(U1, U, VLy--nyVn)
is called a symplectic base, if
| w(uj,ur) = wvj,ve) =0,

and
w(uj,vi) = 6k,

for every 1 < 5,k < n.

A special type of frame of parallel vector fields along a leaf of the Riemann
foliation plays a crutial role in what follows. Let v : R — M be a unit speed
geodesic, and £y,...,&,, M ..., 7 be parallel vector fields along the leaf L., defined
by «. We shall call (&1,...,€n,71...,7a) a symplectic frame, if there exists a real
number o and a vector v € T, R, with ||v]|| = 1, and an orthonormal frame

Viy+o ey Un—1,9p = ’Y(O') € Tﬂy(a)M';
such that for any 1 < j < n, £;(7,v) is the horizontal and 7;(v,v) is the vertical
Lift of v;.

This condition is equivalent to the following: the Jacobi fields €|y, ;|g bhave
the initial condition (' means covariant derivative along +)

(o) =v;,  &i(0)=0, 1<j5<n,
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ni(0) =0, (o) =v;, 1<5<n,
(see [Le-Sz| for instance). In particular the set S of those real numbers o, where

the n-tuple £(0),...,&a(0) € Ty(s)M is linearly dependent, is discrete. Moreover
there exists a smooth matrix valued map ¢ = (p;i), defined on R\ S, such that

(2.1) (o) = Z%k(cf)ﬁj(d)a c€R\S, 1<k<n

An explanation for the name “symplectic frame” is the following proposition.

Proposition 2.1. Let (M",g) be a Riemanian manifold. Let v be a unit speed
geodesic and &, ...,€n,m,...,n be a symplectic frame along the leaf L., (of the
Riemann foliation) . Then for any v € (TR \ R), the 2n-tuple

{67 (0)), i (re (W)} i1
forms a symplectic base of the symplectic vector space (e denotes the sign of the
real number —1)

(T @M, (& Ire @I, ) -

Proof.
The orbit of a fixed point of the leaf v,(TR \ R), under repeated applications of
N, and ¢, is the whole leaf. Therefore, according to (1.1) and (1.2), it is enough
to check our statement in one point ¢ of the leaf. Thus we can assume that ¢ has
norm one, and that we have a Riemannian normal coordinate system around the
point 7(q), which we take to be the origin.
With this choice we have
£ilg) = aiq- and 7;(q) = %,

3 .

7
qu = dej A dq_,'.
J

and

This proves our claim. 0O

3. Adapted complex structures.
When M = R, there is a natural identification TR = C, given by

(3.1) T,R 3 r% —o+ir € C,

and this equipes TR with a complex structure. In (3.1) o denotes the coordinate on
R. This complex structure depends only on the metric (which we chose to be the
standard one), in other words, an isometry of R induces a biholomorphic mapping
on TR. From now on we fix this complex structure.

Besides the full tangent bundle we shall also need the following type of tube
domains. Let (M, g) be Riemannian and 0 < r < co. Let T"M be defined by

T™M = {v € TM | |lv]l, < r}.

We will call r the radius of the tube T"M. The main object of this paper is to
study a certain complex structure on these tubes that is canonically associated to
the metric.



Definition 3.1. Let (M, g) be a complete Riemannian manifold. Let 0 < r < oo
be given. A smooth complex structure on the manifold T"M will be called an
adapted complez structure if for any geodesic v : R — M, the map

Yo v (TTM) — T'M

is holomorphic, where y;(T*"M) C TR and TR is endowed with the comp)ex
structure as explained above.

Given the notion of adapted complex structures, natural questions arise about
existence, uniqueness and regularity. Some of the answers to these questions can -
be found in [Gu-S], [Le-Sz], [Sz2] and [Le2]. From these papers one knows that
the metric uniquely determines the adapted complex structure (. assuming that it
exists), and real analyticity of the metric is necessary for the existence. On the
other hand for a compact, real analytic manifold (M, g) there always exists an
0 < r € o0, such that T"M carries an adapted complex structure. (See [S22] or
[Gu-9)). '

It i1s immediate from its definition that once we have an adapted complex struc-
ture on 7™M for some 0 < r < oo, then the same complex structure will supply
us an (and because of uniqueness, we could say the) adapted complex structure on
T°M for every 0 < s < r. We shall call r the critical radius if adapted complex
structure exists on T"M but it does not exists on any other tube T M with radius
s larger that r. If the adapted complex structure happens to exists on the entire
tangent bundle, then we take oo to be the critical radius.

In what follows, it is sometimes important whether r is critical or not. Usually
it is easier to treat the tubes with noncritical radius. The reason is that in this case
T™M is a relatively compact subdomain of a complex (in fact Stein) manifold with
smooth, strictly pseudoconvex boundary.

We need some more notations concerning complex manifolds. Suppose X is
a complex manifold with an almost complex tensor J : TX — TX. The (1,0)
resp. (0,1) tangent bundles, 7' X resp. 7! X are complex vector bundles (77X
being in fact a holomorphic bundle). They are both isomorphic to TX as real
vector bundles, the isomorphism being given by

MO TX 5 €99 = 26— iJ6) € TVOX,
(3.2) 2
A TX 5 g0 = E(g +1iJ¢) e TH X.

In fact for every p € X, the complex structure J, : T, X — T, X defines a complex
vector space structure on T, M and the map A% resp. A%! is C linear resp.
antilinear.

For a complex manifold X we shall denote its group of biholomorphisms by
Aut(X). Since we are going to use it several times, we formulate precisely the
above mentioned regularity result of Lempert.

Theorem 3.2. (see [Le2, Theorem 1.5]) Let (M,g) be a Riemannian manifold.
Assume that adapted complex structure exists on T" M, for some positive r. Then
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M is a real analytic submanifold of the complex manifold T"M and the the metric
on M is real analytic.

We shall also need a result of Shiffman, that gives a very useful criterium to
decide when a partially real-analytic function is real-analytic in all its variables.

Theorem 3.3. Let @ C RM, V ¢ CV be domains, such that § # A = VNRY.
Let f : @ xV — C be a function such that f(z,.) is holomorphiconV for allz € Q
and f(.,w) is real analytic on Q for all z € A. Then f is real analyticon Q x V.

Proof. See [Sh, Theorem 1] for an even more general statement.

From now on we assume that the Riemannian manifold (M, ¢) induces an adap-
ted complex structure on T"M. Denote by Isom(M, g) the group of isometries of
(M, ¢). The properties we shall need later on are as follows.

(PROP.I) The function on T™M that associates to any vector its norm, is pluri-
subharmonic. Its square (denote it by p) is strictly plurisubharmonic and thus it
induces a Kahler metric k4, which is defined by

kg(V,W) = —i08p(JVAW), V,WeT,(TM)®C, ze€T™M.

(PROP.II) The Kahler form of k, is Q, the symplectic form of the tangent bundle.

(PROP.III) M C T™M is a k,-totally geodesic Lagrangean submanifold and
Kglps = 9. If we denote by dist,, the distance with respect to the metric ,, then
for any p € T"M we get

dist.,(p, M) = dist, (p,7(p)) = |Ipll,-

(PROP.1V) The map

T™ —T'M

v — —v,
is antibiholomorphic.

(PROP.V) For every f € Isom(M,gq), fo : T"M — T"M is a biholomorphism
and thus
Isom(M,g) < Aut(T™M).

(PROP.VI) Let D, := {{ =0 +ir € C||r| < r}. Assume that we are given a
function h : T"M — C, that is real analytic along the zero section, and for every
unit speed geodesic vy, the composition map ho~, : D, — C is holomorphic. Then
h is holomorphic.

The proofs of (PROP.I,...,V) can be found in [Le-Sz].
Proof of (PROP.VI).



