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0 Introduction.

(0.1) The construction of the Hall algebra of an abelian category A is
known to produce interesting Hopf algebras of quantum group-theoretic na-
ture. A condition usually imposed to ensure that the Hall algebra has a
compatible comultiplication, is that A is hereditary (of homological dimen-
sion 1). There are two main types of hereditary abelian categories which
have been studied in this respect.

First, if Q is a quiver, we can form the category A = RepFq(Q) of (finite-
dimensional) representations of Q over a finite field Fq. As discovered by
Ringel [23], the Hall algebra of RepFq(Q) is related to the quantized Kac-
Moody algebra whose Dynkin diagram is Q. More precisely, it contains
Uq(n+), the quantization of the unipotent subalgebra on the positive root
generators from the Kac-Moody root system.

Second, if X is a smooth projective curve over Fq, we can form the cat-
egory A = Coh(X) of coherent sheaves on X. In this case the Hall algebra
contains the spaces of unramified automorphic forms on the groups GLr,
r > 1 over the function field K = Fq(X), and the multiplication correponds
to forming Eisenstein series [12]. One can also include “orbifold curves”
G\\X where G is a finite group of automorphisms of a curve X, see [24]. The
algebras obtained in this way include both quantum affine algebras [12, 24]
and spherical Cherednik algebras [26].

(0.2) The goal of the present paper is to begin the study of a third, more
arithmetic, type of Hall algebras. It is obtained by replacing a curve X/Fq
by the spectrum of the ring of integers in a number field, compactified at
infinity by the Archimedean valuations. In this paper we consider only the
basic example of Spec(Z) = Spec(Z) ∪ {∞}. The role of rank n vector
bundles for Spec(Z) is played by free abelian groups L of rank n with a
positive definite quadratic form in L⊗R, see [30, 31, 8] as well as [18, 29] for
a more general point of view of Arakelov geometry. The “moduli space” of
such bundles is the classical quotient of reduction theory of quadratic forms

Bunn = GLn(Z)\GLn(R)/On.

Functions on Bunn are the same as automorphic forms on GLn(R), see [7]
for a detailed study of precisely this situation.
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(0.3) To describe our arithmetic analog of the Hall algebra, let Hn =
C∞0 (Bunn) be the space of smooth functions on Bunn with compact support.
The space H =

⊕
nHn has a natural structure of an associative algebra, con-

structed in §2. From the point of view of the automorphic form theory, the
multiplication in H is given by the parabolic pseudo-Eisenstein series map.
If X is a curve over Fq, the analogous map for unramified automorphic forms
over the function field Fq(X) gives the multiplication in the Hall algebra of
X, see [12]. So in this paper we study the space H of automorphic forms on
all the GLn(R) as an associative algebra in its own right.

We further concentrate on the subalgebra SH ⊂ H generated by H1 =
C∞0 (R>0). Extending the terminology of [27], we call SH the spherical Hall
algebra of Spec(Z). From the point of view of spectral decomposition [20],
SH consists of automorphic forms expressible through the Eisenstein-Selberg
series [28], the simplest higher-dimensional analogs of the nonholomorphic
Eisenstein-Mass series on the upper half plane. This algebra has an explicit
space of generators, but relations among these generators are not directly
given.

(0.4) Our first main result describes SH as a Feigin-Odesskii-type shuffle
algebra, in a way similar to the results of [27] for the case of curves over
a finite field. However, in our case the shuffle algebra is based not on a
rational, but on a meromorphic function: the Riemann zeta function ζ(s).
This function, therefore, encodes all the relations among the generators from
H1.

Quadratic relations in SH correpond to the classical functional equation
for the Eisenstein-Maass series, in a way similar to the case of function field
considered in [12]. One form of writing the relations is in terms of “generating
functions” (formal H-valued distributions) E(s) depending on s ∈ C. It has
the form

E(s1)E(s2) =
ζ∗(s1 − s2)

ζ∗(s1 − s2 + 1)
E(s2)E(s1),

where ζ∗(s) is the full zeta function of Spec(Z) (the product of ζ(s) with the
Gamma and exponential factors). This is discussed in §6.

Our second main result, Theorem 7.7, is that the space of the cubic rela-
tions (not following from the quadratic ones) is identified with (an appropri-
ate completion of) the space spanned by nontrivial zeroes of ζ(s). In other
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words, the space spanned by the zeroes of ζ(s) can be realized as a certain
algebraic homology space of the associative algebra H. This is remindful of
(but different from) the result of D. Zagier [33] who gave an interpretation
of the zeta-space using integrals of Eisenstein-Maass series over anisotropic
tori associated to real quadratic fields.

(0.5) After the first draft of this paper was written, we learned that M.
Kontsevich and Y. Soibelman [16] have recently considered the algebra H as
well. Their interest was in studying wall-crossing formulas in Bun, so our
results practically do not intersect. We are grateful to M. Kontsevich and Y.
Soibelman for explaining their work and providing us with the preliminary
version of [16].

(0.6) M.K. would like to thank Universities Paris-7 and Paris-13 as well as
the Max-Planck Institut für Mathematik in Bonn for hospitality and support
during the work on this paper. His research was also partially supported by
an NSF grant.

1 Vector bundles on Spec(Z).
By a vector bundle on Spec(Z) we will mean a triple E = (L, V, q), where V
is a finite-dimensional R-vector space, q is a positive definite quadratic form
on V , and L ⊂ V is a Z-lattice of maximal rank. In this case, V becomes a
Banach space with norm ‖v‖ =

√
q(v).

The rank of E is defined as rk(E) = dimR(V ) = rkZ(L). A morphism
f : E ′ = (L′, V ′, q′) −→ E = (L, V, q) of vector bundles on Spec(Z) is, by
definition, a linear operator f : V ′ → V such that, first, f(L′) ⊂ L and,
second, ‖f‖ 6 1, i.e., we have q(f(v′)) 6 q′(v′) for each v′ ∈ V ′. In this way
we get a category which we denote Bun. All the Hom-sets in Bun are finite.

