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GROUP ACTION ON THE TANGENT BUNDLE
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o. Introduction.

Assume that M is areal analytic manifold. Then every coordinate patch U C Rn
can be thickened to obtain an open set CU C C n

. Since the coordinate changes of
M are real analytic maps, they can be extended holomorphically to such enlarged
domains (by taking power series expansions and by possible shrinking CU to get
convergence) and thus they can be used as holomorphic transition functions for a
complex manifold CM.

U oue does this procedure carefully, the obtained complex manifold will be Haus­
dorff. The complex conjugation of cn induces a conjugation on CM, Le. an anti­
holomorphic involution, whose fixed point set is precisely M. (See [Wh-BI-].) This
.complexification process makes it possible to extend real analytic objects (func­
tions, metries, connections etc.) given on M to abtain holomorphic ones on the
complexification.

This idea has been very fruitful in twistor theory for instance. H. Grauert also
used this complexifieation in his famous proof about embeddability of abstract real
analytic manifolds. (See [Gra].)

Despite of its naturality the above procedure also has some drawbacks. Namely
it is not canonical, it really depends on the choices we have made along the con­
struction procedure and CM is only unique as a germ of complex manifolds.

Recently another approach arose and has been studied in several papers. (See
[Le-Sz], [Le2], [Gu-S], [Stl and 2] and [Sz2 and 3].) The idea is that with an extra
piece of information, a Riemannian metric g on M, one is really able to define a
canonical eomplex manifold X associated to (M, g). The underlying differentiable
manifold structure of X is a certain disk bundle over M. More preeisely, let r be
a positive real number. Then T r M will denote the set of veetors in the tangent
bundle of M that have length less than r. We also allow r to be infinite, when
TrM will simply meall the tangent bundle of M. With the help of the metric, it
is possible to define (if r is smaH enough, M is compact and the metric is also real
analytic) a eanonical (called adapted) complex lnanifold structure on TrM. (See
Section 3. for details.)

Many interesting properties of these struetures were revealed in the above lnen­
tioned papers. Among others, the g-norm-square function is strietly plurisubhar­
monie on TrM and thus it is a potential funetion for a Kahler metric 1'\,9' The
restrietion of this metric to the zero section in TM gives baek the original metric g.

Typeset by AA,;tS-TEX
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Therefore the complex manifold (TT M, I\:g) ean be thought of as a canonical Kahler
extension of (M, g).

The organisation of the paper is as follows. In Section 1. and 2. we recall some
notations concerning the symplectic structure of the tangent bundle. In Section 3.
we give apreeise definition of the adapted complex structures together with listing
some of their properties we are going to use later on in the paper. In Section 4.
we explicitely calculate the metric K g in some special frame that was introduced in
Section 2. With Section 5. we start our systenlatic study of the Kahler manifolds
(TT M, Kg ). Among others we prove the following result (Theorem 5.3).

Theorem A. Let (M, g) and (N, h) be two n-dimensional compact Riemanman
manifolds and 0 < r, S < 00. Assurne that adapted c0l11plex structure exists on
TT M and Ttl N. Denote by K. g and Kh tbe induced Kahler metries. Suppose tbere
exists an

biholomorpllic isometry. Tllen r = s. Denote by f tlle restrietion of ip to M. Tllen
f maps M isonletrically onto N and tbe induced Inap f. agrees with <I> on tbe wbole
tube.

Section 6. treats the automorphislDS of tubes TT M which have finite radius. In
·section 7. we prove a sinlilar rigidity result (Theorem 7.1).

Theorem B. Let (M, g) and (N, h) be compact Riemanllian manifolds. Assurne
tbat adapted complex structure exists on TM and TN. Suppose tbat H1(M, IR) =
O. Denote by K g and Kh tbe induced !(abler metrics. Let

be a bibolomorphic isolnetry. Then cI> maps M diffeolnorpllically onto N, tbe
restrictioll map

f:= cI>I M : (M,g) -+ (N, h),

is an isornetry and <I> =f •.

Section 8. treats the isometry group action on the tangent bundle of a Riemann­
ian manifold. Our main result here is the following (Theorem 8.8).

Theorem C. Let (M, g) be a compact lliemannian manifold that adlllits an adap­
ted complex structure on its entire tangent bundle. Dellote by G tbe unit compo­
nent of tbe compact Lie group I som(M, g). Consider G as a transformation group,
"acting on TM by tbe induced action. Trus G-action extends to a group action oE
tbe complexified group Ge, and the transformatio1l1nap

Ge x TM -+TM

is bolornorpllic. The subgroup of Ge that consists of elenlents acting triviallyon
TM js discrete.
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'1. Parallel vector flelds.

Let us first recall a few notations concerning the symplectic structure of the
tangent bundle of a Riemannian manifold. (See [KI] as a general source of infor­
mation.)

In this paper Mn will always denote a smooth n-dimensional manifold. The
tangent bundle of M will be TM and 7r : TM -t M will stand for the bundle
projection map. If Mn is equipped with a Rieluannian metric g, then TM will
inherit a symplectic structure from the cotangent bundle of M as folIows.

Define the canomcal I-form e on TM by

(8, v) := g(z, 1r+v),

Then n := de is a symplectic form on TM. Denote by p the smooth function on
TM wmch is g-length squared. For simplicity, from now on we will assume that
(M, g) is complete.

The geodesie ßow <Pt : T M ~ TM is the Hamiltonian flow induced by the
Hamiltonian p. Let,: R ~ M be a geodesie. The iUlage of TIR \ IR under the
induced map ,. : TIR ~ TM is a two dimensional surface. As r runs through all
the geodesics in M, these surfaces define a foliation of TM \ M. We call this the
"Riemann /oliation.

For a, : IR -t M geodesic, a parallel vector field ealong ,. is a vector field along
the map ,. (i.e. a section of the pullback bundle (,. )*(TM)), such that there exists
a smooth family ,t :IR ~ M of geodesics with ,0 = , and

HOlT is the zero vector in the tangent spaee TO'IR, then ~(a) := e(OO') is tangential
to the zero section in TM. Indeed,

is a Jaeobi field along r' Parallel veetor fields ean be thought of as canonieal
extensions of Jaeobi fields on M to TM.

Sinee any point z E TM \ M determilles a ullique geodesie r : IR ~ M such that
1'(0) = z, it follows that giyen a vector 0 =I=- vETo IR and a vector [ E Ti. v (TM),
there exists a unique parallel vector field ealong I. with e(v) = {.

For areal number 5 define the map N 6 : TM ~ TM by multiplying every vector
in each fibre with s. For a non~zero 5, N 6 will be a diffeoluorphism. Parallel vector
fields along r. cau be characterised by the following invariance property

(1.1)
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(See [Le-Sz, Proposition 6.1]). The relation of the sympleetie form n and N~, 4>~ is
also quite simple,

(1.2) N:n = sn, cP;n = n s E IR.

2. Symplectic frames.

The metrie 9 determines the Levi-Civita eonneetion on TM and thus a splitting
of Tz(TM), (z E TM) into vertical and horizontal subspaees. The vertieal sub­
spaee is simply the fiber T1t(z)M which canonically sits in Tz(TM). The horizontal
subspace is the kernel of some projeetion Tz (TM) --+ T1t( z) M. The eollection of
these projections is the eonnection map K : T(TM) --+ TM.

Denote by Hz the horizontal subspaee at the point z E TM. The tangent spaee
of the zero section in TM at a point Dm E TmM ean (and with a little abuse of
notation will be) identified with TmM. With this identification in mind we obtain
that for auy z E TM, the map

is an isomorphism of veetor spaees. With the help of this isomorphism we ean
talk about the horizontal lift of a veetor v E T1t( z) M into a veetor v E Hz (TM),
meaning that iJ and v under 7r. eorrespond. Verticallift of v E T1r(z)M is given by
th~ eanonical imbedding of the fiber T1t(z)M, into Tz(TM).

Reeall that for a symplectie vector space (V2n , w), a 2n-tuple of veetors,

is ealled a Jymplectic ba~e, if

and

for every 1 :s; j, k :s; n.
A special type of frame of parallel veetor fields along a leaf of the Riemann

foliation plays a erutial role in what follows. Let / : IR --+ M be a unit speed
geodesie, and ~1 , ... , ~n, 7]1 •.. ,1]n be parallel veetor fields along the leaf L'"( defined
by -y. We shall eall (~1, ... ,~n,1]l ... ,7]n) a Jymplectic frame, if there exists areal
number u and a veetor v E TuIR, with Ilvll = 1, and an orthonormal frame

such that for any 1 :s; j :s; n, ~j ( 1'... v) is the horizontal and 7]j (1'...v) is the vertieal
lift of Vj.

