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Abstract

Induced representations IndeS were introduced and studied by F.G. Frobe-
nius [7] for finite groups and developed by G.W. Mackey [21, 22| for a lo-
cally compact groups. We generalize the Mackey construction for infinite-
dimensional groups. To do this, we construct some G-quasi-invariant mea-
sures on an appropriate completion X = IZ[\G of the initial space X = H\G
(since the Haar measure on G does not exist) and extend the representation
S of the subgroup H to the representation S of the corresponding comple-
tion H. Kirillov’s orbit method [9] describes all irreducible unitary repre-
sentations of the finite-dimensional nilpotent group G, in terms of induced
representations associated with orbits in coadjoint action of the group G,, in
a dual space g of the Lie algebra g,,. The induced representation defined in
such a way allows us to start to develop an analog of the orbit method for
the infinite-dimensional “nilpotent” group Bgzli_ngn (9,,—1 of infinite in both
directions matrices.
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Introduction

Induced representations were introduced and studied by F.G. Frobenius

[7] for finite groups and developed in details by G.W. Mackey [21, 22] for lo-



cally compact groups. The induced representation IndeS is a representation
on the space L*(X,V, ) of a group G associated with a unitary representa-
tion S in a space V of a closed subgroup H. A (G-quasi-invariant measure
1 is determined by the Haar measure on GG. We generalize the Mackey con-
struction for infinite-dimensional (non locally compact) groups.

To define correctly the representation Ind%S and the space L*(X,V, )
(since a Haar measure does not exist on GG) we can take a completion X
of the space X, construct some G-quasi-invariant measure p on it and ex-
tend the representation S of the subgroup H to the representation S of the
corresponding completion H. The content of the article is the following. Sec-
tion 2 is devoted to notion of the induced representations for locally compact
groups elaborated by G.W.Mackey [21, 22, 23, 24] and to the Kirillov orbit
method [9, 11, 12] for the nilpotent Lie groups G,, of n x n upper triangular
real matrices with units on the principal diagonal. In Section 3.1 we define
the induced representations for an arbitrary infinite-dimensional group G.
As an illustration, in Sections 3.2-3.5 we start to develop the orbit method
for infinite-dimensional i-nilpotent group BZ=li . (9,1 with respect to the
symmetric embedding (Sec. 3.3). We call a group i-nilpotent if N,enG={e},
where G,11={G,G,} and Gy = G. To find an appropriate completion X
and extend the representation of the group H we use a family of Hilbert—
Lie groups Bs(a) (a € 2) introduced in [13]. This family has the property
that any continuous representation U of the group BZ can be extended by
continuity to some representation Us(a) of an appropriate Hilbert-Lie group
By(a). Let G be a dual space of a group G, i.e. the set of all equivalence
classes of unitary irreducible representations of the group G. The family
Bs(a) (a€2l) has the following property: BY =N,y Ba(a) (see (3.6)). There-

o~ I~

fore Bg/z\uaemBg(a) and to describe the dual space BZ it is sufficient to

know Bs(a) for all a € A, but this problem has not been solved yet. In Sec-
tion 3.6-3.7 we construct a one-parameter family 7%™*(m € 7Z) depending
on the measure u, of induced representations corresponding to generic orbits
generated by a point y € g*:(lign g,)" and prove their irreducibility (Theo-
rem 3.9). In Section 4 we construct a two-parameter family T%*™# (k,n€Z)
of induced representations corresponding to generic orbits and give the crite-
ria of the irreducibility (Theorem 4.2). Here we use the technique developed
earlier in [14, 15] to prove the irreducibility of the “regular” representations
in the framework of Ismagilov’s Conjecture 3.1. In Remark 4.2 we show
that the induced representations T" of the group Bf = hﬂn G* on the space



L*(X, 1) can be obtained as a limit of (non compatible) representations THn
equivalent with the induced representations 7)™ of corresponding subgroups
G* on L*(X,,h,). This fact is based on the symmetric groups embedding!
This gives another possibility to construct an appropriate measure p on a
suitable completion X of the space X = U,X,,. We should find measures
fn ~ hy, on X, = R™™ which satisfy a natural consistency condition then
by Kolmogorov’s theorem [8] these measures p, fit together to form a mea-
sure g on R*. In Appendix 1 we recall the Gauss decomposition of finite
and infinite matrices. In Appendix 2 we collect some criteria of the irre-
ducibility for locally compact and infinite discrete groups. For countable
groups G.W. Mackey has shown [24] that quasiregular representations are ir-
reducible if and only if the corresponding subgroups are self-commensurizing.
He also gave criteria for induced representation Ind?0 (7) to be irreducible for
finite-dimensional representations m of a subgroup I'y. See also M. Burger
and P. de la Harpe [2], L. Corwing [3], N. Obata [25]. The representations of
the infinite symmetric group S, induced by trivial representation of Young
subgroups were studied by A.M. Vershik and N.V. Tsilevich [29].

The “regular” and “quasireqular” representations introduced by the au-
thor in [14, 19] for general infinite-dimensional groups are particular cases of
induced representations (see Example 3.1). In contrast to finite-dimensional
groups, the “regular” representations of the group B% corresponding to the
trivial orbit 0 € g*, can be irreducible and nonequivalent if the corresponding
measures are nonequivalent [18]. The same holds for “quasiregular” repre-
sentations. So, not all irreducible representations of the infinite-dimensional
i-nilpotent group BZ are monomial, i.e., induced by one-dimensional repre-
sentations as for finite-dimensional groups. The Ismagilov conjecture [14, 15]
and its generalization [19] (Conjectures 3.1, 3.2) explains when regular and
quasiregular representations of infinite-dimensional groups can be irreducible.
It is a remarkable fact that the criteria of the irreducibilty of the induced
representations of BY for generic orbits (Theorem 4.2) includes the condi-
tions of (Ismagilov’s) Conjecture 3.1. The equivalence will be studied later.
For general orbits, representations have not been constructed. It is an open
question whether the orbit method will give all unitary irreducible repre-
sentations of the group BZ. The completions of groups that are inductive
limits G = li nG" of finite-dimensional classical groups G,, appeared, for
example, in the work by A.A. Kirillov [10] for the group U(co) =lim U(n),
and G.I. Ol'shanskii [26], for inductive limits of classical groups. They de-
scribed all unitary irreducible representations of the corresponding groups
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G=li . G, continuous in the stronger topology, namely, in strong operator
topology. In [31] for inductive limits of real reductive Lie groups G :hgn G,
J.A. Wolf constructed the principal series representations as the inductive
limit of compatible (see Remark 4.2) representations of principal series for
subgroup G,. As he wrote, “anything involving integration over G/P is ex-
cluded”. We can quote from [32]: “ We study representations of the classical
infinite dimensional real simple Lie groups GG induced from factor representa-
tions of minimal parabolic subgroups P. When P is minimal we prove that it
is amenable, and we use properties of amenable groups to induce unitary rep-
resentations Ind%(7) on complete locally convex topological vector spaces”.
To construct an analog of induced representations, integration over G/P is
replaced by right P-invariant means on G.

2. Induced representations, finite-dimensional case

2.1. Induced representations
The induced representation Inng is the unitary representation on the
space L2(X,V, i) of a group G associated with a unitary representation S :
H—U(V) of a closed subgroup H of the group G. For details, see [22, 24].
We follow [12, Section 2.1]. Suppose that X = H\ G is a right G—space and
that s : X — G is a Borel section of the projection p : G — X = H\G :
g — Hg. For a Lie group, such a mapping s can be chosen to be smooth
almost everywhere. Then every element g € GG can be uniquely written in
the form
g=hs(z),he H, v € X, (2.1)

and thus G (as a set) can be identified with H x X.

The representation Ind%S is defined as follows [12, section 2.3]. Let
S : H — U(V) be a unitary representation of a subgroup H of the group G
in a Hilbert space V' and let p be a measure on X satisfying the condition
dus(xg)/dus(x) = Ag(h(x, 9))/Ac(h(z, g)), where Ag is a modular function
on a group G and h(z, g) € H is defined by the relation s(x)g = h(zx, g)s(xg).
Let L?(X,V,u) denote the space of all vector-valued functions f on X with
values in V' such that

12 = /X 1 (@) 2 du(z) < oo.

Let us consider the representation 7' given by the formula

(T(9)f](x) = Alw, 9)f (zg) = S(h) (dps(xg) /dpus())'* f(zg),  (2.2)
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where

Az, g) = [Au(h)/Ac(m)]"* S(h), (2:3)
and the element h=h(x, g) is defined as before by formula s(x)g=~h(z, g)s(zg).

Definition 2.1. The representation T is called the unitary induced repre-
sentation and is denoted by Ind%S.

Remark 2.1. The right (or the left) regular representation p, A : G +—
U(L*(G,h)) of a locally compact group G is a particular case of the in-
duced representation Ind%S with H = {e} and S = Id, where h is a Haar
measure. The quasiregular representation is a particular case of the induced
representation with some closed subgroup H C G and S = Id.

2.2. Orbit method for finite-dimensional nilpotent group B(n,R)

Fix the group G, = B(n,R) of all upper triangular real matrices of
order n with ones on the main diagonal. The basic result of the Kirillov
orbits method [11], [12, Chapter 7, §2] applied to nilpotent Lie groups “is
the description of a one-to-one correspondence between two sets:

a) the set G of all equivalence classes of irreducible unitary representations
of a connected and simply connected nilpotent Lie group G,

b) the set O(G) of all orbits of the group G in the space g* dual to the Lie
algebra g with respect to the coadjoint representation.

To construct this correspondence, we introduce the following definition.
A subalgebra b C g is subordinate to a functional f € g* if

([, y]) =0 for all z,yeb,

i.e. if b is an isotropic subspace with respect to the bilinear form defined by
B¢(z,y) = (f,[z,y]) on g. In this case we define a one-dimensional unitary
representation Uy g of the group H = exp b by formula

U m(exp x) = exp 2mi(f, x).

Theorem 2.1 (Theorem 7.2, [12]). (a) Every irreducible unitary repre-
sentation T of a connected and simply connected nilpotent Lie group G has
the form T = Inngf,H, where H C G is a connected subgroup and f € g*;
(b) the representation Ty = InngﬁH is irreducible if and only if the
Lie algebra b of the group H is a subalgebra of g subordinate to the functional
f with maximal possible dimension;
(c) irreducible representations Ty, m, and T, g, are equivalent if and only

*

if the functionals fi and fy belong to the same orbit of g*.



2.3. The induced representations corresponding to generic orbits, finite-di-
mensional case

We present the explicit formulas for the induced representations (2.10)—
(2.13) allowing us to calculate the generators of the one-parameter groups in
H (see (2.16) and definition (2.8) of the matrix S). We give a new proof of
the irreducibility of the group G, based on the Gauss decomposition of the
matrix S. This proof can be generalized for the infinite-dimensional group
BE.

