```
A certain Dirichlet series attached to: Siegel
modular forms of degree two
    by
    W.Kohnen and N.-P.Skoruppa
```

Max-Planck-Institut
fur Mathematik
Gottfried-Claren-Str. 26 D -5300 Bonn 3

A certain Dirichlet series attached to Siegel modular forms

 of degree twoW. Kohnen ${ }^{1,2}$ and N. - P. Skoruppa ${ }^{1}$

1 Max-Planck-Institut für Mathematik, Gottfried-Claren-Str. 26, 5300 Bonn 3, Fed. Rep. of Germany
${ }^{2}$ Math. Inst. der Universitat Münster, Einsteinstr. 62, 4400 Munster, Fed. Rep. of Germany

Introduction

In this paper we shall study a certain Dirichlet series. $D_{F, G}{ }^{(s)}$ attached to two Siegel cusp forms F and G of integral weight k on $\mathrm{Sp}_{2}(\bar{\sigma})$, which formally could be viewed as an analogue of the Rankin convolution series in the theory of elliptic modular forms. By definition, its $N^{\text {th }}$ coefficient equals $\left\langle\phi_{N}{ }^{\prime} \psi_{N}\right\rangle$, where ϕ_{N} and ψ_{N} are the $N^{\text {th }}$ coefficients of the Fourier-Jacobi expansions of F and G, respectively, and $\langle,>$ denotes the Petersson scalar product on Jacobi cusp forms of weight k and index N.

By applying the Rankin-Selberg method with a certain non-holomorphic Eisenstein series on $S p_{2}(z)$ of Klingen-Siegel type, we shall prove that

$$
D_{F, G}^{*}(s)=(2 \pi)^{-2 s} \Gamma(s) \Gamma(s-k+2) \zeta(2 s-2 k+4) D_{F, G}(s)
$$

has a meromorphic continuation to \mathbb{C} and is invariant under $s \rightarrow 2 \mathrm{k}-\mathbf{2 - s}$. (§1). Since for k even the Γ-factor and type of functional equation is the same as that of the spinor zeta function of a Hecke eigenform of weight k and degree 2 , one might ask if in this case there is any
connection between $D_{F, G}^{*}(s)$ and linear combinations of functions $Z_{F_{i}}^{*}(s)\left(f \dot{F}_{i}\right\}$ a basis of Hecke eigenforms, $Z_{F_{i}}^{*}(s)=$ spinor zeta function of F_{i} completed with its natural r -factor).

Although in general this question remains unanswered here, we can prove two special results (§2). First, it will be shown that if F is a non-zero efgenfunction in the Maass space then $D_{F, F}^{*}$; ; coincides up to the factor $\left\langle\phi_{1}, \phi_{1}\right\rangle$ with $Z_{F}^{*}(s)$, in other words

$$
D_{F, F}(s)=\left\langle\phi_{1}, \phi_{1}\right\rangle \frac{\zeta(s-k+1) \zeta(s-k+2)}{\zeta(2 s-2 k+4)} L_{f}(s),
$$

where f is the normalized Hecke eigenform of weight $2 \mathrm{k}-2$ on $\mathrm{SL}_{2}(Z)$ which corresponds to F under the Saito-Kurokawa lifting, and $L_{f}(s)$ denotes its Hecke L-function. As corollary. we shall obtain a simple proof (and even a more precise statement) of a formula obtained previously by one of the authors [5] relating the quotient of Petersson products $\frac{\left\langle F^{\prime}, F\right\rangle}{\left\langle\phi_{\mathcal{l}}, \phi_{1}\right\rangle}$ to the special value $L_{f}(k)$. Secondly, if F is an arEftrary non-zero Hecke eigenform of weight k and $P_{k, D}$ ($D<0$ a fundamental discriminant) is the Mass lift of the $D^{\text {th }}$ Jacobi-Poincare series of weight k and index 1 , then we shall prove that $D_{F}^{*}, P_{k, D}$ (s) is proportional to $Z_{F}^{*}(s)$. In particular, if the constant of proportionality Is non-zero for some D, one obtains a new proof of the meromorphic continuation and functional equation of $z_{F}^{*}(s)$.

Certainly some of our results can be generalized to higher genus n, however, a more detailjed study of Jacobi forms of genus $n-1$ is then required. We hope to come back to this in a future paper.

Notations

We let fy be the upper half-plane. The symbol hy denotes the Siegel upper half-space of degree 2 consisting of complex 2×2 matrices
Z with positive definite imaginary part. We often write $Z=\left(\begin{array}{ll}\tau & z \\ z & \tau^{\prime}\end{array}\right)$, $X=\operatorname{Re}(Z)=\left(\begin{array}{ll}u & x \\ x & u^{-}\end{array}\right)$and $Y=\operatorname{Im}(Z)=\left(\begin{array}{cc}v & Y \\ y & v^{-}\end{array}\right)$. We usually set $|Y|=\operatorname{det} Y$.

We let $\Gamma_{1}=S L_{2}(Z)$ be the modular group, $\Gamma_{2}=S P_{2}(\pi)$ the group of integral symplectic 4×4-matrices and $\Gamma_{1}^{J}=\Gamma_{1} \propto z^{2}$ be the Jacobi modular group. ([2]). These groups act on $\ell_{y}, \ell_{y_{2}}$ and $f_{y} \times C$, respectively, by

$$
\begin{array}{ll}
\tau \mapsto\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\langle\tau\rangle=\frac{a \tau+b}{c \tau+d} & \left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma_{1}\right), \\
Z \mapsto M\langle Z\rangle=(A Z+B)(C Z+D)^{-1} & \left(M=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \in \Gamma_{2}\right)
\end{array}
$$

and
$(\tau, z) \mapsto\left(\frac{a \tau+b}{c \tau+d}, \frac{z+\lambda \tau+\mu}{c \tau+d}\right)$ $\left.\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right),(\lambda, \mu)\right) \in \Gamma_{1}^{J}\right)$.

