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Introduction. Theorem of Kupka and Smale ([4],[7]) or, more

precisely, one part of this theorem, asserts that all the perio-
dic poihts of a generic diffeomorphism (or closed orbits of a
generic flow) are hyperbolic.

In many cases it is important to have more precise infor-
mation of this type. First of all sometimes there are no perio-
dic pointsat all (or their existence is not known), while there
are many récurrenttrajectormes. Thus the naturas question is
whether one haé generically some hyperbolicity of these almost
qlosed trajectortes ?

Anothér gquestion, related to the first one, is the follow-
ing: how does the "hyperbclicity" (measured in one or another
way) of periodic orbits of a typical flow depend on the leéngth
of the period?

From Kupka-Smale theorem it follows, that given a flow
v we can obtain, by an arbitrary small perturbation, a new
flow v' with all the closed orbits hyperbolic. Also this
property leads to a natural guantitative question: how big a
"hyperbolicity” of orbits of v' can we achieve, if the per-
turturbationé allowed should be bounded (in some Ck-metric)
by given ¢€> 0.

The theorem of Kupka and Smale does not answer questions
of thié type, first of all because the main tool in its proof -
the transversality theorem (see [1],[8]) , - is essentialy
qualitative. In any application of transversality we obtain
existence (and genericity in one or another sense) of "non-

degenerate” mappings, but no quantitative information about



the "measure of nondegeneracy”.

Descending one step more we find that the source of this
situation is the"qualitativeness" of the Morse-Sard theorem
(see [6]) :it claimes that the set of critical values of a
differentiable mapping is small, but gives no information
about the "measure of regularity” of noncriticalfvalues.

In [10] the quantitative version of the Morse-Saxrd
theorem was obtained. It gives the sharpe geometric restric-
tions on the set of "near-critical", rather than exactiy
critical, values of a differentiable mapping. Thus it allows
to describe the destribution of the values of this mapping with
respect to the degree of their regularity.

In [11] the corresponding general "quantitative trans-
versality theorem" is obtained.

In the present paper we use this quantitative transver-
sality theorem to obtain a quantitative version of (the first
part of) the Ku.pka-Smale theorem, which, in particular, ans-
wers the above-stated questions.

As a consequence we obtain some additional geometric in-
formation about closed (and almost-closed) orbits of a typical
flow. In particular, we give a lower bound for the distance
between any two closed trajectories of periods, not exceeding
given T , and the upper bound for the number of such tra-
jectories.

In fact, in this paper we need only the simplest case
of a quantitative transversality theorem (and we give its

simple proof in this special case in the addendum). The'main



difficulties in the proof of our version of Kupka-Smale
theorem are of "dynamical" nature.

We do not touch in this paper the second part of the
theorem of Kupka and Smale, namely, the question of trans-
versality of stable and unstable manifolds of closed orbits.
Here the quantitative results can be also obtained and they
will appear separately.

The approach to the study of closed orbits, based on
quantitative transversality, was proposed by M.Gromov in
[{3]. I would like to thank M. Gromov for suggesting me this
question and for numerous useful discussions. I would like
also to thank the Max-Plancl.-Institut fiir Mathematik, where

this paper was written, for its kind hospitality.

1. Statement of main results and the sketch of the proof.

In this section we formulate our results only in the
case of dynamical systems with discret time (and the detailed
proofs in sections 2 - 5 below we also give only in this case).
However, in section 6 we state the main theorems in the case
of flows and déscribe the necessary (rather minor) modifications
of the proofs in this case.

Let X be a compaét differentiable (C”) manifold of di-

mension m}. We fix some finite atlas (Us'vs) 'S = 1,...,P:

on X, 'l's : B‘.f —:>‘Uscx , where B’,"‘ is the unit ball in
) ,» such that all the derivatives of any fixed order of
?;10?3. are bounded. We assume also that the images YS(B?/Z),

s =1, ...,p of the open ball in R® of radius % scover X.



Let, in addition, some Riemannian metric on X be
fixed. We denote by § the distance on X , defined by
this metric. Denote by 60 the Lebesque's number of the
covering VS(B?/z) 8 =1, .c. ,p, of X in metric  § ;
thus any two points Xq%Xy € X with 6(x1,x2) s 60 belong:
to ?s(B?/z) for some s = 1, ... ,p , and, in particular,

Xq 0%, € Us .

Let for k = 1,2, ... , DX(X) be the space of k times
contimously differentiable diffeomorphisms £ : X — X , with
the metric dk defined by the atlas (UB,WS).

For f € Dk(x) we define the constants M,(f),...,uk(f)

as

M, (f) = max sup lldi(Vzl e f o Y’(?:1(x))l| '
8,8' x¢€ Us,f(x) € Us'

¢ -1
M, (£f) = M (£ ) .

In our quantitative version of the theorem of Kupka and
Smale we consider not only periodic, but also "almost-periodic”
points of a given diffeomorphism. In fact, even if the final
results are stated for periodic points only, in the proof we
must estimate deviations of orbits considered from a beriodic

behavior. Thus we give the following definition:

Definition 1.1. Let f¢€ Dk(X) , 620 and a natural n be

given.



The point x€X 1is called (n,8) - periodic for f ,
1f  8(x,flx)s & .

In particular, for 6 = 0 , (n,0) - periodic point is the
periodic point of f of period n in usual sense.

We need also some measure of hyperbolicity of almost
periodic points. We obtain it, using the charts of the atlas
.(Us,?s). Of course, for the usual periodic points.the definition

below becomes invariant.

Definition 1.2. For a linear mapping L : R™—s R" 1let

Y(L) = min IlAj|-1|, where X;,..., A, are the eigenvalues
18jsm
of L.
Thus the linear mapping L is hyperbolic in the usual
sense if and only if +y(L)>0 .

Definition 1.3. Let £€D®(X) and let x€X be a (n,d)-

periodic point of f, §s 60 .
For y>0 , the point x 1is called a (n,y)- hyperbolic
(or simply y - hyperbolic) point of £ , if for any chart Ug »

containing both x and £7 (x) '
v oo v v oz y .
Now we can formulate our main results. Denote for

m,k = 1,2,... by a(m,k) the constant a(m,k)= logz(m2+mk'+k'-1)+1

where k'= max (k,3).



Theorem 1.4. Let X be a compact smooth manifold of

dimension m . In each space Dk(x), k =1,2,.,, there is
a dense subset W . such that diffeomorphisms f€ uk
have the following property:
For some constant a>0 (depending on f£f) and each
natural n , any (n,an®) - periodic point of £ is (n,a"®) -

hyperbolic, where a=a(m,k).

Corollary 1.5. For any f €Wk there are constants b>0

and C , depending on f , such that
1. For any two periodic points X, * X, of £ with
periods S n , the distance (5(::1 "‘2) is at least bn® .
2. The number of periodic points of f of period s n
does not exceed ch® .,
These results are implied by the following more precise

statemetent:

Theorem 1.6. Let k23 and let f€ Dk(x) be given. Then

there exist constants a,>0 and €0 > 0 , depending only on

]
M, on the atlas (Us,\l's) andmn1(f), cee o Mk(f),'u1(f), such
that for any € > 0,¢ £ €y ¢ One can find f'e Dk(X), dk(f',f)Se,
with the following property: for each natural n , any
(n, a(e)n%)- periodic point of £ is (n, a(e)P®®) - hyperbolic.

. £16/7 (m2+mk+k=-1)

Here a(c) = a, , a=a(m,k) .

Thus theorem 1.4, corollary 1.5 and theorem 1.6 answer the
abbve stated questions, concerning the measure of hyperbolicity

of periodic and almost periodic points of a typical, in some



sense, diffeomorphism.

The main open question, concerning the results above,
is related to the following fact: the order of decrease of
a hyperbolicity with the growth of period, we obtain, is
overexponential. In particular, our bound ch®  for the
number of periodic points of periods s n increase over-ex-
ponentially with n . (Our a=a(m,k) is greater than 1
for any m,k = 1,2, ... . The first values of a(m,k) are

the following:

a(1,1) = a(1,2) = a(1,3) «3.585 e a(1,4) = 4, ...
a(2,1) = a(2,2) = a(2,3) =« 4,585 » a(2,4) ~ 4.907, ....).

On the other hand, the theorem of Artin and Masur (2]
guarantees the exponential growth of the number of periodic
points with the period for a dense set of diffeomorphisms.

