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KAUFFMAN BRACKET
OF PLANE CURVES

S. CHMUTOV,* v. GORYUNOVt

There exists a straightforward way to get an invariant of an im­
mersed cooriented hypersurface C in a smooth manifold N. We lift
C to the manifold M of cooriented contact elements of N. This gives
us an embedded subluanifold La. Now we take the value of a known
invariant of embeddings on La y M as the invariant of our initial
immersion C ortN.

The manifold M of cooriented contact elements is tbe spberisation
of the cotangent bundle of N: M = ST* N. [t has a natural contact
structure. Gur lifting La is a Legendrian submanifold with respect to
this structure. The hypersurface C is called the front of La. Thc ahove
procedure defines an invariant not only on imluersed C ort N hut also on
submanifolds with some "admissible" singularities which may appeal'
as singularities of fronts of smooth Legendrian submanifolds generically
embedded into M.

The simplest situation is N = R 2• The "admissible" singularities
in this case are cusps. Thus we can induce an invariant on collections
of c10sed oriented and cooriented plane curves which may havc only
double points and cusps as singularities. The manifold M of contact
elements of the plane is the solid torus M = R 2 X SI. So the lifted
submanifolds are Legendrian links in it. This general approach was
used in [11] to define an invariant of an immersed plane curve. There a
Kontsevich type integral [10] was taken as a known invariant of knots
in a solid torus. In the similar way, a polynomial invariant of knots in
a solid torus defined in [1] was lowered to plane curves in [2] .

.. Partialy supported by the Fellowship ((Emmae Giovanni Sansone" 1 the Interna­
tional Science Foundation and the Russian Foundation for Fundamental Research.

tSupported by an RDF grant of The University or Liverpool.
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In this paper we take the Kauffman bracket for links in cL solid torus
(see [15]) as a known invariant to be induced on plane fronts. It turns
out that it can be entirely defined in terms of front C itself without
using the Legendrian lifting. The Kauffman bracket is a polynomial in
two variables A and h, Laurent in A and ordinary in h. We show that,
after the substitution A = et and Taylor expansion in apower series
in t, the coefficient at tn is an invariant of Arnold's J+~theory [3, 4] of
order at most n in Vassiliev sense. These coefficients are polynomials
in h. vVe calculate the corresponding symbols (weight systems). As
a corollary we obtain that the first coefficient is essentialy the quan­
tum deformation of the Bennequin invariant introduced recently by
M.Polyak [18].

For an application of the same general idea to induce order 1 invari­
ants in a higher-dimensional situation see [12].

1 Definitions and known results

In this section we recall some basic facts about our curves, correspond­
ing Legendrian links and their invariants. See [3, 4] for more details.

1.1 Legendrian links and their fronts

A contaet element at a point of a plane is a line in the tangent plane. Its
coorientation is a choice of one of two half-planes into which it divides
the tangent plane. The manifold M = ST*R2 of all cooriented contact
elements of the plane is diffeomorphic to the solid torus R 2 x SI, since
the coorienting normal vector is defined by its angle <p. Manifold M
has a natural contact structure defined as zeros of the form (cos <p)dx +
(sin 4»dy, where (x, y) are coordinates on R 2

. A Legendrian link L in
M is an embedding of a number of oriented c;ircles iuto M tangent
to the contact planes at each of its points. A Legendrian link has a
natural framing by transversals to the contact planes. The canonical
projection of L to R 2 gives a collection of plane curves. We call it the
front of L. It has an orientation (coming from L) and a coorientation
(the coordinate 4> forgotten by the projcction defincs not only the lille
tangent to the front, but the siele of this line as well). A generic front
may have only transverse double points and cusps as singularities. We
call such a front a normal front. Since a front is cooriented the number
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of cusps on each component of a normal front is even.
Any cooriented plane curve C lifts to a Legendrian curve Lc E M

by taking the cooriented tangent direction as a contact element at each
point of C. The lifting of a collection of curves witb normal front
singularities is a link (Fig.I).

C

Figure I. Legendrian lifting.

Left picture: A nonnal front C with two componentsj (x, y) are coordinates on

R ~; C lies in the halfplane x > O.

Right picture: Framed Legendrian link La is drawn a.s a dillgrnm of thc projecLion

to the punctured plane with polar coordinat.es (x,~); the y-axis is perpendicular

1.0 the plane aod directed from the reader.

1.2 Index, Maslov index and perestroikas

To each component Cj of a normal front C = UCj we assign two in­
tegers, index l ind(Cj ) and A1aslov index 1L(Ci)' ind(Ci) is the number
of full rotations made by the coorienting vector as it moves along 0i'
Il(Ci) is the difference between the nUl11bers of positive and negative
cusps of Cj. A cusp is caIlcd positive if the I-form which coorients the
curve at the cusp point is positive on tbe neighbouring orienting vectors
and negative otherwise (Fig.2).

