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KAUFFMAN BRACKET
OF PLANE CURVES

S. CHMUTOV,* V. GORYUNOV!

There exists a straightforward way to get an invariant of an im-
mersed cooriented hypersurface C in a smooth manifold N. We lift
C to the manifold M of cooriented contact elements of N. This gives
us an embedded submanifold L;. Now we take the value of a known
invariant of embeddings on Lg < M as the invariant of our initial
immersion C o= N.

The manifold M of cooriented contact elements is the spherisation
of the cotangent bundle of N: M = ST*N. [t has a natural contact
structure. Our lifting L¢ is a Legendrian submanifold with respect to
this structure. The hypersurface C is called the front of L. The above
procedure defines an invariant not only on immersed ' o+ N but also on
submanifolds with some “admissible” singularities which may appear
as singularities of fronts of smooth Legendrian submanifolds generically
embedded into M.

The simplest situation is N = R? The “admissible” singularities
in this case are cusps. Thus we can induce an invariant on collections
of closed oriented and cooriented plane curves which may have only
double points and cusps as singularities. The manifold M of contact
elements of the plane is the solid torus M = R? x S'. So the lifted
submanifolds are Legendrian links in it. This general approach was
used in [11] to define an invariant of an immersed plane curve. There a
Kontsevich type integral [10] was taken as a known invariant of knots
in a solid torus. In the similar way, a polynomial invariant of knots in
a solid torus defined in [1] was lowered to plane curves in [2].

*Partialy supported by the Fellowship “Emmae Giovanni Sansone”, the Interna-
tional Science Foundation and the Russian Foundation for Fundamental Research.
tSupported by an RDF grant of The University ol Liverpool.



In this paper we take the Kauffman bracket for links in a solid torus
(see [15]) as a known invariant to be induced on plane fronts. It turns
out that it can be entirely defined in terms of front C' itself without
using the Legendrian lifting. The Kauffman bracket is a polynomial in
two variables A and h, Laurent in A and ordinary in A. We show that,
after the substitution A = e' and Taylor expansion in a power series
in ¢, the coeficient at t" is an invariant of Arnold’s J*-theory (3, 4] of
order at most n in Vassiliev sense. These coeflicients are polynomials
in h. We calculate the corresponding symbols (weight systems). As
a corollary we obtain that the first coefficient is essentialy the quan-
tum deformation of the Bennequin invariant introduced recently by
M.Polyak [18].

For an application of the same general idea to induce order 1 invari-
ants in a higher-dimensional situation see [12].

1 Definitions and known results

In this section we recall some basic facts about our curves, correspond-
ing Legendrian links and their invariants. See [3, 4] for more details.

1.1 Legendrian links and their fronts

A contact element at a point of a plane is a line in the tangent plane. Its
coorientation is a choice of one of two half-planes into which it divides
the tangent plane. The manifold M = ST*R? of all cooriented contact
elements of the plane is diffeomorphic to the solid torus R? x S7, since
the coorienting normal vector is defined by its angle ¢. Manifold M
has a natural contact structure defined as zeros of the form (cos ¢)dz +
(sin ¢)dy, where (z,y) are coordinates on R®. A Legendrian link L in
M is an embedding of a number of oriented circles into M tangent
to the contact planes at each of its points. A Legendrian link has a
natural framing by transversals to the contact planes. The canonical
projection of L to R? gives a collection of plane curves. We call it the
front of L. Tt has an orientation (coming from L) and a coorientation
(the coordinate ¢ forgotten by the projection defines not only the line
tangent to the front, but the side of this line as well). A generic front
may have only transverse double points and cusps as singularities. We
call such a front a normal front. Since a front is cooriented the number



of cusps on each component of a normal front is even.

Any cooriented plane curve C lifts to a Legendrian curve Lg € M
by taking the cooriented tangent direction as a contact element at each
point of C. The lifting of a collection of curves with normal front
singularities is a link (Fig.1).

C

¢

z

Figure 1.  Legendrian lifting.

Left picture: A normal front C with two components; (z,y) are coordinates on
R7?; C lies in the halfplane x > 0.

Right picture: Framed Legendrianlink L is drawn as a diagram of the projection
to the punctured plane with polar coordinates (z,$); the y-axis is perpendicular

to the plane and directed from the reader.