In fact this is implicitly contained in [Sz2]. The regularity result of Lempert
(Theorem 3.2) implies that in fact g is real analytic. Then the proof of [Sz2,
Proposition 3.2] shows that A must be holomorphic in an open neighbourhood of
the zero section.

In order to prove that h is holomorphic everywhere, it suffices to show that h is
real analytic on T"M. We will use Theorem 3.3 above to achieve this.

Let p be a point of T" M\ M with norm one. Choose a small open neighbourhood
U, of p in the unit sphere bundle. We can assume that the Hamiltonian flow can be
straighten out in Up, i.e. there exists an € > 0 and a real-analytic diffeomorphism

Y:(—€€) xB o U,
(B C R*"~? being the open e-ball), such that the curves
pu—
are precisely the flow lines in U,, for every = € B,. Let
D, =(—¢€¢€) x(0,r) x B,.

Then the map .
Dc —_— T M

U (o,7,2) — ()

1s a real-analytic diffeomorphism onto its image. It is enough to show that the
composition map ko ¥ is real-analytic. But using the fact that h was holomorphic
in a small neighbourhood of the zero section, we get that h o ¥ is real-analytic in
the region |o| < €,0 < 7 < ¢,z € B, and holomorphicin { = o +:7 for each ¢ € B,.
Apply Theorem 3.3. O

In the last section we shall need to know about complexifications of Lie groups.
We close this section by connecting this notion with our adapted complex structures.
Let G be a compact, connected Lie group. The complezification of G is a complex,
connected Lie group G¢, and a group monomorphism ¢ : G — G, such that for -
any representation

x: G — GL(n,C),
there exists a unique representation
xc : Gc — GL(n,C),

with xc(¢(a)) = x(a), for every element a in G. (See [Br-Di] for a detailed discus-
sion.)

The group G¢ can explicitely be constructed as follows. Take a faithful unitary
representation of G, i.e. imbed it as a closed subgroup of U(N), for some large N.
Denote by g the Lie algebra of G. The underlying manifold for G¢ is just G x g.
The group structure and the complex structure can be defined by pulling them back

with the embedding
33 G x g— GL(N,C)
(3.3) A:(a,Y) — aexp(iY),

where exp i1s the usual exponential of a matrix and product is ordinary matrix
multiplication.



Proposition 3.4. Let G be a compact, connected Lie group. Equipp G with a
two-sided invariant Riemannian metric g. Then (G, g) admits an adapted complex
structure on TG which can be canonically identified with Gg.

Proof.

G, being a Lie group, is parallelizable. Hence TG = G x g. Because of homo-
geneity, to show that the complex structure on T'G arising from (3.3) is adapted
to g, it suffices to show that for every unit speed g-geodesic v through the unit
element, 7. : TR — TG is holomorphic. It is well known (see [Ab-Ma, Corollary
4.4.13] for instance) that such geodesics are precisely the 1-parameter subgroups of
G. Let X € g, and (o) := exp(oz). The induced map is then

Yo : TR C 30+ it — (exp(cX),7X).

Thus
Ao~ :TR3 (=0 +ir — exp(oX ) exp(17X) = exp((X),

1s holomorphic in {. Therefore the complex structure of TG = G X g is indeed
adapted to g. O

4. Calculating the metric «,.

In this section we are going to give explicit formulas for £, using symplectic
frames. But first we need to recall some more notation.

Denote by M the set of n x n complex matrices. For a Z € Mg, we will use
the symbol ZT to denote the transpose (without conjugation) of the matrix Z.

Re Z resp. Im Z will mean the n X n real matrix, obtained by taking the real
resp. imaginary part of every entry of Z. For a real matrix X, we will use the
symbol X > 0 to denote that X is symmetric and positive definite.

The subset of Mg,

H ={ZeM:|2Z2=27, ImZ >0}

is called the Siegel upper half plane. In particular H! is the ordinary upper half
plane, that we also denote by C*. .

Let (V,w) be again a symplectic vector space. A complex structure J: V = V
is said to calibrate the symplectic form w, if the bilinear form w(u, Jv), u,v € V
is symmetric and positive definite. We will denote the set of calibrating complex
structures on (V,w) by J..

Proposition 4.1. Let (V2" w) be a symplectic vector space. Then [J, can be
identified with the Siegel upper half plane H". This correspondence can be defined
as follows. Fix a symplectic base uy,...,un,v1,...,v5. If J € J,, then the n-
tuples {u;}7_; and {v;}7%., both provide a C basis of the complex vector space
(V,J). Denote by Z := (f;) the transition matrix, i.e.

(41) UV = qu.u,, k= 1, ey N
{



And vica versa, assume that Z = Re Z+1iIm Z € ‘H". Then declaring {u;}}-, and
{v;j}73=, to be a C basis with transition matrix Z (as in (4.1)), we define a complex
structure Jz : V — V which calibrates w, and can be expressed as

n

(4.2) JZUk = i (Im Z)j_kl [‘UJ' - Z(Re Z;j)u;].

=1

The matrix of the symmetric, positive definite bilinear form w(.,J.) in the base
uj, vk I8

(Im 2]~ (Im Z)~'Re Z
(4.3) | (Re Z{Im 2)"' Re Z[Im 2)"Im Z + Im Z)

Proof. Left to the reader.

Proposition 4.2. Let X and Y be complex manifolds and ¢ > 0. Suppose we
have a smooth map f : (—€,¢) x X — Y and for every fixed —e < t < ¢, the map
f:(.) = f(t,.) : X = Y is holomorphic. Let

= dfe/dt| .

This is a section of f§TY,. Then £'° is a holomorphic section of f§T1°Y.

Proof.. (cf. [Le-Sz] Prop. 5.1, p. 698) The statement is local, therefore we can
assume X = D) CC*", Y = D, C C" and f : (—¢,¢) x Dy — Dy. We have to show
that df/dt|,_, is holomorphic. But

¢ (% (t,c)|,=0) = %(écf(t,()) t =0 O

=0

Armed with the last two propositions, we are now ready to prove the main
theorem of this section.

Theorem 4.3. Let (M, g) be a Riemannian manifold and 0 < r < oo. Assume
that adapted complex structure exists on T"M. Let v be a unit speed geodesic
and (€y,...€n,m,...,n) be a symplectic frame along the leaf L.,. Let D, := {( =
o+1ir € C| |r| < r}. Denote by S C R the discrete set of points ¢ € R, for
which the vectors £1(0),...,€a(0) € Tyo)M are linearly dependent. (see (2.1))
Then there exist meromorphic maps fjx : D, - CU {o0}, 1 < 3,k < n, which are
holomorphic on D, \ S and

(4.4) F=(f): (D, \R) — H".

Let TR = C as in (3.1). Then

(4.5) m((0) =D Fir(QG (M), CEDA\S,

=1
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andk=1,...,n. Foro € R\ S, p;i(0) = fix(o), (see (2.1). Let ( € D, \ R and
P:=7(¢) and Jp, : T,(TM) — T,(TM) be the adapted complex structure. Then

n

(4.6) Tpée(p) = 3 (Im F)RX(C) [m(p) = D_(Re £)(O)&5(p) | »

=1

and for the k, Kahler metric (remember (PROP.I)) we obtain

(&), (P x, = lIpllo(Im F)Z(C),
(4.7) (&), nk(P))x, = lIpllg [(Im F)™'Re F}, (C),
(ni(p), me(p))x, = llplly [Re F(Im F)™ Re F + Im F],, (0).

Proof. (Compare with [Le-Sz].)
From (PROP.II) we know that the Kahler form of x, is 2, the symplectic form
of the tangent bundle. Thus for any p € T"M \ M, and X,Y € T,(TM),

(4.8) (X, Y ) = UIX,Y) = pllg [(=1/]lpll )X, JY)] .

