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Introduction and description of the 'certain space'

Jacobi forms are a mixture of modular forms and elliptic functions.
Examples of such functions are very classical--the Jacobi theta functions and
the Fourier coefficients of Siegel modular forms of genus two—-but it is a
relatively recent observation that the Jacobi forms have an arithmetic theory
very analogous to the usual theory. of. mciciulér' fbrﬁé': thig 'BAep;e;n- with Maass's
proof of the Saito-Kurokawa conjecture [M] and was developed systematically
in [E-Z].

Because they have two variables, Jacobi forms have associated to them two
characteristic integers--the weight, which describes the transformation
properties of the form with respect to the modular group, and the index, which
describes the transformation properties in the e_liiptic variable. The main
result of this paper is a relationship between Jacobi forms (on the full Jacobi
modular group) of weight k and index m on the one hand and ordinary modular
forms of wé.ight 2k-2 and level m on the other. This relationship in the
special case m=1 already played a key role in [M] (cf. also [E-Z], §6). A
surprising aspect of the general result is that, while on the Jacobi side the
numbers k and m affect only the automorphy factor and the group never changes,
on the other side the group itself varies. In particular, the Jacobi forms of
all weighfs and indices form a bigraded ring, the product of .J’ac'ob.i—éorm»s of”
index m, an.d;'index .mz "having’ i'n'de‘x m,+m, , but there is (presumably) no
natural way to produce a modular form on, say, I‘O(7) from modular forms on
I‘O(Z) and I‘O(S).

We will now be a little more specific. Let Jk,m denote the space of
Jacobi forms on SL,(Z) of weight k and index m (see [E-Z] or §0 for the
exact definition). One can define in Jk,m a subspace of oldforms (coming
from Jk,m' for proper divisors m' of m) and a complementary space (for

cusp forms, the orthogonal complement) Jﬁe: of newforms; one also has for



new
k,m

[E-2]). TFor MZk-Z(m) , the space of holomorphic modular forms of weight 2k-2

all 2>0 prime to m Hecke operators T(&) on T o preserving J (cf. §4 of
3

on Fo(m), the analogous notions are, of course, standard. Let M;k 2(m) denote
2

the space of all forms f€M2k_2(m) satisfying f(——) = (- 1)k k=1.2k=2 £(T)

(the " -" in the notation refers to the fact that the L-series of such an f

satisfies a functional equation under s-—2k-2-s with root number -1 and, in

particular, vanishes at s=k-1), and M;ew, (m) = EYZ(m)nM'Ek—Z(m) . Then we have:

Main Theorem. Let k,m, and & be positive integers with (&,m) =1. Then

ew _ ew,
tr(T(l),Ji’m) = (T, M 3w ) .

The relationship between old and new Jacobi forms-is not the same as between

old and new modular forms: a newform in J_ ., (m'|m) occurs in J
y

k,m

smaller multiplicity (i.e., has fewer lifts to Jk ) than a newform in MZk_z(m')

does in MZk-Z(m) . Thus the above theorem does not say that the full space Jk o
b

is isomorphic as a Hecke-module to M;k_z(m) . Instead, it turms out that there

with

is a canonical subspace [[I2k_2(m) cMZk-Z(m)’ containing the space of newforms,

for which one has:

Main Theorem (2nd version). The space Jk o is isomorphic to m (m) =
b

m2k-2<m) nMZk-Z(m) as modules over the Hecke algebra.

We will explain the definition of the space mZk—Z(m) in a moment.

The proof of the main theorem proceeds in three stages. In §1 we apply
the main theorem of our previous paper [S-Z], which gave a general trace formula
for double-coset operators on spaces of Jacobi forms, to compute explicitly the
trace of T(R) ——or, more generally, of T(%) times an Atkin-Lehner involution-—-

(Theorem 1)
on Jk,m mﬁxtation is quite technical but includes some pretty results.,
such as a formula expressing a certain class number as a linear combination of
Gauss sums associated to binary quadratic forms (Appendix, Proposition A.1). In
§2 we transform the usual Eichler—-Selberg trace formula for Hecke operators as

given in the literature into a form suitable for comparison with this and



express the trace of T(%) on Jk p 35 4 linear combination of the traces of
b ‘
T(%) on E‘_‘{(m'), m'|m (Theorem 2). This is then used in §3 to establish

the main properties of Jacobi newforms and to prove the main theorem as given
above. The result actually proved, Theorem 3, not only asserts the isomorphism

of J and M (m) but gives a collection of explicit lifting maps S

k,m 2k-2 D,s

(indexed by discriminants of imaginary quadratic fields D and residue classes
s (mod 2m) with s2=D (mod 4m)) between these spaces.

The main application so far of the result of the present paper is the
theorem proved in [G-K-Z], which asserts that the classes of Heegner points on
a modular curve Ko(m) in the Mordell-Weil group of its Jacobian are the coefficients
of a Jacobi form (of weight 2 and index m). Also, in Chapter II of [G-K-Z] a
kernel function for the lifting maps SD,s is constructed and its Fourier
coefficients computed. (Note that both Heegner points on Xo(m) and
coefficients of Jacobi forms of index m are naturally indexed by pairs D, s as
above.)

We devote the rest of this introduction to a discussion of the spaces Iﬁk(m)
(k,m>0, k even), which we think are of interest independently of the theory
of Jacobi forms. The most natural definition is as follows. The full space of
modular forms Mk(m) -Mk(l"o(m)) has a basis (not unique) of forms f whaose
L-series L(f,s) = 2;1 af(n) n ® (af'(n) =" Fourier coefficient of £) has
an Euler product._.__:t;r?ll}: such f is an eigenform of all Hecke-AOperators T(2) with
(2,m) =1 and "comes from" (i.e., has the same eigenvalues for all such T(&) as)

a unique form g which is a newform on I‘O(m‘) for some m' dividing n X The
quotient L(f,s)/L(g,s) 1is a finite Dirichlet series with an Euler product

, and Qp(s) is a polynomial in p~3%,
I'lQp(s), where p runs over the prime divimew The L-series L(g,s)

has a functional equation under s-k-s, and L(f,s) can be assumed also to have

This statement is not quite true for the case that k=2, m>!, and f is an

Eisenstein series having eigenvalues o0,(%) = z d. Here it has to be

dle )
interpreted in the sense that g(T) is the non-holomorphic Eisenstein series

_ 1 Nt 2winT yo T . il
A +m+ 211.1 01(n) e .and f(T1) 'Zdlmcdg(dT) with zd -Cy4 0. -



one (this is equivalent to requiring f to be an eigenform of all Atkin-Lehner
involutions on Mk(m)); under these assumptions, each of the Euler factors of

L(f,s)/L(g,s) will have a functional equation

-v(k=2s)
P

() Qk=s) = & 0, () (ol w/a') .

The space mk(m) is then the space spanned by all f for which the sign in (1)

is "+" for all p. Notice that it is only under this condition that the order
at s=k/2

of vanishing of L(f,s)(can be the same as that of L(g,s) : as soon as even one

sign in one of the equaticns (1) is '"="

, L(f,s) vanishes at s=k/2 to a higher
order than L(g,s) and the leading term of its Taylor expansion at this point
is the product of the corresponding quantity for g with some extraneous factors
log p. It is thus natural to expect mk(m) to be the relevant space of modular
forms in any context like the Birch-Swinnerton-Dyer conjecture where the leading
term in question is supposed to have a natural interpretation as the regulator of
some height pairing. It also explains why ﬂ!;(m) is the space occurring in the
result about Heegner points mentioned above, since the heights of Heegner points
are related to the derivatives of L-series of cusp forms of weight 2 having an
odd functional equatioun.

Apart from the naturalness of its definition and its occurrence in connection
with Jacobi forms, the strongest indication that the space mk(m) is important
is that the trace formula for Hecke operators is actually simpler for mk(m) than
for either M.k(m) or er:ew(m) . This can already be seen on the level of dimensions
(i.e. the trace of the operator T(1)), as we now discuss. The well-known formula
for dim Mk(m) is |

4

(2) dim M (m) = 12-1 ci(g) £, (),
where

k-1 1 1 1
C1(k) “W, cz(k) ='E, C3(k) = ‘§X3(k-1), c‘t(k) = -le;(k-ﬂ

(X3 and )(_4 the primitive Dirichlet characters of conductor 3 and 4) and the



fi(m) are the multiplicative functions given on prime powers by

Y V=1
P *tP ’

vzl [w=1)/2]

]

f1(pv)

£,(69) =

f3(pv) = X3(pv) + X3(p\)_1) ,

£,0%) = %,6") +x,6")

It is very striking that each fi(pv) has the form gi(pv) +gi(pv_1) with a

much simpler multiplicative function g; s namely:
=2 = 2 7 = -
gI(m) m, g,(m)=b where m=ab® with a squarefree, g, Xq 0 B4 =X, -

Using Atkin-Lehner theory to relate Mk(m) to Mﬁew(m), we find an analogous
statement for the latter space: the dimension of Miew(m) is given by a formula
like (2) but with fi(m) replaced by the multiplicative function fzew(m) given

on prime powers by

new \Y]
; (p")

- -2 -
£ = gi(pv) - gi(p\) hy - gi(p\) ) + gi(pv 3

new
; (m) s gi(m) < fi(m) and
fnew
i

(with the convention gi(pu) =0 for u<0). Thus f
g; igs a much simpler function than either £, or This alone already
suggests the existence of a natural intermediate space Iﬂk(m) between ¥ (m)
and. Mk(m) with dimension given by