We denote by O = (Z,R, x2) the trivial bundle of rank 1.

The dual bundle to E is defined as E∨ = (L∨, V ∗, q−1), where q−1 is the
inverse quadratic form on the dual space. The tensor product of two bundles
is defined as

E ⊗ E ′ = (L⊗Z L
′, V ⊗R V

′, q ⊗ q′), (q ⊗ q′)(v ⊗ v′) := q(v)q′(v′).
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In particular, we have the bundle Hom(E,E ′) = E∨⊗E ′. The corresponding
quadratic form on HomR(V, V ′) takes f : V → V ′ into tr(f t ◦ f), where the
transpose is taken with respect to q, q′. We leave to the reader the proof of
the following:

Proposition 1.1. Let Ei = (Li, Vi, qi), i = 1, 2, 3, be three vector bundles on
Spec(Z). Then

HomBun(E1,Hom(E2, E3)) ⊂ HomBun(E1 ⊗ E2, E3)

as subsets in HomR(V1 ⊗ V2, V3).

Note the particular case of E1 = O. The proposition in this case reduces
to the inequality

‖f‖ 6
√

tr(f t ◦ f)

for any linear operator f : V2 → V3. We also see why the inclusion in the
proposition is not, in general, an equality. Indeed, for E1 = O, the Hom-set
on the left consists of integer points in the domain tr(f t ◦ f) 6 1, which is
an ellipsoid. But the Hom-set on the right consists of integer points in the
domain ‖f‖ 6 1 which is not an ellipsoid, if dim(V2), dim(V3) > 1.

We also have the symmetric and exterior product functors

Sr(E) = (SrZ(L), SrR(V ), Sr(q)), Sr(q)(v1 • · · · • vr) := q(v1) · · · q(vr),
Λr(E) = (Λr

Z(L),Λr
R(V ),Λr(q)), Λr(q)(v1 ∧ · · · ∧ vr) := det ‖B(vi, vj)‖.

Here • is the product in the symmetric algebra, while B is the symmetric
bilinear form such that q(v) = B(v, v).

Let Bunn be the set of isomorphism classes of rank n vector bundles on
Spec(Z). This set is a classical double quotient of the theory of automorphic
forms:

Bunn
∼←− GLn(Z)\GLn(R)/On. (1.2)

Explicitly, the double coset of g∞ ∈ GLn(R) corresponds to the isomorphism
class of the bundle (Zn,Rn, (gt∞)−1

∗ (qst)), where

qst(x1, ..., xn) =
n∑
i=1

x2
i

is the standard quadratic form on Rn and (gt∞)−1
∗ (qst)(x) = qst((g

t
∞)−1(x)) is

the quadratic form corresponding to the symmetric matrix (gt∞)−1 · g−1
∞ .
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We will also need an adelic version of (1.2). Let Af =
∏res

p Qp be the ring

of finite adeles of the field Q, let Ẑ =
∏

p Zp ⊂ Af be the profinite completion

of Z, and A = R×Af be the full ring of adeles. Then Kn := On×
∏

pGLn(Zp)
is a maximal compact subgroup of GLn(A).

Proposition 1.3. The embedding of GLn(R) into GLn(A) induces a bijection

Bunn ' GLn(Z)\GLn(R)/On
α−→ GLn(Q)\GLn(A)/Kn.

Proof. The statement is of course well known. We describe the inverse map
explicitly for later use. Let g = (g∞, (gp)) ∈ GLn(A), so g∞ ∈ GLn(R) and
gp ∈ GLn(Qp), with gp ∈ GLn(Zp) for almost all p. We associate to g a

vector bundle Eg = (Lg, Vg, qg) on Spec(Z) by putting:

Lg = Qn ∩
⋂
p

gtp(Znp ), Vg = Rn, qg = (gt∞)−1
∗ (qst).

It is clear that Eγgk ' Eg for γ ∈ GLn(Q), k ∈ Kn, so we get a map

GLn(Q)\GLn(A)/Kn
β−→ Bunn .

By construction, βα = Id; the fact that αβ = Id follows since Lg is a free
abelian group.

Example 1.4. Take n = 1. The set Bun1 formed by isomorphism classes of
line bundles, will be also denoted by Pic(Spec(Z)). This set is a group under
tensor multiplication. It is identified with R×+, the multiplicative group of
positive real numbers. Explicitly, given E = (L, V, q) with dimR(V ) = 1,
we associate to it the number deg(E) = 1/

√
q(lmin) ∈ R+, where lmin is one

of the two generators of L. Conversely, for a ∈ R+ we denote by O(a) =
(Z,R, a−2 · qst) the corresponding line bundle with deg(O(a)) = a. The
convention, compatible with (1.2) for n = 1, is chosen so that for a � 0
the bundle O(a) has many ”global sections”, i.e., lattice points l such that
q(l) 6 1.

Example 1.5. For any n, taking the top exterior power together with the
isomorphism of Example 1.4, gives a map

Bunn
det−→ Pic(Spec(Z))

∼−→ R+.
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Explicitly, E = (L, V, q) is sent into 1/Vol(V/L), the inverse of the covolume
of L with respect to the Lebesgue measure defined by q. We will denote this
inverse covolume by deg(E) and call it the degree of E. We denote by Bunn,a
the set of isomorphism classes of bundles of rank n and degree a.

Consider the case n = 2 and take a = 1. In this case

Bun2,1 = SL2(Z)\SL2(R)/SO2

is identified with the quotient SL2(Z)\H, where H ⊂ C is the upper half-
plane Im(z) > 0. More explicitly, consider the standard quadratic form on C
given by qst(z) = |z|2. Then, for τ ∈ H, the lattice Z + Zτ has, with respect
to qst, the covolume equal to Im(τ). We therefore associate to τ the bundle

Eτ =
(
Z + Zτ, C, qst/ Im(τ)1/2

)
∈ Bun2,1 .

Lemma 1.6. For γ ∈ SL2(Z) we have Eγ(τ) ' Eτ , and this establishes an
identification SL2(Z)\H → Bun2,1.