This implies that the adapted complex structure J, : T,(TM) — T,(T M) calibrates
the symplectic form
(=1/llpllg)$2p-

Then Proposition 4.1 tells us that for any ( € D, \ R,
{7 nON=y tesp. {7 (7 ()} =y

are both C-basis of the vector space T_;"C('O(TM). If o € R\ S, then {{;(0)}},
being an R basis of the vector space Ty, (and J, : T,{TM) — T,(TM) being
the canonical complex tensor), is also a C basis of T_:(’g)(TM ). Therefore for any
¢ € Dy \ S, there exists a matrix F({) = (f;jx({)} =, such that (4.5) holds. (3.2)
and (2.1) gives the equality (¢;x(0)) = (f;x(c)),0 € R\ S. From Proposition 4.2
we know that the maps

0% : D, —» TY(TM),  jk=1,...,n

are all holomorphic. Hence F is holomorphic on D, \ § and meromorphic on D,.
Then (4.4) follows from Proposition 4.1, and (4.2) implies (4.6) and (4.3) together
with (4.8) yields the expressions of the metric in (4.7). O

Proposition 4.4.

(a) Let (Mj,g;), j=1,2 be Riemannian manifolds with adapted complex struc-
ture defined on T"M;,0 < r < oo. Then the adapted complex structure
of (M; x My, g1 X g2) is the product of the complex manifolds T" M, and
T™M,.

(b) Let (M, g) be a Riemannian manifold, and 0 < r < co. Suppose adapted
complex structure exists on T" M. Assume also that N is a totally geodesic
submanifold of (M, g). Then T"N C T"M is a complex submanifold and
its complex structure is adapted to g|y.
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Proof. (a) is immediate from Definition 3.1 and the uniqueness of an adapted com-
plex structure . (See [Le-Sz, Theorem 4.2]) For the case (b), use (4.6) and totally
geodesity to show that for any p € T"N, T,(TN) is a J, invariant subspace of
T,(TM). This yields that T"N is in fact a complex submanifold (obviously an
adapted one). O ‘ .

5. Holomorphic isometries of tubes with finite radius.

In this section we only deal with tubes T"M, with 0 < r < 0o. The case r = 00
will be treated separately in Sections 7 and 8. This separation seems natural because
the complex analytic properties of these two kind of complex manifolds are quite
different.

Proposition 5.1 (Schwarz lemma). Let (M",g) and (N™,h) be compact Rie-
mannian manifolds and 0 < r;s < 0o. Assume that adapted complex structure
exists on T"M and T*N. Let

&.T"M - T°N

be a holomorphic map such that

®(M) C N.
Then
(5.1) 2@l < sllplly,  pe T7M.
Proof:.

Let u(p) := ||p||; and v(p) := ||®(p)l|s. From (PROP.I) we know that u and
v are plurisubharmonic. Let 1 be a small but positive real number, fixed for the
moment. Define ¢, by

¢y 1= max{v(p) | u(p) = r — 7).
For every positive € the function

Cy
We 1= u-—+e€

r—1

takes the value ¢, + € on the set
Se—n={p€T™M |u(p) =1 -1}

and hence
wels,_q > vls,._,, .

For every small enough § > 0, we > v on the set {u = §}. Both w, and v satisfies the
Monge-Ampeére equation on T"M \ M. Applying the minimum principle of Bedford
and Taylor (see [Be-Ta]) for the functions w, and v on the domain

Dsp:={peT"M |6 <u(p)<r—n},
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we get
wf[Dan > UlD.;,,'
Because the minimum of w, is € and v goes to zero as we approach M, we obtain
that
we2v, on {pe€T"M|u(p)<r—-n}
Let now € go to zero. This yields

Cy

r—n
Fix now a point p in T"M. For every small enough 7, u(p) < r — 5. It follows then
from (5.2) that

(5.2) u > v, on {peT"'M|u(p)<r-—-n}.

— ~u(p) 2 v(p)

Let now 7 go to zero. Then the denominator goes to r and ¢, is bounded above by
3. This gives (5.1). O

Theorem 5.2. Let (M",g), (N™,h) be compact Riemannian manifolds and 0 <
r,8 < 00. Assume that adapted complex structure exists on T"M and T°N. Let
. T"M - T'N
be a biholomorphism, such that
®(M)CN.
Then
fi=®|, : (M,sg) - (N,rh)

is an onto isometry and ® = f, : T"M — T*N.
Proof:. I

The fact that ® is a biholomorphism and that N is compact and connected

gives that f is indeed onto. Denote by x, and x; the Kahler metrics on T"M and
T*N, induced by the strictly plurisubharmonic Kahler potential function || ||2 and

| 1|3 accordingly (PROP.I). Applying our (5.1) Schwarz lemma for both @ and its
inverse, we obtain

(5.3) rlle@li = s*llpll;, peT™M.

It follows easily from its definition that rescaling the metric does not change the
induced complex structure, i.e. for any A > 0, ¢ and Ag have the same adapted

complex structures defined on the same tube except the radius is measured with
different scales. Thus

®:(T"M,k,5) = (T"N,Kr4)
is a biholomorphic isometry. This, together with (PROP.III) implies that
f:(M,sg) — (N,rh)

is indeed an isometry itself. Hence f,, (see (PROP.V)) and & are both biholomor-
phic and agree on the maximal dimensional totally real (PROP.III) submanifold
M. This implies that they must agree everywhere. 0O
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Theorem 5.3. Let (M™",g), (N",h) be compact Riemannian manifolds and 0 <
r,8 < 0o. Assume that adapted complex structure exists on T"M and T? N.Denote
by k4 and k4 the induced Kahler metrics on T"M and T°N. Let

(5.4) @: (T™M,x,) — (T*N, x3)

be a biholomorphic isometry. Then r = s. Denote by f the restriction of ® to M.
Then f maps M isometrically onto N and ¢ = f,.

Proof:.
We can assume that s > r. Denote by p; and p, the norm-square functions on
T™M and T°N accordingly. Now (5.4) yields

(5.5) 00p1 = ®*80py = 89(p; o ).
Let

h:=py0®—p +1r%—s2

It follows from (5.5) that h is a pluriharmonic function on T"M.

Let v : R — M be an arbitrary unit speed geodesic, parametrized by arclength.
Let v := h o~,. Notice that because v, is holomorphic, v is a harmonic function
on-the domain D := {0 + i1 | 0 € R,|7| < r}..From the definition of k it follows
that v is bounded by 2(r? + s?). Furthermore if (,, € D, (, — 2o = g9 + 17 with
|7o| = 7, then v({,) must go to zero (® is a biholomorphism). This yields that v
must vanish everywhere. This is true for every geodesic, thus A must also vanish
identically. Hence we obtain

(5.6) 1e@)IE = llpll* +s* =r*,  peT™M.

& is biholomorphic, so we can take a point p € T"M with ||®(p)||r = 0. Since we
assumed s > r, (5.6) implies r = s and

127 = llpll>, peT™M.

Apply Theorem 5.2. 0O

Theorem 5.4. Let (M",g), (N™,h) be compact Riemannian manifolds and 0 <
r1,72 < 00. Assume that adapted complex structure exists on T""M and T™N.
Let ® : T"M — T™*N be a biholomorphism, which preserves a level set of the

norm functions, i.e. suppose that for 0 < s; < rj, § = 1,2, ® maps the level set
{ll lly = s1} into {|| ||n = s2}. Then

(5.7) r182 =128
and the map f := ®|,, maps M diffeomorphically onto N,
(5.8) f (M, (r2 = s2)g) = (N, (r1 — s1)h)

is an isometry and ® = f,.
Proof:.

