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Abstract

We obtain a Wiener-type criterion for the Hölder continuity of extremal
functions on general metric spaces in an abstract setting. We use then
this result to establish the boundary regularity of quasi-minimizers
of the p-energy integral in the axiomatic framework of Gol’dshtein-
Troyanov and also for extremal functions from the class of Poincaré-
Sobolev functions.

Introduction

The problem of minimizing a variational integral in a set of functions
with prescribed boundary values is closely related to solving the correspond-
ing Dirichlet problem for its Euler-Lagrange equation. In particular, for the
Dirichlet p-energy integral

∫

Ω⊂Rn

|∇u(x)|pdx

the corresponding Euler-Lagrange equation, for 1 < p < ∞, is

div(|∇u(x)|p−2∇u(x)) = 0,

and the minimizers of the former functional are solutions of the latter equa-
tion. In the case when p = 2, this equation reduces to the well-known
Laplace equation ∆u = 0, whose solutions are called harmonic functions. A
fundamental problem in the potential theory is to study boundary behavior
of the solutions of such equations and the minimizers of the corresponding
variational problems.

In 1924, N. Wiener [23] established a criterion to characterize continuity
at the boundary for harmonic functions. For the more general case of elliptic

1



2 Sergey A. Timoshin

equations the first steps to find a similar criterion were made by W. Littman,
G. Stampacchia and H.F. Weinberger [14] who proved that a point in the
boundary of an arbitrary domain was simultaneously regular for harmonic
functions and weak solutions of linear equations with bounded, measurable
coefficients. In his work concerning the local behavior of solutions of quasi-
linear equations, J. Serrin [20] discovered that a capacity, now known as
the p-capacity, was the appropriate measurement for describing removable
sets for weak solutions. Later, V.G. Maz’ya [16], [17] discovered a Wiener-
type expression involving this capacity which provided a sufficient condition
for continuity at the boundary of weak solutions of equations whose struc-
ture is similar to that of the p-Laplacian. Utilizing different techniques, R.
Gariepy and W.P. Ziemer [3] showed that the Maz’ya’s condition was also
sufficient for boundary continuity for solutions of a large class of quasilinear
equations in divergence form. After some time, Ziemer [24] generalized this
result for quasi-minimizers (minimizers up to a multiplicative constant), a
concept generalizing the notion of solutions of elliptic equations and varia-
tional problems.

When one wants to treat similar questions on general metric spaces,
where a version of the p-energy integral can be defined, and one considers
the problem of boundary regularity for the (quasi-)minimizers of this energy,
of a particular relevance is the famous method of De Giorgi [2]. There are
several ways to generalize the notion of p-energy (or equivalently the (length
of) gradient) on a general metric spaces and to introduce the corresponding
Sobolev-type spaces. One of the first is the notion of Sobolev space con-
sidered by P. Haj lasz [8]. Among other known approaches are the Sobolev
spaces via the upper gradients [11], [21] well adapted to the length spaces,
the axiomatic Sobolev spaces of Gol’dshtein-Troyanov [6],[7] and the Sobolev
spaces based on a Poincaré inequality, first considered in [13] and later devel-
oped in [9]. Let us stress here that the last two concepts are quite different
from the upper gradients Sobolev spaces in their methods and spirit. In [1]
J. Björn has applied the De Giorgi’s method to study the Hölder continuity
at the boundary for the quasi-minimizers of the p-Dirichlet integral on an
abstract metric space. She has obtained a (sufficiency part of) Wiener-type
criterion for boundary regularity using the notion of upper gradients.

The main goal of the present paper is to show that the De Giorgi’s
method can also be applied to establish the boundary regularity within the
axiomatic or the Poincaré inequality framework, and even in more general
situations.
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Our strategy is close in spirit to that of [22], where we prove the interior
regularity of extremal functions in the same context. In particular, we follow
the same as in [22] pattern, reducing the De Giorgi argument to a system
of three hypotheses H1-H3 (hypothesis H3 in the present case is different
from that in [22]) that a function u defined on a measure metric space
may satisfy. These hypotheses are very general, they can be formulated for
any function u in Lp, and in particular we do not assume that a notion of
Sobolev space has been defined. The essence of the De Giorgi argument for
the boundary regularity is first to show that a function satisfying the three
hypotheses plus an additional assumption, which is an abstract form of the
Wiener condition, is Hölder continuous at a boundary point, and then to
show that a function minimizing an appropriate energy must satisfy these
hypotheses. The technique leaves us a lot of freedom to choose various kind
of energies. We show in the second part of the paper how this technique can
be applied to prove the boundary Hölder regularity of extremal functions in
an axiomatic Sobolev space, and in the third part we consider the case of
functions satisfying a Poincaré inequality and the De Giorgi condition. The
results are stated in Theorems 3.2 and 4.1.

The paper is organized as follows. In the first section we formulate the
hypotheses H1-H3 we work with later and we show in Theorem 1.5 that a
function u satisfying these hypotheses together with the abstract Wiener
condition (4) is Hölder continuous at a boundary point. The arguments in
the proof of Theorem 1.5 are similar to those in [1]. Essentially, they repro-
duce the De Giorgi argument for the regularity at the boundary, revisited
in our abstract setting. For the sake of completeness we give the details
of the proof in Section 1.2. Section 2 gives necessary preliminaries on the
axiomatic and Poincaré-Sobolev spaces. The third section is devoted to the
boundary regularity of a quasi-minimizer of the energy functional in the ax-
iomatic setting. We show that all three hypotheses H1-H3 are satisfied by
the quasi-minimizer and its minimal pseudo-gradient and, therefore, that
the quasi-minimizer is Hölder continuous at a boundary point. In the forth
section we verify that functions from the Poincaré-Sobolev space, which have
an additional property (De Giorgi condition), satisfy the hypotheses H1-H3
and, thus, are also Hölder continuous at a boundary point.
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author’s Ph.D. thesis [22]. The author warmly thanks the supervisor of
his Ph.D. thesis, Professor Marc Troyanov, for his encouragement, patient
guidance and helpful discussions. The author gratefully acknowledges the
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1 Boundary Regularity in an Abstract Setting

Throughout the paper (X, d) will be a metric space equipped with a
Borel regular outer measure µ. For any ball B = B(R) = B(z,R) = {x ∈
X : d(x, z) < R} and σ > 0 we denote by σB the ball B(z, σR).

Our standing assumption for the measure µ is that it is doubling, i.e.
that there exists a constant Cd ≥ 1 such that for all balls B ⊂ X we have

µ(2B) ≤ Cdµ(B) .

Cd is called the doubling constant. Note that this property of the measure µ
implies, in particular, that the measure of a ball of positive radius is strictly
greater than zero.

We will suppose for convenience that the space X is locally compact
and separable. For 1 ≤ p < ∞, Lp

loc(X) = Lp
loc(X, d, µ) is the space of mea-

surable functions on X which are p-integrable on every relatively compact
subset of X.

At the beginning of this section we want to underline that in the sequel
the notation g(u) for a function from Lp(X) means no a priori dependence
of this function on the given function u ∈ Lp

loc(X), whereas gu stands for
the minimal pseudo-gradient of the function u (see Section 2.1).