This eondition is equivalent to the following: the Jacobi fields ~jIR' 7]jlR have
the initial condition (' means covariant derivative along 1')

c '(u) - v·
~J - J' ~i(a) = 0, 1:S; j :s; n,
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77j(11) = 0, 71j(l1) = Vj, 1::; j ::; n,

(see [Le-Sz] for instance). In particular the set S of those realnumbers (7, where
the n-tuple ~l (11), ... ,(n(11) E T-y(cr)M is linearly depenclent, is discrete. Moreover
there exists a smooth matrix valued map 'P = ('Pjk), defined on IR \ S, such that

11 E IR \ S, 1::; k ::; n.(2.1) 7]k(l1) = L 'Pjk(U)(j(l1),
j

An explanation for the name "-,ymplectic frame" is the following proposition.

,Proposition 2.1. Let (Mn, g) be a Rielnanian m al1Hold. Let, be a unit speed
geodesie and ~l" .. ,~n, 7]1,' .. ,1]n be a symplectic frame along the leaf L'"'( (of tbe
lliemann foliation). Then for any v E (TIR \ IR), tbe 2n-tuple

{ ~j ( '+(V ) ), 1] j ( '+(V ) ) } j=1

forms a symplectic base of the symplectic vector space (f denotes the sign of the
real number -T)

Proof.
The orbit of a fixed point of the leaf ,.(TR. \ IR), uncler repeated applications of

N 6 and <Pt is the whole leaf. Therefore, according to (1.1) and (1.2), it is enough
to check our statement in one point q of the leaf. Thus we can assume that q has
norm one, and that we have a Riemannian nonnal coordinate system around the
point 1r(q), which we take to be the origin.

With this choice we have
8 8

~j(q) = -8 and 1]j(q) = -8'
qj pj

and
Olq = L dpj A dqj.

J

This proves our claim. 0

3. Adapted complex structures.

When M = IR, there is a natural identification TIR rv C, given by

(3.1) TulR 3 T :a t-----t a+ iT E C,

and this equipes TIR with a complex structure. In (3.1) 11 denotes the coordinate on
R. This complex structure depends only on the metric (which we chose to be the
standard one), in other words, an isometry of IR induces a biholomorphic mapping
on TR. From now on we fix this complex structure.

Besides the full tangent bundle we shall also need tbe following type of tube
domains. Let (M, g) be Riemannian and 0 < r ::; 00. Let TrM be defined by

TrM = {v E TM lllviig< r}.

We will call r the radiUJ of the tube TrM. The main object of this paper is to
study a certain complex structure on these tubes that is canonically associated to
'the metric.
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Definition 3.1. Let (M, g) be a complete Rienlannian Inanifold. Let 0 < r ::; 00

be given. A smooth complex structure on the maJljfold TrM will be called an
adapted complex "tructure jf for any geodesie , : R -+- M, the nlap

is holomorphic, where ,;l(TrM) C TR. and TIR. is endowed with the complex
structure as explained above.

Given the nation of adapted e01l1plex struetures, natural questions arise about
existenee, uniqueness and regularity. Same of the answers to these questiol1s ean
be found in [Gu-S], [Le-Sz], [Sz2] and [Le2]. From these papers one knows that
the metric uniquely determines the adapted complex structure (. assuming that it
"exists), and real analyticity of the metric is necessary for the existence. On the
other hand for a compaet, real analytie manifold (M, 9) there always exists an
o < r ~ 00, such that T r M carries an adapted complex structure. (See [Sz2] 01'

[Gu-S]).
It is immediate from its definition that Ollee we have an adapted eomplex struc­

ture on T r M for some 0 < r ~ 00, then the same complex structure will supply
us an (and because of urnqueness, we could say the) adapted eomplex strueture on
To! M for every 0 < s < r. We shall call r the critical radiu.5 if adapted eomplex
structure exists on Tr M hut it does not exists on any other tube T3 M with radius
s larger that r. If the adapted complex structure happens to exists on the entire
tangent bundle, then we take 00 to he the critical radius.

In what follows, it is sometiIues important whether r is eritical 01' not. Usually
it is easier to treat the tubes with noncritical radius. The reason is that in this CaBe

TrM is a relatively compact subdonlain of a complex (in fact Stein) manifold with
smooth, strictly pseudoconvex boundary.

We need same more notations concernillg complex luanifolds. Suppose X is
a complex manifold with an almost eomplex tensor J : TX -+ TX. The (1,0)
resp. (0,1) tangent bundles, T1 ,0 X resp. TO,l X are eOlllplex vector bundles (T1 ,O X
heing in fact a holomorphic bundle). They are both isomorphie to TX aB real
vector bundles, the iSOIDOrphislU being given by

(3.2)

1 "
,,\1,0 : T X 3 ~ l---+ ~l,O = -(( - iJ~) E T 1 ,o X,

2

,\0,1 : TX 3 ~ l---+ ~O,l = ~(~ + iJ~) E TO,I X.
2

In fact for every p EX, the cOluplex structure Jp : TpX -+ TpX defines a complex
vector space structure on TpM anel the map ,,\1,0, resp. ,\0,1 is C linear resp.
antilinear .

For a complex manifold X we shall denote its group of bihololDorphisms by
Aut(X). Since we are going to use it several times, we formulate precisely the
ahove mentioned regularity result of Lempert.

Theorem 3.2. (see [Le2, Theoreln 1.5]) Let (M, g) be a lliemallnian manifold.
Assume that adapted complex structure exists on Tr M, for same positive r. Tben
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M.is areal analytic submanifold of tbe cOlnplex manifold TrM and the tbe metric
on M is real analytic.

We shall also need a result of Shiffman, that gives a very useful criterium to
decide when a partially real-analytic function is real-analytic in all its variables.

Theorem 3.3. Let n c RM , V C CN be domains, such tbat 0 i= A = V n RN.
'Let f : n x V -4 C be a functioll such that f( x, .) is holomorpbic on V for a11 x E n
and f(., w) is real analytic on n for a11 x E A. Then f is real analytic on n x V.

Proof. See [Sh, Theorem 1] for an even more general statement.

Prom now on we assume that the Riemannian nlanifold (M, g) induces an adap­
ted complex structure 00 T r M. Deoote by I som(M, g) the grotlp of isometries of
(M, g). The properties we shall need later on are as follows.

(PROP.I) The function on TrM tllat associates to any vector its norm, is pluri­
subharmonie. Its square (denote it by p) is strictIy piurisubilarlnonic and tbus it
induces a [(ahler metric /'\,g, which is denned by

Kg(V, W) = -iaap(JV /\ W),

(PROP.II) Tbe [{abier form of /'\,g is n, tlle symplectic form of the tangent bundie.

(PROP.III) M C Tr M is a ~g-tota11y geodesic Lagrangean submanifold' and
K 9 1M = g. H we denote by dist K, tbe distance witil respec t to tbe metric K g, then

-for any p E T r M we get

(PROP.IV) The Inap

v~-v.

is antibibolomorpbic.

(PROP.V) For every f E Isom(M,g), f. : TrM -4 TrM is a biholomorphism
and tbus

Isom(M, g) ~ Allt(TrM).

(PROP.VI) Let D r := {( = er + ir E C 11rl < r}. Assu~e tbat we are giv:en a
function h : T r M -4 C, that is real aJlalytic along the zero section, and for every
unit speed geodesie " tbe composition lllap ho ,. : D r -+ C is llolomorpbic. Then
'h is hololnorphic.

The proofs of (PROP.I, .. . , V) can be found in [Le-Sz].

Proof of (PROP. VI).
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(3.3)

In fact this is implicitly contained in [Sz2]. The regularity result of Lempert
(Theorem 3.2) implies that in fact 9 is real analytic. Then the proof of [Sz2,
Proposition 3.2] shows that h must be hololnorphic in an open neighbourhood of
the zero section.

In order to prove that h is hololnorphic everywhere, it suffices to show that h is
real analytic on Tr M. We will use Theorem 3.3 above to achieve this.

Let p be a point of Tr M\M with norm one. Choose a small open neighbourhood
Up.of p in the unit sphere bundle. We can assume that the Hamiltonian flow can be
straighten out in Up , i.e. there exists an f > 0 and a real-analytic diffeomorphism

tj;: (-f,f) X Hl -+ Up ,

(Iß l C IR2n-2 heing the open f-ball), such that the curves

t 1-+ tj;(t,x)

are precisely the flow lines in Up, for every x E Ißl • Let

D l = (-f, f) X (0, r) X Ißf •

Then the map
D l ---+ TT M

'I1 : (0", r, x)~ rtj;(t, x)

is a real-analytic diffeomorphisnl onto its iInage. It is enough to show that the
composition map ho 'I1 is real-analytic. But using the fact that h was holomorphic
in a small neighbourhood of the zero section, we get that h 0 'I1 is real-analytic in
the region 10"1 < f,O < r < f, X E Ißf , and holomorphic in ( = 0" +ir for each x E Bt;.
Apply Theorem 3.3. 0

In the last section we shall need to know about complexifications of Lie groups.
We elose this section by connecting this notion with our adapted complex structures.