1.2 Index, Maslov index and perestroikas

To each component C; of a normal front C = UC; we assign two in-
tegers, indez' ind(C;) and Maslov indez u(Cj;). ind(C;) is the number
of full rotations made by the coorienting vector as it moves along C;.
p(C;) is the difference between the numbers of positive and negative
cusps of C;. A cusp is called positive if the 1-form which coorients the
curve at the cusp point is positive on the neighbouring orienting vectors
and negative otherwise (Fig.2).

e

Figure 2.  Negative and positive cusps.

The number u(C;) is always even. Reversing of the orientation
of C; changes the signs of both ind(C;) and p(C;). Reversing of the
coorientation of C; changes only the sign of p(Cj;).

1Other names are winding number, rotation number, Whitney inder.
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There are four types of generic degenerations of a normal front. We
show them in Fig.3 in perestroikas in generic 1-parameter families.

KoK X

triple point perestroika self-tangency perestroika

AR R NN N

cusp crossing perestroika cusp birth-death perestroika

Figure 3.  Perestroikas.

Theorem [13] (see also [3, 4]). The collection of pairs (ind(C}),
©(C;)) is a complete invariant of a normal front C = UC; under plane
isotopies and the four types of perestroikas of Fig.5.

For each pair of integers r > 1 and s > 0 let K, , be the curve of
Fig.4. ind(K,,)=r—1; p(K,,)=2s.

. |
§ Cusps
re t_/b_\
K ] =
w

2r cusps \ ’
8 cusps

Figure 4. Canonical curves. 2

The theorem says that each component C; of a normal front can be
transformed to one of the curves K, , (possibly with changed orientation
or coorientation or both) by a sequence of the perestroikas and isotopies
of the plane. Fig.5 provides an example.

two'{cusp births self-tangency

Figure 5.  Transformation of the circle to Kg.

2Qur choice of canonical curves slightly differs from Arnold’s one [3].



1.3 J'—type invariants

It is convenient to subdivide self-tangency perestroikas into the follow-
ing four types according to the orientations and coorientations. A seli-
tangency is called dangerousif both the tangent branches are cooriented
by the same half-plane and safe otherwise. A self-tangency is called d-
rect if both tangent branches are oriented by the same tangent vector
and inverse otherwise.

- X -G )X -8

dangerous direct self-tangency dangerous inverse self-tangency
safe direct self-tangency safe inverse self-tangency

Figure 6. Four types of self-tangencies.

Note that, if two tangent branches belong to the same component of a
front, the property of the tangency point to be direct or inverse (resp.
dangerous or safe) does not depend on the orientation (resp. coorien-
tation) of the component.

It is easy to see that the topological type of a Legendrian link L¢
in the solid torus M does not change under all the perestroikas ex-
cept dangerous self-tangencies. A dangerous self-tangency perestroika
corresponds to an interchanging of overcrossing and undercrossing in a
link diagram like that in Fig.1. But not all interchangings can be done
in the class of Legendrian links, and so in the class of corresponding
fronts.

We will say that two fronts are Jt—equivalent if one can be trans-
formed to another without dangerous self-tangencies. Fig.5 shows a
J*-equivalence of the circle to K;9. Similary one can show that the
circle with the opposite coorientation is also J*-equivalent to Ky g.
Another example is Jt-equivalence of figure-eight curves with differ-
ent choices of orientation and coorientation (Fig.7).

OO e OO = Q

cusp births safe self- tangenacs
. . ,
OO’ ~a4 K:>O ~a Q = K

Figure 7. Jt-equivalence of figure-eight curves.



By a Jt-type invariant we mean an invariant of normal fronts
which does not change under all the perestroikas except dangerous self-
tangencies. The first example of such an invariant was an invariant
introduced by V.I.Arnold in [3, 4] and named J*. This is an invariant
of a one component front defined by its values on the canonical curves:

JY(K,s) = —s (for any choice of the orientation and coorientation)

and by its behavior under the dangerous self-tangency perestroikas:

) -0 = () - () -2

According to Theorem 1.2 this data is sufficient for calculating J* on
any normal front. Here is an example.

P(Q)) = M) = ()

two cusp crossings (Inngc}'ous self-tangency
_ J+(4:.Ffv“) _9 = J+(W) _9
two c'llsp births two safe sel{-tangencies

= J+(I\,3'g) —2=-2

There are several combinatorial formulas for calculating the values
of J* on curves without cusps (see a review in {8]) and Polyak’s formula
[17] for curves with cusps.