Proof. It is clear that Eτ ' Eτ+1. Let us show that E−1/τ ' Eτ . Note that

Vol(C/L−1/τ ) = Im(−1/τ) = Im

(
−τ
|τ |2

)
.

Notice also that multiplication by τ defines an isomorphism of lattices

L−1/τ
τ−→ Lτ .

The determinant of the multiplication by τ being |τ |2, we conclude that this
multiplication defines an isomorphism(

L−1/τ , C, qst/ Im(−1/τ)1/2
)
−→

(
Lτ , C, qst/ Im(τ)1/2

)
of vector bundles over Spec(Z).

Let now

0→ E ′ = (L′, V ′, q′)
i−→ E = (L, V, q)

j−→ E ′′ = (L′′, V ′′, q′′)→ 0 (1.7)

be a sequence of vector bundles on Spec(Z) and their morphisms.

Definition 1.8. We say that a sequence (1.7) is short exact (in Bun), if the
following hold:
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(1) The induced sequences of vector spaces and abelian groups are short
exact.

(2) The form q′ is equal to i∗(q), the pullback of q via i, defined by

(i∗q)(v′) = q(i(v′)), v′ ∈ V ′.

(3) The form q′′ is equal to j∗(q), the pushforward of q via j, defined by

(j∗q)(v
′′) = min

j(v)=v′′
q(v), v′′ ∈ V ′′.

An admissible monomorphism (resp. admissible epimorphism) in Bun is a
morphism which can be included into a short exact sequence as i (resp. j).

Let us call a subbundle in E an equivalence class of admissible monomor-
phisms E ′ → E modulo isomorphisms of the source. For such a subbundle
E ′ we have the quotient bundle E/E ′ ∈ Bun.

Proposition 1.9. Let E = (L, V, q) be a vector bundle on Spec(Z). The
following sets are in bijection:

(i) Rank r subbundles E ′ ⊂ E.
(ii) Rank r primitive sublattices, i.e., subgroups L′ ⊂ L such that L/L′

has no torsion.
(iii) Q-linear subspaces W ′ ⊂ L⊗Z Q of dimension r.

Proof. The bijection between (ii) and (i) takes a primitive sublattice L′ into
E ′ = (L′, V ′, q′), where V ′ = L′ ⊗Z R and q′ = q|V ′ . The bijection between
(iii) and (ii) takes a subspace W ′ into the sublattice L′ = L ∩W ′.

Proposition 1.10. Let E = (L, V, q) be a vector bundle on Spec(Z). For
any r ∈ Z+ and a ∈ R+, the set of subbundles E ′ ⊂ E with rk(E ′) = r and
deg(E ′) > a, is finite.

Proof. Let W = L⊗ZQ. Consider first the case r = 1. If E ′ ⊂ E corresponds
to a 1-dimensional subspace W ′ ⊂ W , then deg(E) = 1/

√
q(w′), where

w′ ∈ W ′ ∩ L = L′ is one of two generators of this free abelian group of rank
1. Since the number of w′ such that q(w′) 6 a is finite, our statement follows.

Consider now the case of arbitrary r and use the Plücker embedding of
the Grassmannian G(r,W ) into P(Λr(W )). If W ′ ⊂ W is an r-dimensional
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subspace with L′ = W ′ ∩ L, then Λr(W ′) ⊂ Λr(W ) is a 1-dimensional sub-
space, and Λr(W ′) ∩ Λr

Z(L) = Λr
Z(L′) is a free abelian group of rank 1 and a

primitive sublattice in Λr
Z(L). Further, Λr

R(V ) is equipped with the quadratic
form Λr(q), and deg(E ′) = 1/

√
Λr(q)(ξ′), where E ′ is the subbundle corre-

sponding to W ′ and ξ′ ∈ Λr
Z(L′) is one of the two generators. We thus reduce

to the case of subbundles of rank 1.

Let E ′ = (L′, V ′, q′) and , E ′′ = (L′′, V ′′, q′′) be two vector bundles on
Spec(Z). We define Ext1(E ′′, E ′) to be the set of admissible short exact
sequences (1.7) modulo automorphisms of such sequences identical on E ′

and E ′′.

Proposition 1.11. The set Ext1(E ′′, E ′) has a natural structure of a C∞-
manifold isomorphic to the torus (R/Z)n

′n′′, where n′ = rk(E ′) and n′′ =
rk(E ′′).

Proof. For any short exact sequence as in (1.7), the induced short exact
sequence of lattices necessarily splits. Let us fix a splitting L = L′ ⊕ L′′ and
the induced splitting V = V ′⊕V ′′ of R-vector spaces, so that i and j become
the canonical embedding into and the projection from the direct sum. Let
Λ be the set of positive definite quadratic forms q on V such that i∗q = q′

and j∗q = q′′. By definition, Λ is a closed subset in the space of all positive
definite quadratic forms on V and so has a natural topology.

The group HomZ(L′′, L′) is identified with the group of automorphisms
of the split exact sequence

0→ L′
i−→ L′ ⊕ L′′ j−→ L′′ → 0

identical on L′, L′′. Therefore this group acts on Λ, and we have Ext1(E ′′, E ′) =
Λ/HomZ(L′′, L′).

Lemma 1.12. The map Λ
res−→ HomR(V ′ ⊗ V ′′,R) which sends q into the

induced pairing between the summands V ′ and V ′′, is a homeomorphism.
This map takes the action of the group HomZ(L′′, L′) on Λ into its action on
HomR(V ′ ⊗ V ′′,R) by translations.

Proof: Fix a basis e1, ..., en′ of V ′, orthonormal with respect to q, and a
basis v1, ..., vn′′ of V ′′. Let B′, B′′ be the symmetric bilinear forms on V ′, V ′′
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corresponding to q′, q′′, and let q be a quadratic form on V with corresponding
symmetric bilinear form B. Then the condition q ∈ Λ means:

B(ei, ej) = δij = B′(ej, ej),

B

(
vp −

n′∑
µ=1

B(vp, eµ) · eµ, vq −
n′∑
ν=1

B(vq, eν) · eν
)

= B′′(vp, vq).
(1.13)

Indeed, the minimum in the definition of j∗q is given by the orthogonal
projection to V ′ with respect to B, and the left hand side of the second
formula above involves exactly such projections.