4
) c; (k) g, (m

i=1

(3) dim mk(m) =

and such that there is a natural decomposition

@) Mm@ = m, (a')
m'|m
min' squarefree
corresponding to the formula fi(pv) = gi(pv)-+gi(pv-1) . Equations (3) and (4)

are indeed true for the space mk(m) defined above. Equation (3) can be written

in the even simpler form



(5) dim ﬁlk(m) a  d(m(k~-1)) + %b ( b as above),

where d{(n) 1is the linear-plus-periodic function % - %X3(n) - %Xa(n) . For
cusp forms the situation is similar: dim Sk(m) is given by a formula like (2)
but with c, = —%— and an extra contribution 1 if k=2, and. the dimension of
Sk(m) = Hlk(m) ﬂSk(m) is given by (5) but with —;-b replaced by -%b and an
extra contribution 1 if k=2 and m is a perfect square. (Compare [E-Z], §10.)
As already mentioned, the simplification occurring for the dimensions on
passing from M to M occurs also--indeed, even more gtrikingly-~for the traces

of Hecke operators. The trace formula for SLZ(Z) {cf. {Z]) has the relatively

simple form

(6) er (T(2), S, (1)) = - ZZ pk(s,i)H(sz-42)

S48

o] —

{01(2) if k=2,

0 otherwise,

-% %'min(l', !2./5?,')k-1 +
e

(here pk(s,ﬂ) is a certain Gegenbauer polynomial and H(A) a certain class -
number; cf. §1), but the trace formula for Fo(m) for m>1 as usually given
in ‘;héiiiterature is very much more complicated. In contrast to this:;' the
formula for the trace of T(2) on Sk(m) for m>1 1is hardly any worse than (6):
one simply replaces H(A) by a sljightly modified class number Hm(A) (for the
definition, see §1), multiplies the term min(i',l/!l,')k-1 by the g.c.d. of b
and &' -%/2', and omits the third term in (6) unless m is a perfect square.

(This is 25k/2 '+1,m(2"1) in the notation of Theorem {, §1.)
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§0. Notations and basic definitions

As main reference for the basic facts and definitions from the theory of
Jacobi forms we refer to [E-Z]. Here we briefly summarize those items that
we shall need in the following.

1

J(R) denotes the Jacobi group SLZ(]R)N]RZ-S A typical element of J(R)

has the form £&=Alx]s with AGSLZ(]R) , xE]RZ, s€Sl (the multiplicative group of
complex numbers of modulus 1) and the p'roduct of £ and an element £'=A'[xTs' 1is
given by £+£' = (AA')[me'](ss'ezTrii}%I)- Here xA' is the result of applying
the matrix A' to the row vector x and |x§;| is the determinant of the

2 1

matrix built from the row vectors xA' and x' . For subsets G,L,K of SL2CR) , R°, S

respectively we use GxL+K for the subset {Alx]s : A€G, x€L, s€X} of J(R) ‘Y

o .
(For k,m€ Z there is an

action of J(R) on functions on HxC (H = upper half-plane) given by

- 2
<¢|k’m§)(f,2) = (cT+d) k em(:ELEIiEIEl_ #2237 +2\z +Au) sm¢(aT+b z+Ar+u)

cT+d : ceT+d ’ cT+d

(g=(2 3]-[x,u1-s € J(R), (1,z) €HxC ),

where em(x) denotes eZTl‘uux . We shall always use [ to denote the full

modular group SLZ(ZZ), ¥ for the corresponding Jacobi group SLZ(Z)D(Z‘ZZ ,

and 'Ik n for the gpace of Jacobi forms of weight k and index m on [,
i.e., holomorphic functioms ¢: HxC +C satisfying ¢|k m&; = ¢ for all & €I‘J,
. ’
and having a Fourier development of the form
no.r 2rit 2miz

(n ¢(t,z) = ! cla,r) q % (q=ce , T =e )

n,r€Z

4mn-r? 20
The subspace of cusp forms (i.e., ¢ with c(a,r) =0 unless &4om-r®>0) is
denoted Sk o As a simple consequence of the invariance of ¢ with respect

2 ?

to Z CI‘J , one has that c(n,r) depends only on r?-4mm and om r (mod 2m),

80 we can also write (1) in the form

r2-A
(2) o(t,z) = ) cA,r) q bm T
A,x €T, A0
Amr? (mod&m)

where C(4,r) depends only on A and on r (mod 2m).
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For a positive integer 2 with (2&,m) =1 we have a Hecke operator T(L)
on Jk,m defined by

ko ol (gwlxD  (eeq ),

)
x€ z;/zz2 MET\M2(Z) ’
det (M)=L"
ged(M) =0

(3) olT(R) = &

where 'gcd(M)=U" means that the greatest common divisor of the entries of M
is a square. In the notation of [S=-Z] this can be written
%) (L e 25 ) 22 - ¢’ [2"1 OJFJ)

e T Tear 0 & ’

/=0
where . I.(A) for any F‘J—double coset A (or finite union of such sets) in
J(Q) s is the operator ¢ = z o £ . In [E-Z] it was shown that the
CT=5L, @)xQ?+5* gerdya Koo

Fourier coefficients C*(A,r) of ¢|T(2) are related to the Fourier coefficients

c(A,r) of ¢ by

(5) c*a,e) = T 2Py cdra,en,

s
all?

the sum being over those aIJZ,2 ‘with aZIZZA ,JLZA/azEIOJ aod &4,
with r' determined by Arw®ar' mod 2m(a,l) and r'?a i—:dmod 4m,and with
xy(a) = £ (‘37/%) if (a,0) =£% with A/€°20,1 mod 4 and

)(A(a)- = 0 otherwise.

Also it was shown that

6  TWTen = 7 aF3raerdd) .
dlg,ge’

For nflm (i.e. n|m and n and m/n are coprime) we define

=2 1,2
M) Wy ealE T x G 2)wp)

where H denotes the group of the n~th roots of unity. (Note that
[ x (-%- 22)'un is invariant with respect to right and left

multiplication with elements of I‘J). One easily verifies that
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-.1 z{_
@) ¢Iwn o xEZ'*Z/nZ2 d"lk,m [n]

Also it is not hard to verify that

ri=-A

@) ¢lw_ = c@Ang T ¢ C(A,r) as in (2)),

.where ')\n is the modulo 2m uniquely determined integer which satis-—
fies )\na-i mod 2n and ,\na +1 mod 4m/a (cf. [ § ]). Thus the W

form a group of involutions.

Finally note that the wn and T() commute, as is easily seen

by (2) and (5) or (5) and (9).
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§1. The trace formulé for Jacobi forms on SLQ(Z)

The object of this paragraph is to apply the results of [S-Z]

to obtain a formula for the trace of T(R) ° Wn on Sk o
*

We need some definitions.

We define a function Hn(A) for integers n2 1,AS0.
The function H1(A) equals H(lAl), where H( ) is the Hurwitz-Kronecker-

class number, i.e.
H(0) = - —
1 12

and HI(A) for A < 0 1is the number of equivalence classes with respect
to T of integral, positive definite, binary quadratic forms of
discriminant A , counting forms equivalent to a multiple of xz + y2
(resp. x2 + Xy + y2) with multiplicity -%(resp. %). Note that

H1(A) =0 unless A =0 or 1 (mod 4). For n22 we write (n,A)= azb

with squarefree b and put

2. /b/a?be 2.2 . 22
ab(n:Zb)H1(A/ab) if a“b%|a
B (4) =4,

otherwise .

Furthermore, for numbers s,f and integers k22 we define pk(s,ﬂ)

as the coefficient 6f-xk-%i in the power series development of (1-sx +£x2)-1,

i.e.

P (8,4) = 9—5—_'—9—— (p,.p'- the Toots of X*-aX+&=0) if s3~4L40
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Pk(S,l) = (k"‘)(%)k—z if .52-42 =0 .

Finally Qo(n) = I 1, 01 (n) = Xd (as usual), Q(n) denotes
dln dln [3/2]
the greatest integer whose square divides n (i.e. Q(n) = ‘A' P ),
pAlln
and S8(P)=1 or 0 accordingly as the statement P 1is true of false.

Theorem . Let k,m,%,n be positive integers, k22, (Z,m) = 1

~and n.”m . Then

tr(T(SL).own,s ) = sk,m(l,n) * (-1)k s m(f-,%) ,

k,m k,

where sk,m(l,n) for any n]lm is given by

I s 2 .
sk’m(l,n) 5 % g Poy—9 ( ,2) H (s"-42n")

VA

slB

R"h min (2", 3057 () 2+ D4 ;9,'-.%.)

1
4

1 m
+ 7 6(]:(“ 2) 6(; = D) Oo(n) 01(2) ’

the sum over s being over all integers s satisfying szslﬁﬂn',n'|s,

s |2
(&)

n ..
,JE,) = gquarefree.

The rest of this paragraph will be devoted to the proof of this
formula, - and will presuppose familiarity with the paper [S-Z], whose

notations we will not repeat.

bye{7) of §0 and . ,
Proof ~ Let ME SLZ(Q). Then %ES’%tandard computations in the theory

of Hecke algebras
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Hk,m,r(rJMPJ)wﬂ = n-ZHkgmyI‘(rJMFJ) H.k,m,r(rk (% Z2).1-].1'1)

= n c(&)H, (T erY)
EEI'J\ PJM(FX(; z2) 'Un) /l..J ,m, T

where

«€) = Hne r\rx 2% | gerhmrdny

To the right hand side of this we can apply Theorem | and the

supplementary formulas (3.10), (3.11) of [S-Z] to obtain
S

B A
tr (H.k’m’l-.LI’ MI™) W, sk,m)

M

= den. (M) ) I (A) g(A)
: aerMf/~ T

' JJ
+ O8k=2). er(ak | L(TMITRWE, 5 )

yLls -,

where den.(M) denotes the smallest iﬁteger %' such that L'M

is integral, where W* and Jx* - ‘ * 1.2y
g s n “1,m are used for _H1,m,1"(“‘ (EZ )-un)andA J";’m(l")

respectively, and where

2

g(d) = den. () 'n” 1
ERINZ2AG 22)y_/E

c(s)#(zzz\zzzgzz’)-cm(a)
(2)

=der.1.(l'1)_1n-2 . E c(&) Gm(E,)
Fezn 71 A(-TII z2)n_

For the definitions of Ik o 1..(A), Gm(E) and ;-Jm r see §1 of [S-2], for the
] b

definitions of H*( ) and J?’m( ) see §3 of [S-i’_'.]. In (2) Z%has to be considered
as subgroup of J(R), i.e. Z?has to be identified with {1}«zZ%{} ; in particular
£ runs over a set of representatives for the Z*-double cosets (or Z?*-leftcosets
in the second sum) of ZZZA(%ZZ)mn , the latter &enoting:the product of the

complexes {1}xZ%{ftand {A}u(%zz)-un in J(R) .
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For a £ on the right hand side of (2) we can write

o(®) = #n e 2 2ty |gezia?n) .

