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ABSTRACT

It has been observed that surface mapping class groups share
various properties in common with the class of linear groups (e.g.,
.[BLM], [R]). In this paper, the known list of such properties is
extended to the "Tits-Alternative”", a property of linear groups
established by J. Tits ([T]). In fact, we establish that every sub-
group of a surface mapping class group is either virtually abelian

or contains a nonabelian free group.

In addition, in order to establish this result, we develop a
theory of attractors and repellers for the action of surface mapping
classes on Thurston's projective lamination spaces ([Th1]). This
theory generalizes results known for pseudo-Anosov mapping classes

([FLP]).
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0. Introduction

Let F be a complete, orientable Riemann surface of finite
type, without holes, with ¢ connected components, b cusps and
genus, ¢ . We require that each connected component of F has ne-
gative Euler characteristic. We assume that F 1is equipped with a
complete hyperbolic structure. 3? will denote a family of disjoint
simple closed curves, each bounding a cusp of F . We shall assume

that each component of ©9dF 4is a horocycle ih the cusp.

The mapping class group of F , T(F) , is the group of isotopy

classes of diffeomorphisms of F . The elements of this group are
called mapping classes ([B1],[B2],[Ha],[HT]). The main result of
this paper arose from a consideration of properties which T (F)
shares in common with the class of linear groups. Other examples of
this theme occur in [BLM] and [H].The particular property of linear

groups which is under consideration here was established by J. Tits.

Theorem ([T]). Let G be a subgroup of GL(n,k) , where &k 1is a

field of characteristic zero. Either G contains a solvable sub-

group of finite index, or G contains a nonabelian free group.

This theorem has become known as the "Tits Alternative for
GL(n,kR)" ([BL]). In [BL], it is conjectured that this alternative
holds for a much wider class of groups to which T(F) belongs. (It
is not known whether T(F) embeds in GL(n,k).) In this paper, we
prove that a stronger alternative holds in T[I(F).



Theorem A. Let G be a subgroup of T'(F) . Either G contains
an abelian subgroup of finite index, or G contains a non-abelian

free group.

Note: This result has been proven simultaneously by N. Ivanov of
the Leningrad Branch of the Steklov Mathematical Institute, using

similar methods.

G 1is virtually abelian if G contains:-an abelian subgroup of
finite index. (Similarly, one can define various virtual properties

such as virtually solvable, and virtually torsion.free.) This stronger

alternative for T(F) was expected due to the following theorem in

[BLM].

Theorem ([BLM]). Every solvable subgroup of T (F) is virtually
abelian. |

If S is a subset of T(F) , let gp(S) denote the subgroup of
I'(F) which is generated by S . In the course of proving Theorem 2,

we will prove a more exact statement for two generator subgroups

of TI(F) .

Theorem B. Let ¢ and 1t be elements of T (F) . There exist
nonzero integers, M and N , such that either gp(oM,TN) is abelian,
or gp(oM,tN) is a nonabelian free group of rank two on the generators

oM and TN .



‘The central idea behind the proof of Theorems A and B is a
criterion for free groups which was employed by Tits in the proof
of his theorem for GL(n,k) ([T]).

Freedom Criterion. Let G be a group acting on a set, X . Let

0, T€EG . Let U,VEX . Let peX\(UUV) . In addition, suppose that

for all nonzero integers, n ,
(1) on({p}UV)cU and (2) Tn({p}UU)CV .

Then gp(o,T) 4is a free group of rank two on the generators ¢ and =<

In order to put this criterion to work, we consider the action of
I'(F) on PL(F) , the projective lamination space introduced by
Thurston [Thl]). We associate, to each mapping class, T , a pair of
subsets of PL(F) , (Join_(71) , Join_(1)). We prove that these objects

serve as attractors and repellers in the following sense.

Uniform Convergence Lemma. Let <T€T(F) . Let K be a compact

subset of PL(F)\Join_(t) , and U be an open neighborhood of Join+(T).
There exists a positive integer, N , such that if n2N , then
™ (K) U .

From Thurston's theory of surface mapping classes ([{Th2], [FLP]),
we observe that each mapping class <t has a canonical reduction to

a simple direct sum of a mapping class of algebraically finite type

and a pseudo-Anosov ﬁapping class. (Of course, we must allow that one

of the "factors" is not present.) Although the dynamics of the actions

of these two classes of maps on projective lamination spaces are



distinct, (the former being "parabolic" and the latter being "hyper-
bolic"), they nevertheless have the common property expressed by the

Uniform Convergence Lemma.

For the first "factor", we construct a function which vanishes
on the Join+(t) » which is equal to the Join_ (t) . By observing
that the Uniform Convergence Lemma is "invariant” under iteration of
T , we are able to replace T by any given iterate. Since, up to
iteration, algebraically finite type mapping classes are "direct pro-
ducts" of Dehn twists, we are able, without loss of generality, to
give explicit calculations of the action of 1t on projective lamina-
tion space in terms of natural coordinates supplied by the Harer-
Penner theory of pavings ([HP]). In this manner, we are able to esta-
blish that, under iteration of <1 , the given function converges to
zero with the appropriate uniformity, and establish, thereby, the
Uniform Convergence Lemma for mapping classes of algebraically finite

type Ll

For the second "factor", the Uniform Convergence Lemma for
pseudo-Anosovs is established by similar arguments involving the geo-

metric intersection form of Thurston.

Subsequently, by employing the natural topological join structure
on projective lamination spaces of surfaces of several components, we
are able to "join" the "height" functions constructed for the previous

two classes of maps, to obtain "height" functions for the simple direct

sums. By a more careful analysis of the convergence of the "composite"
functions, we are able to deduce the Uniform Convergence Lemma for

simple direct sums.

Finally, in order to compare the dynamics of an arbitrary mapping



class with that of its corresponding reduction to a simple direct

sum, we construct natural reduction maps between the corresponding

projective lamination spaces. It is then a rather straight forward
argument to deduce the general statement of the Uniform Convergence

Lemma from the previous results.

Here is an outline of the paper. In Section 1, we review the
basic aspects of Thurston's theory of geodesic laminations. In section
2, we review the outlines of Thurston's theory of surface mapping
classes. The reader who is familiar with this material may wish to

begin with section 3.

In the following two sections, sections 3 and 4, we establish the

Uniform Convergence Lemma for Mapping Classes of Algebraically Finite

Type and the Uniform Convergence Lemma for Pseudo-Anosovs. Combining

these results, we deduce, in section 5, the Uniform Convergence Lemma

for Simple Direct Sums.

In section 6, we employ the theory of pavings to construct the

aforementioned reduction maps. We employ these maps, in section 7, to

give the general definition of the Joins of surface mapping classes.
In the same manner in which these classes "“decompose®™ into canonical
"parts”, the Joins "decompose” into canonical "parts". Although it is
possible to give an "intrinsic" definition of the Joins ([Mc 2]), the
use of the reduction maps captures the "anatomy" directly. In section
8, we employ the reduction maps and the description of the Joins, to

deduce the Uniform Convergence Lemma in full generality.

In section 9, we prove Theorem B. In section 10, we prove Theorem
A. Both theorems follow fairly directly from the results of the pre-

vious sections.



1. Laminations and train tracks.

The reader is referred to [Ke], [M], [Thl], [Th3], [Th4] and
[Th5] for general discussions of measured geodesic laminations, and
to [FLP] and [Th2] for expositions of the parallel theory of measured
foliations, and finally to [HP] for a detailed discussion of the
theory of measured train tracks and pavings. At this point, we shall
review some of the definitions for the purposes of establishing ter-

minology and notation.

A geodesic lamination on F is a foliation of a closed subset

of FP all of whose leaves are complete geodesics. The simplest exam—
ples of geodesic laminations are provided by families of disjoint
simple closed geodesics. We shall refer to such a family as an

admissible system ([G]).

A transverse measure on a geodesic lamination is a family of

finite Borel measures supported on the local cross sections and com-
patible with the transition functions. An admissible system has a
natural transverse measure. The local cross sections of an admissible
system are finite sets which we can equip with the counting measure.
The resulting transverse measure is referred to as the counting

measure on the admissible system.

A measured lamination, L , is a pair, (Y,u) , where y is a

geodesic lamination, and p 1is a transverse measure for vy . The
support of L is the underlying lamination, y , which we shall also
denote as supp(L) . Unless otherwise specified, we shall consider an
admissible system as a measured lamination with support, the admissible

system, and transverse measure, the counting measure.



A train track on F , T, is a C1-graph properly embedded
in F such that F\T has no monogons or bigons (figure 1). A
geodesic lamination of F ,y, is carried by T if there is a

1

proper C homotopy, ¢ : F xI +F , such that

(1) wo = identity,

(2) ¥,y eT ,

and
(3) Dwt‘Y is never zero.

The map, W, » above is called a collapsing map. We say that it

collapses y to T .

—) <L

monogon bigon

(Figure 1)

A transverse measure for T 1is a nonnegative function, v,

on the unoriented branches of T , such that at every vertex of
T , the sum of the values of the branches on either side of the
vertex are equal. A vertex of T is called a switch and we say

that v satisfies the switch conditions (figure 2). A measured

train track is a pair, (T,v) , where T 1is a train track and

v 1s a transverse measure for T .

v(bl) + v(bz) + V(b3) = v(b4) + v(bs)

(Figure 2)



If L 4is a measured lamination, (y,u) , with Yy carried by
T , we shall say L is carried by T . In such an event, we obtain
a measured train track, (T,u#) » assoclated to L . The value,
u#(b) , where b is a branch of T , may be regarded as "the total
transverse measure of the local leaves whose image under the collap-

sing map runs through the given edge, b"([M]) .