14



Because of dimension reasons, sy = 0 implies s, = 0, and vica versa. This
case was treated in Theorem 5.2. Hence we can assume that s; and s, are both
positive. Denote by u the norm function on 7™ M and v on T™ N accordingly. As
in the proof of Theorem 5.2, we can conclude that ® maps the level set {u = s3,}
diffeomorphically onto the level set {v = s;}.

As in the proof of Proposition 5.1, let 5 be a small positive number, and let

¢y = max vod.
u=r;—g

Let 7 be so small that r; —n > s;. Since M is connected, T M\ {|| ||; = s1}, resp.
T2 N\ {|| ||» = s2} has two components. One which containes the zero section, D}
and DY, and one which does not, D} and D¥. Since @ is a diffeomorphism, only
two cases could occur. First possibility is that under &, DM and DY correspond
to each other. But DY is homotopically equivalent to a compact n-dimensional
manifold, namely N and DM is homotopically equivalent to a compact (2n-1)-
dimensional manifold, namely the unit sphere bundle of M. For instance looking
at homology groups, it is clear that this case cannot occur. Hence, under the map
®, DM and DY (resp. DM and DY) correspond to each other. Therefor we get
¢y < ¢c3. Let ¥ be defined by

Cp — S2 7182 — 8211 — Cp8y
7 u+ n
™ —1n—-—35 rn—n-—3:8,

and let D, = {s1 < u < r; —n}. Then % is plurisubharmonic and

(5.9) U=

Bap, 2 vo ®lsp, -
Thus the minimum principle of Bedford and Taylor ([Be-Ta]) implies
(5.10) |p, 2 vod|p .

Let now p be a fixed point in T™ M, with s; < u(p) < ry. Then for every small -
enough positive 5, p € D,. Hence (5.10) holds. Let i go to zero. Then ¢, will go
to ry and from (5.9) and (5.10) we obtain

(r2 — s2)u(p) + 7182 — 1281 2 (11 — 51)v(3(p)).
Repeating this argument for the inverse of ®, we obtain that in the domain
{peT"M|s <u(p)<mn}

we have
(5.11) (rz — s2)u(p) + r182 — r281 = (11 — s1)v(B(p)).

Thus

®:({peT™M|s; <u(p) <T1},K(r;—s5)g)

— ({g € TN |52 <v(q) <72}, K(ry—ay)8)

is a biholomorphic isometry. Using the fact that analytic continuation of an isom-
etry is an isometry (see for instance [Ko-No, Lemma 3, p.253]), we get

- (Trl(rz—-’:)M, K’(r;—s;)g) — (sz(ﬁ—az)N, K'(rl—al)h)

is a holomorphic isometry. (Here we measured the radii of the tubes in the new,
rescaled metrics.) Then Theorem 5.3 implies (5.7) and (5.8). O ‘
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6. Biholomorphisms of tubes with finite radius.

Now that we completely described all the biholomorphic isometries of our tube,
we would like to drop the condition isometry and want to study the biholomorphism
group of T"M, that we denote by Aut(T"™M).

First let us recall a few definitions. Let X, ¥ be complex manifolds. Denote by
Hol(Y, X), the set of holomorphic maps. A sequence {f,} C Hol(Y,X) is called
compactly divergent if for every pair of compact sets K; C Y, K, C X, there exists
an index ng, such that f,(K;)NK; = @ for n > ng. A family F C Hol(Y, X) is
called normal, if every sequence in F admits either a convergent subsequence or a
compactly divergent one.

Denote by U the unit disk on the complex plane. A complex manifold X is called
taut if Hol(U, X)) is normal.

Theorem 6.1. (see [Ba, Theorem 2]) A complex ma.mfold X is taut iff for any
complex manifold Y, Hol(Y, X) is normal.

A complex manifold X is called hyperbolic (in the sense of Kobayashi) if the
Kobayashi pseudometric is a genuine metric on X.

Theorem 6.2. Let X be a complex manifold. Suppose X admits a bounded
strictly plurisubharmonic exhaustion function. Then X is a taut and hyperbolic
Stein manifold and Aut(X) is a Lie group .

Proof:. The fact that X is taut, is proved in [Si, Corollary 5|. Tautness implies
hyperbolicity (see [Kie]). Hence according to a theorem of Kobayashi (see [Kob]),
Aut(X) is a Lie group. Steinnes follows from Grauert’s theorem. O

Theorem 6.3. Let X" be a complex manifold which admits a bounded strictly
plurisubharmonic exhaustion function. Suppose that the n-th homology group,
H,(X,Z) is finitely generated and nonzero. Then X is a taut Stein manifold,
Aut(X) is a compact Lie group. Furthermore if f : X — X is a holomorphic map
which induces an isomorphism of H,(X,Z) and f is injective, then f € Aut(X).

Proof. The theorem is essentially contained in [Mo, Theorem 1}, except that Mok
works with manifolds with a stronger assumption than ours, namely he treats com-
plex manifolds which are hyperbolic in the sense of Caratheodory. But the only
place in his proof where he uses this stronger condition is to prove his Proposition
1.1. This can be bypassed by using Theorem 6.1 and 6.2 above. The rest of Mok’s
proof works in our situation as well. [

It is not possible to apply Mok’s Theorem literally to our tubes, because they
can be non-Caratheodory hyperbolic, as the following example shows.

Ezample 6.4.

Let (M, g) be a compact Riemannian manifold of constant sectional curvature
minus 1/4. Then of course M will be a quotient of the real hyperbolic space H",
(M,g) = H*/T' . (Here T is some discrete subgroup of the isometry group of H“.)
If we take the unit ball of R™ with the Cayley-Klein metric h, we get a model of
H™ and a modification of the construction in [Lel] gives that the adapted complex
structure of (H", h) on T™ H is naturally biholomorphicto D := (C*\R")UH". The -
isometries of H™ act on T™H by biholomorphisms and the quotient map (T"H) —
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T*H/T = T™M is a holomorphic covering. (T™M also equipped with the adapted
complex structure .)

Now if f is any bounded holomorphic function on T "M, then pulling it back to
D = T"H, we get a bounded holomorphic function on D. If n is at least 2 then
such a function must extend to the whole C" to give a bounded holomorphic and
thus constant function. Therefore even though T™M is Kobayashi hyperbolie, its
Caratheodory pseudometric is identically zero. O

It was a problem, proposed by H.Wu, whether the existence of a bounded strictly
plurisubharmonic exhaustion function implies not only hyperbolicity, but complete
hyperbolicity. This was refuted by an example of Sibony (see [Si] ). It seems to
be an interesting question, which we cannot answer at the moment, whether this
large class of complex manifolds namely our tube domains T"M are all complete
hyperbolic or not.

Theorem 6.5. Let (M, g) be a compact Riemannian manifold. Assume that adap-
ted complex structure exists on T"M for some 0 < r < oo.

a) Then T™M is a taut Stein manifold.
If M is orientable, or the universal cover is compact, then
bi) Aut(T"M) is a compact Lie group, and
bii) for any 0 < s < § < r, the complex manifolds T°M and T°M are not
biholomorphic.

Proof:.

From (PROP.I} we know that the norm square function on T"M is a bounded
strictly plurisubharmonic exhaustion function. Thus a) follows from Theorem 6.2.

If M is orientable, then H,(T"M,Z) = H,(M,Z) = Z. Therefore bi) and bii)
follows from Theorem 6.3. (When S < r or the adapted complex structure extends
to a definitely larger tube than T" M, then we do not need to rely on Mok’s theorem,
it is enough to quote a much easier fact [Be2, Corollary 1.5).)