Also, consulting the definition of Gm(E) in [s-2],. it is

easily seen that Gm(g) = Gm(Au) for § € ZZA Zzn with

n e (% Zz)’un . Hence (2) becomes

den) " 'n~? ) ) G (an)

2 1 . 1 ey
e al z)u nezd Qazeyy
EEZ2AZ*n

g(a)-

den(® 0% 7 #zha’az’n)-c_(an) .
neZAN(S Z?) p o

=n' 7 G (AlyD

S 1 p2m2 - o S DT T
y€n Z /?

where in the last equ;tion we used #(zz\zzuzn)ﬂf(zz\zznz) = den.{A) = ‘

= den.(M) . Now we apply Theorem 2 oﬁjé_'-zl ta obtain

o _ o172 4 o ' _
(3). - 2 (&) E{n sign (t=-2)(t~2) Uxem) Q,(x)) if t tr(A)#2

Tm. n2

(et stsmer (e )P Mol 0,00) if tetr(ayenz

have
Here we/used the obvious identities

m 2 m
jelke s (7 0o n) = o Ao (i, 0, 0)
n

and

1 y _ n :
ye‘azZ 5 (m(“Z) G0+ 'x') - A (mtﬁ r.QA(")) '
n

For the definition of the functional. Aux (which assigns to.a periodic function

of xsits average value) see $4 of [S-Z] or the Appendix ; Q, stands for the
ez’ A

binary quadratic form QA(X-,p)=bAZ+(d-a)lu-cp2 (AﬂEz 3) ).
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Finally, combining (0.4) and (1), we arrive at the explicit formula

tr(’I‘(fL) °Wnysk ,m) =

4) -
k-2

m,F(A)g(A),+ 5(k=2)°tr(T(2)*;Wg;JE‘Z)

I
ks ,m

. AESLz Q)
2 T ﬁjn T

2A integral
g.c.d (LA)=O

the sum being over a complete set of representatives of

~n.T ~. . equivalence classes contained in {AESLZ(Q)|£A integral,
»

g .c.d.(2) = D}, with L l..(A) as in Theorem 170f [S-2], g(A) as in (3),

and T(2)* given by a formula like (0.4) but with k=2 and H replaced by
ok k,m, T 77
2,m,T°
We shall now investigate the first sum in (4 ). For this

purpose we decompose it as

+ + + .
Se11. Shyp. Spa; Sscal. ’

where S » S etc. denote the contribution of the elliptic A,
ell. hyp.

hyperbolic A etc.

The elliptic contribution

. 3/2-k
. . _ si (c) o}
For an elliptic A one has Ik,m,F(A) —T%iT—— —y , where
. 2_,\1/2 .
p = Lrsiga(e)(e -4) , t=tr(aA) ,A-= [Z :J . Thus T (M)=TT A

Also, by (3 ), one has g(-A) = ~g(A). Hence



_]5-.

k-2
S,q1. = 2% E Re(T.k,m’l-.(A)g(A).)

(5)
- 20572 § Re(r, _ (aDRe(a() - 28577 § I, (a)Im(za),
N LI, A »,

the sums being over those (elliptic) A mod ~o.T with positive left
. b

entry.
Let us consider the first sum on the right hand side of (5.).

Here one has

k-2 Ik

PO A ) . L1
2 Re(Ik,m,I'(A.)) ey ka_,z(vziwzi,z) W ’

t+/t2 -4 _(/t+2 + /c-Z)Z
= , and

using 5 >

- n 12f, of 2 n? \
2n 5@ = 3 @A, ooy ,00) + el 2 )}

by the second formula in (3.), using -Q, = Q-A . Thus, the first

sum on the right hand side of (-5”) equals -Sk ln(il.,n) where

ell.’
sk,m(.g"n)ell. is defined for any nflm by

\

-1 m 1 n
6) s, (m) . = T b (EAMERT e(—-—- 40,) -
k,m ell. 2 0<a<4y 2k=2 n oy IFAI X \ma A

The first sum is over all integers a.-with 0<a<4% , and the second
sum is over all (!) ellipt:ic A modulo I-conjugacy such that 2A is
integral, tr{(A +2 = a/%, and -.g.c.d (RA) is a square in. Z .

A:s:'xﬁ_'riafa.ca'ﬁculation- for the second sum on the right hand side

-
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of (5)'(using now. the first formula for g(A) in (35? shows that

it equals (-1)k S1 m(l,% de11.

As it well-known, the map A —> l.QA_ defines a bijection

between {A€ SLZ(Q)|£A integral, tr(A)+2 =a/f} and integral binary quadratic
forms with discriminant a(a-4%), such that T-conjugacy classes on
the one side correspond to equivalence classes with respect to [ -

( r

on the other side. Furthermore, |I',| corresponds to [T, | r, =
A Q, Q,
the automorphism group of QA), and, as is easily checked,

g.cd.(24) = o0 corresponds to (c(Q),R)=0 , where e {Q) dengﬁes the g.c.d.

of the coefficients of Q . Hence the inner sum in (6) equals
: z 1 n2
) . Av, e(— Q(x)) ,
Q mod T |FQ| X ‘'ma
d(Q)=a(a=-44)
(C (Q) ’ 2)=a

where the sum is over all integral, binary quadratic forms Q modulo T

with discriminant d(Q) = a(a - 4%) and (c(Q),2) = o .

To get rid of the condition "(c(Q),%) = 0", we use Liouville's

function A(n).-Iﬁ;Qgsthe characteristic property z A(d) = 8(n=no)

din
We can therefotre rewrite (.7) as
(8 R Oy el )
t|%,a Q mod T IT T Y% "\ma ]

d(Q)=ale-42) /2 Q

Now, by Proposition A.1, the inner sum equals
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~1
ma a(a-42) . S
(n(n,a)t) : . ( o ) (to apply this proposition, note that

n(n,a)t

(Ea,nt) = (a,n)t, since d||lm and (m,&)=1). Thus (8) becomes

-1
(9):. T A (——n(:f‘a)t) oo (—-—a(i;“’”)

n(n,ajt

We shall show in a moment that (9.) equals

&7 B (sP-4sn)  if a=s*/n' with n'l(n,s) and

=]

(10) (E: ,(%T)z) = gquarefree

0 otherwise .

Note that n' and s are uniquely determined by a.

Thus, summing in (6 ) over n',s instead of a, we shall end with

the formulas

s>0
s2<4in’
n'ls

1 2
S,ntt Mo, 777 n,%ﬂ L Pyg 8/ATD HE(S “4n'),

n.

(n (l%,,(ﬁ')2)=squarefree

k m
Sell. 3k,m(z’n)ell. =0 slk,m(‘Q";)ell.
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To show that (9 ) and (10) are equal we note first of all the following
simple property of our function H: let r,s be positive integers, let ASO with
¢4, write r=x?/y with squarefree y and assume (y,s)=1; then Hrs(A)
equals rHs(A/xz) if x?%.divides A as discriminant (i.e. xzhk,é_ﬂ 1 mod 4)
and 0 oéhéfwiée .

Now write a=bc with (b,2)=1 and c|Z . Then, since (m,&)=1, we

. .. ma c_ mb . c
have for any t|{2,a) the decomposition ala.a)t ETEWY with T
, . . . - =48
and —mb__ being relative prime and with .E|E£E_ﬁ&l . Hence H ma Qéﬁé—i—l)
n{n,b) t t? Y CWOLS t2
c ala~4%) ¢ _ x? 2in,a)t
equals —H_mb (g7 if = 5 with squarefree y and x? dividing
nzn,bs ' o
a(a-42)/t? as discriminant.and. 0 otherwise. Noce that the condition

"x2 divides a(a=42)/t® as discriminant" is equivalent to x?t?lcl since

clearly xtle and (b,xt)= 1 . Substituting this into (9 ) gives
n(u,b) a(a=4%)
(12) E Moy 22> H_mb_ (S
n(n b)
E2

with t running through all divisors of (L,a) such that % = with square-

free y and x°t?{cg . We split this sum into two sums, one over X (=xt)

‘and one over t, where X runs through all divisors of ¢ with.clX?, X?fcf’
2

and where t runs through all tl% with X%t squarefree. By well-kmown

properties of Liouville's A the sum over t equals 1 if X?/c=1 and 0 otherwise.

Hence (12) becomes

Eﬁ%gﬁl B mb (b(a~62)) if cem
(13) a(a,b
0 otherwige .