Example 2.1. Generic orbits for the group G = B(n,R) [12, Example 7.9].
“The adjoint action of the group G on g has the following form Ad,(z) =
tyt™',t € G, x € g. The form of the action Ad;(y) = (¢~ 'yt)_ implies,
that Ady,t € G acts as follows: to a given column of y € g* a linear
combination of the previous columns is added and to a given row of y, a
linear combination of the following rows is added. More generally, the minors
Ay, k=1,2,...,[5], consisting of the last k rows and first k& columns of y are
invariant of the action. It is possible to show that if all the numbers ¢, are
different from zeros, then the manifold given by the equation

is a G-orbit in g*. Hence generic orbits have codimension equal to [2] and

2
n(n—1)

dimension equal to “%— —[%]. To obtain a representation for such an orbit,
00

we can take a matrix y of the form y = (3 7), where A is the matrix of

order [§] such that all nonzero elements are contained in the anti-diagonal.

It is easy to find a subalgebra of dimension [2] x [*:] subordinate to the

functional y. It consists of all matrices of the form (§4), where A is an

[2] x [%] or [%H] x [2] matrix.”

For p,q,m € Z, p < m < q define the following groups

Gpa={I+ > awbBy}, H,={I+ Y  anE}. (25

p<k<r<q p<k<m<r<q

Remark 2.2. We find h(x,t) using s(z)t = h(z,t)s(xt). Let 1<m<n and
By = Guyin, B(m) = H, B™ = G,,,. The group G, = B(n,R) is a

1,n
semi-direct product G, = B, x B(m) x B and two decompositions hold
B, B(m)B"™ 3 z,,2(m)z'™=hz,,2™ € B(m)B,, B™, h=t,,z(m)z; !

m )

(2.6)



0 Tm

where G, 5 = = <x<m) m(m)) = rpx(m)a™ z,, € B,,, x(m) € B(m), (™ €

B™)_ In view of decomposition (2.6), the space X = B(m)\G,, is isomorphic
to B,, B . Therefore the section s can be used as an embedding B,,B™ >
Tp2™ = s(2,2™) = 1,2 € B,,B(m)B™). For t = t,,t'"™ ¢ B, BM™
we have s(2)t = 2,2™t,,t™ = z,,t,,2™t™ = s(zt), so s(x)t = s(xt) and
h(z,t) = e. Fort € B(m) we get s(x)t = x,2™t = h(x,t)x,,2™, hence

Wz, t) = zpa™t(2,am) =t = (=07 0 ) (1) ((I(m))fl 0 > = (L etmozn' )

Tm 0 x,;Ll 0 1

where tg =t — I. Finally we get

0, for t € B,,B™,
Hw,t) = h(z,t) = I = { x™(t — Dl for t€ B(m). (27)

m

Let us fix Gy, = B,, B(m)B™). Consider one-parameter subgroups Ej,(t) :=
4t Ey,, t €R of the group B(2m,R). We find generators Ay, =d/dtTr11p,, |—0
of the induced representation T; (2.12). Set for 1 <k <m <r <2m

Skr(tir) ==y, (h(z, Exp(tgr) )-1)), then A, =d/dt exp(2miSy,(t))|t=0 =270 Sk, (1).
Define the matrixS (its structure is important in the proof of the irreducibility)
S= (Skr>1§k§m<rg2ma where Sk,« = Skr(l) Then S= (277'7:)_1 (Ak:r>k,r‘ (28)

Lemma 2.2. Let B = (b );,—; € Mat(n,C). Define the matriv C =
(Crr)ip—1 € Mat(n, C) by

crr = t1(EyB), 1<k,r<n, then wehave C = BT, (2.9)

where Ey, are matriz units and BT means transposed matrixz to the matriz
B. The equality C = BT holds also in the case when B is an arbitrary m xn
rectangular matriz. The statement is true also for matrices B € Mat(oo, C).

PROOF. Indeed, we have tr(Fy,.B) = byy. O

We now find the matrix S(t) = (Sk(txr) )k, and the matrix S = (Sk,(1))x.r
using Lemma 2.2. Using (2.7) we have

(y, h(z, t)-I)=tr (H(x,t)y)=tr (x(m)tom,;ly) =tr (tox;nlyx(m)) =tr (toyB(x,y)),
where tg =t — I and

Blw,y) = wyz™ = (o.,00) (36) (<57 9) = (oo o) - (210)



By definition we have

Skr(trr) = (Y, (h(, By (thr)) — 1)) = tr(te By B(2, ),

hence by Lemma 2.2 and (2.10) we conclude that
S= (i (1)er = (tr (B B(z, 1)), = B (. y) = (§ €™ ) - (2.11)

So the induced representation Ind%(S) : G — U(L?*(X, u)) corresponding to
the point y € g* has the following form for t € G, z € X = H\G,

(Tof)(x)=S(h(z,t)) (du(at) /du(x)? f(at), fe L} (X,p),  (2.12)

where

S(h(z,t))=exp(2mily, (h(z,t) — I)))=exp (2mitr ((t — [)B(z,y))). (2.13)
Remark 2.3. For the matrix X = I+ 37, /) TnBrn € B% we de-
note by IL‘];% the matrix elements of the matrix X!, ie. X1 = I +
> kmeTk<n 7t By, € BZ. The explicit expressions for z;.! are as follows (see

[13], formula (4.4)) 23!, = —Tkks1,

n—k—1
.T];T} = —Tip + Z (_1)r—1 Z Lhiq Liqig -+ Lipms k<n-—1. (214)
r=1

k<i1<ig<...<ir<n

We have by definition X 'X = XX ! = I, hence
(XX, =) awan, =0 = aptem = (X'X), ., k<n (215)
r==k r==k

Denote by Dy, = Dyn(h) = 0/0xy, the operator of the partial derivative
corresponding to the shift  — = + tFy, on the group B,, X B™ 3 ¢ =
(kn )k and the Haar measure h.

Example 2.2. Let G =G4, g=Lie(G), g* = Lie(G)*. We write the repre-
sentations for generic orbit corresponding to the point y = y43F43 + yso Fs2 +
ys1Ee1 € g*. Set H3=H} ¢, hs=Lie(Hs)={t—I | t € H3}. The representation
S of the group Hj is:

Hy 3 exp(t—1I)=t = exp(2mi(y, (t—1))) = exp(2mi[tsayus+tasysrttisys]) €S".
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Denote by Bs = Gy, B(3) = Hiy, B®) = G,3. For the group Gi5 =
B(6,R) holds the following decomposition (see Remark 2.2): B(6,R) =
B3B(3)B® | ie. x=x32(3)2®. In view of (2.10) and (2.11), we get

1,3 12612461 IZ51y52+96261y61x12 y43+x251y52x23+x261y61x13
B(IL‘, y) =Ty Yyr T = rg61y61 y52+335_61y61$12 y52$23+r5_61y61$13 )
Y61 Y61T12 Y61713
35 Y61 T5g Y1 Y61
S — BT (=1 BN\T __ 1 T 0
= (37, y) = (133 yxr ) = Tys Y52 TT g Y61T12 Ys52+Tgg Y61212  Y61Z12
y43+x251y52x23+36261y61w13 y52123+xg61y61113 Y61213

Using again (2.8), (2.12) and (2.7) we get the following expressions for gen-
erators Ay, = d/dtT1 41, =0 of one-parameter groups I + tEy,, t € R:

A12:D127 A13:D13> A23:{L’12D13—|—D23, A45:D457 A46:D467 A56:x45D46+D567

-1 —1
1 A1g Ars Ags L ZL46 yflil T5g i7J61 Y61
S=— <A24 Azs Age ): Tys Y52+ 45 Y61T12 Y52+Tr Y6112 Y61T12 | . (2.16>

2 Asg Aszs A 21 —1 1
m 34 /135 436 Y43+T 15 Y52T23+HT 16 Y61013 Y52823+T5g Y6113 Ye1T13

2.4. New proof of the irreducibility of the induced representations

The conditions of irreducibility, Theorem 2.1 (b), is hard to formulate in
the infinite-dimensional case since all maximal subordinate subalgebras are
infinite-dimensional. We give an equivalent description of the irreducibility
which can be generalized, namely, the subgroup Hfj}:_*f”“ is of maximal
dimension in Gy -1 < r=0 for k=2m + 1 (resp. r=—1,r=0 for k = 2m)
& Gy = {e}, see Lemmas 4.1 and 4.4. These lemmas explain when and
why the induced representations Ind$ (U r.m) are irreducible. The infinite-
dimensional case is richer since some irreducible representations appear as
the limit of reducible ones (see Theorem 4.2 and Remark 4.2).

We present a new proof of irreducibility that allows a generalization for
the infinite-dimensional group (Section 3.7). These proofs in both cases are
based on the fact that the von Neumann algebra generated by the restriction
of the representation 7™ ¥ on the commutative subgroup B(m,n) coincides
with L>(X, p) (Lemmas 2.4 and 3.10). Consider the sequence of Lie groups
G = Gm—nmint+1 (see (2.5)) and their Lie algebras g" = Lie(G)}), m €
Z, n€N. We note that for an arbitrary m € N we have Bf =lim G*. The

following decomposition holds (see (2.6)) G™' = B,, ,x B(m,n)xB™™)  where

Bm,n = Gm+1,m+n+17 B<m7 n) =H] B(m,n) = Gmfn m-

m—n,m+n+1> )

10



Denote by A(m,n) = {(k,r) € Z* | m—n<k<m<r<m+n+ 1},
Apn={kr)eZ? I m+1<k<r<m+n+1}, A ={(kr)ecZ?|
m—n <k <r <m}. The induced representation of the group G"" is defined
in the space H™" := L*(X,n, hyn.n) by the following formula for ¢ € G

(T f)(x) = S(h(x, 1)) (dhump (1) /A (1))
where X,,,, = B(m,n)\G™ ~ B,,,, x B™™ and

1/2

Fzt), feM™, (2.17)

dhmml(mm’ x(m)) = dl'm ® daj(m) — ®(k,n)€Am,nd$kn ® ®(l~c,n)EA<m*") da:kn (218)
is the Haar measure on the group B,, , X Bmn)

Theorem 2.3. The induced representation T™Y" of the group G]' defined
by (2.17), corresponding to the generic orbit O, generated by the point y,, €
(@), Yn = Do Ymtrt1m—r Bmtrt1.m—r, Yst # 0 is irreducible. Moreover,
the generators of the one-parameter groups Ay, = %Tﬁ’fgh li=o are: Ap, =
S @k Drg+ Dy, (kyr) € AW Ay = Sy D4 Dy, (Ky7) €

N m 1 T
Am,na (27‘—2) I(Akr)(k,r)eA(m,n) = S'Sl ):(Skr)(k,r)EA(m,n): (xmlyx( )) .