(Notice, however, that in the case of flows no bound
seems to be known for the number of periodic orbits of periods T;
thus the bound of the form CT° , which we obtain in section 6
for a dense set of vector fields, seems to be new).

In some points of the proof, given in this paper, we use,
for the sake of simplicity, rather rough estimates. This
concerns, first of all, the variant of the quantitative trans-
versality theorem, we use: it takes into account only three
times differentiablility of the diffeomorphism f£.

Thus the value of the "overexponentiality index" a(m,k)

can be essentially improved, at least for big k. However, our



method does not allow to get o = 1, i.e. the exponential
rate, even if we use th: best apriori possible estimates on
each step. The technica. reason is that we use some variant
of the so-called Peixoto induction on the length of the
period, and computations at this point lead to overexponen-
tiality.

In more geometric ierms we can say, that overexponentiality
in our estimates appears as a result of the same difficulty as
in many other questions in dynamical systems: it is difficult
to control the influence of perturbations on recurrent tra-
jectories.

In the case X = S1

and for the space DE(S1) of
orientation -preserving diffeomorphisms this difficulty can

be settled, and we obtain:

Theorem 1.7. In each 05(81), k =1,2,..., there is a dense

subset Wk . such that diffeomorphisms fEIWk have the follow-
ing property: for some a >0 , depending on £ , any (n.an)-
petiodic point of f is (n,a") - hyperbolic.

Also in general situation tﬁere is a possibility to
control the influence of perturbations on
some special kind of recurrent trajectories. This allows to
improve significantly our bounds and, presumably, to get
exponential rate of the decreasing of hyperbolicity, in some
additional situations. We hope to publish these results se-

parately.



Another important remark concerns the notion of genericity,
appropriate for the quantitative results above. If we consider
the periodic points with periods, not exceeding some given
number, then the set of diffeomorphisms, satisfying inequali-
ties of theorem 1.4 with some fixed a> 0 (and with signs
<,> instead of £,2) 1is open, but not dense. Hence we
cannot expect the set of "good" diffeomorphisms to be the
countable intersection of everwhere dense open sets. In this
paper we prove only that the set of "good" diffeomorphisms is
dense. However, much more precise description of the geometry
of this set is possible. This description requires the infinite-
dimensional version of the quantitative tranversality theorem,
as well as some new notions, concerning the geometry of
infinite-dimensional spaces, and it will appear reparately.

In sections 2 -5 below we prove theorem 1.6, and then
in the end of section 5 we obtain, as easy consequences,
theorem 1.4 and corollary 1.5. We do not prove in this paper
theorem 1.7 and the corresponding result for flows-theorem 6.5.

Since the proof of theorem 1.6 is rather long, we give
here a short sketch of the main steps.

First of all, we consider the family of perturbations f{
of a given diffeomorphism £ : X — X . Here p > 0 is a
real parameter and t is a collection of affine transfor-
‘mations of nm « Roughly, to obtain fz , we cover X by
some family of balls of radius p , perform on each ball the
diffeomorphism, which is identical near the boundary and coin-

cides with the corresponding component of t on some smaller
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ball. Then we take a composition of f with these diffeo-
morphisms.

The main property of these perturbations is the following:
assué%vtxeix belongs to one of the balls of the f&mily”above,
while £(x), £2(x), ... , £2 1 (x) 1lie outside of it.

Let tj be the component of t , corresponding to our
ball. Then tj acts nondegenerately on £(x), a®(x) , ana
the measure of this nondegeneracy decrease exponentially with
n (see lemma 2.3 below).

Now the proof of theorem 1.6 goes through the induction
on the length of the period, similar to the Peixoto induction
(see [1],[5]). Assume that for a given diffeomorphism f¢€ Dk(x).
we can $ind £ € BL(X),
with dk(f1,f)s;e/2, such that the property of theorem 1.6 is

satisfied for all the almost periodic points of £, with

1
periods s n.
Now we want to perturb f1 slightly into f2 € Dk(x) '
avior of pelats
such that dk(f1,f2) s e€e/4 , the "goo with periods s n 1is
preserved, and all the almost periodic points of fz"with
periods between n and 2n satisfy the required conditions.
To do this we subdivide all the almsot periodic points
of f1 with periods between n and 2n into two parts:
those, which are "simple" ,i.e. their "intermediate” iterations
do not return too close to the initial poin§§$ﬁﬁ::: orbits
are "almost iterations" of shorter almost-closed orbits. Now
the perturbations act nondegenerately on the points of the
first type, and by transversality arguments we can find a

perturbation, making them hyperbolic. The points of the second



type are hyperbolic apriori, as iterations of points with
shorter period, which are hyperbolic by induction assumption.

This is the main step of the proof, where all the esti-
mates come together and where the rate of a hyperbolicity de-
crease is determined, so we describe it more accurately.

For n > 0 we call the point x€& X (q,n) - simple, if
G(x,fj(x)) en, j=1,...,9~1 . The main "dynamical” ingre-
dient in our proof is the following statement (see lemma 3.1
below): if the almost periodic point of period g is not
(gq,n) - simple (for sufficiently small n), it is an "almost
iteration"” of an almost periodic point with period & < q ,
dividing g, and the Maccuracy" of this almost iteration is of
order an.

Now denote the hyperbolicity of almost periodic points

with periods s n of f by Yq+ If we want almost iterations

1
of these points to be hyperbolic, the accuracy Cznn should

be sufficiently small with respect to Yq o+ This condition deter-
mines the value of the parameter n as the function of Yq-
Fixing this n , we obtain the hyperbolicity of all the points
with periods between n and 2n , which are not n-simple.

If we want our perturbations fg to act nondegerately on
the n - simple points, we should have p sufficiently small
with respect to n , and this condtion determines the value of
P -as the function of vy, .

Now the maximal value V of the parameter t in our per-
turbations fg is determined by the condition 4, (f,,f,) s e/4 ,
which transforms into V § c?npk-e (the smaller is the radius

p of the balls, on which the perturbation is concentrated, the
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smaller should be t to keep the Ck norm e¢/4 of the per-:

turbation) . Thus in turn we obtain V as the function of
Yq and €.

Here we apply the guantitative transversality theorem
(theorem 4.2 and its conclusion in our situation:lemma 4.4
below) . We obtain the existence of the value t, of the para-
metr t , such that It sV , and all the .(q,v,) - periodic
and (q,n) - simple points of f2 = f1?t0 are y, - hyper-
bolic, for nsgs 2n where Yo is given as an expression in
terms of the maximal size V of the allowed perturbations.
Thus we obtain at last Y, as the function of Y4 and € .

Now proceeding by induction we build the sequence of

k

diffeomorphisms f1,f2,...€Dk(x), converging in CF- topology

to some f'E,Dk(x) such that dk(f',f)s € and for all

i=1,2,.... and any q , 21-1 i

<gs2° , each (q,’yi) - periodic
point of f' |is Yy < hyperbolic. In the sequence Yy each
term Yy is given by the above described expression through
Yi-1 and €. Solving this recurrent relation we obtain the
bounds for hyperbolicity, given in theorem 1.6.

The paper is organized in the following way: in section 2
we describe the perturbations f£ and their action on diffeo-
morphism £ and its iterations. In section 3 we prove that the
trajectory which is not "simple" is an iteration of a shorter
trajectory.In section 4 we formulate the quantitative trans-
versality theorem and apply it in our situation. In section 5
we complete the proof of main results for the case of discrete

time. In section 6 we formulate our results for the case of



flows and indicate the necessary alterations in the proves.
In addendum we prove the special version of the guantitative

transversality theorem, used in this paper.

2. Construction of perturbations and some prelinirary results

First of all we constrﬁct some family of diffeomorphisms
of the Euclidean space R®. Let L, be the space of linear
mappings of R® with the standard norm, and let

L;‘ (LELm/HL Iall s 5} .

2
Denote by T the dir«ct product T = BT/2 x L'm » where
8172 is, as above the ball of radius % centered at the

origin of rR®,

Let us fix some C - smooth function w: [0,0)—> [0,)
such that w(x) =1 for 0sxs1 and w(x) =0 for x27.
Now for any t = (v,L)ET 1let ht : A" —= R® be

defined by

hy(x) = x + w(llxl) (v + L(x)) .

One can choose w in such a way that for any te€T ,
ht : R® —» R® is a diffeomorphism.

Now we translate diffeomorphisms h, to the manifold X.