To further simplify (13) let now TE?ET play the role of r in the above
' . b x? .
formula for Hrs(A). Write o.5) = 7 y sqarefree. We shall show in a
moment that (13) is 0 unless y divides (n,b). The latter implies in

particular (y,g)nl. Thus (13) becomes
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%am(La;‘;”'—)) if cema , yl(a,b) , x%Ib(a=4)

n

0 otherwise

But this can now be written in the form (10) with n‘-(Eia) and s-(u,b)%#g'.
So assume now that (13) is differnt from 0. Then x* clearly divides

b(a=42) and furthermore

(14) -b-%i@-so,nnoda.
Since
b{a=44)

=z = {(n,b)zxzc - 42tn,b)y}/y2 with ylx

and since c¢=0 by assumption we see that (14) implies .y|2(n,b) . Since
(y;%)=1 (note y|b and (b,2)=1) we finally deduce'y|(a}b) 4s wag to be

shown. . ey

The hyperbolic contribution

Using the second formula for g(A) in (3 ) one finds that the

contribution of the hyperbolic matrices with positive trace is given

by sk,m(l'n)hyp; where for any n|/{m the expression sk’m(z,n)h

is given by
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k=2

3/2-k 2
_ - - 2 t+ve2 =4 _ ...1‘/2 n
(13) Sk,m(z’n)hyp —_ Z(—Z ) (£=2) E Auxe(T—m T3 7) QA(x)).
r

Here ¢t turns through all positive rational numbers with demominator £
such that t2_4 is a square in Q~{0} , and A through all matrices

with tr(A) = t, 24 integral, g.c.d.(24) a square .

Using the first formula for g(A) in (3 ) one easily verifies that
the contribution of the hyperbolic matrices with negative trace is

. k m
given by (~1) sk,m(z’a)hyp.

By exactly the same arguments as in the foregoing section and by the
remark following Proposition A.1 we deduce that the inner sum in (15)

is different from zero if and only if there exist positive integers

t

n' and s satisfying

o En?

n'ln. ntlss 2(t+2) = szjn' ’( n

) 1is squarefree ,

=]

. m 2 v .
and that it then equals (;{,9 -44n ) times the class number of binary
. . 2 :
quadratic forms of discriminant (8" -42n') /x2 ( (.“_’,92_41[1'):52 y sqarefree)
n y’

1/2

i.e, (52-42.u') Q'((g,sz-dﬂn')) (Note that t2-4 = square in Q~N{0}

. . 2
implies S —44n' = zz(tz—!o)u'zlsz- = square in Z~N{0} ).

Inserting all this in (15) yields

(16) (2,n) ! ) i Ul @,s°
S ,0 S - e Q( -8 -&,?.n')),
k,m hyp. 2 n'%n s {s+ 32-4qn }2k-3 n
2

where s runs through all positive integers such that
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2
sz-dln' = square in 2Z~{0} , n'ls, and C%f,ﬁi—)

SV) is squarefree.

in’'

Now the condition éz-4£n' = gquare (*0) 1is equivalent to s = 4+ 3

2
with a suitable positive integer d satisfying d|2a’, d° < 2n'
. gn' .
But n'|s s l.2. n'|d + -%—, together with (f,n')=1 (since (%,n)=1)

then implies that n' 1is a square, say n' = n"2 , and that d = n"4'

for some 2"1 , 1'2 < % . Thus, setting n' = n"2 , 8 = " (1'+§%0 in
(16}, we obtain
S wo2k=3 weor
Sk,m(l’n)hyp. 5 g Z "% (Q{m/n), n (E. /2" ,
a" In 2’

the sum with respect to &' being over ali divisors £' of % such that 2'2<g,
a” [("+ %,) and (n,(2'+ %,)2)/n"2 is squarefree. Finally,noticing that

Q0" @' - %,)) = (@, (&'- —g:.)) (since (3,n'")=1) and.that the

sum ) n", where n" runs through all positive integers with n"zin,

n"l(2'+<%,) R (n,(£'+-%,)2)/n"2 = squarefree, equals (Q(n),f'+ %ﬁ))

we arrive at the formulas

— ;J; ‘,Zk;g .o coL _ ' L2 ..
S, n ) oy 22'%22 @@, 2% 2+ (QUD, 4" 70

(17 212<q

k m
S - - -
hyp sk,m(z'n)hyp. + 1) S"k,n:lu"n)hsrp.

The parabolic contribution

A complete set of representatives with respect to r
m,
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the parabolic matrices A such that 24 is integral and g.c.d.(24) =0

is given by

+ [é ‘;’2] (1sbsems , (b,2) = ).

Thus, using

. (+[1 me _ (s1y1/27% { 1 if 4mi|b
,m, [ \7[0 1 16m s b .
1 i cot:ramz otherwise
and the formulae (3 ) for g(A), we may write
s o=s (o _ o+ -D%s 1,5
par. k,m "’ par. k,m Wpar.

where for any nl{|lm the expression sk,m(l’n)par. is defined by

k2 2
(18) sk,m(z’n)par. TTg {E z ”*")\e(m bA )
b mod 4ml
(b,2) =ao
k
=1 Z i cot('n’-—- e( )}
B/2 b mod 4mb AT °
4m2]b, (b,2)=0

To simplify the first sum in (18) we note that

2 2
n 2
— bk ) A(e) ) (—— bA )= 4mf
b mod 4ms ("“"‘ c%p. b mod 4mi \*P¢ efa F
(b,R)=0 ' tlb 4mg | n? tA?

so the first sum in (18) equals
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2
? A(t)-ﬁi} mod 4mf| 4mL{n“tA}
t]f

_ 4mf
t = c{l A(t) n(l;’n) Q ((l»,n)nt)

= s=m) - 2.0 8'7% - QU4,m))0®) .

Here we used that & and m are relative prime, so that Q¢ 4ml )

4 . . S 2 (4,n)nt
Q((zTE))Q(%bQ(EQ,,(4,H)Q((Z—H))=2Q((égnl)_and z A(EXQE). = 5(230)$U2
. e b . tI,Q, - .
The second sum in (18) can be written as
. b 2in? 2
.y A () I i cot (Tr )Au e(m b}
(19) Jﬂ ' wod boae e ) Ay e )

b#0 mod 4ml/t

and here by Proposition A.2 (and (n2,%)=1) the inner sum equals

R ) H ey
A<0,AZ0,1mod 4 SE/ 4,

m, °’ m

is squarefree

which may also be written as

-2 - o ! H(8)
T A<0,A20,1mod 4 7
A|4n£7;, ‘4n§/t squarefree

Now for a A from this sum one easily verfies

0 otherwise

4mf,
it gquafgfree

' t if A = -4%n' for some n'|n with n/n' squarefree
) At) =
4mf
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(use again (&,m) = 1), and in view of this (19) becomes

-2 .2 H (-=44n')
n o, m
n'in =
n/n' squarefree

Putting this all together, we find

k k=2
_ 1 - k-3/2 _ (=1)"2 - '
Sea ™) pap, = T @D TN, 4)) - nE':‘n By (~4in").
(20) K o n/n'squarefree”
Spar. - Sla:,m('?"n)pasu:.+ =1 sk,m(l’g)par.

The scalar contribution

Here we find

2k-3

(21) S = §(L=0D =55

k=2 ,m ko
scal. 2 (z+ D7)

1f we now compare (11), (17), Q0), and (21) with the formula for
Sy m(SZ.,:J.) given in Theorem 1, we see that the theorem is proved for k#2:

the terms in the first sum in Theorem 1 with O<Is| < v4%n' equal (11)
the terms with s =0 equal the second term of (20) (since ka_z(O,P,) = (-I)ks?.k-z) ;
the terms with s =x/4%n' equal (21) (since this occurs only if 4 1is a

square and either n'=1, s=2/L , and 4|n or =n'=4, s=4/%, and 4|n, and

2k-3 k=2 m
ka_1(2\/E,2) Hg(O) === 2 =)

: a
sum in Theorem ! equal (17) (replace &' by £/&' if &' > VT); and the terms

: the terms with %'#% V% in the second

with 2'= /T equal the first term of (20).

It remains to treat:

The correction term for k= 2

First of all we note that by definitiom
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. * , . :
(22). dim J1 ,m dim- Hom 'f(Ml/Z(r (4m) ,Thm) ,

~ /_\’/
where T < SLz(R) is the inverse image of I by the canonical map

o~

SLZ(R)-——> SLZ(RJ , and where M, . (I'(4m)), Thm are considered as

1/2
T-modules via the action hi(a,w(T)) = W(T)-Ih(AT),

*
1,m

8] (a,w(t)) = w(r)‘1e| A of T on M1/2(F(4m)) and Thm , respectively.

(For the notations see [S-Z].) By the theorem of Serre-Stark [S-S] one knows that
M1/2(T(4m)) is contained in the space. spanned by the "Nullwerte"

8(t,0) with 6(tr,2) € m’go Thm, . Thus the computation of

dim J: o is reduced to an analysis of the T-modules ThIIl . This has
s .
been done in {S] (Satz 5.2 and Satz 1.8), and we- -

only cite the result:

aim 3§ . - 2oy @ + s(m=0)}

( The reader may also work out this formula using orthogonality
relations for group characters and the formulae for trUm(A) (A € T) from Theorem 2

of [S-Zl; however, this would be essentially equivalent to the procedure

in [s}.)

*
T,m

).

Now it is easy to compute the correction term tr (T(Q)*Wz,J

Namely, let m' run through all divisors m'[m with m/m' a
square, and for each such m' let X run through a complete set of
representations in Z for {X mod 2m' [}\2 2 1 mod 4m'}/{£1} < @/2m'B*/+1} .

Note that the number of such pairs m',A equals %{co(m) + §(m=0)},

*

i.e. dim J? o For each such pair m',X define
2
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- 2m'

—~
. a
¢m.,A(T,z) i= 921 em,,)\pZT,O) B’ 0 (1,/ =2)
= 7 e(EET --ii? /2 z\
K 1 ’
r,s Z 4m 4m m'")
rsis mod 2m'
2
where © is the theta-series ) e(—T+rz) (cf. [S-Z]).
o 4m
. 11 rsp (2m)
Obviously ¢m',kli,m[0 1] (t,2) = ¢m',X(T+ 1,2) = ¢m,A(T’Z)’ and using

the well-known formulae

I, T2 g2y m
o (30 %) = () "e‘(r—)g ®2m(TPT) B o (To2)

. s . * |0 -1 .
it is easily checked that ¢m',kl1,m[1 0] ¢m',l . The ma;;lcgs

0 1 1 0
* . .