Let G be a compact, connected Lie group. The complexijication of Gis a complex,
connected Lie group Ge, and a group monomorphism L : G -+ Ge, such that for
any representation

X : G ---+ GL(n, C),

there exists a unique representation

XC : Ge ---+ GL(n, C),

with XC(L(a» = x(a), for every eleluent a in G. (See [Br-Di] for a detailed discus­
sion. )

The group Ge cau explicitely be constructed as follows. Take a faithful unitary
representation of G, i.e. imbed it as a elosed subgroup of U(N), for some large N.
Denote by g the Lie algebra of G. The undedying manifold for Ge is just G x g.
The group structure and the complex structure can be defined by pulling them back
with the embedding

G x g ---+ GL(N, C)

A : (a, Y)~ aexp(iY),

where exp is the usual exponential of a luatrix and product is ordinary matrix
multiplication.
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Proposition 3.4. Let G be a compact, cOIlllected Lie group. Equipp G witb a
two-sided invariant Riemannian metric g. Tllen (G, g) admits an adapted complex
structure on TG wllich can be CaJI0Ilically identified witll Ge.

Proof.
G, being a Lie group, is parallelizable. Hence TG = G x g. Because of homo­

geneity, to show that the complex structure on TG arising from (3.3) is adapted
to 9, it suffices to show that for every unit speed g-geodesic , through the unit
eleinent, ,. : TIR ---+ TG is holomorphic. It is well known (see [Ab-Ma, Corollary
4.4.13] for instance) that such geodesics are precisely the I-parameter subgroups of
G. Let X E g, and ,(0") := exp(O"x). The induced map is then

,. : TR "J C 3 a + iT~ (exp(aX), TX).

Thus

A 0,. :TIR 3 ( = a + iT~ exp(aX) exp(iTX) = exp((X),

is holamorphie in (. Therefore the complex structure of TC = G x 9 is indeed
adapted to g. D

4. Calculating the metric I\,g.

In this section we are going to give explicit formulas for /'\,g using symplectic
frames. But first we need to recall SOlne more notation.

Denote by Me the set of n x n complex matrices. For a Z E Me, we will use
the symbol Z T to denote the transpose (without eonjugation) of the matrix Z.

Re Z resp. Im Z will mean the n x n reallnatrix, obtained by taking the real
resp. imaginary part of every entry of Z. For areal Inatrix X, we will use the
symbol X > 0 to denote that X is symlnetrie and positive definite.

The subset of Me,

Tin = {Z E A1eI z = ZT, Im Z > O}

is ealled the Siegel 'Upper half plane. In partieular Ti! is the ordillary upper half
plane, that we also denote by C+.

Let (V, w) be again a sympleetie veetor spaee. A eOlllplex structure J : V ---+ V
is said to calibrate the sYlnpleetic fornl w, if the bilinear form w(u, Jv), u, v E V
is symmetrie and positive definite. We will denote the set of ealibrating complex
structures on (V, w) by :Jw.

Proposition 4.1. Let (V 2 n, w) be a symplectic vector space. Then Jw can be
identmed witb the Siegel upper balf plane Tin. Tbis correspondence can be denned
as follows. Fix a symplectic base tLl, ... , U n , v}, ... , V n . H J E :Jw, tllell the n­
tuples {tLj}1=1 and {Vj }1=1 botb provide a C basis of the complex vector space
(V, J). Denote by Z := (fkl) the transition Jnatrix, i.e.

(4.1)

9
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And viea versa, assume that Z = Re Z + ihn Z E 'Hn
. Then dec1aring {U j}1=1 and

{Vj }1=1 to be aC basis with transition matrix Z (as in (4.1)), we elenne a eomplex
strueture Jz : V -Jo V which ealibrates w, and ean be expressed as

(4.2)
n n

JZUk = L (Im Zr;k
1

[Vj - L(Re Z'j)u,).
j=l 1=1

Tbe matrix of the symmetrie, positive definite bilinear form w(., J.) in the base
Uj, Vk 18

(4.3) (
[Im Z]-l

. Re Z[Inl Z]-l
[Im Z]-l Re Z )

Re Z[Im Z]-l Im Z + Im Z

Proof. Left to the reader.

Proposition 4.2. Let X aJld Y be cOlnplex Inanifolds alld- e > o. Suppose we
have a smooth map I : (-e, e) x X -Jo Y and for every fixed -e < t < e, tlJe map
It(.) := I(t,.) : X -Jo Y is holomorphic. Let

~ = dltl dtlt=o .

Trus is a seetion of 10TYo. Then e1 ,o is a holonlorpme seetion of I;T1 ,oy.

Proof. . (cf. [Le-Sz] Prop. 5.1, p. 698) The statement is Ioeal, therefore we can
assume X = D] C Cn

, Y = D 2 C cm and I : (-e, e) x D] -Jo D 2 . We have to show
that dl/dtlt=o is holomorphic. But

Armed with the last two propositions, we are now ready to prove the main
"theorem of this section.

Theorem 4.3. Let (M, g) be a Rielnannian manifold and 0 < r ~ 00. Assume
that adapted eomplex strueture exists on T r M. Let, be a -unit speed geodesie
and (~1" .. ~n, 771,· .. ,77n) be a symplectic frame along tlle leaf L"Y' Let Dr := {( =
a + iT E C I ITI < r}. Denote by S c IR tlle discrete set oE points a E IR, for
wmch tlle vectors e1(a), ... ,en(a) E T"Y(u)M are linearly depen~ent. (see (2.1))
Then there exist meromorphic Inaps Ijk : Dr -Jo Cu {oo}, 1 ::; j, k ::; n, which are
holomorpmc on D r \ S and

(4.4)

Let TR. "J C as in (3.1). Tben

(4.5)
n

77~'o(,*(()) = L !jk(()e}'o(,.(()),
j=l

10
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and k = 1, ... ,n. For u E IR \ S, 'Pjk(U) = !jk(U), (see (2.1). Let ( E D r \ IR and
p := -Y.(() and Jp : Tp(TM) ~ Tp(TM) be the adapted cOlnplex structure. Then

(4.6) Jp~k(p) = ~(Im F)ü/(() [7)I(P) - t(Re !jl)(()~j(P)] ,

and for the "g Kahler metric (remember (PROP.I)) we obtain

(ei(p),~k(p))Kg = Ilpllg(Im F)ik1
((),

(4.7) (~i(p), t]A:(P))Kg = llpllg [(In1 F)-l Re FLk ((),

(t]i(P), 'lk(P))Kg = Ilpllg [Re F(Im F)-l Re F + Im FLk (().

Proof. (Compare with [Le-Sz].)
From (PROP.II) we know that the I<ahler fornl of K g is 0, .the symplectic form

of the tangent bundle. Thus für any pE TrM \ M, and X, Y E Tp(TM),

(4.8) (X, Y)K = O(JX, Y) = Ilpllo [( -l/llpllo)O(X, JY)] .

This implies that the adapted complex structure Jp : Tp(TM) ~ Tp(TM) calibrates
the symplectic form

(-1/llpllg)S1p ·

Then Proposition 4.1 teIls us that for any ( E D r \ R,

resp.

are both (>basis of the vector space T~:~,)(TM). If U E IR \ S, then {~j(U)}j=1

being an R basis of the vector space Ti(a) (and Ja : Tu(TM) ~ Ta(TM) being

the canonical complex tensor), is also a C basis of T~(~)(TM). Therefore for, any

( E D r \ S, there exists a matrix F(() = (!jk(()j,k=l such that (4.5) holds. (3.2)
and (2.1) gives the equality ('Pjk(U)) = (!jk((J')), U E IR \ S. From Proposition 4.2
we know that the maps

t~ ,0 1J~ ,0 . D ---+ T1,O(TM) . k 1
~J "1) • r ,], = , ... , n

are all holomorphic. Hence F is holomorphic on D r \ S and meromorphic on D r .

Then (4.4) follows from Proposition 4.1, and (4.2) i1uplies (4.6) and (4.3) together
with (4.8) yields the expressions of the nletric in (4.7). 0

Proposition 4.4.

(a) Let (Mj,gj), j=1,2 be Riemanniall manifolds witb adapted complex struc­
ture defined on Tr M j , 0 < r :::; 00. Then the adapted complex structure
of (MI x M 2 , gl X 92) is tbe product of tl1e cOlnplex manifolds Tr MI and
TrM2 •

(h) Let (M, g) be aRiemanman mallifold, alld 0 < r :::; 00. Suppose adapted
complex structure exists on Tr M. Assurne also tllat N is a totally geodesie
submanifold of (M, g). Tben TrN c TrM is a complex submanifold and
its complex structure is adapted to giN'

11



Proof. (a) is immediate frorn Definition 3.1 and the uniqueness of an adapted COffi­
plex structure . (See [Le·Sz, Theorem 4.2]) For the case (b), use (4.6) and totally
geodesity to show that for any p E Tr N l Tp(TN) is a Jp invariant subspace of
Tp(TM). This yields that TrN is in fact a cOlnplex submanifold (obviously an
adapted aue). 0

5. Holomorphic isometries of tubes with finite radius.

In this section we only deal with tubes Tr M, with 0 < r < 00. The case r = 00

will be treated separately in Sections 7 and 8. This separation seems natural because
the camplex analytic properties of these two kind of complex manifolds are quite
different.