Figure 2. Negative and positive CUllpS.

The nUluber p(Cj ) is always even. Revcrsing of the orientation
of Cj changes the signs of both ind(Ci) and Il(Cj ). Reversing of the
coorientation of Ci changes only the sign of IL(Cj ).

10ther names are winding number, mtation numberJ ~Vhitney index.
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There are four types of generic degenerations of a normal front. We
show them in Fig.3 in perestroikas in generic I-parameter families.

)(··X-Q
tripie point perestroika self.tangency perestroika

eusp erossing perestroika ellsp birth.death perestroika

Figure 3. Perestroikas.

Theorem [13] (see also [3, 4]). The colleetion 0/ pairs (ind(C j ),

J.l( Cj )) is a complete inva1'iant of a normal front C = uCj under plane
isotopies and the foul' types of perestroikas 0/ Fig.3.

For eacb pair of integel's r ~ 1 and 5 ~ 0 let I(r,~ be the curve of
Fig.4. ind(I(r,ß) = r - 1; P(!(r.~) = 25.

!j CliSPS...--.-.

----·d··2r eusps ~__-..__

!j eusps

Figure 4. Callonica! eurve!l. 2

Tbe theorem says that each componcnt Cj of a norn1al front can be
transformed to one of the curves !(r,3 (possibly with changed orientation
or coorientation or both) by a sequence of the perestroikas and isotopies
of the plane. Fig.5 provides an example.

two· eU!lp births seIf- tangcncy

Figure 5. Transformation of the circle to K 2 ,o,

20ur choice of canonical curves slightly differs from Arnold's one [3].
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1.3 J+-type invariants

It is convenient to subdivide self-tangency perestroikas into .the follow­
ing foul' types according to the orientations and coorientations. A self­
tangency is called dangerous if both the tangent branches are cooriented
by the same half-plane anel safe otherwise. A self-tangency is called di­

reet if both tangent brauches are oriented by thc same tangent vector
and inverse otherwise.

)< -X-Q )< -X-Q
dangerous direct self-tangency dangerous inverse self-tangency

)(-X-Q )("X"Q
aafe direct self-tangency safe inverse self-tangcncy

Figure 6. Four types of self-tangencies.

Note that, if two tangent branches belong to thc same component of a
front, the property of the tangency point to be direct 01' inverse (resp.
dangerous 01' safe) does not depend on the orientation (resp. coorien­
tation) of the component.

It is easy to see that the topological type of a Legendrian link La
in the solid torus M does not change under all the perestroikas ex­
cept dangerous self-tangencies. A dangerous self-tangency perestroika
corresponds to an interchanging of overcrossing and undercrossing in a
link diagram like that in Fig.l. But not a11 interchangings can be done
in the dass of Legendrian links, anel so in the dass of corresponding
fronts.

We will say that two fronts are J+-equivalent if one can be trans­
formed to anothcr without dangerous self-tangendes. Fig.5 shows a
J+-equivalence of the cirde to K2,o. Similary one can show that the
circle with the opposite coorientation is also J+-equivalent to [(2,0'

Another example is J+-equivalence of figure-eight curves with differ­
ent choices of orientation and coorientation (Fig.7).

()()- ...~ J+ cx:.>4 ...:"J+

cusp births safe self-ta.~gencies

c:><)- ,:.."" J+ KX)- ,:..""J+

Figure 7. J+-equivalence of figure-eight curves.
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By a J+-type invariant we mean an invariant of normal fronts
which does not change under all the perestroikas except dangerous self­
tangeneies. The first exalnple of such an invariant was an invariant
introduced by V.I.Arnold in [3, 4] anel named J+. This is an invariant
of a one component front defined by its values on the canonical curves:

J+(Kr,~) = -8 (for any choice of the orientation anel coorientation)

anel by its behavior under thc dangerous self-tallgency perestroikas:

J+ (Q) -J+0<) = 2;

According to Theorem 1.2 this data is sufficient for calculating J+ on
any normal front. Here is an example.

J+ ( <:1)/ J+ ( \jJ) ) = J+ ( W)-2

two cU~P crossings dange'rous self-tangency

J+(V) -2 /= J+(\1)-2

two C'llSP births tWQ sa.fe self-tangencies

J+(!(3,O) - 2 = -2.

There are several combinatorial formulas for calculating the values
of J+ on curves without cu~ps (see a review in [8]) and Polyak's formula
{17] for curves with cusps.

In Vassiliev sense J+ is an invariant of order 1.