Let some p>0 , 95'21'0' , be given. Consider in B?/z c R"
a regular 4%9 - net Ei' is= 1.2,... . Now for a given v>0 ,
vs1l and for 1 = 1,2,.., 8 =1,..,,p, define the diffeomorphism



h®

i,s,t t: X—>X , t€T , as follows:

ROV L x) = v (g, + b ¥ - g))

PV -
for xe:us, and hi,s,t(x) =x for x ¢ U8 .(Here(Us,Ys).

s =1, ...,p, is the above fixed atlas on the manifold X).

oV
Thus hf'

centrated in the images (under all the coordinate mappings ?s)

are correctly defined diffeomorphisms, con-

of the balls of radius 7p , centered at the points Ei .
The additional parameter Vv allows us to scale the pertur-
bations without changing the space of parameters.

Now let us fix some ordering hPV q=1,...,N(p), of all

q,t '

the diffeomorphisms hév . Let Tp = TN(p)..For any

i,s,t
= Py
t = (t1,...,tN(p))€ ’1‘p define the diffeomorphism ht s

X —» X as the composition

hp'\) = hp.\’ (-] e . .
t N(p), tN(p) 1.t

We perturb diffeomorphisms £ : X —» X , composing them
with h®% . Let p and v be fixed, 0<pS 55 , 0 < V&1,
and let fE€ Dk(x) . For any te€ Tp we denote by f%v (or,
shortly, by f.) the diffeomorphism feh" € D*(x).

The following properties of perturbations ft can be
proved by straightforward computations:
Lemma 2.1. Let p and v as above be fixed, and let
f€ Dk(X), k = 1,2,.0.
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. Then there is a constant K1 , depending only on
H1(f)'. e+ + M (f), such that for any tE:Tp and for

each natural n ,
dk(ifg“_)“,f“)s KT vi1/e)*7 .
In particular, for any x€X ,
siep(x) , £ x))s K < v - o,

llagg(x) - ag®x)|| s K] v,
where the norm is computed in any chart Ug » containing both
£0(x) ana £"(x).

- (Here and below our notations are chosen in the following
way: given a diffeomorphism f¢€ Dk(X), we denote by Kj "big" ,
and by aj - "small" constants, depending only on M1(f),
M;(f),...,uk(f), or on a part of these data, which will be
used in the course of the paper; Cj and cj denote, res-
pectively, "big" and "small" constants, depending on the same
data, which are used only inside the proof of some specific
estimate.)

Now we show that our family of perturbations is big
en-ough to act nondegenerately on any trajectoryof £ , which
is sufficiently “"nonrecurrent". It is convenient to define
some auxiliary mapping to the first order jet-space, associated
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Let £€D*(X) be given and let p>0 ,pSop , and Vs 1
be fixed. Assume that for a given subset Q<X and for a
natural n , Q and fn(Q), as well as f:(Q) for any
t€ Ty , are contained in the same coordinate neighbourdhood
U, . We fix this s and define the mapping Qs with respect
to the local coordinates in U_: for x€Q , 08 (n,x,t) =Cf o, df:("’)-

We consider (I), as the mapping

¢g(nix,.) = T —> R'xL
computing f:(x) in local coordinates in Us' To simplify
notations we omit indices p,v in the notation for ¢, .
The restriction of Qs on any factor T in Tb = Tn(p)
is the mapping of the spaces of the same dimension. We show,
that in our situation for at least one factor T in '1'p
this restriction is nondegenerate. As usual in our quantitative

approach, we need some measure of this nondegeneracy:

Definition 2.2. For a linear mapping L : RP —» R? gdefine

k(L) as the minimal semiaxis of the ellipsoid L1B$)c Rq‘,
where B1p is the unit bail, centered at the origin of RP.
Let S >0 be such a constant that for any x1,x2€ X,

containing in some Us ’
Tosx,,x)s || ¥ ix,) - ¥V x|l S S8(x,.x,) .
S 1772 s 1 s 2 N 1772 ¢

Lemma 2.3. Let fe€ Dk(x) ,.k 3. There are constants



a,> 0, a,> 0, a;> 0 and Kz, depending only on M1(f), M;(f),
uzlf)‘, H3(f),vw1th the following property:

let p>0, 95715 « be fixed, and let Qc X be a subset
of the diameter < ({/10S)p in metric § .

Assume that for some n and for any x€Q, G(fi(x) ' X) 2
20 Sp , 1 = 1,2,..,n-1.

Then there exists j , 1S j<N(p), such that for any
vSa?,xEQ and teT ’

1. K(dgj ¢, (n,x,t))2 agvp '

where Us is any chart, ccntaining Q and f:(o) for tE€ '1'p .
Moreover, if v§s agp , we have in addition:
2. Denote § : T —» Rmem the restriction of (I?s to

the ij-th factor T in Tg . Ten @ is one to one and for

any 11,126'1',
Il 75 -1qlls K301/v0) || Blry) - Blrp |l

Proof. Firsi: of all, we note that if we put a, = %1- , where

R1 is the constant, defined in lemma 2.1, and if v § a? , then

for any x € Q and te€T ,
6(ft(8) 'x) 2198 ’ is= 1,0..," -1 .

‘Since the diameter of Q 1is at most (§/40S)p , the set

v2'(Q) 1s contained in the ball B of radius p , centered at



some point 51 of the net, built in definition of perturbations
fz , while all the points ??(ft(x)), XEQ , tE€E Tp 1= 1,...,
n - 1, 1lie outside the ball of radius 10p , centered at the
same gi.

Now let hgftj = h%Ys,tj be the diffeomorphism of X ,
corresponding to the point zi and to the chart Us . By
definition of h we obtain, that thtj acts as the affine
transformations tjE:T on the initial point of any trajectory
x, ft(x),..,fz(x)  X€Q , and acts triYially on all the iterations.
Straightvorword computations of the differentials now prove the
inequality 1 of lemma 2.3.

To prove the property 2, we note, that the norm of the
second derivative of '5 with respect to t€ T , does not exceed
Cn\:2 for any xX€Q, te€ Tp ,where C depends only on M1(f).

M, (f), M3(f). This follows by direct computations of the deri-
vatives of f%” .

Now if the inequality

Cnvzs-%u agvp is satisfied, which is implied by the

stronger inequality
n
Vs a3g ’

where a; = a2/10 C , then the second derivative of ® does
not exceed the %U of the "nondegeneracy"” of the first differential
of 63 The standard application of the inverse function theorem

now proves the second part of lemma 2.6 , with K3 = 2/a2 .
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We need also some estimates, conerning the behavior
of the "hyperbolicity"” of a given mapping under perturba-
tions. Recall that for a linear mapping L : R® —» R® the
*hyperbolicity” y(L) is defined as

y(L) = min ||Aj -1
1sjsm
where A1""’Am are the eigenvalues of L.

The following two inequalities can be proved by elementary

linear algebra considerations:

Lemma 2.4 Let LELy . y(u) > 0. Denote by M(L) the minimum
of |ILll, ||IL”!|} Then for any ser_

Y(L +A) 2 y(L) - (4M(L)/v(L)]|| al] .

Now let zmc I.m be the set of nonhyperbolic mappings,

= (L€ L, v(L) = 0} . Clearly, Z_ 1is a semialgebraic

subset in Lm of codimension 1.
Lemma 2.5 For any L€ Ly ¢
Y(L) & dist'(L,zm) '

where dist(L,Z_) 1is the distance from L to the set Z
in the usual norm in 1:.m
We turn back to diffeomorphisms f : X — X . If the

closed orbit of f is hyperbolic, then all the iterations
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of this orbit are also hyperbolic. The following lemma gives
conditions under which "almost iterations" of a hyperbolic

almost closed orbit remain hyperbolic.

Lemma 2.6. Let fE€ Dk(x), k22, and let x€X be an (2,6) -
periodic point of £ , which is (&,y) - hyperbolic, § > 0,Yy> 0.

Let for some n = pf and for any 1, 0s4isn, 1 = g2 +r;
r<t , the following inequality be satisfied: &(fl(x),£'(x))s &
(I.e. the trajectory x,f(x),...,fn(x) is the p- th "almost
iteration" of the trajectory x,f(x),...,fz(x)).

Then the point x , which is, by conditions, (n,§) -
periodic for £ , is (n,y') - hyperbolic, with y'=y - K3 /v ,
where K3 depends only on M1(f), Mz(f).

In particular, for § s E'yz/Kg e Y' 2 (1 -E8)Y .