J1,m' Noticing that the ¢m:,x
#
1,m

[1 1] ,[0 -1] generate [ = SLZ(Z), and hence the ¢m' A lie in
are linearly independent we thus have

a basis for J

Finally it is easily verified that

-2 * (1[ab
o\ TWY =2 5 . (_[ D["]
ms - xEZ2§212 a,§>0 b moz:l 4 ®= ,A|1,m L |cd

ad=2? (a,b,d)=O
- 01(2)¢m',l !
and that

*': -1 * E =
¢m',k| wn o xezz;nzz ¢m',)\|1,m [n] ¢m',A’ ?

where A' 2 -A mod 2(m',n), A' = +) mod 2m'/(m',n). Note that

9 Alwz = ¢+, if and only if A = -Amod 2(m',n) or A=-Amod2m'/(m',n),
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i.e. if and only if . (m',n) =1 or m'/(m',n) = 1. Hence

& *
tr (T(R)*Iin,J1.m)

3

| , oy 132 =
= 0, () .mZIm{G((m ,n) = 1) HS(QT[?-,T). =1)}#({)mod2m |A” = 1 mod 4m}/{%1})
m/m ' =0

7 9,® (60 = @)@ + §& = B ()},

as was to be showm.
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§2 . Comparison with the trace.formula for ordinarv-modular-forms

———

For integers k,m, k even and mw>0, denote by M.k(m) the space
of modular forms of weight k on T (m). For integers &,n > 0,
(,m) =1 and nll m, denote by T(&) -and W the 2-th Hecke operator
and the n—th Atkin-Lehner invoiution on Mk(m), regpectively. Thus,

for any fEM.k(m) one has

. 2r
(1 flT) = )‘r a1 a @) q
r20 dl(L,t) £ d?
and
k/2 -k anT+ b
(2) f‘Wn(T) = n (cmT+ nd) f(m)

Here af(f) denotes the ﬁ-th Fourier coefficient of £ and a,b,c,d are

any integers satisfying adn? - bcm = n. (We are

-

using "+ . here the same symbols T(&) and wn as for the

corresponding operators on J . Since it will.be clear from the context

k,m

which operator is. meant there should be no confusion.)

Finally, let M:ew(m) denote the space of new forms in M.k(m) and

x
let MEeW’ (m) be the subspace of modular forms fGM.Eew(m) satisfying

£y = £ (-n*2¢ .

Unfortunately in the literature the notion 'new forms" is usually
applied to cusp forms only. Thus some remarks seem to be indispensable.

We define more precisely
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new

M (m) := Eﬁe“(m) 9 sﬂe“(m),

where Szew(m) is the subspace of new forms in the sense of Atkin—-Lehner

in Skﬁnﬂ, the space .of cusp forms of weight k on To(m). Ezew(m) is

defined to be zero if m 1is not a square, while if m is a square then

Eiew(m) is defined to be the span of the series

6’9, 69 2
(1) = )} o () q
Ey ok Tkt

where ¥ runs through all primitive Dirichlet characters modulo vm
(aside from the principal character if m =1 and k = 2),
O§§2(2)= Z dk-ixﬁi)x(l/d) for £ 21 Oéfz(O) = 0 or -<% z(1-k) according

dig -’
as m>1 or m= 1. (For more details concerning Eisenstein series on

To(m) cf. [H],; pp. 461-468 and 689-693.)

By comparing the trace formulae from the foregoing paragraph with the
well-known trace formulae for Hecke operators on spaces of modular forms

we shall derive the following

Theorem 2 . Let k,m,&,n be positive integers, k 2 2, (m,%) = 1 and

ni{l m. Then

(T o= 3 { J 1 er (T

).
ain a2, (o)’ " 2k=2

Moreover the same equation holds if one restricts on both sides to

Eisenstein series or to cusp forms.

Remark - The above Theorem remains true for all k in the trivial sense

that J 2 Mo (n'y = {0} for all k<2. However, the fact that
K,m o 2k-2 _
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ST {0} seems to be not at all trivial. For a proof , depending on the

work of Serre-Stark about modular forms of weight 1/2 ; cf. [S].~

Proof of Theorem 4. First of all we treat the case of cusp forms.

new , ghew,=
The projection of S - 2(m) onto the subspace 2k 2 (m) of forms

new
2k-2 @

T(2) ((2,m) = 1) 1is given by %(W1 + (-1)ka). Thus

£ES . satisfying f[wm = (D% £ which commutes with all

Er(T(R) W Shers (@) = Fler(TW o SH7, @) + (=1 er (1@ W s’z‘i“'z(m))}

n

and hence the formula. to be proved can be rewritten'as
er (T M5, ) = o{e@) + (-D5e@)
n’"k,m 2 n’*?

where t(n) for any nllm is given by

@ tmy= ) T T _ 1} tr(T(n)ow g;wz(n n,))

m
—_ 2
n1|n n2| dz |

R

-In fact, we shall show that
2' -
sk’m(l,n) t(n)

with sk’m(l,n) ag in Theorem 1.

To apply the trace formulae occuring in the literature we need to express
the traces on the right hand side of (3) in terms of corresponding traces

on the total spaces 2k 2(n nz)
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Now for any pair of relative prime, positive integers n,,n, one

has by Atkin-Lehner theory

new
(4) Sy ,(mny) = @ Sor-2(2132) 10 4
a,b,In 172
1Py lmy
azbzln2

with U :E(T) F»E1Up(T)=£(&7). Choose in each of s%®¥ (a.a.) a. basis
'3 2k=-2""1"2

consisting of simultaneous eigenfunctions with respect to all T(R)

((2,n1n2) = 1) and.wn-ﬁnila1a2). Vvia (4) this gives a basis for

Syk-n(my0y) and we compute tr(T(2)°WnT,SZk_2(n1n2) with respect to

this basis:

Let g be such a basis element, = f i
| say g lUb1b2 with f € SZk—Z(a1a2)’

£|W, = €f. It is easily seen that
1

2. k-1

£|u oW = e(n /aby) - £lU
n .. -

b1b2 n1b2/a1b1

Thus the contribution of g to tr (T(&)eW_,Spp_p(R10y)) iSyEdﬁiiﬁﬁgi;“if'

2_. . . . 2 k-1
n1/a1bl 1 and is zerootherwise since then fiub b + (n1/aib1) “£lU

12

. N n1b2/a1b1
with ‘cppgsite-eigenvatues e . Hence

are both eigenfunctions of Wn
1

T W = [+
() ex(MDeH Sy, (nymy) ) tr(T(R)Wa1,Sg§f2(aia2)).

Combining (3) and (5) by using some elementary theory of multiplicative

functions gives
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m
(6) t(n) = . %n nz|9.k(n,n2 0 ; s=2 (3405))
1 2'n

where A is Liouville's function, i.e. the unique multiplicative function
such that A(pa) = (-1)% for all prime powers pa.

Now we can insert the following formula for the traces

occuring on the right hand side of (6):

tr (T (2) W Soem 2(n n,))
2
)N (fTah) _p(s//a7,%) % " H_(s“~42n")
) u'EIn Hivam g=<u,' tln, ¢
1
n,/n'=g /nin'ls n,/t=squarefree
1 -
-3 6= Deta) J miaa P33 CIGHEEEE)
'L tlnz
/E?[(l' +—) nz/t squarefree

+ 6(k=2) 01(9.)

Here u and ¢ are the Mdbius and Euler function respectively and the
other notations are as in Theorem 1. Using the elementary identities

'{(3,n) and
w5 (° )

a ((s/n')2,n/n'))=squarefree
- 1 e . . L. o L

(n1 running through all positive integers with ﬁ!|n1, nlln,

~o,/n'=0 -and /n1p{15),

_ninZ tin

ni/t Squarefree

m m
Z]Ex( ) h(t) = h(3)

(for any arithmetical function h),
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I oA =@@, (2" + $9)
na
1 .

(n, running through all positive integers with

1
o, = O and /E?](£'+ %7))

k

as defined in Theorem t. Thus, in the case of cusp forms, Theorem 2

it is then immediately clear that t(n) coincides with 2 m(R.,n),

~is proved.

Unfortunately the formula (7) is not exactly the formula which

can be found in the literature, g0 we have to add some remarks.

First of all a corresponding formula (7) for n,=1 can be found
in [0]. Aside from some slight differences in the statement, which
can be easily worked out by the reader, the main difference concerns the

elliptic contribution. This is stated in (0] as

-1 T b, (8,2 Zh'(ﬂ)u(s £,2)
2,24, Pak-2 elr £

: 2
where F is that positve integer such that E—zié is a fundamental
F

discriminant, h'(A) denotes the number of equivalence classes
(mod. SL2C!)) of primitive, positive definite, binary quadratic forms

of discriminant A 1if A < =4, h'(=4) =-% , h'(-3)==%-, and where

@, (n,) C(sP-a M )
uis,f,2) =w1(32[(n2,f)) (nz,sz: (nz,f) .