Remark. Reversing orientations of both the local brauches in the
two dangerous self-tangency perestroikas of Fig.6, one obtains two more
dangerous perestroikas which look di,fferent from those above. But
their behaviour in all our constructions is absolutely idcntical to the
behaviour of the corresponding "twins". So we spell all thc formu­
las involving dangerous self-tangencies only fol' thc two perestroikas of
Fig.6.
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1.4 The Bennequin invariant and its quantization

For a Legendrian knot !( in a contact R 3 Bennequin [6] defined a
self-linking number ß as the linking number of !( with a small shift
of ]( in a direction everywhere transversal to the contact planes. This
definition was generalized to a non simply-connected case of Legendrian
knots in the solid torus ST*R2

, with its standard contact structure, by
S.Tabachnikov [19].

As the usual linking number [16] the Bennequin-Tabachnikov in­
variant can be read from a diagram of a knot and its framing like that
in Fig.l. For example, for the bold component of the link of Fig.l ß = 1
(we have two positive crossings of the projections of the knot and its
framing), for the thin component ß = 3 (we havc six possitive crossings
there).

Arnold proved [3] that ß = 1 - J+. So any cOlnbinatorial forrnula
for ß gives a formula for J+ anel vice vcrsa. Several such formlIlas are
in [19] (see also [9]).

M.Polyak [18] invented the following statc sum formula for the
Bennequin-Tabachnikov invariant ß. To each crossing p of a one com­
ponent normal front C we attach the sign a(p) = +1, if thc pairs (ori­
enting vector, coorienting vector) for the two intersccting brauches give
the same orientation of the plane, and a(p) = -1 otherwise. According
ta this sign we split C at p respecting thc orientation and coorientation
(Fig.8).

Figure 8. Splittings of a front C at a crossing saving the orientation and coori·

entation.

In fact this is a unique natural splitting which gives two component
curves with two branches near d belonging to different components.
Denote by C; (resp. C:) the component that contains thc left (resp.
right) branch assuming both branches oriented downwards (see Fig.8).
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Theorem [18]. Let C be a one component normal front. Deno/.e
by S the state sum

S = E(ind(C:) - ind(Cp-) - (J(p))
p

over the set 01 all double points 01 C. Then

ß(Lc ) = S - (ind(C) - 1)n+ + (ind(C) + 1)n- + ind2 (C),

where n+ (resp. n-) is half the number 01 cusps 01 C whose neigh­
bourhoods give a positive (resp. negative) contribution io the index 01
C.

This formula admits a quantum deformation [18]. Let q be a formal
quantulTI parameter and

qn _ q-n -1

[n]q = 1 E Z[q, q ]
q- q-

the corresponding quantum integer.

Theorem [18]. Let Sq = l:[(ind(C:) - ind(C;) - (J(p)]q be a
quantum state sumo Then

is a J+ -type invariant 01 a one component norrnal front C such that
ßl(Lc) = ß(Lc ).

Remark. The definition of ßq is easily seen to be independent
from orientation anel coorientation"of a normal front.

Taking our canonical curves I(r,~ with the orientations as in Fig.4
we get n+ = (2r + s)/2, n- = s/2 anel ind(C) = r - 1. So

Let us describe the behavior of the quantull1 Bennequin invariant
under dangerous self-tangencies. First of all wc define an index id 01
a self-tangency point d which appears during such aperestroika of a
normal front. To do this we split thc self-tangency point respecting the
orientation and coorientation as shown in Fig.9.
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Figure 9. Splittings of dangerous self-tangencies saving the orientation and

coorientation.

We obtain two curves. Let i' and i" be their indices. We set i d = li'_iNI.
The jumps of ßq under dangerous self-tangencies of the index id are:

These formulas show that ßq is an invariant of order 1 in Vassiliev
sense.

2 Kauffman bracket

In this section we define the Kauffman bracket and prove its unique­
ness. The bracket does not depend on the ol'ientations o[ curves of a
collection.

For a framed link in a solid torus the Kauffman bracket was defined
in [15]. Its values belong to Z[A±I, h]. Using the Legendrian lifting we
can define < C > = < Lc >. This is a J+-type invariant of anormal
front C. We call it the /(auiJman bracket of C.

2.1 Main result

Theorem 1. There exists a unique J+ -type invariant < C > E
Z[A±I, h] 0/ a nOi1nal front C satisfying the Jollowing properties:

1) (X) = A-10 0-A-2«();
2) (OO)=-A3

;

3) (0) = -A3 h;

4) < [(I . /(2 >= -(A 2 + A-2 ) < /(1 > . < !(2 >,
Jor [(I -I 0, }(2 -I 0.