Proof. It is sufficient to make the computations in a fixed

coordinate neighbourhood Us . containing all the points
xq = fq¢(x) q=0,1,...,P » Xg = X .

We have: df"(x) = ad(x o ath(x, o) ... att(x).

p-1)
Since Hdzfzﬂ s c' , vhere the constant C depends only on

M1(f),M2(f), and since, by conditions, 6(xq,x)s § , @ =1,...,P

we obtain:

||af"(xq) -attx) || scts ,

and we can write dfz(xq) -dfz(x) + Aq ’

.



where ]IAqlls c*s. Hence
ar™(x) = (af‘(x)+-ap_1)- ceeotat(x) + 8,) o att(x) =

= fatt(x)1 P + 2,

s s cfs , with ¢,

But v( [a£*(x)1P) 2 y(ae*(x))2 v , ana |lat*(x) 1PUs M(D),

where ||a'|] s 2P |jatt) || P- ¢ = 2C.M, (£).

therefore by lemma 2.4,
YIAET (x) 2 v - (4 M{(£)/Y)Cq8 27 - K36 /vy = ¥' ,

where K, = 4M1(f)C1 .

3
Substituting & = £.y2/K] , we obtain Y' = (1 - )y .

3. Lemma on iterated almost periodic trajectories

This result, although elementary, is the main "dynamical”
ingredient on our proof.

The following statement is evident for usual periodic
trajectories: if f(x) = x ana if fi(x) = fj(x) for some
i<3, (1,34 (O,n), then for some L<n, dividing n ,

f"(x) = x, and for any i, 0sisn, i =qR +r, r<g,
fi(x) = £7(x); in other words, the orbit x,f(x),...,f7(x) is
the n/t - th iteration of the orbit x, £(x),...,f%(x).

But in the case of almost periodic trajcetory and "almost
closing" on some intermediate step, we cannot expect apriori

the behavior similar to the described above.
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Clearly there can be recurrent trajectories, which are not
®"almost iterations"™ of some shorter trajectory.

The following lemma shows that if the "closing” of our
trajcetory at the end and in the "middle" is exponentially
small with respect to the length of the trajectory, then it
behaves, essentially, as in the case of exactly closed tra-

jectories, described above.

Lemma 3.1. Let feD(X) , kz1 .

There exi#ts a constant K, , depending only on M1(f),
M1.(f) ,» such that the following alternative is satisfied:

Let for §>0 and natural n , x€X be a (n,§) - periodic

point of f . Then for any nz2$é either

a. (£ x),£3(x))2n for any 1<3 , (i,§) % (0,n) , or
b. There is £<n, dividing n, such that x 1is an
(z,x;‘n) - periodic point of f , and for any i , 0SisSn,

1=qt+pr, r<t, &(£3(x),e5(x)) s Kgn .

Proof. Let the assumption a be false. Then there are i< 3j ,
(1,3) # (0,n) , such that G(xi,xj)s n. (We denote fi(x) by xi).
We find L<n , dividing n , such that &(xy,x,)s Kgn ,

using the Euclidean division algorithm. Denote j - i by b

and let n =gb +r,r<b .

Lemma 3.2. G(xo,xb) s CnG R
§(xqs%,) S c?s ,
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{ ]
where C depends only on M, (f), M, (f).

Proof. First of all, we note that if G(xi,xj)s a '

then for any s , positive or negative, §&(x ) s M%q ,

i+s’xj+s
[ ]
where M = max(M,(f), M1(f)).
Substituting s = -i, we get

1n s Mnn .

Now, for any psn/b ,
8 (xqex5) 5 (2M) .

Indeed, we have

§(xg%y) s MM
§(xp.Xy) 5 M'n

n
S(X(p-1psXpp)s M .
Adding these inequalities we obtain
8 (xg% ) 8 nM"ns (20) "y .

Now, c(xqb,xn)s G(xqb,xo) + G(xo,xn) s (2M)nn +65(3M)™n '

since, by conditions, § s n.
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Finally, applying f_qb , we obtain S(xo,xr) snnﬂn)“y ’

and the inequalities of lemma 3.2 follow, if we put C = 3M

2

Now we apply the Euclidean algorithm to find the

greatest common divisor of numbers n and b:

qb-l-r

=}
]

b = qur * b
r = q2r1+ r,

= +
; qs’sa r

s-2 s
Tg-1- 95+1Ts :
Here rg is the g.c.d. of n and b.

s
By lemma 3.2,

n
waxgscm1.

Applying once more lemma 3.2 to the orbit

with (1,j) = (o,r) , we obtain
§(xq,xp) s C™n

8 (xg,%r) cP. ™y,

and then, succesively,

x°' LRI 'xb'



Py

n+b+r

n+
G(xo.xrzl sC n

L
. 3
[

) § cn+b+r+...+rs.2n

-G(xo,xrs

.

Since the sum of the remainders r + r, + v.. ¢t P

in the Euclidean algorithm does not exceed n, we obtain

s-2

3n
6(x°,x£)sc n .
Hence for any j, 6(x.,x.,,) S Mnc3nn , and by the same
3773+
reason as above, G(Xj'xj+pl)$ (2M)nc3nn , for any p,j

such that 0sj , jJ + pL<n .
If we put K4 = 2MC3 , we have G(XO'XQ)S K?n ' G(xi,xr)s
K?n for any i, 0sisn, i =g + r, r< & .

Lemma 3.1 is proved.

4. Hyperbolization of simple trajectories.

In this section we show, how to perturb a given diffeo-
morphism £ : X —> X in order to obtain a new one f' with
all the "simple" almost periodic points, up to some fixed
period, hyperbolic.

To get the required perturbation we apply the quantitative
transvefsality theorem in its simplest form, concerning the
case of "empty intersetions". So first of all we state here

this theorem.
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Although in our applications of quantitative trans-
versality we work with the usual Lebesgue measure, it is
convenient to formulate (and to prove) the theorem, using

another geometric tool: the metric entropy.

Definition 4.1. Let AcR® be a bounded subset. For any

£>0 define M(E,A) as the minimal number of balls of radius
£ , covering A .

Let QcRm be a closed domain with the following property:
for any XyrXy € Q there is a curve in Q , connectina x,
and x, , of the length < Syl xy = %, .

Let F : Qx B9 — Rq be a continously differentiable
mapping (where B? is the unit ball in Rq) , satisfying the
following conditions:

1. For any (x,t)€ Qx Bq,
lldxF(x.t) s R1

2. For any x€Q the mapping F(x,-) : B9 — RY is

one to one and for any t1,t2€ B9 p
llt, -t || = R, || F(x,t,) - Fix,t,) ||.
Let the bounded subsets AcQ and a'cr? be given. De-

fine AF(A;A') cBY as the set of all te€BY such that for

some x€A , F(x,t)eEA’,
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Theorem 4.2. For any £>0 and for §£' = 2(S4R,(1+Rj)+1)E '

M(E', 8p(A,A')) S M(E,A)M(E,A').

The proof of this theorem we give in the addendum. Roughly,
the relation of theorem 4.2 with the usual transversality
theorem is the following: in the above situation the usual
transversality results assert that if dim A + dim A'<¢ q,
then we can find t€ B9, such that F(-,t)(A)N A' = @, while
theorem 4.2 allows to find &> 0, such that for some t€ BY
the image under F(-,t) of the & - neighbourhood of A' does

not intersect the £- neighkourhood of A°'.

Definition 4.3. For n>0 the point x€ X is called a (n,n)-

simple point of a diffeomorphism f : X — X , if
s(ed(x),x)2n for 4 =1,2,...,n-1.
Below we fix some f€ Dk(X), k23 . Letn> 0, nsS
be given. We fix p = n/100 S. (Here S is the transfer constant
from metric &6 to metrics in coordinate neighbourhoods Us ’

defined in section 2).

Let for any v , 0<vs1, and for any t€T_, f: = £V

p t

be the perturbation of £, defined in section 2.

Lemma 4.4. There is a constant a,> 0 , depending only on
M,(f) ,M1' (£) ,Mztf) ,M3(f) . such that for any natural N and

for any v, 0<v$a§p (where a, is the constant, defined in
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lemma 2.3), there exists tOE'Tp , for which the diffeomorphism

f' = fzo has the following property:

2
for y= at:vm+1pm +m

. and for any nsN , each (n,n) -
simple and (n,y) - periodic point of £f' is (n,y) - hyper-

bolic.