Here ¢1(n) = n (1 +<%) and r(D,n) = #{rmod 2n{ rzs Dmod 4n},
pin
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Now it 1s easily checked that

r(@;) = - ] Xp(8) (p(+) as in §1))
tin
n/t squarefree

Using this one can write (after some obvious modifications)

is,t,0) = § (£,£) - x (=)
tln SZ_Q'Q‘ (taf)
2 T iz
nz/t squarefree
and then the equality of the corresponding terms in our formula. (7).
and in Oesterlé's results from the identity

® 3 nESE (0 Xy, a0

£1F £2

(cf. the proof of Proposition A.1)

Secondly, a corresponding formula (7) for n, > is given in {Y].
Aside from some mistakes in the statement of that formula (which can be
corrected by carefully reading [Y] ), - .. = the main difference

again concerns the elliptic contribution. It is stated in [Y] as

. 2
-44n
1 s ' 82=4%n \ S
@ -3 1 opy,eSn ) wEFEn 7 r(fZ(nz/t)z’t) ’
S o £IF tin
s4<4%n 1 x
1 (fan1)=1 n ’/c squarefree
D1Is 2 e
2
t'f

where F

2
w . . sc=-44n
. is7the positive integer such that ——71

Here the equality of the corresponding terms in (7) and (9)

results from the identity

is a fundamental discrimant. .-
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) h'(32-4£n1) ( s?~4fny - D u@ ] oa (52_42n1)
£1F tlny £ £2(ny/t) dl(F,a)  tha, & 9
(f,n1)=1 nZ/t=squarefree .

n,/t=squarefree
]} :

t £
which must be proved similarly to (8). Inserting this in (9), replacing s
by ds and summing over n'-n1/dZ (note that dl(F,n1),ﬂnfls énd-{i,n1)=1

implies d21n1) then leads to.our formgla (7).

It remains to consider the case of Eisenstein series.

On the side of Jacobi forms the space of Eisenstein series in Jk o is
r

spanned by the series

(10) Ek,m,t,)( = X(s) Ek,m,ts .

)
s mod (m)/t

Here t runs through all divisors of Q(m) and for each such t the index ¥
runs through all primitive Dirichelet characters modulo F with FIQ%?l and
x(-1)=(-1)k. Furthermore for any integer s the series B os is defined

by

2] as®_2abs
(11) Bms "7 ;ch 5% |
EET\T

k,ms

. J 1
with [ = {[0 T][O,u] | n,uEZ} < Y and. meab?, a squarefree. This is not
quite true for k=2 since then the series'Ek a.g 38 in (11) fail to converge.
Here Ek,m,s has to be defined by the same type of methods as are used for

modular forms ("Hecke's convergence trick") and for x# principal character

(i.e. F#1) the series Ek,m,:,x given by (10) then defines auc element
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k,m"

We shall prove in a moment that

s {0 =
(12) Ek’m’t’xl'r(!.) 02k_3(2)3k.,m’t’x ((L,m)=1)
(13) Ek,m,t,xlwn 2 X(A)Ek,m,t,x (nil m)

where A denotes any integer such that A = -1 modn and A ® HmOd% .

Comparing this with the description of Eisenstein series in

Mgifz(m) given at the beginning of this paragraph, and. using that

(x) (x)
$'0) new ,_.2 . e 09 'Y (x) and E;M_|W =x(A\E, N
any E,i’, € M, T (F7) satisfies Eji’, [T(R) =0, 4 (REF, 2k=2!"n 2k=2

((Z,Fz)-i, all F2 and with As-imodn and A s +1 mod FZ/nL the reader

can now easily verify the assertion of Theorem 2.

To prove (12) and (13) we recall that Jk,m a Ek,m 0<Sk’m R Ek,m

being the space spanned by the Eisenstein series E as above.
ka’t!x
Hence any Eisenstein series in Jk o is uniquely determined by its
4
"congtant terms" (sum of terms qncr with 4mm - r2 = 0) or,
‘equivalently, by its Fourier coefficients C(0,r) (r2 a 0 mod 4m).
Moreover Ek a is invariant under all T(2) ((Z,m) = 1) and all W
k]

(nil m), since Ek,m is the orthogonal complement of Sk,m in Jk,m with
respect to the Petersson scalar product and the T(R), wn are hermitian

(cf. [E-Z]).

Thus to verify (12) and (13) it suffices to compute the Fourier

coefficients C{(0,r), C*(0,r) and C*%*(0,r) (rza 0 mod 4m) of
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|T(%) and E |wn respectively.

Ek.m.t,x' F‘k,m,t,x k,m,t,X

Now it is easily checked that the constant term of Bk m. s is equal to
b

) 2 2
H @ 2T L-nk T ®T %%PT) musC(0,r) = X(r/2abt)

r=s(b) r=—-s(b) )

and then =~ oc*(0,r) = 025_3(2.) C(0,r), C**(0,r) = x(A)C(O,A)

by (5) and (9) of §0. This completes the proof of Theorem 2.
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§3. The lifting from Jk,m to ﬂl2k_2(m)

In this paragraph we shall give an interpretation of the theorem proved
in the last paragraph in terms of liftings from Jacobi forms to modular forms.
Let mk(m) be the subspace of Mk(m) defined in the introduction. Recall

that this is the space spanned by forms f whose L-series has the form

L(f,s) = L(g,s) T[] Q. (s)
m P
o
where g 1s a newform on Fo(m') for some m' dividing m and the Qp(s) are

polynomials in p-Ei of degree £ t:#_&r&lé.({%) satisfying the additional

requirement

(1) Qp(s) = pt(k/?'"“) Qp(k'-s) . -for all- p'fr

Here we may assume that the newform g 1is a simultaneous eisenform of all T(L)
with (&,m) =1 ; then it is also an eigenform of the Fricke-Atkin-Lehner

involution W, on Mk(m'), i.e.
k/2
g|wm. = (-1) / €g

with €€{ 1}, and then L(g,s) has the functional equation L*(g,s) = eL*(g,k-3),

where L¥*(g,s) = (ZTr)-'sm'S/2

'(s) L(g,s). Equation (1) says that L(f,s) not
only satisfies a functional equation L¥*(f,s) = eL*(f,k-s) with the same sign
as its progenitor L(g,s), but that each Euler factor of the finite Euler product

L*(f,s) _ 872
m (m/m") Tr QP(S)

pl=r
m

is invariant under s=k-s . Another description, easily seen to be equivalent,

is the following: Suppose the newform g has eigenvalues Ai for T(L) (¢

prime, %{m) and EPE{ 21} for W r (prum') . Then f has the eigenvalues
p

)‘g for T(R) (%m), Ep for W (ps"m, pjm') and +1 for W . (ptlm,
P

ps
pim').
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By mi(m) we denote the subspace of mk(m) spanned by all f as above
with €=#1. Since Mﬁew(m’) is the sum of Mﬁew’+(m') and Mﬁew’-(m'),
we have Ulk(m) = lul:(m) aﬂ'll:(m) . The spaces Illi(m) are invariant under

all T(2) ((2,m) =1) and under all Atkin-Lehner involutions W (nljm).

As a consequence of the theorem in the foregoing paragraph we

shall show:

Theorem 5 -~ Let k,m be integers, m>0. Then e o is Hecke-equivatriantly
?

isomorphic to 1 (m). More precisely, for any fixed fundamental

2k~=2

discrimipant D< 0 and any fixed integer s with D = 52 mod 4m

there is a map

S. :J — 1 (m)

0,8 k,m 2k=-2
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given by

r2=4

- 2
} cla,nq Rl L ) { % a® z(g)c(&z—!},é&)} q*
4<0,r 220 ~ alg é
A=2r?med 4m

’ - 1
(with the convention % ak 2(-g)C(O,O) e C(0,0)L(Z—k,ég)),
ailo

L(s,Gg)) being the usual L-series which for Re(s) > 1 equals

§1G%)n_s). The maps SD,s commute with all Hecke operators
n
T(2) ((&,m) = 1) and involutions W, (nllm) and map Eisenstein series

to Eisenstein series and cusp forms to cusp forms, and some linear com=

bination of them is an isomorphism.

Proof - Recall the operators Ul’vl on Jk o (2 a positive integer)
as defined in [E-2]:
r-A
Blu)(t,2) = §(t,82) = [ c (A, q B g
L Ag0, ¢ ¢
A r°sa (4m) ‘ o ori=A
($]V,)(T,2)= k=1, A ¢ 4md
¢l L Agp,f { rz-a 2 C¢(3z’a) 1 5
. Awrimod4éml 4] (m-l'yz)

The space Jk,m is mapped under "z’vz. to Jk,m!? and Jk,m&
respectively, ,,V, commute with all T(2') ((L',2m) = 1), and one
has
Uy o W_=W o U, (alm2?)
L n (n,m) “&

Vz a wn = W(n’m)o Vg‘ (nlml).

. 2
F . : b
or 2,d21 we define an operator Bl,d Mk(m) —_ Mk(mld ) by
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k/

(f|B£’d")'(T) =) ot 2£(aeT).
t|£

It is easily checked that is injective,commutes with all

By.d

T(L') ((gv’mgdz)q10‘andsgtisﬁiés B (n“ deZ).

2,d°"n = Y(n,m) 82,4

Using these operators one immediately obtains by Atkin-Lehner theory:

- new,-, m
(2) (m) = @ > (s=5) |B
mk g,d>0 Mk 2d L,d
Rdzlm
In view of this decomposition and the properties of Bl d listed
L]

above, Theorem 2 can now be read as
(3) tr(T(2)°Wn,Jk’m) = tr(T(2)°Wn.m2k_2(m))-

Since Jk,m and mZk_z(m) are semisimple as modules with respect
to the rings generated by the operators T(£) and wn on Jk o and

m;k_z(m) respectively, and since the same relations (0.5) hold for the

T(R) considered as operators on Jk,ulorcn m2k_2 one

deduces from (3) that there exists an isomorphism between T m and
>
m;k_z(m) which commutes with all T(%) and all Wn. This proves the

first statement of the theorem.

One of the main steps in the proof of the statements about the maps

SD S is to show that a decomposition like (2) holds also for Jacobi forms.
’
. . new
More precisely, define Sk o to be the orthogonal complement of
b
. E Sk, o |UdoV£ in Sk,m (with respect to the Petersson
- 2,d>0 war

2d2 Im, 2d2>1
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new
scalar product) and Ek,m

in (2.10) (x a primitive Dirichlet character module £) if

m = f2 and k22, m#¥1 1f k =2, and 0 otherwise. Let

as the span of the functions Ek m,1,% as

new new new
Jk,m ) Ek,m ¢ Sk,m'
new . .
Clearly .Jk I invariant under all T(R&) and Wn and
new new
(4) Yoo Yem® ) Ie. m |U v, -
.Q,,d>0 W
2d? |m, 2d?>1

We shall prove by induction over m the following:

(1) The decomposition (4) is direct.