Let Ω be an open subset of X and x0 ∈ ∂Ω be a boundary point of the
set Ω. Suppose also that functions u ∈ Lp

loc(X) and ϑ ∈ Lp(X) are such that
u = ϑ a.e. on X\Ω, and that the function ϑ is Hölder continuous at the point
x0. In this section we prove that if the functions u and −u satisfy at the
point x0 Hypotheses H1-H3 stated below in the pairs with some functions
g(u), g(−u) ∈ Lp(X) respectively, then the function u is Hölder continuous at
the boundary point x0.

Unless otherwise stated, C denotes a positive constant whose exact
value is unimportant, can change even within a line and depends only on
fixed parameters, such as X, d, µ, p and others.

1.1 List of hypotheses

Let x0, a boundary point of Ω, be fixed. The hypotheses for two func-
tions u, g(u) ∈ Lp(Ω), which we shall need are the following:
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Hypothesis H1 (De Giorgi condition) There exist constants C > 0 and

k∗ ∈ R, such that for all k ≥ k∗ and 0 < ρ < R ≤ diam(X)/3, the following

Caccioppoli type inequality on the “upper-level” sets of the function u holds

∫

A(k,ρ)
gp
(u)dµ ≤

C

(R − ρ)p

∫

A(k,R)
(u − k)pdµ, (1)

where A(k, r) = Az(k, r) = {x∈B(x0, r) = B(r) : u(x) > k}.

Let η be a C
(R−ρ) -Lipschitz (cutoff) function for some C > 0, such that

0 ≤ η ≤ 1, the support of η is contained in B( R+ρ
2 ) and η = 1 on B(ρ).

Hypothesis H2 There exists a constant C > 0 such that for functions

v = η (u− k)+ and g(v) = g(u) χA(k, R+ρ

2
) + C

R−ρ(u− k)+ and for some t and

q, t > p > q, we have

(

∫

−
B( R+ρ

2
)
vtdµ

) 1
t

≤ CR

(

∫

−
B( R+ρ

2
)
gq
(v)dµ

) 1
q

, (2)

where k, ρ and R are as in Hypothesis H1. Here, as usual, (u − k)+ =
max{u−k, 0}, χ

A(k, R+ρ

2
)
is the characteristic function of the set A(k, R+ρ

2 ).

Hypothesis H3 There exists a function Φ : 2X ×X ×R+ → R+ such that

for fixed Ω ⊂ X and x0 ∈ X,
Φ(Ω,x0,R)

R is bounded for all R ∈ R+, Φ is not

constant for all of its three arguments, and for all h, k ∈ R, h > k ≥ k∗, for

the functions w = uh
k and g(w) = g(u) χ{k<u≤h} we have

(

∫

B(R)
wqdµ

)
1
q

≤ Φ(Ω, x0, R)

(

∫

B(σR)
gq
(w)dµ

)
1
q

, (3)

where σ > 1 is a constant and q is as in Hypothesis H2.

Remark 1.1. In [22], where we studied the regularity in the interior of Ω,
the function Φ(Ω, x0, R) of Hypothesis H3 is replaced by the term C R in
the inequality (3), where C > 0 is a constant. Hypotheses H1 and H2 stay
unchanged.

Remark 1.2. Hypotheses H2 and H3 are the characteristics of the Sobolev
space of functions we will work with in the next sections, whereas Hypothesis
H1 is the property of some particular functions, the functions whose regular-
ity we want to establish. Hypotheses H2 and H3 are Sobolev-type inequalities
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that are typically true for pairs (u, g(u)) in a sufficiently nice metric measure
space: they essentially assert that the associated Poincaré inequality remains
stable under cutoffs and truncations.

Remark 1.3. The introduction of the auxiliary function Φ in Hypothesis
H3 quantifies the validity of a Sobolev-type inequality near a boundary point.
Appearing later in a Wiener-type criterion for the boundary regularity, it
unifies various possible types of the Winer condition like the measure density
condition or capacitary conditions. In particular, a typical example of the
function Φ is given (up to a constant) by the following quantity

Φ(Ω, x0, R) =

(

µ(B(x0, R))

Cq

(

B(x0,
1
2R) \ Ω

)

) 1
q

,

where Cq is the Sobolev q-capacity of the axiomatic setting (see Proposi-
tion 3.3 and Remark 3.4). Another example of Φ is (up to a constant) the
function

Φ(Ω, x0, R) = R

(

µ(B(x0, R))

µ(B(x0, R) \ Ω)

)1− 1
q

,

(see Proposition 4.2).

1.2 Boundedness and Hölder continuity

In this subsection we show that Hypotheses H1-H3 for a function u ∈
Lp

loc(Ω) at a boundary point x0 combined with the abstract Wiener-type
condition (4) guarantee the Hölder continuity of u at x0.

Theorem 1.4. Suppose that a pair of functions (u, g(u)) satisfies Hypotheses
H1 and H2 at the boundary point x0. Then for all k ≥ k∗ there exists a
constant C > 0 such that

ess sup
B(x0 , R

2
)

u ≤ k + C

(

∫

−
B(x0,R)

(u − k)p
+dµ

)
1
p

.

Proof See the proof of Theorem 1.1 in [22].

Theorem 1.5. If the pairs (u, g(u)) and (−u, g(−u)) satisfy Hypotheses H1-
H3 (with some g(−u) ∈ Lp(X)), the function ϑ ∈ Lp(X) is Hölder continuous
at x0 ∈ ∂Ω and the following condition is satisfied

lim inf
ρ→0

1

| log ρ|

∫ 1

ρ
exp

(

−C

(

Φ(R)

R

)
pq

p−q

)

dR

R
> 0 , (4)
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for some constant C > 0, then the function u is Hölder continuous at x0.

With Ω ⊂ X and x0 ∈ ∂Ω being fixed, here and in the sequel we indicate
for simplicity the dependance of the function Φ : (Ω, x0, R) 7→ Φ(Ω, x0, R)
only on its third argument, i.e. instead of Φ(Ω, x0, R) we write Φ(R).

Proof Using the inequality (3) for our auxiliary functions w and g(w) with
some h and k, h > k ≥ k∗, we obtain

(h − k)µ(A(h,R)) =

∫

A(h,R)
wdµ ≤

∫

B(R)
wdµ

≤

(

∫

B(R)
wqdµ

) 1
q

µ(B(R))
1− 1

q

≤ Φ(R)

(

∫

B(σR)
g(w)

qdµ

) 1
q

µ(B(R))1−
1
q

= Φ(R)

(

∫

B(σR)
g(u)

q χ{k<u≤h}dµ

)
1
q

µ(B(R))1−
1
q

= Φ(R)

(

∫

A(k,σR)\A(h,σR)
g(u)

qdµ

)
1
q

µ(B(R))1−
1
q .

Hence, by Hölder inequality we have

(h − k)µ(A(h,R)) ≤ Φ(R)

(

∫

A(k,σR)
g(u)

pdµ

)
1
p

× (µ(A(k, σR)) − µ(A(h, σR)))
1
q
− 1

p µ(B(R))
1− 1

q .