Proof. First of all, let us fix some nsN. Let ﬂ;c X be
the set of (n, %n) - simple points of f£.

Consider the covering of X by the sets Qi of the
following form: we subdivide R® into regular cubes with the
edge nv/1000vm S3M?(f) , take the images of those cubes, which
are contained in B? , under all the coordinate mappings ?s ’
and.fix some ordering Qi of these images. (We assume that v> 0,
vs agp , is fixed).

Let Q  be the union of those from Q, , which intersect
Q; . Thus any (n,% - simple point of £ belongs to Qn. On
the other hand, since [|afl|| s M, (£)7s M, (£)®, by the choice of
the diameter of sets Q, we obtain that any point of ﬂn is
(n, $n) - simple for f.

Let us consider the measure m in Rm><Lm , proportional
to the usual Lebesque measure and such that m(T) = 1, where
T , as above, is the direct product of the balls of radius %
in R™ and Lm » respectively. By the same symbol m we denote
the corresponding product measure in Tp = TN(P). Thus m (Tp) = 1.
We also denote by u the Lebesque measure on X , associated with

the above fixed Riemannian metric.

Let us fix some 01CQn .
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Lemma 4.5. Let for A>0 , ASagpv, Ai()\)c:'rp denote the

set of t¢€ Tp . for which there is some x¢€ Qi , such that
x is (n,A) - periodic but not (n,A) - hyperbolic point of

v
ft . Then

2
m(a, (A1) KEO/M™ T (/0™ wig)a

where the constants a and KS depend on the same parameters

5
of £ as above.

Proof. First of all we note thatvthe conditions of lemma 2.3
are satisfied for f and any set Q, as above. Indeed, by
construction, the diameter of each Qi in metric § does not
exceed n/1000 S2 = p/10 S. On the other hand, each point of Qy
belongs to Qn and hence is (n,%n) - simple , and %n =
(100/3)sp>20 Sp.

Lemma 2.3 row guarantees the existence of the index j , such
that the j-th component tje T of the parameter t€ Tp acts
nondegeneretely on the n-th iteration of f at points xE€ Qi‘

Let us fix this 3j and represent each t¢€ 'I'p as t = (t',t)).

Clearly, it is sufficient to prove that for any t' the measur:e:j

M(Ai"t.(k)) in T does not exceed the required value, where

Ai,t'“‘) &T is the set of 1= tje T, for which (t',T) Ai(k) .
Let us fix some t' and for a given 1= tjE T denote by

f, ¢ X — X the diffeomorphism f = f:"’, t = (t',1).

The following computations we make in some fixed coordinate
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neighbourhood U8 , containing Qi and fz(Qi) , TET.
Define the mapping

d : Qx T —> R®x L, by
d(x,1) = (£7(x) - x, afl(x)).
We want to apply theorem 4.2 to the mapping ¢ . We have:

where the constant C depends only on M1(f), Mz(f).

For any x e Q; the mapping dix,*) : v~ Rmem
coincides, up to a parallel translation, with the mapping @ '
defined in lemma 2.3, 2. Since the condition vs'agp of lemma

2.3 is also satisfied by assumptions, this lemma gives us the

following:
2. d(x,*) : T — R" xL, 1s one to one and for any T11T,€ T,
ty - 7l s Kg(1/vp)“ Glx,t,) = Glx, T 0l -

Thus the assumptions of theorem 4.2 are satisfied for ¢
with constants R, = c® and R, = Kg(1/vp). The constant 8y 4
characterising the geometry of Qi + in our case, clearly, does
not exceed S4 .

As the set A we take all the Qi‘ Clearly, M(E,Qi)s

C1u(Qi)'(1/£)m, assuming that £ S diam. Q which is implied
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by the stronger inequality E£¢ agpv ‘ as = 1/10 SZM1(f).
Here C1 depends only on m and S.

As the set A'c R™x L, we take some part of the 2 '-
neighbourhood of 0 x zm  Where zm is the set of nonhyperbo-
lic linear mappings, defined in lemma 2.5, and A' = S\ .

Namely, the image Q(Qix T) 1is contained in some ball

n
1

Il a, @l sc™, and, on the other hand, for each TE€ T,

B in R™ Lm of radius c". diam Qi + K,v 8 Cgv . Indeed,

lagZ(x) - at™(x) || s kv,
by lemmma 2.1. Finally, the diameter of any Q by construction,
does not exceed v .

So we take as A' the 2)\'- neighbourhood of (0 x Zm)n B
im R® me.

0 xzmc R™ x Lm is a semialgebraic set of dimension m2—1 '
defined by a fixed number of polynimial equations and inequalities
of fixed degrees, depending only on m . Hence for the metric
entropy of 0 «x zm we have the following inequality (see e.g.

(91 , [10}):

Lemma 4.6. For any ball B of radius r in R™ Lm , and

for any E>0./E$l‘ v

2
M(E,(0x2 )NB,) S c3(r/g)m -1

where the constant C3 depends only on m,
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n m2-1
Corollary 4.7. M(3)r',A')s C4(v/l') .

Proof. Take the covering of (Oxzm)n B by the balls of radius A'.
Since the radius of the ball B is equal to Cgv , and since, by

assumptions, A's Sagpv < Cgv « we can find such a covering with
the number of batls not ucccdins

2 2
cy(chuan™ L cpv/an® -,

m2—1
4 = C3C; .

But then the balls of radius 3)A' , centered at the same

where C

points, cover the 2A' - neighbourhood A' of (0x ZmﬂlB.
Now we are ready to apply theorem 4.2. Put & in this

theorem equal to 3). We obtain:

2.
M(E',8 5(A,A'))S MIE,A) « M(E,A') S Couley) (1/339)™ cfvan™ !

2 2
< Cnvm 1(1/A.)m +m~1

where E' = 25,R, (1 + R,)+4)30" 3
4.0 n . n,,
S 2(87K,(1/vp) (1 + CT) + 1) 3A'SCe A'/vp .

Now let C7 be the measure of the unit ball in Rq‘Lm.

The measure of the ball of radius {' is hence equal to

2 2 2 2
C7€.m tmo C7(C2A'/vp)m m Cg(l')m g up)® B .
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Therefore we obtain:

2 2 2

2
m(8g(A,A")) sc’gv“‘ =1 (1/an® *““1u(oi)' cg(;\')’“ W)™ M

2 2
skg (/9™ Ta/m™ Mu - .

To prove lemma 4.5 it remains to note, that the set Ai e(k),
’
introduce above, is contained in Aé(A,A'). Indeed, T€ T

belongs to A A) 1if and only if there exists x€iQi, which

1,e0!
is (n,A)-periodic but not (n,)A) - hyperbolic for fT . This
means, that G(f?(x),x)s A or Ilf? - x|l s8x = A' in our fixed
coordinate neighbourhood US. On the other hand, the hyperbolicity
y(df’:(x)) $ A <), and by lemma 2.5 the distance of df7(x) to
zm in Lm does not exceed Al

Hence ¢(x,1) = (f?(x) - x, df:(x)) belongs to the 2A' -
neighbouhood A' of 0xzZ  in R®x L, o ¢ and by definition of
AQ(A,A'), T belongs to this set.

Lemma 4.5 is proved.

Corollary 4.8, Let An(x) be the set of t€ '1'p for which

there exists a point x € fin,which is (n,)) - periodic but not

(n,A) - hyperbolic for £, .
Then, for \ < agpv p

m+1

2
m(a" () skFO/VT (/0™ T

Proof. A“(x) = U Ai(k), where I 1is the set of these 1i ,
1€I



for which Qic S%x' Hence

2
ma%()) s § oma, 008 kgO/M™ /™ ™ ] i) s
ieTx » i€l

m+1 m2+mA

(1/p)

14

sx2(1/v)

since by definition of the covering Qi R 2 u(Qi) does not
ier
exceed some constant, depending only on the compact manifold X

and the atlas (US,YS).