The wrreducibility of the induced representation of the group G} is based on
the following lemma.

Lemma 2.4. The von Neumann algebra A% generated by the restriction of

the representation T™Y" on the commutative subgroup B(m,n) of the group
G coincides with L (X n, ) -

PROOF. In the space H™" define two von Neumann algebras 2 and 2* gen-
erated respectively by two sets of unitary operators Uy, (t) and Vj..(t), where

(Uke () f)(2) = exp(2miSir (8)) f (), (Var(8) ) (2) = exp(2mitay,) f (@),
A = (U (t) = Tyl = exp(2miSie(t)) |t € R, (k,7) € A(m,n))",
A* = (Vi (t) := exp(2mitay,) |t € R, (k,7) € Ay U A(m’”))”.

Since A* = L>®(X,n, hinn), to prove irreducibility it is sufficient to show
that 2% = A®. Using decomposition (2.10) and (2.11)

Sglm) — (x;llyx(m))T — (x(m))TyT(xfl)T (219)

m

we conclude that A% C 2*. Indeed we have Vi, (t) := exp(2mitzy,) € A%,
so the operators zy, of multiplication by the independent variables f(z) —
T f(x) in the space H™" are affiliated with the von Neumann algebra 2A*

ie. o n AT for (k,7r) € Ay, JA,

11



Definition 2.2. Recall (c.f., e.g., [5]) that a non necessarily bounded self-
adjoint operator A in a Hilbert space H is said to be affiliated with a von
Neumann algebra M of operators in this Hilbert space H, if exp(itA) € M
for all ¢ € R. Then one writes A n M.

By (2.14) the matrix elements z;,' of the matrix z;,} € B,,,, are also affiliated
z;b n AT, Using (2.19) we conclude that the matrix elements S, of the
matrix S{™ are affiliated: Sy, n A, (k,r) € A(m,n), so A5 C AT,

To prove that A% D A?, we find the expressions of the matrix element of
the matrix z(™ € B and :C;f € B,,, in terms of the matrix elements
of the matrix SI™ = (Skr) (kr)eamom)- To do that, we compare the above
decomposition S = (2™)TyT (217 and the Gaussian decomposition C' =
LDU (see Theorem 5.1). Let us denote by J the n x n anti-diagonal matrix
J =" Bpirmr1 Using J2 =T and (2.11) we get

SJ = B (x,y)J = ")y  (x,,)"J = (") (y" ) (J (,)" ). (2.20)

The latter decomposition (2.20) is in fact the Gauss decomposition of the
matrix SJ i.e. we get

SJ = LDU, where L= z")T, D=4y"J U=Jx )"

Using Theorem 5.1 we can find the matrix elements of the matrix z(™ €
B and x,! € B,,,, in terms of the matrix elements of the matrix sim.
hence we can also find the matrix elements of the matrix z,, € B,,,. This
finish the proof of the lemma. 0

PrROOF OF THEOREM. 2.3 Let a bounded operator A in a Hilbert space
H™™ commute with the representation T"¥». Then by Lemma 2.4 A com-
mute with L®(B,,, X B dg,, @ dr™), therefore the operator A itself is
an operator of multiplication by some essentially bounded function a€L* i.e.
(Af)(z)=a(z)f(x) for f€H™". Since A commute with the representation
T de. [A, T/ =0 for all t€ B,,, x B™™ we conclude that

a(z) = a(zt) (mod dz,, ® dz™) for all t& By, x B™™,

Since the measure dh=dx,,@dz™ is the Haar measure on G :Bm,an(m’”),
this measure is G-right ergodic. Therefore a(z)=const (mod dz,, ® dz™).

O
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3. Induced representations, infinite-dimensional case

3.1. Induced representations for infinite-dimensional groups

A. Kirillov [12, Chapter I, §4, p.10] says: "The method of induced repre-
sentations is not directly applicable to infinite-dimensional groups (or more
precisely to a pair G D H ) with an infinite-dimensional factor H\G)”. To
generalize the Mackey construction for infinite-dimensional groups, one needs
first to construct some G-quasi-invariant measure on infinite-dimensional ho-
mogeneous space H\G. Since there is no Haar measure on the group G [30],
it is difficult to construct such a measure on the initial space H\G. As in
the case of the “regular” or “quasiregular” representation (see Example 3.1),
it is reasonable to construct such a measure on an appropriate completion X
of the initial space X = H\G. The formula for the induced representation
containing an operator S(h), h € H will make sense only if one can eztend
the representation S of the group H to the corresponding completion H of
the group H.

Finally, the induced representation of the group G associated with a uni-
tary representation S of a subgroup H will depend on a completion G of the
group G, on an extension S : H — U(V) of the representation S : H — U(V)
and on the choice of a G-quasi-invariant measure p on an appropriate com-
pletion X of the space X = H\G.

Hence the procedure of induction will not be unique but, nevertheless,

—~—

well-defined (if a G-quasi-invariant measure on H\G exists). So the uniquely
defined induced representation Ind% S in the Hilbert space L*(H\G,V, ) (in
the case of a locally-compact group G) should be replaced by the family of

induced representations IndG “n(S.S) in the Hilbert spaces L2(H\G,V, )

depending on different Completlons G of the group G and different G-quasi-
invariant measures u on X = H\G.

Example 3.1. Regular representation (14, 15, 16] of the infinite-dimensional
group G in the space LZ(G ), associated with the completion G of the group
G and a G-right-quasi-invariant measure y on G, is a particular case of the in-

duced representation IndG G’“([ d), generated by the trivial representation of

the trivial subgroup. Quaszr@gular [19] representation in the space L(X ),
where X =H \G and H is some subgroup of the group G is a particular case

of the induced representation Indg ?{“ (Id) generated by the trivial represen-

tation of the completion H in the group G.

13



Let G be an infinite-dimensional group and S : H — U(V) be a unitary
representation in a Hilbert space V' of the subgroup H C G such that the
space H\G is infinite-dimensional. We give the following definition.

Definition 3.1. The induced representation of the group G
GG d
Indg’H”(S, S),

generated by the unitary representations S : H — U(V') of the subgroup H
in the group G is defined (similarly to (2.2)) as follows:
1) first we should find some completion H of the group H such that

S:H—U(V)

is the continuous unitary representation of the group H such that S g =5,
2) take any G-right-quasi-invariant measure £ on an appropriate comple-
tion X = H\G of the space X = H\G, on which the group G acts from the
right, where H (resp. G) is a suitable completion of the group H (resp. G),
3) in the space L2(X,V, ) of all vector-valued functions f on X with
values in V' such that

12 = /X 1 (@) 2 du(z) < oo

define the representation of the group G by the following formula:

(Tof) (@) = S(h(x, 1)) (du(xt) Jdp(@)"? f(at), zeX, ted,  (3.1)

where A is defined by 3(z)t = h(z,t)3(xt). The section s : X — G of the
projection p : G — X should be extended to an appropriate section s : X =
G of the extended projection p: G — X.

Conjecture 3.1 (R.S. Ismagilov, 1985, [14]). The right regular representa-
tion TR+ : G — U(L*(G, p)) is irreducible if and only if 1) p* L pVt €
G\{e}, (L means singular), 2) the measure p is G-ergodic.

The following construction generalizes regular and quasiregular representa-
tions. Let us have the measurable action o : G — Aut(X) of the group
G on the measurable space X with a G-quasi-invariant measure u. The
representation 7% of the group G is defined by

(w7 ) (@) = (dp(as-1(2) (@) flai (2), e LP(X,p). (3.2)

14



Conjecture 3.2 ([19]). A representation w*X : G — U(L*(X,p)) is ir-
reducible if and only if 1) u9 L pVg € a(G)'\{e}, 2) the measure u is
G-ergodic, where o(G)' ={g € Aut(X) | {g, s} =gaug la; ' = e Vt€G}.

Problem 1. Find the conditions on X, i, G, o when the Conjectures 3.1 and
3.2 are valid. Conjectures 3.1, 3.2 are proved for some particular cases, see,
e.g., [14, 15, 19]. In the case of the field k = IF,, they should be corrected.

3.2. How to develop the orbit method for infinite-dimensional i-nilpotent
group BE?

Consider the group BZ = hAq (G,_1 of infinite in both directions upper
triangular matrices. The Corresp%nding Lie algebra g is the inductive limit
g = h_ngn b, of Lie algebras of upper triangular matrices, so as the linear
space it 1s isomorphic to the space R5° of finite sequences (xy)ren. Hence,
the dual space g* is isomorphic to the space R> of all sequences (zy)gen,
but the latter space R* is too large to manage with it, for ezample, to equip
it with a Hilbert structure or to describe all orbits. To make it smaller it
is reasonable to make the completion G of the group G in some stronger
topology.

To develop the orbit method for the group BZ, we should answer some
questions:

(1) How to define the appropriate completion G of the group G corresponding
Lie algebras g (resp. g) and corresponding dual spaces g* (resp. g*)?

(2) Which pairing should we use between g and g*?

(3) Suppose that the dual space g*, some element f € g* and corresponding
algebra b, subordinate to the element f, are chosen. How to define the cor-
responding induced representation Inngf’H and study its irreducibility 7
(4) Shall we get all irreducible representations of the corresponding group
using the orbit method and induced representations?

(5) Find the criteria of irreducibility and equivalence of the induced repre-
sentations of the group BZ.

In [13] (see Section 3.3) for the group GLy(200,R) = lim GL(2n — 1,R)
we have constructed a family of the Hilbert-Lie groups GLy(a), a € gL
such that:

a) GLo(200,R) C GLy(a) and GLy(200, R) is dense in GLy(a) for all a € Ay,
b) GLO(200, R) = ﬂaemGLg(a),

c) any continuous representation of the group GLgy(200,R) is in fact contin-
wous in some stronger topology, namely in a topology of a suitable Hilbert
-Lie group GLy(a), a € Agy.

15



As we show in Sections 3.3-3.4 to develop the orbit method it is sufficient:
(1) to consider Hilbert-Lie completions Bo(a) of the initial group BZ.
(2) In this case the pairing between the corresponding Hilbert-Lie algebra
by(a) and its dual by(a)* is correctly defined by the trace (as in the finite-
dimensional case).
(3) In Section 3.6 and 4 we define the induced representations of the group
BEZ corresponding to special orbits, generic orbits, using scheme given in Sec-
tion 3.1. We consider only the simplest example of G—quasi-invariant mea-
sures on X = [ \é , namely, the infinite product of one-dimensional Gaussian
measures. How to construct the induced representation corresponding to an
arbitrary orbit is an open question.
(4) We do not know answer for questions (4).
(5) We obtain the criteria of irreducibility only for generic orbits.