Denote by X the matrix ‖B(vp, eµ)‖ of size n′′ × n′, and let Y be the
matrix ‖B(vp, vq)‖ of size n′′ × n′′. From the first condition in (1.13) we
see that a quadratic form q with i∗q = q′ is completely determined by the
datum of X and Y , while the second equation implies that Y = B′′−X ·X t,
where B′′ = ‖B′′(vp, vq)‖. Therefore q ∈ Λ is indeed completely defined by
X, which is the matrix representative of res(q). The action of elements of
HomZ(L′′, L′) in the matrices X is the action by translation. This proves the
lemma and Proposition 1.11.

Remark 1.14. More generally, one can consider data F = (L, V, q) similar
to the above but where L is any finitely generated abelian group, V = L⊗ZR
and q is a positive definite quadratic form on V . They correspond to coherent
sheaves on Spec(Z) locally free at infinity. We get in this way a category
Coh6=∞(Spec(Z)), with admissible short exact sequences defined similarly to

Definition 1.8. A more systematic theory should enlarge Coh6=∞(Spec(Z))
by allowing a meaningful concept of sheaves with torsion at ∞. This will
be done in a subsequent paper. For example, sheaves supported at ∞ can
be described in terms of two positive definite quadratic forms q 6 q′ on one
R-vector space V , much in the same way as representing a finite abelian
p-group as quotient of two free Zp-modules of the same rank. The role of
elementary divisors is then played by the logarithms log λi(q : q′) ∈ R+, of
the eigenvalues of q with respect to q′.
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2 The Hall algebra.

Let
Yn = GLn(R)/On

be the space of quadratic forms on Rn. It is a C∞-manifold of dimension
n(n+ 1)/2. It is well known that for large N the congruence subgroup

GLn(Z, N) =
{
γ ∈ GLn(Z) : γ ≡ 1 mod N

}
acts on Yn freely, so GLn(Z, N)\Yn is a C∞-manifold. The set Bunn is the
quotient of this manifold by the finite group GLn(Z/N) and therefore has a
structure of a C∞-orbifold. In particular, we can speak about C∞-functions
on Bunn. They are C∞-functions on GLn(R), left invariant under GLn(Z)
and right invariant under On, i.e., C∞-automorphic forms in the classical
sense. Let

Hn = C∞0 (Bunn) = C∞0
(
GLn(Z)\GLn(R)/On

)
be the space of C∞-functions on Bunn with compact support. Consider the
direct sum

H =
∞⊕
n=0

Hn, H0 = C.

Let f ∈ Hm, g ∈ Hn. We define their Hall product f ∗ g to be the function
Bunm+n → C given by the formula

(f ∗ g)(E) =
∑
E′⊂E

deg(E ′)n/2deg(E/E ′)−m/2 · f(E ′)g(E/E ′), (2.1)

where the sum is over all subbundles E ′ ⊂ E of rank m.

Proposition 2.2. (a) For every E the sum in (2.1) is actually finite, so f ∗g
is a well defined function.

(b) f ∗ g is again a C∞-function with compact support.
(c) The operation f ∗ g makes H into a graded associative algebra, with

unit 1 ∈ H0.

We will call the algebra H the Hall algebra of Spec(Z). In this paper
will be particularly interested in the subalgebra SH ⊂ H generated by
H1 = C∞0 (R+). We will call SH the spherical Hall algebra, adopting the
terminology of [27], where a similar algebra was studied for the case of a
curve over a finite field.
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Remark 2.3. (a) The quantity

〈E/E ′, E ′〉 = deg(E ′)n/2deg(E/E ′)−m/2 =
√

deg Hom(E/E ′, E ′)

is the analog of the Euler form used by Ringel [23] to twist the multiplication
in the Hall algebra of representations of a quiver. In our case, as well as in
the case of curves over a finite field [12, 27], twisting by this form simplifies
the form of commutation relations.

(b) One can get larger algebras by relaxing the condition of compact
support to that of sufficiently rapid decay at infinity. More generally, there
are interesting cases when f and g do not have rapid decay, but f ∗ g still
makes sense as a convergent series.

Proof of Proposition 2.2: (a) Since f is with compact support, there is A > 1
such that f(E ′) = 0 unless deg(E ′) ∈ [1/A,A]. By Proposition 1.10 all but
finitely many E ′ ⊂ E have deg(E ′) < A, so that the sum in (2.1) is indeed
finite.

(b) To see that f ∗ g is smooth, suppose that E1 and E2 are close to each
other in Bunm+n. Then the corresponding lattices L1 and L2 are identified in
a canonical fashion. Therefore the sets of subbundles E ′1 ⊂ E1 and E ′2 ⊂ E2

of rank m, are identified, and so we have a bijection between the sets of
summands in (f ∗ g)(E1) and (f ∗ g)(E2). Next, the number of nonzero
summands in both sums is bounded by the same number by the continuity
of f and g, so we can view f ∗ g as a sum of finitely many C∞-functions.

To see that f ∗ g has compact support, let Σ1 ⊂ Bunm be a compact
set supporting f , and Σ2 be a compact set supporting g. For any E1 ∈ Σ1,
E2 ∈ Σ2 the set of E ∈ Bunm+n that can fit into a sequence (1.7), is a
compact topological space. Indeed, it is the image of a continuous map
Ext1(E2, E1)→ Bunm+n, whose source is a compact torus. Let F be the total
space of the fibration over Σ1×Σ2 with fiber over (E1, E2) being Ext1(E2, E1).
Then F is compact, while the support of f ∗ g is contained in the image of
F under a natural continuous map into Bunm+n.