Now suppose that M is not necessarily orientable but the universal cover M is
compact. We can lift the metric g to M to obtain §. Then (M g) will admit an
adapted complex structure on TrM. The covering map p : M — M induces a
holomorphic covering p, : T™M — T M. Since M is simply connected, any element
of Aut(T"™M) can be lifted to give an element of Aut(T’"ﬁ ). Similarly any element
of Hol(TSM,T*M) can be lifted to an element of Hol(TSM,T*M) and lifts of
biholomorphisms are biholomorphic maps. Applying what we have already proved
for M , we are done. O

Remark.

Suppose that the compact Riemannian manifold (M, g) admits an adapted com-
plex structure on T"M, 0 < r < co. Assume the the Euler characteristic of M is
negative. Then the Stein manifold T"M can never be affine algebraic. This fol-
lows from [To, Theorem 2/2], since after identifying the tangent bundle of M with
its cotangent bundle, the Kahler form becomes the standard symplectic form and
T*"M and T*M can easily be seen to be orientable diffeomorphic. (Orientation is
defined by the standard symplectic form.)
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Proposition 6.6. Let (M, g) be a compact Riemannian manifold, with an adapted
complex structure on T"M for some 0 < r < co. The map

o: Aut(T"M) — Aut(T™M),  o(2)(p) := —&(-p),

is an involutive automorphism of the group Aut(T"M). The fixedpoint set of o is
precisely the isometry group Isom(M,g), and thus ( denotmg by index u the unit
component of a group) :

(Aut (T™M), Isom,(M,g),0)

is a symmetric space (compact if M is orientable or the universal cover of M is
compact ).

Proof:.
From (PROP.IV) we know that the map

T™M - T™M,
p= =p,

is an antiholomorphic diffeomorphism. Hence ¢ really maps into Aut(T"M). The
fact that o is an involutive automorphism is straightforward. Suppose that & €
Aut(T™M) and o(®) = &. This implies in particular that ® preserves the zero
section. The rest follows then from Theorem 5.2 and Theorem 6.5(bi). O

It is not clear, whether anything more, then they are compact, can be said in
general about the groups Aut(T"M). It would be interesting to see examples, when
Aut,(T™M) is really larger than the group Isom,T"M. This would show that we .
are able to move the zero section by a biholomorphism and that the symmetric
space defined in Proposition 6.6 is nontrivial. This perhaps would lead to new type
of invariants of the manifold M.

On the other hand if it turns out that Aut, (7" M) is always equal to Isom,(M, g),
this would mean a certain rigidity property of our adapted complex structure . In
special cases with large isometry groups we are indeed able to show that this is
what really happens.

Theorem 6.7. Let (M, g) be a compact Riemannian manifold. Suppose that a
compact, connected Lie group G acts transitively on M by isometries. Then there
exists an 0 < s < oo such that adapted complex structure exists on T°M. Let R
be the critical radius (see Section 3.). Let 0 < r < R, but finite. Suppose that
the isotropy representation of the isotropy group of G has no common eigenvector.
Assume furthermore that M is simply connected. Let I' be any discrete subgroup of
Isom(M,g), such that M= M/T is a manifold. Denote by gr the pro_;ectjon of the

metric g. Then (M ,gr) admits an adapted complex structure on T M. Moreover

(6.1) Aut(T"M) = Isom(M, g)
and
(6.2) Aut(T™M) = Isom(M, gr)
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Proof:.

Because G is transitive on M, the metric ¢ is real analytic. Hence existence of
an r with adapted complex structure on T"M follows from [Sz2]. We can lift the
elements of Aut(T" M) to get elements of Aut(T"M). Hence it is enough to prove
(6.1).

From Theorem 6.5(bi) we know that Aut(T"M) is a compact Lie group. Denote
by ¢ the average of the norm-square function, i.e. let

$(p) = / 118(p)|Pdvol,
dcAut(T™ M)

where dvol is the two sided invariant Haar measure on Aut(T"M). ¢ is Aut(T"M)
invariant and strictly plurisubharmonic . 0 € ¥ < r? and easy to see that i is an
exhaustion function. Let

S:={peT ™M |¥(p) = Ymin}.

Then S is Aut(T7 M) invariant and also totally real (see [Ha-We]) and thus its
dimension is at most n. By our assumption on the isotropy group of GG, any point
g in T"M \ M must have an orbit, under the isotropy group action, of dimension
at least one and therefore an orbit, under the group action G, of dimension at least
n + 1. Hence § must be a subset of M. But G is transitive on M. Thus S must
be equal to M. That means M is Aut(T"M) invariant and so Theorem 5.2 finishes
the proof of (6.1). O

Theorem 6.7 covers, among others, all the compact rank one symmetric spaces
and thus generalizes a theorem of Bedford who proved (6.1) and (6.2) for the round
spheres (see [Bel]).

7. Holomorphic isometries of the form TM — TN,

In this and the next Section we will be working with Riemannian manifolds
(M, g), which admit adapted complex structure on its entire tangent bundle. The
arising complex manifold TM will never be Kobayashi-hyperbolic, unlike the tubes
with finite radius, because any geodesic v in M induces a nontrivial holomorphic
map v, : TR ~ C — TM, by definition. This makes the situation harder, for we
do not apriory know whether Aut(TM) is a Lie group or not. In fact this group is
not always finite dimensional, as the following example shows.

Ezample.

The tangent bundle T'S? of the unit circle, equipped with the adapted complex
structure induced by the standard metric on S!, is nothing else than the punctured
complex plane C*. Denote by T = S' x ... x S§! the n-dimensional torus with
the product metric. It follows from Proposition 4.4 that T(T") with its adapted
complex structure is biholomorphic to C*" := C* x --- x C*. Let know f be any
holomorphic function on the complex plane. Then the map

Cﬂ _ Cn

N Z),z et 21,2
& :(21,22,23,...,2n) — (ef G033z e flanm) ) 20 2))
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is an element of Aut(C*"). In fact we could take any flat metric on T, the induced

adapted complex structure on T(T") would all be biholomorphic to each other and
thus to C**. This shows the infinite dimensionality of Aut(T(T")).

Now we would like to prove an analogue of Theorem 5.3.

Theorem 7.1. Let (M,g) and (N, h) be compact Riemannian manifolds. Assume
that adapted complex structure exists on TM and TN. Suppose that the first
cohomology group of M with real coefficients vanishes. Denote by x, and k) the
Kahler metrics on TM and TN, induced by the metrics. Let

(7.1) ®: (TM,ky) = (TN, k1)

be a biholomorphic isometry Then ® maps M diffeomorphically onto N and for
the restriction map, f : = ®|,,,

f:(M,g)— (N,hR)
is an isometry and ® = f,.
Proof:.

Just as in the proof of Theorem 5.3, let p; and p2 be the norm-square functions
on TM and TN. (7.1) implies

(7.2) d0p, = ®*80p, = dd(p o ®).
Let
(7.3) h:=p;0®%—p;.

According to (7.2), k is a pluriharmonic function on TM.
We need two key observation to prove the theorem.

Proposition 7.2. There exists a holomorphic function H : TM — C with imagi-
nary part h.

Proof of Proposition 7 2.

Let {Uy} be a covering of TM with x, metric-convex balls. Thus for any a and
B, Uy NUg is also convex and in particular connected. We can choose each U, so
small that it is contained in a local holomorphic coordinate patch and that on U,
there exists a holomorphic function H, : Uy — C, with imaginary part h|; . This
holomorphic function is well defined, up to a real constant. Since every U, N Uy 1s
connected, for every a and § we obtain a real constant ¢,g, such that

cap = (Ha — Hp)ly, v, -

The data ({Ua}, {cap}) give us on TM a Cech cocycle with real coefficients. Denote
by H the Cech and by H the singular cohomology group. Then by our assumption
HY(TM,R) = H'(TM,R) = H'(M,R) = 0.

