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Abstract

Induced representations IndGHS were introduced and studied by F.G. Frobe-
nius [7] for finite groups and developed by G.W. Mackey [21, 22] for a lo-
cally compact groups. We generalize the Mackey construction for infinite-
dimensional groups. To do this, we construct some G-quasi-invariant mea-
sures on an appropriate completion X̃ = H̃\G̃ of the initial space X =H\G
(since the Haar measure on G does not exist) and extend the representation
S of the subgroup H to the representation S̃ of the corresponding comple-
tion H̃. Kirillov’s orbit method [9] describes all irreducible unitary repre-
sentations of the finite-dimensional nilpotent group Gn in terms of induced
representations associated with orbits in coadjoint action of the group Gn in
a dual space g∗n of the Lie algebra gn. The induced representation defined in
such a way allows us to start to develop an analog of the orbit method for
the infinite-dimensional “nilpotent” group BZ

0 =lim−→n
G2n−1 of infinite in both

directions matrices.
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1. Introduction

Induced representations were introduced and studied by F.G. Frobenius
[7] for finite groups and developed in details by G.W. Mackey [21, 22] for lo-
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cally compact groups. The induced representation IndGHS is a representation
on the space L2(X, V, µ) of a group G associated with a unitary representa-
tion S in a space V of a closed subgroup H. A G-quasi-invariant measure
µ is determined by the Haar measure on G. We generalize the Mackey con-
struction for infinite-dimensional (non locally compact) groups.

To define correctly the representation IndGHS and the space L2(X, V, µ)
(since a Haar measure does not exist on G) we can take a completion X̃
of the space X, construct some G-quasi-invariant measure µ on it and ex-
tend the representation S of the subgroup H to the representation S̃ of the
corresponding completion H̃. The content of the article is the following. Sec-
tion 2 is devoted to notion of the induced representations for locally compact
groups elaborated by G.W.Mackey [21, 22, 23, 24] and to the Kirillov orbit
method [9, 11, 12] for the nilpotent Lie groups Gn of n× n upper triangular
real matrices with units on the principal diagonal. In Section 3.1 we define
the induced representations for an arbitrary infinite-dimensional group G.
As an illustration, in Sections 3.2-3.5 we start to develop the orbit method
for infinite-dimensional i-nilpotent group BZ

0 =lim−→n
G2n−1 with respect to the

symmetric embedding (Sec. 3.3). We call a group i-nilpotent if ∩n∈NGn={e},
where Gn+1 ={G,Gn} and G0 = G. To find an appropriate completion X̃
and extend the representation of the group H we use a family of Hilbert–
Lie groups B2(a) (a ∈ A) introduced in [13]. This family has the property
that any continuous representation U of the group BZ

0 can be extended by
continuity to some representation U2(a) of an appropriate Hilbert-Lie group
B2(a). Let Ĝ be a dual space of a group G, i.e. the set of all equivalence
classes of unitary irreducible representations of the group G. The family
B2(a) (a∈A) has the following property: BZ

0 =∩a∈AB2(a) (see (3.6)). There-

fore B̂Z
0 = ∪a∈AB̂2(a) and to describe the dual space B̂Z

0 it is sufficient to

know B̂2(a) for all a ∈ A, but this problem has not been solved yet. In Sec-
tion 3.6–3.7 we construct a one-parameter family T y,m,µ(m ∈ Z) depending
on the measure µ, of induced representations corresponding to generic orbits
generated by a point y ∈ g∗=(lim−→n

gn)∗ and prove their irreducibility (Theo-

rem 3.9). In Section 4 we construct a two-parameter family T y,k,n,µ (k, n∈Z)
of induced representations corresponding to generic orbits and give the crite-
ria of the irreducibility (Theorem 4.2). Here we use the technique developed
earlier in [14, 15] to prove the irreducibility of the “regular” representations
in the framework of Ismagilov’s Conjecture 3.1. In Remark 4.2 we show
that the induced representations T of the group BZ

0 = lim−→n
Gk
n on the space
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L2(X,µ) can be obtained as a limit of (non compatible) representations T µnn
equivalent with the induced representations T hnn of corresponding subgroups
Gk
n on L2(Xn, hn). This fact is based on the symmetric groups embedding!

This gives another possibility to construct an appropriate measure µ on a
suitable completion X̃ of the space X = ∪nXn. We should find measures
µn ∼ hn on Xn

∼= Rm(n) which satisfy a natural consistency condition then
by Kolmogorov’s theorem [8] these measures µn fit together to form a mea-
sure µ on R∞. In Appendix 1 we recall the Gauss decomposition of finite
and infinite matrices. In Appendix 2 we collect some criteria of the irre-
ducibility for locally compact and infinite discrete groups. For countable
groups G.W. Mackey has shown [24] that quasiregular representations are ir-
reducible if and only if the corresponding subgroups are self-commensurizing.
He also gave criteria for induced representation IndΓ

Γ0
(π) to be irreducible for

finite-dimensional representations π of a subgroup Γ0. See also M. Burger
and P. de la Harpe [2], L. Corwing [3], N. Obata [25]. The representations of
the infinite symmetric group S∞ induced by trivial representation of Young
subgroups were studied by A.M. Vershik and N.V. Tsilevich [29].

The “regular” and “quasiregular” representations introduced by the au-
thor in [14, 19] for general infinite-dimensional groups are particular cases of
induced representations (see Example 3.1). In contrast to finite-dimensional
groups, the “regular” representations of the group BZ

0 corresponding to the
trivial orbit 0∈g∗, can be irreducible and nonequivalent if the corresponding
measures are nonequivalent [18]. The same holds for “quasiregular” repre-
sentations. So, not all irreducible representations of the infinite-dimensional
i-nilpotent group BZ

0 are monomial, i.e., induced by one-dimensional repre-
sentations as for finite-dimensional groups. The Ismagilov conjecture [14, 15]
and its generalization [19] (Conjectures 3.1, 3.2) explains when regular and
quasiregular representations of infinite-dimensional groups can be irreducible.
It is a remarkable fact that the criteria of the irreducibilty of the induced
representations of BZ

0 for generic orbits (Theorem 4.2) includes the condi-
tions of (Ismagilov’s) Conjecture 3.1. The equivalence will be studied later.
For general orbits, representations have not been constructed. It is an open
question whether the orbit method will give all unitary irreducible repre-
sentations of the group BZ

0 . The completions of groups that are inductive
limits G = lim−→n

Gn of finite-dimensional classical groups Gn appeared, for
example, in the work by A.A. Kirillov [10] for the group U(∞) = lim−→n

U(n),
and G.I. Ol’shanskĭı [26], for inductive limits of classical groups. They de-
scribed all unitary irreducible representations of the corresponding groups
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G=lim−→n
Gn, continuous in the stronger topology, namely, in strong operator

topology. In [31] for inductive limits of real reductive Lie groups G=lim−→n
Gn,

J.A. Wolf constructed the principal series representations as the inductive
limit of compatible (see Remark 4.2) representations of principal series for
subgroup Gn. As he wrote,“anything involving integration over G/P is ex-
cluded”. We can quote from [32]: “ We study representations of the classical
infinite dimensional real simple Lie groups G induced from factor representa-
tions of minimal parabolic subgroups P. When P is minimal we prove that it
is amenable, and we use properties of amenable groups to induce unitary rep-
resentations IndGP (τ) on complete locally convex topological vector spaces”.
To construct an analog of induced representations, integration over G/P is
replaced by right P -invariant means on G.

2. Induced representations, finite-dimensional case

2.1. Induced representations

The induced representation IndGHS is the unitary representation on the
space L2(X, V, µ) of a group G associated with a unitary representation S :
H→U(V ) of a closed subgroup H of the group G. For details, see [22, 24].
We follow [12, Section 2.1]. Suppose that X = H \G is a right G−space and
that s : X → G is a Borel section of the projection p : G → X = H\G :
g 7→ Hg. For a Lie group, such a mapping s can be chosen to be smooth
almost everywhere. Then every element g ∈ G can be uniquely written in
the form

g = hs(x), h ∈ H, x ∈ X, (2.1)

and thus G (as a set) can be identified with H ×X.
The representation IndGHS is defined as follows [12, section 2.3]. Let

S : H → U(V ) be a unitary representation of a subgroup H of the group G
in a Hilbert space V and let µ be a measure on X satisfying the condition
dµs(xg)/dµs(x) = ∆H(h(x, g))/∆G(h(x, g)), where ∆G is a modular function
on a group G and h(x, g) ∈ H is defined by the relation s(x)g = h(x, g)s(xg).
Let L2(X, V, µ) denote the space of all vector-valued functions f on X with
values in V such that

‖f‖2 :=

∫
X

‖f(x)‖2
V dµ(x) <∞.

Let us consider the representation T given by the formula

[T (g)f ](x) = A(x, g)f(xg) = S(h) (dµs(xg)/dµs(x))1/2 f(xg), (2.2)
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where
A(x, g) = [∆H(h)/∆G(h)]1/2 S(h), (2.3)

and the element h=h(x, g) is defined as before by formula s(x)g=h(x, g)s(xg).

Definition 2.1. The representation T is called the unitary induced repre-
sentation and is denoted by IndGHS.

Remark 2.1. The right (or the left) regular representation ρ, λ : G 7→
U(L2(G, h)) of a locally compact group G is a particular case of the in-
duced representation IndGHS with H = {e} and S = Id, where h is a Haar
measure. The quasiregular representation is a particular case of the induced
representation with some closed subgroup H ⊂ G and S = Id.

2.2. Orbit method for finite-dimensional nilpotent group B(n,R)

Fix the group Gn = B(n,R) of all upper triangular real matrices of
order n with ones on the main diagonal. The basic result of the Kirillov
orbits method [11], [12, Chapter 7, §2] applied to nilpotent Lie groups “is
the description of a one-to-one correspondence between two sets:
a) the set Ĝ of all equivalence classes of irreducible unitary representations
of a connected and simply connected nilpotent Lie group G,
b) the set O(G) of all orbits of the group G in the space g∗ dual to the Lie
algebra g with respect to the coadjoint representation.

To construct this correspondence, we introduce the following definition.
A subalgebra h ⊂ g is subordinate to a functional f ∈ g∗ if

〈f, [x, y]〉 = 0 for all x, y ∈ h,

i.e. if h is an isotropic subspace with respect to the bilinear form defined by
Bf (x, y) = 〈f, [x, y]〉 on g. In this case we define a one-dimensional unitary
representation Uf,H of the group H = exp h by formula

Uf,H(exp x) = exp 2πi〈f, x〉.

Theorem 2.1 (Theorem 7.2, [12]). (a) Every irreducible unitary repre-
sentation T of a connected and simply connected nilpotent Lie group G has
the form T = IndGHUf,H , where H ⊂ G is a connected subgroup and f ∈ g∗;

(b) the representation Tf,H = IndGHUf,H is irreducible if and only if the
Lie algebra h of the group H is a subalgebra of g subordinate to the functional
f with maximal possible dimension;

(c) irreducible representations Tf1,H1 and Tf2,H2 are equivalent if and only
if the functionals f1 and f2 belong to the same orbit of g∗.”
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2.3. The induced representations corresponding to generic orbits, finite-di-
mensional case

We present the explicit formulas for the induced representations (2.10)–
(2.13) allowing us to calculate the generators of the one-parameter groups in
H (see (2.16) and definition (2.8) of the matrix S). We give a new proof of
the irreducibility of the group Gn based on the Gauss decomposition of the
matrix S. This proof can be generalized for the infinite-dimensional group
BZ

0 .

Example 2.1. Generic orbits for the group G = B(n,R) [12, Example 7.9].
“The adjoint action of the group G on g has the following form Adt(x) =
tyt−1, t ∈ G, x ∈ g. The form of the action Ad∗t (y) = (t−1yt)− implies,
that Ad∗t , t ∈ G acts as follows: to a given column of y ∈ g∗, a linear
combination of the previous columns is added and to a given row of y, a
linear combination of the following rows is added. More generally, the minors
∆k, k = 1, 2, ..., [n

2
], consisting of the last k rows and first k columns of y are

invariant of the action. It is possible to show that if all the numbers ck are
different from zeros, then the manifold given by the equation

∆k = ck, 1 ≤ k ≤ [n/2] (2.4)

is a G-orbit in g∗. Hence generic orbits have codimension equal to [n
2
] and

dimension equal to n(n−1)
2
− [n

2
]. To obtain a representation for such an orbit,

we can take a matrix y of the form y = ( 0 0
Λ 0 ) , where Λ is the matrix of

order [n
2
] such that all nonzero elements are contained in the anti-diagonal.