(ii) There exists an isomorphism between J K, and Mgew, (m) which
commutes with all T(R) ((£,m) = 1) and all Wn {(all m).

(iii) For each pair of simultaneous eigenforms ¢ € JE?: and

£€ M;;fi-(m) with 35(1) = 1 having the same eigenvalues with

respect to all T(L) ({(&£,m) = 1) and all W (nffm) one has

SD,3(¢) = C (D,s)f .

¢

Note that this implies all statements of Theorem 3 except from

the last one, because we have the easily checked formal power series

identity
(5) SD,3(¢)IB£,,d = SD,3(¢|Ud°Vﬂ,) (¢€Jk,m,2,d2 1.

To begin with let m=1. Here (i) is obvious and (ii) follows from the remark

. _ woev,
following (3), (Note that Jk 1 Jk,1 and M, _J (1) = 2k 2(1)) For (iii) simply
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note that the f-th Fourier coefficient of SD S(¢) is nothing else than

the - (D,9-th Fourier coefficient of ¢IT(R), (cf. (0.3)) and hence

equal to af(ﬁ) 'C¢(D,s).

For the induction step and the remaining assertion of the theorem

we need three lemmas.

Lemma 3.1 - Let ¢ € J and m*lm. Assume that C,(A,r) = 0 for

k,m o
all A,r with (r,m') = 1. Then ¢ £ 2 Jk,m |Ud .
’ d>1 . TE
dz|m,d|m' d

In particular, ¢ =0 if (w',Q(m)) = 1.

new
k,m

all T(&) ({(&,m) = 1), eand let N>0 be an arbitrary integer. Then there

Lemma 3.2 - Let ¢ € J be a simultaneous eigenform with respect to

exists a fundamental discriminant D< 0 and an integer s with

D= 52 mod 4mN such that Cd)(D,S)*O-

To formulate the third lemma we need an auxiliary operator.

For a positive integer £ with 221m define an operator u, on

2

1
‘x€z2 /922

4| -5])(1,%)

(6) (¢|u£) (1,2) := & k.o T

*

Obviously uy is well-defined, i.e. does not depend on the choice

. 2 . .
of representatives x for 2Z /222. We leave it to the reader to verify

that up maps J to J , that

k,m k,
12

7 C.,. Uyr)= 7§ C¢(£2A,2r')

r' mod 2m/%

r'sr mod 2m/42?

¢lu,
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(for all A= r2 mod Am/iz, A < 0), and that uy commutes with all

T(2") ((&',m) = 1).

Lemma-3.3 - Let ¢ € Jk o and let p be a prime dividing m. Assume

that ¢1Vp6up= 0 and that ¢|up =0 if p2lm. Then for any pair of

integers A,r with A < Q,A s r2 mod 4m and-any o20 one has

. |
P E e L0 it plm

a c (P'z— A, — 1) = ¢ l"p
a%pa ¢at a 0 i if pzlm

The proof of Lemma 3.3 is straightforward (using (7) and the definition

of Vz) and will be left to the reader. The proofs of Lemma 3.1 and

-

3.2 are postponed to the end of the paragraph. We show first of all how

the’ theorem now follows.

To complete the induction assume that (i) to (iii) are.true for all

m' < m.

Let m' run through all divisors of m, and for each such m' let
. . . in MY (e
f run through a basis of normalized Hecke eigenforms in k=2 (m') and
m

2,d through all pairs of positive integers with Edz =7 - Then f|B

2,d

2k=2

non-zero Hecke eigenform in J

runs through a basis of M {(m). For each such f let ¢ denote a

new
k,m’

respect to all T(&) ((&,m) = 1) as f. The existence of such ¢ follows

having the same eigenvalues with

from (i1) for m'<m,i.e.the inddctionhypothesis(if f is on Fo(m) then

there exists at least omne ¢ # 0 in Jk o having the same eigenvalues as f.
2
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If ¢ could not be choosen to be in Jze; then — by the Hecke
invariance of the decomposition (4) - it could be choosen to be in
new . ’ . . . .
Jk o' with a m’'< m. But this implies the existence of a g# 0 in
b}
;iwé (m') having the same eigenvalues as £, in contradiction to well-

known Atkin-Lehner theory.)

Consider now the map lel,d > ¢|UdoV2 from mZk ,(m)  to Jk,m'

The assertions (i) and (ii) will follow immediately as soon as we can

\this P
show that this map is an isomorphism, “ile.,-in view-ef ' (3); that the. kernel of
is 0. Since this map commutes with all Hecke operators the kernel is
also invariant under all T(%) ((2,m) = 1). Thus, if the kernel were

# 0, there exist by Atkin-Lehner theory an m'lm and an £ on Fo(m')

as above such.that a linear combination of the fiUdOVQ (R,d2 = ET) is

mapped to zero, i.e. such that a linear combination of the ¢|Ud°v2 is
zero (¢ associated to f as above). Clearly m'<m. By induction

hypothesis and equation (5) we have SD,5(¢IUd°V£) C¢(D s)fIBE 4

By Lemma 3.2 we can choose D,s so that C¢(D,s)*=0. Thus the ¢|Ud°v£

must be linearly independent.

It remains to prove (iii) for a pair ¢,f with ¢ in Jﬁe; and
f in M?Efé-( ). We have to show that
k-2 D E
(8) a%l = ) C¢(az’ S) = C¢(D,s)af(2)

for all £ 2 O.

First of all we consider the case £ > 0. For simplicity we assume

£=p* for a prime p, leaving the general case as an exercise.
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If p [ m then the left hand side of (8) is nothing else than

C¢|T(£)(D,S), the {D,s)-th Fourier coefficient of ¢IT(R) (recall that

D is a fundamental discriminant). Thus it equals C (D,s) times the

¢

eigenvalue of ¢, and hence f, with respect to T(), i.e. it equals

the right hand side of (8).

If pim then ¢ satisfies the hypothesis of Lemma 3.3: ¢1Vpup

(and J )

k,m
3

having the same eigenvalues as ¢, and hence must be zero P

(and q‘)Iup if pzlm) is a Hecke eigenform in Jk
’

LoTE

(otherwise there would be a Hecke eigenform in M2k-2(§) (or in

new . . .
(m), in contradiction

2k-2
to Atkin-Lehner theory). Hence the left hand side equals C¢(D,s) times

MZk_ZGE;)) having the same eigenvalues as f&M

- a . . .
lk 2. (mp)- €p if pllm and 0 if p2lm, where €_ is the eigenvalue of

p

and hence of f, with respect to Wp. Thus (8) is also true for plm.

Now let 2=0. Then ¢ (and hence f) must be an Eisenstein series,

a a7 : ..
say ¢ Ek,m,x,1 (and hence f EZk-Z with a primitive Dirichlet

character Y mod F, m= F2). But then (8) becomes

1 D, 6'9;

) ki ) I ’ = 13/ U 0).
(9) 5 L(2- ()] c¢(0 0) c¢(o s) °2k—3( )
For F # 1 (and hence C¢(0,0) = y(0) =0 = U§§33(0)) there is nothing
to show. For m = 1 (and hence C,(0,0) = 1) (9) becomes

¢

FL(2-k, (1)) /C(3-2K) = C,(D,s),.

¢

an identity which was proved in [E-Z].

¢,
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It remains only to prove the existence of a linear combination

in the SD s defining an isomorphism . Let WI,...,?r run
b

through a basis of simulataneous Hecke eigenforms of & Jnewlv

2im k,m
Using Lemma 7.2 it is easily verified that for each ?i there

%

exist a fundamental discriminant Di and an integer s; with

D. = S? mod 4m such that CW (D.,s.) #0. Choosing constants
1 1 i. 1 1l

0.1,..

. r
) # = : .
L(?l) 0 for all i where L zja‘ aj SDj’sj

.,0_ such that ZE-IGjCWi(Dj’Sj) #0 for all i =1,...,r yields

But then L 1is surjective (and hence an isomorphism): let

m'lm , ft.Mgifé—(m’) a Hecke-eigenform. Choose a non-zero eigenform

new having the same eigenvalues as f. Clearly ¢ can be

k,m'
choosen so that ¢Ivﬁvm'=?i for a suitable i. Then L(¢)|Bm/m, =LY

J

- c-f[ijmr 1 with a constant c#$o , hence L(¢) = ¢c*f, and
. . ' . 2 m
finally L(¢|Udovz) a C'lel’d for all " = —, .

We have still to prove Lemmas 3.1 and 3.2.

Proof of Lemma 3.1 -~ Using % pu(e) 1 e(EO = 0 for all integers r with
tim' pit P
(r,m') # 1 (u(*) denoting the M8bius function) one easily deduces from

the assumption that

(10) Y ou(e) o tn'[o,-g-l} = 0
tlm' kmllg P ‘

for all integers g.

. - - * * . . .
Applying suitable matrices [c d] € I to (10) and summing up one obtains
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/g ,
o= 7 © 1. u(t>¢|{n[3<°—)1} D owe 1 el{ nizy
glm' c,d=1 tim pit tim' x mod m' pit
( ,d)=1

an = ] we F o s et
tlm' -~ plt y mod p

o _2 z e - e
= 3. wdn) = L T Z ¢ICH[ ])
dim"- nlm’ z mod d dini2'mod p

dim nlm

e A Y Lo

Here we used the easily proved equation.