/Iere [(I . [(2 is a co/lection 0/ two frants K 1 and [(2 which lie in different
half-planes with respect io a certain line in R 2 •
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Remarks. 1. After the Legendrian lifting (see Fig.l) the frag­
ments of links corresponding to the fronts of property 1) have the fol­
lowing diagrams in the (x, 4>)-plane:

So property 1) is just the usual skein relation for thc Kauffn1an bracket.
All other properties also correspond to the usual properties of the Kauff­
man bracket in thc solid torus (see [15]). So the existence of such a
bracket of normal fronts follows directly from [1.5].

2. For calculation of the Kauffman bracket we will use the fact
that the curve [{l,D can be rnoved through other curves of a front. For
example

two cusp crossings

So, if one of the components of our front is the ](1,0 with nothing inside,
we can transfer it far away from everything else and apply property 4)
of Theorem 1:

3. One more useful fact is that two circles with opposite coorienta­
tions are J+-equivalent (see sec.1.3 and Fig.5). So their brackets are
equal.

Proposition 1. For any J+ -type invariant satis/yin9 p1'ope1'ties
1)-4) 0/ Theorem 1 the /01l0wi119 equalities hold:

(x) = A(Q) - A2(X);

() 0-(Q) = (A-A-1)((X)-(X))·

10



Proof of Proposition 1.

(Q) = A-1(Q)_A-2(Q)

= A-2(S~) - A-3(X) - A-3(Q) +A-{~~ )
- A-1 (A- 1

() 0-A-2(~))
+(_A-3

() +A-4
( _A3

)(-N - A-2l«())

A-1
( X) +(_A- 3 +A+ A-3 )(X)·

This implies the first equality of the proposition. The second one follows
from it and property 1) of Theorem 1.

2.2 Usefullemmas

In lemmas below we prove some relations for thc Kauffman bracket
which follow from properties 1)-4). We will use these relations in sec.2.3
to prove the uniqueness of the Kauffman bracket.

The relations hold for both possible coorientations of the fragment
involved. Therefore we do not indicate its coorientation. Thc coori­
entation of the extra circular component also eIoes not matter due to
Remark 3 above.

Lemma 1. (yy) = A(Q ) - A2
( AA ).

Proof of Lemma 1. (AA);= (--SL) = A- 1
( Q ) - A-2

( yy ).

Bafe self~tlUlge~cy and cusp death

Lemma 2. (~) = (0) = (_A3)(_).
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Proof of Lemma 2.

cusp crossing

:'~ (A- 1
- A-2 (A5 + A))(-) = (_A3

)(_).

cusp death and properties 4),2)

The proof of the second equality is similar.

Proof of Lemma 3.

( JJJJ- )= (!iAA )=A-1
(~ ) - A-2

( Sl-AA ).
safe ~elf-t8ngencyaod cusp death

Lemma 4. (0) = (A- 1
- A')(.A.A ) - N( Q ).

Proof of Lemma 4.

(0) = A(-0) + A- 1
( ----u- )

.,~ A(yy) + A-1(AA)
cusp birth and safe self~tangency

..,~ A2
( Q ) + (A- 1

- A3
)( AA ).

Lemma 1

2.3 Proof of Theorem 1

Ta prove the llniqlleness of the bracket it is enough to show that prop­
erties 1)-4) are sufficient for calculation of the bracket on any nonnal
front. We prove this giving an algorithm for such calculation.

12



First of all we eliminate all double points of the front using the
skein relation 1). We obtain a linear cOlnbination of brackcts of ffonts
without double points. Each of these fronts is just a union of "ovals"
which can have cusps and be nested. Using LemIna 2 we cancel pairs
of neighbouring cusps with opposite directions. Then using LenlDla 1
we invert the directions of pairs of cusps from inside to outside of their
"oval" .

After that we reduce the number of cusps on each "oval" to zero
or two (Lemma 3). Now consider the deepest "ovals" of the nests.
We transfer all those which are !{l,o-curves [ar away (sec Remark 2)
reducing our cOlnputation to the computation of thc bracket of the
remaining part. We havc left only cil'eIes on thc deepest level. We
decrease their depth by LeITIllla 4. This brings us to the beginning of
this paragraph with the depth of the nests recluced by 1. Theorem 1 is
proved.

Corollary. The [(auffman bracket does not disiinguish beiween
two Jronis which differ by the simultaneous change 0/ coonentaUons 0/
all the components.

Corollary follows directly fr0111 the proof of Theorenl 1.

Exan1ple. The Kauffman bracket of canonical curves.

< !(r,3 >
< !{I,O >
< !(2,0 >

(_A 3 )3 < !(r,O > by Lemma 2;
_A3 by property 2);

= -A3h by property 3).