It is easy to find a subalgebra of dimension [n
2
] × [n+1

2
] subordinate to the

functional y. It consists of all matrices of the form ( 0 A
0 0 ) , where A is an

[n
2
]× [n+1

2
] or [n+1

2
]× [n

2
] matrix.”

For p, q,m ∈ Z, p ≤ m ≤ q define the following groups

Gp,q = {I +
∑

p≤k<r≤q

xkrEkr}, Hm
p,q = {I +

∑
p≤k≤m<r≤q

xkrEkr}. (2.5)

Remark 2.2. We find h(x, t) using s(x)t = h(x, t)s(xt). Let 1<m<n and
Bm = Gm+1,n, B(m) = Hm

1,n, B
(m) = G1,m. The group Gn = B(n,R) is a

semi-direct product Gn = Bm nB(m) oB(m) and two decompositions hold

BmB(m)B(m)3xmx(m)x(m)=hxmx
(m)∈B(m)BmB

(m), h=xmx(m)x−1
m ,

(2.6)
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whereGn 3 x =
(
x(m) x(m)

0 xm

)
= xmx(m)x(m), xm ∈ Bm, x(m) ∈ B(m), x(m) ∈

B(m). In view of decomposition (2.6), the space X = B(m)\Gn is isomorphic
to BmB

(m). Therefore the section s can be used as an embedding BmB
(m) 3

xmx
(m) 7→ s(xmx

(m)) = xmx
(m) ∈ BmB(m)B(m). For t = tmt

(m) ∈ BmB
(m)

we have s(x)t = xmx
(m)tmt

(m) = xmtmx
(m)t(m) = s(xt), so s(x)t = s(xt) and

h(x, t) = e. For t ∈ B(m) we get s(x)t = xmx
(m)t = h(x, t)xmx

(m), hence

h(x, t) = xmx
(m)t(xmx

(m))−1 =
(
x(m) 0

0 xm

)
( 1 t0

1 1 )
(

(x(m))−1 0

0 x−1
m

)
=
(

1 x(m)t0x
−1
m

0 1

)
,

where t0 = t− I. Finally we get

H(x, t) := h(x, t)− I =

{
0, for t ∈ BmB

(m),
x(m)(t− I)x−1

m , for t ∈ B(m).
(2.7)

Let us fix G2m =BmB(m)B(m). Consider one-parameter subgroups Ekr(t) :=
I+tEkr, t∈R of the groupB(2m,R). We find generatorsAkn=d/dtTI+tEkn

|t=0

of the induced representation Tt (2.12). Set for 1 ≤ k ≤ m < r ≤ 2m

Skr(tkr) :=〈y, (h(x,Ekr(tkr))−I)〉, thenAkr=d/dt exp(2πiSkr(t))|t=0 =2πiSkr(1).

Define the matrixS(its structure is important in the proof of the irreducibility)

S=(Skr)1≤k≤m<r≤2m, where Skr=Skr(1). Then S=(2πi)−1(Akr)k,r. (2.8)

Lemma 2.2. Let B = (bkr)
n
k,r=1 ∈ Mat(n,C). Define the matrix C =

(ckr)
n
k,r=1 ∈ Mat(n,C) by

ckr = tr(EkrB), 1 ≤ k, r ≤ n, then we have C = BT , (2.9)

where Ekr are matrix units and BT means transposed matrix to the matrix
B. The equality C = BT holds also in the case when B is an arbitrary m×n
rectangular matrix. The statement is true also for matrices B ∈ Mat(∞,C).

Proof. Indeed, we have tr(EkrB) = brk. �

We now find the matrix S(t) = (Skr(tkr))k,r and the matrix S = (Skr(1))k,r
using Lemma 2.2. Using (2.7) we have

〈y, h(x, t)−I〉=tr (H(x, t)y)=tr
(
x(m)t0x

−1
m y
)

=tr
(
t0x
−1
m yx(m)

)
=tr (t0B(x, y)) ,

where t0 = t− I and

B(x, y) = x−1
m yx(m) ∼=

(
1 0
0 x−1

m

) (
0 0
y 0

) (
x(m) 0

0 1

)
=
( 0 0
x−1
m yx(m) 0

)
. (2.10)
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By definition we have

Skr(tkr) = 〈y, (h(x,Ekr(tkr))− I)〉 = tr(tkrEkrB(x, y)),

hence by Lemma 2.2 and (2.10) we conclude that

S=(Skr(1))kr=(tr (EkrB(x, t)))k,r=BT (x, y)=
(

0 (x(m))T yT (x−1
m )T

0 0

)
. (2.11)

So the induced representation IndGH(S) : G→ U(L2(X,µ)) corresponding to
the point y ∈ g∗ has the following form for t ∈ G, x ∈ X = H\G,

(Ttf)(x)=S(h(x, t)) (dµ(xt)/dµ(x))1/2 f(xt), f ∈ L2(X,µ), (2.12)

where

S(h(x, t))=exp(2πi〈y, (h(x, t)− I)〉)=exp
(
2πitr ((t− I)B(x, y))

)
. (2.13)

Remark 2.3. For the matrix X = I +
∑

k,n∈Z,k<n xknEkn ∈ BZ we de-

note by x−1
kn the matrix elements of the matrix X−1, i.e. X−1 =: I +∑

k,n∈Z,k<n x
−1
knEkn ∈ BZ. The explicit expressions for x−1

kn are as follows (see

[13], formula (4.4)) x−1
kk+1 = −xkk+1,

x−1
kn = −xkn +

n−k−1∑
r=1

(−1)r−1
∑

k<i1<i2<...<ir<n

xki1xi1i2 ...xirn, k < n− 1. (2.14)

We have by definition X−1X = XX−1 = I, hence

(
XX−1

)
kn

=
n∑
r=k

xkrx
−1
rn = δkn =

n∑
r=k

x−1
kr xrn =

(
X−1X

)
kn
, k ≤ n. (2.15)

Denote by Dkn = Dkn(h) = ∂/∂xkn the operator of the partial derivative
corresponding to the shift x 7→ x + tEkn on the group Bm × B(m) 3 x =
(xkn)k,n and the Haar measure h.

Example 2.2. Let G=G1,6, g= Lie(G), g∗ = Lie(G)∗. We write the repre-
sentations for generic orbit corresponding to the point y = y43E43 + y52E52 +
y61E61 ∈ g∗. Set H3 =H3

1,6, h3 =Lie(H3)={t−I | t ∈ H3}. The representation
S of the group H3 is:

H3 3 exp(t−I)= t 7→exp(2πi〈y, (t−I)〉)=exp(2πi[t34y43+t25y52+t16y61])∈S1.
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Denote by B3 = G4,6, B(3) = H3
1,6, B

(3) = G1,3. For the group G1,6 =
B(6,R) holds the following decomposition (see Remark 2.2): B(6,R) =
B3B(3)B(3), i.e. x=x3x(3)x(3). In view of (2.10) and (2.11), we get

B(x, y) = x−1
3 yx(3) =

(
x−1
46 y61 x

−1
45 y52+x−1

46 y61x12 y43+x−1
45 y52x23+x−1

46 y61x13

x−1
56 y61 y52+x−1

56 y61x12 y52x23+x−1
56 y61x13

y61 y61x12 y61x13

)
,

S = BT (x, y) = (x−1
3 yx(3))T =

(
x−1
46 y61 x−1

56 y61 y61

x−1
45 y52+x−1

46 y61x12 y52+x−1
56 y61x12 y61x12

y43+x−1
45 y52x23+x−1

46 y61x13 y52x23+x−1
56 y61x13 y61x13

)
.

Using again (2.8), (2.12) and (2.7) we get the following expressions for gen-
erators Akn = d/dtTI+tEkn

|t=0 of one-parameter groups I + tEkn, t ∈ R:

A12=D12, A13=D13, A23=x12D13+D23, A45=D45, A46=D46, A56=x45D46+D56,

S=
1

2πi

(
A14 A15 A16
A24 A25 A26
A34 A35 A36

)
=

(
x−1
46 y61 x−1

56 y61 y61

x−1
45 y52+x−1

46 y61x12 y52+x−1
56 y61x12 y61x12

y43+x−1
45 y52x23+x−1

46 y61x13 y52x23+x−1
56 y61x13 y61x13

)
. (2.16)

2.4. New proof of the irreducibility of the induced representations

The conditions of irreducibility, Theorem 2.1 (b), is hard to formulate in
the infinite-dimensional case since all maximal subordinate subalgebras are
infinite-dimensional. We give an equivalent description of the irreducibility
which can be generalized, namely, the subgroup H2m+2r+1

1,k−1 is of maximal
dimension in G1,k−1⇔ r= 0 for k= 2m + 1 (resp. r=−1, r= 0 for k = 2m)
⇔ G� = {e}, see Lemmas 4.1 and 4.4. These lemmas explain when and
why the induced representations IndGH(Uf,H) are irreducible. The infinite-
dimensional case is richer since some irreducible representations appear as
the limit of reducible ones (see Theorem 4.2 and Remark 4.2).

We present a new proof of irreducibility that allows a generalization for
the infinite-dimensional group (Section 3.7). These proofs in both cases are
based on the fact that the von Neumann algebra generated by the restriction
of the representation Tm,yn on the commutative subgroup B(m,n) coincides
with L∞(X,µ) (Lemmas 2.4 and 3.10). Consider the sequence of Lie groups
Gm
n = Gm−n,m+n+1 (see (2.5)) and their Lie algebras gmn = Lie(Gm

n ), m ∈
Z, n∈N. We note that for an arbitrary m ∈ N we have BZ

0 = lim−→n
Gm
n . The

following decomposition holds (see (2.6)) Gm
n =Bm,nnB(m,n)oB(m,n), where

Bm,n = Gm+1,m+n+1, B(m,n) = Hm
m−n,m+n+1, B

(m,n) = Gm−n,m.
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Denote by ∆(m,n) = {(k, r) ∈ Z2 | m − n ≤ k ≤ m < r ≤ m + n + 1},
∆m,n = {(k, r) ∈ Z2 | m + 1 ≤ k < r ≤ m + n + 1}, ∆(m,n) = {(k, r) ∈ Z2 |
m−n ≤ k < r ≤ m}. The induced representation of the group Gm

n is defined
in the space Hm,n := L2(Xm,n, hm,n) by the following formula for t ∈ Gm

n :

(Tm,ynt f)(x) = S(h(x, t))
(
dhm,n(xt)/dhm,n(x)

)1/2
f(xt), f ∈ Hm,n, (2.17)

where Xm,n = B(m,n)\Gm
n ' Bm,n ×B(m,n) and

dhm,n(xm, x
(m)) = dxm⊗ dx(m) = ⊗(k,n)∈∆m,ndxkn⊗⊗(k,n)∈∆(m,n)dxkn (2.18)

is the Haar measure on the group Bm,n ×B(m,n).

Theorem 2.3. The induced representation Tm,yn of the group Gm
n defined

by (2.17), corresponding to the generic orbit Oyn generated by the point yn ∈
(gmn )∗, yn =

∑n
r=0 ym+r+1,m−rEm+r+1,m−r, ysl 6= 0 is irreducible. Moreover,

the generators of the one-parameter groups Akr = d
dt
Tm,ynI+tEkr

|t=0 are: Akr =∑k−1
s=m−n xksDrs +Dkr, (k, r) ∈ ∆(m,n), Akr =

∑k−1
s=m+1 xksDrs +Dkr, (k, r) ∈

∆m,n, (2πi)−1
(
Akr
)

(k,r)∈∆(m,n)
= S(m)

n =(Skr)(k,r)∈∆(m,n) =
(
x−1
m yx(m)

)T
.

The irreducibility of the induced representation of the group Gm
n is based on

the following lemma.

Lemma 2.4. The von Neumann algebra AS generated by the restriction of
the representation Tm,yn on the commutative subgroup B(m,n) of the group
Gm
n coincides with L∞(Xm,n, hm,n).

Proof. In the spaceHm,n define two von Neumann algebras AS and Ax gen-
erated respectively by two sets of unitary operators Ukr(t) and Vkr(t), where
(Ukr(t)f)(x) = exp(2πiSkr(t))f(x), (Vkr(t)f)(x) := exp(2πitxkr)f(x),

AS =
(
Ukr(t) = Tm,ynI+tEkr

= exp(2πiSkr(t)) | t ∈ R, (k, r) ∈ ∆(m,n)
)′′
,

Ax =
(
Vkr(t) := exp(2πitxkr) | t ∈ R, (k, r) ∈ ∆m,n ∪∆(m,n)

)′′
.