Since the functions u and g(u) satisfy the inequality (1), we conclude that

(h − k)µ(A(h,R)) ≤ C
Φ(R)

R

(

∫

A(k,2σR)
(u − k)pdµ

) 1
p

× (µ(A(k, σR)) − µ(A(h, σR)))
1
q
− 1

p µ(B(R))1−
1
q .
(5)

With x0 ∈ ∂Ω fixed, let us denote for R0, 0 < 2σR ≤ R0 ≤ diam(X)/3,

M(R,R0) = (ess sup
B(x0 ,R)

u − ess sup
B(x0,R0)

ϑ)+.
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Let us also define M = M(2σR,R0) and

kj = ess sup
B(x0,R0)

ϑ + M(1 − 2−j), j ∈ N.

Replacing now h by kj+1 and k by kj in the inequality (5) we obtain

(kj+1 − kj)µ(A(kj+1, R)) ≤ C
Φ(R)

R

(

∫

A(kj ,2σR)
(u − kj)

pdµ

) 1
p

× (µ(A(kj , σR)) − µ(A(kj+1, σR)))
1
q
− 1

p µ(B(R))1−
1
q ,

Noting that kj+1 − kj = M
2j+1 and denoting

Tj(σR) = (µ(A(kj , σR)) − µ(A(kj+1, σR)))
1
q
− 1

p

we further have

M

2j+1
µ(A(kj+1, R)) ≤

≤ C
Φ(R)

R

(

∫

A(kj ,2σR)
(u − kj)pdµ

)
1
p

Tj(σR) µ(B(R))1− 1
q

≤ C
Φ(R)

R
µ(B(2σR))

1
p (ess sup

B(2σR)
u − kj)+ Tj(σR) µ(B(R))

1− 1
q

≤ C
Φ(R)

R
µ(B(R))

1− 1
q
+ 1

p
M

2j
Tj(σR).

In the last inequality we have used the doubling condition of the measure µ.
Dividing both parts of the last inequality by M

2j+1 and recalling the expression
of Tj(σR) we obtain

µ(A(kj+1, R)) ≤ C
Φ(R)

R
µ(B(R))

1− 1
q
+ 1

p (µ(A(kj , σR)) − µ(A(kj+1, σR)))
1
q
− 1

p .

If n ≥ j + 1, then the set A(kj+1, R) on the left-hand side can be replaced
by A(kn, R) and the inequality remains true. We have

µ(A(kn, R))
pq

p−q ≤ C

(

Φ(R)

R

)
pq

p−q

µ(B(R))
pq

p−q
−1

(µ(A(kj , σR)) − µ(A(kj+1, σR))) .

Now summing up over j = 0, 1, . . . , n − 1 and using the doubling property
of µ, we obtain

µ(A(kn, R))
pq

p−q ≤
C

n

(

Φ(R)

R

)
pq

p−q

µ(B(R))
pq

p−q ,
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or
(

µ(A(kn, R))

µ(B(R))

)
pq

p−q

≤
C

n

(

Φ(R)

R

)
pq

p−q

. (6)

Theorem 1.4 with k replaced by kn and the fact that u − kn ≤ 2−nM on
B(R) give

ess sup
B(x0, R

2
)

u ≤ kn + C

(

∫

−
B(R)

(u − kn)p
+dµ

)
1
p

= ess sup
B(x0 ,R0)

ϑ + M(1 − 2−n) + C

(

1

µ(B(R))

∫

A(kn,R)
(u − kn)pdµ

) 1
p

≤ ess sup
B(x0 ,R0)

ϑ + M(1 − 2−n) +
CM

2n

(

µ(A(kn, R))

µ(B(R))

) 1
p

. (7)

As the function Φ(R)
R is bounded for all R ∈ R+, using the estimate (6) we

see that the last term on the right-hand side in (7) is at most 2−n−1M ,
whenever

n ≥ n(R) = C

(

Φ(R)

R

)
pq

p−q

. (8)

Inserting the smallest integer n ≥ n(R) into (7) gives the following inequality

ess sup
B(x0, R

2
)

u ≤ ess sup
B(x0,R0)

ϑ + M

(

1 −
1

2n+1

)

.

Noting that if
ess sup
B(x0,R0)

ϑ ≥ ess sup
B(x0, R

2
)

u ,

then
M(1

2R,R0) = (ess sup
B(x0 , R

2
)

u − ess sup
B(x0,R0)

ϑ)+ = 0 ,

we see that it follows from the last inequality that

M(1
2R,R0) ≤ (1 − 2−n(R)−2) M(2σR,R0) . (9)

Let C > 0 and n(R) be as in (8), and

ω(R) = 2−n(2R) = exp

(

−C0

(

Φ(2R)

2R

)
pq

p−q

)

,
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with C0 = C log 2.

For m = 1, 2, we divide the interval (0, R0) into two disjoint subsets as
follows

Im =

∞
⋃

j=1

[

(4σ)m−2j−1R0, (4σ)m−2jR0

)

.

Then I1 ∪ I2 = (0, R0), and hence for some m,

∫ R0

ρ
ω(R)

dR

R
≤ 2

∫

(ρ,R0)∩Im

ω(R)
dR

R
(10)

For j = 1, 2, . . . , choose Rj ∈
[

(4σ)m−2j−1R0, (4σ)m−2jR0

)

so that

∫ (4σ)m−2j R0

(4σ)m−2j−1R0

ω(R)
dR

R
≤

ω(Rj)

Rj

∫ (4σ)m−2j R0

(4σ)m−2j−1R0

dR

≤
ω(Rj)

Rj
(4σ − 1)(4σ)m−2j−1R0 ≤ (4σ − 1)ω(Rj) .

(11)

We take some ρ, 0 < ρ < R0. Then there exists a number N ∈ N such
that ρ ∈

[

(4σ)m−2N−1R0, (4σ)m−2N R0

)

. Summing up the inequality (11)
for j = 1, 2, . . . , N , and using the fact that ω(R) < 1 for all R > 0, we get
∫

(ρ,R0)∩Im

ω(R)
dR

R
≤

∫

((4σ)m−2j−1R0,R0)∩Im

ω(R)
dR

R

≤

∫

((4σ)m−2j R0,R0)∩Im

ω(R)
dR

R
+

∫

((4σ)m−2j−1R0,(4σ)m−2j R0)∩Im

ω(R)
dR

R

≤ (4σ − 1)
∑

ρ≤Rj≤R0

ω(Rj) + ln(4σ). (12)

Now we apply the inequality (9) for Rj , j = 1, 2, . . . , to obtain

M
(

(4σ)m−2j−1R0, R0

)

≤ M(Rj , R0) ≤
(

1 − 2−n(2Rj)−2
)

M(4σRj , R0)

≤

(

1 −
ω(Rj)

4

)

M(4σRj , R0) ≤

(

1 −
ω(Rj)

4

)

M((4σ)m−2j+1R0, R0).