The letter k denotes a positive integer. We write $S_{k}\left(\Gamma_{n}\right)$ for the space of cusp forms of weight k on Γ_{n}. By $J_{k, N}^{c u s p}$ we understand the space of Jacobi cusp forms of wefght k and index N ([2]). The Petersson products on these spaces are normalized by

$$
\begin{array}{lll}
\langle f, g\rangle & =\int_{\Gamma_{1} \mid \log } f(\tau) \overline{g(\tau)} v^{k-2} d u d v & \left(F, g \in S_{k}(F,)\right) \\
\langle F, G\rangle=\int_{\Gamma_{2} \mid \log _{2}} F(Z) \overline{G(Z)|Y|} &
\end{array}
$$

and

$$
\langle\phi, \psi\rangle=\int_{\Gamma}^{J} \left\lvert\, \frac{\mathcal{\ell} \times \mathbb{C}}{} \phi(\tau, z) \overline{\psi(\tau, z)} v^{k-3} e^{-4 \pi N y^{2} / v}\right. \text { dudvdxdy } \quad\left(\phi, \psi \in J_{k, N}^{c u s p}\right) .
$$

1. Meromorphic continuation and functional equation of $D_{F, G}(s)$

Let F be a Siegel cusp form of weight k on r_{2}. Then F has a Fourier-Jacobi expansion

$$
F(z)=\sum_{N \geq 1} \phi_{N}(\tau, z) e^{2 \pi i N \tau^{\prime}}
$$

where ϕ_{N} is a Jacobi cusp form of weight k and index $N([2], \S 6)$. For two functions F and G in $S_{k}\left(\Gamma_{2}\right)$ we define a formal Dirichlet geries by

$$
D_{F, G}(s)=\sum_{N \geq 1}\left\langle\phi_{N}, \psi_{N}\right\rangle N^{-s}
$$

Here ϕ_{N} and ψ_{N} denote the $N^{\text {th }}$ Fourier-Jacobi coefficients of F and G, respectively, and \langle,$\rangle is the Petersson product on J_{k, N}^{\text {Cusp }}$.

Lemma 1. The coefficients $\left\langle\phi_{N}, \psi_{N}\right\rangle$ of $D_{F, G}(s)$ satisfy

$$
\left\langle\phi_{\mathrm{N}}, \psi_{\mathrm{N}}\right\rangle=\sigma\left(\mathrm{N}^{\mathrm{k}^{\prime}}\right)
$$

Where the \mathcal{C} constant depends only on F and G. Hence $D_{F, G}(s)$ is absolutely convergent for $\operatorname{Re}(s)>k+1$ and represents a holomorphic function in this domain.

Proof. We use a varfant of the classical Hecke argument. For fixed $(\tau, z) \in \mathcal{F}^{x}(\mathbb{I}$ we write

$$
\phi_{N}(\tau, z)=\int_{i C}^{1 C+1} F(z) e^{-2 \pi i N \tau^{\prime}} d \tau^{\prime}
$$

where C is any real constant greater than $\frac{y^{2}}{V}$. Observing that $|Y|^{k / 2}|F(Z)|$ is bounded on y_{2} and choosing $C=\frac{Y^{2}}{V}+\frac{1}{N}$ we obtain

$$
\phi_{N}(\tau, z)=\sigma\left(\left(\frac{v}{N}\right)^{-k / 2} e^{2 \pi N y^{2} / v}\right)
$$

with the σ-constant independent of τ and z. From this Lemma 1 follows immediately.

We define

$$
D_{F, G}^{*}(s)=(2 \pi)^{-2 s} \Gamma(s) \Gamma(s-k+2) \zeta(2 s-2 k+4) D_{F, G}(s) .
$$

The main result of this section is the following

Theorem 1. The function $D_{F, G}^{*}(s)$ has a meromorphic continuation to \mathbb{C} and satisfies the functional equation $D_{F, G}^{*}(s)=D_{F, G}^{*}(2 k-2-s)$. It is holomorphic except for at most two simple poles at $s=k$ and $s=k-2$. The residue at $s=k$ equals $\pi^{-k+2}\langle F, G\rangle$.

The rest of this section is devoted to the proof of Theorem 1. According to the Rankin-Selberg method we shall write $D_{F, G}(s)$ as the Petersson product of $F(Z) \overline{G(Z)}|Y|^{k}$ against a certain non-holomorphic Elsenstein series $E_{s}(Z)$ of Klingen-Siegel type. The analytic properties of $D_{F, G}(s)$ and the functional equation then follow from the corresponding properties of E_{s}.

Denote (for the moment) the upper left entry of $z \in f_{2}$ by Z_{1} and let $C=C_{2,1}$ be the subgroup of Γ_{2} consisting of matrices whose last rows have the form $(0,0,0,1)$. For $Z \in \ln _{2}$ and $s \in \mathbb{C}$ with $\operatorname{Re}(s)>2$ we put

$$
E_{s}(Z)=\sum_{M \in C \backslash \Gamma_{2}}\left(\frac{\operatorname{det} \operatorname{Im} M\langle Z\rangle}{\operatorname{Im} M\langle Z\rangle}\right)^{s}
$$

This series is well-defined, converges absolutely and uniformly on compact sets and is invariant under Γ_{2}. Indeed, if $M=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in C$ and we denote by a, b, c, d the upper left entries of A, B, C, D, respectively, then $M_{1}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is in Γ_{1} and the formula $M\langle Z\rangle_{1}=M_{1}\left\langle Z_{1}\right\rangle$ holds. From this, the formula

$$
\operatorname{det} \operatorname{Im} M\langle Z\rangle=|\operatorname{det}(C Z+D)|^{-2} \operatorname{det} \operatorname{Im} Z \quad\left(M=(\stackrel{*}{C} \underset{D}{*}) \in \Gamma_{2}\right)
$$

the corresponding formula for matrices in Γ_{1} and the well-known fact that $\left(\begin{array}{cc}* & ⿺ \\ C & D\end{array}\right) \in C$ implies $C=\left(\begin{array}{ll}* & 0 \\ 0 & 0\end{array}\right)$ it follows that

$$
\frac{\operatorname{det} \operatorname{Im} M\langle Z\rangle}{\operatorname{Im} M\langle Z\rangle}
$$

is invariant under left-multiplication by elements of C. The absolute and unfform convergence on compact sets of the series $E_{S}(Z)$ for $\operatorname{Re}(s)$ >2 can be checked by the same arguments as used in [4],pp.33,34. The invariance of $E_{s}(Z)$ under Γ_{2} is then clear.

We define

$$
E_{s}^{*}(Z)=\pi^{-s} \Gamma(s) \zeta(2 s) E_{s}(Z)
$$

Main Lemma. The function $E_{S}^{*}(2)$ has a meromorphic continuation to all s, the only singularities being simple poles at $s=2$ and $s=0$ of residues. 1 and -1 , respectively. It satisfies the functional equation $E_{s}^{*}(z)$ $=E_{2-5}^{*}(Z)$.

Although this result certainly is implicitly contained in the general theory of Eisenstein series, we repeat, for the reader's convenfence, a proof in this special case.