Corollary 4.9. The measure of the set A N(X) , consisting of

those ¢t¢€ Tp . for which there s at least one nsN and a

(n,\) - periodic point x€ Qn of ft , which is not (n,A) -
2
(1/90)

m+1 m +mA

hyperbolic, does not exceed K§(1/v)

N

Proof. & " (\) 4is the union of A™(A), n = 1,2,...,N. The

additional factor N , which appears in the bound for the

N

7 L]

Now we can complete the proof of lemma 4.4. By definition

measure of this union, enters in K

of our measure m on T , m(Tp) = 1. Hence if we take Y so
small, that the measure of the "bad" set & N(Y) is strictly

less than 1 , we find the required t

0 .
2
Thus we put vy= aﬁvm+1pm m , where a, = 1/2 K7 , and
take some t, ETD\K N(y) .
Then, by definition of & N(y) ’ any (n,y) -« periodic

point of f' = £ » belonging to Q_ , is (n,y) - hyperbolic
to n

for f£' . It remains to notice, that if x€X is (n,n )-simple
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for f' , then (since, by conditions, vs agp) lemma 2.1 implies
that x 1is (n, %n) - simple for x , and hence xE€ Qn. Lemma
4.4 is proved.

We can summarize our application of quantitative trans-
versality as follows: the set W of periodic and nonhyperbolic
points in the first jet space has codimension m + 1 . Since
dim X = m, the usual transversality theorem asserts, that
the measure of those t:eﬂ}, for which ft(x) intersets W, is
zero. (Here T 1is the first jet extension of f).

The quantitative transversality theorem gives an upper bound
for the measure of those tEZTp ,for which the distance between
?t(x) and W is at most y . The main point is that in this
bound the factor Yy appears in the first power (which corres-
ponds to codim W - dim X = 1), and in particular, for Y = 0
we once more obtain measure zero. But we can exactly find the
biggest y= y , for which still the measure of the "bad" set of
t is strictly less than m(Tp) . Then taking some "good" t, ,

we obtain ft with distance between fto(X) and W at least
0

Y .

5. Proof of main results.

In this section we prove first theorem 1.6 and then, as
easy consequences, theorem 1.4 and corollary 1.5.

Let fEDk(X), k23 , be given. Define €9 0 as €9 = 23
where the constant a, depending on M1(f),M1'(f),M2(f),M3(f)

was defined above.
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Now let € > 0,e s eo be given. We define recurrently the
sequence yr(e). r = 0;1,..., as follows:

m+1 2T

Yo(e) = ace : Yr+1(e) = ag gM+ 8

Yr(e) ’

2(m® + mk + k - 1) and

where B

1
3 a4(1/200 SK

1]
)]
]

B/2 m+1

3K4M1(f)) (a3/2K1) >0 ,
with the constants a3,a4,K1,K2,K3,K4 and S , depending on
X,M1(f),M1'(f),M2(f),...,Mk(f), as defined above.

(Below we write shortly Yr instead of yr(e)).

We subdivide all the periods of almost periodic points
considered into the parts between 21“'1 and 2T P =0,1,.0..,
and prove theorem 1.6 by induction on »r .

The following lemma forms the initial step of our induction:

Lemma 5.1. There exists foe Dk(x), such that

1. dk(fo,f)s e/2.

2. any (1,2y0) - periodic (or,in other word, almost fixed)
point of fo is (1,270) - hyperbolic.

The proof will be given below. The next lemma form the main
step of the induction: passing from r to r + 1 (or from periods <
2T to periods s 2r+1) :

Lemma 5.2. Let fre Dk(x), r =0,17,..., be given, satisfying the
following conditions:
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1. dk(fr'f) S €

i-1 i

2, Forany i, O0sisr, and for any n , 2 <ns 27,

each (n, I-;i) - periodic point of fr is (n,gi) - hyperbolic,
for some EiZyi r 1 =0,1,...,r.

€DX(X) with

Then there exists a diffeomorphism fr+1

the following properties:

r+2
a. dk‘frﬂ'fr) S &€/2

b. For any i, 0g%igr , and for any n, 21-1<n521,

each (n, (1 - z-r-Z) £ 4) - periodic point of fr+1 is
(n, (1 - 2-!'-2)51) - hyperbolic.
r r+1
Cc. For any n, 27 <ns2 , each (n’erﬂ) - periodic

point of fr+1 is (n, 21;+1) - hyperbolic.
The proof of lemma 5.2 is also given below. Now we complete
the proof of theorem 1.6.
First of all, let us take f0 . whose existence is provided
by lemma 5.1. Then we build, starting from f0 . and applying
successively lemma 5.2, the sequence of diffeomorphisms
£.e0%x), » = 1,2,...
This is possible, since on each step the conditions of
lemma 5.2 are satisfied. Indeed, assume that fo,...,fr can
be built. By the property a, d, (f.f) S d, (f,, poq) * oeeet Q£ ) S
5 (2T ... + 272 ¢ < ¢ So the condition 1 of lemma 5.2 is
satisfied for £, .

Now fix some 1 , 0s isr. By the property ¢ of lemma 5.2,
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i-1

applied on the i-th step, for any n , 2 <ng 21 s each

(n,ZYi) - periodic point of fi is (n,ZYi) - hyperbolic. In
turn, by the property b , any (n,Ei) - periodic point of fr
is (n,gi) - hyperbolic, where

i-2 -i-3

= _ L o= _ _ -p=-1
Ei = 27i(1 2 ) (1 2 ) ... (1 2 ) > Yi .

Hence the condition 2 of lemma 5.2 is also satisfied for

with the re-

r

f_ , and applying this lemma, we can find fr+1

quired properties.

Now, by the property a of lemma 5.2, the sequence
fO'f1""’fr"" converges in Dk(X) to some diffeomorphism
£rep®(x) with 4 (£',6)5 ¢.

By the estimates above, for any 1 =0,1,2,... and for

any n , 21—1

A
(n, Ei) - hyperbolic, where

A
<ns 21, each (n, Ei) - periodic point of f' |is

A bt .
g, =27 T 0! (1 - 2747372, Y, -
J:

It remains only to estimate Yr' defined by the recurrent
equation above, and to pass from the representation of the
period n as 2¥  to the usual one.

1

Denote ¢ ™ by b and write shortly a, as a. We

have

2r*1 g
YO = ab , Yr+1 = a b Yr .
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Hence

Yy = azb(ab)p = az*Bb1+B
2 2 2
Y, = a22b(32+8b1+%8= a2°t28+B8° | 14848

r r-1 r r
Y, = al * 2 TBH...t p  1+B4. .. +B

Since B=2(m2+ mk- + k -1)2 12 for m21, k23, we can

write the expression for Y, as follows:

r r r r r r
Yp = P (1+2/B+..+(2/8) ") pB (1+1/B+...+(1/8) )za_,B S

where a, = a 6/5, b, = bw/11

e 12/11(m+1)
6 1 .

Now for any natural n each (n, ¥y ) - periodic point
’ llogzn]+1
of f' is (n,y ) - hyperbolic, and we obtain:
[logzn]+1

. B[logzn]+1 8 2logzn logzﬁ «
Y [logzn]ﬂ 2 (a7b1) 2 ((a7b1) )

= (alen™ ,
where a= 10928= logz(m2 +mk + k - 1) +1 =a (m,k),

= B
a(e) (a7b1)

8
o8 =2

and
= a,.g24/11(m+1) (nPemk+k-1)

12/5(m2+mk+k-1)
6 .

+ Wwith
a

Theorem 1.6 is proved.

Proof of lemma 5.1.

We apply lemma 4.4 in the case N = 1 . Clearly,

each point x€X is (1,n) - simple for any N> 0 ,so we fix the
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maximal possible value of the parameter n = S and put
PP, =n/100 s = 1/100.

Now we choose the value of a parameter v . The first
restriction is given by lemma 4.4: v asPge. Another restric-
tion is given by the condition dk(fo,f) S ¢/2. If we want this
condition to be satisfied for any ff’v , t€T , then, by lemma

p
2.1, we must have

k-1

o &

Kv(1/M5 s e/2 or vs(1/2k )0

Since by assumptions ¢ Sg and k23 , this last inequality

is stronger than the first one, so we put

_ k-1
vo = (1/2K Jo g™ e .

By lemma 4.4, there is toe Tp , such that any (1,y) - periodic
B,V

point of fo = ftd’ ® is (1,y) - hyperbolic, where
_ m+1 m2+m _ 1/2K (k=1) (m+1) m+1 m2+mz 2a £m+1=2Y
Y= a4\)0 po = 34( 1) e go 6 0°

Lemma 5.1 is proved.