Harer and Penner define an equivalence relation on measured
train tracks which is generated by a few simple topological moves,
which are as follows.

(1) isotopy of T
(2) erasing branches with zero transverse measure

(3) valid Whitehead moves—-(Whitehead moves respecting the switch
conditions as in figure 3.)

d a
a a+b+c e
b
: =<
d+e+f+g ,
c g c
a C
a c if asc
>—< '=:=; c-a
b d
b

- {Pigure 3)

Q oo

Harer and Penner obtain a purely combinatorial definition of
ML(F) , by establishing that the notion of a measured lamination being
carried by a train track provides a one-to-one correspondence bet-
ween the set of measured laminations and the set of equivalence classes

of measured train tracks ([HP]) .



Note: The additional technical restrictions on the train tracks,
required to insure this correspondence, (i.e. the notions of recurrent

and transversely recurrent), will not be significant for our purposes.

Let | be a measured lamination, (y,u) , on F and A be a
positive real. We may multiply each of the local transverse measures
of pu by the real, A , to obtain a new transverse measure which we
denote as A °+*p . There is an action of R, on ML(F) by the rule:
Ael= (y, Aep) . If we let f&: =R, U {0} , we may extend this action,
in an obvious fashion, to an action of :ﬁ: on ML(F) . The obvious

action of TR_ on the set of measured train tracks evidently descends

to this action under the correspondence outlined above.

In addition to the action of iﬁ; on ML(F) , Thurston defines
an action of T(F) ([Th1]). From the discussion in [M], it is
possible to describe this action as follows. Let T be a mapping
class and (y,u) be a measured lamination. One may choose a represen-
tative, t , of 1 such that t(y) is a geodesic lamination.
Furthermore, t({y) has a natural transverse measure induced from
p via t , t,(u) . We define <t(y,u) = (t(y),t, (1)) . This gives
a well-defined action on ML(F) .

In a similar manner, T (F) acts on equivalence classes of
measured train tracks. Let <t€Tr(F) and let [(T,v)] be an equi-
valence class of a measured train track, (T,v) . Choose a diffeo-
morphism, t , representing 1 . If we apply t to T we obtain a
train track, ¢t(T) . In addition, t induces a bijection from
B(T) to B(t(T)) which we may use to transfer the measure v to

a transverse measure, t,(v) , on ¢t(T) . Let
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tl(r,v)] = [(t(T),t,(Vv))] . It is evident that this action is well

defined, and agrees with the action of T(F) on ML(F) .

The reader is referred to [Ke] and [M] for descriptions of
Thurston's topology on ML(F) , in the case where F is a connected
surface. Harer and Penner give a combinatorial description of this
topology as follows ([HP]). Let M(T) be the set of measured train
tracks with the same underlying track, T . Let B(T) be the set
of unoriented branches of T . Let IRB(T) be the vector space of
real valued functions on B8(T) . M(T) 4is an additive submonoid of
this Qector space invariant under the action of 2R+ . Since M(T)
is given by a family of homogeneous linear equations (the switch
conditions), and inequalities (nonnegativity), M(T) 4is a cone over
a polyhedron. (We give M(T) the subspace topology, where :RB(T)

is given the Euclidean topology.)

Assuming the train track may be isotoped in F to a train track
of small curvature, the BEuclidean topology above is compatible with

Thurston's topology. This is made precise by the following theorem.

Theorem 1.1 ([M]) There exists a constant, K> 0 , such that for

any complete hyperbolic surface, F , and any train track, T , on F
of curvature less than K , if U(T) 4is the subspace of ML(F)
consisting of measured laminations carried by T , then the following

map is a homeomorphism.

U(T) -+ M(T) (y.u) » (Tcu#) .
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Note: If T' is isotopic to T , then any isotopy between T'
and T , induces a homeomorphism between M(T') and M(T) . In
addition, in this situation, it is evident that U(T') = U(T) .
Hence, the theorem remains valid provided T 1is isotopic to a

train track of curvature less than K . (The notions of recurrent

and transversely recurrent are the combinatorial conditions

required to insure that a train track may be isotoped to one of
sufficiently small curvature ([HP]).) From hereon we assume that
all train tracks are isotopic to train tracks of curvature less

than K .

Harer and Penner show that, under the correspondences, ML (F)
is homeomorphic to the quotient space of the disjoint union of the

cones defined above ([HP]).

Projective lamination space, PL(F) , is simply the orbit space

of ML(F)\{0} by the action of R, . We shall denote the projective
class of a measured lamination, L , by [L] . It is easy to see that
the action of T(F) on ML(F) descends to an action on PL(F)

As pointed out in [KRe], PL(F) is given the quotient topology.

The reader will observe that the obvious action of Ig_ on
M(T) 4is compatible, with the defined action of R, on ML(F).

Hence, we have a projective version of Theorem 1.1 as well.

For our purposes, we shall require the following results.

Theorem 1.2 ([Th1], [HP]) Let F be a connected orientable

surface of genus g .
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6g-6-1

(case a: dF = @) PL(F) =S (sphere)

(1

6g+2b-6-1

(case b: Q3F # §) PL(F) =D (disc) .

(2) The action, R, x ML(F) » ML(F) , is continuous.
(3) The action, TI'(F) x ML(F) ~ML(F) , is continuous.

(4) The action, T(F) x PL(F) - PL(F) , is continuous.

Suppose that P = {%g: Fi , where each Fi is connected. Given
any measured lamination, L , on F , we have associated measured
laminations, given by restriction to the components. Therefore, we
have a bijective correspondence between the following two spaces:

ML(F) «» T ML(Fi) . Giving the right hand term the product topology,
-i€ex

each factor being equipped with Thurston's topology, we use this bi-
jection to induce a topology on ML(F) . As always PL(F) 1is given
the quotient topology.

As we shall demonstrate, the structure of PL(F) for surfaces
of several components may be understood in terms of the notion of
topological join. At this point, we recall the definition of the join
of topological spaces.

If {xilieI} is a collection of topological spaces, then we may
define the join of {XiIiGI }, 181 ¥y + as the collection of formal

sums:
1€ %

where Xy €EX, , A

N 420 and iéI A; = 1 . Equality of these formal

sums is defined in an obvious manner. Likewise, the topoloéy of the
join is defined in an obvious fashion.

A weight function on ML(F) 1is just a continuous function,
Il : ML(F) »R_  such that:

(n IAeLl = A+IL] for all A€W, ,L €ML(F)

’
and
(2) ILI = 0 4if and only if L = 0 .
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For now, we assume such functions exist. Later, we shall have opportu-

nity to construct explicit weight functions (section 3).

Now, suppose that F = || F, . (We need not assume, in the
1€1

following discussion, that any Pi is connected.) We consider a fixed

weight function, |1 .

Lemma 1.3. PL(F) is homeomorphic to * PL(Fi) .
ier

Proof: By the discussion above, ML(F) = T ML(Fi) . It is easy to
JEI

check that the following function yields the desired homeomorphism:

PL(F) —> * PL(Fi)
i€l

(L) ]|—-> UL/l -IL] .
[ lier jeg Ha i

Remark: The homeomorphism of Lemma 1.3 is not natural. Unfortunately,
there is no natural weight function. Nevertheless, we will find this

structure to be very helpful.

Since the genus of a surface is just the sum of the genera of its
components, it is easy to verify, using Lemma 1.3 and standard facts

about topological joins, the following corollary of Theorem 1.2.
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Corollary 1.4. Let F be an orientable surface.

(1) (case a: 9F = @) PL(F) z g69-6¢c-1

{ sphere)
(case b: 3F # g§) PL(F) =p%9*2b=6c=1 (4450
(2) The action, 'ij x ML(F) —> ML(F) , is continuous
(3) The action, T (F)xML(F) —> ML(F) , is continuous
(4) The action, T (F)xPL{F) —> PL(F) , is continuous

2. Thurston's Classification of Mapping Classes

The reader is referred to {BLM] for a discussion of notions
related to Thurston's trichotomy for mapping classes. We shall give
a brief review of the main features. First, we consider the case where

F is connected. A mapping class, Tt , is pseudo—-Anosov if there exists

a unique pair of projective classes of measured laminations, [L_] and
[L+] preserved by the action of T on PL(F) ([ThS5]). In the event
that 1 is pseudo-Anosov, there exists a positive real, A >1 , such

that 1L, = A* L,; X is the dilatation factor for =t . [L,] is the

+

attracting lamination for 1 , [L_] is the repelling lamination for =t .

Now, suppose F 1is an arbitrary surface. For any mapping class,
T , we may choose a nonzero exponent, n , such that R preserves

each component of F . We refer to the restrictions of 1P o these

components as restrictions of 1 . The mapping class, t , is pseudo-

Anosov if each of its restrictions is pseudo-Anosov. The mapping class

is finite order if " = 1 for some n # 0 . The mapping class is

reducible if it preserves some admissible system. We refer to such a

system as a reduction system for 1 . Each isotopy class in the
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admissible system is a reduction class for 1 . If 1 is reducible

and A is a reduction system for 1 , we may choose a representative
of 1, t, such that t(A) = A . Then tIF\A determines a mapping
class, T , in T(F\A) , which we refer to as the reduction of 1

along A . We shall denote F\A by £ .