For $M=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in \Gamma_{2}$ we have

$$
\operatorname{Im} M\langle Z\rangle=|\operatorname{det}(C Z+D)|^{-2} \cdot(C Z+D)^{* t} Y(C Z+D)^{*},
$$

where for a 2×2-matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ we denote by $A^{*}=\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$ its adjoint and by A^{t} its transpose. From this we see that

$$
\operatorname{Im} M\langle Z\rangle_{1}=|\operatorname{det}(C Z+D)|^{-2} \cdot y\left[z^{*}\binom{C_{4}}{-C_{3}}+\binom{d_{4}}{-d_{3}}\right] .
$$

(Notation: $C=\left(\begin{array}{cc}* & C_{3}^{*} \\ C_{3} & C_{4}\end{array}\right), D=\left(\begin{array}{ll}* \\ d_{3} & d_{4}\end{array}\right), Y\left[\begin{array}{l}a \\ b\end{array}\right]=(\bar{a}, \bar{b}) Y\binom{a}{b}$ for $\left.a, b \in \mathbb{C}.\right)$.
Hence

$$
\frac{\text { det } \operatorname{Im} M\langle Z\rangle}{\operatorname{Im} M\langle Z\rangle}=\frac{|Y|}{Y\left[Z^{*}\binom{C_{4}}{-C_{3}}+\left(d_{4}\right)\right]},
$$

where $\left(c_{3}, c_{4}, d_{3}, d_{4}\right)$ denotes the last row of M.
It is well-known and can easily be checked that the map $\Gamma_{2} \rightarrow T^{4}$, $M \mapsto(0,0,0,1) M$ induces a bijection between $C \backslash \Gamma_{2}$ and the set of primitive vectors in Z^{4}. Thus

$$
\zeta(2 s) E_{s}(Z)=\sum_{c, d \in \mathbb{Z}^{2}}^{\prime} \frac{|Y|^{s}}{Y\left[Z^{*} c+d\right]^{s}}
$$

where the sum extends over all vectors c and d in z^{2} with $(c, d) \neq(0,0)$
Now for positive real t define a theta series

$$
\theta_{t}(Z)=\sum_{c, d \in Z^{2}} e^{-\pi t \cdot|Y|^{-1} Y\left[Z^{*} c+d\right]}
$$

Then by Mellin's formula we have for s in the region of absolute convergence

$$
E_{s}^{*}(z)=\int_{0}^{\infty}\left(\theta_{t}(z)-1\right) t^{s} \frac{d t}{t}
$$

Splitting the integral into the sum of the corresponding integrals from 1 to ∞ and from 0 to 1 and then making the substitution $t \rightarrow \frac{1}{t}$ in the latter integral we deduce for $\operatorname{Re}(s) \gg 0$

$$
E_{s}^{*}(z)=\int_{1}^{\infty}\left(\theta_{t}(z)-1\right) t^{s} \frac{d t}{t}+\int_{1}^{\infty}\left(\theta_{1 / t}(z)-1\right) t^{-s} \frac{d t}{t^{-}} .
$$

For 2 fixed write

$$
f_{t}(c, d)=e^{-\pi t \cdot|Y|^{-1} Y\left[Z^{*} c+d\right]}
$$

so that

$$
\theta_{t}(z)=\sum_{c, d \in \mathbb{Z}^{2}} f_{t}(c, d)
$$

By the Poisson summation formula we have

$$
\theta_{1 / t}(Z)=\sum_{c, d \in \mathbb{Z}^{2}} \hat{f}_{1 / t}(c, d),
$$

where

$$
\hat{f}_{1 / t}(c, d)=\int_{\mathbb{R}^{4}} e^{-2 \pi i\left(c^{t}, d^{t}\right) \cdot(v, w)} f_{1 / t}(v, w) d v d w
$$

is the Fourler transform and the dot denotes the usual scalar product on \mathbb{R}^{4}.

Lemma 2. One has

$$
\hat{\mathrm{f}}_{1 / t}(c, d)=t^{-2} \cdot f_{t}(d,-c)
$$

Proof. For any symmetric positive definite 4×4-matrix F the identity

$$
\int_{\mathbb{R}^{4}} e^{-2 \pi i x \cdot y} e^{-\pi y^{t} F y} d y=|F|^{-1 / 2} e^{-\pi x^{t} F^{-1} x}
$$

holds. Setting

$$
F=\left(\begin{array}{cc}
Y^{* t} & X^{* t} \\
O_{2} & E_{2}
\end{array}\right)\left(\begin{array}{cc}
t^{-1}|Y| & o_{2} \\
o_{2} & t^{-1}|Y|^{-1} Y
\end{array}\right)\left(\begin{array}{c}
Y^{*} \\
O_{2} \\
X^{*} \\
E_{2}
\end{array}\right)
$$

where O_{2} and E_{2} denote the zero and unit matrix, respectively, and observing

$$
|F|=t^{-4}
$$

and (as is easily checked)

$$
\left(c^{t}, d^{t}\right) F^{-1}\binom{c}{d}=t \cdot|Y|^{-1} Y\left[Z^{*} d-c\right]
$$

our assertion follows.

Lemma 2 implies the transformation formula

$$
\theta_{1 / t}(z)=t^{2} \theta_{t}(z)
$$

and hence the identity

$$
\begin{aligned}
E_{s}^{*}(z) & =\int_{1}^{\infty}\left(\theta_{t}(z)-1\right) t^{s} \frac{d t}{t}+\int_{1}^{\infty}\left(t^{2} \theta_{t}(z)-1\right) t^{-s} \frac{d t}{t} \\
& =\int_{1}^{\infty}\left(\theta_{t}(z)-1\right)\left(t^{s}+t^{2-s}\right) \frac{d t}{t}-\left(\frac{1}{s}+\frac{1}{2-s}\right),
\end{aligned}
$$

from which the meromorphic continuation and the functional equation of $E_{S}^{*}(Z)$ are obvious. This proves our Main Lemma.

From the Main Lemma we shall now deduce the assertions of Theorem 1. Let $F, G \in S_{k}\left(\Gamma_{2}\right)$ with Fourier-Jacobi coefficients ϕ_{N} and ψ_{N}, respectively. Then by the usual unfolding argument

$$
\begin{aligned}
\left\langle F E_{S}, G\right\rangle & =\int_{\Gamma_{2} \mid \lg _{2}} F(Z) E_{S}(Z) \overline{G(Z)}|Y|^{k-3} d X d Y \\
& =\int_{C \mid \mathscr{F}_{2}} F(Z) \overline{G(Z)} v^{-s}|Y|^{k-3+s} d X d Y \quad(\operatorname{Re}(s)>2) .
\end{aligned}
$$

Now note that the group \mathcal{C} is the centralizer of the element $\left(\begin{array}{ccc}\mathrm{E}_{2} & \left(\begin{array}{l}\mathrm{O} \\ \mathrm{O} \\ 1\end{array}\right) \\ \mathrm{O}_{2} & \mathrm{E}_{2}\end{array}\right)$ in Γ_{2} and hence we have an isomorphism

$$
\Gamma_{1} \alpha \mid \mathrm{H}(\mathbb{J}) \xrightarrow{\sim} \mathrm{C},
$$

$\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right),(\lambda, \mu), \kappa\right) \mapsto\left(\begin{array}{cccc}a & 0 & b & \mu^{-} \\ \lambda & 1 & \mu & k \\ c & 0 & d & -\lambda^{\prime} \\ 0 & 0 & 0 & 1\end{array}\right) \quad\left((\lambda, \mu)=\left(\lambda^{-}, \mu^{\prime}\right)\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right)$,
where $\mathbb{H}(\mathbf{Z})=\left\{((\lambda, \mu), k) \mid(\lambda, \mu) \in \mathbf{Z}^{2}, k \in \mathbf{Z}\right\}$ is the Heisenberg group (cf. [2], §6; recall that $\mathbb{H}(Z)$ is a group under the law $((\lambda, \mu), k)\left(\left(\lambda^{*}, \mu^{*}\right), K^{*}\right)$ $=\left(\left(\lambda+\lambda^{\bullet}, \mu+\mu^{\prime}, \kappa+\kappa^{\wedge}+\lambda \mu^{\wedge}-\lambda^{*} \mu\right)\right.$, and that Γ_{1} acts on $\mathbb{H}(J)$ on the right by $(X, K) \circ M=(X M, K))$.