Proposition 5.1 (Schwarz lemma). Let (Mn, g) and (Nn, h) be compact Rie­
mannian manifolds and 0 < r, S < 00. ASSUlne tbat adapted complex structure
exists on TrM and T~N. Let

be a holomorphic map sud] that

<I>(M) c N.

Tben

(5.1)

Proof:.

Let u(p) := Ilpllg and v(p) := 1I<I>(p)llh' From (PROP.I) we know that u and
v are plurisubharmonic. Let 7] be a small but positive real number, fixed for the
mOlnent. Define c" by

c" := max{v(p) 1 u(p) = r - 7]}.

For every positive f the function

C
W l := --"-u + €

7' - 7]

takes the value c" + € on the set

and hence

w l ISr _'1 > vI Sr _'1 •

For every small enough fJ > 0, WE > v on the set {lL = 8}. Both W l and v satisfies the
Mange-Ampere equation on TrM \ M. Applying the minimum principle of Bedford
and Taylor (see [Be-Ta]) for the functions W E and v on the domain

12



we get
wll D ~ vl D .

6" 6"

Because the minimum of w" is f and v goes to zero as we approach M, we obtain
that

W l 2:: v, on {p E T r M I u (p) ::; r - 7]}.

Let now f go to zero. This yields

(5.2)
C__'l_u > V- ,

r-7]
on {p E T rM Iu (p) ::; r - 1] } •

Fix now a point p in TrM. For every small enough 7], u(p) < r - 7]. It follows then
from (5.2) that

C
_'l_u(p) ~ v(p).
r-7]

Let now "l go to zero. Then the denonünator goes to r and c'l is bounded above by
8. This gives (5.1). 0

Theorem 5.2. Let (Mn, g), (Nn, h) be COlnpact Riemannian manuolds and 0 <
r,8 < 00. Assume that adapted complex structure exists on T r M alld T~N. Let

q.: TrM -+ T~N

be a biholomorphism, such tbat

q.(M) C N.

Then
f := <I>I M : (M,8g) -+ (N, rh)

is an outo isometry and ~ == f. : TrM -+ T~N.

Proof:·
The fact that q. is a biholomorphism alld that N is compact and connected

gives that J is indeed onto. Denote by K g and Kh the I(ahler lnetrics on T r M and
,TtJN, induced by the strictly pIurisubharmonic Kahler potential function 11 11 ~ and
11 II~ accordingly (PROP.!). Applying our (5.1) Schwarz lemma for both <I> and its
inverse, we obtain

(5.3) pE TrM.

It follows easily from its definition that rescaling the metric does not change the
induced complex structure, i.e. for any A > 0, g and Ag have the same adapted
complex structures defined on the same tube except the radius is measured with
different scales. Thus

~ : (Tr M, "~g) -+ (T r N, "rh)

is a biholomorphic isometry. This, together with (PROP.III) implies that

f: (M,sg) --+ (N,rh)

is indeed an isometry itself. Hence J., (see (PROP.V)) and ep are both biholomor­
phic and agree on the maximal dimensional totally real (PROP.III) submanifold
M. This implies that they lnllst agree everywhere. 0

13



Theorem 5.3. Let (Mn, 9), (Nn, h) be COlllpact Riemannian manifolds and 0 <
r, s· < 00. Assume that adapted COlllplex structure exists on TrM and TlJ N.Denote
by K. g and K.h tbe lllduced !(ahler Inetrics on TrM and TlJN. Let

(5.4)

.be a biholomorpbic isometry. Tben r = s. Denote by f the restrietion oE cl' to M.
Then f maps M isometrically onto N and cl' == f •.

Proof:·
We can Msume that s ;::: r. Denote by PI and P2 the norm~square functions on

T rM and TlJ N aceordingly. Now (5.4) yields

(5.5)

Let
h := P2 o<P - PI + 1'2 - s2.

It follows from (5.5) that h is a pluriharmonie funetion on Tr M.
Let / : IR ~ M be an arbitrary unit speed geodesic, parametrized by arclength.

Let v := h 0/•. Notiee that beeause ,. is holomorphic, v is a harmonie funetion
on·the domain D:= {CT+ir I (j E lR,lrl < r} .. Frolll the definition of hit follows
that v is bounded by 2(r2 +8 2 ). Furthermore if (n E D, en ----+ 20 = (ja + iro with
Iro I = T, then v((n) must go to zero (<p is a biholomorphism). This yields that v
must vanish everywhere. This is true for every geodesie, thus h must also vanish
identieally. Henee we obtain

(5.6)

~ is biholomorphic, so we eau take a point p E Tr M with 11iI'(p)lIh = O. Since we
assumed 8 ;::: r, (5.6) implies T = s and

Apply Theorem 5.2. 0

Theorem 5.4. Let (Mn,g), (Nn,h) be cOlnpact Rielllannian manifolds and 0 <
rl ,r2 < 00. Assume that adapted complex structure exists on Trt M and T r

2 N.
Let ep : Trt M ~ T r

2 N be a bibololnorphislll, whicb preserves a level set o{ the
norm {unctions, i.e. suppose tbat {ar 0 ::; Sj < Tj, j = 1,2, ep maps the level set
{llllg = SI} into {lll!h = S2}' Then

(5.7)

and the map f := <1>I M maps M diffeonlorphically onto N,

.(5.8)

is an iSOlnetry and ep =f •.
Proof:·

14



Because of dimension reasoils, SI = 0 implies 82 = 0, and vica versa. This
case was treated in Theorem 5.2. Heuce we can assume that SI and S2 are both
positive. Deuote by u the norm function 011 Tri M and V on Tr 2 N accordingly. As
in the proof of Theorem 5.2, we can conclude that ~ maps the level set {u = 8I}
diffeomorpmcally onto the level set {v = S2}'

As in the proof of Proposition 5.1, let 7] be a small positive numher, and let

c,,:= max v 0 ~.
u=rl-"

Let 7] be so small that Tl -1] > SI. Since M is connected, TrI M \ {llllg = SI}, resp.
Tr 2 N\ {llllh = 8Z} has two components. One which containes the zero section, Dtt
and D{;', and one which does not, Dt1 and Di'. Since ~ is a diffeomorphism, only
two cases could occur. First possibility is that nnder <1>, Dfl and Df! correspond
to each other. But D&' is homotopically equivalent to a cOlnpact n-dimensional
manifold, namely N and Df'/ is hOIllotopically equivalent to a compact (2n-1)­
dimensional manifold, namely the unit sphere bundle of M. For instance looking
at homology groups, it is clear that this case cannot occur. Hence, uudel' the map
«P, Dtt and D&' (resp. Dtt and Dt') correspond to each other.. Thel'efol' we get
c" ~ Cz. Let v be defined by

c" - 8Z T1 8 Z - S27] - CJ1 S 1(5.9) v := U + ,
Tl - 1] - SI Tl - '7 - 81

and let D J1 = {81 < U < Tl - 1] }. Then V is pIurisubharmonic and

vlaD'l ~ v 0 <I>laD" .

Thus the minimum principle of Bedford and Taylor ([Be-Ta]) implies

(5.10) vlD'l ~ v 0 <I>ID" .

Let now p be a fixed point in TrI M, with 81 < U (]J) < rl. Then for every small
enough positive 7}, p E D w Hence (5.10) holds. Let 1] go to zero. Then c" will go
.to TZ and from (5.9) and (5.10) we obtain

(rz - 8Z)U(p) +TISZ - TZ 8 1 ~ (rl - Sl)V(<I>(p)).

Repeating this a.rgument for the inverse of <I>, we obtain that in the domain

{p E Tri M I 81 < u(p) < 7'l}

we have

(5.11 )

Thus

«P: ({p E TrlM 1 81< u(p) < Tl},K(r2-.'i2)g)

-4 ({q E T r2N I 8Z < v(q) < Tz},K(rl-"dh)

is a biholomorphic isometry. Using the fact that analytic continuation of an isom­
etry is an isometry (see for instance [I(o-No, Lemnla 3, p.253]), we get

;J" • (Trl(r2-.82)M ) (Tr 2(rl -"dN )
~ . ,K(r2-82)g -----. ,K(rl-"dh

is a holomorphic isometry. (Here we measured the radii of the tubes in the new,
rescaled metries.) Then Theorem 5.3 implies (5.7) anel (5.8). 0 .
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6. Biholomorphisms of tubes with finite radius.

Now that we cornpletely described all the biholomorphic isometries of our tube,
we would like to drop the condition isometry and want to study the bihololuorphism
group of TrM, that we denote by Aut(T r M).

First let us recall a few definitions. Let X, Y be conlplex manifolds. Deuote by
Hol(Y,X), the set of holomorphic maps. A sequence {In} C Hol(Y,X) is called
compactly divergent if for every pair of cOlupact sets K 1 C Y, K 2 C X, there exists
an index no, such that In(K1 ) n /(2 = 0 for n ~ no. A family :F c Hol(Y, X) is
called norm.al, if every sequence in :F adnlits either a convergent subsequence 01' a
compactly divergent one.

Denote by U the unit disk on the complex plane. A cOlnplex manifold X is called
taut if H ol(U, X) is normal.

