Singular Hamiltonian systems and
symplectic capacities

Alfred F. Kiinzle

MPI / 94-98

Max-Planck-Institut fir Mathematik
Gottfried-Claren-StraBe 26
D-53225 Bonn

Germany






SINGULAR HAMILTONIAN SYSTEMS
AND SYMPLECTIC CAPACITIES

ALFRED F. KUNZLE
Max Planck Institut fiir Mathematik
Gottfried-Claren-Str. 26, 53225 Bonn, Germany
E-mail: kuenzle@mpim-bonn.mpg.de

Abstract. The purpose of this paper is to develop the basics of a theory of Hamiltonian
systems with non-differentiable Hamilton functions which have become important in symplectic
topology. A characteristic differential inclusion is introduced and its equivalence Lo Hamilionian
inclusions for certain convex Hamiltonians is established. We give two counterexamples showing
that basic properties of smooth systems are violated for non-smooth quasiconvex submersions,
e.g. even the energy conservation which nevertheless holds for convex submersions. This also
implies that the convexity assumption determines, although not symplectically invariant, a limit
case for symplectic geometry. Some applications of this theory are reviewed: Symplectic capacities
for general convex sets, the symplectic product and a product formula for symplectic capacities.

1. Introduction.

We consider the linear space R?" with the standard closed non-degenerate 2-
form w as symplectic manifold. One can describe w by an almost complex structure
J : TR*® — TR*", Jp2 = —id, Vp € R®", and the standard scalar product.
Expressed in coordinate functions to be arranged in analogy to complex ones,
x = (zy,...,2,) with 2; = (pi,¢:), Jp is given by a constant matrix (denoted
again by J)
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2 A. F. KUNZLE

The standard scalar product and the symplectic form are then represented by

2n
LYy = Zmiyi
i=1
wlz,y)=Jz.y.

A dilferentiable map is called symplectic if ¢*w = w, or in the above coordi-
nates if dp(z)T Jdep(z) = J . We denote the set of symplectic embeddings of open
sets in R?™ into R®® by &, (R*") and the symplectic diffeomorphisms of R?™ by
D, (R?™).

Let B(r) = B**(r) = {z € R*" | |[z| < r} be the ball and Z(r) = B¥*(r) x
R®"? = {2 € R®™} ¢} + p] < r?} be a cylinder with a symplectic base disc.

Now we can state two theorems abont symplectic embeddings and difleomor-
phisms as motivation for our considerations, quoted in R** only although they
hold for general symplectic manifolds.

THEOREM A [G 85]. When the ball B(r) can be symplectically embedded into the
cylinder Z(R), then r < R.

In other words, B(r) cannot be squeezed symplectically into an infinitely long
cylinder Z(R) if » > R, whereas this can be done for » < R by the identity map,
expressing a rigidity of symplectic embeddings. Gromov showed that a symplectic
invariant defined with .J-holomorphic curves is the obstruction for such embed-
dings. It is different from the well known Liouville volume vol(D) = fD w™ which
cannot be the obstruction because vol{ B(r)) < co and vol(Z(R)) = o, indepen-
dently of r and R.

Such an invariant, nowadays called symplectic capacily, or more precisely sym-
plectic capacity for F and Dy, is a map ¢ of a family F of subsets of (R*",w) to
R satisfying (assuming D, D', B(r), Z(r) € F)

(a) DC D = ¢(D)<e(D)
(b) @€ Dy = c(p(D)) = ¢(D)
() ¢(B(r)) =nr?=c(Z(r)).

The axioms are designed in the way that the existence of a symplectic capac-
ity implies readily theorem A. The next theorem is another consequence of the
existence of a symplectlic capacity.

TueoreM B [G85], [EI87] The set of symplectic diffeomorphisms of R*" is closed
in the set of diffeomorphisms of R*™ with respect to the C°-compuct-open topology.

In other words, a topological rigidity is stated. This raised the question whe-
ther one can define notions of C%-symplectic manifolds and maps as a framework
for symplectic topology.

Towards the notion of C%-symplectic manifolds, a step has been done in [K90],
namely the case of convex sets with non-smooth boundaries, which we report in
the present article.
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In order to extend the notion of symplectic maps to non-differentiable con-
tinuous maps, one can, for a given capacity ¢, consider a subgroup G, of homeo-
morphisms of R?™ conserving the capacities of a certain class of subsets of R>".
Consider for example the set of sub-level sets S; = {z|¢(z) < 1} where ¢ varies
over the set of all quadratic forms. Let B be the open ball {z | I:I:I2 < 1}, then it
is possible to formulate the local symplectic rigidity theorem.

THEOREM C [EH 89]. Let vy in C°(B,R*™) conserve the capacities c(p(S,)) =
c(Sy) for all quadratic forms ¢ and converge to ¢ in the sup-norm. Then, for
every point © where dp(z) exists, dp(z) is either symplectic or antisymplectic:

do(a)Tdde(x) = £J .