For r > 2, < Kr,o > can be computed recurrently:

< Kr,o > = (ryy u, YYY) )
" y "

2r CU8pR

Lerr;ma 3

A-1
( ryy ". :yy:::;:J ) - A-4 < [(r-2,0 >

" '0....
2(r-l) cusps

(A 4 + l)h < !(r-l,O > -A4 < !(r-2,O > .
properties 4) and 3)

Setting A = 1 we get < [(r,O > IA=l = -Tr-1(h), where thc Tn(h)
are the classical Tchebyshev polynomials in h: l"'n(cosx) = cos(nx).

13



So the negative of < Kr,o > can be considered as adeformation of
the Tchebyshev polynomial with the parameter A. The number of the
polynomial is the absolute value of the index of the canonical curve.

3 Taylor coefficients

In this section we prove an analog of Birman-Lin theorem [7] for the
Kauffman bracket of a normal front anel calculate the sYInbols of Taylor
coefficients of the bracket as functions on Inarked chord diagrams.

3.1 Finite order J+-type invariants

The extension of a knot invariant to degcnerate knots with double
points is basic for the Vassiliev theory. In a silnilar way any J+ -type
invariant f recursively extends to fronts with a finite number of dan­
geraus self-tangendes:

These rules are duc to the natural coorientation of the strata of
dangerous self-tangencies from [3]. When lifted to ST*R2 both rules are
in fact the definition of an extended invariant of the original Vassiliev
theory.

Following the above rules we get the extension of the Kauffman
bracket of plane fronts. One shoulel note that, though the Kauffman
bracket of a normal front does not depend on orientations of its com­
ponents, the extended bracket does depend on these orientations if a
degenerate front has I110re than one component.

Definitions. A J+-type invariant f has order 11, in Vassiliev
sense if n is the Inaximal number of dangerous self-tangencies of a
front on which the extension of f does not vanish. The symbol of such
f is the restriction of f to the set of fronts with precisely n dangerous
self-tangendes.

Gromov's theorem (sec.1.2) Ineans that indices and Maslov indices
of the components are the only invariants of order zero.

The difference of two invariants of order n with the same synlbol is
an invariant of order less than n.

14



Theorem 2. Set A = et in the J{auffman bracket 0/ a plane front
e and expand the result in apower se1'ies in t. Then the coefficient at
t n in the senes< e > IA=et is a J+ -type invariant 0/ order at most n
ln Vassiliev sense.

Proof of Theorem 2. Let e be a front wi th n +1 dangerous self­
tangency points d l , ••• l dn+1• We consider two splittings of C (Fig.10)
at a point di alld attach to each of the splittings a sign c(di ) which
indicates either agreement Cl' disagreenlent of the surgery with the ori­
entations.

~;
f(di)=l V

~;
((di)=-l X)

A
)

~;
f(di)=l X ~;

f(dj)=-l V
) )

A
disagreement with thc orientations agreement. with the orient.ations

Figure 10. Signs of splittings of dangerous sclf-tangencies.

Let eq ,... ,(nt1 be the splitting of e at all the points d l , •.• , dn+l
with the signs f.(d i ) = Ci. The second equality of Proposition 1 of
sec.2.1 irnplies

< e > = (A - A-1 ) n+ I "'" eL cl····· f'.:n+l· < (1, ... ,(n+1 >, ,

where the surn is taken over all 2n+l possible splittings of the self­
tangency points. The substitution A = et and Taylor expansion provicle

(A - A- 1 )n+l = (2t)n+l + terms of higher degree

Therefore the coefficient at in in < C > IA;;:et is cqual to zero. Theoreln
2 is proved.

Remark. The proof dernonstrates a bit more than thc thcorenl
claims. Namely, evaluations at A = 1 and A = -1 of the nth derivative
of thc Kauffman bracket with respect to A turn out to be invariants
of order at most n (cf. [7]). The exponential substitution is a sort of
tradition introduced in [7].

15



3.2 Symbols of the coefficients

There are several ways to define a chord diagralll of adegenerate front.
Say, one can follow the approach of [11] Inarking chords. But the way
which looks most convenient for thc study of the I<aufflnan bracket is
as folIows.

Consider an oriented l-colnponent front C with n dangerous self­
tangencies. Up to an isotopy of the ambient plane we can assurne that
the coorienting vector at each of the seIf-tangency points is horizontal
and directed to the Ieft. Take I disjoint circles Si u ... u Sl oriented
counter-cloekwise in a plane. Consider the front C as the image of a
mapping Si u ... U Sl -+ R 2

• Connect the two preimages of a direct
(resp. inverse) dangerous self-tangency by asolid (resp. dashed) chord.
Orient this ehord from the inverse ilnage of the fight-hand branch of
the self-tangency to that of the left-hand one. Mark an arc of a eircle
between two neighbouring endpoints of chords by a pair of integers
(i, p), where i is the contribution of this are to the index of C anel I-l is
its contribution to the Maslov index of C.