(c) To prove associativity, let f ∈ Hn1 , g ∈ Hn2 , h ∈ Hn3 . Then for
E ∈ Bunn1+n2+n3 we have

((f ∗g)∗h)(E) =
∑

E1⊂E2⊂E

d
n2+n3

2
1 d

−n1+n3
2

2 d
−n1−n2

2
3 ·f(E1) ·g(E2/E1) ·h(E/E2),
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where E1 runs over subbundles of E of rank n1 + n2, and E1 runs over
subbundles of E2 of rank n1, and we have denoted

d1 = deg(E1), d2 = deg(E2/E1), d3 = deg(E/E2).

On the other hand

(f∗(g∗h))(E) =
∑
E1⊂E

E′2⊂E/E1

δ
n2+n3

2
1 δ

−n1+n3
2

2 δ
−n1−n2

2
3 ·f(E1)·g(E ′2)·h

(
(E/E1)/E ′2

)
,

where we have denoted

δ1 = deg(E1), δ2 = deg(E ′2), δ3 = deg((E/E1)/E ′2).

Let F be the set over which the first sum is extended, i.e., the set of admissible
filtrations E1 ⊂ E2 ⊂ E with rk(E1) = n1 and rk(E2) = n1 + n2. Similarly,
let F2 be the set over which the second sum is extended, i.e., the set of pairs
(E1, E

′
2), where E1 ⊂ E is a subbundle of rank n1, and E ′2 ⊂ E/E1 is a

subbundle of rank n2. We have a map ρ : F → F ′ sending (E1 ⊂ E2 ⊂ E)
into (E1, E

′
2 := E2/E1). The summand corresponding to any φ ∈ F is equal

to the summand corresponding to ρ(φ) ∈ F ′. So our statement reduces to
the following.

Lemma 2.4. The map ρ is a bijection.

Proof: An element of F has the form

(L1, V1, Q1) ⊂ (L2, V2, q2) ⊂ (L, V, q) = E,

where L1 ⊂ L2 ⊂ L is a filtration by primitive sublattices, and qi = q|Vi , i =
1, 2. An image of such an element by ρ is the pair

(
(L1, V1, q1), (L′2, V

′
2 , q
′
2)
)
,

where (L1, V1, q1) is as above, while L′2 = L2/L1 ⊂ L/L1, and q′2 = π′∗(q2),
with π′ : V2 → V2/V1 = V ′2 being the canonical projection.

On the other hand, a general element of F ′ is a pair
(
(L1, V1, q1), (L′2, V

′
2 , q
′
2)
)
,

where (L1, V1, q1) is as above, while L′2 ⊂ L/L1 is an arbitrary primitive
sublattice of rank n2, and V ′2 = L′2 ⊗ R and q′2 is the restriction to V ′2 of
the quotient quadratic form π∗(q) for the projection π : V → V/V1, i.e.,
q′2 = (i′)∗(π∗q). We have therefore a Cartesian square of R-vector spaces

V2
i //

π′

��

V

π
��

V ′2 = V2/V1
i′ // V/V1

13



with π, π′ surjective and i, i′ injective. We claim that π′∗i
∗(q) = i′∗π∗(q), and

hence ρ(F ) = F ′. This is a particular case of the following base change
property for quadratic forms.

Proposition 2.5. Let

U2
i1 //

j′

��

U

j

��
U ′2

i2 // U

be a Cartesian square of R-vector spaces, such that i1, i2 are injective and
j, j′ are surjective. Then for any positive definite quadratic form q on U we
have the equality j′∗i

∗
1q = i∗2j∗q of quadratic forms on U ′2.

Proof. Let u′2 ∈ U ′2. Then

(j′∗i
∗
1q)(u

′
2) = min

u2: j′(u2)=u′2

(i∗1q)(u2) = min
u2: j′(u2)=u′2

q(i1(u2)).

Since the square is Cartesian, i1 identifies (j′)−1(u′2) with j−1(i2(u′2)), so the
last minimum is equal to

min
u: j(u)=i2(u′2)

q(u) = (j∗q)(i2(u′2)).

This finishes the proof of Lemma 2.4 as well as Proposition 2.2.

Remark 2.6. One can extend the definition of the Hall algebra to the cat-
egory Coh6=∞(Spec(Z)) defined as in Remark 1.14, using the concept of ad-
missible exact sequences outlined there. The algebra thus obtained will be a
semidirect product of H and the Hall algebra of the category of finite abelian
groups, similarly to [13], §2.6.
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3 The Mellin transform.

A standard tool in the theory of quantum affine algebras is the use of gener-
ating functions, i.e., passing from a collection of coefficients (cα)α∈Zn to the
Laurent series

F (t) =
∑
α∈Zn

cαt
α, t = (t1, ..., tn) ∈ (C∗)n, tα =

∏
tανν . (3.1)

This is just the Fourier transform on the free abelian group Zn, but under-
stood in a more pragmatic way: we do not necessarily restrict to unitary
characters (they form the real torus |ti| = 1) but pay attention to the do-
mains of convergence in the space (C∗)n of all characters.

A typical free abelian group to which the above is applied is, in the Hall
algebra approach, Pic(X)/{torsion} = Z, where X is a smooth projective
curve over Fq, see [12, 27], In the present paper the corresponding role is

played by the group Pic(Spec(Z)) = R+. The Fourier transform on Rn
+ is

known as the Mellin transform. We now give a summary of its properties
from the same pragmatic standpoint as above.

Unitary characters of Rn
+ have the form

a = (a1, ..., an) 7−→ as =
∏

asνν , sν ∈ iR ⊂ C, asνν = esν log(aν),

and the Haar measure is d∗a =
∏
daν/aν . Accordingly, the Mellin transform

of a function (or a distribution) f(a) on Rn
+ is the integral

F (s) = (Mf)(s) =

∫
a∈Rn+

f(a)asd∗a. (3.2)

Here, a priori, s ∈ iRn, but we are interested in allowing the si to vary in
the complex domain, i.e., in considering not necessarily unitary characters.
The group isomorphism

exp : Rn ∼−→ Rn
+. (3.3)

transforms the Mellin integral into the standard Fourier integral on Rn.