In Vassiliev sense J* is an invariant of order 1.

Remark. Reversing orientations of both the local branches in the
two dangerous self-tangency perestroikas of Fig.6, one obtains two more
dangerous perestroikas which look different from those above. But
their behaviour in all our constructions is absolutely identical to the
behaviour of the corresponding “twins”. So we spell all the formu-

las involving dangerous self-tangencies only for the two perestroikas of
Fig.6.



1.4 The Bennequin invariant and its quantization

For a Legendrian knot K in a contact R® Bennequin [6] defined a
self-linking number § as the linking number of X with a small shift
of K in a direction everywhere transversal to the contact planes. This
definition was generalized to a non simply-connected case of Legendrian
knots in the solid torus ST*R?, with its standard contact structure, by
S.Tabachnikov [19].

As the usual linking number [16] the Bennequin—Tabachnikov in-
variant can be read from a diagram of a knot and its framing like that
in Fig.1. For example, for the bold component of the link of I'ig.1 § =1
(we have two positive crossings of the projections of the knot and its
framing), for the thin component 3 = 3 (we have six possitive crossings
there).

Arnold proved [3] that 8 =1 — J*. So any combinatorial formula
for A gives a formula for J* and vice versa. Several such formulas are
in [19] (see also [9]).

M.Polyak [18] invented the following state sum formula for the
Bennequin-Tabachnikov invariant 3. To each crossing p of a one com-
ponent normal front C' we attach the sign o(p) = +1, if the pairs (ori-
enting vector, coorienting vector) for the two intersecting branches give
the same orientation of the plane, and o(p) = —1 otherwise. According
to this sign we split C at p respecting the orientation and coorientation

(Fig.8).
Cy cF Cy cy

Figure 8.  Splittings of a front C' at a crossing saving the orientation and coori-

entation.

In fact this is a unique natural splitting which gives two component
curves with two branches near d belonging to different components.
Denote by C; (resp. C}) the component that contains the left (resp.
right) branch assuming both branches oriented downwards (see Fig.8).



Theorem [18]. Let C be a one component normal front. Denote
by S the state sum

S = Y (ind(C) — ind(C;) — o(p))

over the set of all double points of C'. Then
B(Lg) = S — (ind(C) — 1)nt + (ind(C) + 1)n~ + ind*(C),

where nt (resp. n7) is half the number of cusps. of C whose neigh-
bourhoods give a positive (resp. negative) contribution lo the indez of

C.
This formula admits a quantum deformation [18]. Let ¢ be a formal

quantum parameter and

¢ =q" -1
[n]q - q_q_l € Z[quq ]

the corresponding quantum integer.

Theorem [18]. Let S, = T[(ind(C}) — ind(C;) — a(p)], be a

quantum state sum. Then
B,(Lc) = Sy — [ind(C) — 1}n* + [ind(C) + 1n~ + [ind(C)),ind(C)

is a JT—type invariant of a one component normal front C such that

Bi(Le) = B(Lec).

Remark. The definition of §, is easily seen to be independent
from orientation and coorientation of a normal front.

Taking our canonical curves K, , with the orientations as in Fig.4
we get nt = (2r 4+ 5)/2, n~ = s/2 and ind(C) =7 —1. So

Bulli,.) = —(r+ 3)lr = 2y + Slrly + (r = Dlr = 1,

Let us describe the behavior of the quantum Bennequin invariant
under dangerous self-tangencies. First of all we define an indezx 14 of
a self-tangency point d which appears during such a perestroika of a
normal front. To do this we split the self-tangency point respecting the
orientation and coorientation as shown in Fig.9.

8



X —X %—X

Figure 9. Splittings of dangerous self-tangencies saving the orientation and

coorientation.

We obtain two curves. Let ¢ and i” be their indices. We set 14 = |¢'—i"|.
The jumps of §, under dangerous self-tangencies of the index iy are:

5 00) =80 ) =+ m(){) -8 LD) =g a7

These formulas show that 3, is an invariant of order 1 in Vassiliev
sense.

2 Kauffman bracket

In this section we define the Kauffman bracket and prove its unique-
ness. The bracket does not depend on the orientations of curves of a
collection.