Since Ax = L∞(Xm,n, hm,n), to prove irreducibility it is sufficient to show
that AS = Ax. Using decomposition (2.10) and (2.11)

S(m)
n = (x−1

m yx(m))T = (x(m))TyT (x−1
m )T (2.19)

we conclude that AS ⊆ Ax. Indeed we have Vkr(t) := exp(2πitxkr) ∈ Ax,
so the operators xkr of multiplication by the independent variables f(x) 7→
xkrf(x) in the space Hm,n are affiliated with the von Neumann algebra Ax,
i.e. xkr η Ax for (k, r) ∈ ∆m,n

⋃
∆(m,n).

11



Definition 2.2. Recall (c.f., e.g., [5]) that a non necessarily bounded self-
adjoint operator A in a Hilbert space H is said to be affiliated with a von
Neumann algebra M of operators in this Hilbert space H, if exp(itA) ∈ M
for all t ∈ R. Then one writes A η M .

By (2.14) the matrix elements x−1
kr of the matrix x−1

m ∈ Bm,n are also affiliated
x−1
kr η Ax. Using (2.19) we conclude that the matrix elements Skr of the

matrix S(m)
n are affiliated: Skr η Ax, (k, r) ∈ ∆(m,n), so AS ⊆ Ax.

To prove that AS ⊇ Ax, we find the expressions of the matrix element of
the matrix x(m) ∈ B(m,n) and x−1

m ∈ Bm,n in terms of the matrix elements

of the matrix S(m)
n = (Skr)(k,r)∈∆(m,n). To do that, we compare the above

decomposition S(m)
n = (x(m))TyT (x−1

m )T and the Gaussian decomposition C =
LDU (see Theorem 5.1). Let us denote by J the n× n anti-diagonal matrix
J =

∑n+1
r=−nEm+r,m−r+1 Using J2 = I and (2.11) we get

SJ = BT (x, y)J = (x(m))TyT (x−1
m )TJ = (x(m))T (yTJ)(J(x−1

m )TJ). (2.20)

The latter decomposition (2.20) is in fact the Gauss decomposition of the
matrix SJ i.e. we get

SJ = LDU, where L = (x(m))T , D = yTJ, U = J(x−1
m )TJ.

Using Theorem 5.1 we can find the matrix elements of the matrix x(m) ∈
B(m,n) and x−1

m ∈ Bm,n in terms of the matrix elements of the matrix S(m)
n ,

hence we can also find the matrix elements of the matrix xm ∈ Bm,n. This
finish the proof of the lemma. �

Proof of Theorem. 2.3 Let a bounded operator A in a Hilbert space
Hm,n commute with the representation Tm,yn . Then by Lemma 2.4 A com-
mute with L∞(Bm,n×B(m,n), dxm⊗ dx(m)), therefore the operator A itself is
an operator of multiplication by some essentially bounded function a∈L∞ i.e.
(Af)(x) =a(x)f(x) for f ∈Hm,n. Since A commute with the representation
Tm,yn i.e. [A, Tm,ynt ]=0 for all t∈Bm,n×B(m,n) we conclude that

a(x) = a(xt) (mod dxm ⊗ dx(m)) for all t ∈ Bm,n ×B(m,n).

Since the measure dh=dxm⊗dx(m) is the Haar measure on G=Bm,n×B(m,n),
this measure is G-right ergodic. Therefore a(x)=const (mod dxm ⊗ dx(m)).
�
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3. Induced representations, infinite-dimensional case

3.1. Induced representations for infinite-dimensional groups

A. Kirillov [12, Chapter I, §4, p.10] says: ”The method of induced repre-
sentations is not directly applicable to infinite-dimensional groups (or more
precisely to a pair G ⊃ H) with an infinite-dimensional factor H\G)”. To
generalize the Mackey construction for infinite-dimensional groups, one needs
first to construct some G-quasi-invariant measure on infinite-dimensional ho-
mogeneous space H\G. Since there is no Haar measure on the group G [30],
it is difficult to construct such a measure on the initial space H\G. As in
the case of the “regular” or “quasiregular” representation (see Example 3.1),
it is reasonable to construct such a measure on an appropriate completion X̃
of the initial space X = H\G. The formula for the induced representation
containing an operator S(h), h ∈H will make sense only if one can extend
the representation S of the group H to the corresponding completion H̃ of
the group H.

Finally, the induced representation of the group G associated with a uni-
tary representation S of a subgroup H will depend on a completion G̃ of the
group G, on an extension S̃ : H̃ → U(V ) of the representation S : H → U(V )
and on the choice of a G-quasi-invariant measure µ on an appropriate com-
pletion X̃ of the space X = H\G.

Hence the procedure of induction will not be unique but, nevertheless,

well-defined (if a G-quasi-invariant measure on H̃\G exists). So the uniquely
defined induced representation IndGHS in the Hilbert space L2(H\G, V, µ) (in
the case of a locally-compact group G) should be replaced by the family of

induced representations IndG̃,G,µ
H̃,H

(S̃, S) in the Hilbert spaces L2(H̃\G̃, V, µ)

depending on different completions G̃ of the group G and different G-quasi-
invariant measures µ on X̃ = H̃\G̃.

Example 3.1. Regular representation [14, 15, 16] of the infinite-dimensional
group G in the space L2(G̃, µ), associated with the completion G̃ of the group
G and a G-right-quasi-invariant measure µ on G̃, is a particular case of the in-

duced representation IndG̃,G,µe,e (Id), generated by the trivial representation of

the trivial subgroup. Quasiregular [19] representation in the space L2(X̃,µ),
where X̃=H̃\G̃ and H is some subgroup of the group G is a particular case

of the induced representation IndG̃,G,µ
H̃,H,

(Id) generated by the trivial represen-

tation of the completion H̃ in the group G̃.
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Let G be an infinite-dimensional group and S : H → U(V ) be a unitary
representation in a Hilbert space V of the subgroup H ⊂ G such that the
space H\G is infinite-dimensional. We give the following definition.

Definition 3.1. The induced representation of the group G

IndG̃,G,µ
H̃,H

(S̃, S),

generated by the unitary representations S : H → U(V ) of the subgroup H
in the group G is defined (similarly to (2.2)) as follows:

1) first we should find some completion H̃ of the group H such that

S̃ : H̃ → U(V )

is the continuous unitary representation of the group H̃ such that S̃|H = S,
2) take any G-right-quasi-invariant measure µ on an appropriate comple-

tion X̃ = H̃\G̃ of the space X =H\G, on which the group G acts from the
right, where H̃ (resp. G̃) is a suitable completion of the group H (resp. G),

3) in the space L2(X̃, V, µ) of all vector-valued functions f on X̃ with
values in V such that

‖f‖2 :=

∫
X̃

‖f(x)‖2
V dµ(x) <∞,

define the representation of the group G by the following formula:

(Ttf)(x) = S(h̃(x, t)) (dµ(xt)/dµ(x))1/2 f(xt), x ∈ X̃, t ∈ G, (3.1)

where h̃ is defined by s̃(x)t = h̃(x, t)s̃(xt). The section s : X → G of the
projection p : G→ X should be extended to an appropriate section s̃ : X̃ →
G̃ of the extended projection p̃ : G̃→ X̃.

Conjecture 3.1 (R.S. Ismagilov, 1985, [14]). The right regular representa-
tion TR,µ : G → U(L2(G̃, µ)) is irreducible if and only if 1) µLt ⊥ µ ∀t ∈
G\{e}, (⊥ means singular), 2) the measure µ is G-ergodic.

The following construction generalizes regular and quasiregular representa-
tions. Let us have the measurable action α : G → Aut(X) of the group
G on the measurable space X with a G-quasi-invariant measure µ. The
representation πα,µ,X of the group G is defined by

(πα,µ,Xt f)(x) = (dµ(αt−1(x))/dµ(x))1/2f(αt−1(x)), f ∈ L2(X,µ). (3.2)
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Conjecture 3.2 ([19]). A representation πα,µ,X : G → U(L2(X,µ)) is ir-
reducible if and only if 1) µg ⊥ µ ∀g ∈ α(G)′\{e}, 2) the measure µ is
G-ergodic, where α(G)′={g ∈ Aut(X) | {g, αt}=gαtg

−1α−1
t = e ∀t∈G}.

Problem 1. Find the conditions on X,µ,G, α when the Conjectures 3.1 and
3.2 are valid. Conjectures 3.1, 3.2 are proved for some particular cases, see,
e.g., [14, 15, 19]. In the case of the field k = Fp they should be corrected.

3.2. How to develop the orbit method for infinite-dimensional i-nilpotent
group BZ

0 ?
Consider the group BZ

0 = lim−→n
G2n−1 of infinite in both directions upper

triangular matrices. The corresponding Lie algebra g is the inductive limit
g = lim−→n

bn of Lie algebras of upper triangular matrices, so as the linear
space it is isomorphic to the space R∞0 of finite sequences (xk)k∈N. Hence,
the dual space g∗ is isomorphic to the space R∞ of all sequences (xk)k∈N,
but the latter space R∞ is too large to manage with it, for example, to equip
it with a Hilbert structure or to describe all orbits. To make it smaller it
is reasonable to make the completion G̃ of the group G in some stronger
topology.

To develop the orbit method for the group BZ
0 , we should answer some

questions:
(1) How to define the appropriate completion G̃ of the group G corresponding
Lie algebras g (resp. g̃) and corresponding dual spaces g∗ (resp. g̃∗)?
(2) Which pairing should we use between g and g∗?
(3) Suppose that the dual space g∗, some element f ∈ g∗ and corresponding
algebra h, subordinate to the element f , are chosen. How to define the cor-
responding induced representation IndGHUf,H and study its irreducibility ?
(4) Shall we get all irreducible representations of the corresponding group
using the orbit method and induced representations?
(5) Find the criteria of irreducibility and equivalence of the induced repre-
sentations of the group BZ

0 .
In [13] (see Section 3.3) for the group GL0(2∞,R) = lim−→n

GL(2n− 1,R)
we have constructed a family of the Hilbert-Lie groups GL2(a), a ∈ AGL

such that:
a) GL0(2∞,R) ⊂ GL2(a) and GL0(2∞,R) is dense in GL2(a) for all a ∈ AGL,
b) GL0(2∞,R) = ∩a∈AGL2(a),
c) any continuous representation of the group GL0(2∞,R) is in fact contin-
uous in some stronger topology, namely in a topology of a suitable Hilbert
-Lie group GL2(a), a ∈ AGL.
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As we show in Sections 3.3–3.4 to develop the orbit method it is sufficient:
(1) to consider Hilbert-Lie completions B2(a) of the initial group BZ

0 .
(2) In this case the pairing between the corresponding Hilbert-Lie algebra
b2(a) and its dual b2(a)∗ is correctly defined by the trace (as in the finite-
dimensional case).
(3) In Section 3.6 and 4 we define the induced representations of the group
BZ

0 corresponding to special orbits, generic orbits, using scheme given in Sec-
tion 3.1. We consider only the simplest example of G−quasi-invariant mea-
sures on X̃=H̃\G̃, namely, the infinite product of one-dimensional Gaussian
measures. How to construct the induced representation corresponding to an
arbitrary orbit is an open question.
(4) We do not know answer for questions (4).
(5) We obtain the criteria of irreducibility only for generic orbits.

3.3. Hilbert–Lie groups GL2(a)

The Hilbert–Lie groups naturally appear in the representation theory of
infinite-dimensional matrix group. Let us consider the group GL0(2∞,R) =
lim−→n

GL(2n−1,R) with respect to the symmetric embedding isn : Gn 7→ Gn+1,
Gn 3 x 7→ x+E−n,−n+Enn ∈ Gn+1, where Gn = GL(2n−1,R). Let us define
[13] the Hilbert-Lie group GL2(a)={I+x | (I+x)−1 = 1+y x, y ∈ gl2(a)},
by its Hilbert-Lie algebra gl2(a) with an operation [x, y] = xy − yx

gl2(a) = {x =
∑
k,n∈Z

xknEkn | ‖x‖2
gl2(a) =

∑
k,n∈Z

| xkn |2 akn <∞}, a ∈ AGL.

Namely, consider an analog σ2(a) of an algebra of Hilbert-Schmidt operators
σ2(H) in a Hilbert space H = l2(Z):

σ2(a) = {x =
∑
k,n∈Z

xknEkn | ‖x‖2
σ2(a) =

∑
k,n∈Z

| xkn |2 akn <∞}.