Note: £ is considered as a complete hyperbolic surface. Thus the
structure on § is not that inherited directly from F . Being a sur-
face of finite type, and negative Euler characteristic, Q does in
fact have a complete hyperbolic structure. Although not unique, the
choice of hyperbolic structure is not significant for our purposes.
All the notions associated to laminations are known to be independent
of the choice of hyperbolic strﬁcture; they are actually topological

invariants of the underlying topological surface ([Kel, [M], [ThS]).

A mapping class, t , is adequately reduced if each of its re-

strictions is either finite order or pseudo-Anosov. A reduction system

for 1 , A, is an adequate reduction system for 1 1if the reduction

of 1T along A is adequately reduced.

The central result of Thurston's concerning mapping classes is

as follows.

Theorem 2.1 ([Th3]) Every mapping class, TEr(F) , is either ade-

quately reduced or has an adequate reduction system.

It appears to be convenient to speak of the empty set as an
adequate reduction system for an adequately reduced mapping class.

With this in mind, we may state the results of [BLM] concerning
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adequate reduction systems.

Theorem 2.2 ([BLM]) Every mapping class, TE€T(F) , possesses a

unique minimal adequate reduction system , AT .

The essential reduction system for =t is the canonical system

of Theorem 2.2. The essential reduction of 1 is the reduction of

T along AT .

3. The Uniform Convergence Lemma for Mapping Classes of

Algebraically Finite Type

A mapping class, T , is of algebraically finite type if the essen-

tial reduction of 1 is of finite order ([N]). In this section, we
shall prove the Uniform Convergence Lemma for mapping classes of
algebraically finite type. Henceforth, throughout this section, =
denotes a fixed mapping class of algebraically finite type on a fixed
surface, F . It is easy to see that there exists a positive integer,
M , such that TM is a product of Dehn twists abdut the components
of AT ([BLM]) .

In order to avoid the distraction of presenting a general defini-
tion of the Joins of mapping classes, we shall now give a special
definition for this class of maps. (The reader may wish to turn to
section 7 for the general definition.) In this particular case,
Join_(t) = Join (71) = the set of projective laminations whose supports
have trivial transverse intersection with A_.

T

Lemma 3.1. The Uniform Convergence Lemma is true for Tt if and

only if it is true for TM .
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Proof: " By the properties of essential reduction systems,

AMS= AT ([BLM]). Clearly, therefore, rM is of algebraically
1

finite type. Consequently, Joint(ru) = Joini(r) .

It is evident, therefore, that the U.C.L. for 1 implies
the U.C.L. for ™ . On the other hand, suppose the U.C.L. is
true for TM . In ofder to establish it for ¢ , let K and
U be subsets of pL(F) as in the hypotheses of the U.C.L..

Let U' = MB; ‘t-j (U) . Choose N' such that if n >N' , then
1=
(TM)n(K) ctJJ' . Now, let N = MN' , and suppose that n >N . Then
n = gM+r , where g>N' and 0 <r <M . We conclude that
MK o= FEP®) eF ) L But T e T = U

Hence, 'r,n,(K) cU .

Henceforth, we may assume that M = 1 . With this assump-
tion in mind, we shall begin with an explicit calculation of the
action of T on ML(F) in terms of the coordinates of a paving.
This amounts, in principle, to a calculation of the action of
T on the well-known Dehn-Thurston parameters for simple closed
curves. This calculation has been carried out, in general, by
Penner ({P)). Nevertheless, since our setting is much simpler, we

shall give an explicit calculation here.

Using measured train tracks, Harer and Penner define their
pavings of PL(F) ([HP]). Roughly speaking, a paving is a cover-
ing of PL(F) by a finite family of polyhedra, any two of which
meet along a common subface, (not necessarily a codimension one
subface), or are disjoint. In what follows, we allow these inter-
sections to consist of a union of subfaces. We might call these

"pseudo~-pavings". They will suffice for our purposes. In fact,



for our purposes, it will be easier to work with them. We
shall call these "pseudo-pavings" simply pavings. We now review

certain features which we shall need.

The first observation is simply that the projectivization
of M(T) is a polyhedron. Indeed, certain "maximal" train
tracks correspond to polyhedra of maximal dimension in the mani-

fold, PL(F) . This idea is behind the Harer-Penner pavings.

To construct a paving, one begins with a pants decomposition.

A pants decomposition of F is an admissible System, P, such that
F\P is a disjoint union of pairs of pants. (A pair of pants

is a sphere with three holes.) For example, the collection,
{a1,az,a3,a4} of figure 4 is a pants decomposition of thé once-
punctured surface of genus two. We do not require that the

closed pants embed in F (figure 4).

About each component, a , of P we choose a closed annular
neighborhood, Aa . In each cusp, we choose a horocycle, 8 ,
and a punctured disc, D, , such that aDB = B . These annuli

B
and punctured discs areé chosen to be pairwise disjoint.

/Qul;' O
\\::Ez“ a3 n‘.

) (2

embedded

nonembedded

(Figure.4)
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The complement of these annuli and punctured discs is a dis-
joint union of compact, embedded pairs of pants. We proceed
to describe certain local models for a collection of train

tracks.

In each annulus, Au , we choose two train tracks as

depicted in figure 5. In each cusp, DB » choose a train track

such as in figure 6.

<> >
T(a,-1) 'T‘“rl)

(Figure 5)

T(B)

(Figqure 6)

In each compact, embedded pair of pants, P , choose four
train tracks as depicted in figure 7. We assume that each of

these local models is orthogonal to the corresponding boundary
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components. Furthermore, we require that they coincide on
common boundary components. With these constraints, we may
construct various train tracks by varying the choice of local

model in each pair of pants and each annulus.

By fixing an ordering of the branches on each track, T ,

we obtain, by Theorem 1.1, an embedding, F(T) : U(T) ——>:m9

14

where B is the number of unoriented branches of T . We

shall refer to such a map as a coordinate map on U(T) . In

these coordinates, U(T) is a cone over a polyhedron. (It is
easy to verify that B does not depend on the track, T . In
fact, B = 15g+7b-15¢c .)

a
N
T(P,a)
Y B
o
a
—~

T(P,Y) T(P,4)
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- In order to describe the transition functions for these
coordinate maps we need to discuss the notion of subtrack. The
coordinate maps have values in ,(iE;)B . A face of (iﬁl)B is

a subset of ('i'l:)B which is determined by a subset JcI ,

where I = {1,...,B} , and the conditions X, = 0 for each
—J

i € I\J . We shall denote such a face as (R,) . It

is, of course, naturally identified with (EE;)A , where A is

the cardinality of J . Given such a face, j(T)” "

((X,)") can
be identified as U(T(J)) , where T(J) is the train track
obtained from T by "erasing" the edges corresponding to I\J .
We refer to T(J) as a subtrack of T , and to U(T(J)) as

a face of U(T) . If T(J) is isotopic to T'(J') , then it is
easy to see that U(T(J)) = U(T'(J')) . Indeed, under the
isotopy, the edges of T corresponding to J may be identified
with the edges of T' corresponding to J' . This yields.a
bijection, o0 : J —> J' , which we arbitrarily extend to a
bijection, o : I —> I . Evidently, if o RB —_— RB is the
isomorphism of ZIRB obtained by permuting coordinates according

to ¢ , then:

c° j(T')IU(T' (') - j(T)IU(T(J)) ’

Thus, the transition functions are just permutations of coor-
dinates. We shall, henceforth, identify isotopic subtracks as

above and refer to T(J) as a common subtrack of T and T'

Likewise, we speak of U(T(J)) as a common face of U(T)
and U(T') .
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Let T(P) be the collection of train tracks constructed
from the local models chosen above. We are now ready to state

the result from [HP] which we shall require.

Theorem 3.2 {[HP])

(1) ML(F) = u{u(T)| TE T(P)}

(2) For each pair of cones, U(T) and U(T') ,

U(T) NnU(T') 4is a finite union of common faces and the transition
functions for the coordinate maps on these common faces are given

by permutations of coordinates.

Note: The isotopies between common subtracks can be taken to
fix P .

The coordinate maps give homogeneous coordinates on poly-
hedra in PL(F) , and one obtains a covering of PL(F) by

polyhedra meeting along at most finitely many faces.

If [L] 4is a projective lamination, with a representative,
L , carried by a train track, T , we say that [L] is carried
by T . It is clear that if ([L] 4is carried by T , any repre-
sentative of [L] 1is carried by T . Let A(T) be the set of
projective classes carried by T . The collection,
{aA(T)|T€ T(P)} , with all the associated structure as a covering
of PL(F) by polyhedra with homogeneous coordinates, is called

a pavin f PL(F) associated to the pants decomposition, P .

We shall sometimes refer to the collection of cones,

{u(T)|T€ T(P)} , as a paving for ML(F) .
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Remark. Harer and Penner use slightly different train tracks
and obtain a covering by cones intersecting in at most one
face. In addition they use only those polyhedra of maximal
dimension. There is a simple combinatorial condition for deter-
mining which tracks yield cones of maximal dimension [HP]. We
shall not concern ourselves with these refinements.

Suppose that LEU(T) . Let 3 p : U(T) + RP

be the
coordinate map for U(T) . We may define the weight of L ,
ILl ,to be the sum of the coordinates. By Theorem 3.2. [LI
does not depend upon the choice of T carrying L[ . Therefore,

we have a well defined function:
Il 2 ML(F) —> iﬁ_ .

Lemma 3.3 Il : ML(F) »R,_  is a weight function.

Proof: Il is continuous on each cone, U(T) , and it is
well-defined on the intersections of these cones. Since these
cones are closed subsets of ML(F) and they cover ML(F)

’

Il is a continuous function.