Images of smooth hypersurfaces by such maps are non-smooth in general. It
is possible to explain, by the theory presented in this article, what Hamiltonian
dynamics on such singular hypersurfaces means.

Hamiltonian dynamics is in fact related to symplectic capacitics: Ekeland and
Hofer showed in their papers [EH89] and [EH90] that both the embedding and
topological rigidiy can also be understood by means of periodic solutions of Hamil-
tonian systems instead of .J-holomorphic curves. We give a very short review of
their construction.

For any bounded domain D C R?*" and any function # from the following
restricted set

H(D) = {H € C*(R*™ R,) |3 open. UDD st. Hly=0,
H(z) =a|z|’ forz large,a > 7, a ¢ Nr},

IZkeland and Hofer construct a minimax critical value ¢(#) of the Hamiltonian
action functional ¢y () = § fol Jx(t).z(t) dt —fnl H (z(t)) dt on the space of loops
E := H'Y*(S8! R?"). This value corresponds to a 1-petiodic solution of the Hamil-
tonian equation £ = J H’(z) running somewhere in D°. One shows the monotoni-
city Hy > Hy = ¢(H,) < ¢(H3). The real number
cgn(D) = ”61;1{110) c(H)

being independent of H, is a good candidate for a symplectic “size”of the set
D: In fact cgy is shown to satisfy (a), (b) and {c), the axioms of symplectic
capacities.

One would like to be able to define the capacity with the ideal limit Hamil-
tonian Ip, the characteristic function of D with value 0 on D and oo elsewhere,
which satisfies Ip > H VYH € Hp; then no infimum on Hamiltonian functions
had to be taken: a simplification which also needs non-smooth Hamiltonian sys-
tems. This application is presented in sections 3.1 and 9 and was one of the basic
ideas for [K90].

It is not evident that the Hamiltonian equation should pass to the above
infimum. But it does so in the case where the hypersurface 8D is C' and of
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restricted contact type, which means that it is regularly submersed in a {amily
of hypersurfaces {H (z) = E'} generated by a transversal w-contraction, Lyw =
w: The solutions of different levels are equivalent through the contraction, i.e.
existence of a solution on a nearby level means existence of dD.

In this situation (containing the special case of convex hypersurfaces) Ekeland
and Hofer get a useful representation result for the capacity: cgp (D) is a multiple
of the symplectic action A(z) = § f&(t).Jz(t)dt of a T-periodic solution & (with
unknown T) of 2 = JH'(z) on the level 8D, i.c. egy(D) = nA(zx) for some
unknown n € Ny, representing the action of an n-fold iteration of z.

The factor n could not be controlled in [EH 89] and {EEH 90], even not in the
case of a smooth convex domain D where one conjectured n = 1. This has been
done by Sikorav in August 1990 for the Ekeland - Hofer capacity cgg, at least
for smooth convex sets. Before and independently, a converse statement has been
shown in [K90], namely that the least characteristic action ¢y on convex hyper-
surfaces is a symplectic capacity for possibly non-smooth convex domains in R?",
To this aim we studied Hamiltonian type differential inclusions as presented in
sections §2 and 3 and used the dual Hamiltonian functional. In another, different
approach, Hofer and Zehnder [HZ90] introduced a capacity cgz, whose restriction
to smooth convex sets is also equal to ¢, i.e. cgy = ¢gz = ¢o on smooth convex
sets.

A further motivation is the idea that symplectic capacities are possibly cal-
culable by lower and upper sums in analogy to measure theory. This would be
an important tool, because capacities are quite difficult to calculate on exam-
ples. The idea is to determine the capacity of special cubes, which has been done
in [K90], and then give a lower bound for the capacity of a general set D by
calculating the capacity of a disjoint union of cubes contained in D. But also
for this construction, one juxtaposes - most economically - domains with corners
and therefore one needs an examination of Hamiltonian dynamics on non-smooth
hypersurfaces.

Moreover, one hopes that it would be easier to determine the Hamiltonian
dynamics on piecewise lincar (PL) hypersurfaces in order to increase the number
of known examples.

In fact, the capacity ¢g can be calculated for symplectic products, see [K90]. To
obtain this, we introduced a characterisation of closed characteristics on products,
which implies a symplectic characterisation of polydiscs, see [K94c]. Products hav-
ing evidently non-smooth boundaries present an other motivation for the present
article.

As a summary, we showed in [IK90] that a capacity on convex sets can be
obtained without an infimum on a set of Hamilton functions and without ap-
proximations of @K and solutions by a transversal flow. Moreover, no iterated
solutions (n # 1) interfer. For the monotonicity (b}, we used the equivalence of
Hamiltonian and characteristic differential inclusion in the convex case (see §3.1)
to get an analytical definition by the minimum of the dual Hamiltonian func-
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tional, an approach which is simpler than the one in [EH89] but is restricted to
convex sets.