The obtained chord diagram considered up to orientation-preserving
diffeomorphisms of the eircles Si, ... l Sl is called the marked chord
diagram of the front C anel denoted by De . Any abstract mafked
chord diagram is easily seen to be the Inarked ehord diagram of an
appropriate front.

Da ~(~~~l~(1,-11 c 0(1,o)
(0,1) ----- ~-- --~-

C2 (0,1)

(1,0)

Figure 11. A front with three dfingerou8 self-tangencies find its markcd chord

dingram.

Gromov's theorem of sec.1.2 implies that two fronts Co ancl Cl with
the same marked n-chord diagram are related by a homotopy {Ct hE[O,l]

in which any front Ct has n clangerous self-tangendes except a finite
number of instants t when Ct gets n + 1 dangerous self-tangendes (cf.
[11]). Thus the symbol of an invariant of order n defines a function on
marked chord diagrarns with n chords. Thc main result of this section

16



( c;)=-I (. (0,0)\

) \ • (O,ol)

(Proposition 2) is a description of this function, denoted by < Da >n,
for the symbol of the coefficient < C >n at ln of < C > IA=et (cf.
sec.6.3 of [5]).

To formulate the statement we redraw Fig.lO in tenns of diagrarns.
Order chords Cl, .•. ,Cn of an abstract marked n-chord diagram D in
an arbitrary way. Define two signed splittings of a chorcl Ci as shown
in Fig.12. In each of the cases the chord is substituted by two oriented
marked arcs. As it will become obvious frOIn what follows, these split­
tings of Ci correspond exactly to the similarly signed splittings of the
self-tangency point di in Fig.l0 if the chord represents the point in thc
marked diagram of a front.

( • Ci ) (Ci)=1 ~
),(O;ij]

{_..gi )
((ci)=l

)~
\~

(Ci )=-1 (. (0,1)\

) \ • (O,I»)

Figure 12. Splittings of chords, their signa and markinga.

Let D(I, ... ,(n be a splitting of the diagram D with signs €(cd = Ei. We
denote by [(EI, ... , En ) the number of eomponents of D(I,... ,(n: D(I, ... ,(n =
Uj ( D(I , ... ,€n) j . Eaeh eornponent consists of orien ted 111arked ares whieh
are either ares of eircles of D or thc results of splittings of chords
of D. For a eOlnponent (D(I, ... ,(n)j we defille two integers, index ij
and Maslov index /-Lj, as follows (see Fig.13). Let HS walk along thc
component (D(I, ... ,(n)j anel Sutn markings (i, /-L) of thc ares we visit with
appropriate signs. Walking along an are oriented in (resp. opposite
to) the direction of our journey we take its index i anel Maslov index
J10 with the sign plus (resp. minus). Of course, ii and /-Li change their
signs for thc trip in the opposite direction. But the statement below
does not depend on these signs.

Proposition 2. The value < D >n 0/ the nth coejJicient 0/ the
!.....auffman bracket on a marked chord diagram D is given by the /orrnula

1((I,... ,!n)

< D >n= _2n L 21(€I, ...,(n)-I. cl· .... En ' TI (-1)tl j /
2Tli

J
'I(h),

(1 , .•• ,(n j.= 1

where the sum is taken over all 2n possible splittings 0/ D, the product
is taken ove1' all cornponents 0/ a splitting, Tn (cos x) = cos(nx) are the
classical Tchebyshev polynomials.
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Example. For the marked chorcl diagraIll D of Fig.ll we have thc
eight splittings shown in Fig.13.

D _

(0,1)

~
(1,0)

it=O-D=O i3 =1-0=1
111 =-1-1=-2 1J3=0-0=0
~=0+0+0+0+1-0+1+0=2

11~=1+0+1+1+0-I-l+1=2

(1,0)

it=O-O=O 111=-1-1=-2
i~=0+0-1+0+0+0+1-0+1+0=1

I1J=I+1-0+1+1+1+0-1-1+1=4

,0)
0,0) ,-----,-;:,"""7>\

~
(1,0)

i1=0-0-1+0-1-0-0-0-0-0=-2
111=-1-0+1+1-0-1-1-0-1-0=-2
h=I-0=1 11~=0-0=0

(1,0)

i l =0-0-1+0-1-0-0-0+1-0-0-0=-1
IJI=-1-0+1+1-0-1-1-1+0-1-1-0=-4

(0,1)

~
(1.0)

il=O-O=O i3 =1-0=1
111=-1-1=-2 113=0-0=0
i 2=0+0+0+0-1-0+l+0=O
I1J=I+0+1+0-ü-0-l+1=2