3.3. Hilbert-Lie groups GLs(a)

The Hilbert-Lie groups naturally appear in the representation theory of
infinite-dimensional matrix group. Let us consider the group GLy(200,R) =
lim | GL(2n—1,R) with respect to the symmetric embedding i : G,, — Gy 41,
Gnox—ax+FE_, _n+E,, € Gy, where G,, = GL(2n—1,R). Let us define
[13] the Hilbert-Lie group GLo(a)={I+z | (I+x)"' =14y =z,y € gla(a)},
by its Hilbert-Lie algebra gly(a) with an operation [x,y] = xy — yx

gla(a) = {x = > @ Bin | 12ll30) = Y | @kn [* @k < 00}, a € Aar.
k,neZ k,neZ

Namely, consider an analog os(a) of an algebra of Hilbert-Schmidt operators
o2(H) in a Hilbert space H = I5(Z):

UQ(CL) = {13 = Z Tn Ln ‘ ||IH§2(CL) = Z | Tkn |2 A, < OO}
k,nezZ k,neZ

Lemma 3.3 ([13]). The Hilbert space o4(a) is an associative Hilbert algebra
(e, [|lzy|| < Cllz||llyll, =,y € o2(a)) if and only if the weight a= () (kn)ez2
belongs to the set Aqy, defined as:

Aar={a = (akn)km)ez2 | 0 < @ < Cagmmn, k,n,m € Z, C > 0}. (3.3)

Theorem 3.4 (Theorem 6.1 [13]). Every continuous unitary representa-
tion U of the group GLy(200,R) in a Hilbert space H can be extended by conti-
nuity to a unitary representation Us(a) : GLa(a) — U(H) of some Hilbert-Lie
group Glis(a), a € Aqr, depending on the representation.
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3.4. Hilbert-Lie groups Bs(a)
Let us consider the following Hilbert-Lie group By(a) := {I +x | = €
ba(a)} where the corresponding Hilbert-Lie algebra bo(a) is defined as

bo(@)={e=" ) @Bl lelliym = D |l am<co} (3.4)

(k,n)€Z? k<n (k,n)EZ? k<n

Lemma 3.5 ([13]). The Hilbert space by(a) (with an operation (z,y)—xy)
is a Hilbert algebra if and only if the weight a = (ag,)kn Satisfies the condi-
tions

a = (gn) (km)ez2 h<ns Gon < Clpmmn, k< m <n, k,m,n € Z. (3.5)

Denote by 2l the set of all weights a satisfying the above-mentioned condition.
We note [13] that

— —

BE = NyeaBs(a), therefore B = U,eqBs(a). (3.6)
Hence, for the description of the dual space é\% it is sufficient to know B/2®
for all a € 2, but this problem has not been solved yet.

8.5. Orbits for groups BY and Bs(a).

Let b7 be the Lie algebra of the group BZ and let (b7)* be its dual space.
Since bY = Nueaba(a), so (b%)* = Uueabi(a), therefore an arbitrary element
y € (b%)* belongs to some dual space bj(a), a € A. Take the group BZ, fix
one of its Hilbert—Lie completion, i.e., some Hilbert—Lie group By (a), a € 2,
and the corresponding Hilbert-Lie algebra by(a). The corresponding dual
space b3(a) has the following description

bi@)={y=" > Bl lylwm= D yea P, <00} (3.7)

(k,n)eZ2 k>n (k,n)€Z2,k>n

The adjoint action Bs(a)— GL(by(a)) of the group Bs(a) on its Lie algebra
by(a) is: by(a) 2 z — Ady(z) = tat™ € by(a), t € By(a). The pairing
between g = bo(a) and g* = bi(a) is correctly defined by the trace:

g* X g = (yax) = <yax> = t’l“(.?jy) = Z LnYnk € R. (38)
(k,n)€Z2 k<n
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The coadjoint action of the group By(a) on the space bj(a) dual with by(a)
is Adj(y)=(t""yt)- =1+ E(p,q)EZQ,p>q(t_lyt)pquCN t € Bsy(z), yebs(a).

We consider four different type of orbits with respect to the coadjoint
action of the group By(a) in the dual space b}(a).

Case 1) 0-dimensional orbits are of the form:

Oy =y, yebsla), y= Zyk+1,kEk+1,k-

keZ

The Lie algebra by(a) is subordinate to the functional y, (y, [b2(a), ba(a)]) =0

[by(a),ba(a)] ={z € ba(a) |z = Y zpnBinl}.

(k,n)EZ2 k+1<n

The one-dimensional representation of the Lie algebra bs(a) is

b()Bl‘f—)< kak+1yk+1k€R

keZ

The corresponding one-dimensional representations of the group Bs(a) is

Ba(a) 3 exp(x) = exp(2mi((y,))) = exp(2mi 3 dspyusni) € S'. (3.9)

For different y € b3(a), y#0, these representations are irreducible and nonequiv-
alent.

Case 2) The finite-dimensional orbits corresponding to finite points y =
> (kmyezon YknErn € b3(a) (finiteness of y means that only finite number
of Yy, are nonzero). These orbits lead to the induced representations of the
appropriate finite-dimensional groups G)' = Gp_nmint1, m € Z, n € N
(see (2.5)). All irreducible unitary representations of the groups G are com-
pletely described by the K1r1llov orbit method hence the finite-dimensional or-

bits give us the set | J, oy GmCBZ (there is a natural embeddlng Gm C Gn+1)
Case 3) Generic orbit is generated by a point y* € b3(a), k € Z

yk - Z Yrsbrs = Z YrsErs € b;(a)7 Yrs 7£ 0, (310)
r+s=k, s<[(k—1)/2] r+s=k,r>[k/2]+1
y2m+1 :Zmeerrl,mprererl,mfp € b;(a), Ym+p+1,m—p 7é 0. (311)
p=0
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Sections 3.6, 3.7 and 4 are devoted to the study of these cases.
Case 4) General orbits are generated by arbitrary non finite points

Y = Z YinErn, € b3(a).
(kn)EZ,k>n
Problem. How to construct the induced representations for general orbits
and study their irreducibility?

3.6. Construction of the induced representations T"™Y corresponding to a
point y*™* and subgroup HZ™+

Consider the case 3) more carefully. We shall study the irreducibility in
the following section. As before, take the group BZ, fix one of its Hilbert com-
pletions i.e., a Hilbert-Lie group Bs(a), a € 2, the corresponding Hilbert-Lie
algebra g = by(a) and its dual g* = b3(a) as in the previous section.

We shall construct an analog of the induced representation of the group
BE for generic orbits (see Examples 2.1) corresponding to the point y?™*! €
b3(a) defined by (3.11) and subgroup Hg™ "' following steps 1)-3) of Defini-
tion 3.1.

Step 1) Eztension of the representation S : H — U(V'). For m € Z, the
group BZ is a semi-direct product. Consider the decomposition

BY =B, x B(m)x B™, BZsg= (ﬂgw :Eém)) = zpx(m)z™, (3.12)

similar to the decomposition (2.6), where BZ = {I + > kmez, ben TknLn s

Bn={I+ Y awby}, Bm)={I+ >  zunEu}
(kr)eAm (k,r)eA(m)

B™ ={I+ > auEgy}, where A, ={(k,r) €Z* | m+1<k<r},

(k,r)eAlm)
Am)={(k,r)€Z* | k<m<r}, A™={(kr)eZ®|k<r<m)
Since the algebras ho(m), m € Z defined
ho(m) = {t — I |t € Bo(m)}, where By(m) = B(m) N BE,
are commutative, (y, [ho(m), ho(m)]) = 0. Hence they are subordinate to the

functional y € g* = bi(a). The corresponding one-dimensional representa-
tion of the algebra ho(m) = h(m) (b2 is

bo(m) 22— (y,z) = mefp,m+p+lym+p+1,mfp €R.
p=0
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The unitary representation of the corresponding group Hy(m) = exp(ho(m))
is
Hy(m) 2 exp(x) — S(exp(x)) = exp(27i(y, x)) € S*.

This representation can be extended to the representation of the corre-
sponding Hilbert-Lie group H = Hs(m,a) = B(m)() Bz(a) (we note that
t=exp(t—1)):

Hy(m, a) 3 exp(z) — S(exp(z)) = exp(2mi(y, x)) € S*. (3.13)

In what follows we shall use the notation By(m, a) for the group Hs(m,a).
Step 2 a) Construction of the completion X:ﬁ\é of the space X =
H\G. It is difficult to construct an appropriate measure on the space X, o=
By(m)\BE since it is isomorphic to the space R® CR*. That is why we
consider two homogeneous spaces, appropriate completions of the space X, ¢:

Xpo(a) = Bpa(a)\Ba(a), X, = B(m)\B~
Since the decompositions hold
BE=B,,0By(m)B{™, By(a)=By,2(a)Bs(m,a)B{™ (a), B®=B,,B(m)B"™,

(see Remark 2.2), we have the following inclusions: X, 0 C Xp2(a) C X,
where

X0~ BinoxBS™ | X, 5(a) ~ Bpa(a)x BS™ (@), Xy =B(m)\B” ~ B,,xB™.

Step 2 b) We construct a measure p, on the space X, with support X,, »(a)
i.e., such that y(X,n2(a)) = 1. That is we take X = H\G = By(m, a)\Ba(a).

We construct the measure 1, on the space X,, ~ B, x B as a product-
measure [y = [y m @ ,u,()m) , where 1, (resp. ®p,l()m)) is the Gaussian product
measure on the group B,, (resp. B™)) defined as follows:

At () =Dk m) e A @y, (L) =Q ke AV Ohon /T €XD(=bkn T, ) A, (3.14)
day™ (@) = @ g myeaim i, (T1n) = D1 myeaim v ben /T XP(=Dkn, ) dTpn:

Lemma 3.6 (Kolmogorov’s zero-one law, [28]). We have (B, 2(a) X
Bém)(a)) =1 if and only if

Z akn/bkn < Q.

(k,n)€EA(m)UA(™)
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Lemma 3.7 ([14, 15]). The measure y, = ub,m®,ul()m) i$ Bpo X Bém)—m'ght—
quasi-invariant i.e., () ~ wp for all t € By, o ¥ B(()m) if and only if

k—1

SE () = Z byn /b, < 00, for all, k <n < m.

r=—00

3) We define the corresponding induced representation 7Y of the group BZ
(denoted also in Section 4 by T?mHh2mtlum gee (4.1)) in the space H™ =
L2( X, i) as follows (see (2.12)):

(T £)(w) = S(h(w, D) (dpslat) /dpp(@)) 7 F(t), & € X, tE G, (3.15)
where S(h(z,t)) is defined by (3.20).