Theorem 6.1. (see [Ba, Theoreln 2]) A cOlnplex Inanifold X is taut iff for any
complex Inanifold Y, H ol(Y, X) is Donnal.

A complex manifold X is called hyperbolic (in the sense of Kobayashi) if the
Kobayashi pseudometric is a genuine metric on X.

Theorem 6.2. Let X be a cOlnplex Inanifold. Suppose X adnlits a bounded
strictly plurisubharmonic exhaustion fUllction. Tllell X is a taut and hyperbolic
Stein manifold and Aut(X) is a Lie group .

Proof:. The fact that X is taut, is proved in [Si, Corollary 5]. Tautness implies
hyperbolicity (see [I(ie]). Hence according to a theorem of I(obayashi (see [I(ob]),
Aut(X) is a Lie group. Steinnes follows froln Grauert's theorem. 0

Theorem 6.3. Let X n be a cOlnplex Inanifold wbicb admits a bounded strictly
plurisubbarmonic exhaustion function. Suppose tllat tbe n-tb homology group,
Hn(X, Z) is finitely generated and nonzero. Tben X is a taut Stein manifold,
Aut(X) is a compact Lie group. Furthennore if I : X -+ X is a holomorpllic map
.which induces an isomorphism of Hn(X, Z) and I is iIljective, tllen I E Aut(X).

Proof. The theorem is essentially contained in [Mo, Theorem 1], except that Mok
works with manifolds with a stronger assumption than ours, n~mely he treats COID­
plex manifolds which are hyperbolic in the sense of Caratheodory. Hut the only
place in his proof where he uses this stronger condition is to prove his Proposition
1.1. This cau be bypassed by using Theorenl 6.1 and 6.2 above. The rest of Mok's
proof works in our situation as weIl. 0

It ia not possible to apply Mok's Theorenl literally to our tubes, because they
can be non-Caratheodory hyperbolic, as the following example shows.

Example 6.4-
Let (M, g) be a compact Riemannian lnanifold of constant sectional curvature

minus 1/4. Then of course M will be a quotient of the real hyperbolic space Hn,
(M, g) f'O,.J Hn /r . (Here r is some discrete subgroup of the isometry group of Hn.)
H we take the unit ball of Rn with the Cayley-Klein metric h, we get a model of
Hn and a modification of the construction in [LeI] gjves that the adapted complex
structure of (H n , h) on T~H ia naturally biholomorphic to D := (cn\IRn)UHn. 'The
isometries of Hn act on T 1tH by bihololnorphisms and the quotient map (T7r H) -+
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T 1f H/r = T1r M is a holomorphic covering. (TJr M also equipped with the adapted
complex structure .)

Now if f is any bounded holomorphic function on TJrM, then pulling it back to
D = T 1fH, we get a bounded holomorphic function on D. If n is at least 2 then
such a function must extend to the whole en to give a bounded holomorphic and
thus constant function. Therefore even though TfrM is I(obayashi hyperbolic, its
Caratheodory pseudometric is identically zero. D'

It was a problem, proposed by H.Wu, whether the existence of a bounded strictly
pl~isuhharmonicexhaustion function implies not only hyperbolicity, hut complete
hyperbolicity. This was refuted hy an exanlple of Sibony (see [Si]). It seems to
be an interesting question, which we cannot answer at the moment, whether this
large dass of complex manifolds nalnely our tube dOlnains Tr M are all complete
hyperbolic 01' not .

.Theorem 6.5. Let (M, g) be a cOlllpact llienlfumiall lllanifold. Assume tbat adap­
ted complex structure exists on Tr M for SOlDe 0 < 7' < 00.

a) Tben Tr M is a taut Stein lnanifold.
H M is orientable, or tbe wliversaI cover is cOlllpact, then

hi) Aut(Tr M) is a cOlnpact Lie grollp, and
bii) for any 0 < s < S ::; r, the complex manifolds TtJ M and T S M are not

bibolomorphic.

Proof:.
From (PROP.!) we know that the norm square function on Tr M is a bounded

strictly plurisubharmonic exhaustion function. Thus a) follows from Theorem 6.2.
If M is orientable, then Hn(Tr M, Z) ~ Hn(M, Z) rv Z. Therefore bi) and bii)

folIows from Theorem 6.3. (When S < r 01' the adapted complex structure extends
to a definitely larger tube than Tr M, then we do not need to rely on Mok's theorem,
it is enough to quote a much easier fact [Be2, Corollary 1.5].)

Now suppose that M is not necessarily orientahle hut the universal cover M is
compact. We can lift the metric g~o M to obtain g. Then (J:!...,g) will admit an

adapted complex structure o~ TrM. The cov~ing map p : M ---7 M induces a
.holomorphic covering P. : T r M -+ TrM. Since M is Silllply connected, anyelement
of Aut(TrM) can be lifted to give an element of Aut(TrM). Sinlilarly any element

of Hol(TS M, TtJ M) can be lifted to an element of Hol(TS M, T8 M) and lifts of
bih~morphismsare biholomorphic maps. Applying what we have already proved
for M, we are done. 0

Remark.
Suppose that the compact Rielnannian Inanifold (M, g) admits-an adapted eom­

plex structure on TrM, 0 < r ::; 00. Assuule the the Euler characteristic of M is
negative. Then the Stein manifold Tr M can never be affine algebraic. This fol­
lows from [To, Theorem 2/2], sinee after identifying the tangent bundle of M with
its cotangent bundle, the I<ahler fonn beCOlnes the standard symplectic form and
T·rM and T· M ean easily be seen to be orientable diffeomorphic. (Orientation is
defined by the standard symplectic form.)
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Proposition 6.6. Let (M, g) be a cOlnpact Riemculllian manifold, witb an adapted
complex structure on T r M [or SOUle 0 < 7' < 00. Tlle Inap

(1 : Aut(TrM) -+ Aut(TrM), G(~ )(p) := -tI-( -p),

is an involutive automorphisnl of the group Aut(TrM). The fixedpoint set of (1 is
precisely tbe isometry group I s01n(M, g), alld tllus (denoting by index u the unit
eomponent of a group)

is asymmetrie spaee (eompaet if M is orientable or tlle universal eover of M is
eompaet).

Proof:·
From (PROP.IV) we know that the map

is an antiholomorprne diffeomorphism. Henee (1 really maps into Aut(TrM). The
faet that (1 is an involutive automorphisIll is straightforward. Suppose that tP E
Aut(TrM) and (1( tI-) = ~. This implies in partieular that tI- preserves the zero
seetion. The rest follows then froln Theorelll 5.2 and Theorem 6.5(bi). D

It is not clear, whether anything more, then they are compact, can be said in
general ahout the groups Aut(TrM). It would be interesting to see examples, when
Autu (Tr M) is really larger than the graupIsomuTrM. This would show that we
are able to move the zero seetion by a biholomorphism and that the symmetrie
spaee defined in Proposition 6.6 is nontrivial. This perhaps would lead to new type
'of invariants of the manifold M.

On the other hand if it turns out that Autu (Tr M) is always equal to I somu (M, g),
this would mean a certain rigidity property of our adapted eo~plex strueture . In
special cases with large isometry groups we are indeed ahle to show that this is
what really happens.

Theorem 6.7. Let (M,g) he a cOlnpact Rielnannian manifold. Suppose tbat a
compact, eonnected Lie group G acts trculsitively Oll M hy isometries. Tbell tbere
exists an 0 < s ~ 00 such tbat adapted complex strueture exists on T~M. Let R
be the critical radius (see Seetion 3.). Let 0 < r ~ R, but finite. Suppose that
the isotropy representation of tlle isotropy group of G lulS no COlnlnon eigenvector.
Assume furthermore that M is sünply eonlleeted. Let r be any discrete subgroup of
Isom(M, g), such that M:= Mir is a manifold. Denote hy gr the projection oEthe
me.tric g. Tben eM, gr) admits an adapted eomplex structure on T r M. Moreover

(6.1)

and

.(6.2)

Aut(TrM) = Isom(M,g)
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Proof:·
Because G is transitive on M, the metric 9 is real analytic. Hence existence of

an r with adapted complex structure on TrM follows from [Sz2]. We cau lift the
elements of Aut(TrM) to get elements of Aut(TrM). Heoce it is enough to prove
(6.1).

FrOfi Theorem 6.5(bi) we know that Aut(TrM) is a compact Lie group. Denote
by''lj; the average of the norm-square functioo, i.e. let

'lj;(p) :=1 11<I>(p)11 2
dvol,

lJIEAut(T'" M)

where dvol is the two sided invariant Haar measure on Aut(TrM). 'lj; is Aut(TrM)
'invariant and strictly plurisubhannonic. 0 ::; 1/J < 1,2 and easy to see that 'lj; is an
exhaustion function. Let

S := {p E T rM 11/J(p) = 1/Jmin}'

Then 8 is Aut(TrM) invariant and also totally real (see [Ha-We]) and thus its
dimension is at most n. By our assumption on the isotropy group of G, auy point
q in T r M \ M must have an orbit, under the isotropy group action, of dimension
at least one and therefore an orbit, under the group action G, of diInension at least
n + 1. Hence S must be a subset of M. But G is transitive on M. Thus S must
be equal to M. That means M is Aut(TrM) invariant and so Theorem 5.2 finishes
the proof of (6.1). 0

Theorem 6.7 covers, among others, all the eompact rank one symmetrie spaees
and thus generalizes a theorem of Bedford who proved (6.1) and (6.2) for the round
spheres (see [Bel]).