It is well known that for any (paracompact, Hausdorff) X, the vanishing of H!(X, R)
implies that the group H!(X,{U,},R) also vanishes. Hence there exist real num-
bers cq, With cg — co = cap. Thus the function H, defined by ¢, + H, on the set Uy

is actually a well defined holomorphic function on the entire tangent bundle with
imaginary part h. 0O

We need one more ingredient to finish the proof of Theorem 7.1.
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Lemma 7.3. Let v : R = M be a unit speed geodesic. Then there exist a real
number ., depending on v and a universal constant A € R such that for every
complex number z = o +17,

(7.4) p208(viz) =P+ Byt + A = pi(7.(2)) + Bym 4+ A

Proof of Lemma 7.5.
Let z be an arbitrary element of N and ¢ € T, N. Denote by dist,, and dist,,

the distance function for the metric x; and kj, accordingly. From (PROP.III) we
know

(7.5) disty, (¢,7) = dist, (g, N) = |lq||a-

Let now m be an arbitrary point of M and p € T,,, M. Denote by z € N the image
of the point ®(p) under the projection map 7 : TN — N. (7.5) together with the
triangle inequality and the fact that ® is an isometry, implies

[|2(p)||n = dist, (2(p), z)
< disty, (2(p), ®(m)) + disty, (B(m),z)
= dist,, (p,m) + dist,, (®(m), z)
< lplly + e dist, (2(a), ) = llpl, + C.

(7.6)

Taking square of both sides of (7.6), we obtain
(7.7) p2 0 ®(p) < p1(p) + 2llpll,C + C*.

Since h is pluriharmonic (see (7.2) and (7.3)) and ¥, is holomorphic, the function
v(z) := h(7.(z)) is harmonic on the entire complex plane. The estimate (7:7) gives
us an upper bound for the growth of v,

(7.8) v(z = 0 +ir) = h(74(2)) = p2(B(1.(2)) — p2(742) < 2|7|C + C*.

But harmonic functions on the complex plane with such growth condition can only

be linear (see [Sa-Zy, (10.13), p. 335]). Thus there exist real constants 8, and A,

such that ‘ '
v(z) = BT+ A,

Notice that A, is the value what the function h takes along the curve 7. In partic-
ular h is a constant function along any geodesic in M. But geodesics intersect each
other and thus A must be constant on M. This implies that A, does not depend
on-~y. O

End of the proof of Theorem 7.1.

Let now + be any unit speed geodesic in M. It follows from Proposition 7.2,
(7.3) and (7.4) that the holomorphic function H(7,(z)) must be of the form

(7.9) H(ve(2)) = Byz +iA+ A.,,
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for some real number f‘i.,. By our assumption M is compact and hence the real
part of H is bounded there. Together with (7.9) this implies that 8, = 0.
Therefore (7.4) reads as

(7.10) p2(®(7+(2))) = pr(74(2)) + A.
This is true for every unit speed geodesic. Thus
(7.11) 2@k = lpllg + 4,

for every p € TM. )

Plugging a point of M into (7.11) we obtain that A must be nonnegative. On the
other hand ® is onto and thus for some p € TM the left side of (7.11) must vanish.
This gives that A = 0 and therefore ® maps M diffeomorphically onto N. & was
an isometry, thus its restriction to the zero section, which we will call f, will also
be an isometry. From (PROP.III) it follows then that f : (M, g) — (N,h) is also -
an isometry. The biholomorphisms ® and f, (see (PROP.V) agree on the maximal
dimensional totally real subset M, hence they must agree everywhere. [0

Remarks. :

If we drop the condition on the cohomology group of M in Theorem 7.1, then
in general there can be other biholomorphic isometries besides the ones that come
from isometries between M and N. For instance take (M,g¢) to be a flat torus
T",i.e. a quotient of R" with respect to a lattice I'. The complex manifold T(T™)
(equipped with the adapted complex structure) is just C*/T". In C" any translation
with a nonzero, purely imaginary vector is a holomorphic isometry, which descends
to C*/I" and does not respect the zero section torus.

But in fact this is the worst what can happen. More precisely, assume that we
are given two compact Riemannian manifolds (M, ¢) and (N, k). Suppose that both
admits adapted complex structure on its entire tangent bundle. Let us given an

®:(TM,ry) — (TN,kp)

biholomorphic isometry. From [Le-Sz] we know that the existence of a global adap-
ted complex structure induces non-negative curvature. That means all the sectional
curvatures of (M, g) and (N, k) are non-negative. Denote by M resp. N the uni-
versal covers, and by § resp. h the pull back metrics.

From [Ch-Gr] we know that (M, §) and (¥, k) split isometrically, i.e.

(H'lﬁ)g(Mﬂ XRkagO xgc)a (ﬁaﬂ)g(Nﬂ XRI,hUXge),

where (Mjy, go) and (Ny, hp) are compact simply connected Riemannian manifolds
with global adapted complex structure and g, denotes the Euclidean metric. ® can
be lifted to a

& : (TMy x C¥, kg X K,,) — (TNg x C, kpy X Ky, )
biholomorphic isometry. Therefore k¥ = ! and there must exists an

b, : (TMQ, Rgo) — (TN())K‘hu)'l
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and an ,
‘I’Q : (Cka K‘gc) - (Ck1 K‘Qe)

biholomorphic isometries, such that
& =8, x ;.
According to Theorem 7.1, there must exists an
K (Mo, ga) — (No, ho)

1sometry with f.. = ¢,. ¥, can of course be only a unitary action plus a translation
with a vector in C*.

8. Complexifying the isometry group action.

In the previous section we obtained a reasonable clear picture how the biholomor-
phic isometries look like between the tangent bundles of two Riemannian manifolds.
Now we would like to drop once again the extra condition isometry and wish to
study the biholomorphism maps between TM and TN. But this task seems far
too ambitious at such generality. At the moment we cannot even answer to such
“simple” questions as the following,.

From [Sz2] or [St1] one knows that the round metric on the n-dimensional sphere
S™ induces its adapted complex structure on the entire tangent bundle and as a
complex manifold T'S™ is biholomorphic to the affine hyperquadric, Q"

Q" ={(21,- -1 2n41) €C™ | 2] -+ 22, =1},

Question: what is the biholomorphism group of Q" = TS"? Even though we do
not know the answer to this question but it is obvious that the complex orthogonal
group O(n + 1,C) is a subgroup of Aut(Q").

Notice that O(n + 1,C) is the complexification of the compact Lie group O(n +
1,R) which is the isometry group of S™. This is the key observation and in this
section we would like to show that this example is not special, but in fact it is the
general case. First we need some preparatory lemmas and propositions.

Let us recall Fatou’s classic theorem concerning representations of positive har-
monic functions defined on the upper half plane C*.

Theorem 8.1. (Fatou, see [Koo]) Let u be a positive harmonic function defined
on Ct. Then there exist a non-negative Borel measure p on the real line and a
non-negative real number «, such that [ 1/(1 + t*)du(t) is finite and for any ¢ in
the upper half plane

. 1 T .
(81) 'U.(C =0+ 'LT) = a7 + ;r' /IR md#(t)
Define the domain D\, by

Dy:={(=0+ireC|lo| <11 <7}
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Lemma 8.2. Let ( = o + it € Dy and t be an arbitrary real number. Then

1 T
(8.2) 3r(1+ %) < 24+ (0 — t)?’
.(8.3) 3 (r —1)?

T+8 7 [o— 0 + 1o - 07 +77]

Proof. Elementary and left to the reader.