From this we see that a fundamental domain for the action of C on $l_{y_{2}}$ is given by $\left\{\left.\left(\begin{array}{ll}\tau & z \\ z & \tau^{\prime}\end{array}\right) \right\rvert\,(\tau, z) \in F, v^{-}>\frac{y^{2}}{v^{2}}, 0 \leq u^{\circ} \leq 1\right\}$, where F is a funda-
mental domain for the action of $\Gamma_{1}^{J}=\Gamma_{1} \propto \mathbb{Z}^{2}$ on $\mathcal{G} \times \mathbb{C}$. Therefore we obtain after inserting the Fourier-Jacobi expansions of F and G

$$
\begin{aligned}
\left\langle F E_{S^{\prime}}, G\right\rangle= & \int_{F}\left[V_{V}>\frac{y^{2}}{} \int_{, O \leq u^{\prime} \leq 1} \sum_{M, N \geq 1} \phi_{M}(\tau, z) \overline{\psi_{N}(\tau, z)} e^{-2 \pi(M+N) v^{\prime}}\right. \\
& \left.\cdot e^{2 \pi i(M-N) u^{\prime}} \cdot v^{k-3}\left(v^{\prime}-\frac{y^{2}}{v}\right)^{k-3+s} d u^{\prime} d v^{\prime}\right] \text { dudvdxdy. }
\end{aligned}
$$

Carrying out the integration over u^{\prime} and making the substitution $t=v^{\prime}=\frac{y^{2}}{v}$ we deduce

$$
\begin{aligned}
\left\langle F E_{s^{\prime}} G\right\rangle= & \int_{F}\left[\sum_{N \geq 1} \phi_{N}(\tau, z) \overline{\psi_{N}(\tau, z)} e^{-4 \pi N Y^{2} \cdot / v} \mathrm{v}^{k-3}\right. \\
& \left.\cdot\left(\int_{0}^{\infty} e^{-4 \pi N t_{t} k-3+s} d t\right)\right] d u d v d x d y \\
= & (4 \pi)^{-(s+k-2)} \Gamma(s+k-2) \sum_{N \geq 1}\left\langle\phi_{N}, \psi_{N}\right\rangle N^{-(s+k-2) \quad(\operatorname{Re}(s)\rangle 3)},
\end{aligned}
$$

where in the last Ine we have used the standard integral representatio of the Γ-function and have interchanged the order of summation and integration.

Hence we obtain the identity

$$
\pi^{-k+2}\left\langle E_{S-k+2}^{*} F, G\right\rangle=D_{F, G}^{*}(s)
$$

from which the assertions of Theorem 1 are obvious.
§2. Relations to spinor zeta functions

In this section we shall give a relation between the Dirichlet serfes constructed in the preceding paragraph and spinor zeta functions We shall assume throughout that k is even.

For $F \in S_{k}\left(\Gamma_{2}\right)$ a non-zero Hecke eigenform with $T(n) F=\lambda_{F}(n) F \quad(n \in \mathbb{N})$ we denote by

$$
\begin{gathered}
z_{F}(s)=\prod_{p}\left(1-\lambda_{F}(p) p^{-s}+\left(\lambda_{F}(p)^{2}-\lambda_{F}\left(p^{2}\right)-p^{2 k-4}\right) p^{-2 s}+\lambda_{F}(p) p^{2 k-3-2 s}\right. \\
\left.+p^{4 k-6-4 s}\right)^{-1} \quad(\operatorname{Re}(s) \gg 0)
\end{gathered}
$$

the associated spinor zeta function. According to Andrianov [1], $Z_{F}(s)$ has a meromorphic continuation to all s with at most one simple pole at $s=k$, and the modified function

$$
\mathrm{Z}_{\mathrm{F}}^{*}(\mathrm{~s})=(2 \pi)^{-2 s} \Gamma(s) \Gamma(s-k+2) Z_{F}(s)
$$

is invariant under $s \mapsto 2 k-2-s$.

Recall that for $\mathbb{N} \in \mathbb{N}$ we have a linear operator

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{N}}: \mathrm{J}_{\mathrm{k}, 1}^{\text {cusp }} \rightarrow \mathrm{J}_{\mathrm{k}, \mathrm{~N}}^{\text {cusp }}, \\
& \sum_{\substack{D * 0, r \in Z \\
D \equiv r^{2}(4)}} c(D, r) e\left(\frac{r^{2}-D}{4} \tau+r z\right) \longmapsto \sum_{\substack{D<0, r \in \mathbb{Z} \\
D \equiv r^{2}(4 N)}}\left(\sum_{\substack{d \mid(r, N) \\
D \equiv r^{2}(4 N C)}} d^{k-1} c\left(\frac{D}{d^{2}}, \frac{r}{d}\right)\right) \\
& \cdot e\left(\frac{r^{2}-D}{4 N} \tau+r z\right) \quad\left(e(z)=e^{2 \pi i z}\right)
\end{aligned}
$$

([2],§4). We shall use the following result whose proof will be postponed until the end of this section:

Proposition. Let $V_{N}^{*}: J_{k, N}^{c u s p} \rightarrow J_{k, 1}^{\text {cusp }}$ be the adjoint of V_{N} with respect to the Detersson products. Then:
i) The action of V_{N}^{*} on Fourfer coefficients is given by

$$
\begin{gathered}
\sum_{\substack{D<0, r \in \mathbb{Z} \\
D \equiv r^{2}(4 N)}} c(D, r) e\left(\frac{r^{2}-D}{4 N} \tau+r z\right) \longmapsto \sum_{\substack{D<0, r \in Z \\
D \equiv r^{2}(4)}}\left(\sum_{d \mid N} d^{k-2} \sum_{\substack{s(2 d) \\
s^{2} \equiv D(4 d)}} c\left(\frac{N^{2}}{d^{2} D}, \frac{N}{d} s\right)\right) \\
\\
\cdot e\left(\frac{r^{2}-D}{4} \tau+r z\right) .
\end{gathered}
$$

ii) One has

$$
V_{N}^{*} V_{N}=\sum_{t \mid N}\left(\sum_{s i t} \sum_{\substack{t \\ \text { squarefree }}} s\right) t^{k-2} T\left(\frac{N}{t}\right)
$$

where $T(n)$ denotes the Hecke operator on $J_{k, \uparrow}^{\text {cusp }}$.