In sections 2 to 7, the main results of this paper are presented. The last three
sections consist of a survey of applications to symplectic capacities and symplectic
products. More details on these applications will be given in [K94b] and [K94c].

In [K91], the capacity cp on convex scts is extended to all subsets in K",
We got, using [EH90] together with [Si90], or alternatively [EZ90], two distinct
symplectic capacities u and € which are shown to present an upper and lower
bound for all capacities extending the least action on convex sets. For instance the
Ekeland-Hofer and Hofer-Zehnder capacities are estimated above and below by u
and ¢ and can be calculated in certain cases by means of these. T'he observation
that v and £ are distinct has two interesting consequences: lower and upper sums
do not converge to the same value in general, and one conjectures that cpy is
different from cgyy.

As a simple corollary, two inequalities by Ekeland and Croke-Weinstein re-
spectively are improved.

Another result is for example that all sets D with B(r) C D having a periodic
orbit (in the general sense of §§2 and 8) on D with action strictly less than mr?
cannot be symplectomorphic to a convex sct, see [K91].

A rule for the capacities of some unions and differences of sets is determined,
showing that a capacity does not behave like a measure theory. Moreover isotropic
tori and sets with codimension 1 are calculated. Until [KK90], no examples other
than the ball, the cylinder Z(r) and the ellipsoid which are trivial as they are
given by or follow from properties (a), (b) and (c), were known.

2. Characteristic differential inclusions

In order to explain what we mean by Hamiltonian type systems with non-
differentiable Hamilton functions, we introduce the characteristic differential in-
clusion of a Lip - submersed hypersurface S. To do this we recall first the differ-
entiable case.

If H € C'and S := {H(z) =1} is regular, H'(z) # 0 Vz € S, one can show
that the fixed energy problem

i(t)=JH'(2(t))  H(2(0) =1 (H)

has the same trajectories as the so called “characteristic equation™ of the hyper-
surface .S with outward normal n(z), z € S:

£(t) = Jn(z(t)) with =z(t) €S V. (C)

The equation (C') is characteristic for § in the sense that the set of its solutions
(also called “characteristic curves” or “characteristics”) is determined by the hy-
persurface only, more precisely by the restriction of the symplectic structure to S,
and does not depend on the Hamilton function / generating S as regular hyper-
surface. Its solutions are parametrizations by arc length of the integral leaves of
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the field kerws. Two solutions z; and z; of (H) for different Hamilton functions
H, and H; are called geometrically equivalent if Im z, = Im 29; (C) together with
the choice of an initial point fixes a representant of every equivalence class.

To show the equivalence (H) <= (C'), we just used some basic properties
of smooth Hamiltonian systems, which however are violated — sec §5 to 7 — for
non-smooth systems. In spite of these problems, a similar equivalence is proved
for conver non-smooth systems in §3.1.

Our aim is to introduce a natural characteristic equation in the case where S
is submersed by a Lipschitzian function.

First, the hypersurface may have edges and corners, where the outward normal
is not unique (i.e. a set valued function). Such a generalized normal can be defined
if S is given by a Lipschitz function, in particular if S is the boundary of a convex
set.

For the last case, the idea is to take, at a given point z, all normals of the
hyperplanes passing through z whose negative half spaces contain the convex set.

DEFINITION: The (outward) normel cone and the normalized (outward) normal
set of a convex set K at a point = € R?*" are given by

Ni(z)={peR™ | plz-y)20 VyeK)
ni(z)={pe Ng(z)|lpl=1}.

[t is easy to see that Ny (z) is a cone for all z, ie. p € Ng(z) = Ap €
Ni(z) VYA€ Ry, and that Ng(z) = {0}, ny(z) = @ forall z € K. Furthermore,
for a smooth point 2 of 0K, Ng(z) = Ryn, ng(z) = {n}, where n is the usual
normalized outward normal vector at . One sees readily that N is a set valued
vector field in K with support on dK, thus suitable for our aim to construct a
system which is characteristic for the hypersurface K.

Secondly, it is clear that for instance curves passing through a corner of K
cannot be differentiable. The idea is to ask that v should be differentiable only
almost everywhere. One would therefore like to study

(&) () € Jng(y(t) ae.,

where a solution ¥ is asked to be parametrized by arc length and Lipschitzian
with constant 1: |y(¢) — y(t')] < f:, [%(t}] dt = |t — t']; Lipschitzian functions are
almost everywhere differentiable (by Rademacher’s theorem), so that the sys-
tem is consistent. Here it is already plausible that the non-uniquencss problem is
present, because ny (2) is set valued and also Jng (2) may intersect the general-
ized tangent space of JK in a (non-trivial) family of directions.