For a framed link in a solid torus the Kauffman bracket was defined
in [15]. Its values belong to Z[A%!, h]. Using the Legendrian lifting we
can define < C > = < L¢ >. This is a J¥—type invariant of a normal
front C. We call it the Kauffman bracket of C.

2.1 Main result

Theorem 1. There ezxists a unique J¥-lype invariant < C > €
Z{A%, ] of a normal front C satisfying the following properties:

for Ky £ 0, K, # 0.

Here K- K3 is a collection of two fronts K| and K3 which lie in different
half-planes with respect to a certain line in R?,



Remarks. 1. After the Legendrian lifting (see Fig.l) the frag-
ments of links corresponding to the fronts of property 1) have the fol-
lowing diagrams in the (z, ¢)-plane:

OO=aO)-a=(<).

So property 1) is just the usual skein relation for the Kauffman bracket.
All other properties also correspond to the usual properties of the Kauff-
man bracket in the solid torus (see [15]). So the existence of such a
bracket of normal fronts follows directly from [15].

2. TFor calculation of the Kauffman bracket we will use the fact
that the curve K; o can be moved through other curves of a front. For

example
e

Lwo cusp crossings

So, if one of the components of our front is the K, g with nothing inside,
we can transfer it far away from everything else and apply property 4)
of Theorem 1:

((©)) = —A°h(A* + A7%) = (A" + A)h.

3. One more useful fact is that two circles with opposite coorienta-
tions are J*—equivalent (see sec.1.3 and Fig.5). So their brackets are
equal.

Proposition 1. For any J¥-type tnvariant satisfying properties
1)-4) of Theorem 1 the following equalities hold:

(XY= -2
OO =-a(0X0- )

10



Proof of Proposition 1.

(D) = A-1<§§>—A-2<
(SR -A-3<5>+A-4<§>

=(>< X))

_—3v -4_3_2_—2\/
+(A (A)+A(A)(A A )</\>)

= A‘1(><) +(—AT+ A+ A-%(X ).

This implies the first equality of the proposition. The second one follows
from it and property 1) of Theorem 1.

><x 0

D:;

2.2 Useful lemmas

In lemmas below we prove some relations for the Kauffman bracket
which follow from properties 1)-4). We will use these relations in sec.2.3
to prove the uniqueness of the Kauffman bracket.

The relations hold for both possible coorientations of the fragment
involved. Therefore we do not indicate its coorientation. The coori-
entation of the extra circular component also does not matter due to
Remark 3 above.

Lemma 1. <W> = A<g> -—A2<M>‘

Proof of Lemma 1. <M>= <—Q—> == A“‘1<g> - A“Q(W>,

safe self‘tangcﬁcy and cusp death

Lemma 2. <J\,> = <\/\> = (_A3)<_>‘

11



Proof of Lemma 2.

(A )= (Ko=) = a( X ) - (X )

cusp ci.-ossing
= (AT = ATAS + A)(— ) = (A — ).
cusp d:t;ath and properties 4),2)

The proof of the second equality is similar.

Lemma 3. < ANAA > = A"( O A > - A4<—>.
Proof of Lemma 3.
(A ) = ( RNy 2 4 Oy amaf S1n)y,
safe é-;zlf-tangency and cusp death

The last term is equal to A“z(—A3)2<——> = A4<—> by Lemma 2.

Lemma 4. <6> =(A"! - A3)<M> — A2<Q>.

Proof of Lemma 4.
()= )+4a{— )

= Ay + A7)

cusp birth and safe self-tangency

= H(2)+ (4 = YA,

Lemma 1

2.3 Proof of Theorem 1

To prove the uniqueness of the bracket it is enough to show that prop-
erties 1)-4) are sufficient for calculation of the bracket on any normal
front. We prove this giving an algorithm for such calculation.

12



First of all we eliminate all double points of the front using the
skein relation 1). We obtain a linear combination of brackets of fronts
without double points. Each of these fronts is just a union of “ovals”
which can have cusps and be nested. Using Lemma 2 we cancel pairs
of neighbouring cusps with opposite directions. Then using Lemma 1
we invert the directions of pairs of cusps from inside to outside of their
“oval”.