It is easy to see that the given action of R, on U(T)
agrees, under the identification given by the coordinate map,
3(T) , with the usual action of R, on RP . Hence it is
clear from the definitions that |X:Ll = A-IL| for all A€R,
and all L€ ML(F) . Finally, it is clear that |L| = 0 if
and only if L = 0 .
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Let A be the essential reduction system for Tt . Choose
a pants decomposition of F , P , such that AcP . We say that
the paving of PL(F) associated to P is adapted to A . We
may write T = [ (Ta)na . where for each o in A, n_ is

a€A o
a nonzero integer.

By construction, each.train track, T , associated to
our paving looks like one of the two configurations of figure 5
in an annular neighborhood of any given component of A . let
e(T,a) = -1 if the local model for T in A, 1is T(a,~1) ,
and let €(T,a) = 1 if it is T(a,1) . Let a, be the branch
of T which runs parallel to o , and let ba be either of

the two branches which are incident on o (figure 8).

a !!I!I!;!!I!
a a

(Figure 8)

If (T,v) represents L , then we shall simply write
L = (T,v) . By the properties of a paving, v(aa) and “(bu)

do not depend upon the choice of T .
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Suppose that ¢(T,a) = -1 and v(aa) Z\:(ba) . Then
the simple calculation which is carried out in figure 9 shows:
m Ta(L)GU(T)
(2) Ta(v)(aa) = V(au) - V(ba)
(3) ta(v)(b) = v(b) for each branch, b # a, -

This calculation is valid because the Dehn twist, Ty ¢ is

supported on the annular neighborhood.

T
Q

) (au) % v (au) B
valid Whitehead ‘

move

vib,) / vib,)
> ' —~—

v(au) - v(ba)

%

isotopy

RH(

v(b_ ) "(bu)
(Figure 9)



Let sign: R+ {-1,1} be defined by the rule:
(a) sign(x) = -1 if x<0 and (b) sign(x) =1 if =x20 .

We recall that t = N 1t_"a . Therefore, since any two of the
a€A

Dehn twists commute, for any nonzero integer, n , we have

that Tn = lTTnna .

By calculations similar to the one carried out in figure 9,

we may deduce the following lemma.

Lemma 3.4 Let LEU(T), n€ez and e(a) = €(T,a) . Then:

(1) ‘[n(L) €U(T') , where €(T',a) 1is given by the rule:

e(T',a) = e(a)sign(v(aa) + nnae(a)v(ba)) if a€A.
e(T',B) = ¢(B) for each component of B\A , B.
(2) Tn(v)(aa) = Iv(au) + nnae(a)v(ba)[ if a€A .

(3) t™(v) (b) = v(b) for each branch of T\A , b .

We are now ready to proceed with the proof of the Uniform

Convergence Lemma for T .

Proof: The first step is to construct a function which shall
serve as a measure of proximity to Join_ (1) . To this end,
if L= (T,v) , where T 1is a track associated to the paving,

define: d([L)) = ( 2AV(ba))/ILI . By the properties of a
o€

paving (Theorem 3.2), d([L)) does not depend upon the choice
of T . Furthermore, it depends only upon the projective class
of L . Therefore, it is evident that we have constructed a

continuous function:



- 27 -

(1) d : PL(F)-+3§; .

Since PL(F) is compact, there exists an upper bound, C , for

d . Furthermore, it is easy to see that:

(2) a~1(0) = Join, (1) = Join_(1) .

Since K 1is a compact subset of PL(F)-Join_(t) , there exists
a positive reél, 6 , such that d(K) «[§,C] . Similarly, there
exists a positive real, € , such that Jd(PL(F)\U)c<[e,C] . We

may assume that § <1 and e<1 .

Suppose [L]1€K . Then Ad([{L])238 , and, therefore:

(3) aéAv(ba)Z siLy .

In order to simplify the notation, we shall let a, denote

v(aa) , ete..

(4) ILl = £ a + I b.
a€EA © b#au

In order to simplify the notation even further, we shall delete
the indices of summation. They will be understood in context.

By Lemma 3.4,

n
(5) ItL) = Zlaa + nnae(a)bal + Ib
n
ItLl 2 £ nlnmlbcl - Za,2nib - Ia,
1t®L1 2 n SILI-ILl = (n & - 1)IL] .
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By definition, a(r<™Ly =(Xrn(v)(ba))/lrnLl . Thus, by Lemma

3.4, 4a([t®Ln = (zba)/n“u . Together with (5):

(6) If n>1/8 , then d([t"L]) s (Ib )/((é - NILI ,
or  a(lt"L]) sa(IL /s - 1) .

Therefore, we conclude that if n>1/6 , then:
(7)  a(lt"Ll}) sc/(ns - 1) .

The result follows easily from (7) and the previous remarks.

4. The Uniform Convergence Lemma for Pseudo-Anosovs

This section follows the same development as the previous
section. Only, at this point, we consider a fixed pseudo-Anosov
map, t , on a fixed surface, F . There exists a positive integer,
M , such that tM preserves each component of F .

We recall that ML(F) is naturally homeomorphic to

iEIIML(Fi) . Hence, if L1€ZML(F1) , we may write (Li)iEIEML(F) .
If A; cPL(F;) , then we define the join of {A,|i€I}, 121"1 '

by the rule:

* - = .
ser Ay = LILIEPLIAI L = (Ly)sep » [LyleA, , i€1}

In this case, we may define Join,(7) = iEI{[Lit]}"’ where
[Li:] is the attracting lamination for Ty 0 and [Li-] is the
repelling lamination. As in the previous section, it suffices to

establish the U.C.L. for rM . Henceforth, we assume that M = 1 .

The projective laminations, {[L,]}}, for a pseudo-Anosov
mapping class on a connected surface have some striking proper-

ties which we will find useful.
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Lemma 4.1 ([Th3]). Let Fi be a connected surface, Ti be

a pseudo-Anosov mapping class on Fi , and {[L+] » [L_]} be the

corresponding pair of projective laminations for Ty v

{(Cly ol » [ly_en )1} o

(1) Y, 1is uniquely ergodic. That is, if L 1is a measured

lamination and supp(l) = v, , then [L] = [Lt] .

(2) Ys is minimal. That is, if ¥y is a geodesic lamination,

and y<y, , then either y=§ or y =17y, .

(3) Yy is maximal among supports of measured laminations.

That is, if | is a measured lamination, (vy,un) , and

Y,€Y , then y, = v .

In addition to the tools already discussed we shall need
to employ Thurston's intersection form: <, >: ML(F) xML(F)-oic_.
The reader is referred to [Ke], [Th1], [Th5] for expositions

of this form. We shall give a brief description.

Suppose L1 and L2 are measured laminations on F ,
(71,u1) and (Yz,uz) . At a point, p , of transverse inter-
section of Y, and y, , we may find a chart,
¢ : U(p) S (a,b) x (c,d) , where U(p) 1is a neighborhood of p
and (a,b) and (c,d) are intervals. We can choose this chart
so that ¢(L,NU(p)) = (a,b)x¥ and ¢(L, NU(p)) = Xx(c,d) ,
where Y and X are closed subsets of (c,d) and (a,b)

respectively (figure 10).'
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(Figure 10)

oy induces a Borel measure on (a,b) and By induces
a Borel measure on (c,d) . The product, ky Ouz » is a finite
Borel measure on U(p) supported on the transverse intersection,
(y1 ﬁyz) NU(p) . These local measures are compatible and one
obtains a Borel measure, wy®u, , on F , supported on Y4 ‘\Yz '

and of finite total mass, IF d(u, Ouz) . The intersection form
is defined by the rule:

<L1,L2>= IF d(u1 Quz) .

Theorem 4.2 (Thurston [Th 5]).
< > : ML(F) x ML(F) * R, is continuous.
Remark: Thurston stated this theorem for MLO(F) {(section 6).

With a few technical alterations, the proof actually establishes

the stronger result. Furthermore, the result was formulated for
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connected surfaces. By an obvious argument, one may obtain

the result for surfaces of several components (see section 1).

If L and L' are measured laminations, (y,u) and
(y',n') , such that vyfhy' = ¢ , then we can define the sum

of L and L' , L + L' , by the rule

L+ L' = (yUy',u+np') .

The local transverse measures of p+u' are just the sums of
the local transverse measures of u and u' . Using this
partial addition on ML(F) , we may define a partial ordering
on ML(F) by the rule:

L'2L 4if and only if L' = L + L" for some L" € ML(F)

In addition to the previous theorem, we have the following

simple observations.

Lemma 4.3 let L1,L2,L€ML(F), TE€T(F) and AeTR'; . Then

(1) <L1.L2> = <L2,L1> ,
(2) <TL1,TL2> = <L1,L2> ,
(3) _ <1L1,L2> ‘= A<L1,L2> ’

(4) I1f L1 + L2 is defined, then

<L1+L2,L> = < ,L>-+<L2,L> R

1
ad  (5) 1f Ly2l, , then <L ,L>2<ly,L> .

The following lemma allows us to construct functions which

will serve as measures of proximity to Join, (1) .
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Lemma 4.4. There exists a pair of measured laminations,

{t,,L_} , and a positive real number, X>1 , such that, if
[L]1 € PL(F) , then:

(1) t(L,)zA+L, , and T(L_) SA™'-L_

(2) <L,L,> =0 if and only if [L] € Join_(7)
(3) <L,L_> =0 4if and only if [L] € Join_(t1) .
Proof: For each connected component of F,Fi , consider the
~ pair of projective laminations, {[Li+]' [Li-]} , and the real

number, Ai>~1 ,» such that:

-1
Tyl = 110L1+ , and ri(Li_) = Ay oLy .