7. Holamorphie isonIetries of the form TM -.. TN.

In this and the next Section we will be working with Riemannian lnanifolds
(M, g), which admit adapted complex stnlcture on its entire tangent bundle. The
arising complex manifold TM will never be Kobayashi-hyperbolic, unlike the tubes
with finite radius, beeause auy geodesie , in AI induces a nOJ;ltrivial holomorphie
map 1* : TR ~ C -.. TM, by definition. This makes the situation harder, for we
do not apriory know whether Aut(TM) is a Lie group 01' not. In fact this group is
not always finite dimensional, as the following example shows.

Example.
The tangent bundle T SI of the unit eircIe, equipped with the adapted complex

structure induced by the standard lnetric on SI, is nothing else than the punctured
complex plane C*. Denote by Tn = 8 1 X ... X SI the n-dimensional torus with
the product metrie. It follows from Proposition 4.4 that T(Tn) with its adapted
eomplex structure is biholomorphic to c*n := C* x ... x C·. Let know f be auy
holomorphic funetion on the eomplex plane. Then the map

Cn
--. Cn

<I>: (ZllZ2,Z3, ... ,Zn) t---+ (e!(Zl,Z2)Zlle-!(Zll%2)Z2,Z3, ... ,Zn)
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is an element of Aut(C·n). In fact we could take any flat metric on Tn, the induced
adapted complex structure on T(Tn) would aU be biholomorphic to each other and
thus to C·n • This shows the infinite dimensionality of Aut(T(Tn)).

Now we would like to prove an analogue of Theorelll 5.3.

Theorem 7.1. Let (M,g) and (N, h) be compact llielnannian manifolds. Assume
tbat adapted complex structure exists on TM and T N. Suppose that tbe first
cohomology group of M with real coefflcients vanislles. Denote by "'9 and "'h the
Kahler metrics on TM and TN, induced by the metrics. Let

(7.1) ~: (TM''''g) -4 (TN,K,h)

.be a biholomorphic isometry. Tllen ~ nlaps M diffeomorphica1ly onto N and for
the restriction map, f : = ~ IM'

f: (M,g) -4 (N,h)

is an isometry and cP =f •.
Proof:.

Just as in the proof of Theorem 5.3, let PI and P2 be tohe norm-square functions
on TM and TN. (7.1) implies .

(7.2) aapl = if!·aap2 = aa(p2 0 cP).

Let

(7.3) h:= P2 0 cP - PI.

According to (7.2), h is a pluriharmonic function 011 TM.

We need two key observation to prove the theorelll.

Proposition 7.2. There exists a holomolJ)llic function 1-t. : TM -4 C with imagi­
nary part h.

Proo/ 0/ Propo"ition 7.2.
Let {Ua} be a covering of TM with "'g nletric-convex balls. Thus for any ll' and

ß, U0' n Up is also convex and in particular connected. We can choose each U0' so
small that it is contained in a local holomorphic coordinate patch and that on Ua

there exists a holomorphic function 1-t.a : U0: -4 C, with inlagiI1-ary part hIUco' This
holomorphic function is wen defined, up to areal constant. Since every U0: nUß is
connected, for every Q and ß we obtain areal constant caß, such that

caß = (HO' - Hp) IUconU" .

The data ({Ua}, {cap}) give us on TM a Cech cocycle with real coefficients. Denote
by jJ the Cech and by H the singular coholllology group. Then by our assumption

jJI(TM, IR) ~ HI(TM, IR) ~ HI(M, IR) = O.

It is weIl known that for auy (paracolnpact, Hausdorff) X, the vanishing of JJI (X, IR)
implies that the group jJ1 (X, {U0: } , IR) also vanishes. Hence there exist real num­
hers Co" with cp - Ca = caß. Thus the function H, defined hy Co' +HO' on the set Ua
is actually a wen defined holomorphic function on the entire tangent bundle with
imaginary part h. 0

We need one more ingredient to finish the proof of Theorem 7.1.
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·Lemma 7.3. Let I : IR ~ M be a unit speed geodesie. Then there exist areal
number ßi depending on , and a universal COllstant A E IR such tbat for every
complex number z = a + ir,

(7.4)

Froo/ 0/ Lemma 7.S.
Let x be an arbitrary element of N and q E TxN. Denote by dist", and dist"h

the distance function for the metric ""g and Kh accordingly. Fl'om (PROP.!II) we
know

(7.5)

Let now m be an arbitrary point of M and p E TmM. Denote by x E N the image
of the point q.(p) under the projection map 1t" : TN ~ N. (7.5) together with the
triangle inequality and the fact that q. is an isolnetry, implies

1I~(p)llh = dist"h (q.(p), x)
:s dist"h (q.(p), q.(m)) + dist"h (q.(m), x)

(7.6) = dist", (p, m) + dist"h (q.(m), x)

:s Ilpllg + IUax dist"h (<I>(a), b) = Ilpllg + C.
aEM,bEN

Taking square of both sides of (7.6), we obtain

(7.7)

Since h is pluriharmonic (see (7.2) and (7.3)) and ,. is holomorphic, the function
v(z) := h(,.(z)) is harmonic on the entire eomplex plane. The estiInate (7:7) gives
us an upper bound for the growth of v,

But harmonie funetions on the eomplex plane with such growth eondition can only
be linear (see [Sa-Zy, (10.13), p. 335]). Thus there exist real eonstants ßi and Ai
such that

v(z) = ßir + Ai'

·Notiee that Ai is the value what the funetion h takes along the curve,. In partie­
ular h is a eonstant funetion along any geodesie in M. But geodesies interseet each
other and thus h mnst be constant on M. This ilnplies that Ai does not depend
on,. 0

End 0/ the proo/ 0/ Theorem 7.1.
Let now I be any unit speed geodesie in M. It follows from Proposition 7.2,

(7.3) and (7.4) that the holomorphie funetion 1i(,.(z)) fiUSt be of the form

(7.9) 1i(,.(z)) = ßiz + iA + Ai'
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for some real number Ä,. By our assumption M is compact and hence the real
part of 1-l is bounded there. Together with (7.9) this implies that ß, = O.

Therefore (7.4) rearls as

(7.10)

This is true for every unit speed geodesic. Thus

(7.11 ) 11<p(p)ll~ = Ilpll; + A,

for, every p E TM.
Plugging a point of M into (7.11) we obtain that A fiust be nonnegative. On the

other hand <P is onto and thus for sonle p E TM the left side of (7.11) fiust vanish.
This gives that A = 0 and therefore <P maps M diffeomorphically outo N. <p. was
an isometry, thus its restrietion to the zero section, which we will call f, will also
be an isometry. From (PROP.III) it follows then that f : (M, g) ~ (N, h) is also
'an isometry. The bihololnorphisnls <P and f. (see (PROP.V) agree on the maximal
dimensional totally real subset M, hence they luust agree everywhere. 0

RemarL.
If we drop the condition on the cohomology group of M in Theorem 7.1, then

in general there can be other biholoillorphic isoluetries besides the ones that come
from isometries between M and N. For instance take (M, g) to be a flat torus
Tn, Le. a quotient of an with respect to a lattice r. The cOlnplex manifold T(Tn)
(equipped with the adapted complex structure) is just cn Ir. In cn auy translation
with a nonzero, purely imaginary vector is a hololllorphic isometry, which descends
to cn Ir and does not respect the zero section torus.

But in fact this is the worst what can happen. More precisely, assurne that we
are given two compact Riemannian manifolds (M, g) and (N, h). Suppose that both
ad~its adapted complex structure on its entire tangent bundle. Let us given an

biholomorphic isometry. From [Le-Sz] we know that the existence of a global adap­
ted complex structure induces non-negative curvature. That m~ns aH th~ sectional
curvatures of (M, g) and (N,~) are non-n~gative. Denote by M resp. N the uni­
versal covers, and by 9 resp. h the puH back lnetrics.

From [Ch~Gr] we know that (il,g) and (N,it) split isoluetrically, Le.

...., - ,..,." I
(N, h) = (No X IR. ,ho X ge),

where (Mo, go) and (No, ho) are compact simply connected Riemannian manifolds
with global adapted complex structure and ge clenotes the Euclideau lnetric. cP can
be lifted to a

biholomorphic isometry. Therefore k = I and there fiust exists an
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.and an

biholomorphic isometries, such that

Accormng to Theorem 7.1, there must exists an

isometry with 1. =4»1' cI»2 can of course be only a unitary action plus a translation
with a vector in Cl:.