But is not clear yet whether a submersed family of convex hypersurfaces would
define a field with energy conserving solutions. The answer is given in section 5:
It is negative.
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Therefore, a natural idea to generalize (C) is to consider {#) together with
the additional constraint (i) which is automatically satisfied in the smooth case,

see §3. It is called characteristic differential inclusion for 0K :
1) At e Jng(v(t a.e.
(“) ¥(t) 1 (v(1) cn
(t7) y(t) € OK Vte[0,T,) .

3. Hamiltonian inclusions
Some new facts on convex Hamiltonian systems are established in this section.

DerFINITION:  The subdifferential of a locally Lipschitz function H is defined by

dH(z) = {p c R?" | Yo € R2" pv < Dy H(z)(v) := lim H(z + hv) - H(J,)}

h—0t h

Its elements are called subgradients. @ is called critical point of H il 0 € 0H ().

For finite locally Lipschitz functions, OH (z) is non-empty and bounded for
all z € R?" (sec [A84]). On a point where H is differentiable, 0H (z) reduces to
{H'(z)} :pv < H'(z)v Vo eR*™=p= H'(2).

The subdifferential is thus a gencralization of the gradient in the same way as
the normal cone generalizes the outward normal. In fact, we will show now that,
for some convex “gauge functions” H of a bounded convex domain K, 0H (z) and
nk(z) differ only by the length of their elements.

3.1. Equivalence

For bounded convex sets K containing 0 in their interior (K € Ky, see §9), we
now choose H(z) = (jx(2))" as Hamilton function, where ji (z) = min{A|% €
K} is the so called gauge function of K and for o we assume o > 1. H is convex,
finite and a-homogenous. Moreover K = {z|H(z) < 1} .

With this choice of / the following fixed cnergy problem is equivalent to (C'T):

— Jz(t) € 9H (2(t)) a.e.
H ('L(!)) =] vt e [0,7]
where z(t) is assumed Lipschitz.

THEOREM 1: (Equivalence of (C'I) and (H 1))

For H as above:

(a) ne Ni(x)e Znedl(z) forzedK

(b) (CI) and (HI) have the same solutions up to monotone absolulely contin-
uous reparametrizations.

Proof.

(a) Observe beforehand that there is a small ball B,.(0) C K, therefore ra €
K Vz € 0K, and conclude n.z > n.rn > 0 for all non-zero n € N (z) and for
all z € @K Division by n.z is then well-defined; in the case n = 0, the quotient
=& is defined to be 0 by continuity.

(HI
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As a first step, we prove the equivalence (for z € 0K):

. n.1
n € Ng(z) < jxly) 2 &y Vy € R*™,

n.z
namely

n€ Ng(z)=n(z—-y)20 VyekK
0

=n.(z-y) > Yy € 9K
—n(r - - J ) >0 vy € R*"
ix ()

. n.i 9
Siry) 2 = Wy eR™.
Conversely, using 1 > jx(y) Yy € K, we get
n.y
!

Ti'y VyeR" = 1> — Vyek

na .z
< n€ Nk(z).

I (y) 2

Therefore the above implications are equivalences.

As a second step, we apply the equivalence (true because H is convex)
pz— H(z)= mlit!?] (py— H(y)) < p € dH(z)
yER""

(Legendre duality) for the choice p = -Ln with given n € Ng (2):

n.1 ] ,
n € Ni(z) <= 02> ﬁ —ix(y) Vye R2"

1 1 .
—= —nzx—-H(@)=0> —ny-jxly) yeR™
n.z n.x

1
= —n € djx(=x).
n.z
Finally, the right derivative of H(z) = (j;((:c))a ,a0 > 1), is given by
Dy H(z)(v) = a(jk (=) Dijr(a)(v) YveR™,
its subdifferential is therefore dH (z) = adjk (z) , from where we conclude
n € Ng(z) <= Zae IH (z) .
n.w

It is remarkable that Nk (z) is a cone whose rays correspond to exactly one
element of dH (z), namely p = a-=. By normalization we get

n.r

n € ng () = ;a;n € oH(z) and |n|=1.

(b) Both (HI) and (C') are problems on the same energy hypersurface 0K, so
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that (a) applies:

—J&(t)
—Ji

—J&(t) € OH (z(t)) = € ny(z(t))

|=J(1)]

al .
A (FIE) e dH ()

where vanishing numerators are excluded. The reparametrisations are thus given
by the monotone functions 7 and 77!:

T(t) = /0 m ds z{t) == y(r(t))

‘le—sl( s):=a(r (s
o= [ gt 10 =)

If we fix the domain of 7 to be [0,7}], then the minimality of the period T,

follows from the minimality of T',, and conversely. It is obvious that 7 and 77!
are absolutely continuous. g

—J4(s) € nie(v(s) =

Remark: Observe that also the characteristic funtion of a set
0 fzekK
I[\' (:C) = {

oo otherwise ,
and the normal cone are related: 07k (2) = Ng(x). This is (morally) used for
symplectic capacities as explained in §9.