(1) Let L = L

gy Ly, o L= yE Ly s and 2= min{) |1 €1} .
(2) We can assume F is connected. With this assumption
in mind, suppose that <L,L.> =0 . Then y#hy, = G.,
and L + L+ is defined. By Lemma 4.1 (3), Y, = YlJY+

and Yev, . Thus by Lemma 4.1 (2), vy = Y, - Finally, by

Lemma 4.1 (1), (L] = [L,] . The converse is trivial.

(3) This assertion follows in the same manner.

Remark: If F is not connected, then the projective classes,

(L, and [L_] , are not uniquely determined by Lemma 4.4.

We now give the proof of the Uniform Convergence Lemma

for Tt .



Proof: Define a pair of continuous functions:

(1) i, @ PL(F)\JoinI(r)-»iE;

by the rules:
(2) 3 (L)) = <L,L,>/<L,L_>
= +

By Lemma 4.4, these rules are defined on the domains indicated
above. The fact that the rules determine well defined continuous
functions follows from the homogeneity of < , > and Theorem 4.2.

Furthermore, by Lemma 4.4, it is easy to see that:
(3) 33140) = Join (1)
Finally, from the definition, it is clear that:

(4) If [L]1€PL(F)\(Join_(1) UJoin_(t)) , then
j Ly < 3_(ILly =1 .

Since K is compact, there exists a positive real, C ,

such that j_(K) €[0,C] . Similarly, there exists a positive

real, D , such that
ji_(pL(F)I\U) < [0,D]

Suppose that [L]1€K . Since [L]¢ Join (1) , it follows
from the definition that t"([L]) ¢ Join_(t) . Thus, we may

write the following string of inequalities:

(5) 3, (x™(ILh)

<rnL,L+>/<TnL,L_>

<L,1_nL+>/<L,T-nL_>

s <L,A'nL+>/<L,Tng;>
S AL, L >/<L,L >
S AT 5 (0L .



- 34 -

Choose a positive integer, N , such that if nz2N ,
then A 2" <1/(2CD) . Then if n2N :

(6) j, (t™(IL])) <c/(2cp) = 1/(2D) .

We may assume that (L)) ¢ Join_ (1) . Therefore,
i_(tn([L])) >2D . By the choice of D , we conclude that
(L) €U .

5. The Uniform Convergence Lemma for Simple Direct Sums

Suppose F = F1LLF2 ¢ Fq 0 # Fy # and T is a mapping

class in T (F) which preserves F and F, . If the restric-

1 2
tion of 1 ¢to F1 ' Ty is of algebraically finite type and
the restriction of 1 ¢to F2 v Ty is pseudo-Anosov, then

we say that Tt is a simple direct sum. In this section, we .

shall prove the Uniform Convergence Lemma for simple direct sums.
Henceforth, throughout this section, t denotes a fixed simple
direct sum on a fixed surface, F . There exists a positive
integer, M , such that r? is a product of Dehn twists about

the components of Ar » and Tg preserves the components of F,.

In this case, we may define Joini(r) to be
Joint(r1) * Joint(rz) . As in the previous two sections, there-
fore, it suffices to establish the U.C.L. for TM . Henceforth,

we assume that M = 1.

The proof will follow the strategy which was used in
sections 3 and 4. We will construct functions which measure

proximity to the Joins and then use these to prove the uniformity
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of convergence. At this point, we introduce a paving adapted
to A , the essential reduction system for = . For each
integer, i =1 or 2 , this paving restricts to a paving of

PL(Fi) adapted to Ai , the essential reduction system for Ti .

We recall the bounded continuous function which was defined

in section 3, where € denotes a bound:

(1) a: PL(F1)-¢[O,C] such that d_1(0) = Join+(r1) .

There exists a pair of bounded continuous functions:

+

(2)  e,: PL(F,) »[0,C] such that e (0) = Join,(r,) .
The functions are defined by the rules:

(3) e, ([L]) = <L,L>/IL1 and e_([L]) = <L,L >/ILI

’

where L, and L_ are given by Lemma 4.4 applied to T, - By
the usual arguments, these rules determine well defined, bounded

continuous functions. The conditions on e:1(0) follow from
Lemma 4.4.

We shall construct a corresponding function for 1t and
its Joins. We will then establish the Uniform Con?ergence Lemma
for 1 1in much the same manner as we did in section 3 for
mapping classes of algebraically finite type. In order to
accomplish this, however, we shall require more explicit infor-
mation regarding the rates of convergence of the functions d

and e, . The following series of lemmas provide this informa~

tion.
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Lemma 5.1. There exists a positive real, B, 21 , such that
for each measured lamination, L€ ML(F1) ,» and each nonzero

integer, n , l‘l’?l.l s InlB1|L| .

Proof: (We shall adopt the same simplifications of notation

as in section 3.)

n
(1) jr1L| Ib + Zla, + nnae(a)bal .
n

(2) ltyll S Ib + Za  + |n|zlna|bu .

Let n, = maximum {In,] |a€ A}
: n ,

(3) ltyLl s Ib + Za  + |n|n0£ba .

Since ZbasclLl we conclude:

(4) n’;uslu + Inlngeiti s Inl (1 + nyO) 1Ll .

Lemma 5.2. Let §6,e >0 . Then there exists a positive integer,

M1 , such that if d([L]) 26 and nZM1 , then:
(a) a(ltlL]) <e and (b) |r?*‘L|z (1-e) 721 .

Proof: Define the following function:

Py PL(F1) - R,
(L] -~ IT1L|/ILI

Clearly, Py is continuous. Furthermore, if
(L] € Join (T,) , then T,L 2L , and p1([L])21 . Therefore,
9;1((1-e,°)) is an open neighborhood of Join (t,) . The same
statement holds for d-1((0,e)) » and by similar reasoning
a1(1s,c]) 1s a compact subset of PL(F)\Join_(1,) .

The Lemma follows by applying the U.C.L. for T, .
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Lemma 5.3. There exists a positive real, B, 21 , such that
for each measured lamination, L€ZML(F2) « and each nonzero

integer, n , It5(L11 s8I0 .

Proof: Let Py ¢ PL(F2)-»:R+ be defined as 04 in the proof
of Lemma 5.2. Since PL(FZ) is compact, there exists a positive
real, E, . such that Py is bounded by E, . Hence,

|12(L)I$ E 1 (L)1 . Likewise, there exists a positive real, E_ ,
such that Ir;1(L)IS E_ILl . The lemma is satisfied by B, ,
where B, = max {E ,E } .

For the next two lemmas, let D denote a positive number
such that 1<D<) , where )\ 1is given by Lemma 4.4, applied
to T, .
Lemma 5.4. Let 6,e>0 . Then there existsba positive integer,

M, , such that if e_([L])246 and nzM, , then:

() allthih <e ana (@ Ity W1 zpi ) .

Proof: The proof is similar to the proof of Lemma 5.2.

Lemma 5.5. For each positive real number, € >0 , there
exists a positive integer, Q , such that if nz2Q , then
either (1) e ([T5L]) <€

or
(20 117w 1 sp” Dy,

Proof: Let U = p;1((0,D-1))' K = p;1(IO,D-1])
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By the U.C.L. for pseudo-Anosovs applied to 151 , there is a
positive integer, N , such that if n2N , then r;n(K) cU .
-n
Let Uo = ngu T, (U) . We easily conclude that
-1
Join (t1,) €Uy<cU , 1, (Uy) U, , and if LE€EU, , then
lt,Ll <D™ ILl .

By a second application of the U.C.L. for pseudo-Anosovs,
there exists a positive integer, Q , such that
12(PL(F,\Uy) ce] (0,e) . Hence, if n2Q and e, ([T)L]) 2e ,

then [rg‘Q(L)].e U. . It follows easily that lr'Z"Q(m sp~ (0=Q)

0

We are now ready to begin the proof of the Uniform Conver-

gence Lemma for T .

Proof: From the functions given above, we may construct

corresponding functions for Tt .

(4) £, : PL(F) —> [0,C] such that f? (0) = Join, (1) .

By convention, define d4(0) = ei(O) = 0 . Using these

conventions, we define:

(5) £,(0L,@L,0) = (1L 1/1LDAMIL]) + (ILy1/1L e, (IL,])

By the standard arguments employed previously, this deter-
mines a pair of well defined, bounded continuous functions. The

condition on £,'(0) follows from the definition of the Joins.

As in the proof of the U.C.L. for mapping classes of alge-
braically finite type, it suffices to prove that for each pair
of positive reals, § and e, there exists a positive integer,

N , such that 4f n2N and f_([L])26 , then £ (<"([L])) <¢ .
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Suppose, therefore, that £ _([L]}) 26§ . Then, either
a(lLy1) 26/2 or e_([L,]) 26/2 . Suppose that d([L,])26/2 .

By Lemma 5.2, there exists a positive integer, M, , such that

1

if mZM1 , then

(a) a(ltiL, ) <e/2 ana  (b) (17771 2 (-e) (0L, D)

Similarly, if e__([LZ]) 26/2 , then, by Lemma 5.4 there exists

a positive integer, M2 r such that if m2M, , then

2

() e, ([15L,1) <e/2 ana (a) ([73'L,]) 2D(IjL,D) .

At this point let us assume that &6>1 , e<1 , and
1<D(1-e) . (This last assumption is possible, since D>1 .)
Let M = max(M1,M2) .