8. Complexifying the iSoluetry group action.

In the previous section we obtained a reasonable clear picture how the biholomor­
phic isometries look like between the tangent bundles of two Riemannian manifolds.
Now we would like to drop once again the extra condition isometry and wish to
study the biholomorphism maps between TM allel TN. Eut this task seems far
too ambitious at such generality. At the moment we cannot even answer to such
·"simple" questions as the following.

From [Sz2] 01' [Stl] one knows that the round metric on the n-dimensional sphere
sn induces its adapted complex structure on the entire tangent bunelle and as a
complex manifold T sn is biholomorphic to the affine hyperquadric, Qn

Question: what is the biholomorphism group of Qn '" TSn? Even though we do
not know the answer to this question but it is obvious that the complex orthogonal
group O(n + 1,C) is a subgroup of Aut(Qn).

Notice that O(n +1, C) is the complexification of the compact Lie group O(n +
1, IR) which is the isometry group of sn. This is the key observation and in this
section we would like to show that this example is not special, but in fact it is the
general case. First we need some preparatory lelnlnas and propositions.

Let us recall Fatou's classic theorenl concerning representations of positive har­
monie functions defined on the upper half plane C+.

Theorem 8.1. (Fatau, see (I{oo}) Let u be a positive hannonic function deEned
on C+. Then there exist a non-negative Borel lneasure J-l on tlle rea1line and a
·non-negative real number a, such tllat IrR 1/(1 + t 2 )dJ-l(t) is finite and for any ( in
the upper half plane

(8.1) 1 1m r .u(( = u + ir) = ar + - 1 12djL(t).
7r jRw-t

Define the domain Du by

Du := {( = 0" + ir E C 110"1 < 1,1 < r}.
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Lemma 8.2. Let ( = a + ir E Du and t be an arbitrary realllumber. Then

(8.2)

(8.3)

1 r

3r(1+t2) < r2+(a-t)2'

3 (r-1)2
1 + t 2 > [(a - t)2 + 1][(a - t)2 + r 2 ]"

Proof. Elementary and left to the reader.

Lemma 8.3. Let J be an J : C+ --+ C+ bololllorp11ic function, and ( = a+ir E Du.
Tben there exists a11 0', 0 ::; 0 ::; Im J( i), such that

IRe f(u + ir)1 ~ IRe f(a + i)1 + 'I'31n1 f(i),

(8.4) Im f(a + ir) ~ 1111 f(a + i) + '1'31111 feil + o{r - 1),

Im f( ') 0(3r2
- 1) + Inl feil

a + tr > .
3r

Proof. Applying (8.1) to the imaginary part of f, for al1Y ( = u + ir E C+ we get
(for some nonnegative 0 and nonnegative Borel measure J-l)

(8.5) Im J(17 +ir) = ar +..!:. { ( ;2 2dl'(t).
7r iR a - t + r

In particular for ( = i, (8.5) gives

(8.6)

Since J.l is nonnegative, this yields that 0 is in the desired range.
Applying the estimate (8.2) to the integrand in (8.5) and using (8.6), we obtain

Im J(17 + ir) > ar +..!:. { (1 2) dl'(t)
7r Ja 3r 1 + t

Im feil - 0
= or + .

3T

This proves the last inequality of (8.4). To prove the first two, we have to
differentiate (8.5) with respect to (:

/,(0' + ir) = 0' +..!:. { ( 1. )2 dl'(t).
1T irR. u - t + ZT

This yields, by changing the order of integration,
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J(a + ir) = J(a + i) +1:: iT

f'(()d(

(8.7) = J(a + i) +1::iT (a + ~L(( ~ t)2 dll(t)) d(

f( ') . ( ) 11 i(T - 1) d ( )= u + z + Ul' T - 1 + - ( ')( . ) Jl t .
7r IR u - t + z u - t + tT

Using (8.3) and (8.6), we can estimate the integral in (8.7) by above,

I~ [ [ i(~l[ 1) . 1dll(t) I :<:::: J3 [ 1 1 2 dll(t) :<:::: V3Im J(i).
7r lIR a - t + 1 a - t + ZT 1T 1'R. + t

Applying this estimate and taking real and imaginary parts of (8.7), we obtain
.the first two inequalities of (8.4). D

Lemma 8.4. Let F : e+ --+ 'HH be a 11olo111orphic 111ap. Let w E C alld ( E Du.
Denote by(.,.) the ordinary bennitian scalar product on eH. 'r11en

[(Re F()w, w)1 < I(Re F(u + i)w, w)1 + V3(Izn F(i)w, w),

(8.8) (Im F(()w, w) < (Izn F(a + i)w, w) + (T + J3 - l)(Im F(i)w, w),

(Im F()w, w) > (T(I11] F(i)w, w) )/3.

Suppose now that we bave a continuous 1nap

wbere K is a compact topological space. Asstune that for every x E K the map

F(., x) : C+ --+ 'Hn

is holomorphic. Then tbere exists a cOllstant A > 0, such tllat for every ( = U+iT E

Du, and x E K we have (1111 denotes tbe ll]atrix llonn)

(8.9)

liRe FI!((, x) ::; A,

11111] FII((, x) ~ A(r + 1),

11(1111 F)-lll( (, x) < AT.

Proof. Ta prave (8.8), we can assulne that w f:. O. Then the function

fw(():= (F()w,w)

is holomorphic and the real resp. iInaginary part of fw is (Re F(()w,w), resp.
(Im F(()w, w). Therefore fw maps C+ into itself alld we can apply Lemma 8.3
(and the fact that 0 ~ a ::; In1 f w(i) in the formulas in (8.4)) to obtain (8.8). By
compactness argument, (8.9) follows imlnediately. D
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Proposition 8.5. Let (M, g) be a Rielnannian lllanifold which adlnits an adapted
complex structure on the entire tangent bundle. Let X be an elenlent oE tbe Lie
algebra oE tbe isometry group I sorn(M, g). Denote by X# the induced infinitesimal
vector neld on TM (by the action oE I sO'ln(M, g) on TM). Then X~o is hololnorphic
on TM.

Proof. I som(M, g) acts on TM by biholomorphisms. (see (PROP.V)) Let

f: IR x TM --t TM

(t,p) r------? (exptX).p.

Then X# = df /dtlt=o' Apply Proposition 4.2. 0

Theorem 8.6. Let (M, g) be a compact Rienlalllliall Inanifold. Suppose tllat
adapted complex structure exists on the entire tangent bundle. Let ""g be tbe
induced Kahler metric. Let X be an elelnent of tlle Lie algebra of the isometry
group Isom(M, g). Denote by X# tlle incluced ürnnitesiIlla1 vector neid on TM (by
the action of Isom(M, g) on TM). Thell there exist positive constcults Ax and Ex
such that

(8.10)

fOT every p E TM.

Remark. Let (Mn, g) be the standard rotmd sphere sn. Let X j be an orthonormal
base of the Lie algebra so(n +1). Then we can read off from [St2] that for pETsn,

L IIXj#112 (p) = O(llplI9')' 80S IIpI19 ~ 00.

j

This shows that the estimate in (8.10) is not sharp, but it is enough to prove that
the flow of the vector field JX# is cOlllplete (See Corollary 8.7 below).

Pro%/ Theorem 8.6.
Let p be a point in TM with nonn one. Let f be a small, positive number.

Denote by D E the umt ball in IR2 n-2. If f is slnall enough, then we cau choose a
neighbourhood Up of the point p in the. unit sphere bundle of TM, such that Up is
diffeomorphic to (-f, f) X Df. (because of Theoreln 3.2, we can assulne that in fact
we have areal analytic diffeomorphisl11) and under this diffeomorphism the curves
(for every fixed point x in the euclidean ball Df.)

correspond to the trajectories of the geodesie flow. Denote the image of the eu­
clideau ball 0 x D E , under the above diffeomorphism, by N. Thus N parametrizes
the trajectories of the geodesie flow in the neighbourhood Up •

Choose real analytic vector fields ~1, ... , ~n, 171, ... ,"ln in a neighbourhhod of Up

(the neighbourhood is still in the unit sphere bundle, but the vector fields are not
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all tangential to it, they are only sections of T(TM)), such that they are invariant
under the geodesic flow, and for every point q E N,

are the horizontal and verticallifts, of an orthonormal frame VI,' .. ,Vn E T1f(q)M,

and V n = q. For a fixed point q in the neighbourhood Up , take all positive multiples
of q, to get a half line in the tangent space T 1r(q)M. If we do this for every point in
·Upl the union of these half lines provides us a domain D p in TM. Extend now the
vector fields ~j, TJk to be defined on Dp and invariant with respect to the N~ actions,
(see (1.1)) for every positive s, and call these extencled fields with the same name.

Then for every q E N, the frame {~j, 7] j } j=1 is a symple~tic frame along the
leaf L q of the Riemann foliation, defined by q (see (1.1) and the discussion above
(2.1)). Since X# is coming from the isometry group action, the vector field X#
is parallel along every leaf of the Riemannian foliation. Moreover, according to
Proposition 8.5, Xi o is holomorphic. Therefore there exists smooth (in fact real
analytic) functions

(which we also consider to be defined on Dp , being constant along every leaf of the
Riemann foliation) such that in Dp ,

(8.11)
n n

X# = L aj~j +L ßk7]k.
j=l k=l

For a point q E N, denote by "Yq the unit speed geodesic, with initial datum 1'(0) = q.
From (4.5) we obtain a map

such that
n

TJ~,o("Yq.(()) = L fjk(()~J'o((),
j=l

and because of our choice, F is also real analytic in the subdoluain

{(( = u + ir,q) E C+ x N, lul < €}.