We will first prove a result on eigenforms in the Mass space $S_{k}^{*}\left(\Gamma_{2}\right) \subset S_{k}\left(\Gamma_{2}\right)$. Recall that $S_{k}^{*}\left(\Gamma_{2}\right)$ consists of those forms

$$
F(z)=\sum_{\substack{n, r \in Z, N \in \mathbb{N} \\ r^{2}<4 N n}} A(n, r, N) e\left(n \tau+r z+N \tau^{\prime}\right)
$$

whose Fourler coefficients $A(n, r, N)$ depend only on the discriminant $r^{2}-4 N n$ and the content $\operatorname{gcd}(n, r, N)$, and that it is stable under all Hecke operators. If F is a non-zero Hecke eigenform in $S_{k}^{*}\left(\Gamma_{2}\right)$ then there exists a unique normalized Hecke eigenform f in $S_{2 k-2}\left(\Gamma_{1}\right)$ such that

$$
\begin{equation*}
Z_{F}(s)=\zeta(s-k+1) \zeta(s-k+2) L_{f}(s), \tag{1}
\end{equation*}
$$

where

$$
L_{f}(s)=\prod_{p}\left(1-\lambda_{f}(p) p^{-s}+p^{2 k-3-2 s}\right)^{-1} \quad\left(\operatorname{Re}(s) \gg 0, T(n) f=\lambda_{f}(n) f \quad(n \in \mathbb{N})\right.
$$

is the Hecke L-function associated to f (Saito-Kurokawa correspondence, loc. cit.). More precisely , there exist isomorphisms

which are compatible with Hecke operators in the following sense: $T(p)$ on $J_{k, 1}^{\text {cusp }}$ corresponds to $T(p)$ on $S_{2 k-2}\left(\Gamma_{1}\right)$ and to $T(p)-p^{k-1}-p^{k-2}$
on $S_{k}^{*}\left(\Gamma_{2}\right)$. (Note that on $S_{k}^{*}\left(\Gamma_{2}\right)$ the relation $T\left(p^{2}\right)=T(p)^{2}+\left(p^{k-1}+p^{k-2}\right.$) - ($\left.p^{k-1}+p^{k-2}-T(p)\right)-2 p^{2 k-3}-p^{2 k-4}$ holds.) Moreover, when suitably normalized, the isomorphism

$$
J_{k_{, 1}}^{\text {cusp }} \simeq S_{k}^{*}\left(\Gamma_{2}\right)
$$

is given explicitly by

$$
\begin{equation*}
\phi(\tau, z) \longmapsto \sum_{N \geq 1} V_{N} \phi(\tau, z) e\left(N \tau^{\prime}\right) \tag{2}
\end{equation*}
$$

By results of Evdokimov [3] and Oda [7] the Hecke eigenforms F In $S_{k}^{*}\left(\Gamma_{2}\right)$ are characterized among all Hecke eigenforms in $S_{k}\left(\Gamma_{2}\right)$ by the fact that their zeta functions $Z_{F}(s)$ have a pole at $s=k$.

Theorem 2. Let $F \in S_{k}^{*}\left(\Gamma_{2}\right)$ be a non-zero Hecke eigenform, and let $\phi \epsilon$ $J_{k, 1}^{c u s p}$ be its first Fourier-Jacobi coefficient. Then

$$
\begin{equation*}
D_{F, F}^{*}(s)=\langle\phi, \phi\rangle Z_{F}^{*}(s) . \tag{3}
\end{equation*}
$$

By comparing residues at $s=k$ on both sides of (3) and using (1) we obtain

Corollary. Denote by $f \in S_{2 k-2}\left(\Gamma_{1}\right)$ the normalized Hecke eigenform corresponding to F under the Saito-Kurokawa correspondence (1). Then the formula
(4)

$$
\pi^{k} c_{k} \frac{\left\langle F_{,}, F\right\rangle}{\langle\phi, \phi\rangle}=L_{f}(\mathrm{~K})
$$

holds, where $c_{k}=\frac{3 \cdot 2^{2 k+1}}{(k-1)!}$.

Formula (4) was first proved by one of the authors ([5],Thm.) by a different method, however, without giving the exact rational value of the constant c_{k}. Note that $\langle\phi, \phi\rangle=2^{2 k-3}\langle g, g\rangle$, where g
is the cusp form of weight $k-\frac{1}{2}$ on $\Gamma_{O}(4)$ which corresponds to ϕ under the natural map $J_{k, 1}^{\text {cusp }} \underset{\sim}{\sim} M_{k-1 / 2}([2]$, Thm. 5.4 and Cor. 4).

Proof of Theorem 2. We have

$$
F(z)=\sum_{N \geq 1} V_{N} \phi(\tau, z) e\left(N \tau^{\circ}\right)
$$

and hence

$$
\left.D_{F, F}(s)=\sum_{N \geq 1}\left\langle V_{N} \phi, V_{N} \phi\right\rangle N^{-s} \quad(\operatorname{Re}(s)\rangle>0\right)
$$

By the Proposition, ii)

$$
\begin{aligned}
\left\langle V_{N} \phi, V_{N} \phi\right\rangle & =\left\langle v_{N}^{*} V_{N} \phi, \phi\right\rangle \\
& =\left\langle\sum_{t \mid N} t^{k-2}\left(\sum_{s \mid t} \mu\left(\frac{t}{s}\right)^{2} s\right) T\left(\frac{N}{t}\right) \phi, \phi\right\rangle .
\end{aligned}
$$

Since $T(n) \phi=\lambda_{f}(n) \phi$ for all n, where $\lambda_{f}(n)$ is the eigenvalue of f under $T(n)$ and f corresponds to F by (1),

$$
\left\langle v_{N} \phi, v_{N} \phi\right\rangle=\sum_{t \mid N} t^{k-2}\left(\sum_{s \mid t} \mu\left(\frac{t}{s}\right)^{2} s\right) \lambda_{E}\left(\frac{N}{t}\right) \cdot\langle\phi, \phi\rangle
$$

From the identity

$$
\sum_{N \geq 1}\left(\sum_{s i t} \mu\left(\frac{t}{s}\right)^{2} s\right) N^{-s}=\frac{\zeta(s-1) \zeta(s)}{\zeta(2 s)}
$$

we find

$$
D_{F, F}(s)=\frac{\zeta(s-k+1) \zeta(s-k+2)}{\zeta(2 s-k+4)} L_{f}(s)
$$

and this by (1) is equivalent to the statement of Theorem 2.