3.2. Energy conservation

After we showed that there exist non-differentiable quasiconvex Hamilton
functions having solutions which do not conserve the energy, cf. section 5, I. Eke-
land asked R.T. Rockafellar whether this would happen with convex functions
also. The answer was the {ollowing thcorem, the proof of which is given and
reformulated for convenience.

TuroreEM 2 [R89]. Let H be a finite convez funclion from R*" to R and x €
W([0,T],R*™) a solution of

&(t) € JOH (z(t)) ae in [0,T]. (Ho)
Then H(z(t)) = H(=(0)) Yte[0,T).
Proof. A solution z is Lipschitzian with a Lipschitz constant bounded by
max{|p| | p € @H (z(t)).t € [0,T)} < co and # is locally Lipschitzian by [A84,
p. 19-21]. Therefore #(t) = H (x(t)) is locally Lipschitzian and thus almost ev-
erywhere differentiable (Rademacher). With this regularity, one can establish
8(t) = 0 almost everywhere; this is done in an analogous way as in the C!-
case: Let us call 7 the set of full measure where 8(¢) and x(t) are differentiable

and (t) € JOH (z(t)). For all t € T, the right and left derivatives coincide, in
particular for v = &(t):

6(1) = Dol (2(1)) (#(8)) = — D H (2(0)) (= (1)) -
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Because of —J&(t) € 9H (z(t)), we get
—Jz(t).v < Dy H (z(8))(£(6))
for both v = £&(t). The antisymmetry of .J yields
0= ~J5(1).5(1) < Dy H (2(0)) (+(2))
0=—Jz(t).2(t) > D H(z(t) (2(t)) .
Therefore Dy H (z(t)) (#(t)) = 0=6(t) VL€ T and 8(t) = H(z(t)) = const. O

4. Quasiconvex submersions
Now consider a family of scts K (s) C RV, s € R, continuous with respect to
the Hausdorff metric on sets.

DEFINITION A family K(s) is called regular if 9K (s) NOK(s') = ,Vs # .

This generalizes the notion of a C''-submersed family of hypersurfaces to the
non-differentiable case. In fact, it implies that K (s) can be given as levels of a
continuous function f:U,K(s) = R defined by

flz)=s <= z € K(s).

If fis C', then f'{z) # 0 Va € K(s), which is the classical definition of the
regularity of the hypersurface K(s) .

Now the relation between f and K(s) is examined if K'(s) consists of convex
sets.

DerINITION A function f and the family {z | f(z) = s},er are called quasicon-
vez if the sublevels {z | f(z) < s} are convex for all s € Tm f. The family K(s)
or JK (s) is called convezifieble in the interval I if there is a convex function

H:RY SR
and a reparametrization h : 7 — R such that

IK(s) = {&e =RY | H(z) = h(s)} Vsel.

It is easy to give quasiconvex families which are convexifiable, e.g. f(r) = /r

or f(r) = y/sup; lz;|. In section 5, we present a quasiconvex example which is not
convexifiable, together with a proof of this property using the energy conservation
of Hamiltonian inclusions as established in theorem 2.

5. A quasiconvex example (CE1)

Let ¢(s) = (_;_:’C':): ,) be the parametrization by arc length of the unit circle with

center (_01) and n, ;= (

- 8in s
+cos s

K(s) := {z € R*||z] < |e(s)] and ny.z < 0},5 € [0, 7]

of convex sets given by intersection of halfplanes and discs of radii |¢(s)]| = sin

) the outward unit normal. Then consider the family

(%1173
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1

Figure 1: A quasiconvex family in R? violating energy conservation (CIE1)

It is easy to show that the distance between the boundaries is positive

dist (0K (8'), 0K (s)) = 2 (sin "._]")2 > 0 Vs, &' €[0,7],s > s,

which means that K (s) are mutually disjoint and K (s) defines a regular family
of convex sets: For all & € B(2) = K(r) there ts a unique value s =: f(a) such
that z € K (s). One gets the representation of K (s) by

{f(z) < s} = K(s).

f is a quasiconvex function which is at least of class C% (by the continuity of n,
and |c(s)| in s) but not C! because there are two curves of corners, the first one
being ¢(s).

The characteristic differential inclusion adapted to the family K'(s) is

¥() € Jngee) (v(t) ae., (1)

which has to be solved for (E,v) € C°([0, T],[0,#]) x Lip ([0, 7], B(2)]) including
the a priori unknown energy function.
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We examine two special solutions:

i)  The parametrization by arc length v, of 0K (s), for s fixed, defines a solution
(vs, 8) with constant energy E'(t) = s. The inclusion (1) is in fact solved for all but
two exceptional points; One observes moreover that the right and left derivatives
satisfy it even everywhere.

ii) The corner curve ¢(s) is another solution for t €]0, 7). it satisfies (1) at every
time t although it consists of corners only:

d —cos ¢
ac(f,) = (—Sill f.) =Jn, € J?L]{(E(f))(c(t)) Yt E]O,TT]

with E(t) = t. But the solution ¢ does not conserve the “energy” !