Example 3.4 (Paley-Wiener theorem). If f(a) has compact support,
then (Mf)(s) converges for any s ∈ Cn, i.e.,Mf is an entire function, anal-
ogously to the case of a Laurent series in (3.1) being a Laurent polynomial.
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Recall that an entire function F (s), s ∈ Cn, is called a Paley-Wiener func-
tion, if there is a constant B > 0 and, for every N > 0 there is a cN > 0 such
that

|F (s)| 6 cN(1 + ‖s‖)−NeB·‖Re(s)‖.

This means, in particular, that F has a faster than polynomial decay on each
vertical subspace {σ0 + iRn, σ0 ∈ Rn}, while allowed to have exponential
growth on any horizontal subspace. We denote by PW(Cn) the space of
Paley-Wiener functions on Cn. The Paley-Wiener theorem says:

Proposition 3.5. The Mellin transformM identifies C∞0 (Rn
+) with PW(Cn).

Proof. The classical formulation, see, e.g., [22], Vol. II, Thm. IX.11, is for
the Fourier transform of compactly supported functions on Rn. The case of
the Mellin transform reduces to this via exp.

An important point about series (3.1) is that one (meromorphic) func-
tion can have different Laurent expansions in different regions, while the
region of convergence of each expansion is “logarithmically convex”, i.e., is
the preimage of a convex open set ∆ ⊂ Rn under the map

λ : (C∗)n −→ Rn, (ti) 7→ (log |ti|).

We now review the corresponding features of Mellin expansions. Unlike in the
case of Laurent series, these features are less familiar, and a precise treatment
involves L. Schwartz’s theory of Fourier transform for distributions.

For a C∞-manifold or orbifold M we denote by Dist(M) = C∞0 (M)′ the
space of distributions on M . Let S(Rn) be the space of Schwartz functions
on Rn, and D(Rn) = S(Rn)′ ⊂ Dist(Rn) be the dual space of tempered
distributions, see [22], Vol. I, §V.3. Recall that a C∞-function lies in D(Rn)
if and only if it has at most polynomial growth.

We define S(Rn
+) and D(Rn

+), the spaces of Schwartz functions and tem-
pered distributions on Rn

+, by means of the group isomorphism exp of (3.3).
For f ∈ D(Rn

+) we define Mf to be the tempered distribution on iRn given
by the Fourier-Schwartz transform of f ◦ exp.

For a distribution f ∈ Dist(Rn
+) we denote by Temp(f) and call the

tempering set of f , the set of σ ∈ Rn such that f(a) · aσ is a tempered
distribution. It is known (see [22], Vol. II, Lemma after Th. IX. 14.1) that
Temp(f) is a convex subset in Rn. We say that f is temperable, if Temp(f)
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has non-empty interior. For any convex open set ∆ ⊂ Rn we denote by
U∆ = {s ∈ Cn| Re(s) ∈ ∆} the corresponding tube domain.

Proposition 3.6. Let f is a temperable distribution on Rn
+, and ∆ be the

interior of Temp(f). Then F (s) = (Mf)(s) is an analytic function in U∆,
which has an at most polynomial growth on each vertical subspace σ0 + iRn,
σ0 ∈ ∆.

Proof. To see holomorphy, it is enough to assume that 0 is an interior point
of T (f) and to show that Mf is holomorphic in an open neighborhood of
iRn. For a sequence of signs ε = (ε1, ..., εn), εi ∈ {±1} let (Rn

+)ε ⊂ Rn
+ be the

domain given by conditions aεii > 1, and Cn
ε ⊂ Cn be given by the condition

εi Re(si) < 0. LetMεf be the partial Mellin integral of f , taken over (Rn
+)ε.

If s ∈ Cn
ε , then the function as decays exponentially at the infinity of (Rn

+)ε.
Therefore, if f is a tempered distribution on Rn

+ (i.e., if 0 ∈ Temp(f)), then
Mεf extends to a holomorphic function in Cn

ε . If, moreover, 0 is an interior
point of Temp(f), thenMεf is holomorphic in additive translates Cn

ε +σ for
σ running in an open neighborhood of 0 in Rn. ThereforeMf =

∑
εMεf is

holomorphic for Re(s) running in some open neighborhood of 0, as claimed.
To see that Mf has at most polynomial growth on each σ0 + iRn, it is

again enough to treat the case σ0 = 0. The restriction of Mf to iRn is a
tempered distribution, the Fourier-Schwartz transform of f ◦ exp. As it is
also a real analytic function, it must be of polynomial growth.

Next, we discuss the inverse Mellin transform, i.e., the analog of the
formula which finds each coefficient cα in (3.1) as an integral of F (t) times a
monomial. Formally, the inverse Mellin integral is defined by

f(a) = (N∆F )(a) =
1

(2πi)n

∫
s∈σ0+iRn

F (s)a−sds. σ0 ∈ ∆, a ∈ Rn
+, (3.7)

In our case, this integral should again be understood using Schwartz’s theory.
More precisely, we have:

Proposition 3.8. Let ∆ ⊂ Rn be a convex open set and F (s) be an analytic
function in U∆ with at most polynomial growth on each vertical subspace.
Choose σ0 ∈ ∆ and define f(a) = (N∆F )(a) as a−σ0 times the inverse Fourier
transform of g as a tempered distribution on σ0 + iRn ' Rn (the Fourier
transform being transplanted to Rn

+ via exp). Then N∆F is independent on
σ0 ∈ ∆, and is a temperable distribution on Rn

+ such that ∆ ⊂ Temp(f) and
Mf = F .
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We will callN∆(F ) the coefficient function of F in U∆. Thus the existence
of the coefficient function presupposes that F grows at most polynomially
on each vertical subspace in U∆. As usual with the Fourier transform, the
coefficient function of the product of analytic functions is the convolution
(on the group Rn

+) of the coefficient functions of the factors.