Iterating this estimate, we get for 0 < ρ < R0,

M(ρ,R0) ≤
∏

ρ≤Rj≤R0

(

1 −
ω(Rj)

4

)

M(R0, R0). (13)
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Using the fact that log(1 − t) ≤ −t for t < 1 and noting that ω(R) < 1,
we have

∏

ρ≤Rj≤R0

(

1 −
ω(Rj)

4

)

= exp log
∏

ρ≤Rj≤R0

(

1 −
ω(Rj)

4

)

= exp
∑

ρ≤Rj≤R0

log

(

1 −
ω(Rj)

4

)

≤ exp



−
∑

ρ≤Rj≤R0

ω(Rj)

4



 .

Which gives us together with the inequality (13) the following estimate

M(ρ,R0) ≤ exp



−
1

4

∑

ρ≤Rj≤R0

ω(Rj)



M(R0, R0).

This inequality and the inequalities (12) and (10) imply that

M(ρ,R0) ≤ CM(R0, R0) exp

(

−
1

8(4σ − 1)

∫ R0

ρ
ω(R)

dR

R

)

,

or, recalling the expression of ω(R), that

M(ρ,R0) ≤ (14)

≤ CM(R0, R0) exp

(

−
1

8(4σ − 1)

∫ R0

ρ
exp

(

−C0

(

Φ(2R)

2R

)
pq

p−q

)

dR

R

)

,

where C = (4σ)
1

4(4σ−1) .

The fact that the function ϑ is continuous at x0 allows us to assume, without
loss of generality, that ϑ(x0) = 0.

As the function −u satisfies in the pair with the function g(−u) Hypotheses
H1-H3, in the rest of the proof it suffices to estimate (u(x)−ϑ(x0))+ = u+(x)
in the ball B(x0, ρ). The same estimate will hold for the function u−.

For R0 > 0, we have

M(R0, R0) = (ess sup
B(x0 ,R0)

u − ess sup
B(x0,R0)

ϑ)+ ≤ (ess sup
B(x0 ,R0)

u − ϑ(x0))+ = ess sup
B(x0,R0)

u+ ,



12 Sergey A. Timoshin

and from Theorem 1.4 it follows that

M := ess sup
B(x0,R0)

u+ < ∞ .

For 0 < ρ < R0 the inequality (14) gives

ess sup
B(x0,ρ)

u+ ≤ ess sup
B(x0 ,R0)

ϑ+ + M(ρ,R0)

≤ ess sup
B(x0 ,R0)

ϑ+ + (15)

+ CM exp

(

−
1

8(4σ − 1)

∫ R0

ρ
exp

(

−C0

(

Φ(2R)

2R

)
pq

p−q

)

dR

R

)

.

As the function ϑ is Hölder continuous at x0 and ϑ(x0) = 0, there exist some
C ′, β > 0 such that for all sufficiently small ρ and R0 we have

ess sup
B(x0,R0)

ϑ+ ≤ C ′Rβ
0 .

By the assumption (4) of the theorem, there exists (sufficiently small) α > 0
such that

∫ 1

ρ
exp

(

−C0

(

Φ(2R)

2R

)
pq

p−q

)

dR

R
≥ α| log ρ| .

Note also that for all 0 < R0 < 1,

∫ 1

R0

exp

(

−C0

(

Φ(2R)

2R

)
pq

p−q

)

dR

R
≤

∫ 1

R0

dR

R
= | log R0| .

From the inequality (15) and the last three inequalities, for sufficiently small
ρ and R0, we have

ess sup
B(x0,ρ)

u+ ≤ C ′Rβ
0 + CMρ

α
8(4σ−1) R

− 1
8(4σ−1)

0 .

Choosing now R0 = ρα′

with α′ = α
8(4σ−1)β+1 , we obtain

ess sup
B(x0 ,ρ)

u+ ≤ Hργ ,

where H = C ′ + CM and γ = α′β. Note that with an appropriate choice of
α, 0 < γ ≤ 1.
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As the same estimate holds for the function u−, we have

osc
B(x0 ,ρ)

u = ess sup
B(x0,ρ)

u − ess inf
B(x0 ,ρ)

u ≤ 2Hργ ,

and thus, after a redefinition on a set of measure zero, the function u is
Hölder continuous at x0.

2 Definitions and Basic Facts on Axiomatic and

Poincaré-Sobolev Spaces

In this section we recall main definitions and give a brief summary of
the axiomatic theory of Sobolev spaces developed by V.M. Gol’dshtein and
M. Troyanov, and we shortly present the approach to Sobolev spaces on
a metric space using Poincaré inequalities, introduced in [13]. These two
Sobolev-type spaces constitute the general setup of our study in the next
sections. We refer the reader to the papers [6], [7] and to the paper [9] for
more details on these two theories.

2.1 Preliminaries on Axiomatic Sobolev Spaces

Definition 2.1 (D-structure). A D-structure on (X, d, µ) is an opera-
tion which associates to each function u ∈ Lp

loc(X) a collection D[u] of
measurable functions g : X → R+ ∪ {∞} (called the pseudo-gradients of u).
The correspondence u → D[u] is supposed to satisfy the following axioms
A1-A5:

Axiom A1 (Non triviality) If u : X → R is non-negative and k-
Lipschitz, then the function

g := kχsupp(u) =

{

k on supp(u)
0 on X \ supp(u)

belongs to D[u].

Axiom A2 (Upper linearity) If g1 ∈ D[u1], g2 ∈ D[u2] and g ≥
|α|g1 + |β|g2 almost everywhere, then g ∈ D[αu1 + βu2].

Axiom A3 (Strong Leibnitz rule) Let u ∈ Lp
loc(X). If g ∈ D[u], then

for any bounded Lipschitz function ϕ : X → R the function

h(x) = (|ϕ|g(x) + Lip(ϕ)|u(x)|)
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belongs to D[ϕu].

Axiom A4 (Lattice property) Let u := max{u1, u2} and v := min{u1, u2}
where u1, u2 ∈ Lp

loc(X). If g1 ∈ D[u1], g2 ∈ D[u2], then

g := max{g1, g2} ∈ D[u] ∩ D[v] .

Axiom A5 (Completeness) Let {ui} and {gi} be two sequences of func-
tions such that gi ∈ D[ui] for all i. Assume that ui → u in Lp

loc(X) topology
and (gi − g) → 0 in Lp topology, then g ∈ D[u].

Originally, in [6] in place of Axiom A3 stated here one postulates the
following

Axiom A3∗(Leibnitz rule) Let u ∈ Lp
loc(X). If g ∈ D[u], then for any

bounded Lipschitz function ϕ : X → R the function

h(x) = (sup |ϕ|g(x) + Lip(ϕ)|u(x)|)

belongs to D[ϕu] (The absolute value of ϕ is replaced by sup |ϕ|).

This “weaker” version of the Leibnitz rule allows the authors to include
in the class of axiomatic Sobolev spaces such spaces as graphs (combinatorial
Sobolev spaces). Note, however, that these “global” spaces do not satisfy
certain localization properties without which it is not clear how it would be
possible to achieve the regularity results of the present paper.