As a consequence ol 1) and ii), one concludes that the inital value problem
(IVP) at &g = c(s) possesses at least two solutions, v,(t + sg) et ¢t + ). In lact,
there are infinitely many geometrically different solutions (v, £) for

Y(t) € Jngeuy(y(t)

(IVP)
7(0) = zo
for every initial point zo € A := int (B(2)\ {0}).
Moreover, the boundary value problem for ag,2; € A
¥(t) € Jng L
(1) x(Em) (7(8)) (BVP)

v(0) =20 y(T) =2
has infinitely many solutions (y, £, 7") if and only if f(zo) < f(z1)-

One finds that the function F(t) is increasing for any solution (v, £). This is
due to the special property of our example that Jn € Jng points to the exterior
of K. Consequently, every solution for the boundary values zp,z; on the same
level 0K (s) conserve the energy f: f(wo) = f(z) & [E(t) = const = f(xo).
Whence all periodic solutions of (1) conserve the energy in this special example.

Now we apply the theorem ol Rockafellar: If there would be a convez function
k parametrizing K (s), then all solutions of (HI} would conserve the energy and
(HI) would be equivalent to (1) by theorem 1, which is a contradiction. This
implies that CE 1 is not convexifiable in [0,7]. We remark that this result
is even more general than what can be obtained by classical methods of convex
analysis, see the prool of Crouzeix [C89] as reported in [[K90] that CElL is not
convexifiable in {0, 7].

The study of singular Hamiltonian systems therefore provides a new tool to
decide whether a given family ol convex sets in even dimensions is convexifiable
or not.
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6. A convex example (CE2)

So lar we have constructed a quasiconvez system whose solutions of 1VP and
BVP may not be unique for certain points and at the same time do not always
conserve the energy; now we show that even in convex systems, where the energy
is always conserved, the IVP and BVP may have an infinity of solutions.

PROPOSITION 1  All isotropic edges of dimension > 2 of the standard cube in
R2" have infinitely many solutions of the IVP at all its interior points. The BVP
of a pair of points has infinitely many solutions if the second point lies in a
characteristic cone of attainable points.

41, G2

h

yip)

ng () . 3!

Figure 2: Non-uniqueness in isotropic edges (CE2)

Proof. We study the fixed energy initial value problem
(t) € Jngu)(v(8) ae
y(t) € OK(s), s fixed
7(0) = = .

It is enough to study a 4-dimensional cube, which can be considered as a (re-
stricted symplectic) edge of a higher dimensional one.
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Let K(s) = {(p1,¢1,p2,%2) € R'|pi,¢i €[0,5], s € Ry} be the cubes with side
lengths s. 9K (s) is composed of edges (strata) of dimension 0 (corners), 1, 2 and
3 (faces). At an interior point of such an edge, the set of normalized normals is
3, 2, 1 and 0-dimensional respectively.

To give a counter example against the uniqueness on any energy level, consider
the for example the 2-dimensional isotropic (Lagrangian) edge

A% = {(p1,0,p2,0) [ p; € [0,2]}

of K := K(2), see fig. 1.
The set of normalized normals for an interior point 2 € int A? is

nic(z) = {(0,—cos ,0,—sin ¢) o€ [0, 7]}

After application of J we get
Jng(z) = {(cos ¢,0,sin ¢,0)| @€ [0, g]}

The set of solutions with initial point @ is parametrized by an infinite dimen-
sional function space {¢ € C°([0,7],[0,%]) | |¢(t)] = 1Vt}:

Ys(t) = 2+ (cos #(t),0,sin¢(t),0) ,

and the boundary value problem for two points z,y € A% possesses still infinitely
many solutions of this form if y lies in the “attainable cone”of points satislying
z—-y€Jng(z)=Jnk(y). 0

We remark that K is a symplectic product of two-dimensional squares and
moreover a (non-smooth)} completely integrable system; a similar behaviour is
observed in general symplectic products (see [K94c]) even if the factors have
smooth boundary.

COROLLARY 1 CE2 does not define a flow. Nevertheless, if at every point z € A?
a preferred direction € JNg(x) is assigned depending smoothly on z, we get a
flow in A% which prescrves the the symplectic form. One observes therefore a
non-uniqueness of the Hamiltonian flow.

Proof. This is immediate, because every vectlor field defines a flow, and the
movenent of curves along isotropic edges preserves the symplectic area although
the Riemannian area is not conserved. O

CoRroLLARY 2 (Regularity) The solutions of (CI) and (HI) may not be differ-
entiable from the right everywhere, wherens a conver function defining S is: The
reqularily of the solutions is stricly smaller than the one of the defining function.