We shall now consider Hecke eigenforms not necessarily in the Maass space. For a fundamental discriminant $D<0$ we let $P_{K, D}$ be the $D^{\text {th }}$ Poincaré series in $J_{k, 1}^{\text {cusp }}$ characterized by
(5)

$$
\left\langle\phi, D_{k, D}\right\rangle=c_{\phi}(D, r) \quad\left(\forall \phi(\tau, z)=\sum_{\substack{D<0 \\ D \equiv r^{2}(4)}} c_{\phi}(D, r) e\left(\frac{r^{2}-D}{4} \tau+r z\right) \in J_{k, 1}^{\text {Cusp }}\right)
$$

We let $P_{k, D}$ be the image of $P_{k, D}$ in $S_{k}^{*}\left(\Gamma_{2}\right)$ under the map (2), ie.

$$
P_{K, D}(\tau, z)=\sum_{N \geq 1} V_{N} P_{k, D}(\tau, z) e\left(N \tau^{\wedge}\right)
$$

We denote integral binary quadratic forms by $Q(x, y)=[\alpha, \beta, \gamma](x, y)$ $=\alpha x^{2}+\beta x y+\gamma y^{2}$. Recall that the group Γ_{1} acts on such forms by

$$
Q \cdot\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)(x, y)=Q(a x+b y, c x+d y)
$$

We ocassionally write $A(Q)$ instead of $A(\alpha, B, Y)$ for the Fourier coefficients of siege modular forms.

Theorem 3. Let F be a nonzero Heck eigenform in $S_{K}\left(\Gamma_{2}\right)$. Then

$$
D_{F}^{*}, P_{k, D}(s)=A(Q) X_{F}^{*}(s),
$$

where Q denotes any quadratic form of discriminant D representing 1 and $A(Q)$ is the Q-th coefficient of F.
Remark. If $A(Q) \neq 0$ for some D, then by combining Theorems 1 and 3 we obtain a new proof for the meromorphic continuation and functional equation of $Z_{F}^{*}(s)$, and also for the fact that for F in the orthogonal complement of the Mass space the zeta function $Z_{F}^{*}(s)$ is holomorphic for all s (cf. [3,7]). The smallest weight k for which $s_{k}^{*}\left(\Gamma_{2}\right)^{\perp} \neq\{0\}$ is $\mathrm{k}=20$, and in this case we have $\mathrm{A}(\mathrm{Q}) \neq 0$ for $\mathrm{D}=-4$, cf. [6],p. 157.

Proof of Theorem 3. Let ϕ_{N} be the $N^{\text {th }}$ Fourier -Jacobi coefficient of F, and write $F(z)=\sum A(n, r, N) e\left(n \tau+r z+N \tau^{\circ}\right)$. The $N^{\text {th }}$ coefficient of $D_{F}, P_{k, D}(s)$ equals

$$
\left\langle\phi_{\mathrm{N}}, \mathrm{~V}_{\mathrm{N}} \mathrm{P}_{\mathrm{K}, \mathrm{D}}\right\rangle=\left\langle\mathrm{V}_{\mathrm{N}}^{*} \phi_{\mathrm{N}}, \mathrm{P}_{\mathrm{K}, \mathrm{D}}\right\rangle
$$

$$
=\sum_{d \mid N} d^{k-2} \sum_{\substack{s(2 d) \\ s^{2} \equiv D(4 N)}} A\left(\frac{N}{d} \cdot \frac{s^{2}-D}{4 N}, \frac{N}{d} \cdot s, \frac{N}{d} \cdot d\right)
$$

by (5) and the Proposition, 1).
Let $\left\{Q_{i}\right\}_{i=1, \ldots, h}$ be a set of representatives of binary quadratic forms of discriminant D. Then the above sum can be written as

$$
\sum_{i=1}^{h} \sum_{d \mid N} d^{k-2} n\left(Q_{i} ; d\right) A\left(\frac{N}{d} Q_{i}\right)
$$

where $n\left(Q_{1} ; d\right)$ is the number of $s(\bmod 2 d)$ such that $s^{2} \equiv D(\bmod 4 d)$ and $\left[\frac{s^{\frac{\overline{2}}{}}-D}{4 d}, s, d\right]$ is equivalent to Q_{i}.

Observing that

$$
\sum_{N \gtrless 1} n\left(Q_{1} ; N\right) N^{-s}=\zeta_{Q_{1}}(s) \zeta(2 s)^{-1}
$$

where $\zeta_{Q_{i}}(s)$ is the zeta function of the ideal class of $Q(\sqrt{D})$ corresponding in the usual way to the Γ_{1}-class of Q_{1} (cf. [8], Propos.3), we obtain
(6)

$$
\zeta(2 s-2 k+4) D_{F, P_{k, D}}(s)=\sum_{i=1}^{h}{ }^{h} Q_{i}(s-k+2) R_{Q_{i}}(s)
$$

with

$$
R_{Q_{i}}(s)=\sum_{N \geq 1} A\left(N Q_{i}\right) N^{-s} .
$$

Identity (6) so far is true for any form F in $S_{k}\left(\Gamma_{2}\right)$. We shall now rewrite the right-hand side of (6) in terms of $Z_{F}(s)$, if F is an eigenform. In this case we have the fundamental identity
(7)

$$
A_{\chi} Z_{F}(s)=L(s-k+2, x) \sum_{i=1}^{n} x\left(Q_{i}\right) R_{Q_{i}}(s)
$$

valid for any ideal class character χ, where $L(s, x)$ is the L-function
attached to x and $A_{X}=\sum_{i=1}^{h} x\left(Q_{i}\right) A\left(Q_{i}\right)([1]$, Thm. 2.4.1). Inverting (7) we find

$$
\begin{equation*}
{ }^{R} Q_{i}(s)=\frac{1}{B} Z_{F}(s) \sum_{\chi} \bar{X}\left(Q_{i}\right) A_{X} L(s-k+2, X)^{-1} \tag{8}
\end{equation*}
$$

$$
(i=1, \ldots, h)
$$

Inserting (8) into (6) and using the fact that $L(s, x)=L(s, \bar{X})$ we obtain after a short calculation

$$
\zeta(2 s-2 k+4) D_{F}, P_{k, D}(s)=A(Q) Z_{F}(s)
$$

where Q represents the trivial class. This proves Theorem 3.