Case 1. L1 = 0

In this case, e__([l.2]) 26/2 . It is easy to see from (c), and

the definition of £ _, that if mzM , £ _([t"L]) <€ .
Case 2. L, =0

By the same token, if m2M , f"_([‘l'm!.]) <¢ . From hereon, we

assume that L1 f 04 L2 .

Case 3. d([L,])26/2 and e_([L,])26/2.
Again, if m2M , then f_([1"L])<c .

We now arrive at the difficult cases. It is here that

Lemmas 5.1 through 5.5 are crucial.
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case 4. d([L,])26/2 and e_([L,]) <8/2 .

By Lemma 5.5, choose a positive integer, Q , such that
if n2Q , then either:

(5) e, ([thL,1) <e/2 or (6) 115 91,1 s0%L,1/0"

Let Q1 = malx(M1 Q) . By (a) above, if nZQ1 and (5) holds,
then f_‘_([‘l’nL]) < e . Henceforth, we assume that nZQ1 and
(6) holds. From the definition of £_ , and the assumptions

that £ _([L]) 26 , and e_([Lzl) <8/2 , we observe that:

(7) §5 (IL1/1Ly1NC + §/2

In the following argument, the constants will become
rather cumbersome. We shall simply write all irrelevant constants

by the same symbol, k .

If rx?.Q.I , then:

(1) ITngl Sklrg-QLzl by Lemma 5.3.
(i1) lr‘z‘Lzl Slezl/Dn by (6).
(111)  l1yL, 1 skiL, 1/D" by (7).
(iv) ltrz’Lzl s kIT1M1L1|/Dn by Lemma 5.1.
W 1L sk e ) by (o).

(vi) Il 0 skltiL 1/ (D(1=-eN™ .

Clearly, by (vi), there exists N1 » such that N1 2 Q, and

if neN then

1 ’
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n n
(vii) |12L2| Ss|11L1|/2C

It is easy to see that if nz N, , then f+([-rnL]) <eg .

1

Case 5. a(iL, 1) <6/2 and e_([L,]) 28/2 .

This case follows in a similar manner. Since we have covered

all cases, the proof is complete.

6. Projective Lamination Spaces and Reduction Maps

Suppose that T is an arbitrary mapping class on F . Let
A denote the essential reduction system of 7T. Consider the
subcollection, B , of‘simple closed curves which, after reduction
along A , correspond to boundary components of components of
# for whicﬁ the restriction of 1 is pseudo-Anosov. Clearly,

B is a reduction system for T .

It is easy to see that the reduction of <t along B is
either of algebraically finite type, (in which case, B = § and
T 1is of algebraically finite type), or pseudo-Anosov, {(in which
case, B = A ), or a simple direct sum. In any event, the
reduction of 1 along B,Q , satisfies the Uniform Convergence

Lemma by the results of the previous three sections.

From this simple observation, it is natural to compare the
action of T on PL(F) with the action of 1 on PL(Q) .

Therefore, in this section, we shall construct reduction maps,

natural maps between the projective lamination spaces of surfaces
and their associated reductions. In the next section, we shall

employ these maps to give the general definition



- 42 -

of the Joins of a mapping class. And then, in section 8, we
shall employ them to derive the Uniform Convergence Lemma for

an arbitrary mapping class in the manner suggested above.

Suppose that F 1is a surface, A 1is an admissible system
on F , and % = F\A as in section 2. Our objective is to con-

struct a continuous reduction map,

A
A : ML(F) - ML(F) .
Intuitively, one may think of this map as given by the rule:
. A
(y,u) I—»(ynr',u.lY Y

Unfortunately, yl\? is not a geodesic lamination, (see Note,
section 2). It appears'that yf\ﬁ is isotopic to a geodesic
lamination and one could use such an isotopy to supply this
geodesic lamination with a transverse measure induced from p .

We shall not attempt to carry this program out. Instead we

shall define our maps in terms of measured train tracks.

Choose a pants decomposition, P , of F such that Ac?P .
let P be the corresponding paving of ML(F) . We are going
to build directly, from this paving of ML(F) , a paving of
ML(?) . The notation for the associated objects for ML(F) will
be as in section 3. The corresponding objects for ML(?) will

be denoted likewise except for a superscript, A .
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A
Let A be the collection of boundary components of
annuli corresponding to the components of A . Let % = P\A

considered as a family of simple closed curves on # .

We may choose a complete hyperbolic structure on ﬁ in
which $ is a family of simple closed geodesics. In this
structure,«$ is a pants decomposition of g . Furthermore, we
may assume that the components of oF are horocycles in the
‘corresponding cusps of g . For'each component, a , of A ,
the two components of Au\a lie in cuspé of 3 (figure 11).
Hence, we may assume that the components of £ are horocycles

as well.

!ri -

(Figure 11)

For each component, o , of 3 we take the given annular
neighborhood on F as an annular neighborhood on f . In each
cusp of f coming from a cusp of F we choose the given
punctured disc on F . In each cusp of £ -arising from a compo-

nent,a, of A, we take one of the components of Aa\a..
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The closed pants of this paving of ? are just the pants of
thé paving of F .

We may choose the local models for % to be the local
models for F . The only difference occurs in the "new" cusps
arising from components of A . In these cusps, we choose the
models suggested by figure 11. By these associations, we may
associate to each train tr#ck, T , in T(P) , a train tragk, 6 .
on 3 . Furthermore, since the edges of" $ are naturally in-
dentified with a subset of the edges of T , we may restrict any
transverse measure, v , on T to a transverse measure, 3 r ON
6'. It is evident that this correspondence is continuous on
cones and respects the identification of common subtracks. If
L is a measured lamination, (y,u) , carried by T, then ? is

A A A A
a measured lamination, (y,u) carried by T with (u#) = (ﬁ)# .

Let U(A) be the collection of measured laminations whose
supports are contained in A . Let A(A) be the corresponding
subset of PL(F) . From the above discussion, it is an easy

exercise to verify the following lemma.

Lemma 6.1 The following reduction map is continuous:

A
A : PL(F)\A(A) » PL(F) ; A :I[L] > [t]

Let A be a family of isotopy classes of disjoint, homo-
topically nontrivial simple closed curves on F . We shall re-

present any such family by geodesics in the compact region of F
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and horocycles in the cusps of F . ML(F;A) will denote the
subset of ML(F) consisting of measured laminations whose
supports'are disjoint from A . In particular; ML(F;8) = ML(F)
and ML (F;3F) = MLO(F) » where ML, (F) is the set of measured
laminations on F which have compact supports. Briefly, a geo-
desic lamination is compact if no leaf of the lamination goes

out to infinity in a cusp of F .

Note: For a closed surface, F , all géodesic laminations

are compact. Thus, in this case, ML(F) = MLy (F) .

The action of R, vclearly restricts to an action on MLO(F) ,
and we obtain PLO(F) as the corresponding orbit space. In like
manner we obtain PL(F;A) as the projective space corresponding
to ML(F;A) . ML(F;A) has the subspace topology and PL(F;A)
has tﬁe corresponding quotient topology. The reader will observe
that PL(F;A) embeds in PL(F) .

Although the reduction maps are not injective, certain

natural restrictions of them are.

Lemma 6.2. The following restriction is a homeomorohism:

A s PL(F;A) - PL(FsR) 5 A+ (L] —> (D)

Corollary 6.3 The following restriction is a homeomorphism:

. - 1 A A A
A s A T (PLGF)) -—>PL0(F) ; A s [L) —>[L]
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7. The Anatomy of a Join

We are now ready to begin our discussion of the "anatomy"
of a join. Again, we consider a fixed mapping class, T , and the
essential reduction system for T,AT . Now, consider the reduc-
tion of 1t along A , where A = AT . For the purposes of the
following discussion, we may, if necessary, replace 1 by ™ '
where m is a positive integer. Therefore, by Theorem 2.1, we

A A
may assume T preserves each of the connected components of F ,

A
and each restriction of 1t 1is either trivial or pseudo-Anosov.

A
Index the components of F as follows.

A
(1) Ao (L f) I (UL F
F (jGJ J Kex k) -
A
(ii) For each j€J , Tj =1 .
A
(ii1) For each k€K , 1 is pseudo-Anosov.

k

Note: It is possible, of course, that J =@ or K=60 .

By definition of pseudo-Anosov, for each k , as in (iii),
there is a pair of nontrivial measured laminations,
A
{Lk+'Lk-}C:ML(Fk) , and a positive real number, Ak>-1 , such
-1

A A
that T (L ) = A L, and Tk‘Lk-) = ALl

Note: These measured laminations are compactly supported,

(L ol } © ML (B . ([Th2], [FLP)).

We may extend the notion of the join of subsets of PL(F) ,

which we defined in section 4, to arbitrary surfaces as follows.
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If L1 and L2 are measured laminations, (Y1,u1) and

(Yz,uz) . such that Y111Y2 = @ , we shall refer to L1 + Lz

as the direct sum of L1 and L2 v L1 ® L2 . and write:

L1 o L2 = (7111.72.;11(9;:2) .

Two subsets, A and B , of PL(F) have disjoint supports

if for each pair of measured laminations, (L1,L2) , with

[L1]€A and {L2]€B » supp(l,) Nsupp(l,) = ¢ . If A and B
have disjoint support, then we may define the join of A and B ,
A » B, by the rule:

A+B= {[LIEPL(F)|L = L,eL,,fL 1€A,[L,]) €B)

It is clear that we may employ this notion to define the
following subsets of PL(F) :

-1

(1) Rernel(t) = Ker(r) = A (g, PL(Fy:A,)) .
(2) Attractor(r) = Att(t) = A7' (2 (1L, 1}.).
{3) Neutral(t) = Neut(t) = aEAT{lal} .