We define a notion of energy and the associated Sobolev space as follows:

Definition 2.2 (Energy and Sobolev space). The p-Dirichlet energy of
a function u ∈ Lp

loc(X) is defined to be

Ep(u) = inf

{∫

X
gpdµ : g ∈ D[u]

}

,

and the p-Dirichlet space is the space L1,p(X) of functions from Lp
loc(X) with

finite p-energy. The Sobolev space is then the space

W 1,p(X) := L1,p(X) ∩ Lp(X).

Theorem 2.3. W 1,p(X) is a Banach space with norm

‖u‖W 1,p(X) =

(∫

X
|u|pdµ + Ep(u)

)1/p

.
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Proof See [6].

Proposition 2.4. Let 1 < p < ∞. Then for any function u ∈ L1,p(X),

there exists a unique function gu ∈ D[u] such that

∫

X
gp
udµ = Ep(u).

The function gu is called the minimal pseudo-gradient of u.

Proof See [6].

For an open set Ω ⊂ X we denote by C0(Ω) the set of continuous
functions u : Ω → R compactly supported in Ω. L1,p

0 (Ω) is then the closure
of C0(Ω) ∩ L1,p(X) in L1,p(X) for the norm

‖u‖L1,p(Ω,Q) =

(∫

Q
|u|pdµ + Ep(u)

)1/p

,

where Q b Ω is a fixed relatively compact subset of positive measure.

Definition 2.5 (Capacity). The variational p-capacity of a pair F ⊂ Ω ⊂ X
(where F is arbitrary) is defined as

Capp(F, Ω) := inf{Ep(u)| u ∈ Ap(F, Ω)},

where the set of admissible functions is defined by

Ap(F, Ω) :=
{

u ∈ L1,p
0 (Ω)

∣

∣ u ≥ 1 on a neighbourhood of F and u ≥ 0 a.e.
}

.

If Ap(F, Ω) = ∅, then we set Capp(F, Ω) = ∞. If Ω = X, we simply
write Capp(F, Ω) = Capp(F ).

We now state a result about the existence and uniqueness of extremal
functions for p-capacity. We first need the following definition:

Definition 2.6. (a) A set S ⊂ X is p-polar (or p-null) if for any pair of
open relatively compact sets Ω1 ⊂ Ω2 6= X such that dist(Ω1, X \ Ω2) > 0,
we have Capp(S ∩ Ω1, Ω2)= 0.

(b) A property is said to hold p-quasi-everywhere if it holds everywhere except
on a p-polar set.

(c) A Borel measure τ is said to be absolutely continuous with respect to

p-capacity if τ(S) = 0 for all p-polar subsets S ⊂ X.

(d) A subset F is said to be p-fat if it is a Borel subset and there exists a
probability measure τ on X which is absolutely continuous with respect to
p-capacity and whose support is contained in F .
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Theorem 2.7. Let F ⊂ X be a p-fat subset (1 < p < ∞) of the space
X, such that Capp(F ) < ∞. Then there exists a unique function u∗ ∈

L1,p
0 (X) such that u∗ = 1 p-quasi-everywhere on F and Ep(u∗) = Capp(F ).

Furthermore 0 ≤ u∗ ≤ 1 for all x ∈ X.

The function u∗ is called the capacitary function of the set F .

Proof See [7].

Some additional properties a D-structure may satisfy are the validity of
a Poincaré inequality and the locality of D-structure. We introduce these
notions below.

Definition 2.8 (Poincaré inequality). One says that a D-structure on a
metric measure space X supports a weak (s, q)-Poincaré inequality, s, q ≥ 1,
if there exist two constants σ ≥ 1 and CP > 0 such that

(
∫

−
B
|u − uB |

sdµ

)1/s

≤ CP r

(
∫

−
σB

gqdµ

)1/q

(16)

for any ball B ⊂ X, any u ∈ Lp
loc(X) and any g ∈ D[u]. Here r is the radius

of B. Recall that

uB =

∫

−
B

u dµ =
1

µ(B)

∫

B
udµ.

By the Hölder inequality, a weak (s, q)-Poincaré inequality implies weak
(s′, q′)-Poincaré inequalities with the same σ for all s′ ≤ s and q′ ≥ q. On the
other hand, by Theorem 5.1 in [9], a weak (1, q)-Poincaré inequality implies
a weak (s, q)-Poincaré inequality for some s > q and possibly a new σ.

Definition 2.9 (Strong locality). We say that a D-structure is strongly

local if, in addition to Axioms A1-A5, the following property holds:

Let u1, u2 ∈ L1,p(X). If g1 ∈ D[u1], g2 ∈ D[u2] and

g(x) =







g1(x) if u1(x) < u2(x)
g2(x) if u1(x) > u2(x)

min{g1(x), g2(x)} if u1(x) = u2(x) ,

then g ∈ D[min{u1, u2}].

This property enables one to “paste” two Sobolev functions along the
set where they coincide. We refer the reader to [6] for other notions of
locality in axiomatic Sobolev spaces.
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Proposition 2.10. Let u ∈ L1,p(X) and A ⊂ X be a relatively compact set.
If the space X admits a D-structure which is strongly local, then

Ep(u|A) =

∫

A
gp
udµ ,

in particular, if u1, u2 ∈ L1,p(X) are such that u1 = u2 a.e. on A, then
∫

A
gp
u1

dµ =

∫

A
gp
u2

dµ

Proof See [22].

Proposition 2.11. If a D-structure on the space X is strongly local and
supports a weak (1, q)-Poincaré inequality for some 0 < q < p, then for
every z ∈ X and 0 < r < R < diam(X)/3, there exists γ, 0 < γ < 1,
independent of R such that

µ(B(z, R
2 ))

µ(B(z,R))
≤ γ .

Proof See [22].

Theorem 2.7 gives the existence of the capacitary function of the p-
Dirichlet energy in the axiomatic setting. For a p-fat subset F of X this
function equals p-quasi-everywhere to 1 on F and minimizes the energy in
the complement of F .

Definition 2.12 (Quasi-minimizer with boundary data). Let ϑ ∈
Lp

loc(X). We say that a function u ∈ Lp
loc(X) is a quasi-minimizer of the p-

energy integral Ep on a set Ω ⊂ X with boundary data ϑ if µ (Ω \ supp(u − ϑ)) =
0 and there exists a constant K > 0 such that for all functions ϕ ∈ L1,p(X)
with µ(Ω \ supp(ϕ)) = 0 the inequality

∫

ϕ6=0
gp
udµ ≤ K

∫

ϕ6=0
gp
u+ϕdµ

holds. Here, as usual, gu+ϕ is the minimal pseudo-gradient of u + ϕ. When
K = 1, the corresponding quasi-minimizer is called the minimizer with bound-

ary data ϑ of the energy functional Ep.