After that we reduce the number of cusps on each “oval” to zero
or two (Lemma 3). Now consider the deepest “ovals” of the nests.
We transfer all those which are K g-curves far away (see Remark 2)
reducing our computation to the computation of the bracket of the
remaining part. We have left only circles on the deepest level. We
decrease their depth by Lemma 4. This brings us to the beginning of
this paragraph with the depth of the nests reduced by 1. Theorem 1 is
proved.

Corollary. The Kauffman bracket does not distinguish between
two fronts which differ by the simultaneous change of coorientations of
all the components.

Corollary follows directly from the proof of Theorem 1.

Example. The Kauffman bracket of canonical curves.

<K,s> = (—A%® < K, > by Lemma 2;
< K,p> = —A% by property 2);
< K,0> = =A% by property 3).

For r > 2, < K, g > can be computed recurrently:

<Ko> = (G )

2r cusps

= A_1< Q/V v\,6) > —-A < [\"p_2,0 >

Lemma 3

2(r—1) cusps
= (A4 -+ 1)]?, < 1\},-_1,0 > —At <« I\,,-_z'o > .

pro;:)ertiea 4) and 3)

Setting A = 1 we get < Ko > |a=1 = —Tr_s(h), where the T,(h)
are the classical Tchebyshev polynomials in h: T,(cosz) = cos(nz).

13



So the negative of < K, > can be considered as a deformation of
the Tchebyshev polynomial with the parameter A. The number of the
polynomial is the absolute value of the index of the canonical curve.

3 Taylor coefficients

In this section we prove an analog of Birman-Lin theorem [7] for the
Kauffman bracket of a normal front and calculate the symbols of Taylor
coefhicients of the bracket as functions on marked chord diagrams.

3.1 Finite order J*—type invariants

The extension of a knot invariant to degenerate knots with double
points is basic for the Vassiliev theory. In a similar way any Jt-type
invariant f recursively extends to fronts with a finite number of dan-
gerous self-tangencies:

10X =20 =100 100 =10) - 1),

These rules are due to the natural coorientation of the strata of
dangerous self-tangencies from [3]. When lifted to ST*R? both rules are
in fact the definition of an extended invariant of the original Vassiliev
theory.

Following the above rules we get the extension of the Kauffman
bracket of plane fronts. One should note that, though the Kauffman
bracket of a normal front does not depend on orientations of its com-
ponents, the extended bracket does depend on these orientations if a
degenerate front has more than one component.

Definitions. A Jt-type invariant f has order n in Vassiliev
sense if n is the maximal number of dangerous self-tangencies of a
front on which the extension of f does not vanish. The symbol of such
f is the restriction of f to the set of fronts with precisely n dangerous
self-tangencies.

Gromov’s theorem (sec.1.2) means that indices and Maslov indices
of the components are the only invariants of order zero.

The difference of two invariants of order n with the same symbol is
an invariant of order less than n.

14



Theorem 2. Set A = €' in the Kauffman bracket of a plane front
C and ezpand the result in a power series int. Then the coefficient at
1™ in the series < C > |p=et i a Jt-type invariant of order at most n
in Vassiliev sense.

Proof of Theorem 2. Let C be a front with n+1 dangerous self-
tangency points dy,...,dy41. We consider two splittings of C' (Fig.10)
at a point d; and attach to each of the splittings a sign e(d;) which
indicates either agreement or disagreement of the surgery with the ori-
entations.

f(dl) 1 e(d; )——1
Gy e

e(di)=1 >< >< e(di)=—1 \/
) d'_

digagreement with the orientations agreement with the orientations

Figure 10.  Signs of splittings of dangerous self-tangencies.

Let C...c.yy be the splitting of C' at all the points dy,...,dns
with the signs e(d;) = €. The second equality of Proposition 1 of

sec.2.1 implies

<C>=(A-A"O" Y o e < Cy

€1ye€ndl

where the sum is taken over all 2"*! possible splittings of the self-
tangency points. The substitution A = e’ and Taylor expansion provide

A— A"V = (98)"t! + terms of higher degree
g g

Therefore the coefficient at t” in < C > | 4=t is equal to zero. Theorem
2 is proved.

Remark. The proof demonstrates a hit more than the theorem
claims. Namely, evaluations at A =1 and A = —1 of the nth derivative
of the Kauffman bracket with respect to A turn out to be invariants
of order at most n (cf. [7]). The exponential substitution is a sort of
tradition introduced in [7].