Lemma 8.3. Let f bean f : Ct — C* holomorphic function, and { = o+i7 € Dy,.
Then there exists an a, 0 < a < Im f(z), such that

|Re f(o + it)| < |Re f(o +i)| + V3Im f(:),

(8.4) Im f(o +ir) < Im f(o + 1) + V3Im f(i) + a(r — 1),
: a(37% — 1) 4+ Im f(7)
Im f(o +1i1) > - ]

Proof. Applying (8.1) to the imaginary part of f, for any ( = ¢ + it € Ct we get
(for some nonnegative @ and nonnegative Borel measure y)

(85) Im f(O" 4 Z'T) = ot + % /1; md‘u(t)

In particular for { = ¢, (8.5) gives

1
1412

(8.6) Im f(i) =+ = ]R dpt).

Since p is nonnegative, this yields that « is in the desired range.
Applying the estimate (8.2) to the integrand in (8.5) and using (8.6), we obtain

Im f(o +it) > ot + -1-/ — 1 )

7 Jg 37(1 +2)
- oart Im f(z) —a.
3r

This proves the last inequality of (8.4). To prove the first two, we have to
differentiate (8.5) with respect to (:

1 1
, y -_— — ——————
fllotir)=a+ - L (o _t+i.,.)2dn“(t)-
This yields, by changing the order of integration,
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o+ir

fo+in=go+i+ [ 1

o+
(8.7 = flo+1)+ /”ir (a + -3; /R ﬁd,u(t)) d¢

o+
o L[ ity
_f(a+z)+za(r—1)+;/m(g_t+z‘)(a—t+if)

Using (8.3) and (8.6), we can estimate the integral in (8.7) by above,

dp(t).

1 i(r — 1)
T Jrlo—t+i)lo—t+i7]

du(t) ‘/_] 1+t2 du(t) < V3Im f(3).

Applying this estimate and taking real and imaginary parts of (8.7), we obtain
the first two inequalities of (8.4). O

Lemma 8.4. Let F : Ct — H" be a holomorphic map. Let w € C and ( € Dy,.
Denote by(.,.) the ordinary hermitian scalar product on C*. Then

[(Re F(C)w, w)] < |(Re F(o + i), )] + v3(Tm F(iyuw, w),
(88)  (Im F(Qyw,w) < (Im F(o +i)w,w) + (7 + V3= 1){Im F(i)w,w),
(I F(Qw,w) > (r{Im F(iyw, w))/3.
Suppose now that we have a continuous map
F:Ct x K — H"*,
where K is a compact topological space. Assume that for every z € K the map
F(,z):C*t - H"

is holomorphic. Then there exists a constant A > 0, such that for every ( = cr-{—z'r €
Dy, and z € K we have (|| || denotes the matrix norm)

_ IRe FI|(¢,z) < A
(8.9) ||Im F||(¢,z) < A(T + 1),
l(En F)7|(¢,z) < AT.

Proof. To prove (8.8), we can assume that w # 0. Then the function
fuw(€) = (F(Qw, w)

is holomorphic and the real resp. imaginary part of f, is (Re F({)w,w), resp.
{Im F(¢)w,w). Therefore f, maps C* into itself and we can apply Lemma 8.3
(and the fact that 0 < o < Im fy(7) in the formulas in (8.4)) to obtain (8.8). By
compactness argument, (8.9) follows immediately. O
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Proposition 8.5. Let (M, g) be a Riemannian manifold which admits an adapted
complex structure on the entire tangent bundle. Let X be an element of the Lie
algebra of the isometry group Isom(M,g). Denote by Xy the induced infinitesimal
vector field on TM (by the action of Isom(M, g) on TM ). Then X#O is holomorphic
onTM.

Proof. Isom(M,g) acts on TM by biholomorphisms. (see (PROP.V)) Let

FiRxTM — TM
(t,p) — (exptX).p.

Then Xy = df/dt|,_,. Apply Proposition 4.2. O

Theorem 8.6. Let (M,g) be a compact Riemannian manifold. Suppose that
adapted complex structure exists on the entire tangent bundle. Let x, be the
induced Kahler metric. Let X be an element of the Lie algebra of the isometry
group Isom(M, g). Denote by Xy the induced infinitesimal vector field on TM (by
the action of Isom(M, g) on TM ). Then there exist positive constants Ax and Bx
such that

(8.10) [ X4 (e, < Ax|lplly + Bx,

for every p € TM.

Remark. Let (M™,g) be the standard round sphere S™. Let X; be an orthonormal
* base of the Lie algebra so{n+1). Then we can read off from [St2] that for p € TS",

> 1541 (w) = OCllplly,), a5 llplly — oo.

This shows that the estimate in (8.10) is not sharp, but it is enough to prove that
the flow of the vector field J X is complete (See Corollary 8.7 below).

Proof of Theorem 8.6.

Let p be a point in TM with norm one. Let ¢ be a small, positive number.
Denote by D, the unit ball in R?"*~%, If ¢ is small enough, then we can choose a
neighbourhood U, of the point p in the unit sphere bundle of TM, such that U, is
diffeomorphic to (—¢, €) x D, (because of Theorem 3.2, we can assume that in fact
we have a real analytic diffeomorphism) and under this diffeomorphism the curves
(for every fixed point z in the euclidean ball D)

t— (t,z) € (—e,€) X D,

correspond to the trajectories of the geodesic low. Denote the image of the eu-
clidean ball 0 x D, under the above diffeomorphism, by A'. Thus A parametrizes
the trajectories of the geodesic flow in the neighbourhood U,.

Choose real analytic vector fields &;,...,&n, 71, .,7s in a neighbourhhod of U,
(the neighbourhood is still in the unit sphere bundle, but the vector fields are not
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all tangential to it, they are only sections of T(T'M)), such that they are invariant
under the geodesic flow, and for every point ¢ € N,

gl(Q)s ey 611(‘])1 and 7]1(‘1)a M qn(Q)

are the horizontal and vertical lifts, of an orthonormal frame v,,...,v, € Tr(y) M,
and v, = ¢. For a fixed point ¢ in the neighbourhood U,, take all positive multiples
of g, to get a half line in the tangent space Tr(,yM. If we do this for every point in
Up, the union of these half lines provides us a domain D, in TM. Extend now the
vector fields £;,nx to be defined on D, and invariant with respect to the N, actions,
(see (1.1)) for every positive s, and call these extended fields with the same name.

Then for every ¢ € A, the frame {€5:m;}7=1 is a symplectic frame along the
leaf L, of the Riemann foliation, defined by ¢ (see (1.1) and the discussion above
(2.1)). Since Xy is coming from the isometry group action, the vector field X
1s parallel along every leaf of the Riemannian foliation. Moreover, according to
Proposition 8.5, X;’O is holomorphic. Therefore there exists smooth (in fact real
analytic) functions

a1y Oy P,y B N2 R

(which we also consider to be defined on D,, being constant along every leaf of the
Riemann foliation) such that in D,

(8.11) Xy =) &+ Bum.
j"‘—'l k=1

For a point ¢ € A, denote by v, the unit speed geodesic, with initial datum 4(0) = ¢.
From (4.5) we obtain a map

F=(fjx):Ct xN — H",
such that n
m (1. () = D Fix(OE° (O,
i=1
and because of our choice, F is also real analytic in the subdomain
{({ =0 +ir,q) € CT x N, |o| < ¢}

From (4.4) it follows that for every & € A, the map

F(,q):Ct - H"
is holomorphic. According to Theorem 3.3, this implies that

F:Ctx N —H"
is real analytic. (Continuity would actually be enough for our purposes.) Let

a:=(ay,...,an),8=(B1,...,Bn) : N = R™.
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Then (4.7) and (8.11) yields for any ( € C*, p := v,4.(¢)

(X4, Xg)x, () = Pl {{(Im F)~1((, 9)a(q), a(q))
+2{((Im F)~'Re F)(¢,9)a(q), B(g))
+ ([(Re F(Im F)"'Re F)(¢,q)

+Im F(¢,¢)]8(g), B(a))}-

(8.12)

Using our estimate (8.9), for K = ﬁp, we can find a positive constant A = AUP,
such that for any { = o +1i7 € Dy, and g € N,

(8.13)
((Im F)~'(¢, g)alq), a(9))s, < A(SApllall )T

({(1m F)™"Re FIC, )a(a), B}, | < A*(sup lalisup l18])r

([Re F(Im F)™'Re F +Im FI((,q)8(q), B(a))x, | < (A%7 + AT + A) sup 18I

(By shrinking the neighbourhood U, a bit, all the sumpremums will be finite.)