Proof. To show independence, it is enough to assume 0 ∈ ∆ and compare
the integrals (3.7) over iRn and σ0 + iRn for σ0 being close to 0 in ∆.
Both functions F (s) and F (s+ σ0) are tempered distributions on iRn ' Rn

and so have Fourier-Schwartz transforms. Moreover, F (s+ σ0) the sum of a
Taylor series involving derivatives of F (s) (evaluated on iRn). So the Fourier
transform of F (s + σ0) is product of the Fourier transform of F (s) and an
exponential factor. This factor is accounted for by the change in as in the
integral (3.7), showing the independence. The remaining claims follow from
the inversion theorem for the Fourier-Schwartz transform.

Let us note the particular case ∆ = Rn.

Corollary 3.9. The Mellin transforms M and N defines mutually inverse
isomorphisms between the following two spaces:

• D(Rn
+)abs, the space of absolutely tempered distributions, i.e., of dis-

tributions f(a) such that f(a)as is tempered for each s ∈ Cn.

• O(Cn)pol, the space of entire functions in Cn with at most polynomial
growth on each vertical subspace.

Note that an absolutely tempered distribution has actually exponential
decay at the infinity of Rn

+.

For future reference we recall two elementary properties of the Mellin/Fourier
transform. We denote by δc ∈ D(R+) the delta function at c ∈ R+.

Proposition 3.10. (a) Let F (s) be analytic in U∆, with the coefficient func-
tion f(a) = N∆(F ). Then for any ν = 1, ..., n we have

N∆(sνF (s)) = −aν
d

daν
f(a).
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(b) Let ∆ be an interval (c, c′) ⊂ R, so U∆ is a strip in C. Let h(s) be
analytic in U∆, with coefficient function k(a), a ∈ R+. Consider the function
of two variables

F (s1, s2) = h(s1 − s2), (s1, s2) ∈ U∆̃ = {c < Re(s1 − s2) < c′}

Then the coefficient function of F is found by

(N∆̃F )(a1, a2) = δ1(a1a2) · k(a1).

Example 3.11. Let ζ(s) be the Riemann zeta function, and

ζ∗(s) = π−s/2Γ(s/2)ζ(s) (3.12)

be the zeta function of Spec(Z). It is a meromorphic function on C with
simple poles at 0 and 1, satisfying ζ∗(s) = ζ∗(1− s).

The function Γ(s) has exponential decay on each vertical line σ0 + iR, as
follows from the Stirling formula. The function ζ(s) has at most polynomial
growth on each vertical line, see [3], Ch.9. Therefore ζ∗(s) has exponential
decay on each vertical line and therefore has a well defined coefficient function
in each of the three strips of holomorphy: Re(s) > 1, 0 < Re(s) < 1 and
Re(s) < 0. The coefficient function in Re(s) > 1 is given by the classical
formula of Riemann, see [3], §1.7:

(NRe(s)>1ζ
∗)(a) = θ(a2)− 1, θ(b) :=

∞∑
n=−∞

e−n
2πb. (3.13)

It can be obtained by forming the convolution (on R+) of the distribution∑∞
n=1 δ1/n, of the function 2e−a

2
and of the distribution δ1/

√
π. These three

distributions are the coefficient functions for ζ(s) =
∑

1/ns, for Γ(s/2) =
2
∫∞

0
e−a

2
asd∗a and for π−s/2 respectively. The coefficient functions in the

two other strips are obtained by moving the contour past the poles of ζ∗(s)
at s = 1 and s = 0 with residues ±1/

√
π:

(N0<Re(s)<1ζ
∗)(a) = θ(a2)− 1− 1

a
√
π
,

(NRe(s)<0ζ
∗)(a) = θ(a2) + 1/

√
π − 1− 1

a
√
π
.
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4 The zeta function shuffle algebra.

We recall the formalism of shuffle algebras of Feigin-Odesskii [5], see [27] [13]
for a more systematic discussion in the rational function case. We denote by
Sn the symmetric group of permutations of {1, ..., n}.

Let ϕ(s) be a meromorphic function on C. For any m,n > 0 let Sh(m,n)
be the set of (m,n)-shuffles, i.e., permutations w ∈ Sm+n such that w(i) <
w(j) whenever i < j and either both i, j ∈ [1,m] or both i, j ∈ [m+1,m+n].
For any w ∈ Sh(m,n) consider the following meromorphic function on Cm+n:

ϕw(s1, ..., sm+n) =
∏
i∈[1,m]

j∈[m+1,m+n],
w(i)>w(j)

ϕ(si − sj). (4.1)

Let O(Cn) ⊂ Mer(Cn) be the spaces of all entire and meromorphic
functions on Cn (defined to be equal to C for n = 0). On the direct sum⊕

nMer(Cn) we introduce the shuffle multiplication

sm,n :Mer(Cm)⊗Mer(Cn) −→Mer(Cm+n), F ⊗ F ′ 7→ FsF ′, (4.2)

by the formula

(FsF ′)(s1, ..., sm+n) =

=
∑

w∈Sh(m,n)

w

(
F (s(1), ..., s(m))F

′(sm+1, ..., sm+n)

)
· ϕw(s1, ..., sm+n).

(4.3)

The following is then straightforward, as in [5].

Proposition 4.4. The shuffle multiplication s makes
⊕

nMer(Cn) into a
graded associative algebra, with unit 1 ∈Mer(C0).

Assume further that the function ϕ satisfies the equation ϕ(−s)ϕ(s) = 1,
and, moreover, is represented in the form

ϕ(s) = λ(s)−1λ(−s) (4.5)

for some meromorphic function λ(s). For n > 0 letMer(Cn)Sn be the space
of symmetric meromorphic functions on Cn. On the direct sum

⊕
nMer(Cn)Sn ,

we introduce the symmetric shuffle multiplication

?m,n :Mer(Cm)Sm ⊗Mer(Cn)Sn −→Mer(Cm+n)Sm+n ,

F ⊗ F ′ 7→ F ? F ′,
(4.6)
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by the formula

(F ? F ′)(s1, ..., sm+n) =∑
w∈Sh(m,n)

w

(
F (s1, ..., sm)F ′(sm+1, ..., sm+n)

∏
16i6m

m+16j6m+n

λ(si − sj)
)
. (4.7)

Proposition 4.8. (a) The multiplication ? makes
⊕

nMer(Cn)Sn into a
graded associative algebra with unit.