15



3.2 Symbols of the coefficients

There are several ways to define a chord diagram of a degenerate front.
Say, one can follow the approach of [11] marking chords. But the way
which looks most convenient for the study of the Kauffman bracket is
as follows.

Consider an oriented {~component front C' with n dangerous self-
tangencies. Up to an isotopy of the ambient plane we can assume that
the coorienting vector at each of the self-tangency points is horizontal
and directed to the left. Take ! disjoint circles S} U ... U S} oriented
counter-clockwise in a plane. Consider the front C' as the image of a
mapping S} U...US! — R2 Connect the two preimages of a direct
(resp. inverse) dangerous self-tangency by a solid (resp. dashed) chord.
Orient this chord from the inverse image of the right-hand branch of
the self-tangency to that of the left-hand one. Mark an arc of a circle
between two neighbouring endpoints of chords by a pair of integers
(i, ), where 1 is the contribution of this arc to the index of C and p is
its contribution to the Maslov index of C.

The obtained chord diagram considered up to orientation-preserving
diffeomorphisms of the circles Sj,..., S} is called the marked chord
diagram of the front C' and denoted by D¢. Any abstract marked
chord diagram is easily seen to be the marked chord diagram of an
appropriate {ront.

of )
D¢ (Ou_l) (110)
A (0_])(}_’__.{L-..C.3..
dy ’ (0!1)
’ i)
Figure 11. A front with three dangerous self-tangencies and its marked chord
diagram.

Gromov’s theorem of sec.1.2 implies that two fronts Cy and C; with
the same marked n-chord diagram are related by a homotopy {Ci}seo 1]
in which any front C, has n dangerous sell-tangencies except a finite
number of instants ¢ when C; gets n + 1 dangerous self-tangencies (cf.
[11}). Thus the symbol of an invariant of order n defines a function on
marked chord diagrams with n chords. The main result of this section

16



(Proposition 2) is a description of this function, denoted by < D¢ >,
for the symbol of the coefficient < C >, at t* of < C > |pg=et (cf.
sec.6.3 of [5]).

To formulate the statement we redraw Fig.10 in terms of diagrams.
Order chords ¢y, ...,c, of an abstract marked n-chord diagram D in
an arbitrary way. Define two signed splittings of a chord ¢; as shown
in Fig.12. In each of the cases the chord is substituted by two oriented
marked arcs. As it will become obvious from what follows, these split-
tings of ¢; correspond exactly to the similarly signed splittings of the
self-tangency point d; in I"ig.10 if the chord represents the point in the
marked diagram of a front.

E o : c(ci)=1 Egii] o efci)=-1 / D,Di
() T e

Figure 12.  Splittings of chords, their signs and markings.

Let D,,,.. . be a splitting of the diagram D with signs €(¢;) = ¢;. We
denote by {(ey, .. ., €,) the number of components of D, Dey,.en
U;(De,,....en);- Each component consists of oriented marked arcs which
are either arcs of circles of D or the results of splittings of chords
of D. For a component (I, ..); we define two integers, indez i;
and Maslov index u;, as follows (see Fig.13). Let us walk along the
component (D, ..); and sum markings (z, 1) of the arcs we visit with
appropriate signs. Walking along an arc oriented in (resp. opposite
to) the direction of our journey we take its index ¢ and Maslov index
p with the sign plus (resp. minus). Of course, ¢; and g; change their
signs for the trip in the opposite direction. But the statement below
does not depend on these signs.

cEn

Proposition 2. The value < D >, of the nth coefficient of the
Kauffman bracket on a marked chord diagram D is given by the formula

l(q ,.-.,Cn)

Z 2“61"“'6")-1 S BRI S H ("]‘)“j/211|1'j|(h)>

< D>,==-2"
€1 4-ey =1

where the sum is taken over all 2™ possible splittings of D, the product

is taken over all components of a splitting, T,(cos z) = cos(nz) are the
classical Tchebyshev polynomials.

17



Example. [or the marked chord diagram D of Fig.11 we have the
eight splittings shown in Fig.13.