(8.12) and (8.13) shows that for some A and B, and arbitrary z € D,, with norm
at least one,

(8.14) (X#t, X)x, (2) < Al2]l, + B.

Our manifold M is compact, and its unit sphere bundle is as well. Hence we can
choose the constants in (8.14) such that the estimate (8.14) in fact holds for every
point z of the tangent bundle. O

Corollary 8.7. Let (M,g) be a compact Riemannian manifold which admits an
adapted complex structure on the entire tangent bundle. Let X be an element of
the Lie algebra of Isom(M, g). Denote by Xy the induced infinitesimal vector field
on TM. Then the flow of J Xy is complete. :

Proof.
For the sake of brevity denote again by p the norm-square function on TM and
by «, the induced Kahler metric. From [Le-Sz, Prop.3.2] we know that

llgradplle, = V7.

Thus using the Cauchy-Schwarz inequality and Theorem 8.6 to estimate the quan-
tity

(J Xy )p(p) = (gradp, J X¢)«, (p),
we obtain that there exist positive constants C'x and Dyx such that

[(JX3)p(p)| < Cxp(p) + Dx.

Applying [Ab-Ma, Prop. 2.1.20], we are done. O
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Theorem 8.8. Let (M,g) be a compact Riemannian manifold that admits an
adapted complex structure on its entire tangent bundle. Denote by G the unit
component of the compact Lie group Isom(M,g). Consider G as a transformation
group acting on TM by the induced action. This G-action extends to a group
action of the complexified group G¢, and the map

Gex TM — TM

is holomorphic. The subgroup of G¢ that consists of elements acting trivially on
TM is discrete.

Remarks.

If G is a compact, connected Lie group that acts on a compact, complex manifold
X by biholomorphisms, then this action always extends to an action of G¢ (also
by biholomorphisms). This was shown in [Gu-St, Theorem 4.4] The key fact they
used was that for a compact, complex manifold X, Aut(X) is a complex Lie group.
(See [Bo-Mol and 2]).

When we drop the condition compactness, we are going to face two problems.
Firstly, it may happen that even though Aut(X) is still a Lie group, its Lie algebra
is totally real. This happens for instance for any bounded domain in C* (see [Kob,
ChIIIL Theorem 1.3, or Bo-Mo2]). This makes of course the complexification of the
group action impossible.

Secondly it can happen that Aut(X) is so large that it is not even a (finite dimen-
sional) Lie group. This phenomenon does not apriory prevent us from complexifying
a group action but certainly makes the situation harder.

In our setup this second possibility can occur as it was pointed out in the Example
at the beginning of section 7. Therefore we have to choose a more cumbersome
detour to get the same conclusion as Guillemin and Sternberg.

When G is an arbitrary compact, connected Lie group and H is a closed sub-
group, we can form the homogeneous space G/H. We can equip this space with the
so called normal metric, to obtain a Riemannian homogeneous space (G/H,g). It
was shown by M. Stenzel in [St1] that the complex homogeneous manifold G¢/Hc
can naturally be identified with T(G/H), this latter equiped with the adapted
complex structure of the normal metric. Theorem 8.8 can be considered as a gen-
eralisation of this situation.

Proof of Theorem 8.8.

Denote by A(T'M) the complex vector space of holomorphic vector fields on the
complex manifold TM, i.e. A(TM) consists of vector fields V such that V1:° is a
holomorphic section of TV*TM. In fact A(TM) becomes a complex Lie algebra if
we take the obvious complex multiplication and Lie bracket= minus the ordinary
Lie bracket of vector fields. The integrability of the almost complex tensor assures
that A(TM) is indeed a complex Lie algebra. The reason for the sign convention
is to make things compatible with induced infinitesimal generators. (See below.)
Denote by g the Lie algebra of G. From Proposition 8.5 we know that for any
X € g, the induced infinitesimal generator Xy on TM belongs to A(TM). The

map
gc=g+19— A(TM)

6 X +Y — Xy +JYu
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is a C linear Lie-algebra monomorphism. C linearity is obvious. Lie-algebra homo-
morphism follows from [Ab-Ma, Proposition 4.1.26] because of our sign convention.

Corollary 8.7 tells us that every element of £ := §(g¢) induces a one parameter
group of diffeomorphisms of TM. It follows from Palais’ work (see [Pa]), that there

exists a unique, connected Lie group G, whose underlying group is a subgroup of
the group of diffeomorphisms of TM, the Lie algebra of G is £, the map

GxTM — TM

is differentiable (i.e. G is a connected Lie transformation group on TM, each
element of G different from the identity acts nontrivially on M), and G extends
the G action on TM. (Hence G can also be considered a Lie subgroup of G )

Since L is a complex Lie-algebra, the corresponding group G will be a complex
Lie group. (Recall Proposition 3.4.) Let G be the universal covering group of G.
Then TG = G¢ will be the universal cover of TG = Gc. By a classical theorem in
Lie theory, there exists a unique homomorphism,

A:éc——ié,

with differential § at the unit element.

Therefore A is a holomorphic covering map. Then (since G extends the action
of G)

Ker A D K = Ker (G — G) = Ker (G¢ — Ge).

Thus we get a holomorphic covering map,
A:Gc=Ge/K — G.

Hence Gc¢ indeed acts on TM and Ker A is discrete. (only the elements of Ker A
act trivially on TM.)

Since the Lie-algebra of G is £ C A(TM), all the elements of G that belong
to a 1-parameter subgroup, act by biholomorphisms on TM. But these elements
generate the whole group, hence G , and then of course G¢ as well, acts on TM by
biholomorphisms. This implies that the transformation map

BC:Gex TM — TM,

is holomorphic in the second variable. Since A€ is smooth, in order to prove that
it is holomorphic in all its variables, it suffices to show that for any point p € TM,
the map

BS:Gc—»TM, Gc¢3ar f%a,p),

is holomorphic. From Theorem 3.2 we know that the metric on M is real-analytic
and therefore the restricted transformation map

B:=p%,:GxTM — TM,

30



1s real-analytic and consequently ﬂﬂa as well. Since TM is a Stein manifold, we
can think of ﬂf as a map going into CV for some large N. Equipping G with
a two-sided invariant metric &, from Proposition 3.4 we know that TG with the
adapted complex structure of h is precisely G¢. Hence, using (PROP.VI), it suffices
to prove that for any unit-speed geodesic v : R — G, the composition map ,Bf 0y i8
holomorphic. Since homogeneity, it suffices to check this for geodesics through the
unit element, i.e. for 1-parameter subgroupsof G. Let X € g, and (o) = exp(cX).
The induced map is (just like in the proof of Proposition 3.4)

Yo :TR=EC3( =0+ir — exp((X) € Gc¢.

Hence the composition map ,Bf o 7. can also be written as a composition of the
holomorphic maps,
Coo+irr—oXy+7JXy €L,

and
L3V +— xy(1),

and thus itself is also holomorphic. (Here x is the trajectory of the vector field
V € £ with initial condition x(0) = V(p). This latter map is holomorphic since:
solutions of an O.D.E. that depends holomorphically on some parameters, also
depend holomorphically on the same parameters.) O
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