(i,0)

i1=0-0=O 111=-1-1=-2
i~=0+0-1+0+0+0-1-0+1+0=-1

I1J=I+I-0+1+!+O-O-0-1+1=4

(0,1)

~
(1,0)

i 1 =0-0-1+0+1-0-0-0-O-0=0
111=-1-0+1+0+0-0-1-0-1-0=-2
i 2=1-0=1 112=0-0=0

(1,0)

i t =O-O-I+O+I-O-O-O+I-O-O-O=1
111=-1-0+1+0+0-0-1-1+0-1-1-0=-4

Figu re 13. Eight splittings of the marked chord diagrnm D of rig.ll. We assurne

the chorda enumerated as in Fig.l1. Calculating the indices of a component we

are walking along the component starting from the point ... in the dircction of thc

are eontaining ....
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Therefore

< D >3 -S( -4( -To(h))(-T2(h))Tdh)
+4( -To(h))( -To(h))TI (h)
+2( -To(h))T1(h) - 2( -To(h))Tt{h)
+2(-T2(h))T1(h) - 2( -To(h))TI(h)
- Tl (h) + Tl (h) )

-8TI (h)( -4To(h)(T2 (h) - To(h)) - 2(T2(h) - To(h)))

= 16T} (h )(T2(h) - To(h ))(2To(h) - 1)

= 16h(2h2
- 1 - 1)(2 - 1) = 32h(h2

- 1),

since To(h) = 1, Tdh) = h, T2(h) = 2h2
- 1.

Proof of Proposition 2. Let 0 be a front with n dangerous self­
tangeneies. The proof of Theorem 2 (see sec.3.1) provides an explicit
formula for the value < 0 >n of the nth coefficient of the Kauffman
bracket on this front:

< G >11. = 211. L EI····· t n · < G(1, ... ,(n >0 .
(I,· .. ,(n

So for calculation of < 0 >11. = < Da >11. it is enough to know the zero
order coefficients < 0(1, ... ,(n >0. The lernma below gives an explicit
formula for < C(\ ,... ,(n >0 in terms of absolute values of indices and
Maslov indices of components of the front C(I ,...,(n' When the ordering
of the chords in the diagram Da is induced by an ordering of dangerous
self-tangencies of the front 0, these absolute values are easily seen to be
given by the above algorithm of counting thc index information about
the splitting (Da )(1 ,...,(n' Thus Proposition 2 follows from

Lemma 5. Let C = U~:;:;l Cj be a normal front with I components.

Pul i j = ind( Cj ) and J--l = L::;:;:;l ll(Cj ). Then

I

< C >0= _2/- 1(_1)Jl/2 TI T1i}l(h),
j:;:;l

where Tn ( cos x) = cos(nx) are the classical Tchebyshev polynornials.
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Proof of Lemma 5. The second equality of Proposition 1 of
sec.2.1 implies that the zero order coefficient of the Kauffman bracket
is invariant under dangerous self-tangencies as well. Due to Gromov's
theorem (sec.1.2) < C >0 depends only on indices and Maslov indices
of components of C. Therefore it is enough to calculate < C >0 on a
collection of canonical curves. Property 4) of Theorem 1 ilnplies

< ](1 . ](2 > 0 = - 2 < !(1 >0 . < J(2 > 0 .

So Lemma 5 follows frorn the calculation of the Kauffman bracket on
the canonical curves from sec.2.4.

Remark. Proposition 2 shows that the orientations of chords in a
marked chord diagram do not n1atter for the value of the symbol cf the
coefficient. Indeed reorientation of a chord in a diagram D can effect
only the Maslov indices J.lj in the fonnula of the proposition. But for
any splitting of thc diagran1 the surn of thc f-lj rnodulo 4 is not affectcd.

In fact the independence from orientations of chords is a general
property of the symbol of any J+-type invariant f:

f({:) fC~) = fC~) = feE) -fd~)
= fcf) -f(tl:) = f(().

The second equality here is due to the fact that we are considering a
syrnbol. The 3rd and 5th ones are the definition. A similar chain of
equalities is valid for an inverse dangerous self-tangency.

Thus thc orientation of chords in our defini tion of the marked chord
diagram of a front with clangerous self-tangencies should be omitted.

The obtained relation is not the only relation on the values of Sylll­
bols on our marked chord diagrams. There are a lot of others, some of
which are quite obvious. A complete diagramrnatic description of sym­
bols of finite order J+-type invariants of one component plane fronts
has been obtained by J.W.Hill [14]. It turns out that one needs to
add one more Inarking, by the I\1aslov index of the whole front, to the
marked chord diagrams used in [11] in the case of regular plane curve.
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3.3 The first coefficient

The proposition below means that the first coefficient < C >1 of thc
Kauffman bracket of a one component normal front C carries the same
information as the quantum Bennequin invariant ßq( La) from sec.1.4.
Setting h = (q +q-l ) /2 brings < C >1 to the form whose essential part
is ßq(Lc ). A reason for this substitution is that it Inakes the Tchebyshev
polynomials Tn(h) very simple: Tn(q+~-I) = qH+l-n = ([n+l]q-[n]q)/2.
Unfortunately the explicit formula relating < C >. anel ßq(Lc ) does
not look very elegant.