Lemma 3.3 ([13]). The Hilbert space σ2(a) is an associative Hilbert algebra
(i.e., ‖xy‖ ≤ C‖x‖‖y‖, x, y ∈ σ2(a)) if and only if the weight a=(akn)(k,n)∈Z2

belongs to the set AGL defined as:

AGL ={a = (akn)(k,n)∈Z2 | 0 < akn ≤ Cakmamn, k, n,m ∈ Z, C > 0}. (3.3)

Theorem 3.4 (Theorem 6.1 [13]). Every continuous unitary representa-
tion U of the group GL0(2∞,R) in a Hilbert space H can be extended by conti-
nuity to a unitary representation U2(a) : GL2(a)→ U(H) of some Hilbert-Lie
group GL2(a), a ∈ AGL depending on the representation.
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3.4. Hilbert-Lie groups B2(a)

Let us consider the following Hilbert-Lie group B2(a) := {I + x | x ∈
b2(a)} where the corresponding Hilbert-Lie algebra b2(a) is defined as

b2(a)={x =
∑

(k,n)∈Z2,k<n

xknEkn | ‖x‖2
b2(a) =

∑
(k,n)∈Z2,k<n

| xkn |2 akn<∞}. (3.4)

Lemma 3.5 ([13]). The Hilbert space b2(a) (with an operation (x, y)→xy)
is a Hilbert algebra if and only if the weight a = (akn)k,n satisfies the condi-
tions

a = (akn)(k,n)∈Z2,k<n, akn ≤ Cakmamn, k < m < n, k,m, n ∈ Z. (3.5)

Denote by A the set of all weights a satisfying the above-mentioned condition.
We note [13] that

BZ
0 = ∩a∈AB2(a), therefore B̂Z

0 = ∪a∈AB̂2(a). (3.6)

Hence, for the description of the dual space B̂Z
0 it is sufficient to know B̂2(a)

for all a ∈ A, but this problem has not been solved yet.

3.5. Orbits for groups BZ
0 and B2(a).

Let bZ0 be the Lie algebra of the group BZ
0 and let (bZ0 )∗ be its dual space.

Since bZ0 = ∩a∈Ab2(a), so (bZ0 )∗ = ∪a∈Ab∗2(a), therefore an arbitrary element
y ∈ (bZ0 )∗ belongs to some dual space b∗2(a), a ∈ A. Take the group BZ

0 , fix
one of its Hilbert–Lie completion, i.e., some Hilbert–Lie group B2(a), a ∈ A,
and the corresponding Hilbert–Lie algebra b2(a). The corresponding dual
space b∗2(a) has the following description

b∗2(a)={y=
∑

(k,n)∈Z2,k>n

yknEkn | ‖y‖2
b∗2(a) =

∑
(k,n)∈Z2,k>n

| ykn |2 a−1
kn <∞}. (3.7)

The adjoint action B2(a)→GL(b2(a)) of the group B2(a) on its Lie algebra
b2(a) is: b2(a) 3 x 7→ Adt(x) := txt−1 ∈ b2(a), t ∈ B2(a). The pairing
between g = b2(a) and g∗ = b∗2(a) is correctly defined by the trace:

g∗ × g 3 (y, x) 7→ 〈y, x〉 := tr(xy) =
∑

(k,n)∈Z2,k<n

xknynk ∈ R. (3.8)
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The coadjoint action of the group B2(a) on the space b∗2(a) dual with b2(a)
is Ad∗t (y)=(t−1yt)− :=I +

∑
(p,q)∈Z2,p>q(t

−1yt)pqEpq, t ∈ B2(x), y∈b∗2(a).
We consider four different type of orbits with respect to the coadjoint

action of the group B2(a) in the dual space b∗2(a).
Case 1) 0-dimensional orbits are of the form:

O0 = y, y ∈ b∗2(a), y =
∑
k∈Z

yk+1,kEk+1,k.

The Lie algebra b2(a) is subordinate to the functional y, 〈y, [b2(a), b2(a)]〉 = 0
since

[b2(a), b2(a)] = {x ∈ b2(a) | x =
∑

(k,n)∈Z2,k+1<n

xknEkn}.

The one-dimensional representation of the Lie algebra b2(a) is

b2(a) 3 x 7→ 〈y, x〉 =
∑
k∈Z

xk,k+1yk+1,k ∈ R.

The corresponding one-dimensional representations of the group B2(a) is

B2(a) 3 exp(x) 7→ exp(2πi(〈y, x〉)) = exp(2πi
∑
k∈Z

xk,k+1yk+1,k) ∈ S1. (3.9)

For different y∈b∗2(a), y 6=0, these representations are irreducible and nonequiv-
alent.

Case 2) The finite-dimensional orbits corresponding to finite points y =∑
(k,n)∈Z,k>n yknEkn ∈ b∗2(a) (finiteness of y means that only finite number

of ykn are nonzero). These orbits lead to the induced representations of the
appropriate finite-dimensional groups Gm

n = Gm−n,m+n+1, m ∈ Z, n ∈ N
(see (2.5)). All irreducible unitary representations of the groups Gm

n are com-
pletely described by the Kirillov orbit method hence the finite-dimensional or-

bits give us the set
⋃
n∈N Ĝ

m
n⊂B̂Z

0 (there is a natural embedding Ĝm
n ⊂ Ĝm

n+1).
Case 3) Generic orbit is generated by a point yk ∈ b∗2(a), k ∈ Z

yk =
∑

r+s=k, s≤[(k−1)/2]

yrsErs =
∑

r+s=k, r≥[k/2]+1

yrsErs ∈ b∗2(a), yrs 6= 0, (3.10)

y2m+1 =
∞∑
p=0

ym+p+1,m−pEm+p+1,m−p ∈ b∗2(a), ym+p+1,m−p 6= 0. (3.11)
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Sections 3.6, 3.7 and 4 are devoted to the study of these cases.
Case 4) General orbits are generated by arbitrary non finite points

y =
∑

(k,n)∈Z,k>n

yknEkn ∈ b∗2(a).

Problem. How to construct the induced representations for general orbits
and study their irreducibility?

3.6. Construction of the induced representations Tm,y corresponding to a
point y2m+1 and subgroup H2m+1

0

Consider the case 3) more carefully. We shall study the irreducibility in
the following section. As before, take the group BZ

0 , fix one of its Hilbert com-
pletions i.e., a Hilbert-Lie group B2(a), a ∈ A, the corresponding Hilbert-Lie
algebra g = b2(a) and its dual g∗ = b∗2(a) as in the previous section.

We shall construct an analog of the induced representation of the group
BZ

0 for generic orbits (see Examples 2.1) corresponding to the point y2m+1 ∈
b∗2(a) defined by (3.11) and subgroup H2m+1

0 following steps 1)–3) of Defini-
tion 3.1.

Step 1) Extension of the representation S : H → U(V ). For m ∈ Z, the
group BZ is a semi-direct product. Consider the decomposition

BZ = Bm nB(m) oB(m), BZ
0 3 x =

(
x(m) x(m)

0 xm

)
= xmx(m)x(m), (3.12)

similar to the decomposition (2.6), where BZ = {I +
∑

k,n∈Z, k<n xknEkn},

Bm = {I +
∑

(k,r)∈∆m

xkrEkr}, B(m) = {I +
∑

(k,r)∈∆(m)

xkrEkr},

B(m) = {I +
∑

(k,r)∈∆(m)

xkrEkr}, where ∆m = {(k, r) ∈ Z2 | m+ 1 ≤ k < r},

∆(m) = {(k, r) ∈ Z2 | k ≤ m < r}, ∆(m) = {(k, r) ∈ Z2 | k < r ≤ m}.
Since the algebras h0(m), m ∈ Z defined

h0(m) = {t− I | t ∈ B0(m)}, where B0(m) = B(m) ∩BZ
0 ,

are commutative, 〈y, [h0(m), h0(m)]〉 = 0. Hence they are subordinate to the
functional y ∈ g∗ = b∗2(a). The corresponding one-dimensional representa-
tion of the algebra h0(m) = h(m)

⋂
bZ0 is

h0(m) 3 x 7→ 〈y, x〉 =
∞∑
p=0

xm−p,m+p+1ym+p+1,m−p ∈ R.

19



The unitary representation of the corresponding group H0(m) := exp(h0(m))
is

H0(m) 3 exp(x) 7→ S(exp(x)) = exp(2πi〈y, x〉) ∈ S1.

This representation can be extended to the representation of the corre-
sponding Hilbert-Lie group H̃ = H2(m, a) = B(m)

⋂
B2(a) (we note that

t=exp(t−1)):

H2(m, a) 3 exp(x) 7→ S(exp(x)) = exp(2πi〈y, x〉) ∈ S1. (3.13)

In what follows we shall use the notation B2(m, a) for the group H2(m, a).
Step 2 a) Construction of the completion X̃ = H̃\G̃ of the space X =

H\G. It is difficult to construct an appropriate measure on the space Xm,0 =
B0(m)\BZ

0 since it is isomorphic to the space R∞0 ⊂R∞. That is why we
consider two homogeneous spaces, appropriate completions of the space Xm,0:

Xm,2(a) = Bm,2(a)\B2(a), Xm = B(m)\BZ.

Since the decompositions hold

BZ
0 =Bm,0B0(m)B

(m)
0 , B2(a)=Bm,2(a)B2(m, a)B

(m)
2 (a), BZ =BmB(m)B(m),

(see Remark 2.2), we have the following inclusions: Xm,0 ⊂ Xm,2(a) ⊂ Xm,
where

Xm,0'Bm,0×B(m)
0 , Xm,2(a)'Bm,2(a)×B(m)

2 (a), Xm=B(m)\BZ ' Bm×B(m).

Step 2 b) We construct a measure µb on the space Xm with support Xm,2(a)
i.e., such that µb(Xm,2(a)) = 1. That is we take X̃ = H̃\G̃ = B2(m, a)\B2(a).

We construct the measure µb on the space Xm ' Bm×B(m) as a product-
measure µb = µb,m⊗ µ(m)

b , where µb,m (resp. ⊗µ(m)
b ) is the Gaussian product

measure on the group Bm (resp. B(m)) defined as follows:

dµb,m(xm)=⊗(k,n)∈∆mdµbkn(xkn)=⊗(k,n)∈∆m

√
bkn/π exp(−bknx2

kn)dxkn, (3.14)

dµ
(m)
b (x(m))=⊗(k,n)∈∆(m)dµbkn(xkn)=⊗(k,n)∈∆(m)

√
bkn/π exp(−bknx2

kn)dxkn.

Lemma 3.6 (Kolmogorov’s zero-one law, [28]). We have µb(Bm,2(a)×
B

(m)
2 (a)) = 1 if and only if ∑

(k,n)∈∆(m)∪∆(m)

akn/bkn <∞.
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Lemma 3.7 ([14, 15]). The measure µb = µb,m⊗µ(m)
b is Bm,0×B(m)

0 -right-

quasi-invariant i.e., (µb)
Rt ∼ µb for all t ∈ Bm,0 ×B(m)

0 if and only if

SRkn(µb) =
k−1∑
r=−∞

brn/brk <∞, for all, k < n ≤ m.

3) We define the corresponding induced representation Tm,y of the group BZ
0

(denoted also in Section 4 by T 2m+1,2m+1,µb , see (4.1)) in the space Hm =
L2(Xm, µb) as follows (see (2.12)):

(Tm,yt f)(x) = S(h(x, t)) (dµb(xt)/dµb(x))1/2 f(xt), x ∈ Xm, t ∈ G, (3.15)

where S(h(x, t)) is defined by (3.20).

3.7. Irreducibility of the induced representations Tm,y

Consider the induced representation Tm,y of the group BZ
0 defined by

(3.15) corresponding to a generic orbit Oy generated by the point y =
y2m+1 =

∑∞
r=0 ym+r+1,m−rEm+r+1,m−r ∈ b∗2(a) . Set for (k, r) ∈ ∆(m)

Skr(tkr) :=〈y, (h(x,Ekr(tkr))−I)〉 ⇒ Akr=d/dt exp(2πiSkr(t))|t=0 =2πiSkr(1).
(3.16)

Denote by S(m) =S the following matrix (compare with (2.3) and (2.8)):

S = (Skr)(k,r)∈∆(m), where Skr = Skr(1). (3.17)

We now calculate the matrix S(t) = (Skr(tkr))(k,r)∈∆(m) and the matrix S =
(Skr(1))(k,r)∈∆(m) analogously to Lemma 2.2. As in (2.7) we have

〈y, h(x, t)−I〉=tr (H(x, t)y)=tr
(
x(m)t0x

−1
m y
)

=tr
(
t0x
−1
m yx(m)

)
=tr (t0B(x, y)) ,

where t0 = t− I and for xm ∈ Bm, x
(m) ∈ B(m) we denote

B(x, y) = x−1
m yx(m) ∼=

(
1 0
0 x−1

m

) (
0 0
y 0

) (
x(m) 0

0 1

)
=
( 0 0
x−1
m yx(m) 0

)
. (3.18)

By definition we have (recall that Ekn(tkn) = I + tknEkn)

Skn(tkn) = 〈y, (h(x,Ekn(tkn))− I)〉 = tr(tknEknB(x, y)),

hence analogously to Lemma 2.2 we conclude that

S = (Skn(1))k,r = (tr (EkrB(x, y)))k,r =
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BT (x, y) = (x(m))TyT (x−1
m )T =

(
0 (x(m))T yT (x−1

m )T

0 0

)
. (3.19)

So, we have

S(h(x, t))=exp(2πi〈y, (h(x, t)−I)〉) = exp
(

2πitr ((t− I)B(x, y))
)
. (3.20)

Lemma 3.8 ([17]). The measure µb = µb,m ⊗ µ
(m)
b is Bm,0 × B

(m)
0 -right-

ergodic if E(µb) =
∑

k<n≤m S
R
kn(µb)/bkn <∞.