(4) Join, (1) = Ker (1) » Att(t) # Neut(t) .

The arguments of Lemma 1.3 establish that A * B is, in
fact, homeomorphic to the topological join of A and B . In

fact, using Lemma 6.2, we may easily establish the following

result.



Lemma 7.1 {1) Ker (1) L jEJPL(F'j;Aj) .
(2) Att (1) = kéx{[Lk+]} .
(3) Neut (1) = agAT{[a]} .

- (4) Join+(r) Ker (t) * Att(t) * Neut(t) .

Remark: By Corollary 1.4, Lemma 7.1 and basic properties

of topological joins we have the following observations.

(1) Ker(t) is homeomorphic to a sphere or a disc of some
appropriate finite dimension, (else it is empty).

(2) Att(t) is homeomorphic to a standard n-simplex, where
n+1 is the number of pseudo-Anosov components in the
reduction of T along its essential reduction system,
(else empty).

(3) Neut(t) is homeomorphic to a standard n-simplex where
n+1 1is the number of connected components of the essential
reduction system for 1 , (else empty).

(4) Join (1) is homeomorphic to a sphere or a disc of some
appropriate finite dimension. In fact, if 1t 1is infinite
order, then either Att(t) or Neut(t) is nonempty. Hence,
in this case, Join+(r) is a disc. If 1t is finite order,

then Join+(1) is equal to PL(F) .

The Join_ of Tt is 'defined by replacing Att(t) by the

Repeller of 1T which is defined as follows

-1
(5) Repeller(t) = Rep(t) = A (kgx[Lk_]) .

The following observations are easily checked.
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Lemma 7.2 (1) For each. n>0 , Joint('rn) Join, (1) .

(2) PFPor each n<0 , Join+(rn) Join_(Tt) .
x +

1

(3) For each o€l (F), o(Joini(r))aJoini(oro_ ) .

Remark: The reader may easily check that the definitions we
have given in this section extend the definitions given. in

sections 3,4 and 5.

8. The Uniform Convergence Lemma

In this section, we shall prove the Uniform Convergence

Lemma for an arbitrary element, 1 , of T(F) .

Uniform Convergence Lemma. Iet T€E€ET(F) . Let K be a compact

subset of PL(F)\Join_(t) , and U be an open neighborhood of
Join+(r) . There exists a positive integer N , such that if

nzN , then 1%(K) cU .

Proof: Let A and B denote the reduction systems for =
which are described in the introductory statements of section 6.
Let Q be the reduction of 1 along B . As we observed in
these introductory statements, Q satisfies the Uniform Conver-

gence Lemma. Let A denote the corresponding reduction map:

A : PL(F) \ A(B) »PL(F) .
It is clear from the definition of the Joins that

(1) A'1(Joint(/1\)) cJoini(T) .
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Since A(B)cJoin+(T) , {(in fact, A(B) cNeut(t)), PL(F)\U
is a compact subset of PL(F)\A(B) . Let ﬁ = A(K) and
C = A(PL(F)\U) . Observe, (1) implies that CcPL(F)\Join, (T) .
Furthermore, since C 1is compact, PL(Q)\C is an open neighbor-

A A A
hood of Join+(r) . Let U= PL(F)\C .

As observed, there exists a positive integer, N , such

A A
that for each integer, nz2N , (‘t)n(K) <Vl . Therefore:

D (K) e A" AR K))) = AT (ER(R))

-1 A
'rn(K) cA 1(U) <U for each integer, n2 N .

Remark: The argument which has been employed here will not
work for an arbitrary reduction system. For, in general, it is
not true that A-1(Joini(4))c:Joint(T) . For example, let F be
a closed, connected surface of genus two, and {a,B} be a pair
of dual curves as in figure 12. Let T be the Dehn twist about
a , and A be the reduction map corresponding to {a} . The

reduction of T along a is trivial. Therefore:
A -1 A
(1) Join (1) = PL{F\a) , A (Join (7)) = PL(F)\A({a)}) .

On the other hand, B8€ PL(F)\ A({a}) , but, since B is dual
to «a,B ¢ Join (1) .
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r=1a ’

~

a T =1

(Figure 12)

9. Two Generator Subgroups of I (F)

In addition to the properties of Lemma 4.3, we shall
neea the following result concerning pseudo-Anosov mapping

classes on connected surfaces.

Lemma 9.1 ([Mc1]). Let F be a connected surface, v be a

pseudo-Anosov mapping class, and {[L+], [L_]} the unique pair
of fixed points for the action of T on PL(F) . The stabilizer
of [Li] is a virtually cyclic subgroup of T (F) , any torsion

free subgroup of which is cyclic.

We now proceed with the proof of Theorem B.

Proof of Theorem B

Let Join(o) = Join_ (o) UJoin (o) . First, we consider
the case where Join(g) nJoin(t) is empty. In particular, ¢
and 1t are of infinite order. Since Join(c) and Join(rt)
are closed subsets of PL(F) , we may separate them by open

subgsets, U and V . That is:
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(a) Join(o)cU , (b) Join(t)eVv and (c) UNV =g .

Since PL(F) 4is connected, we may choose:
(d) pePL(F)\(UuvV) .
Note:

(e) Vu{p)} is a compact subset of PL(F)\ Join_ (o)

(£) Tu{p} 4is a compact subset of PL(F)\Join (1) .

By repeated applications of the Uniform Convergence Lemma, we

conclude that there exists:

(g) M,>0 such that " (Vu{p}) cU for all nzM,
(h) VM2>0 such that o “(VU{p}) cU for all n2 M,

(1) N1>0 such that t"(Tu {p}) eV for all nzN,
(35 N,>0 such that 1 "(Ju{p}) eV for all nzN,

Let M = M1M2 and N = N1N2

. Then:
(k) For each nonzero integer, n , AT {ph cu .
(1) Por each nonzero integer, n , (TN)n(U vt{pl)ecv .

By the Freedom Criterion, gp(cM, TN) is a free group of rank

two on the generators, aM and TN .

Now, we consider an arbitrary pair, ¢ and 1 , in T(F) .
We shall prove Theorem B by induction on C(F) , where C(F)

is the maximum number of components of an admissible system on
F . One may compute that C(F) = 3g + b - 3c . If A is an
admissible system on F , then C(§) <C(F) . Therefore, C(F)

is ideally suited for "reduction" arguments.

Suppose that C(F) = 0 . Then F 1is a disjoint union of

pairs of pants. Since the mapping class group of a pair of pants
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is finite ([BLMl), it follows easily that T(F) is finite.
(r(F) 1is an extension of the direct product of the mapping
class groups of the componehts of F by a subgroup of the

group of permutations of the components.) Therefore, Theorem B

follows by triviality.

Now, suppose that C(F) >0 . In addition, suppose that
F is not connected. Since hypothesis and conclusion are
ihvatiant under exponentiation of ¢ and 1t by nonzero inte-
gers, we can assume that ¢ and T preserve each of the
components of F . We have natural projections:
PR gp(o.r)-»r(Fi) . Restrict these to epimorphisms:

LR gp(o.t)-*gp(ciyti) .

Suppose that for each i€1I , we can choose a pair of

M N
nonzero integers, M, and N, , such that gplo,i, 7, L) 1is
i i i i
abelian. Then gp(d™,t") is abelian, where M = 121 M, and

= n
N=ex ™ -

On the other hand, if for some index, i , there exists
a. pair of nonzero integers, M and Ni , such that the
corresponding group, gp(o?i,rii) » i8 a free group of rank 2,
then the epimorphism, LI splits. Therefore, the natural

Mi N
splitting, gploc .71 i) » 1s a free group of rank 2.

In other words, we may assume that F is connected.
Furthermore, by the previous argument, we may assume that
Join (o) nJoin(t) is nonempty. Furthermore, we may assume

that o and +t are of infinite order. (Otherwise, the con-

clusion is trivial.)
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Suppose that ¢, is pseudo-Anosov, and Join(g) N Join(Tt)
is nonemptv. If I[L] €Join(o) NJoin(t) . then clearlv L is
one of the pair of measured laminations associated to o . It
is clear, from the descriptions of the Joins, that T is
vpseudo-Anosov, with [L] as one of its pair of fixed points.
Therefore, gp(o,1) 1is contained in the stabilizer of the
projective ¢lass of 'L . By Lemma 9.1, we conclude that gp(o,1)
is virtually c¢yélic. By passind to exponents if necessary, we
‘conclude that gp(a™;t") is cvelic.

Therefore, we may assume that o and +t are infinite
order reducible mappina classes. In particular, Aq}# g .
Suppose that [L¥ Join(o) NJoin(t) . From the de;é%iptioh of
the Joins and the action of T (F) on measured laminations, we
can chOOSe_tépfééenEaives” s€d and t€Tt , and positive in-
teééfs; m ‘and 1, such that sP(¥) £y 2 €7(Y); where ¥ is
the sﬁppdrt of L ."Let A be the collection of compact leaves
of Yy . Clearly, A is preserved by s® ana t® émTﬁgfefo;e,
if A is rionempty;-io" ‘and ¢7 have:alcommon nént#ivial
reduction system..On:ithesothe¥ handotfiry Qoes fdt’eont&in®
compact leavesi-then there'aré:components8- of: Py Whidh‘tdntain
simple: closed geodesics «413%&9\Y)L2 To éach“such™ compohént ,

N , we may associate~a:closed retract, M', whigh i tnigue“up
to isotopy fixing the frontiex of .N., apd-is a:manifold with
boundary, 3M (figure 13) ... If every boundary component;of: M
bounded.a disk of F . or.a.cusp.of:-E.,.then, :y;owould: he.con-
tained in M ..(Cusps connegted,) Any-boundary gamponent:of M
which does not bound a disk of F or a;cusp.9of: F: Asiisotopic
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to a unique simple closed geddesic. Hence, the collection of

such boundary components corresponds to a common nontrivial

reduction system for o® and t% . In any event, o™ and

B have a common nontrivial reduction system, A.