Proof. A curve with ¥(0) = z consisting of sequence of connected vertical and
horizontal arcs accumulating at = describes a solution of the form 74 which is not
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differentiable from the left nor from the right, because the limit

. . E+h) — (¢
7+(f') = lim M_Q

h—0+ h
does not exist at £ = 0 because it would be composed of two vectors, a horizontal
and a vertical one. The mazimal reqularity one can hope for is stricly less than
right differentiability, whereas convex functions are right differentiable. |

7. Conclusions

As a summary, we showed, that solutions of C%-systems in general
(1) don’t conserve the energy (Cf‘l)

(2) don’t have unique solutions of the initial value problem (CE1,2);

(3) don’t have the same regularity as H (CE1,2);

(4) depend on the Hamilton function representing the hypersurface as energy level
(CE1).

These are four violations of very basic properties of C'!'t%-systems, ¢ > 0,
namely of properties which were used to show the equivalence of (H) and (C).
The example for (1) could be made quasiconvex but not convexifiable, because of
theorem 2. This reveals that the convex Hamiltonians form a distinguished limit
case, at least in C%-theory, although convexity is not symplectically invariant.
This also means that (C) and (H) don’t have equivalent generalizations to the
non-smooth case, except further assumptions on H are considered, namely H
e.g. of the form (jx )™ and the explicit additional encrgy constraint, see §3.1. We
therefore adopt the point of view that the Hamiltonian description is secondary
and that one should consider the characleristic equalion or inclusion as primary
and more geometric.

8. Closed characteristics

To give a geometric definition of a symplectic capacity, we are interested in
periodic solutions of the characteristic differential inclusion (C1), called closed
characteristics. More precisely, we consider absolutely continous prime periodic
solutions

(i) () € Ing (v(t) ae.
(it) ~(t) € OK vVt e [0,7,]
(1) y(t+Ty)=~(t) Ve[0T,
and Ty > 0 is the minimal period of ¥

(*)

namely the set
MK = {y € Lip ([0,7,],R*™) | ()}

Solutions of (*) have the ambiguity of the choice of an initial value, so for every
solution we get a S'-orbit in (K} with respect to the natural S'-action which
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leaves (%) invariant. We pass to the quotient
[*(K):=T(K)/S!

to get the set of geometrically different solutions of (x). ['(K') can be regarded as
the set of representants of the moduli space of prime closed characteristic curves.

A symplectic size of loops is given by their symplectic action

T‘Y
=g [0

We will call loops small or big according to the absolute value of A(7), and sym-
plectic actions of elements of I'(K') (prime closed characteristics) arc called char-
acteristic actions of JK. Observe that the parameter transformations preserving
orientation and mapping degree conserve the value of A(y), therefore A(7y) passes
to the quotient by such reparametrizations.

A is not invariant with respect to the action of N given by the iteration + — y{¥),
as A(7*)) = kA(7y). For convenience we define

PN () = {48 | v € D(K), ke Ny
as the set of iterated characteristic loops, which by definition don’t solve (x).
k
Their minimal period is ﬁ#l instead of £(v(*)),

9. Symplectic capacities

DEFINITION Let Ko = {K CR*™ |0 € K, K convex, bounded} and K = {K C

gz"|0 €K , convex} be the set of (bounded) convex bodies respectively, where
K denotes the interior of K. Define ¢g to be the map

co: Ko —m R4
K+ co(K) = inf{A(y)|y € '(K)}

assigning to K the minimal characteristic action of K. We will call ¢y symplectic
capacity as soon as cg(K) is shown to be well defined, attained by a y* € I'(K),
positive and to satisfy the defining properties (a), (b) and (c}). On unbounded
sets K, ¢ is defined by ¢(K) = sup{co(K’)|K' € Kp, K’ C K}, which makes sense
after the monotonicity (a) on Kg is proved.

To show that ¢o () is positive, we used the gauge function jr(z) (§3) and the
well known dual Hamiltonian functional of H = (jx )%, see [CE80] and [E90]. We
proved that ¢ (/') is a monotone function of the minimum of this functional [KK90].
The well known fact that the dual functional is bounded from below as opposed
to the usual direct one, is a remarkable advantage of the dual formulation: a
minimum can be calculated by a computer whereas saddle points can’t in general.

We call this the geometric definition as it represents ¢y independently of
Hamiltonian functions by a purely geometric term the symplectic area of a surface
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¥ ¢ K contoured by the characteristic loop v*:
1

Aly) = 5/111”_ v*.(—-f)d7'=]zw.