When the D-structure is strongly local the capacitary function of the con-
denser F is a minimizer of Ep on the set X \ F with boundary data 1 (see
Proposition 2.19 in [22])
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2.2 Poincaré-Sobolev functions

Definition 2.13 (Poincaré inequality). Let u ∈ L1
loc(X) and g : X →

[0,∞] be Borel measurable functions. We say that the pair (u, g) satisfies
a (s, q)-Poincaré inequality in Ω ⊂ X, s, q ≥ 1, if there exist two constants
σ ≥ 1 and CP > 0 such that the inequality

(∫

−
B
|u − uB |

sdµ

)1/s

≤ CP r

(∫

−
σB

gqdµ

)1/q

(17)

holds on every ball B with σB ⊂ Ω, where r is the radius of B.

Definition 2.14 (Poincaré-Sobolev functions). A function u ∈ L1
loc(X)

for which there exists 0 ≤ g ∈ Lq(X) such that the pair (u, g) satisfies a
(1, q)-Poincaré inequality in X is called a Poincaré-Sobolev function. We
denote by PW 1,q(X) the set of all Poincaré-Sobolev functions.

The Poincaré inequality (17) is the only relationship between the func-
tions u and g. Working in this setting P. Haj lasz and P. Koskela developed
in [9] quite a rich theory of these Sobolev-type functions on metric spaces.

The pairs (u, g) may satisfy some additional properties crucial for our
purposes. These are the truncation property and the p-De Giorgi condition
which we next consider.

Given a function v and ∞ > t2 > t1 > 0, we set

vt2
t1 = min{max{0, v − t1}, t2 − t1}.

Definition 2.15 (Truncation property). Let the pair (u, g) satisfies a
(1, q)-Poincaré inequality in Ω. Assume that for every b ∈ R, ∞ > t2 > t1 >
0, and ε ∈ {−1, 1}, the pair (vt2

t1 , gχ{t1<v≤t2}), where v = ε(u − b), satisfies
the (1, q)-Poincaré inequality in Ω (with fixed constants CP , σ). Then we
say that the pair (u, g) has the truncation property.

The truncation property for Poincaré-Sobolev functions is the notion
similar to the one of the strong locality in axiomatic Sobolev spaces. These
notions reflect some localization properties of the Sobolev spaces under con-
sideration. Note that in the Euclidean space R

n both conditions mean that
the gradient of a function, which is constant on some set, equals zero a.e.
on that set.

As we will see in the next section, the quasi-minimizers of the axiomatic
p-Dirichlet energy satisfy the De Giorgi condition (Hypothesis H1). Note
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that this is also the case for the quasi-minimizers in the upper gradients
Sobolev spaces (see [12]). For the class of Poincaré-Sobolev functions the
possible notion of energy is not consistent, in particular it is not clear how it
would be possible to prove the existence of corresponding minimizers, since
in this case the corresponding Sobolev space is not a Banach, but only a
quasi-Banach space. The De Giorgi condition however is still legitimate for
the Poincaré-Sobolev functions. Thus, as it seems that there exists an inti-
mate connection between extremal functions and the functions satisfying the
De Giorgi condition, in the case of Poincaré-Sobolev functions, the functions
whose regularity we establish are those which satisfy the following property:

Definition 2.16 (p-De Giorgi condition). We say that a Poincaré-
Sobolev function u (satisfying a (1, q)-Poincaré inequality with some function
g) enjoys the p-De Giorgi condition on the set Ω if for all k ∈ R, z ∈ X and
0 < ρ < R ≤ diam(X)/3, the following inequality

∫

A(k,ρ)
gpdµ ≤

C

(R − ρ)p

∫

A(k,R)
(u − k)pdµ, (18)

holds, provided µ(Ω \A(k,R)) = 0, where A(k, r) = B(z, r)∩{x : u(x) > k},
p ∈ R, p > q.

3 Boundary Regularity of Quasi-minimizers in Ax-

iomatic Sobolev Spaces

Assume that the metric measure space (X, d, µ) is equipped with a D-
structure and that F is a p-fat subset of X. In this section we show that un-
der some additional conditions on the D-structure on X, a quasi-minimizer
u∗ of the energy functional Ep on the set X\F with a boundary data function
ϑ is Hölder continuous at a boundary point of the set F .

For this we adapt the notations of Chapter 1 on the regularity at the
boundary in an abstract setting and prove that the quasi-minimizer u∗ sat-
isfies Hypotheses H1-H3.

Namely, we set Ω = X \ F and we suppose that the quasi-minimizer
u∗ coincides a.e. with the function ϑ on the set X \ Ω = F and that ϑ is
Hölder continuous at a boundary point x0 of Ω.

For the proof of Proposition 3.3 we need the following
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Lemma 3.1. Let f(r) be a nonnegative function defined on the interval
[R1, R2], where R1 ≥ 1. Suppose that for all R1 ≤ r1 < r2 ≤ R2,

f(r1) ≤ θf(r2) +
A

(r2 − r1)α
+ B ,

where A,B ≥ 0, α > 0 and 0 ≤ θ < 1. Then there exists C > 0 depending
only on α and θ such that for all R1 ≤ r1 < r2 ≤ R2,

f(r1) ≤ C

(

A

(r2 − r1)α
+ B

)

.

Proof See, e.g., Lemma 5.1 in [5].

The main result of this section is the following

Theorem 3.2. Assume that the D-structure on X is strongly local and
that it supports for some q, q < p, a weak (1, q)-Poincaré inequality. If, in
addition, the following condition is satisfied

lim inf
ρ→0

1

| log ρ|

∫ 1

ρ
exp



−C

(

R−qµ(B(x0, R))

Capq

(

B(x0,
1
2R) \ Ω, B(x0, R)

)

)
p

p−q





dR

R
> 0 ,

(19)
for some constant C > 0, then the quasi-minimizer u∗ is Hölder continuous
at x0.

This theorem follows from Theorem 1.5 and the following

Proposition 3.3. If the D-structure on X is strongly local and it supports a
weak (1, q)-Poincaré inequality, then the quasi-minimizer u∗ and its minimal
pseudo-gradient gu∗ , as well as −u∗ and gu∗, satisfy at x0 Hypotheses H1-
H3. In this case the function Φ of Hypothesis H3 can be chosen to be

Φ(Ω, x0, R) = C
µ(B(x0, R))

1
q

Capq

(

B(x0,
1
2R) \ Ω, B(x0, R)

)
1
q

,

with some C > 0.

Proof Hypothesis H1: For the point x0 ∈ ∂Ω and 0 < ρ < R ≤ diam(X)/3,

let η be a 1
(R−ρ)−Lipschitz cutoff function so that 0 ≤ η ≤ 1, η = 1 on

B(x0, ρ) and the support of η is contained in B(x0, R).
Set

v = −η max{u∗ − k, 0},
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where k ≥ k∗ := ess supB(x0 ,R) ϑ. Then

u∗ + v = (1 − η) (u∗ − k) + k

on A(k,R) = {x ∈ B(x0, R) : u∗(x) > k}.