0,-1) Do__ (0.1 D__4
(19 0

L=1) 191 L,=1) (50
(0,1) ! (0,1) :

(1.0) (1,0)

{1 =0-0=0 ia=1-0=1 1, =0~0=0 i3=1-0=1
pr=—1—1=-2 u3=0-0=0 p1=—1—-1=-2 p3=0-0=0
12=04-040+4+0+1-04+14+0=2 10=04+0+4-04+0~1~0+140=0
pp=140414+140-1-14+1=2 p2=140+140~0-0-14+1=2

(1,0

H=0-0=0 p;==1—-1=-2 $1=0-0=0 jp1=-1=-1==2
12=0+0—140404041~-04140=1 12=04+0-140404+0—-1-0+4140==1
pa=1+1~041+14140-1—141=4 pa=14+1—0+1414+0—-0~0—141=4

1;=0-0-140-1-0-0-0-0-0==2 $1=0-0-14041-0-0-0-0-0=0
p1==1=-0+4+1+41-0-1-1-0-1-0=-2 p1=~1=0+1404+0-0-1-0-1-0=-2
tg=1-0=1 puz=0-0=0 tg=1-0=1 pp=0-0=0

(1.0
11 =0-0-140-1-0-0-0+1-0-0-0=—1 11 =0-0-140+41-0-0-041-0-0-0=1
p1=—1=04141-0-1-1-14+0—-1—-1-0=—4 py==~1-0+41404-0-0-1-140~1~1-0=-4

Figure 13.  Eight splittings of the marked chord diagram D of Fig.11. We assume
the chords enumerated as in [Fig.11. Calculating the indices of a component we
are walking along the component starting from the point = in the direction of the

arc containing *.
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Therefore
<D>; = =8( —4(~To(h))(~Ta(h)
)

|
=3
—~—
=
+
;__3
—
=
——
S

= 16A(2h? — 1 —1)(2—1) = 32h(h? — 1),

since To(h) = 1, Tl(h.) = h, Tz(h) = 2/22 - 1.

Proof of Proposition 2. Let C be a front with n dangerous self-
tangencies. The proof of Theorem 2 (see sec.3.1) provides an explicit
formula for the value < C >, of the nth coefficient of the Kauffman
bracket on this front:

<C>n—_-2n Z 61'---'€n'<061....,cn >0 -

€1 10en€n

So for calculation of < C >, =< D¢ >, it is enough to know the zero
order coefficients < C,, . .. >0. The lemma below gives an explicit
formula for < C,, . .. >0 in terms of absolute values of indices and
Maslov indices of components of the front C,, ... When the ordering
of the chords in the diagram D¢ is induced by an ordering of dangerous
self-tangencies of the front C, these absolute values are easily seen to be
given by the above algorithm of counting the index information about
the splitting (D¢ )e,,....en- Thus Proposition 2 follows from

Lemma 5. LetC = U§=10j be a normal front with | components.

Put 1; = lnd(c_.,) and y = Z_I?-=1 ;L(CJ‘). Then
i
< C >o= =271 (=12 11 Tii; (R),
i=t

where Ty(cos z) = cos(nz) are the classical Tchebyshev polynomials.
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Proof of Lemmma 5. The second equality of Proposition 1 of
sec.2.1 implies that the zero order coefficient of the Kauflman bracket
is invariant under dangerous self-tangencies as well. Due to Gromov’s
theorem (sec.1.2) < C > depends only on indices and Maslov indices
of components of C. Therefore it is enough to calculate < C >g on a
collection of canonical curves. Property 4) of Theorem 1 implies

<K K3>0=-2< K| > -<Ky3>q.

So Lemma 5 follows from the calculation of the Kauffman bracket on
the canonical curves from sec.2.4.

Remark. Proposition 2 shows that the orientations of chords in a
marked chord diagram do not matter for the value of the symbol of the
coefficient. Indeed reorientation of a chord in a diagram D can effect
only the Maslov indices g; in the formula of the proposition. But for
any splitting of the diagram the sum of the ¢; modulo 4 is not affected.

In fact the independence from orientations of chords is a general
property of the symbol of any J*-type invariant f:

() = ) =nE=sE)-n%)
- (&) -1H-1)

The second equality here is due to the fact that we are considering a
symbol. The 3rd and 5th ones are the definition. A similar chain of
equalities is valid for an inverse dangerous self-tangency.

Thus the orientation of chords in our definition of the marked chord
diagram of a front with dangerous self-tangencies should be omitted.