We still have to prove the Proposition.
Proof of Proposition, i). We identify Γ_{1} with its canonical image in Γ_{1}^{J}. Let G be a Γ_{1}-conjugate of a subgroup of finite index of Γ_{1}^{J}. Then G contains a subgroup of finite index in Γ_{1}^{J}, say H. We define the Petersson product of two cusp forms ϕ and ψ of weight k and index N on G by

$$
\langle\phi, \psi\rangle=\left[\Gamma_{1}^{J}: H\right]^{-1} \int_{G \mid Q_{\gamma} \times \mathbb{C}} \phi(\tau, z) \overline{\psi(\tau, z)} v^{k-3} e^{-4 \pi N y^{2} / v} d u d v d x d y .
$$

TEis normalization of the scalar product does not depend on the choice of the subgroup H, and we have the formula
(9) $\langle\phi \mid \eta, \psi\rangle=\left\langle\phi, \psi \mid \eta^{-1}\right\rangle$
for all $n \in J(Q):=S L_{2}(Q) \times Q^{2} \cdot S^{1}\left(S^{1}\right.$ the circle group). Here we use the notation " $\phi|\eta=\phi|_{k, N} \eta$ " for the usual " $\left.\right|_{k, N}$ "-action of elements $\eta \in$ $J(Q)$ on functions $\phi(\tau, z)$ (cf. [2], §1). The above assertions can easily be checked using standard techniques as in the case of ordinary modular forms.

By [2],§6 we have for $\phi \in J_{k, 1}^{\text {Cusp }}$

$$
V_{N} \phi=\left.N^{k / 2-1} \sum_{A \in \Gamma_{1} \backslash M_{2}(Z)_{N}} \phi_{\sqrt{N}}\right|_{k, N}\left(\frac{1}{\sqrt{N}} A\right)
$$

where

$$
M_{2}(Z)_{N}=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in M_{2}(Z) \right\rvert\, a d-b c=N\right\}
$$

and where $\phi_{C}(\tau, z)=\phi(\tau, C z)(c \in \mathbb{C})$. Denoting by $M_{2}^{*}(\boldsymbol{Z})_{N}$ the primitive elements in $M_{2}(Z)_{N}$ and using the notation $N \frac{N}{N_{r}}=\square$ " to mean that $\frac{N}{N^{\prime}}$ is a perfect square we can rewrite the above formula as

$$
\begin{aligned}
& V_{N} \phi=\left.N^{k / 2-1} \sum_{N^{\prime} \mid N, N / N^{\prime}=0} \sum_{A \in \Gamma_{1} \backslash M_{2}^{*}(Z) N^{\prime}} \phi_{\sqrt{N}}\right|_{k, N}\left(\frac{1}{\sqrt{N^{\prime}}} A\right) \\
& =N^{k / 2-1} \sum_{N^{-} \mid N, N / N^{-}=0} \sum_{A \in \Gamma^{O}\left(N^{-}\right) \backslash \Gamma_{1}} \phi_{\sqrt{N}} l_{k, N}\left(\begin{array}{c}
\sqrt{N^{-}-1} \\
0
\end{array} \frac{0}{\sqrt{N^{2}}}\right) A,
\end{aligned}
$$

where in the last line $\Gamma^{O}\left(N^{\prime}\right)$ is the subgroup $\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma_{1}\left|N^{\prime}\right| b\right\}$ and we have made use of the fact that the map $\Gamma_{1} \rightarrow M_{2}^{*}(Z)_{N^{\prime}},\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \longmapsto$ $\left(\begin{array}{ll}1 & 0 \\ 0 & N^{-}\end{array}\right)\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ induces a bijection $\Gamma^{\circ}\left(N^{*}\right) \backslash \Gamma_{1} \simeq{ }_{\sim}^{\sim} \Gamma_{1} \backslash M_{2}^{*}(X) N^{\prime}$. Observe that the function

$$
\left.\phi_{\sqrt{N}}\right|_{k, N}\left(\begin{array}{cc}
\sqrt{N^{2}} & \frac{0}{0}
\end{array}\right)(\tau, z)=\phi\left(\frac{\tau}{\sqrt{N}^{2}}, \sqrt{\frac{N}{N^{2}}} z\right)
$$

Is a Jacobi cusp form of weight k and index N on $\Gamma^{0}(N) \times z^{2}$.
The above discussion gives for $\phi \in J_{k, 1}^{\text {cusp }}, \psi \in J_{k, N}^{\text {cusp }}$ the formula

$$
\begin{aligned}
& \left\langle V_{N^{\prime}} \phi^{\prime}, \psi\right\rangle=N^{k / 2-1} \sum_{N^{\prime} \mid N, N / N^{\prime}=0 A \in \Gamma} \sum_{\left(N^{\prime}\right) \backslash \Gamma_{1}}\left\langle\left.\phi \sqrt{N^{\prime}}\right|_{k, N}\left(\begin{array}{c}
\sqrt{N^{\prime}}-1 \\
0 \\
\sqrt{N^{\prime}}
\end{array}\right) A, \psi\right\rangle \\
& =N^{k / 2-1} \sum_{N^{\prime} \mid N, N / N^{\prime}=\square}\left[\Gamma_{1}: \Gamma^{O}\left(N^{\prime}\right)\right]\left\langle\left.\phi_{\sqrt{N}}\right|_{k, N}\left(\begin{array}{cc}
\sqrt{N^{\prime}}-1 & 0 \\
0 & \sqrt{N^{\prime}}
\end{array}\right), \psi\right\rangle \\
& \text { (by (9)). }
\end{aligned}
$$

 $\left.\left\{\left(\begin{array}{ll}a & b_{c} \\ c & d\end{array}\right) \in \Gamma_{1}|N| c\right\}\right)$, and since

$$
\left\langle\left.\phi_{\sqrt{N}}\right|_{k, N}\left(\begin{array}{cc}
\sqrt{N}^{-1} \\
0 & \frac{0}{\sqrt{N}^{2}}
\end{array}\right), \psi\right\rangle=\left\langle\phi,\left.\psi \sqrt{N}^{-1}\right|_{k, N}\left(\begin{array}{cc}
\sqrt{N} & 0 \\
0 & \frac{1}{N^{\prime}}-1
\end{array}\right)\right\rangle
$$

we have

$$
\begin{aligned}
& \left\langle\phi,\left.\left.\psi_{N^{-1}}\right|_{k, N}\left(\begin{array}{c}
\sqrt{N^{-}} \\
0 \\
\sqrt{N^{-}}-1
\end{array}\right) A\right|_{k, N} x\right\rangle \text {, }
\end{aligned}
$$

hence by a similar argument as above

$$
\left\langle V_{N} \phi, \psi\right\rangle=\left\langle\phi,\left.\left.N^{k / 2-3} \sum_{x \bmod N Z^{2}} \sum_{A \in \Gamma_{1} \backslash M_{2}(Z)} \psi_{N} \sqrt{N}^{-1}\right|_{k, N}\left(\frac{1}{\sqrt{N}} A\right)\right|_{k, N} x\right\rangle
$$