Proposition 3. Let C be a one componenf nOllnal front 0/ index
i and Maslov index J1-. Then

< C >1 Ih=(q+q-I )/2 = (-1 )~/2 (~(qi +q-i)J+(C) +2ßq(Lo )) +R( i, /1),

where the quantum constant R(i, J1-) depends only on the index i and
Maslov index ,1, 0/ C:

R(i,p) = (-1)Jl/2([Ii[ + 2]q - (Iil + Illl + ~)[Iil + l]q

- (Iil- ~ - ~)[liJ]q + (21il + 1lf +2)[Iil- l]q + [Iil- 2]q).

Proof of Proposition 3. We havc to check two points. Firstly,
thc values of both sides of the identity on the canonical curves should
coincide. Secondly, the jumps of both the sidcs should be the same
undel' a dangerous self-tangency perestroika.

The fact that the canonical curvcs satisfy thc identity follows frolll
the direct computations. We actually introduced the complicated term
R(i, /-l) as the differencc bctween the values of the left-hand side and
the remaining part of the right-hand side on thc cul've ]{lil+l,IJlI/2 with
any orientation and coorientation (both sides of the identity do not
change when we either reorient 01' rccoorient a front). The evaluation
of the "main" part of the right-hand side on the canonical curves is
provided by the settings and computations of sees. 1.3 and 1.4. The
left-hand side of the identity is aGA < C > IA=l. Its evaluation on the
canonical curves is based on rather elelnentary calculations (we omit
them here) of similar derivatives of the dcfornlations of the Tchebyshev
polynomials of see.2.3.
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Now R( i, Il) does not change under any perestroika. So the jump
of the right-hand side of the identity undel' a clangeraus self-tangeney
perestroika at a point d of index id is equal (see sees. 1.3 and 1.4) to

Let us ealculate the jump of the Ieft-hand side. Aeeording to see.3.2
we assoeiate one of the marked ehord diagrams of Fig.14 to a dangerous
self-tangeney point d of index i d .

i=i'+ill ; Jl=Jl'+Jl II
;

Jl' ,JlII are even.

direct self-tangency

ES
(i",Jl")

id=li'-i") i=il+illj /-J=/-J'+Jlllj

Jl',Jl" llre odd.

inverse self·tangency

ES
(i" ,Jl")

id=Ii' -il/ I

Figure 14. Marked chord diagrnma of a sclf-tangency point d of index i d •

" ""12=1

W2=Jl"

p." is evcn.

il=i'
/-JI=/-J'

i 1=i' +O-i"+O=±id
1~1 =Jt'+1-Jl" +1 =J~-2(Jl"-I)

D+@il,,)

(01

(0,1)

(i",//I)

D (i',Jl') _______

e
(i" ,Jl") ------...

The jump is the value of the symbol of < C >Ion the eorresponding
diagram. By Proposition 2 (see.3.2) for ealculation of the values we
have to eonsider two splittings of eaeh of the diagrams as it is shown
in Fig.15.

Jl" ia odd.

i 1=i'+O-i"+O=±id
fJI =1" +O-p."+O=/-J-2Jl"

D+~i"I)
00

(0,0

(;11,1-''')

. "
11 =1

J~I=/-J'+l

i2=i"
1~2=/~II-l

Figure 15. Splittings of ma.rked chord diagrams with one chord.
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Therefore the jumps are as folIows.
For a direet self-tangeney (p" is even):

<-Q\ -<><) 1 = -2( -2(-1)1"/2Tli'l(h)( -W"/2Tli"l(h)
+( -1)1l/2-(J,II-l)TiAh) )

2(-1)1'/2 (2TWI(h)Tlilll(h) + Tid(h))

= 2(-1 )1'/2 (2 . q/+l-i
l

• qi"+l-ill + qid+l-id )

(_1)J'/2(qi +q-i + 2(qid+ q-id )).

For an inverse self-tangeney (p," is odd):

-2(-2( -1)(J'I+l)/2TIi'I(h)( -1)(J'''-1)/2Tlifll(h)

+ (-1)J'/2-J'''Tid (h))

= 2( -1 )1'/2 (2TIi'I(h )Tli"l (h) + TiAh))

= (_1)J'/2(qi +q-i +2(qid +q-i d )).

Proposition 3 is proved.
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