3.7. Irreducibility of the induced representations T™Y

Consider the induced representation T™¥ of the group BZ defined by
(3.15) corresponding to a generic orbit O, generated by the point y =

Y2 = 5% e tmr Emtrt1mr € b5(a) . Set for (k,7) € A(m)

Sir(tir) ==y, (M@, By (ter) 1)) = Apr=d/dt exp(2miSk,(t))]t=0 =271 Sk, (1).
(3.16)
Denote by S =S the following matrix (compare with (2.3) and (2.8)):

S = (Sk'l’)(k,’/‘)EA(m)a where Skr = Skr(l) (317)

We now calculate the matrix S(t) = (Sk,(ter))k,r)cam) and the matrix S =
(Skr(1))(kryea(m) analogously to Lemma 2.2. As in (2.7) we have

(y, h(z, =T =tr (H(z, t)y) =tr (e tox,, y) =tr (toz,, yz"™) =tr (te B(x,v)),
where to =t — I and for z,,, € B,,, ™ € B we denote

Blovy) = plya™ = (5 %) (38) (4 1) = (ol ). (318
By definition we have (recall that Ey, (tkn) = I + tgnExn)

Slm(tkm) = <ya (h(ZL‘, Ekn(tlm)) - I)) = tr(tknEknB(xv y))7

hence analogously to Lemma 2.2 we conclude that
S = (Skn(1))ke = (tr (Ber B(2,9)))y,, =
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B (wy) = (") 1y ()7 = (ST (319)

So, we have
S(h(x,t))=exp(2miy, (h(z,t)—1))) = exp <2m'tr ((t — I)B(z, y))) (3.20)

Lemma 3.8 ([17]). The measure py, = fiym & ,u(()m) is Bmo X B ) _right-
ergodic if E(ty) = 3 cncm Sho (1) /brn < 00.

Theorem 3.9. The induced representation T™Y of the group BE defined by
formula (3.15), corresponding to generic orbit O, generated by the point

Y=o Ymtritm—rEmiri1im—r € b3(a) is zrreduczble if the measure fipm &
ul()m) on the group B,, x B is right B, X B((] -ergodic. Moreover, the

generators of one-parameter groups Ay, = %T}i’fEk li=o are the following

k—1 k-1
Akr: Z mksDrs+Dkra (kf,?") S A(m)’ Akr: Z IkSDT’S+Dk7"’ (k?,?") S Am’
s=—00 s=m+1

o " 1 (mnT
(27-[_2) 1(Ak:r) (k,r)EA(m) = S( ) = (Skr‘)(k,r)GA(m) = (xmlyx( )) .

Here we denote by Dy, = Din (i) = 0/0%kn — bgn®in the operator of the log-
arithmic derivative corresponding to the shift x — x +tE}),, and the measure
iy on the group B, X BM 354 =17+ > &g Ex, defined by:

(Dpn(11s) f) () = d/dt (dpsy(x + t B fdpin()) " f(w + tEpn) li=o - (3.21)

The irreducibility of the induced representation of the group BZ is based on
the following lemma.

Lemma 3.10. The von Neumann algebra 2A° generated by the restriction of
the representation T™Y on the commutative subgroup Bo(m) of the group BE
coincides with L™ (X, ).

PROOF. In the space H™ define two von Neumann algebras 2° and 2A* gen-
erated respectively by two sets of unitary operators Uy, (t) and Vj,.(t), where

(Uke () ) (2) = exp(2miSir (8)) f (), (Var(8) ) (2) := exp(2mitay,) f (),
A = (U (t) = Tyl = exp(2miSie (1)) |t € R, (k,7) € A(m,n))",
A* = (Vir(t) := exp(2mitay,) |t € R, (k,7) € Ay U A(m’”))”.
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Since A* = L*®(X,,, ), to prove irreducibility it is sufficient to show that
215 = A*. Using decomposition (3.19)
St = B(z,y)" = (z,'yz"™)" = (20) Ty (2, )"

we conclude that A% C 2(® (see the proof of Lemma 2.4). To prove that A% D
2A* it is sufficient to find the expressions of the matrix elements of the matrix
2™ € B and x,! € B,, in terms of the matrix elements of the matrix
Stm) = (Skr)(kryeam)- To do this, we connect the above decomposition
St = B(x,y)T (see (3.18)) and the Gauss decomposition C' = LDU for
infinite matrices (see Theorem 5.2). By (3.18) we get B(z,y) = zlyz™.

To find a matrix connected with the matrix S, for which an appropriate
decomposition LDU holds we recall the expressions for B(x,y) for small n

and finite-dimensional groups G™ (see Example (2.2)). We note that J? = I,
where J =" . Epiri1m—r € Mat(200,R). For G3 we have

reZ

—1 Y61
00 1 zg

0O 0 O xo3 o2 o1 1
0 0 Yy

Loy ayg o ya3 0 0 O 1 0 00
B(z,y)J=2tyJ Jz™ j=| 0 1 T5g Tgr < o w2 00 )(ifg &2 9 8) )
0

(3.22)
We use the infinite-dimensional analog of the latter presentation, i.e. instead
of the group G,, = B(n,R) consider the infinite-dimensional group BZ and
do the same. Let z,, € B,,, ™ € B™ and y € b}(a) be defined by (3.11).
Set C':= C(x) := B(xz,y)J, then C = UDL, namely, we have: B(z,y).J

=2 \yJJox™ J =UDL, where U=ux.' D=yJ L=Js™]

-1 -1 -1
12y, ‘77461 x471 3 0 0 0 .. 1 0 0 O..
0 1 Zrp Trr ... 0 ys2 0 0 ... x93 1 0 O ..
C:B(%, y)J: 0 0 56 57 < 0 0 Y61 0 ... )(mlg x12 1 0 ... . (323)
0

1
0 0 (1) xfi7 03 To2 To1 1 ...

To complete the proof of Lemma it is sufficient to find the decomposition
(3.23) C = UDL . Let us suppose that we can find the inverse matriz C~1.
Then C~' = L='D~'U~! holds and we can use Theorem 5.2 to find

L' =J@E™)"') D l=y 'l U=z,

Hence, we can find the matrix elements of the matrix (z(™)~! € B(™ and
Ty € By, in terms of the matrix elements of the matrix C~1 = (STJ)™! =
(B(z,y)J)~!. Finally, we can also find the matrix elements of the matrix
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(™ € B™) using formulas (2.14). This finish the proof of Lemma since in
this case we have xy, n 25 for (k,r) € A,,|JAM). Hence A5 D A,
1) To find the inverse matrix C~!, we write two decompositions:

C=L,D,U; = UDL, C'=(Uy) YD) (L) '=L'D'U~".  (3.24)

2) Using (3.24) we can find Ly, D; and U; by Theorem 5.2. More precisely,
for all x € ', where

I'c={z € B, x B™ | M{3+#(C(z)) #0, k € N}

holds, the decomposition C(x) = L;D,U; and the matrix elements of the
matrix Ly, D; and U; are rational functions in ¢y, ().

3) We can find (L;)~* and (U;)~! using formulas (2.14). Note that JL.J, U,
and JL'J, U™ € By(a).

4) Using identity (3.24) we can calculate C~ = (U;)~Y(Dy) "' (Ly)™!, since
L=, D' and U~! are well defined.

5) Using equality (3.24) we can find the decomposition C~! = L=!D-1U!
of the matrix C~! by Theorem 5.2. In other words, the decomposition C'~*
= L7'D~'U~! holds for all x € I'¢-1, where

Tc-1 = {2 € B,, x B"™ | M{3-¥(C~"(x)) #£ 0, k € N}

and the matrix elements of the matrix L=!, D! and U~! are rational func-
tions in matrix elements ¢, . (z) of the matrix C~.

Let us denote (L1)™" = (Lyg,)in, (D1)7" = diag(dy)e and (Up)~' =
(Ui in)kn-  The decompositions C' = Ly DUy and C™' = (Uy)~H(Dy) "' %
(L)~ hold for x € T¢NT g1, i.e., almost for all 2 € B,, x B™) with respect
to the measure i, since p,(I'cNTg-1) = 1. We conclude that the convergence

-1 -1 -1 7—1
Ckn (x) = Z Ul;kmdl;le;mn> k’ neN
meN

holds pointwise almost everywhere = € B,, x B™ (mod ). Since U Iy o dl_}n

and Ly, nU° by 2) and 3), we conclude by Remark 3.1 that ¢, (z) n2°.
This complete the proof of Lemma. O

Remark 3.1. Let the sequence of real measurable functions (f,)nen is affil-

iated with the von Neumann algebra M of operators in the space L*(X, u)

with a finite measure p, i.e., U, (t) € M, t R, where (U,(t)g)(x) =exp(it fn(x))
xg(x), g€ L*(X,p). If f,—f a.e. (modp), then s.lim, U,(t)=U(t) hence,

U(t)=exp(itf)eM, teR, i.e., the function f is also affiliated with M.
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PROOF. of Theorem 3.9. Let a bounded operator A in a Hilbert space H™
commute with the representation 7"¥. Then by Lemma 3.10 A commute
with L=(B,, x B™ 1y, ® /L,()m)), therefore the operator A itself is an op-
erator of multiplication by some essentially bounded function a € L™ i.e.,
(Af)(x) = a(x)f(x) for f € H™. Since A commutes with the representation
Tm ie., [A,T™) = 0 for all t € Byox B, where B, = B,, N B% and
Bém) =B N B we conclude that a(z)=a(xt) (mod iy, ® u(()m)) for all te
BinoxB™ . Since the measure jiy, @™ on the group B, xB™ is By, oxB{™-
right-ergodic, we conclude that a(z)=const (mod dz,, ® dz™).

Remark 3.2. The proof of the irreducibility can be generalized for an ar-
bitrary BZ-quasi-invariant ergodic measure y if the following equality holds:

A9 =A* = L®(B,, x B™ ).

4. Criteria of the irreducibility of the induced representations
T*2?m+Ls corresponding to generic orbits

We construct a two-parameter family of the induced representations
Th2mtLus | m € Z corresponding to a point y* € b3(a), k € Z, (see (3.10))
and subgroup Hy™'={I + >, .. _, TinEwm} C B, m € Zy, Lie(Hy™ )=

amtland give the criteria of their irreducibilities. Recall that BZ C By(a) C
B?%| the representation Uy g of the group H is H 3 exp(x) + exp 2mi(f, z) €
St Fix y* € bi(a), the Lie algebra h3™™ € bZ is subordinate to the func-
tional y* for all k,m € Z since it is commutative, [hg™*" h™*!] = 0. The
representation hy"*! > x — (y¥, ) € R! can be extended by continuity
to the representation of the Hilbert-Lie completion h3"(a) in by(a) of
the Lie algebra 2", h3"(a) > o — (y*,z) € R'. The representation
H2™ 5 exp(x) = exp2mi(y*, 2) € S' can be extended by continuity to the
representation of its Hilbert-Lie completion H3™(a)

Uyk,H2m+l(a

2

HZ"(a) 3 exp(z) " exp 2mi(y®, x) € S*.