Proof of lemma 5.2. Let the diffeomorphism f.€ Dk(x) , satis-
fying conditions 1 and 2 of lemma 5.2, be given.
= e
We shall find fr‘+1 in the form fr+1 (fr)t for some’

values of real parameters p and v and t€T,. . Let us des-

p
cribe the choice of parameters oo and V.
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r+1
First of all put n=100 § c2 yf, , where c, = 1/200 SK,K

1
and let P=N/100 S = cfrHYf, .
Now we choose v . The first restriction on v is given by
lemma 4.4: VS a§r+1 P . Another restriction is given by the cond
tion & (£, ,.f,) S 2772 ¢ According to lemma 2.1, this inequa

is satisfied for any (fr) :,v" if

Rv(1/0)% s 272 | or v s(1/k)pF 12772 &

2(k-1)

—pe -1y o7+
r 2c:k 1)2 Y, £ .

= (1/K,)2

This last inequality, in term, is satisfied, if V S

r+l - -
cg le,(k 1) €, where c, = c]; 1(&3/2K1) . Under the assumption
€ SEO this last inequality is stronger, than the first one
2r+1
Y Sa3 p, SO we put
2I'+1 -
v= o2 ,Y:(k N,

Now we apply lemma 4.4, with the parameters n ,p ,Vv

chosen as above and N = 2'*! | Let t,€Tp be the value of
the parameter t, given by lemma 4.4. We put f = (£)0'V,
r+l r to

First of all, the condition a of lemma 5.2 is satisfied
for fr+1 by the choice of v .

By lemma 4.4; :r+1 has the following property: for any
ns Zr” , and, in particular, for any n between Zr and

2r+1' each (n,n) - simple and (n,y) - periodic point of fr+1

M ()

-

lity
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is (n,Y) - hyperbolic, where

r+1 2

y = a: v+l Pt

a2 12T 2men) (k-1) met  nfem 27T 2(nem)
4 €2 p 1 Yp
T+ 2 r+1
2 m+1 _2(m“+mk+k-1) _ ,_2 m+1 B _

22a6 € Yp = 2a6 € Yr 2Yr+1 ¢
= 2 - Y | m+1 m2+m

where B8 = 2(m“+mk+k-1), ag = F a, c, ¢4 .

Thus, we have already checked the required hyperbolicity

for the part of almost periodic points of f . hamely, for

r+1
the (n, 2Yr+1) - periodic points with 2F¥<n2 2r+1' which are

(n,n) - simple.

Now let us show that the hyperbolicity of almost periodic
points of fr with periodss 2f was not destroied by our
perturbation.

Indeed, by lemma 2.1, for any x€X , G(f:(x),f:+1(x))s
r r T+1 - -~
K2 -Vp < K2 02 Y2(k 1)20 s 277 2 Y_ ., by the choice of
1 1 2 r r
coefficients and since we can assume Yr< 1.

Hence if the point x€X is (n,(1 - 2+r-2)£i) - periodic

21-1 i

for f 41 ! with some siz inYr, where 0sisr , <ng 27,

r
this point is also (n,gi) - periodic for f£,.

By the condition 2 of lemma 5.2, x is a (n, £;) - hyper-

bolic for f£,. Now, by lemma 2.1, in any coordinate neighbourhood,

n n
containing both f (x) and §P+1(x),

r c§r+1

n - n Zr -
||a£, (x) ag, . (x) || SKF v = K r

-4 L 2(k-1)

s 2770172 My ? '
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and c, .
2r 1

since  [lagl(x)|| s (2M,(£))%® , we obtain, by lemma 2.4:

by the choice of the constants c

| — L
Y(£R,  (x) 2 £, - (476 (2m (£)F - 27T (/2w () 2 2 (K7D

Now giz Yy Zyr , and, by assumptions, k23 ; therefore we

have:

Y(A£],  (x)) 2 g, - 27772

“p+ 1 E. = (1 -2 )Ei .

1

i-1

Thus for i = 0,...,r and for any n , 2 < ns Zi '

r

each (n,(1-27""%)g,) - pertodic point of f,.. is (n,(1-277 )¢, )-

1
hyperbolic. This proves the conclusion b of lemma 5.2.

It remains to check the conclusion ¢ for the (n, 2Yr+1)-

periodic points of f . which are not (n,n) - simple, with

™1

n between 2T and 27,

Let x €X be such a point. Since, by construction, n 2 2 YIM ’
we are in situation of letnmé 3.1, namely, of the case b of this
lemma. We conclude that there is f<n , dividing n , such that

x 1is an (2, K:‘n) - periodic point of £ « and for any j,

7 ™1
0sjsn, j=qL+s,8<2 ,

3
8 (£ () o Eh,

(x)) sKy n.

i-1

Find {1 such that 2 < & 8 Zi. Since L <n and 2

divides n , we have £ s n/2, and hence is Tr.

Now, by the choice of n ,
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2?*1
4

r— -r-2

n -r-2
K4nSK ns (1 -2 )yr S (1 - 2 )Ei.

Therefore the point x is (&, (1 - 2-r-2)£1) - periodic for
fr+1 » and by already proved conclusion b of lemma 5.2, x

is (&, (1 - 2—r—2)gi) - hyperbolic for S
r+1

Now we apply lemma 2.6. By the choice of n ,8§ = Kﬁnixf n s

- —_— r+1 -l = — -

2777200 - 2T 2kt 2 s 220 - 2T R 0

Hence, by lemma 2.6, x is (n,) - hyperbolic point of

-r-2,2 -r-2 2

£ » where T = (1 - 2 198y 21 = 277 Ny > 2y,

r+1

Lemma 5.2 is proved.

Proof of theorem 1.4. It follcows immediately from theorem 1.6

if k23 . For k <3 the space D3(X)e DF(X) is dense in

Dk(x) in dk- metric. Hence the set W, = Wic DB(Xk:Dk(X) is
k

dense in D" (X) and has the property, required in theorem 1.4.

Proof of corollary 1.5. We shall prove a little bit more

precise statement:

Proposition 5.3. Let f ewkc Dk(x). There are constants b1 20,

b2 >0, depending on £, with the following property:
For any two periodic points Xy #X, of f with the

shortest periods n, and n, respectively, ny. <Ny,

n
1

Qa
1. MPy

5(x1'x2)2 b 2 ’

b

where o = a(m,k).
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Proof. Denote f£™1

by f . By theorem 1.4, x is a hyperbolic

1
.
fixed point of ¥ with y(df(x,)) 2 a®™ .

Since the first and the second derivatives of f are
bounded by Cn1, we can find a neighbourhood U of X,
a
n
1 , in which T is topologically conjugated to

of

§ - radius ¢

a linear hyperbolic mapping. Consider the neighbourhood U' of
n§ , Din2 =3 .

x, of 8- radius c'1/cC . Then f7(U')cU for j = 1,2,..,n,.

But since ¥ is topologically a hyperbolic linear mapping in U,

this implies, that the only fixed point of F"2 in U' is X, -

-n
Now X, is a fixed poin& of f 2 , and therefore x2€ u',
or &(x,,x.) 2c™/c®™™2 =p, Vb, V2, with b, =c, b, = 1/C.
1772 1 2 1 2
Proposition is proved.
n® “2 n® n®
Now if n1,n25 n , we obtain 6(x1,x2)s b1 b2 S(b1b2) =b;

since a =aom,k) 22 for m21, k21. '1"h.ts proves that the distance
between any two periodic poinﬁs X, *#X, of f with periods s n
is at least bna .

Since the manifold X is compact, this implies immediately,
that the number of periodic points of f with periods sn does not
exceed Cna, where C = (K/b)®, with K depending only on X.
Corollary 1.5 is proved.

Using deeper properties of hyperbolicity one can improve the
result of proposition 5.3 and obtain additional information on the
geometry of periodic trajectories of £ €W, . E.g. one has the
following alternative: any closed trajectory of £ €W, of period
n is either iterated or (n,n) - simple, with n= cnu. We do not

touch these questions here.



6. The case of flows.

In this section we formulate the quantitative Kupka-Smale
theorem and its main consequences in the case of flows and-
sketch the necessary alterations in proves.

Let X be a compact mmdimensional smooth manifold, and
let Vk(X), k =1,..., be the space of %k times continously
differentiable tangent vector fields on X.

As above, we assume that some Riemannian metric and some
finite atlas on X are fixed, and we define by § and dk
the distance in X and the Ck—norm in Vk(x), induced by these
metric and atlas.

For ve‘Vk(X) we denote Ly Oyt ¢ X —» X the flow,
generated by the vector field v.

For the sake of simplicity we state our results only for
exactly closed trajectories, although the proves necessarily
involve consideration of almost-closed trajectories and provides
their hyperbolicity, as in the case of discrete time, considered

above.