Note that as u∗ = ϑ := 1 a.e. on B(x0, R) \ Ω, v = 0 a.e. on B(x0, R) \ Ω
and u∗ = ϑ ≤ k a.e. on the set X \ Ω. Moreover, v = 0 outside B(x0, R)
by the definition of η. Therefore, µ(Ω \ supp(v)) = 0, and by the energy
quasi-minimizing property of u∗, we have

∫

A(k,ρ)
gp
u∗dµ ≤

∫

v 6=0
gp
u∗dµ ≤ K

∫

v 6=0
gp
u∗+vdµ ≤ K

∫

A(k,R)
gp
u∗+vdµ ,

where K is the constant in the definition the quasi-minimizer u∗.

From the strong locality of the D-structure it follows (see Proposition 2.10)
that

∫

A(k,R)
gp
u∗+vdµ =

∫

A(k,R)
gp
(1−η)(u∗−k)+kdµ ,

Note that 1
(R−ρ) ∈ D[1 − η]. Axioms A1, A2 and A3 imply

(u∗ − k) 1
(R−ρ) + (1 − η)gu∗ ∈ D[(1 − η)(u∗ − k) + k].

From this and the last two inequalities we obtain
∫

A(k,ρ)
gp
u∗dµ ≤ K

∫

A(k,R)
((u∗ − k)p 1

(R − ρ)p
+ (1 − η)pgp

u∗)dµ

≤
C

(R − ρ)p

∫

A(k,R)
(u∗ − k)pdµ + C

∫

A(k,R)\A(k,ρ)
gp
u∗dµ,

where C = K 2p−1. Here we used the fact that 1− η = 0 on A(k, ρ). Adding
the term C

∫

A(k,ρ) gp
u∗dµ to the left and right hand sides of the inequality

above, we see that

(1 + C)

∫

A(k,ρ)
gp
u∗dµ ≤ C

∫

A(k,R)
gp
u∗dµ +

C

(R − ρ)p

∫

A(k,R)
(u∗ − k)pdµ,

or
∫

A(k,ρ)
gp
u∗dµ ≤

C

1 + C

∫

A(k,R)
gp
u∗dµ +

C

1 + C

1

(R − ρ)p

∫

A(k,R)
(u∗ − k)pdµ.
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Hence, if ρ < r ≤ R, then

∫

A(k,ρ)
gp
u∗dµ ≤

C

1 + C

∫

A(k,r)
gp
u∗dµ +

C

1 + C

1

(r − ρ)p

∫

A(k,R)
(u∗ − k)pdµ.

From the last inequality and Lemma 3.1 we conclude that there is a constant
C > 0 depending on p and K only, so that

∫

A(k,ρ)
gp
u∗dµ ≤

C

(R − ρ)p

∫

A(k,R)
(u∗ − k)pdµ

and hence the pair u∗ and gu∗ satisfies Hypothesis H1.

Hypothesis H2: For the proof of Hypothesis H2 we do not use the fact that
u∗ is a quasi-minimizer of the Dirichlet energy and, thus, the proof does not
depend on the region where u∗ is minimal. In particular, the proof is the
same whether we consider a boundary or an interior point of Ω (see also
Remark 1.2). We refer, therefore, the reader to [22] for the corresponding
proof in the interior case.

Hypothesis H3: The function Φ of Hypothesis H3 does depend on the do-
main of minimization Ω. Hence, the previous remark on the proof of Hy-
pothesis H2 for the boundary case is not suitable for Hypothesis H3.

As h and k in the definition of the function w are such that h > k >
k∗ = ess supB(x0,R) ϑ, we have that w = 0 a.e. on B(x0, R) \ Ω. In fact,

it is not difficult to check that w = uh
k = (u − k)+ − (u − h)+ and as

u = ϑ a.e. on the complement of Ω, in particular on B(x0, R) \ Ω, we have
(u − k)+ = (u − h)+ = 0 a.e. on this set.

Let

w̄ =

(

∫

−
B(x0,R)

wqdµ

)
1
q

and η be a 2
R -Lipschitz function vanishing outside B(x0, R) such that

0 ≤ η ≤ 1 and η = 1 on B(x0,
1
2R). Then the function f = η(1 − w

w̄ )+ is
admissible for the capacity Capq

(

B(x0,
1
2R) \ Ω, B(x0, R)

)

. From Axioms
A1,A2 and A3 and from the strong locality it follows that
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1
w̄gwχ{w

w̄
<1} + 2

R(1 − w
w̄ )+ ∈ D[w]. Hence

Capq

(

B(1
2R) \ Ω, B(R)

)

≤

∫

B(R)
gq
fdµ

≤

∫

B(R)

(

1
w̄gwχ{w

w̄
<1} + 2

R(1 − w
w̄ )+

)q
dµ

≤
2q−1

w̄q

∫

B(R)
gq
wdµ +

2q−12q

Rqw̄q

∫

B(R)
|w − w̄|qdµ .

Denoting the ball B(R) by B, by the Minkowski inequality we have

(∫

B
|w − w̄|qdµ

)
1
q

≤

(∫

B
|w − wB |

qdµ

)
1
q

+ |w̄ − wB |µ(B)
1
q .

Using a weak (q, q)-Poincaré inequality and the doubling condition of µ, we
estimate the second term of the last inequality as follows

|w̄ − wB |µ(B)
1
q = |‖wB‖Lq(B) − ‖w‖Lq(B)|

≤ ‖w − wB‖Lq(B) ≤ CR

(
∫

σB
gq
wdµ

) 1
q

,

where C > 0. The last three inequalities, a weak (q, q)-Poincaré inequality
and the doubling condition now give

Capq

(

1
2B \ Ω, B

)

≤
C

w̄q

∫

σB
gq
wdµ ,

or

w̄q =

∫

−
B

wqdµ ≤
C

Capq

(

1
2B \ Ω, B

)

∫

σB
gq
wdµ .

In the proof of Hypothesis H3 for the functions u∗ and gu∗ in the interior of
Ω, it was shown in [22] that the function g(w) := gu∗ χ{k<u∗≤h} belongs to the
set D[w] of the pseudo-gradients of w. Therefore, from the last inequality
we have

∫

B
wqdµ ≤

Cµ(B)

Capq

(

1
2B \ Ω, B

)

∫

σB
gq
(w)dµ ,

and, thus, as a function Φ of Hypothesis H3 we can take the function

Φ(Ω, x0, R) = C
µ(B(x0, R))

1
q

Capq

(

B(x0,
1
2R) \ Ω, B(x0, R)

)
1
q

,
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with some C > 0.

Note that since by Axiom A2, D[−u] = D[u] for any function u ∈ Lp
loc(X),

the function −u∗ is also a quasi-minimizer of the energy functional Ep. More-
over the function −u∗ coincides with the function −ϑ = −1 q.e. outside
the set Ω = X \ F . Therefore, the reasoning similar to the one for the pair
(u∗, gu∗) shows that Hypotheses H1-H3 are also true for the function −u∗

and the pseudo-gradient gu∗ .