It is independent of the choice of £ with d¥ = Iin+~, because K is contractible.
For arbitrary closed curves vy, A(y) is a relative integral invariant in terms of
Poincaré [P99, p.5]. Moreover, for closed characteristics y € (K}, A(y) is a
fundamental integral for both canonical and geometric quantization and relates
classical to quantum mechanics.

Now we collect some properties of c.

THEOREM 3 [K90] The least characteristic action ¢ is a symplectic capacity for
conver sets K and embeddings £,,:

(¢) KCK = c¢(K) < (k')

(b) ¢€&, and $(K) € K => c(¢(K)) = ¢(K)

(c) c(B(r)) =mr?=(Z(r))

Jor all K, K' € K. Moreover the following properties are satisfied

(d) ¢ is Hausdorff continuous on K

(e) c(K x K')=min{c(K),c(K")} for symplectic products K x K'.

(f) ¢(K) =0 for bounded conver sets K C R*~' Cc R*".

As mentioned in the introduction, Sikorav [Si90] proved that the capacity by
Ekeland and Hofer, which was defined by an infimum of a certain critical value
over a set of Hamiltonian functions, equals ¢p on smooth convex bodies and is
acheived by a non iterated solution. The characterization by a closed characteristic
on non-smooth convex sets was of course not possible there, because the notion of
a characteristic system as developed in the present article was not made precise
vet

10. The symplectic product

In [K90], we gave a representation of all characteristic loops on d(K; x K3)
by characteristic loops on the factors dK; and conversely. This proves a product
formula for all capacities which are given by actions of characteristic loops. Here
we will only indicate what is needed for the least characteristic action .

Consider two linear symplectic spaces (R*™,w;, g;) with w; and g; as in the
introduction. In the canonical metric ¢ = g1 @ g2, denoted by z.y again, the
splitting of £ = R*®» = R™ @R = F, @ [, is orthogonal. Consider the
orthogonal projections on these factors, expressed in coordinates by Pia = (Tb‘)
which we identify with Pz =z, forz = (:;)

The natural symplectic form is w = wy G wy, given by J = J, @ .Ja.

Now look at the symplectic product K = K; x Ko C R*?™ x R?"2, We suppose
K; € K(R*™) to symplify the proof and to fit the product formula to our convex
framework:

K € K(R™) < K; € K(R®™) for i=1 and 2.
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It is easy to show that Ng(z|,z2) = Ny, (21) ® Ni,(22) V2 = (21,2;) €

K X Ky and that the operators .J, P! and % commute.

THEOREM 4 For all v € I(K; X Kq), Py belongs to N+ (K;) U K; up to
reparametrisation of degree 1, where K; denote the sets of constant functions
with values in K;.

Remark: The lack of C'-regularity of the solutions of (%) could be handled by a
careful control of the differential inclusion almost everywhere, more precisely, we
considered a representant of the Lebesgue class of the derivative and controlled
it pointwise on a set of full measure.

As alternative approach, we smoothened Ky X Ky by Yoshida’s approximation
and followed the perturbed C!-solutions as the perturbation parameter changes.
Just as in the situation of Viterbo’s proof for contact manifolds [V87], these
perturbed solutions approach the hypersurface from outside. But the notion of
the characteristic differential inclusion still has to be made precise and examined
for the limit, i.e. with the smoothening approach one does not gain anything.

Remark: A converse statement to theorem 4 can also be proved (see [K90]):
Given ['(Ky) and ['{(K4), one recovers ['(K; x K) by adapted family of parameter
transformations. Again, the interesting part is K| X K3, where a non-resonance
condition has to be checked. This condition is similar to the usual non-resonance
condition on Lagrangian tori; just rcmark that in fact 0Ky x ... x 9K, is a
Lagrangian torus in R>™ if K; are 2-dimensional simply connected subsets of R>.

Remark: The symplectic product is physically non-trivial as it represents a
composed system with non-zero interaction. In terms of gauge functions, consider
hi(z:) = Gk, (2:)
. 2 .
H(z1,22) = (Jr,x ko (m1,22)) " = max{h;(z;)]i = 1,2}
= hl(ml) + hg(ﬂ?g) -+ 1/1,3(17],27'3) .
Use
T xKa(T1,T2) = miu{)\ eR,[f € K} = max{A|A(z,z2) € K1 X Ky}

< max{A € Ry|Az; € K;} = Jr.zs) .
to show that the interaction term is Vy 2(zy,72) = — min{h;(2;)|i = 1,2} and
therefore non-zero if 2 # 0.

Remark: The symplectic product is also non-trivial for the theory of symplectic
capacities in the sense that in general there is no estimate B(r) C D C Z(r) for
D = K; x K. For all sets D with such an estimate, a capacity is calculated
trivially by the axioms:

c(B(r)) = mr? < e(D) < c(Z(r)) = mr?,

yvielding ¢(D) = wr?. All examples (ellipsoid, ball and cylinder) whose capacity
could be calculated until [K90] were of this trivial kind.
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