Theorem 3.9. The induced representation Tm,y of the group BZ
0 defined by

formula (3.15), corresponding to generic orbit Oy generated by the point
y =

∑∞
r=0 ym+r+1,m−rEm+r+1,m−r ∈ b∗2(a) is irreducible if the measure µb,m ⊗

µ
(m)
b on the group Bm × B(m) is right Bm,0 × B

(m)
0 -ergodic. Moreover, the

generators of one-parameter groups Akr = d
dt
Tm,yI+tEkr

|t=0 are the following

Akr=
k−1∑
s=−∞

xksDrs+Dkr, (k, r) ∈ ∆(m), Akr=
k−1∑

s=m+1

xksDrs+Dkr, (k, r) ∈ ∆m,

(2πi)−1
(
Akr
)

(k,r)∈∆(m)
= S(m) = (Skr)(k,r)∈∆(m) =

(
x−1
m yx(m)

)T
.

Here we denote by Dkn = Dkn(µb) = ∂/∂xkn−bknxkn the operator of the log-
arithmic derivative corresponding to the shift x 7→ x+ tEkn and the measure
µb on the group Bm ×B(m) 3 x = I +

∑
xkrEkr defined by:

(Dkn(µb)f)(x) = d/dt (dµb(x+ tEkn/dµb(x))1/2 f(x+ tEkn) |t=0 . (3.21)

The irreducibility of the induced representation of the group BZ
0 is based on

the following lemma.

Lemma 3.10. The von Neumann algebra AS generated by the restriction of
the representation Tm,y on the commutative subgroup B0(m) of the group BZ

0

coincides with L∞(Xm, µb).

Proof. In the space Hm define two von Neumann algebras AS and Ax gen-
erated respectively by two sets of unitary operators Ukr(t) and Vkr(t), where
(Ukr(t)f)(x) = exp(2πiSkr(t))f(x), (Vkr(t)f)(x) := exp(2πitxkr)f(x),

AS =
(
Ukr(t) = Tm,ynI+tEkr

= exp(2πiSkr(t)) | t ∈ R, (k, r) ∈ ∆(m,n)
)′′
,

Ax =
(
Vkr(t) := exp(2πitxkr) | t ∈ R, (k, r) ∈ ∆m,n ∪∆(m,n)

)′′
.
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Since Ax = L∞(Xm, µb), to prove irreducibility it is sufficient to show that
AS = Ax. Using decomposition (3.19)

S(m) = B(x, y)T = (x−1
m yx(m))T = (x(m))TyT (x−1

m )T

we conclude that AS ⊆ Ax (see the proof of Lemma 2.4). To prove that AS ⊇
Ax it is sufficient to find the expressions of the matrix elements of the matrix
x(m) ∈ B(m) and x−1

m ∈ Bm in terms of the matrix elements of the matrix
S(m) = (Skr)(k,r)∈∆(m). To do this, we connect the above decomposition
S(m) = B(x, y)T (see (3.18)) and the Gauss decomposition C = LDU for
infinite matrices (see Theorem 5.2). By (3.18) we get B(x, y) = x−1

m yx(m).
To find a matrix connected with the matrix S(m), for which an appropriate

decomposition LDU holds we recall the expressions for B(x, y) for small n
and finite-dimensional groups Gm

n (see Example (2.2)). We note that J2 = I,
where J =

∑
r∈ZEm+r+1,m−r ∈ Mat(2∞,R). For G3

3 we have

B(x, y)J=x−1
m yJJx(m)J=

 1 x−1
45 x−1

46 x−1
47

0 1 x−1
56 x−1

57

0 0 1 x−1
67

0 0 0 1

( y43 0 0 0
0 y52 0 0
0 0 y61 0
0 0 0 y70

)(
1 0 0 0
x23 1 0 0
x13 x12 1 0
x03 x02 x01 1

)
.

(3.22)
We use the infinite-dimensional analog of the latter presentation, i.e. instead
of the group Gn = B(n,R) consider the infinite-dimensional group BZ

0 and
do the same. Let xm ∈ Bm, x

(m) ∈ B(m) and y ∈ b∗2(a) be defined by (3.11).
Set C := C(x) := B(x, y)J , then C = UDL, namely, we have: B(x, y)J

= x−1
m yJJx(m)J = UDL, where U = x−1

m , D = yJ, L = Jx(m)J,

C=B(x, y)J=

 1 x−1
45 x−1

46 x−1
47 ...

0 1 x−1
56 x−1

57 ...

0 0 1 x−1
67 ...

0 0 0 1 ...
...

( y43 0 0 0 ...
0 y52 0 0 ...
0 0 y61 0 ...
0 0 0 y70 ...

...

)(
1 0 0 0 ...
x23 1 0 0 ...
x13 x12 1 0 ...
x03 x02 x01 1 ...

...

)
. (3.23)

To complete the proof of Lemma it is sufficient to find the decomposition
(3.23) C = UDL . Let us suppose that we can find the inverse matrix C−1.
Then C−1 = L−1D−1U−1 holds and we can use Theorem 5.2 to find

L−1 = J(x(m))−1J, D−1 = y−1J, U−1 = xm.

Hence, we can find the matrix elements of the matrix (x(m))−1 ∈ B(m) and
xm ∈ Bm in terms of the matrix elements of the matrix C−1 = (STJ)−1 =
(B(x, y)J)−1. Finally, we can also find the matrix elements of the matrix
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x(m) ∈ B(m) using formulas (2.14). This finish the proof of Lemma since in
this case we have xkr η AS for (k, r) ∈ ∆m

⋃
∆(m). Hence AS ⊇ Ax.

1) To find the inverse matrix C−1, we write two decompositions:

C=L1D1U1 = UDL, C−1 =(U1)−1(D1)−1(L1)−1 =L−1D−1U−1. (3.24)

2) Using (3.24) we can find L1, D1 and U1 by Theorem 5.2. More precisely,
for all x ∈ ΓG, where

ΓC = {x ∈ Bm ×B(m) |M12...k
12...k (C(x)) 6= 0, k ∈ N}

holds, the decomposition C(x) = L1D1U1 and the matrix elements of the
matrix L1, D1 and U1 are rational functions in ckn(x).
3) We can find (L1)−1 and (U1)−1 using formulas (2.14). Note that JLJ, U,
and JL−1J, U−1 ∈ B2(a).
4) Using identity (3.24) we can calculate C−1 = (U1)−1(D1)−1(L1)−1, since
L−1, D−1 and U−1 are well defined.
5) Using equality (3.24) we can find the decomposition C−1 = L−1D−1U−1

of the matrix C−1 by Theorem 5.2. In other words, the decomposition C−1

= L−1D−1U−1 holds for all x ∈ ΓG−1 , where

ΓC−1 = {x ∈ Bm ×B(m) |M12...k
12...k (C−1(x)) 6= 0, k ∈ N}

and the matrix elements of the matrix L−1, D−1 and U−1 are rational func-
tions in matrix elements c−1

kn (x) of the matrix C−1.
Let us denote (L1)−1 = (L−1

1;kn)kn, (D1)−1 = diag(d−1
1;k)k and (U1)−1 =

(U−1
1;kn)kn. The decompositions C = L1D1U1 and C−1 = (U1)−1(D1)−1×

(L1)−1 hold for x ∈ ΓC ∩ΓC−1 , i.e., almost for all x ∈ Bm×B(m) with respect
to the measure µb since µb(ΓC∩ΓC−1) = 1. We conclude that the convergence

c−1
kn (x) =

∑
m∈N

U−1
1;kmd

−1
1;mL

−1
1;mn, k, n ∈ N

holds pointwise almost everywhere x ∈ Bm×B(m) (mod µb). Since U−1
1;km, d

−1
1;m

and L−1
1;mn ηA

S by 2) and 3), we conclude by Remark 3.1 that c−1
kn (x) ηAS.

This complete the proof of Lemma. �

Remark 3.1. Let the sequence of real measurable functions (fn)n∈N is affil-
iated with the von Neumann algebra M of operators in the space L2(X,µ)
with a finite measure µ, i.e., Un(t)∈M, t∈R, where (Un(t)g)(x)=exp(itfn(x))
×g(x), g∈L2(X,µ). If fn→f a.e. (modµ), then s. limn Un(t) =U(t) hence,
U(t)=exp(itf)∈M, t∈R, i.e., the function f is also affiliated with M .
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Proof. of Theorem 3.9. Let a bounded operator A in a Hilbert space Hm

commute with the representation Tm,y. Then by Lemma 3.10 A commute
with L∞(Bm × B(m), µb,m ⊗ µ(m)

b ), therefore the operator A itself is an op-
erator of multiplication by some essentially bounded function a ∈ L∞, i.e.,
(Af)(x) = a(x)f(x) for f ∈ Hm. Since A commutes with the representation

Tm,y i.e., [A, Tm,yt ] = 0 for all t ∈ Bm,0×B(m)
0 , where Bm,0 =Bm ∩ BZ

0 and

B
(m)
0 =B(m) ∩BZ

0 , we conclude that a(x)=a(xt) (modµb,m⊗µ(m)
b ) for all t∈

Bm,0×B(m)
0 . Since the measure µb,m⊗µ(m)

b on the group Bm×B(m) is Bm,0×B(m)
0 -

right-ergodic, we conclude that a(x)=const (mod dxm ⊗ dx(m)).

Remark 3.2. The proof of the irreducibility can be generalized for an ar-
bitrary BZ

0 -quasi-invariant ergodic measure µ if the following equality holds:
AS = Ax = L∞(Bm ×B(m), µ).

4. Criteria of the irreducibility of the induced representations
T k,2m+1,µb corresponding to generic orbits

We construct a two-parameter family of the induced representations
T k,2m+1,µb , k,m ∈ Z corresponding to a point yk ∈ b∗2(a), k ∈ Z, (see (3.10))
and subgroup H2m+1

0 ={I +
∑

k≤m<n xknEkn} ⊂ BZ
0 , m ∈ Z0, Lie(H2m+1

0 )=

h2m+1
0 , and give the criteria of their irreducibilities. Recall that BZ

0 ⊂ B2(a) ⊂
BZ, the representation Uf,H of the group H is H 3 exp(x) 7→ exp 2πi〈f, x〉 ∈
S1. Fix yk ∈ b∗2(a), the Lie algebra h2m+1

0 ∈ bZ0 is subordinate to the func-
tional yk for all k,m ∈ Z since it is commutative, [h2m+1

0 , h2m+1
0 ] = 0. The

representation h2m+1
0 3 x 7→ 〈yk, x〉 ∈ R1 can be extended by continuity

to the representation of the Hilbert–Lie completion h2m+1
2 (a) in b2(a) of

the Lie algebra h2m+1
0 , h2m+1

2 (a) 3 x 7→ 〈yk, x〉 ∈ R1. The representation
H2m+1

0 3 exp(x) 7→ exp 2πi〈yk, x〉 ∈ S1 can be extended by continuity to the
representation of its Hilbert–Lie completion H2m+1

2 (a)

H2m+1
2 (a) 3 exp(x)

U
yk,H2m+1

2 (a)

7−→ exp 2πi〈yk, x〉 ∈ S1.

The homogeneous spaces areX2m+1 =H2m+1\BZ, X2m+1
2 (a)=H2m+1

2 (a)\B2(a).