Definition 6.1. Let vE‘Vk(X) be given. For any x€ X , such

that v(x) = 0, the “hyperbolicity" y(x) of v at x is de-
fined as y(x) = y(de (x)).
v,1
Let w be a closed trajectory of a period T>0 of v .

The "hyperbolicity" y(w) of von w is defined as

Y(w) = y(a¥ (0)),



m-1

. 1
where ‘l’m ¢ R

—> R™ ! is (the germ of)the Poincare

mapping, associated with the closed trajectory w of v .

Theorem 6.2. In each space vk(X) » k=1,2,...,there is a

dense subset W'k , such that vector fields vE€ W"k have the

following property: for some constant a> 0 , depending on v ,

1. For each zero x of v,

yi(x) 2 a

2. For each closed trajectory w of v, of a period T>0,

o
y(w)2 aT" , where a= a'(m,k) = 1093/2(2m(m + k' - 2), k'= max(k,3).

Corollary 6.3. For any V€ Wl: there are constants b>0 and

C , depending on v ,such that

1. Por any two closed orbits W, * w of v , with

2
1 and Wy (which is the
o
min <S(x1 ,x2), X, € Wy x2€ wz), is at least bT .

periods s T , the distance between w

2. The number of closed orbits of v with periodss T does
o

not exceed C° ,

Here a , as above, is equal to a'(m,k).

As in the case of diffeomorphisms, theorem 6.2 is implied by the

following more precise statement:
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Theorem 6.4. Let vEVk(x), k23.

There are constants €0 0, a,>0, a,> 0, depending on v,

1
such that for any €>0 , ¢ ¢ €q ¢+ One can find v'e€ Vk(X),

dk(v',v)s € , with the following properties:

1. For any zero x of v',

Y (x) Za1(e) . where a.l(e) = a1em+1 .

2. For any closed oribt w of v' op period T>0,

(o ]
Yiw) zay(e)T,

2
2 €@/1ﬁn ((m+k°2) o= a. (m,k) .

where az(e) = a
As in the case of diffeomorphisms, overexponentiality in our
bounds appears.as the result of the difficulty to control the be-
havior of recurrent trajectories under perturbation.
In the case of flows on compact orientable surfaces this
difficulty can be settled, and we obtain the following result,

parallel to theorem 1.7 in the case of diffeomorphisms:

Theorem 6.5. Let X be a compact orientable surface. In each

Vk(X) + k=1,2,..., there is a dense subset We' , such that
vector fields v€ Wk" have the following property:

For some constant a> 0 , depending on v, any zero of v
is a - hyperbolic and any closed trajectory w of v of a
period T is aT - hyperbolic.

The proof of theorem 6.4 goes as follows: First of all,

considering an appropriate space of perturbations of vector
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fields of X and applying quantitative transversality theorem,
we obtain at once a new vector field Vo ¢ dk(vo,v)s £ ¢
with all its zeroes having the required hyperbolicity.

For this new field Vo ©One can easily prove that any non-
constant closed trajectory of Vo has the length at least c¢ ,
where c¢> 0 1is some constant, depending only on v.

We can also find a finite number of smoothly imbedded m - 1
dimensional disks Dic X, such that any nonconstant trajectory of
v intersects transversally at least one of the disks D,.

o

We can assume also that each disk Di has a neighbourhood
U, in X , diffeomorphic to D,x (-1,1] and v, under this
diffeomorphism corresponds to the standard field é% on
D, * [-1,1] .

Now for any sufficiently small p>0 and for v>0,v s 1,
we build, as in section 2 above, the diffeomorphisms hg:z of
the disks Di into themselves, where tE€ To .

By the standard construction, using the product structure of
vy hear Di , we can define the corresponding perturbations
vg:: of the vector field vy + Which "move" the trajectory of
vo by hg:z along the disks D,.

Now for any vector field w, sufficiently close to Vo ¢ We
define the mapping fw,n from the disks D; to themselves (the
"succession function" of the field w) as follows: let x€D,
and let wwlt(x)G'Di for some t , (n - 1)c<tsnc . Then we
put fw,n(x) = ww't(x)e Di'

The mappings fw,n are not everywhere defined on D, , and

also fw is not exactly the iteration (fw n)p. But to any
14

np
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closed trajectory w of the vector field w (of length T ,
(n - 1)c< TS nc), there corresponds the fixed point x of
fw,n , belonging to one of the disks D1 ., and the hyperbolicity
of w 1is equal to the hyperbolicity of x.
Hence it is sufficient to prove the existence of v' ,
with dk(v',vo) s €/2 , for which all the fixed points of
v',n n=1%,2,..., have the required hyperbolicity.
But this proof goes exactly as in the case of diffeomorphisms.

Indeed, our perturbations w@v of the vector field w, by con-
struction, act on fw n exactly as the perturbations fEN of
’

section 2 act on a diffeomorphism f. Hence all the estimates of
section 2 above remain valid. Lemma 3.1 on iterated almost
closed trajectories also remains valid with minor modifications.
The application of quantitative transversality and the
Peixsto induction, completing the proof, go through, actually,
without changes. The only difference is that here we subdivide
all the lengths of the periods into parts, lying between (3/2)F

and (3/2)"*! (and not between 2 ana 2'"'

, as in the case
of diffeomorphisms), to avoid'the influence of not integral lenghts
of considered almost closed tiajectories. As a result of this

alteration, and since the dimension of the disks D is m -1,

i
the new value a'(m,k) of the overexponentiality index o appears.
Theorem 6.2 and corollary 6.3 follow from theorem 6.4

exactly as in the case of discrete time.

7. Addendum

Here we prove theorem 4.2.
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Let (.'.W:Rm be a closed domain, such that any Xq0%Xy €Q
can be joined in Q by a curve of length g S, x5 - x; Il
and let F : QX% B9 - R? be the C1 - mapping with
I dx F(x,t){ls R1 for any (x,t)€ Q«x Bq, such that for any
x€Q, F(x,:) : B9 = ’R? is one to one with e, = &40l s

R, lIF(x,t,) - Fix,t,) | ,t € 89,

1782
We fix AcQ and A'c R? and recall that AF(A,A')C Bq

is the set of all ¢t€ Bq, such that F(x,t) € A' for some x¢A.
We want to give the upper bound for the number of balls

of a given radius, covering AF(A,A') .

Consider in Qx Bq

the set I = {(x,t), x€ A, F(x,t) e A'}.
Then AF(A,A') = W(X) , where e Qx_Bq —> B9 is the pro-
jection on the second factor.

Since the projection does not increase the distances, for

any §&§'> o0,
M(E'AF(A.A‘))S M(E' ).

Hence, it is sufficient to estimate the number of balls of
a given radius, covering I,
Let g> 0 be given. We fix some coverings of A and A'
by balls By ,1=1,2,..., M§,A) and B,' , J=1,2,..., Mg,A"),

J
of radius §.

Lemma 7.1. For any 1 = 1,...,M(E,A), §J = 1,...,M(E,A'), the set

zi'j ={ (x,t), x€B,, Flx,t) €Bj' Y.,



is contained in some ball of radius &' in Qx B9 + where

£ ' = 2(S;R,(1 + Ry) + 1§

Proof. Fix some point (x, , to)e I, j and let (x,t) be
’
some other point in zi 3°
’
First of all, ||x - x,]|s2¢g, since X,xo€ B, . By the

conditions, we can join x and X by some curve s in
Q of the length s5,| x - xll s2s,& .

Integrating along s and using the inequality || dxF IISR1 '
we obtain:

| F(x,tq) - F(xy,ty) || s 25,R,E .

Hence

IF(x,t) - Fix,tq) | s |IF(x,t) - Fixg,tg) || +

+ ||F(x.t0) - Flxg,tg) | s2¢& + 25, R, &,

since both F(x,t) and F(xo,to) belong to Bj"

By the conditions we obtain:
It = tglls2rR, (1 + SR &,
and combaining this with | x - x, Il s 28,

[Hx,8) = (xg,t,) Is2r (1 + 8,RE + 2852(Ry8, (1 +R)+1)E = &

Lemma is proved.
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NW the Bﬁts zi'j ’ 1 = 1’...,“(E'A,' j = 1'...'M(E'A.)'
cover X, and hence

M(g',X) s M(g,A)M(g,AY).

Theorem 4.2 is proved.
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