As the function standing on the right-hand side in the Peterson product in the above formula is, in fact, in $J_{k, 1}^{\text {cusp }}$ (immediate verifycation!), we have proved that

$$
\begin{aligned}
& \mathrm{J}_{\mathrm{k}, \mathrm{~N}}^{\text {cusp }} \rightarrow \mathrm{J}_{\mathrm{k}, 1}^{\text {cusp }}, \\
& \left.\left.\psi \mapsto N^{k / 2-3} \sum_{x \bmod N Z^{2}} \sum_{A \in \Gamma_{1} \backslash M_{2}(\mathbf{Z})_{N}} \psi_{\sqrt{N^{-1}}}\right|_{k, N} A\right|_{k, N} x
\end{aligned}
$$

is the operator $\mathrm{V}_{\mathrm{N}}^{*}$ adjoint to V_{N}.
We must now compute the Fourier expansion of $\mathrm{V}_{\mathrm{N}}^{*} \psi$. Write

$$
\psi(\tau, z)=\sum_{\substack{D<0, r e \mathbb{Z} \\ D z r^{2}(4 N)}} c(D, r) e\left(\frac{r^{2}-D}{4 N} \tau+r z\right) .
$$

Choosing as a set of representatives for $\Gamma_{1} \backslash M_{2}(\boldsymbol{Z}) N$ the matrices $\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right)$ $\in M_{2}(\boldsymbol{Z})$ with $a d=N, b(\bmod d)$ we obtain from the above formula

$$
V_{N}^{*} \psi(\tau, z)=N^{k / 2-3} \sum_{\lambda, \mu(N)} \sum_{\substack{a d=N \\ b(d)}}\left(\frac{d}{\sqrt{N}}\right)^{-k} \psi\left(\frac{a \tau+b}{d}, \frac{z+\lambda \tau+\mu}{d}\right) e\left(\lambda^{2} \tau+2 \lambda z\right)
$$

$$
\begin{gathered}
=N^{k / 2-3} \sum_{\lambda, \mu(N)} \sum_{\substack{a d=N \\
b(d)}}\left(\frac{d}{\sqrt{N}}\right)^{-k} \sum_{\substack{D<O, r \in Z \\
D \equiv r^{2}(4 N)}} c(D, r) e\left(\left(\frac{r^{2}-D}{4 N} \cdot \frac{a}{d}+\frac{\lambda r}{d}+\lambda^{2}\right) \tau\right. \\
\left.+\left(\frac{r}{d}+2 \lambda\right) 2 \frac{r^{2}-D}{4 N} \cdot \frac{b}{d}+\frac{r \mu}{d}\right) .
\end{gathered}
$$

The sum

$$
\sum_{b(d), \mu(N)} e\left(\frac{r^{2}-D}{4 N} \cdot \frac{b}{d}+\frac{r \mu}{d}\right)
$$

has the value $N d$ or zero according as both the conditions $d \frac{r^{2}-D}{4 N}$ and d|r are satfsfied or not. Hence replacing r by $r d$ and D by $D d^{2}$ we obtair

$$
\begin{aligned}
& V_{N}^{*} \psi(\tau, z)= N^{k-2} \sum_{\lambda(N)} \sum_{d \mid N} d^{1-k} \sum_{\substack{D<0, r \in Z \\
D \equiv r^{2}(4 N / d)}} c\left(d^{2} D, d r\right) \\
&=N^{k-2} \sum_{d \mid N} d^{1-k} \sum_{\lambda(N)} \quad e\left(\frac{(r+2 \lambda)^{2}-D}{4} \tau+(r+2 \lambda) z\right) \\
& \sum_{\substack{D<0, r \in Z \\
D \equiv(r-2 \lambda)^{2}}} \quad c(4 N / d)
\end{aligned}
$$

Now set $\lambda \equiv s+\frac{N}{d} s^{\prime}(\bmod N)$ with s running over $\mathbf{z} / \frac{N}{d} \mathbf{Z}$ and s^{\prime} over $\mathbf{Z} / \mathrm{d} \boldsymbol{7}$. Then

$$
d(r-2 \lambda) \equiv d(r-2 s) \quad(\bmod 2 N), D \equiv(r-2 s)^{2}\left(\bmod 4 \frac{N}{d}\right) .
$$

Since the coefficients $c(D, r)$ depend only on the pair (D, r) with $r(\bmod 2 N)$ and $D \equiv r^{2}(\bmod 4 N)$ we obtain

$$
\begin{aligned}
V_{N}^{*} \psi(\tau, z)= & \sum^{k-2} \sum_{d \mid N} d^{2-k} \sum_{s(N / d)} c\left(d^{2} D, d(r-2 s)\right) \\
& \cdot e\left(\frac{r^{2}-D}{4} \tau \equiv(r-2 s)^{2}(4 N / d)\right. \\
= & \sum_{\substack{D<0, r \in z \\
D \equiv r^{2}(4)}}\left(\sum_{d \mid N} d^{k-2} \sum_{\substack{s(2 d) \\
s^{2} \equiv D(4 d)}} c\left(d^{2} D, d s\right)\right) e\left(\frac{r^{2}-D}{4} \tau+r z\right),
\end{aligned}
$$

where in the last line we have replaced d by $\frac{N}{d}$ and $r-2 s$ by s.

Proof of Proposition,ii). The identity claimed can be checked using the explicit formulas for the action of V_{N}, V_{N}^{*} and $T(n)$ on Fourier coefficients. In fact, it is sufficient to check it on Fourier coefficients indexed by fundamental discriminants, since $V_{N}^{*} V_{N}$ and $T(n)$ commute and $J_{k, 1}^{c u s p}$ has a basis of Hecke eigenforms whose Fourier coefficients are determined by those indexed by fundamental discriminants. This simplifies the calculations considerably. We leave the details to the reader.

References.

1 Andrianov, A.N.: Euler products corresponding to Siegel modular forms of genus 2. Russ. Math. Surveys 29:3 (1974), 45-116

2 Elchler, M., Zagier, D.: The theory of Jacobi forms. Progress in Maths. No 55, Boston: Birkhäuser 1985

3 Evdokimov, S.A.: A characterization of the Mass space of Siegel cusp forms of degree 2 (in Russian). Mat. Sbornik (154) 112 (1980), 133-142

4 Klingen, H.: Zum Darstellungssatz für Siegelsche Modulformen. Math. Z. 102 (1967), 30-43

5 Kohnen, W.: On the Petersson norm of a Siegel-Hecke eigenform of degree two in the Maass space. J. Reine Angew. Math. 357 (1985), 96-100

6 Kurokawa, N.: Examples of eigenvalues of Hecke operators on Siegel cusp forms of degree two. Invent. Math. 49 (1978), 149-165

7 Oda, T.: On the poles of Andrianov L-functions. Math. Ann. 256 (1981), 323-340

8 Zagier, D.: Modular forms whose Fourier coefficients Involve zetafunctions of quadratic fields. In: Modular functions of one variable VI (eds. J.-P. Serre, D. Zagier), pp. 105-169. Lect. Notes Maths.No. 627, Berlin-Heidelberg-New York: Springer 1977