The homogeneous spaces are X 2™+ = [2m+1\ BZ - X2m+ () = H2™ ! (q)\ By(a).
The measure iy, = fip, & ,ul()m) is defined on the space X?" ™! by (3.14) and its

support is X3 (a) by Lemma 3.6, for an appropriate b. The representation
Tk2m+Li i5 defined by

Z
k2m41,up, BZ(Q)vBO »Hb
T — IndH§m+1(a),Hgm+l (Uyk7Hgm+1). (4.1)

25



Define the unitary representation 752" 14t n € 7 of the group G = B, o X
BY" in the Hilbert space % = L%(B, x B™ 1) by the formula

(TSL,2n+1,,ubf)(x) _ (dﬂb(5_1$)/d,ub(l'))l/2 f(S_l‘r)’ f c 7—[, S € G, (42)

where p, = ppn ® ,ul()n) is defined by (3.14). The representation TL:2n+1me
is correctly defined for any s & B(()") and for an arbitrary measure py,,,.
For s € B, the representation TX?"+1#e is correctly defined if and only
if ui; ~ iy for all s € B,o. More precisely, the operator T Jﬁ%fj’“ b for
I +tE,; € B, is correctly defined if and only if the following condition
holds [15, proof of Lemma 1.2]

T~ g, VEER & SE(D) = Y by /ban < 00 (4.3)

n=s+1
Recall the notation Akm#e = (Thkn(BL)) 'k n € Z. Since the right and
the left representations commute we get [T}7>™ 27T hr pL2mi2rilm) — ( for
all t,8 € Bpiro X Bémw), k,m,r € Z. To prove the reducibility, we show
that the commutation holds for k = 2m + 1,k = 2m
(T2t ph2mt2rilin) — (Wt € BE s € Gy = Gy, (4.4)

for some subgroup Gy, = G, 4 C By X B™*) described in Definition 4.1.
In fact, it is sufficient to show that

k,2m+2r+1, L2m+2r+1,u,7 _ _
[T,H"E””m;m:jbﬂ,Ts MTETLI] =0, Vt € R, s € G = Gy (4.5)

Indeed, the matrix units Eppy1, k € Z generate the Lie algebra bZ and
I +tEgk41 € Bigrpo X B(ngrr) for all k € Z\ {m+r}, hence BY = (B0 X
BéerT), I +tE, rmirs1 | t € R) where we denote by (G1, Gy) the subgroup
in GG generated by the subgroups (G; and Gj, i.e., the smallest subgroup in
G containing G; and Gs.

Definition 4.1. We show that the expression B(x,y) = ;) . y*(m-+r)z(m+")

~ (1 0 0 0 metr 0 0
B(.Z',y) = <O x;llJrr> (yk(m—i—r) O) (I( (]7L ) (1]) = (x;biryk(m—i—r)m(m*ﬂo ) ) (46)

(see (3.18)), where y*(m + r) is the restriction of y* corresponding to the
decomposition x = z,, ,x(m + )z (see (3.12))

yk(m‘f'T) = Z ylsEl57 T<07 yk(m+r> = Z ylsE157 T‘>07 (47>

l+s=k,s<m~+r l4+s=k,I>m+r+1
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does not contain the matriz elements (the variables) xy,, if r > 0 (resp. x|

if r < —1) of the matrix = (T, )k, from some group G,,. We denote this
group by G, = G, ,. We show that Go =G\qr41,4 C Biyr When 7 < —1 and
Go=Gpmir CB™) when r > 0. The description of the group Gy, gives

Lemma 4.1. We have the following description of the group Go = G, 4:

Gm_‘r‘_,_l,m_,_m, ifr <0, k=2m+1

_ Gmf\r\+1,m+|r\fla Zf’l“ < 07 k=2m
G® B Gm—r+1,m+r7 Zf?" > 0, k=2m+1 (48>
Gmfr’m+7», ZfT’ > O, k= 2m.

PROOF. See an example of calculation G below in (4.14) and (4.16). By
(4.6) the group G = Giri1,4 Will be contained in the group By, for r < 0
and the group Gg = G 4y in the group B+ for r > 0. For r < 0 we find
the intersection of the antidiagonal adiag® := {(r,s) € Z* | r+s =k}, k€ Z
with the row m + r + 1 (the fist row of the group B,,.,). For k = 2m + 1
we get (m +r + 1,2) € adiag”™ !, 2 = m — r. So, all the variables z,, of
the group B,,., with numbers of columns s < m — r are contained in G,.
Hence Gg = Gimiritm—r = G jrj+1,mtpr- If kK =2m we get (m+r+1,2) €
adiag2m7 r=m-r—1= G@ = Gm+r+1,mfr71 = Gm—|r|+1,m+\r|—1-

(4.9)

For r > 0 we find the intersection of the antidiagonal adiag® with the
column m + 7 (the last column of the group B™*")). For k = 2m + 1 we get
(z,m +r) € adiag?™™, = m — r 4+ 1. So all the variables z,, of the group
B™+) with numbers of rows » < m — r + 1 are contained in Gy. Hence
Go = Gmrirmir If k=2m we get (z,m +7) € adiad®™, z=m —r=G =
Gum—rm+r. Finally we get (4.8). O

Theorem 4.2. (i) The representation T*™12m+2r+Liv s jrreducible if and
only if (a) the measure p, is BY ergodic and (b) either r = 0 or v < 0 and

:uilt 1 Ho fOT’ all t € Gm—|r\+1,m+|r\\{6}~
(ii) The representation T?™>™F2r+1Lus js jrreducible if and only if (a) the mea-

sure jy is BY ergodic and (b) either r = —1, 7 =0 orr < —1 and pu* L
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for allt € Gm,|r|+1,m+|r|,1\{6}.

iit) In other cases the representations are reducible, moreover the commu-
tant of the von Neumann algebra A2 Hlme = (Th2+Lu( BEVY contains the
following von Neumann algebras: (a) if r > 0 then (A*mTL2mT2riluyr o
(TL,2m+2r+l,m, (Gm—r+1 m+r))//; and (9(2m,2m+2r+1,p,b)/D(TL,2m+2r+1,,ub (Gm—’/‘ m+r>>//7
(b) if?“ < 0 then (m2m+1,2m+2r+1,ub>/ D) (TL72m+2T+1”ub(G:’L7|T‘+1,m+|r|))// and
if?“ < —1 then (Ql2m,2m+2r+1,,ub)/ D) (TL,2m+2r+1,ub( ~ ))//’ where

m—|r|+1,m+|r|—1
G~ i={s € G| " ~ m}-

4.1. The center of the universal enveloping algebra of a Lie algebra b(n,R)
and the description of the commutant of the induced representations of
the group G,

To find the commutant of the representations Ty = Ind% (Uy ) of the
finite-dimensional group G,, we use the following description of the center of
the universal enveloping algebra of the corresponding nilpotent Lie algebra
g, = b(n, R) of strictly upper triangular n x n matrices.

Theorem 4.3. The center Z of the universal enveloping algebra U(g,) of
the Lie algebra g, contains the following elements

Z(U(gn)) 2 (Ax |1 <k < [n/2]), (4.10)
where Ay = MYE) = Ey,,,

_ 12 _ | Ein-1 E1n _ 12...k
Bo= M2, (B) = | 2o Bn |, Au= M2y e a(B),  (411)
Ei1 Ei2  Eiz ... FEin—2 Eipn-1  Ein
E21 FEoa  Eoz ... FEon—2 FEan1  FEon
Es;  Es2 Es3 ... Espn—2 Esp-1  Espn
E = " . (4.12)

En—21 En—22 En_23 ... En_on—2 En_on—1 En_2n

En—11 En—12 En—13 ... En—1n—2 En—1n—1 En—1n

Eni Enz  Enz . Ean—s  Ennei Enn
PROOF. Since the elements E,.. 1, 1 < r < n — 1 generate the Lie alge-
bra b(n,R), it is sufficient to find the elements in U(g,) commuting with
E.i1, 1 <r <n-—1. Since [E,.11, Er115] = Ers and [Egy, Epy1] = Eppi
we conclude that the action [E,,.;1, -] replaces the row r + 1 by the row r of
the matrix E for all 1 < < n and the action |-, F,,.11] replaces the column
r by the column r + 1 of the matrix E for all 1 < r < n. In addition the
element A; = Ej,, generate the center of the Lie algebra b(n,R). Hence, all
minors A, 1 <k < [5] commute with all generators E,,4q, 1 <r <n—1.
We conclude that Z(U(g,)) 2 (Ax |1 <k < [5)). O
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To study the reducibility, we consider the induced representations Indg’“ *(Us.m)
—: TEAMH2rELI of the finite-dimensional group G = Gy ,_; corresponding
to the subgroup H = Hfj;;irfrﬂ = H?™Trtl N G, the point f = yk =
Z[sk:/f] Yk—s.sEk—ss, K =2m+ 1,k = 2m and the measure ux on X = H\G.
Notations. Let /\ébpq and pgbp \ be the right and the left regular representa-
tions of a group G,y C Bypir X B(m+7) corresponding to the projection HG,pg
on the group G,, of the measure i, = ftp msr @ ulgmM) defined on the group
Bpyr x BU) by (3.14), Agﬁz " en and Agg " kn De theirs generators.