(Figure 13)

Remark: It may occur that, in the latter event of the above
discussion, certain of the boundary components of the various
components are parallel on F . Thus, the correspondence of

this collection of boundary components with a reduction system

need not be one~to-one.

Let PA(F) be the stabilizer of A in T (F) and con-

sider the associated reduction homomorphism ([BLM]):

A A
A TA(F)-¢ T(F) , [t] - [t] .



Again, restrict this homomorphism to an epimorphism:
A A
A : gplo,T) » gp(o,T) .

Since C(§)~<C(F) , the induction hypothesis implies that
there exists a pair of nonzero integers, m and n , such that
either gp(em,?n) is abelian or a free group of rank 2. In the
latter case, the splitting argument just employed implies that
qp(om,rn) is a free group of rank 2. In the former case, since
the kernel of the reduction homomorphism is abelian ([BLM]) , we
conclude that gp(am,Tn) is solvable. The Theorem of [BLM]
stated in the introduction implies that gp(cm,fn) is virtually
abelian. By passing to higher exponents, M and N , if neces-

sary, we conclude that gp(oM,TN) is abelian.

10. A Tits Alternative for T (F)

Proof of Theorem A

As in the previous proof, we shall use induction on C(F) .
Again, the case where C(F) = 0 is trivial. Hence, we assume
that C(F) >0 . Since TI'(F) is virtually torsion free ([BL],
[BLM]), we may assume that G is torsion free. In addition, we
shall assume that G does not contain a nonabelian freé group.
Finally, by the same argument employed in the proof of Theorem B,

we may assume that F is connected.

First, suppose that G contains a pseudo-Anosov, O .
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If 1€G , by Theorem B, we may choose a pair of nonzero
integers, M and N , such that gp(oM,TN) is abelian. Since
Join_ (o) = {[L]} , Lemma 7.2 implies that TN([L]) = {L] . If

T 1is nontrivial, then by ILemma 9.1, and the assumption that

G is torsion free, TN is pseudo-Anosov. This implies that

T 1is pseudo-Anosov and [L] 4is one of its fixed points. Since
T 1is an arbitrary nontrivial element of G , we conclude that
G 1is contained in the stabilizer of [L] inT(L) . Therefore, by

Lemma 9.1, G is virtually cyclic.

Therefore, we may assume that G does not contain a
pseudo-Anosov. Together with our previous assumptions, we see
that G consists entirely of infinite order, reducible mapping
classes. In particular, if o€ G , then the essential reduction

system for o,A0 , is nonempty (Theorem 2.1).

Suppose that 0o and T are an arbitrary pair of elements
of G . By Theorem B, choose a pair of nonzero integers, M and
N , such that gp(oM,TN) is abelian. By the properties of
essential reduction systems, ([BLM]), A0 = A M"~r= A y and
oM(AT) = AT . Likewise, we conclude that ‘<A0?AT> =0 f

= ]
Let Ag oéGAc’ By the previous remarks, A, # @ , Ag

is an admissible system. Finally, by the same remarks, AG is

stabilized by each element, 7 , of G . Let A = AG , and consider
A

the associated reduction homomorphism: A : FA(F)->F(F) , and

A
its corresponding epimorphic restriction: A : G-+G .

A
Since C(F) <C(F) , the induction hypothesis implies that
A A
either G is virtually abelian or G contains a nonabelian free

group. In the latter case, we may employ a splitting argument, as
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in the proof of Theorem B, to prove that G contains a non-
abelian free group. In the former case, since ker(A) is
abelian, G is virtually solvable. As in the previous proof,

the Theorem of [BLM] implies that G is virtually abelian.

Acknowledgements:

This work is part of the author's doctoral dissertation
at Columbia University ([Mc2]). We thank Joan Birman, the
author's thesis advisor, for her continual encouragement and
Alex Lubotzky for suggesting the problem of a "Tits Alternative"
for surface mapping class groups. We owe a great deal to John
Harer and Robert Penner whose theory of pavings provided the

framework for many of the techniques used in this paper.

The author gratefully acknowledges the support of the
Massachusetts Institute of Technology and the Max-Planck-Institut

fiir Mathematik, Bonn during the preparation of this paper.



- 59 -

REFERENCES

[BL]

(B1]

[B2]

[BLM]

[FLP]

[G)

[H]

[HP]

[Ha]

(HT]

[Ke]

[Mc1]

"[Mc2]

Bass, H. and Lubotzky, A., "Automorphisms of Groups
and of Schemes of Finite Type", preprint.

Birman, J.S., Braids, Links and Mapping Class Groups,
Annals of Math Studies, Study 82, Princeton University
Press, Princeton, 1974.

Birman, J.S., "The Algebraic Structure of Surface
Mapping Class Groups", in Discrete Groups and Auto-
morphic Functions, edited by W. Harvey, Academic

Press, 1977.

Birman, J.S., Lubotzky, A. and McCarthy, J., "Abelian
and Solvable Subgroups of the Mapping Class Group",
Duke Mathematical Journal, 50, 1107-1120, 1983.

Fathi, A., Laudenbach, F., Poenaru, V., et al.,
Travaux de Thurston sur Les Surfaces, Asterisque 66-67,

Societe Mathematique de France, 1979.

Gilman, J., "On the Neilsen Type and the Classification
for the Mapping Class Group", Advances in Mathematics,
40, 68-96, 1981.

Harer, J., "Stability of the Homology of the Mapping
Class Groups of Orientable Surfaces", to appear.

Harer, J. and Penner, R., "Combinatorics of Train Tracks
and Pavings of Projective Lamination Spaces”, to appear.

Harvey, W.J., "Geometric Structures of Surface Mapping
Class Groups", in Homological Group Theory, LMS Lecture
Notes No. 36, Editor C.T. Wall, Cambridge University
Press, 255-269, 1979.

Hatcher, A. and Thurston, W., "A Presentation for the

Mapping Class Group of a Closed Orientable Surface",
to appear.

Kerckhoff, S.P., "The Neilsen Realization Problem",
Annals of Mathematics, Second Series, vol. 117, No. 2,
235-265, March, 1983,

McCarthy, J., "Normalizers and Centralizers of Pseudo-
Anosov Mapping Classes", preprint available upon request.

McCarthy, J., "Subgroups of Surface Mapping Class Groups",
Ph.D. thesis, Columbia University, May, 1983.



[M]
[N]

[p]

[Th1]

[Th2]

[Th3]

{Th4]

[Th5]

[T}

- 60 -

Morgan, J., Columbia University lLecture Notes.

Nielsen, J., "Surface transformation classes of
algebraically finite type", Math. Fys. Medd. Danske.
vid. Selsk. XXI 2 (1944) 1-89.

Penner, R.,"A Computation of the Action of the Mapping
Class Group on Isotopy Classes of Curves and Arcs

in Surfaces", Ph.D. thesis, Massachusetts Institute

of Technology, 1982.

Thurston, W.P., The Geometry and Topology of
3-Manifolds, Princeton University Lecture Notes.

Thurston, W.P., "On the Geometry and Dynamics of
Diffeomorphisms of Surfaces", preprint.

Thurston, W.P., "Three Dimensional Manifolds, Kleinian
Groups and Hyperbolic Geometry", Bulletin of the AMS,
vol. 6, No. 3, 357-381, May, 1982.

Thurston, W.P., Lectures Notes, Boulder, Colorado,
1980.

Thurston, W.P., "Hyperbolic Structures on 3-Manifolds,
II", preprint, July, 1980.

Tits, J., "Free Subgroups in Linear Groups", Journal
of Algebra, 20, 250-270, 1972.



	Seite 1 
	Seite 2 
	Seite 3 
	Seite 4 
	Seite 5 
	Seite 6 
	Seite 7 
	Seite 8 
	Seite 9 
	Seite 10 
	Seite 11 
	Seite 12 
	Seite 13 
	Seite 14 
	Seite 15 
	Seite 16 
	Seite 17 
	Seite 18 
	Seite 19 
	Seite 20 
	Seite 21 
	Seite 22 
	Seite 23 
	Seite 24 
	Seite 25 
	Seite 26 
	Seite 27 
	Seite 28 
	Seite 29 
	Seite 30 
	Seite 31 
	Seite 32 
	Seite 33 
	Seite 34 
	Seite 35 
	Seite 36 
	Seite 37 
	Seite 38 
	Seite 39 
	Seite 40 
	Seite 41 
	Seite 42 
	Seite 43 
	Seite 44 
	Seite 45 
	Seite 46 
	Seite 47 
	Seite 48 
	Seite 49 
	Seite 50 
	Seite 51 
	Seite 52 
	Seite 53 
	Seite 54 
	Seite 55 
	Seite 56 
	Seite 57 
	Seite 58 
	Seite 59 
	Seite 60 
	Seite 61 
	Seite 62 