The measure µb = µb,m⊗µ(m)
b is defined on the space X2m+1 by (3.14) and its

support is X2m+1
2 (a) by Lemma 3.6, for an appropriate b. The representation

T k,2m+1,µb is defined by

T k,2m+1,µb = Ind
B2(a),BZ

0 ,µb

H2m+1
2 (a),H2m+1

0

(Uyk,H2m+1
0

). (4.1)

25



Define the unitary representation TL,2n+1,µb , n ∈ Z of the group G = Bn,0 ×
B

(n)
0 in the Hilbert space H = L2(Bn ×B(n), µb) by the formula

(TL,2n+1,µb
s f)(x) =

(
dµb(s

−1x)/dµb(x)
)1/2

f(s−1x), f ∈ H, s ∈ G, (4.2)

where µb = µb,n ⊗ µ
(n)
b is defined by (3.14). The representation TL,2n+1,µb

s

is correctly defined for any s ∈ B
(n)
0 and for an arbitrary measure µb,n.

For s ∈ Bn,0 the representation TL,2n+1,µb
s is correctly defined if and only

if µLs
b,n ∼ µb,n for all s ∈ Bn,0. More precisely, the operator TL,2n+1,µb

I+tErs
for

I + tErs ∈ Bn,0 is correctly defined if and only if the following condition
holds [15, proof of Lemma 1.2]

µLI+tErs

b,n ∼ µb,n, ∀t ∈ R⇔ SLrs(b) =
∞∑

n=s+1

brn/bsn <∞. (4.3)

Recall the notation Ak,n,µb = (T k,n,µb(BZ
0 ))′′, k, n ∈ Z. Since the right and

the left representations commute we get [T k,2m+2r+1,µb
t , TL,2m+2r+1,µb

s ] = 0 for

all t, s ∈ Bm+r,0 × B
(m+r)
0 , k,m, r ∈ Z. To prove the reducibility, we show

that the commutation holds for k = 2m+ 1, k = 2m

[T k,2m+2r+1,µb
t , TL,2m+2r+1,µb

s ] = 0, ∀t ∈ BZ
0 , s ∈ G� = Gp,q, (4.4)

for some subgroup G� = Gp,q ⊂ Bm+r × B(m+r) described in Definition 4.1.
In fact, it is sufficient to show that

[T k,2m+2r+1,µb
I+tEm+r,m+r+1

, TL,2m+2r+1,µb
s ] = 0, ∀t ∈ R, s ∈ G� = Gp,q. (4.5)

Indeed, the matrix units Ekk+1, k ∈ Z generate the Lie algebra bZ0 and

I + tEkk+1 ∈ Bm+r,0×B(m+r)
0 for all k ∈ Z \ {m+ r}, hence BZ

0 = 〈Bm+r,0×
B

(m+r)
0 , I + tEm+r,m+r+1 | t ∈ R〉 where we denote by 〈G1, G2〉 the subgroup

in G generated by the subgroups G1 and G2, i.e., the smallest subgroup in
G containing G1 and G2.

Definition 4.1. We show that the expressionB(x, y) = x−1
m+ry

k(m+r)x(m+r)

B(x, y) ∼=
(

1 0
0 x−1

m+r

) ( 0 0
yk(m+r) 0

) (
x(m+r) 0

0 1

)
=
(

0 0
x−1
m+ry

k(m+r)x(m+r)0

)
, (4.6)

(see (3.18)), where yk(m + r) is the restriction of yk corresponding to the
decomposition x = xm+rx(m+ r)x(m+r) (see (3.12))

yk(m+ r) =
∑

l+s=k, s≤m+r

ylsEls, r<0, yk(m+ r) =
∑

l+s=k, l≥m+r+1

ylsEls, r>0, (4.7)
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does not contain the matrix elements (the variables) xkn if r > 0 (resp. x−1
kn

if r < −1) of the matrix x = (xkn)kn from some group Gp,q. We denote this
group by G� = Gp,q. We show that G�=Gm+r+1,q⊂Bm+r when r < −1 and
G�=Gp,m+r⊂B(m+r) when r > 0. The description of the group G� gives

Lemma 4.1. We have the following description of the group G� = Gp,q:

G� =


Gm−|r|+1,m+|r|, if r < 0, k = 2m+ 1
Gm−|r|+1,m+|r|−1, if r < 0, k = 2m
Gm−r+1,m+r, if r > 0, k = 2m+ 1
Gm−r,m+r, if r > 0, k = 2m.

(4.8)

Proof. See an example of calculation G� below in (4.14) and (4.16). By
(4.6) the group G� = Gm+r+1,q will be contained in the group Bm+r for r < 0
and the group G� = Gp,m+r in the group B(m+r) for r > 0. For r < 0 we find
the intersection of the antidiagonal adiagk := {(r, s) ∈ Z2 | r+s = k}, k ∈ Z
with the row m + r + 1 (the fist row of the group Bm+r). For k = 2m + 1
we get (m + r + 1, x) ∈ adiag2m+1, x = m − r. So, all the variables xrs of
the group Bm+r with numbers of columns s ≤ m − r are contained in G�.
Hence G� = Gm+r+1,m−r = Gm−|r|+1,m+|r|. If k = 2m we get (m+ r+ 1, x) ∈
adiag2m, x = m− r − 1⇒ G� = Gm+r+1,m−r−1 = Gm−|r|+1,m+|r|−1.

(4.9)

For r > 0 we find the intersection of the antidiagonal adiagk with the
column m+ r (the last column of the group B(m+r)). For k = 2m+ 1 we get
(x,m+ r) ∈ adiag2m+1, x = m− r + 1. So all the variables xrs of the group
B(m+r) with numbers of rows r ≤ m − r + 1 are contained in G�. Hence
G� = Gm−r+1,m+r. If k=2m we get (x,m+ r) ∈ adiad2m, x=m− r⇒G� =
Gm−r,m+r. Finally we get (4.8). �

Theorem 4.2. (i) The representation T 2m+1,2m+2r+1,µb is irreducible if and
only if (a) the measure µb is BZ

0 ergodic and (b) either r = 0 or r < 0 and
µLt
b ⊥ µb for all t ∈ Gm−|r|+1,m+|r|\{e}.

(ii) The representation T 2m,2m+2r+1,µb is irreducible if and only if (a) the mea-
sure µb is BZ

0 ergodic and (b) either r = −1, r = 0 or r < −1 and µLt
b ⊥ µb
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for all t ∈ Gm−|r|+1,m+|r|−1\{e}.
iii) In other cases the representations are reducible, moreover the commu-
tant of the von Neumann algebra Ak,2n+1,µb = (T k,2n+1,µb(BZ

0 ))′′ contains the
following von Neumann algebras: (a) if r > 0 then (A2m+1,2m+2r+1,µb)′ ⊃
(TL,2m+2r+1,µb(Gm−r+1,m+r))

′′, and (A2m,2m+2r+1,µb)′⊃(TL,2m+2r+1,µb(Gm−r,m+r))
′′,

(b) if r < 0 then (A2m+1,2m+2r+1,µb)′ ⊃ (TL,2m+2r+1,µb(G∼m−|r|+1,m+|r|))
′′ and

if r < −1 then (A2m,2m+2r+1,µb)′ ⊃ (TL,2m+2r+1,µb(G∼m−|r|+1,m+|r|−1))′′, where

G∼ := {s ∈ G | µLs
b ∼ µb}.

4.1. The center of the universal enveloping algebra of a Lie algebra b(n,R)
and the description of the commutant of the induced representations of
the group Gn

To find the commutant of the representations Tf,H = IndGH(Uf,H) of the
finite-dimensional group Gn we use the following description of the center of
the universal enveloping algebra of the corresponding nilpotent Lie algebra
gn = b(n,R) of strictly upper triangular n× n matrices.

Theorem 4.3. The center Z of the universal enveloping algebra U(gn) of
the Lie algebra gn contains the following elements

Z(U(gn)) ⊇ 〈∆k | 1 ≤ k ≤ [n/2]〉, (4.10)

where ∆1 = M1
n(E) = E1n,

∆2 = M12
n−1,n(E) =

∣∣∣ E1n−1 E1n

E2n−1 E2n

∣∣∣ , ∆k = M12...k
n−k+1,n−k+2,...,n(E), (4.11)

E =


E11 E12 E13 ... E1n−2 E1n−1 E1n

E21 E22 E23 ... E2n−2 E2n−1 E2n

E31 E32 E33 ... E3n−2 E3n−1 E3n
...

En−21 En−22 En−23 ... En−2n−2 En−2n−1 En−2n

En−11 En−12 En−13 ... En−1n−2 En−1n−1 En−1n

En1 En2 En3 ... Enn−2 Enn−1 Enn

 . (4.12)

Proof. Since the elements Err+1, 1 ≤ r < n − 1 generate the Lie alge-
bra b(n,R), it is sufficient to find the elements in U(gn) commuting with
Err+1, 1 ≤ r < n − 1. Since [Err+1, Er+1s] = Ers and [Ekr, Err+1] = Ekr+1

we conclude that the action [Err+1, ·] replaces the row r + 1 by the row r of
the matrix E for all 1 < r ≤ n and the action [·, Err+1] replaces the column
r by the column r + 1 of the matrix E for all 1 ≤ r < n. In addition the
element ∆1 = E1n generate the center of the Lie algebra b(n,R). Hence, all
minors ∆k, 1 ≤ k ≤ [n

2
] commute with all generators Err+1, 1 ≤ r < n− 1.

We conclude that Z(U(gn)) ⊇ 〈∆k | 1 ≤ k ≤ [n
2
]〉. �
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To study the reducibility, we consider the induced representations IndG,µXH (Uf,H)

=: T k,2m+2r+1,µb
G of the finite-dimensional group G = G1,k−1 corresponding

to the subgroup H = H2m+2r+1
1,k−1 = H2m+2r+1 ∩ G, the point f = ykG =∑[k/2]

s=1 yk−s,sEk−s,s, k = 2m+ 1, k = 2m and the measure µX on X = H\G.
Notations. Let λµbGpq

and ρµbGpq
be the right and the left regular representa-

tions of a group Gpq ⊂Bm+r×B(m+r) corresponding to the projection µGpq

on the group Gpq of the measure µb =µb,m+r ⊗ µ(m+r)
b defined on the group

Bm+r×B(m+r) by (3.14), Aλ,µbGpq ;kn and Aρ,µbGpq ;kn be theirs generators.

Lemma 4.4. We have the following description of the commutant of the
induced representations IndGH(Uf,H) for G=G1,k−1, H=H2m+2r+1

1,k−1 and f=ykG

(T k,2m+2r+1,µb
G1,k−1

(G1,k−1))′ = (λµbG�
(G�))′′, if r > 0, (4.13)

(T k,2m+2r+1,µb
G1,k−1

(G1,k−1))′ = (λµbGm+r+1,k−1
(G�))′′, if r < 0.

Proof. For k = 2m + 1, m = 3, r = 2, the group G16 and subgroup H11
14

we get y7
G = y61E61 + y52E52 + y43E43, y

7(5) = y61E61, where

G16 =


1| x12 x13 x14 x15 |x16
0| 1 x23 x24 x25 |x26
0| 0 1 x34 x35 |x36
0| 0 0 1 x45 |x46
0| 0 0 0 1 |x56
0| 0 0 0 0 | 1

 , H11
16 =

 1 0 0 0 0 x16
0 1 0 0 0 x26
0 0 1 0 0 x36
0 0 0 1 0 x46
0 0 0 0 1 x56
0 0 0 0 0 1

 , G� = G25.

By (4.6) we get B(x, y) = x−1
5 y7(5)x(5) =

(1) ( y61 0 0 0 0 )

 1| x12 x13 x14 x15
0| 1 x23 x24 x25
0| 0 1 x34 x35
0| 0 0 1 x45
0| 0 0 0 1

 = y61 ( 1 x12 x13 x14 x15 ) , G� = G25, (4.14)

hence the generators A = (Akn)kn of the representation T 7,11,µb
G16

are(D12 D13 D14 D15 y61
x12D13+D23 x12D14+D24 x12D15+D25 y61x12

x13D14+x23D24+D34 x13D15+x23D25+D35 y61x13
x14D15+x24D25+x34D35+D45 y61x14

y61x15

)
. (4.15)

Notations. For the sake of shortness we shall write Skn = Akn instead of
Skn = (2πi)−1Akn (see (2.3)). We get by Theorem 4.3

∆1 = A16 = y61, ∆2 =
∣∣ A15 A16
A25 A26

∣∣ =
∣∣ D15 y61
x12D15+D25 y61x12

∣∣ = y61D25.
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Since the set of operators (x1k, D1k)2≤k≤5 is irreducible in the space H1 =
⊗5
k=2L

2(x1k), the commutant A′ in the space L2(G15) = H1⊗H2 has the form
A′ = I ⊗ B(H2), where H2 = L2(G25). We make the correction Aρ,µbG15;kn −
x1kD1n = Aρ,µbG25;kn for 2 ≤ k < n ≤ 5. Hence we get

A′ = 〈
D23 D24 D25

x23D24+D34 x23D25+D35
x24D25+x34D35+D45

〉′η = (ρµbG25
(G25))′ = (λµbG�

(G�))′′.