Lemma 4.4. We have the following description of the commutant of the

induced representations Ind$,(Uy. ) for G=G 1, H= Hfj,?ff’““ and f=y¥

(T (Graen) = (NG, (Go))', if r >0, (4.13)
(Téi’f:(fil»ZTJrl’“b (Glak_l))/ - (A/'GLIT,R+T+1’]€,1(G®>>//7 Zf,r < 0

PROOF. For k = 2m + 1, m = 3, r = 2, the group Gy and subgroup H{}
we get Y& = Yo1 Fo1 + Ys2Es2 + yasEas, y'(5) = ye1Ee1, where

1| z12 13 T14 15 |T16

53 10000 216
OI : 9633 Tag T25 }xzs 01000 w2
— T34 T35 |T36 11 00100 z36 -
Gi6= 0/ 0 0 1 e lose | 716 = | 0001025 |+ Go = Gos.
000 0 0 1 l|osg 00001 256
000 0 0 0 1 00000

By (4.6) we get B(z,y) = 25 'y (5)z®) =

1] z12 z13 14 715
0 1 z23 w24 w25
(1) (’yﬁl 000 0) 00 0 1 =3q4m35 | = yg ( 1 z12 %13 Z14 Z15 ) , Go = Gas, (414)
00 0 0 1 aus
o0 o 0o 0 1

Mo

hence the generators A = (A, )k, of the representation Té’llﬁl are

213 D14+x23 D24+ D34 z13D15+223 D25+ D35 Y61T13
214D15+w24 D25 +x34 D35+ D45 y61714

D12 D13 D14 D15 Y61
( 212 D13+ D23 212 D14+ D24 212 D15+ D25 y61$12) <4 15)
Y61x15

Notations. For the sake of shortness we shall write S, = A, instead of
Skn = (271) ' A, (see (2.3)). We get by Theorem 4.3

_ _ _ | Ais Aw‘ _ ‘ D15 Y61 ‘ _
Al - A16 = Ye1, AQ T | Aos A6 | T | 212D15+D25 ye1212 | y61D25-
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Since the set of operators (1, Dix)2<k<s is irreducible in the space H; =
®%_, L*(z11), the commutant 2 in the space L*(G15) = H; ® Hy has the form
A' = I ® B(H,), where Hy = L*(G). We make the correction AZ", ——
15 D1, = Ag’;‘s";kn for 2 < k < n < 5. Hence we get

;o Dos Doy Dos T I\ "

A = ( 223 D24+ D34 $24D92253.4{12§4B€§j-D45 >77 - (prQ5 (G25))" = O‘Gb@ (Go))".
Notation. For the set of self-adjoint operators (A,),ep we denote by (A4, |
p€ P), = (exp(it4,) |t e R, p € P)". For k=2m, m=3, r=-2, the group
G5 and subgroup His we get y& =ys1 Es51+yieFi2, y°(1)=ys1 F51, where

1| 12 13 T14 |T15
O 1 o3 w24 725 1 z12 z13 714 715
3 01 0 0 0
Gis=100 1 ayless |, Hs=(00 1 0 0 |, Go = Gau,
g o Tk RN
0 0 0 01

-1 -1 .1
1 ayg 5’3241 \%51 0

|l 0o 1 x5 |zs; 0
B(x,y)= SN
00 1 |z us

0 0 O 1

The generators A = (Ag,)kn of the representations Tg’i’“” are

)(1) = Ys1 (x;; T3 Ty 1) , G®:G24. (416)

1

A1z A1z A1a Ars To5ys1 TagYs1  Tisysi Y51
Az Azq Azs | __ Dos Doy Dos 417
Aszq Azs | T Doy+D Das+D : ( : )
x23D24+ D34 x23 D25+ D35
Ass 24 D25+234 D35+ Das
We get A, = Ag A1s | 33251?451 Ys1 | (D 4+ 2usD ) _ Akaub
g 2 = | Ao Ass | = | Doy Dos| Ys1(L/24 454725) = Ys1G,5.04-

It was the first indication for the description (4.13). We show that ' =
(A (Gaa))". For locally-compact groups G, the following commutation the-
orem is known [6, 13.10.4]: JgpiJo=M\;, t€G, where (Jof)(z)=(dh(z™")/
dh(z))Y2f(z=1), and h is a Haar measure, i.e., a change of variables z =
(Zrn) = 271 = (2,,)) =t 2 = (2kn) (on the group Gos) interlaces the left and
the right regular representations. Hence using (4.17) we get
A1o Ara Ais A Z25Y51 235951 Z45Y51 Y51
" A;z A;i A;: s D3s+234 D3 +235 D35 D3 +245D55 Dis
Asa Ass D3y +245D35 D35
Aus Dis
As in the previous case, eliminating the variables zo5, 235, 245 and the opera-
tors D3, Di., Dj- we get in the corresponding space L*(G%,) and L*(G3,)
z Di,+234D3, D3, \| z, 2, 2T T,
() = (PR G = O (Ga)) = (05 (o))" T (N (G

34
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The general case is treated similarly (see (4.9)). (i) 1) Let r > 0, using the
decomposition B, x B™+") = B x Gy x ngr) = X x Xy x X3 we get
p=p1 @ pia @ pz, hence L*(Byyy x B 1) = L2(Xy, 1) @ L2(Xa, jtp) ®
L*(X3,p3) = HHOHy®Hy. 2) A = (Ty, TB<m+T>,TBé>m+T),TG®y = AN (Te,)".
3) We get A, := (TH,TBm+T,TB(®m+7->)’ = 1 ® B(H;) ® 1. Indeed, using
Gauss decomposition for B(x,y) (see proof of Theorem 2.3) and Definition 4.1
of the group Gy, we can obtain all the variables © = (zp,) € BY"™ and
x = (pn) € By, hence (Ty) = L®(Xq, 1) @ B(Hs) ® L>®(X3, u3), so
Ay = <L°°(X1) ® B(H,) ® L°°(X3)> N(ppinsn @18 1) N(1Q1® pyonn) =
1® B(Hy) ® 1. 4) Finally ' =2, N (Tg,) = 1 ® (Mg, (Go))" ® 1. Indeed
Vt € Gp, T(t) = 1® pg, (t) @ T5(t) for some T3(t) € B(Hs). But we have
proved that A D B(H;) ® 1 ® B(H3), hence we can take the correction
THA®1Ts(t) " =18 pe,(t) © 1.

(ii) 1) Let r < 0, using the decomposition B, ., x B = G, x
Buiro X B = X x Xy x X3 we get 1 = g ®@ g @ 13, hence L?(Bp,., X
B ) = L2( Xy, 1) @ L2(Xo, o) @ L2( X3, 3) = Hy @ Hy @ Hy. Make
the change of variables x — 27! = z on the group B,,,,. We get 2) (A*)" =

(T, T3, 0 Tponen s 16,) = (A3) 0TG- 3) Ay = (T3, T, 00 Tponen)' =
B(Hf) ® 1 ® 1. Indeed, by the same argument as before we can obtain
all the variables z = (z3,) € B™) and 2z = (2jy) € Bmire, hence

we have (T5) = B(H) ® L®(Xj, i) @ L™(Xg, s) (23) = (B(H}) @

L=(X3, p2) ® L*(Xs, 1)) N (N, ) N (pporn) = BUHF) @ 1@ 1. 4)
Finally, (%) = (p5,(Go))" @ 1@ 1, A = (A\p , (G))" ®1®@ 1. In-
deed, Vt € G, T*(t) = N (1) ® T5(t) ® 1 for some T5(t) € B(Hj).
But we have proved that 2* D 1 ® B(H5) ® B(Hs), hence we can take
TA(t)(1®Ti(t) 1)~ = A5, (H®1®1. Finally (A, (Go))'=(pg, (Go))"
(B, (G2))". m

4.2. Study of the induced representations TH*™+1He of the group BE corre-
sponding to generic orbits
PrROOF OF THEOREM. 4.2. The irreducibility of the representation T%™ =
T2mAL2mtLims (compare (3.15) and (4.1)) is proved in Theorem 3.9. The ir-
reducibility of the representation 722" +2r+Lus for r = —1,r =0 is proved
similarly. We prove that if » < 0 and ,uft Ly Vt € G ppi+1,m+pr \{€}, then
the representation 72 +12m+2r+Li ig jrreducible. If < —1 and p* Ly, Vit €
Gun—jri+1,m+/r—1\{€}, we prove that the representation 722" 2+1i ig also
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irreducible. In what follows we use the technique developed in [14, 15] for

approximating the variales xy, to prove the irreducibility of the regular rep-

resentations in the framework of Ismagilov’s Conjecture (see Conjecture 3.1).
i) Let k =2m+1=>5,m =2 and r = —1. In this case we get for G4

#—'—é Sj2 s d 5 1 12 213 T14 )

— Z23 |T24 — (01 0 0 — 23 ) —

Guu= 1o 0 1 Jum | Ha=100 , Go=(p") =G
o0 01 0 0

Using formulas for Ag, from Theorem 3.9 we get

Ay = Dy, Asn = x93D2;, + Ds3,, Agp Asy = 9323D§n + DopDs,,.

Notation. Let (f, | n € N) be a closed subspace generated by the set of
vectors (f,)nen in the space H. Using [15, Lemma 2.2] we have

2931 € (Agp Azl | n>3) < Sk Zb =00 1y T iyt £0. (4.18)

Remark 4.1. Property (4.18) shows the convergence of the self-adjoint op-
erators Ay = Zf:f (N)AgnAgn — A := x93 only on one vector 1 € H. It
is possible to prove the convergence on the common essential domain D for
all the operators Ay and A [15, after Lemma 2.2, p.251-252]. By Theorem
VIII from [27], the convergence holds in the strong resolvent sense, hence
we conclude that exp(is ZN (N)AQnAgn) — exp(isre3) when N — o0, so
T23 1 2.

Using the Gauss decomposition of the matrix B(z,y) = z;'y(1)z®) we
conclude that all variables of the matrix (") and z;' except the variable
Tys = —To3 are affiliated with the von Neumann algebra 4 = (T°%#( BZ))".
By (4.18) we have x3 2, hence all the variables xy,, are affiliated with 2 so
A" = L>°(X,,, t1p) and the representation T3+ is irreducible.
If ,ulf”w” ~ 1, for some ¢t # 0, the operator ALy = Doz + Yoo 4 TanDoy,
corresponding to the left shift by I + tFEs3 on the group B,, is well defined.
Moreover, the unitary operator 77 +’t‘}’5 , t € R commute with the represen-
tation T 3 b hence the representation 7°3# is reducible.

Let k = 2m + 1,m = 3 and r = —2, then we get for the group Gy,
subgroup H3s, and the representation T2m12m+2rlu — 7734

(1] fﬂfs T24 T25

. _ _ x x

G D G@ = Gm—|r|+1,m+\r| = Go5 = 00 i ng :
0 0
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As before, we can approximate the variables (Z,)2<k<n<s by appropriate
combinations of operators As,, As,, Agn, Asn, 5 <n, hence z, A, 2 <k <
n < 5. Using the Gauss decomposition of the matrix B(z,y) = =y y(1)z®
we conclude that all variables of the matrices ) and 27!, except the vari-
able (Tgn)a<k<n<s, are affiliated with the von Neumann algebra 2073, We
conclude that all the variables 2, of the matrices () and xl_l are affiliated
so A" = L>=(X1, ) and the representation 773+ is irreducible.

ii) Let £k = 2m = 6,m = 3 and r = —2, then we get for the group G;
subgroup Hj; and the representation Tm2m+2rlu — 763

1 z23 24
G15 0 G@ = Gmf\r|+1,m+|r\fl =Gy = (8 (1] 134) .