The obtained relation is not the only relation on the values of sym-
bols on our marked chord diagrams. There are a lot of others, some of
which are quite obvious. A complete diagrammatic description of sym-
bols of finite order J*—type invariants of one component plane fronts
has been obtained by J.W.Hill [14]. It turns out that one needs to
add one more marking, by the Maslov index of the whole front, to the
marked chord diagrams used in [11] in the case of regular plane curve.
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3.3 The first coefficient

The proposition below means that the first coefficient < C >, of the
Kauffman bracket of a one component normal front C carries the same
information as the quantum Bennequin invariant 3,(L¢) from sec.1.4.
Setting A = (¢+¢~')/2 brings < C >, to the form whose essential part
is B,(L¢). A reason for this substitution is that it makes the T'chebyshev
polynomials 7,,(k) very simple: Tﬂ(q"'g_l) = L8 = ([n+1],~[n],)/2-
Unfortunately the explicit formula relating < C >, and S,(L¢) does
not look very elegant.

Proposition 3. Let C be a one component normal front of index
v and Maslov index . Then

<O >4 hmteremye = (F) (50 + 47 I5(C) + 26,(L)) + Rl ),

where the quantum constant R(7,p) depends only on the index i and
Maslov indez 4 of C:

Rii,u) = (=102 ([li] + 20y = (il + [l + )]}l + 1],
—(li] = & = H)[lall, + @1 + &+ 2)[Ji] = 1], + 1] - 2),).

Proof of Proposition 3. We have to check two points. Firstly,
the values of both sides of the identity on the canonical curves should
coincide. Secondly, the jumps of both the sides should be the same
under a dangerous self-tangency perestroika.

The fact that the canonical curves satisfy the identity follows from
the direct computations. We actually introduced the complicated term
R(i,p) as the difference between the values of the left-hand side and
the remaining part of the right-hand side on the curve K4y y/2 with
any orientation and coorientation (both sides of the identity do not
change when we either reorient or recoorient a front). The evaluation
of the “main” part of the right-hand side on the canonical curves is
provided by the settings and computations of secs. 1.3 and 1.4. The
left-hand side of the identity is % < C > |a=1- Its evaluation on the
canonical curves is based on rather elementary calculations (we omit
them here) of similar derivatives of the deformations of the T'chebyshev
polynomials of sec.2.3.
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Now R(z, ) does not change under any perestroika. So the jump
of the right-hand side of the identity under a dangerous self-tangency
perestroika at a point d of index 14 is equal (see secs. 1.3 and 1.4) to

(=D)**(q' + q7* + 2(g" + 7).

Let us calculate the jump of the left-hand side. According to sec.3.2
we associate one of the marked chord diagrams of Fig.14 to a dangerous
self-tangency point d of index 4.

(') (¢,0)

—) X —

(z'll,#ﬂ) ("ﬂ"#!!)

i=t/ iy p=pip; dg=[if—i) =iy pmp4p; =)l -1
uf,u' are even. p'u? are odd.
direct self-tangency inverse self-tangency

Figure 14. Marked chord diagrams of a self-tangency point d of index #4.

The jump is the value of the symbol of < €' >; on the corresponding
diagram. By Proposition 2 (sec.3.2) for calculation of the values we
have to consider two splittings of each of the diagrams as it is shown

in Fig.15. o )
., pr=y’ na=p"
() NI

D / ('-u‘“n) "

u' is even.

1=V +0—i" +0=%1y

W =gl pt 1= p—2(p - 1)

i =t' ip=1"
m=p"41l pp=pl—1

u'’ is odd.

1=t 4-0=1"4-0=ztiy
pr1=p' +0—p" +0=p—2u"

Figure 15.  Splittings of marked chord diagrams with one chord.
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Therefore the jumps are as follows.
For a direct self-tangency (u” is even):

<§>1_<><>1 = “2( "_2(_1)w/2Tlf’l(h)(—l)“”/szq(h)
L) )

= 2A=1)2 (2T (B) Ty () + Tiy(h))
_ 2(_1)“/2 (2 . qil_l_q_.'f ' q.-rr+q_'-u + q‘d-}éq_‘d)

2 2

= (D¢ + a7+ 2(g 4 g7)).

For an inverse self-tangency (11" is odd):

O, - (O,

Il

—2(=2(= 1) 2oy () (—1) DT ()
_|_( #/2 ""T )

= 2= (2T (W) T () + Tig(h)

= (=1)"2(q + g7 +2(¢" +q7)).

Proposition 3 is proved.
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