Notation. For the set of self-adjoint operators (Ap)p∈P we denote by 〈Ap |
p∈P 〉η = (exp(itAp) | t ∈ R, p ∈ P )′′. For k= 2m, m= 3, r=−2, the group
G15 and subgroup H3

15 we get y6
G=y51E51+y42E42, y6(1)=y51E51, where

G15 =

 1| x12 x13 x14 |x15
0| 1 x23 x24 |x25
0| 0 1 x34 |x35
0| 0 0 1 |x45
0| 0 0 0 | 1

 , H3
15 =

(
1 x12 x13 x14 x15
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

)
, G� = G24,

B(x, y)=

 1 x−1
23 x−1

24 |x
−1
25

0 1 x−1
34 |x

−1
35

0 0 1 |x−1
45

0 0 0 | 1

( 0
0
0
y51

)
(1) = y51 ( x−1

25 x−1
35 x−1

45 1 ) , G�=G24. (4.16)

The generators A = (Akn)kn of the representations T 6,3,µb
G15

are( A12 A13 A14 A15
A23 A24 A25

A34 A35
A45

)
=

(
x−1
25 y51 x

−1
35 y51 x−1

45 y51 y51
D23 D24 D25

x23D24+D34 x23D25+D35
x24D25+x34D35+D45

)
. (4.17)

We get ∆2 =
∣∣ A14 A15
A24 A25

∣∣ =
∣∣∣ x−1

45 y51 y51
D24 D25

∣∣∣ = −y51(D24 + x45D25) = y51A
λ,µb
G25;24.

It was the first indication for the description (4.13). We show that A′ =
(λµbG25

(G24))′′. For locally-compact groups G, the following commutation the-
orem is known [6, 13.10.4]: JGρtJG=λt, t∈G, where (JGf)(x)=(dh(x−1)/
dh(x))1/2f(x−1), and h is a Haar measure, i.e., a change of variables x =
(xkn) 7→ x−1 = (x−1

kn ) =: z = (zkn) (on the group G25) interlaces the left and
the right regular representations. Hence using (4.17) we get( A12 A13 A14 A15

A23 A24 A25
A34 A35

A45

)
7→

(
z25y51 z35y51 z45y51 y51

Dz
23+z34Dz

24+z35Dz
25 D

z
24+z45Dz

25 D
z
25

Dz
34+z45Dz

35 D
z
35

Dz
45

)
.

As in the previous case, eliminating the variables z25, z35, z45 and the opera-
tors Dz

25, D
z
35, D

z
45 we get in the corresponding space L2(Gx

24) and L2(Gz
24)

(Az)′ =
〈

Dz
23+z34Dz

24 D
z
24

Dz
34

〉′
η

= (λz,µbG24
(G24))′ = (ρz,µbG24

(G24))′′
z 7→x7→ (λx,µbG25

(G�))′′.
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The general case is treated similarly (see (4.9)). (i) 1) Let r > 0, using the

decomposition Bm+r×B(m+r) = Bm+r×G�nB(m+r)
� = X1×X2×X3 we get

µ = µ1 ⊗ µ2 ⊗ µ3, hence L2(Bm+r × B(m+r), µ) = L2(X1, µ1)⊗ L2(X2, µ2)⊗
L2(X3, µ3) = H1⊗H2⊗H3. 2) A′ = (TH , TB(m+r) , T

B
(m+r)
�

, TG�)′ = A′2∩(TG�)′.

3) We get A′2 := (TH , TBm+r , TB(m+r)
�

)′ = 1 ⊗ B(H2) ⊗ 1. Indeed, using

Gauss decomposition forB(x, y) (see proof of Theorem 2.3) and Definition 4.1

of the group G� we can obtain all the variables x = (xkn) ∈ B
(m+r)
� and

x = (xkn) ∈ Bm+r, hence (TH)′ = L∞(X1, µ1) ⊗ B(H2) ⊗ L∞(X3, µ3), so

A′2 =
(
L∞(X1)⊗B(H2)⊗L∞(X3)

)
∩ (ρB(m+r) ⊗ 1⊗ 1)′∩ (1⊗ 1⊗ ρ

B
(m+r)
�

)′ =

1 ⊗ B(H2) ⊗ 1. 4) Finally A′ = A′2 ∩ (TG�)′ = 1 ⊗ (λµbG�
(G�))′′ ⊗ 1. Indeed

∀t ∈ G�, T (t) = 1 ⊗ ρG�(t) ⊗ T3(t) for some T3(t) ∈ B(H3). But we have
proved that A ⊃ B(H1) ⊗ 1 ⊗ B(H3), hence we can take the correction
T (t)(1⊗ 1⊗ T3(t))−1 = 1⊗ ρG�(t)⊗ 1.

(ii) 1) Let r < 0, using the decomposition Bm+r × B(m+r) = G� n
Bm+r,�×B(m+r) = X1×X2×X3 we get µ = µ1⊗µ2⊗µ3, hence L2(Bm+r×
B(m+r), µ) = L2(X1, µ1) ⊗ L2(X2, µ2) ⊗ L2(X3, µ3) = H1 ⊗ H2 ⊗ H3. Make
the change of variables x→ x−1 = z on the group Bm+r. We get 2) (Az)′ =
(T zH , T

z
Bm+r,�

, TB(m+r) , T zG�
)′ = (Az

2)′∩(T zG�
)′. 3) A′2 = (T zH , T

z
Bm+r,�

, TB(m+r))′ =
B(Hz

1 ) ⊗ 1 ⊗ 1. Indeed, by the same argument as before we can obtain
all the variables x = (xkn) ∈ B(m+r) and z = (zkn) ∈ Bm+r,�, hence

we have (T zH)′ = B(Hz
1 ) ⊗ L∞(Xz

2 , µ2) ⊗ L∞(X3, µ3) (Az
2)′ =

(
B(Hz

1 ) ⊗

L∞(Xz
2 , µ2) ⊗ L∞(X3, µ3)

)
∩ (λzBm+r,�

)′ ∩ (ρB(m+r))′ = B(Hz
1 ) ⊗ 1 ⊗ 1. 4)

Finally, (Az)′ = (ρzG�
(G�))′′ ⊗ 1 ⊗ 1, A′ = (λxBm+r

(G�))′′ ⊗ 1 ⊗ 1. In-
deed, ∀t ∈ G�, T

z(t) = λzG�
(t) ⊗ T z2 (t) ⊗ 1 for some T z2 (t) ∈ B(Hz

2 ).
But we have proved that Az ⊃ 1 ⊗ B(Hz

2 ) ⊗ B(H3), hence we can take
T z(t)(1⊗ T z2 (t)⊗ 1)−1 = λzG�

(t)⊗1⊗1. Finally (λzG�
(G�))′=(ρzG�

(G�))′′
z 7→x7→

(λxBm+r
(G�))′′. �

4.2. Study of the induced representations T k,2m+1,µb of the group BZ
0 corre-

sponding to generic orbits

Proof of Theorem. 4.2. The irreducibility of the representation T y,m =
T 2m+1,2m+1,µb (compare (3.15) and (4.1)) is proved in Theorem 3.9. The ir-
reducibility of the representation T 2m,2m+2r+1,µb for r =−1, r = 0 is proved
similarly. We prove that if r < 0 and µLt

b ⊥ µb ∀t ∈ Gm−|r|+1,m+|r|\{e}, then
the representation T 2m+1,2m+2r+1,µb is irreducible. If r<−1 and µLt

b ⊥µb ∀t ∈
Gm−|r|+1,m+|r|−1\{e}, we prove that the representation T 2m,2m+2r+1,µb is also
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irreducible. In what follows we use the technique developed in [14, 15] for
approximating the variales xkn to prove the irreducibility of the regular rep-
resentations in the framework of Ismagilov’s Conjecture (see Conjecture 3.1).

i) Let k = 2m+ 1 = 5,m = 2 and r = −1. In this case we get for G14

G14 =

(
1| x12 x13 |x14
0| 1 x23 |x24
0| 0 1 |x34
0| 0 0 | 1

)
, H3

14 =

(
1 x12 x13 x14
0 1 0 0
0 0 1 0
0 0 0 1

)
, G� = ( 1 x23

0 1 ) = G23.

Using formulas for Akn from Theorem 3.9 we get

A2n = D2n, A3n = x23D2n +D3n, A2nA3n = x23D
2
2n +D2nD3n.

Notation. Let 〈fn | n ∈ N〉 be a closed subspace generated by the set of
vectors (fn)n∈N in the space H. Using [15, Lemma 2.2] we have

x231∈〈A2nA3n1 | n>3〉⇔SL23(b)=
∞∑
n=4

b2n

b3n

=∞⇔µ
LI+tE23
b ⊥µb, t 6=0. (4.18)

Remark 4.1. Property (4.18) shows the convergence of the self-adjoint op-

erators AN =
∑N

n=4 t
(N)
n A2nA3n → A := x23 only on one vector 1 ∈ H. It

is possible to prove the convergence on the common essential domain D for
all the operators AN and A [15, after Lemma 2.2, p.251-252]. By Theorem
VIII from [27], the convergence holds in the strong resolvent sense, hence

we conclude that exp(is
∑N

n=4 t
(N)
n A2nA3n) → exp(isx23) when N → ∞, so

x23 η A.

Using the Gauss decomposition of the matrix B(x, y) = x−1
1 y(1)x(1) we

conclude that all variables of the matrix x(1) and x−1
1 except the variable

x−1
23 = −x23 are affiliated with the von Neumann algebra A = (T 5,3,µb(BZ

0 ))′′.
By (4.18) we have x23 ηA, hence all the variables xkn are affiliated with A so
A′ = L∞(Xm, µb) and the representation T 5,3,µb is irreducible.

If µ
LI+tE23
b ∼ µb for some t 6= 0, the operator AL23 = D23 +

∑∞
n=4 x3nD2n

corresponding to the left shift by I + tE23 on the group Bm is well defined.
Moreover, the unitary operator TL,µbI+tE23

, t ∈ R commute with the represen-
tation T 5,3,µb , hence the representation T 5,3,µb is reducible.

Let k = 2m + 1,m = 3 and r = −2, then we get for the group G16,
subgroup H3

16, and the representation T 2m+1,2m+2r+1,µb = T 7,3,µb

G16 ⊃ G� = Gm−|r|+1,m+|r| = G25 =

(
1 x23 x24 x25
0 1 x34 x35
0 0 1 x45
0 0 0 1

)
.
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As before, we can approximate the variables (xkn)2≤k<n≤5 by appropriate
combinations of operators A2n, A3n, A4n, A5n, 5 < n, hence xkn ηA, 2 ≤ k <
n≤ 5. Using the Gauss decomposition of the matrix B(x, y) = x−1

1 y(1)x(1)

we conclude that all variables of the matrices x(1) and x−1
1 , except the vari-

able (xkn)2≤k<n≤5, are affiliated with the von Neumann algebra A7,3,µb . We
conclude that all the variables xkn of the matrices x(1) and x−1

1 are affiliated
so A′ = L∞(X1, µb) and the representation T 7,3,µb is irreducible.

ii) Let k = 2m = 6,m = 3 and r = −2, then we get for the group G15

subgroup H3
15 and the representation T 2m,2m+2r+1,µb = T 6,3,µb

G15 ⊃ G� = Gm−|r|+1,m+|r|−1 = G24 =
(

1 x23 x24
0 1 x34
0 0 1

)
.

The operators A2n, A3n, A4n of the representation T 6,3,µb are as follows (see
Theorem 3.9)

A2n = D2n, A3n = x23D2n +D3n, A4n = x24D2n + x34D3n +D4n.

Using [15, Lemma 2.2, p. 254] again we have

x231∈〈A2nA3n1 |n>3〉⇔SL23(b)=
∞∑
n=5

b2n

b3n

=∞⇔µ
LI+tE23
b ⊥µb, t 6=0. (4.19)

We make the corrections: A3n − x23A2n = D3n. Using [15, Lemma 2,4, ] we
get

x241 ∈ 〈D2nA4n1 | n > 5〉 ⇔ Σ
(1)
24 (b) =

∞∑
n=5

b2n(b2n + b3n + b4n)−1 =∞,

x341 ∈ 〈D3nA4n1 | n > 5〉 ⇔ Σ
(1)
34 (b) =

∞∑
n=5

b3n(b2n + b3n + b4n)−1 =∞.