From (4.4) it follows that for every x E N', the Iuap

F(., q) : C+ -+ 'H n

is holomorphic. According to Theorem 3.3, this inlplies that

F : C+ x N --+ 'Hn

is real analytic. (Continuity would actually be enough for our purposes. ) Let
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(8.12)

Then (4.7) and (8.11) yields for any ( E C+, p:= /q ... (()

(X#, X#) 1(. (p) = 11pllg {((ln1 F)-l ((, q)a(q), a(q))

+ 2(((lm F)-lRe F)((,q)a(q),ß(q))

+ ([(Re F(Ilu F)-l Re F)( (, q)

+.Irn F((,q)]ß(q),ß(q))}.

Using our estimate (8.9), for K = Up, we can find a positive constant A = AU ,
p

such that for any ( = a + ir E Du, and q E N,

(8.13)
((Im F)-l ((, q)a(q), a(q)) "g ::; A(s~ Ilal12)r

1([(Im F)-l Re F]( (, q)0'(q), ß(q)) I(g I ::; A2
(s~ 110'11 s~ IIßII)r

1([Re F(Im F)-l Re F +Irn F]((, q)ß(q), ß(q)),.gl ::; (A 3
T + AT + A) s~ IIßI1 2

.

(By shrinking the neighbourhood Up a bit, all the sumpremums will be finite.)
(8.12) and (8.13) shows that for some Ä and B, and arbitrary z E Dp , with norm
at least one,

(8.14)

Our manifold M is compact, and its unit sphere bundle is as weH. Hence we can
choose the constants in (8.14) such that the estimate (8.14) in fact holds for every
point Z of the tangent bundle. 0

Corollary 8.7. Let (M, g) be a cOlnpact Riemanniall manifold wbich adlnits an
adapted complex structure on the entire tangent bundle. Let X be an element oE
tbe Lie algebra oE Isom(M, g). Denote by X# the indllced innnitesllnal vector neld
on TM. Then the fJ.ow oE J X # i8 COlllple te.

Proof·
For the sake of brevity denote again by p the nOlID-square function on TM and

by "-9 the induced I(ahler lnetric. FrOln [Le-Sz, Prop.3.2] we know that

Thus using the Cauchy-Schwarz inequality and Theareln 8.6 to estiluate the quan­
tity

(JX# )p(p) = (gradp, J X#) "g (p),

we obtain that there exist positive constants Cx and D x such that

Applying [Ab-Ma, Prop. 2.1.20], we are done. 0
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Theorem 8.8. Let (M, g) be a compact Rienlannicul manifold that admits an
adapted complex structure on its entire tangeJlt bundle. Denote by G the unit
component of the compact Lie group I som(M, g). Consider G as a transformation
group acting on TM by the induced action. Tbis G-action extends to a group
action of the complexined grOU]) Ge, and the 111ap

Ge x TM-+TM

1s holomorpbic. Tbe subgroup of Ge tbat consists of elements acting tr1v1ally on
TM 1s cliscrete.

Remark~.

If Gis a compact, connected Lie group that acts on a compact, complex manifold
X by biholomorphisms, then this action always extends to an action of Ge (also
by biholomorphisms). This was shown in [Gu-St, Theorem 4.4] The key fact they
used was that for a compact, cOluplex manifold X, Aut(X) is a complex Lie group.
(See [Bo-Mol and 2]).

When we drop the condition compactness, we are going to face two problems.
Firstly, it may happen that even though Aut(X) is still a Lie group, its Lie algebra
is totally real. This happens for instance for any bounded dOlnain in Cn (see [I<ob,
ChIlI. Theorem 1.3, or Bo-M02]). This makes of course the conlplexification of the
group action impossible.

Secondly it can happen that Aut(X) is so large that it is not even a (finite dimen­
sional) Lie group. This phenomenon does not apriory prevent us from complexifying
a group action hut certainly makes the situation harder.

In our setup this second possibility can occur as it was pointed out in the Example
at the beginning of section 7. Therefore we have to choose a more cumbersome
detour to get the same conclusion as Guilleluin and Sternberg.

When G is an arbitrary compaet, eonneeted Lie group and H is a closed sub­
-group, we ean form the homogeneous space GIH. We can equip this spaee with the
so ealled normal metric, to obtain a Rieulannian homogeneous spaee (GIH,g). It
was shown by M. Stenzel in [Stl] that the cOlnplex homogeneous manifold GelHe
ean naturally be identified with T(GIH), this latter equiped with the adapted
eomplex structure of the normalluetric. Theorelll 8.8 can be considered as a gen­
eralisation of this situation.

Pro%/ Theorem 8.8.
Deuote by A(TM) the coulplex vector space of holomorphic vector fields on the

complex manifold TM, Le. A(TM) consists of vector fields V such that Vl,o is a
holomorphic section of T1,oTM. In fact A(TM) becolnes a complex Lie algebra if
we take the obvious cOluplex lnultiplication anel Lie bracket= minus the ordinary
Lie bracket of vector fields. The integrability of the allnost conlplex tensor assures
that A(TM) is indeed a cOluplex Lie algebra. The reason for the sign convention
is to make things compatible with induced infinitesimal generators. (See below.)
Denote by 0 the Lie algebra of G. From Proposition 8.5 we know that for any
X E 9, the induced infinitesimal generator X# on TM belongs to A(TM). The
map

Oe = 0 + iO-+ A(TM)

8 : X + iY~ X# + JY#
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is a C linear Lie-algebra monomorphism. C linearity is obvious. Lie-algebra homo­
morphism follows from [Ab-Ma, Proposition 4.1.26] because of our sign convention.

Corollary 8.7 teIls us that every element of 12 := 8(gc) induces a one parameter
group of diffeomorphisms of TM. It follows from Palais' work (see [Pa]), that there

exists a unique, connected Lie group G, whose underlying group is a subgroup of
the group of diffeomorphisms of TM, the Lie algebra of Gis 12, the map

Gx TM ----4 TM

is differentiable (i.e. G IS a connected Lie transfonnation group on TM, each
element of Gdifferent from the identity acts nontrivially on TM), and Gextends
the G action on TM. (Hence G can also be considered a Lie subgroup of G.) "

Since 12 is a complex Lie-algebra, the corresponding group Gwill be a complex
Lie group. (Recall Proposition 3.4.) Let C he the universal covering group of G.
Then TC f'V Cc will be the universal cover of TG ~ Gc. By a c1assical theorem in
Lie theory, there exists a unique homolllorphisnl,

ß: Gc ---+ G,

with differential 8 at the unit element.
Therefore ß is a holomorphic covering luap. Then (since Gextends the action

of G)

Ker ß :> K = Ker (C -? G) = !(er (Cc -? Gc).

Thus we get a holomorphic covering map,

Li:GC=GC/K~G.

Hence Gc indeed acts on TM and !(er Li is discrete. (only the elements of !(er Li
act triviallyon TM.)

Since the Lie-algebra of G is 12 c A(TM), all the elements of G that belong
to al-parameter subgroup, act by bihololllorphislllS on TM. But these elements
"generate the whole group, hence G, and then of course Gc as weH, acts on TM by
biholomorphisms. This implies that the transfonnation map

ßC : Gc x TM ----4 TM,

is holomorphic in the second variable. Since ßC is smooth, in order to prove that
it is holomorphic in all its variables, it suffices to show that for any point p E TM,
the map

ß~: Gc -? TM,

is holomorphic. From Theorenl 3.2 we know that the metric on M is real-analytic
and therefore the restricted transformation map

ß := ßCl a : G X TM ----4 TM,
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is real-analytic and consequently ß~IGasweH. Since TM is aStein manifold, we
can think of ~ as a map going into CN for some large N. Equipping G with
a t.wo-sided invariant metric h, from Proposition 3.4 we know that TC with the
adapted complex structure of h is precisely Ge. Hence, using (PROP.VI), it suffices
to prove that for any unit-speed geodesie I ; IR -+ G, the composition map ß~0,. is
holomorphic. Since homogeneity, it suffices to check this for geodesics through the
unit element, i.e. for I-parameter subgroups of G. Let X E D, and ,(0") = exp(O"X).
The induced map is (just like in the proof of Proposition 3.4)

,. : TR '" C 3 ( = 0" +i T ~ exp((X) E Ge.

Hence the composition map ß~ 0/. can also be written as acomposition of the
holomorphic maps,

and
L 3 V t--+ xv(l),

and thus itself is also holomorphic. (Here X is the trajectory of the vector field
V E L with initial condition X(O) = V(p). This latter map is holomorphic since:
solutions of an O.D.E. that depends holomorphically on some parameters, also
depend holomorphically on the same parameters.) 0
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