Remark 3.4. The condition (19) in Theorem 3.2 is an analog, for our
case, of the classical Wiener criterion for continuity at a boundary point of
a domain in R

n. Note, however, that the capacity which appears in many
Wiener criteria for solutions of various classes of elliptic equations is, in
fact, the Sobolev capacity, not the variational capacity which we have in
(19). But, due to Lemma 3.6 below, the variational capacity Capq of the
criterion (19) could be replaced by the Sobolev capacity Cq. In this case, the
Sobolev capacity Cq is described by the following

Definition 3.5 (Sobolev capacity). The Sobolev q-capacity of a set F ⊂
X is defined by

Cq(F ) := inf
{

‖u‖q
W 1,q(X)

∣

∣ u ∈ W 1,q(X), u ≥ 1 near F and u ≥ 0 a.e.
}

.

Lemma 3.6. Under the hypotheses of Theorem 3.2, for a set E ⊂ 1
2B =

B(x0,
1
2R), we have

Capq(E,B) ≥
Cq(E)

C(1 + Rq)

and

Capq(E,B) ≥
µ(E)

CRq
,

for some constant C > 0.

Proof Let v be a function admissible for the variational capacity Capq(E,B).
Then

(∫

−
2B

vqdµ

)
1
q

≤

(∫

−
2B

|v − v2B |
qdµ

)
1
q

+ |v2B | .

By the Hölder inequality and the fact that v ∈ L1,q
0 (B), we have

|v2B | ≤

∫

−
2B

vχBdµ ≤

(
∫

−
2B

vqdµ

) 1
q
(

µ(B)

µ(2B)

)1− 1
q

≤

(
∫

−
2B

vqdµ

) 1
q

γ0 ,
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for some γ0, 0 < γ0 < 1 (see Proposition 2.11).

The last two inequalities, a weak (q, q)-Poincaré inequality, the fact that
v ∈ L1,q

0 (B) and the strong locality of the D-structure give

∫

B
vqdµ ≤ CRq

∫

B
gq
vdµ ,

for some constant C > 0.

As v is admissible for the capacity Capq(E,B), we further have

µ(E) ≤

∫

B
vqdµ ≤ CRq

∫

B
gq
vdµ

and

Cq(E) ≤

∫

X
vqdµ +

∫

X
gq
vdµ ≤ C(1 + Rq)

∫

B
gq
vdµ .

Taking the infimum over all admissible v completes the proof.

Corollary 3.7. The condition (19) is also satisfied if the complement of Ω
has a corkscrew at x0, i.e. if the set B(x0, R) \ Ω contains a ball with the
radius CR, for some C > 0, or, more generally, if

µ(B(x0, R) \ Ω) ≥ Cµ(B(x0, R)) .

4 Regularity of Extremal Poincaré-Sobolev Func-

tions

The condition (19) for the Hölder continuity at a boundary point x0 of
Theorem 3.2 is expressed in terms of the capacities of certain sets related
to this point. As it was already underlined in Section 2.2 the notion of
a capacity is, in a sense, meaningless in the class of the Poincaré-Sobolev
functions. Nevertheless, it is still possible to consider in this space the
problem of regularity at a boundary point of a set. In this case we change
the capacities in the criterion of regularity by the measures of appropriate
sets (cf. Lemma 3.6 and Corollary 3.7).

Let Ω be a subset of X, x0 ∈ ∂Ω, a boundary point of Ω, be fixed
and a function ϑ ∈ Lp(X) be given. Suppose that the function ϑ is Hölder
continuous at the point x0.

We will also assume that any pair (u, g), u ∈ L1
loc(X), g ∈ Lq(X),

satisfying a (1, q)-Poincaré inequality in X has the truncation property.

We have then the following
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Theorem 4.1. Let u,−u ∈ PW 1,q(X) satisfy the p-De Giorgi condition in
Ω (p > q). If u = ϑ a.e. on X \ Ω and the following condition

lim inf
ρ→0

1

| log ρ|

∫ 1

ρ
exp



−C

(

µ(B(x0, R))

µ(B(x0, R) \ Ω)

)
(q−1)p

p−q





dR

R
> 0 ,

holds for some constant C > 0, then the function u is Hölder continuous
at x0.

This theorem follows from Theorem 1.5 and the following

Proposition 4.2. If the pairs (u, g) and (−u, g) satisfy the requirements of
Theorem 4.1, then they satisfy Hypotheses H1-H3. In this case the function
Φ of Hypothesis H3 can be chosen to be

Φ(Ω, x0, R) = CR

(

µ(B(x0, R))

µ(B(x0, R) \ Ω)

)1− 1
q

,

with some C > 0.

Proof Hypothesis H1: For the point x0 ∈ ∂Ω and 0 < ρ < R ≤ diam(X)/3,
choose k ≥ k∗ := ess supB(x0,R) ϑ. Then for all k ≥ k∗ we have

µ(Ω \ A(k,R)) = 0,

where A(k,R) = B(x0, R)∩ {u > k}. Note that u = ϑ a.e. on X \Ω. Thus,
we can apply the p-De Giorgi condition (18) for the functions u and g, which
gives Hypothesis H1 for the pair (u, g).

Hypothesis H2: See [22] and the proof of Hypothesis H2 in Theorem 3.2.

Hypothesis H3: As u = ϑ a.e. on the complement of Ω, for h > k > k∗ =
ess supB(x0 ,R) ϑ, we have w = 0 a.e. on the set B(x0, R) \ Ω.

By the truncation property the pair (w, g(w)) satisfies a (1, q)-inequality and,
thus, a (q, q)-Poincaré inequality. Therefore, we have

(

∫

−
B(R)

wqdµ

) 1
q

≤

(

∫

−
B(R)

|w − wB(R)|
qdµ

) 1
q

+ |wB(R)|

≤ CPR

(

∫

−
B(σR)

gq
(w)dµ

) 1
q

+ |wB(R)|.
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By the Hölder inequality we obtain

|wB(R)| =
1

µ(B(R))

∫

B(R)
wdµ =

1

µ(B(R))

∫

B(R)
w χ{w>0}dµ

≤

(

∫

−
B(R)

wqdµ

)
1
q (

µ(B ∩ Ω)

µ(B)

)1− 1
q

.

These two inequalities and the doubling property of the measure µ now give

(

1 −

(

µ(B ∩ Ω)

µ(B)

)1− 1
q

)(

∫

B(R)
wqdµ

) 1
q

≤ CR

(

∫

B(σR)
gq
(w)

dµ

) 1
q

,

or
(

∫

B(R)
wqdµ

)
1
q

≤ CR

(

µ(B)

µ(B \ Ω)

)1− 1
q

(

∫

B(σR)
gq
(w)dµ

)
1
q

,

for some C > 0. Hence, Hypothesis H3 is satisfied for the pair (u, g) with
the function

Φ(Ω, x0, R) = CR

(

µ(B(x0, R))

µ(B(x0, R) \ Ω)

)1− 1
q

.

Remark 4.3. In the proof of Hypothesis H2 in [22] the following condition
on the measure µ is used. For every z ∈ X and 0 < R ≤ diam(X)/3, there
exists γ, 0 < γ < 1, such that

µ(B(z, R
2 ))

B(z,R)
≤ γ .

Note that in the axiomatic setting this condition is proved in Proposition
2.11. In the case of Poincaré-Sobolev spaces this condition, therefore, must
be assumed for the results of this section to hold.
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