—

) ¢|[§] = ) ) |([§] [{-]) (for all s,t with st|m).
x mod st . ,.y mod s .z mod ¢ = ; S

oo J— e,

Consultlng the deflnltlon of uy (cf (6)) and W (cf. (5.6)) one can rewrite

{(11) as

0 = ¢[( 5[ u(d)d dd)(n (1-—'1?))
dlm'

pilml - PR
d?lm- pﬂm -
But the operator- -,5 (1 -~—W ) 1is invertible. Hence
S < plu
BRI pH’m '

1

0= 3 'u(d)g(¢|ud)|Ud
d|m
d%|m

?

which immediately yields the assertiom.

Proof of Lemma 3.2 - Let £ = p . We shall show that ¢IV£ ¥ 0.

pIN,pfm
Assuming this for the moment we then deduce from Lemma 3.1 that there

exists a pair A = r2 mod 4mf, A<O0, with {(r,m%) = 1 and C (a,r) #0.

o1V,
Note that (r,mR) = 1 implies

C¢|V£(A,r) = C¢(A,r), hence
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C¢(A,r)=ﬂ0. Write A = FzD with a fundamental discriminant D and
with D3s? mod 4mf.)
r = Fs' mod 4mf for a suitable g’ /In view of formulas (0.3) for the

action of Hecke operators on Fourier coefficients it is then clear

that C¢(A,r)=*0 implies C¢(D,s')* 0 (use again (r,mf) = 1, hence
(F,m%) = 1). Again using (r,mf) = 1, and hence (s',m%) = 1, it is then
clear that there exists an s 3 s' mod 2mf such that 52 2 D mod 4mN.
But C,(D,s) = C,(D,s') #0.

¢ ¢

To prove ¢|v£ #0 let p be a prime, p|f, and let V¥:= ¢|V£/p.
We show that Y # 0 implies ?|Vp # 0, so that by induction
$ * 0 implies ¢‘V2 * Q. (Note that -2 1is squarefree and hence Vzﬂ V2'°Vg"
for all 2',2" with 2'8" = 2).
So assume ¥ * 0 and @]Vp = 0. First of all note that ¥ 1is an

eigenform of T(p). Hence in view of (0.5)
\ D k-2 . -
(12) A Gy(0,9) = ¢y(e"D,pe) + ) PGy @,s)

for any D= 32 mod 4mi/p, D fundamencal, - .. and with lp being the
eigenvalue of Y with respect to T(p).
-
C:TNow ?IVP = 0 means

S

k=1
0= Cyly (p%D,p.9) -_Cq,(pzD.p's) +p  Cy(p, 8.
P
&— Combining this with (12) yields

k=1 D, k-2
(13) A0y (Ds9) = (o + () pT0) Gy(n, ).
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But by Lemma 3.1 there exists a AErzmpdAu&/p with (r,m/p)=1 and CW(A,r)#O
and as above we see that then.there‘alsbvexisps’a pair D=s®mod 4m&/t, D fundamental,
such that C\P(D,S')*O. Note that this implies iﬁ particular‘ (;B) - -1
(otherwise D @ 8'2 mod 4mf with an s' = s mod 2mi/p and

CW|V (D,s') = Cw(D,s') o CT(D,s)*'O). Thus we obtain from (13)
p .

k_
A= -p 2(p+1).
p
Now Ap is also eigenvalue of T(p) on MZk_z(mE/p). Clearly it can
not be an eigenvalue of T{(p) on the space of Eisenstein series in
MZk_z(mz/p). Also it cannot be an eigenvalue of T(p) on the space of

cusp forms in MZk_Z(mllp) since then it must satisfy
1A 1 < 252 (p+1)

be an elementary estimate . (Of course, one can also apply

the deeper Ramanujan—Petersson conjecture.) Thus,, in each case we have

a contradiction.
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Appendix. Some formulas involving class numbers

For a negative discriminant A, A %-3,-4 denote by h'(4)
the number of equivalence classes with respect to SLZ(Z') of
primitive, integral negative definite, binary quadratic forms of

1

1
discriminant A , and set h'(=3) = T h'{(~4) = 7 - Recall the

well-known formulas

1 ‘A
h'(éo = z 3. ___9_) ’
8o 0<x<]4, | \A
(1)
‘(a F° ‘(A (F B0\ E
h'(A,F7) = h' (B )y, ),Y%(F)=%u(:)?;.
b t|F
AO being a fundamental discriminant, F a positive integer. Also

reca]_l the function Hn(A) as defined in §1:
' 2
H1(A) = ) h'(A/£7)
£|F

if A= AQFZ » 84 a fundamental discriminant, and H1 (A) = 0 otherwise and

1p2
azb(%-:% )1{1 (A/a2b?) if (n,A) = a%b with squarefree b

Hn(A)= ' such that a?b?|A

0 otherwise .

Finally, recall the notation Aux (§4 of [$~7]) for the operator which
replaces a periodic function of x (x in Z° ) . by its average value.
. r_.-1¢ . s .
More precisely, Aux f(x) = [Z :L] szZr/L f(x) for any periodic function

f(x) on Zr, where L is any lattice such that f(x+y)=f(x) for all x€zZF, yeL.
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Proposition A.1. Let A be a negative discriminant, n a positive

integer. Then

T Q(‘() =L
@) Q mold T T'—I' L T R,
disc(Q) =A Q

where the sum is over a complete set of representatives for the

equivalence classes with respect to I'= SLZ(Z) of all integral

binary quadratic forms of discriminant A , where I‘Q denotes

the group of automorphisms (= TI) of Q.

Procf. The sum on the left hand side of (2) is clearly invariant
with respect to replacing Q@ by =Q . Hence it must be real, and

we can sum as well over all positive definite Q 1if we replace

|11'Q| e @E by IP; 7 Re(hv e @dy).
Now, if Q 1is primitive, then by Theorem 3 of '[S-Z]
@' ((—“}M) (A/(“ L) if (n,0) and 4/ (a,n)
(3) Re(Auxe(gc(li))) - o a n/(n,8)/ are both congruent to O

. or 1 mod. 4
0 otherwise

Here a denotes any integer represented by Q and prime to N.

By composition theory the set of equivalence classes modulo T
of primitive positive definite forms of discriminant A forms a
group. By the theory of genera the map Qb (%\ is a

/

character of this group which is trivial if and only if (m,A)
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is a square (or if A/(n,A) 1is a square, which here is impossible

since A < 0). Thus, Summing over primitive Q mod [, we obtain

1 Q(x) 1 ' -
%) Y Av e ( ) = = x,{(n) h'(4) .
Q mod.T |FQ| x ' n n A
Q primitive
disc (Q) =A

Here, as in §0 , x&(u) = a(%%%;) if (n,A) = az, A/az 8 0,1 mod 4,

and XA(n) = 0 otherwise. Also here we used Il | = 2,4,6 1if

Q
A<=4, A==4, A ==3 respectively.

Note that (4) remains valid if we replace each term
Auxe(gézl)) on the left hand side by Auxeciﬁizl), where a 1is

any integer prime to n (use Galois theory or modify (3)).

2

Hence, setting A=A F" , A, a fundamental discrimiant,

0

writing the left hand side of (2) as

£|F Qmod T TI1'_- Av e(ﬂg))
e s [ X n
Q primitive Q

disc(Q)=A/f?

»

and applying (4) we obtain .

1 . 2
< f%F(n,f.) Xpa/gr (@/(a,)) h'(A/£%).

Finally, applying the second formula in (1), we notice that the
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claimed formula (2) is reduced to the elementary identity

- F
(5) Y (n,f) ¥ (n/(n,£)) v, & =< el E_
e[r A/ g2 8, % 7 l
if (n,A)=a?b with squarefree
b such that a?b?|A and
A/a?b?=0,1 mod 4.

L 0 otherwise

which we leave as an exercise to the reader.

Remarks, - (1) Obviously (2) remains valid if we replace each summand

on the left hand side by l; i AUX(aE(X)), a being an integer
Q

prime to 1.

(i1i) Note that a similar formula as (2) holds for A being a square
if one omits the factors 1/IFQ| on the left hand side, and , of course, re-
places ‘% HQ(A) by E;E 3?3; , where (n,A) = azb,b 'squarefree
T (recall that vA for a square A equals
the number of equivalence classes mod. ' of integral quadratic forms
of discriminant A). The proof for this is the same as for (2). However, here every-
thing can be doné in a completely elementarywayusing Q(A,py) = ahz +VBAu

(0 Sa<vVh) asa complete set of representatives mod. ' for forms

of discriminant A . We leave it to the reader to work this out.

Proposition A.2. Let a,n be positive integers. Then

i Ed i cot(m)-Av,e@0A%) = -2(a,n) g H
mo n
nfb

SO

a/(a,n

where the sum on the right hand side is over all discriminants 4 < 0
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such that A'TE%ET and TE%ETE is squarefree.

Proof - The asserted formula 1is a simple consequence of the easily

proved identity

E i cot(m E) - e@ bkz) =2 & AZ»' ,
bmodn a o a

nib
where  {x)) for any real number x is defined by

E-7 if x€E+ZT,0<E< 1
.(x)). ={

0 otherwisge R

and the formula

2
z (( EA—')) = - ¥ Ha(A) (for relative prime,positive
Amod o\t B Aln,8<0 integers a,n).

n/A squarefree

The latter can be proved by writing

() L () e e vm

Amod n

inserting the identity

#{?\modnl)\zi\)modn}= D X, (V)
Ala, 420,1mod4 &

(Q(‘%P yV)mt

(xﬁ(v) as in §0Q, Qﬁ%? the greatest integer whose square divides %.),

and applying, after some obvious manipulations, the first



formula in (1). (With respect to this application of (1) note that
for any fundamental discriminant A , any integers a,n with

(a,n) = 1, Aln one has

) if A>0
av

() 0o
vmod n M // 7 T 1 v-d i aco

O<v<n

Again, the details are left to the reader (or else cf. [ 3 ], Lemma 6.5).
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