Since

Σ
(1)
24 (b)+Σ

(1)
34 (b) =

∞∑
n=5

b2n + b3n

b2n + b3n + b4n

∼
∞∑
n=5

b2n + b3n

b4n

= SL24(b)+SL34(b) =∞,

one of the series Σ
(1)
24 (b) or Σ

(1)
34 (b) is divergent. Let Σ

(1)
24 (b) =∞, then x24 ηA.

We make correction A
(2)
3n := A3n − x24D24 = x34D3n +D4n. Then we get

x341 ∈ 〈D3nA
(2)
4n1 | n > 5〉 ⇔ Σ

(2)
34 (b) =

∞∑
n=5

b3n(b3n + b4n)−1 ∼ SL34(b) =∞.
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If Σ
(1)
34 (b) =∞, then x34 ηA, so x24 ηA and the representation is irreducible.

We have proved the irreducibility of the representations T 2m+1,2m+2r+1,µb for
m= 2, r =−1 and m= 3, r =−2. The irreducibility of the representations
T 2m,2m+2r+1,µb is proved for m=3, r=−2. Other cases are treated in a similar
way for k=2m+1, r < 0 and k = 2m, r < −1, m ∈ Z. We use technique
developed in [15]. The sufficiency of the irreducibility is thus proved.

iii) To prove the reducibility of the representations T k,2m+2r+1,µb for k =
2m+ 1 and k = 2m, it is sufficient to show that (see (4.5))

[T k,2m+2r+1,µb
I+tEm+r,m+r+1

, TL,2m+2r+1,µb
s ] = 0, ∀t ∈ R, s ∈ G∼� = G∼p,q,

where G∼ := {s ∈ G | µLs
b ∼ µb}. If G∼� = G� then it is sufficient to show

the following:

[A2m+1,2m+2r+1,µb
m+r,m+r+1 , AL,2m+2r+1,µb

kk+1 ] = 0, m− | r | +1 ≤ k < m+ | r |, (4.20)

[A2m,2m+2r+1,µb
m+r,m+r+1 , AL,2m+2r+1,µb

kk+1 ] = 0,

{
m−| r |+1≤k < m+ | r |−1 if r < 0
m− r ≤ k < m+ r if r > 0.

(4.21)
The generators of the left representation TL,2k+1,µb defined by (4.2) are

AL,2m+2r+1,µb
kn =

{
Dkn +

∑∞
r=n+1 xnrDkr, if m+ r < k < n,

Dkn +
∑m+r

r=n+1 xnrDkr, if k < n < m+ r.
(4.22)

Consider the operators ALkn=Dkn+
∑∞

r=n+1 xnrDkr and x−1
kn defined by (2.14).

Lemma 4.5. We have for p, q, k, n ∈ Z, p < q and k < n

[Dpq, x
−1
kn ] =

{
−x−1

kp x
−1
qn , if k ≤ p < q ≤ n,

0, otherwise,
(4.23)

[ALpq, x
−1
kn ] =

{
−x−1

kp , if q = n, k ≤ p,

0, otherwise.
(4.24)

Proof. Identity (4.23) holds by [20, Lemma 16]. We prove identity (4.24).
Since x−1

kn contains only variables xrs, k ≤ r < s ≤ n (see (2.14)) and ALpq
contains Dpr, p ≤ r we conclude that [ALpq, x

−1
kn ] = 0 for k > p and n < q. For

the remaining part of indices k ≤ p < q ≤ n we get using (2.15)

[ALpq, x
−1
kn ] = [Dpq +

∞∑
r=q+1

xqrDpr, x
−1
kn ] = [Dpq, x

−1
kn ] +

n∑
r=q+1

xqr[Dpr, x
−1
kn ] =
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−x−1
kp x

−1
qn −

n∑
r=q+1

xqrx
−1
kp x

−1
rn = −x−1

kp (x−1
qn +

n∑
r=q+1

xqrx
−1
rn ) = −x−1

kp (XX−1)qn.

�

Using (2.11) and (2.8) S = (2πi)−1(Akr)k,r and S = BT (x, y) we get the
explicit expressions for generators Akn, (k, n) ∈ ∆(m + r). For k = 2m + 1
or k = 2m, m ∈ Z and r ∈ Z we get

Am+r,m+r+1 =2πi
∞∑

s=[(k+1)/2]+|r|

x−1
m+r+1,sys,k−sxk−s,m+r. (4.25)

In particular, we get

[
k + 1

2

]
+ | r |=


m+ | r | +1, if r < 0, k = 2m+ 1,
m+ | r |, if r < 0, k = 2m,
m+ r + 1, if r > 0, k = 2m+ 1,
m+ r, if r > 0, k = 2m.

Using the latter presentations for operators Am+r,m+r+1, equality (4.24), de-
scription (4.8) of the group G�, and Lemma 4.5, equality (4.24), we get (4.20)
and (4.21). When G∼� 6= G� and G∼� \ {e} 6= � we conclude that

[T k,2m+2r+1,µb
t , TL,2m+2r+1,µb

s ] = 0 for all t ∈ BZ
0 , s ∈ G∼� \ {e}. �

Remark 4.2. We show that the induced representaion T µ = T k,2m+2r+1,µ

is a limit T µ(t) = s. limT µnn (t) of representations T µnn = Ind
Gk

n,µn
Hn

(Uykn,Hn
)

defined on the spaces L2(Xn, µn). These representations are equivalent to

the induced representations T hnn = Ind
Gk

n,hn
Hn

(Uykn,Hn
), defined on the space

L2(Xn, hn), corresponding to the Haar measure hn, and the set of increasing
finite-dimensional groups (Gk

n)n∈N, where Hn, y
k
n and µn are defined below.

Fix the point yk ∈ b∗2(a) defined by (3.10) and a subalgebra H0(m+ r) =
H2m+2r+1

0 ⊂ BZ
0 . Consider the sequence of subgroupsGk

n :=G[k/2]−n,[(k+1)/2]+n,
n ∈ N∪{0}. Denote by ykn=

∑
l+s=k, [k/2]−n≤l≤[k/2]+1 ylsEls, Hn := Hn(m+r) =

H2m+2r+1
n = H2m+2r+1 ∩ Gk

n. For Xm+r = H(m + r) \ BZ
0
∼= Bm+r × B(m+r)

consider the corresponding projections Xn := Xm+r,n = Hn(m + r) \ Gk
n

∼= Bm+r,n × B(m+r)
n . Let µn = µGk

n
= µb,m+r,n ⊗ µ(m+r)

b,n be the projection on

the space Xm+r,n
∼= Bm+r,n × B

(m+r)
n of the measure µb = µb,m+r ⊗ µ

(m+r)
b

defined on the space Xm+r
∼= Bm+r × B(m+r). Since the measure µn =
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µb,m+r,n ⊗ µ(m+r)
b,n is equivalent to the Haar measure dhn = dxm+r,n ⊗ dx(m+r)

n

on the group Bm+r,n ×B(m+r)
n (compare (2.18) and (3.14)) we conclude that

Ind
Gk

n,µn
Hn

(Uykn,Hn
) ∼ Ind

Gk
n,hn

Hn
(Uykn,Hn

). Using the explicit form of generators
given in Theorem 3.9 we can prove that ∀t∈BZ

0

T k,2m+2r+1,µb(t)=IndG,µbH (Uyk,H)(t)=s. lim
n→∞

Ind
Gk

n,µn
Hn

(Uykn,Hn
)(t). (4.26)

Since G = BZ
0 = lim−→n

Gk
n, t from BZ

0 belongs to Gk
n for some n.

Using (4.26) and Theorem 4.2 (i), (ii) we conclude that the irreducible
representations T k,2m+2r+1,µb for r < 0, k = 2m + 1 (resp. r < −1, k =
2m) are obtained as the limit of the reducible representations T µnn of the
group Gk

n. This is an infinite-dimensional phenomenon! We stress that the
representations T µnn are not compatible i.e. T

µn+1

n+1 (t) 6= T µnn (t) for t ∈ Gk
n.

5. Appendix

5.1. Gauss decompositions

For the matrix C∈Mat(n,C) let us denote by M i1i2...ir
j1j2...jr

(C), 1≤ i1 < ... <
ir ≤ n, 1≤ j1 < ... < jr ≤ n its minors with i1, i2, ..., ir rows and j1, j2, ..., jr
columns.

Theorem 5.1 (Gauss decomposition, [4]). A matrix C ∈ Mat(n,C) ad-
mits the following decomposition C = LDU (Gauss decomposition),(

c11 c12 ... c1n
c21 c22 ... c2n

...
cn1 cn2 ... cnn

)
=

(
1 0 ... 0
l21 1 ... 0

...
ln1 ln2 ... 1

)(
d1 0 ... 0
0 d2 ... 0

...
0 0 ... dn

)(
1 u12 ... u1n
0 1 ... u2n

...
0 0 ... 1

)
where L (resp. U) is a lower (resp. upper) triangular matrix and D a diagonal
matrix if and only if all principal minors of the matrix C are different from
zeros i.e. M1,2,...,k

1,2,...,k (C) 6= 0, 1 ≤ k ≤ n. Moreover, matrix elements of the
matrices L, U and D are given by the formulas (see [4, Ch.II, §4, (44),
(45)] )

lmk =
M1,2,...,k−1,m

1,2,...,k−1,k (C)

M1,2,...,k−1,k
1,2,...,k−1,k (C)

, ukm =
M1,2,...,k−1,k

1,2,...,k−1,m(C)

M1,2,...,k−1,k
1,2,...,k−1,k (C)

, 1 ≤ k < m ≤ n, (5.1)

d1 = M1
1 (C), dk = (M1,2,...,k

1,2,...,k (C)
(
M1,2,...,k−1

1,2,...,k−1 (C)
)−1

, 2 ≤ k ≤ n. (5.2)

36



Theorem 5.2. The infinite order matrix C ∈ Mat(∞,C) admits the fol-
lowing decomposition C = LDU , if and only if all principal minors of the
matrix C are different from zeros i.e. M1,2,...,k

1,2,...,k (C) 6= 0, k ∈ N. Moreover,
matrix elements of the matrices L, U, D are given by the same formulas as
in Theorem 5.1.

The Gauss decomposition also holds for rectangular matrices with suitable
modifications.

5.2. Different criteria for irreducibility of induced representations for locally
compact and infinite discrete groups

a) Locally compact groups. In the case when the representation π of the
separable locally compact group G is induced from an irreducible representa-
tion σ on a normal subgroup H, a simple criterion is known. Let σx (x ∈ G)
be the representation defined by the action of x on H : σx(h) = σ(xhx−1).
Then π is irreducible ⇔ σx ∼= σ only if x ∈ H, see [23].

b) Let Γ be a countable group. Here we follow [2]. Mackey has shown that
quasiregular representations are irreducible if and only if the corresponding
subgroups are self-commensurizing. Recall that two subgroups Γ0 and Γ1 of
a group Γ are commensurable if Γ0 ∩ Γ1 is of finite index in both Γ0 and Γ1.
The commensurator of Γ0 in Γ is defined to be

ComΓ(Γ0) = {γ ∈ Γ | Γ0 and γΓ0γ
−1 are commensurable}.

Suppose Γ is a discrete group, Γ0 < Γ is a subgroup and λΓ/Γ0 is the left
regular representation of Γ in l2(Γ/Γ0). We call two subgroups Γ0,Γ1 of Γ
quasiconjugate if there exists γ ∈ Γ such that Γ0 and γΓ1γ

−1 are commensu-
rable.

Theorem 5.3 (Mackey, [24]). Let Γ be a discrete group and let Γ0, Γ1 be
subgroups of Γ.
(1) The representation λΓ/Γ0 is irreducible if and only if ComΓ(Γ0) = Γ0, in

which case IndΓ
Γ0

(π) is irreducible for any π ∈ ˆ
Γfd0 , and unitary induction

IndΓ
Γ0

: Γ̂fd0 → Γ̂ is an injective map.
(2) If ComΓ(Γi) = Γi, i = 0, 1, then λΓ/Γ0 and λΓ/Γ1 are unitarily equivalent
if and only if Γ0 and Γ1 are quasiconjugate in Γ.

In case Γ0 and Γ1 are not quasiconjugate in Γ if π0, respectively π1, are
finite dimensional irreducible unitary representations of Γ0, respectively Γ1,
then IndΓ

Γ0
(π0) and IndΓ

Γ0
(π1) are not equivalent.

37



N.Obata [25], also presented criteria for irreducibility and mutual equivalence
of representations induced from finite dimensional ones.
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