1

The operators As,, As,, A4, of the representation T6%# are as follows (see
Theorem 3.9)

Agy = Doy, Asy = x93Doy, + D3y, Ay = 224 Doy + 234 D3y + Dy,

Using [15, Lemma 2.2, p. 254] again we have
L231€( Ay, A, 1| n>3) < Sk (b) Z e —oco B Ly t £0. (4.19)

We make the corrections: As, — w934z, = Ds,. Using [15, Lemma 24, | we
get

Toul € <D2nA4n1 | n > 5> 54 224 Z b2n b2n + b?m + b4n) = 00,
n=>5

311 € (D3 Agl | 0> 5) & S5 (0) =3 by (boy + by + ban) ! = 0.

n=>5
Since
(1) - b2n + b3n . b2n + b?m L L
5 ~ ST 2B gL (p b) =
21 (0)+ Z - ; Do, S51(b)+S34(b) = o0,

one of the series Egg(b) or 21(1,4 (b) is divergent. Let Z(l)(b) = 00, then x4 2.
We make correction A3n = Az, — w94 Doy = x34D3,, + Dy,. Then we get

311 € (D3 AL [ 0> 5) & 55 (0) = baa(bsn + ban) ™" ~ S5 (b) = oo
n=>5
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If Eg?(b) = 00, then x34n 2, s0 w94 n2A and the representation is irreducible.
We have proved the irreducibility of the representations 72m+1.2m+2r+Lus for
m=2,r=—1 and m =3,r = —2. The irreducibility of the representations
T2m2m+2r+Lis ig proved for m=3, 7= —2. Other cases are treated in a similar
way for k=2m+1,r <0 and k=2m, r < —1, m € Z. We use technique
developed in [15]. The sufficiency of the irreducibility is thus proved.

iii) To prove the reducibility of the representations T*2?m2r+Lus for k =
2m + 1 and k = 2m, it is sufficient to show that (see (4.5))

k2m+2r+1,u L2m~+2r+1,up1 __ ~
[TI+tEm+r,m+'r+17TS ] - 07 \V/t € R7 s € G@ - GPvQ’

where G~ = {s € G| 1, ~ m}. If G = Go then it is sufficient to show
the following:

[Afﬁt};fﬁfﬁ“’“”,Aé,;i”i‘“”l’“b] =0, m—|r|+1l<k<m+|r|, (4.20)
[A2m,2m+2r+1,,ub AL,2m+2r+1,,ub] —0 { m—|r|H<k<m+|r|-1 ?f r<0
mtrmrtl o Tkk4l "l m—r<k<m-+r if 7> 0.
(4.21)

The generators of the left representation T%2*+1:# defined by (4.2) are

Aé;l2m+2r+l,,ub _ { Dkn + Z:in—i-l ’:C’TLTDk‘T’a if m+r<k< n, (422>

Din + 5777 L T Dy, i E<n<m-+r.

r=n+
Consider the operators Af, =Dy, + 372 | Zp Dy, and z,, defined by (2.14).

Lemma 4.5. We have for p,q,k,n € Z, p < q and k <n

-1 1 .
-1 _ _xk:pan7 ka§p<q§n7
[Dpg> T { 0, otherwise, (4.23)
1 .
L o1 ) T, a=nk<p,
[Apgr Tin] = { 0, otherwise. (4.24)

PRrROOF. Identity (4.23) holds by [20, Lemma 16]. We prove identity (4.24).
Since x;, contains only variables z,,,k < r < s < n (see (2.14)) and AL
contains D,,,p < r we conclude that [Aﬁq, w,;}] =0 for k> pandn < q. For
the remaining part of indices k < p < ¢ < n we get using (2.15)

[Aﬁtﬁxl;nl] = [Dpg + Z TarDpry 1] = [Dpgy 71, ] + Z Tar[Dprs U] =
r=q+1 r=q+1
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n
—1,-1 _ }: R | }: 1y
“Lip Lan Iqu’kp m —  Lip (an + xlﬁ‘xrn) - ‘rkp (XX )
r=q+1 r=q+1

O

Using (2.11) and (2.8) S = (271) Y (Ag )k and S = BT (x,y) we get the
explicit expressions for generators Ay, (k,n) € A(m+1r). For k =2m +1
or k=2m, m € Z and r € Z we get

[e.o]

Am+r,m+r+1 =2mi Z xy_nlJrrJrLsys,k—sxk—s,m—l-r- (425>
s=[(k+1)/2]+|r|

In particular, we get

m+ | r|+1, if r<0, k=2m+1,

k+1 Hlr )= m+ |7, if r<0, k=2m,
2 Y m+r+1, if r>0 k=2m+1,
m—+r, it r>0, k=2m.

Using the latter presentations for operators A,y miri1, equality (4.24), de-
scription (4.8) of the group G, and Lemma 4.5, equality (4.24), we get (4.20)
and (4.21). When G # G and G\ {e} # @ we conclude that

[Tt L2l — () for all t € BE, s € G\ {e}. O

Remark 4.2. We show that the induced representaion T+ = T*2m+2r+lu
is a limit 7"(t) = s.im T} (t) of representations Th» = Indg’z’“ "(Uys m,)
defined on the spaces L*(X,, u,). These representations are equivalent to
the induced representations T/» = IndG h”(U% 1, ), defined on the space
L?*(X,,, hy), corresponding to the Haar measure h,,, and the set of increasing
finite-dimensional groups (G¥),cn, where H,,, y* and p, are defined below.
Fix the point y* € b}(a) defined by (3.10) and a subalgebra Hy(m +1r) =
H{™ 1 ¢ BZ. Consider the sequence of subgroups G¥ := Gi o). [(k-1)/2] 4 s
n € NU{0}. Denote by ny:ZHs:k’ /2] —n<i<(k/2+1 YisErs, Hn 1= H,(m+r) =
H2m+2r+l — g2mt2r i n GE - For X4, = H(m +17) \ B 2 B,,,, x B
consider the corresponding projections X, := X, = Hy(m + 1)\ G

> Boirn X BI™™ | Let p, = fiGk = Hbmtrn @ u(mM) be the projection on

the space X,qrn = Bpyrn X B,(@mw) of the measure p, = fpmir @ ,u(mw)

defined on the space X,1r = Bpir x B Since the measure p, =
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Momtrn @ ,LLI(;ZH) is equivalent to the Haar measure dh,, = d,, ., @ Azt

on the group Buyrn X BV (compare (2.18) and (3.14)) we conclude that

Indﬁi’“ "(Uyk m,) ~ Indgi’h"(Uy57 m,)- Using the explicit form of generators
given in Theorem 3.9 we can prove that Vt € BZ

T2 L (1) = Ind % (Uye g ) (1) = 5. Jim Indgi’“”(UyﬁyHn)(t). (4.26)
Since G = BY =lim G% t from BZ belongs to G¥ for some n.

Using (4.26) and Theorem 4.2 (1), (ii) we conclude that the irreducible
representations TH2mT2r+bim for p < 0,k = 2m + 1 (resp. r < —1, k =
2m) are obtained as the limit of the reducible representations T of the
group G*. This is an infinite-dimensional phenomenon! We stress that the
representations T/ are not compatible i.e. Th71"(t) # THn(t) for t € GE.

5. Appendix

5.1. Gauss decompositions

For the matrix CeMat(n,C) let us denote by M;j;;;’;(C), 1<ip<...<
1. <n, 1 <7 <...< j <n its minors with iy, 1, ..., 7, rows and j1, J2, ..., Jr

columns.

Theorem 5.1 (Gauss decomposition, [4]). A matriz C € Mat(n,C) ad-
mits the following decomposition C' = LDU (Gauss decomposition),

c11 €12 ... Cln 1 0 ..0 di 0 ... 0 1 w12 ... uin
€21 €22 ... C2n — [l 1 ...0 0 dy.. 0O 0 1 .. uop
Cnl Cn2 . Cnn lnt ln2 oo 1 0 0 o dn 00 1

where L (resp. U) is a lower (resp. upper) triangular matriz and D a diagonal

matriz if and only if all principal minors of the matriz C' are different from
zeros i.e. M}f,f(C) #0,1 <k <n. Moreover, matriz elements of the

matrices L, U and D are given by the formulas (see [4, Ch.II, §4, (44),
(45)])

1,2,...k—1, 1,2,..k—1k
M1,2 ..... k—1,17qn(C> M1,2, k—l,m(C>

 Ukm = 55 im o L Sk<m<n,  (51)
M7 1k (C)

—1
h= MO, di= (MEHOOEE ) 2k ()
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Theorem 5.2. The infinite order matriz C' € Mat(oco, C) admits the fol-
lowing decomposition C' = LDU, if and only if all principal minors of the
matriz C are different from zeros i.e. Mf;,f (C) #0, ke N. Moreover,
matrix elements of the matrices L, U, D are given by the same formulas as
in Theorem 5.1.

The Gauss decomposition also holds for rectangular matrices with suitable
modifications.

5.2. Different criteria for irreducibility of induced representations for locally
compact and infinite discrete groups

a) Locally compact groups. In the case when the representation 7 of the
separable locally compact group G is induced from an irreducible representa-
tion ¢ on a normal subgroup H, a simple criterion is known. Let ¢” (z € G)
be the representation defined by the action of z on H : 0%(h) = o(zhz™!).
Then 7 is irreducible < 0% = ¢ only if x € H, see [23].

b) Let T" be a countable group. Here we follow [2]. Mackey has shown that
quasiregular representations are irreducible if and only if the corresponding
subgroups are self-commensurizing. Recall that two subgroups I'y and I'; of
a group I are commensurable if I'o N 1T'; is of finite index in both I'y and I';.
The commensurator of I'y in I' is defined to be

Comp(I'y) = {y € ' | 'y and 7Tyy"* are commensurable}.

Suppose I' is a discrete group, I'y < I' is a subgroup and Ar/r, is the left
regular representation of I' in (?(I'/Ty). We call two subgroups [y, of T
quasiconjugate if there exists v € I" such that I'y and y[';y~! are commensu-
rable.

Theorem 5.3 (Mackey, [24]). Let I' be a discrete group and let I'g, I'y be
subgroups of T'.
(1) The representation Arjr, is irreducible if and only if Comp(I'g) =Ty, in

which case Indgo(w) is irreducible for any m € ng, and unitary induction

Indg0 : ng — T isan mjective map.
(2) If Comp(I';) =T, i = 0,1, then A\pjr, and Arjr, are unitarily equivalent
if and only if 'y and I’y are quasiconjugate in I

In case I'y and I'y are not quasiconjugate in I' if mqy, respectively m, are
finite dimensional irreducible unitary representations of I'y, respectively T'y,
then Ind?o(ﬁo) and Imdg0 (1) are not equivalent.
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N.Obata [25], also presented criteria for irreducibility and mutual equivalence
of representations induced from finite dimensional ones.
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