(b) The correspondence

F (s1, ..., sn) 7−→ F (s1, ..., sn)
∏
i<j

λ(si − sj)

defines an injective algebra homomorphism(⊕
n

Mer(Cn)Sn , ?

)
↪→

(⊕
n

Mer(Cn),s

)
.

(c) Assume that λ(s) has no poles except, possibly, a first order pole at
s = 0. Then the graded subspace

⊕
nO(Cn)Sn is a subalgebra with respect to

?.

Proof. Parts (a) and (b) are proved straightforwardly, as in [5]. For (c), let
us indicate why

?1,1 : O(C)×O(C) −→Mer(C2)

takes values in O(C2) (the general case is similar). Writing λ(s) = cs−1+h(s)
with h entire, we have, for f, g ∈ O(C):

(f ? g)(s1, s2) = λ(s1 − s2)f(s1)g(s2) + λ(s2 − s1)f(s2)g(s1)

=
c

s1 − s2

[
f(s1)g(s2)− f(s2)g(s1)

]
+ (entire),

and the expression in square brackets, being an entire antisymmetric func-
tion, vanishes on the diagonal s1 = s2.

Definition 4.9. (a) We call the shuffle algebra associated to ϕ the subalgebra
SH(ϕ) ⊂

⊕
n>0Mer(Cn) generated by the space O(C) ⊂ Mer(C1). We
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call the symmetric shuffle algebra associated to λ the subalgebra SSH(λ) ⊂⊕
n>0Mer(Cn)Sn generated by O(C).
(b) The Paley-Wiener shuffle algebra SH(ϕ)PW , resp. the Paley-Wiener

symmetric shuffle algebra SSH(λ)PW , is defined as the subalgebra in SH(ϕ),
resp. SSH(λ), generated by the subspace PW(C) ⊂ O(C).

Thus, if ϕ and λ are related by (4.5), then SH(ϕ) is isomorphic to
SSH(λ) and SH(ϕ)PW to SSH(λ)PW If, further, λ satisfies the condition
(c) of Proposition 4.8, then SSH(λ) is a subalgebra of

⊕
O(Cn)Sn .

We now specialize ϕ(s) to be the following meromorphic function:

Φ(s) = ζ∗(s)/ζ∗(s+ 1). (4.10)

It is known as the global Harish-Chandra function (or the scattering matrix)
for Spec(Z), cf. [15, §7]. The functional equation for ζ(s) implies that
Φ(−s)Φ(s) = 1. We also consider the function

Λ(s) = ζ∗(−s)(s− 1)(−s− 1). (4.11)

It has just one simple pole at s = 0, with ress=0 Λ(s) = 1, and zeroes at
nontrivial zeroes of ζ(s) as well as at s = −1. We also have the identity

Φ(s) = Λ(s)−1Λ(−s). (4.12)

Here is the main result of this paper, which will be proved in Section 5.

Theorem 4.13. The Mellin transform M : SH1 = C∞0 (R+)
∼→ PW(C)

extends to an isomorphism of algebras SH → SH(Φ)PW ' SSH(Λ)PW .

The bigger algebra SSH(Λ) ' SH(Φ) can be thus seen as a natural
completion of SH.
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5 The constant term and its Mellin trans-

form.

The sum over shuffles appearing in the definition of the shuffle algebra turns
out to match quite exactly the sum over shuffles appearing in the classi-
cal formula for the constant term of a (pseudo-)Eisenstein series, cf. [20],
II.1.7. In this section we perform a detailed comparison and obtain a proof
of Theorem 4.13. Our comparison can be organized into 5 steps:

(A) Taking the constant term of an automorphic form on GLn with respect
to the Borel subgroup Bn, defines a map CTn : Hn → C∞(Rn

+).

(B) We denote by C̃Tn the twist of CTn by the analog of the Euler form
(Iwasawa Jacobian) to match the formula (2.1) for the Hall product. It
is then adjoint to the Hall multiplication map

∗1n = ∗1,...,1 : H⊗n1 −→ Hn

with respect to natural positive definite Hermitian scalar products on
both sides. This adjointness implies that the restriction of C̃Tn to
SHn = Im(∗1n) is an embedding SHn → C∞(Rn

+).

(C) The standard principal series intertwiners for GLn give rise to integral
operators

Mw : C∞0 (Rn
+) −→ C∞(Rn

+), w ∈ Sn,

whose domain of definition can be extended to include more general
functions. The formula for the constant term of a pseudo-Eisenstein
series then says:

C̃Tn′+n′′(f
′∗f ′′) =

∑
w∈Sh(n′,n′′)

Mw(C̃Tn′(f
′)⊗C̃Tn′′(f

′′)), f ′ ∈ Hn′ , f
′′ ∈ Hn′′ .

(5.1)

(D) For f ∈ SHn we define Chn(f) to be the Mellin transform of C̃Tn(f). It
is verified to represent a meromorphic function on Cn. Taken together,
the maps Chn define then an embedding of vector spaces Ch : SH →⊕

nMer(Cn).
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(E) Finally, one sees that the Mellin transform takes Mw to the operator on
Mer(Cn) taking a function F (s1, ..., sn) to

(wF )(s1, ..., sn) ·
∏
i<j

w(i)>w(j)

Φ(si − sj),

and so Ch takes the Hall product into the shuffle product, by comparing
(5.1) with (4.3).

We now implement each step in detail.

A. The constant term. We will use both the real and the adelic inter-
pretation of the component Hn of H:

Hn = C∞0
(
GLn(Z)\GLn(R)/On

)
= C∞0

(
GLn(Q)\GLn(A)/GLn(Ô)

)
.

Let B = Bn be the lower triangular Borel subgroup in GLn and U be the
unipotent radical of B. For f ∈ Hn its constant term is the function CT(f)
on Rn

+ defined in either interpretation by:

CTn(f)(a1, ..., an) =

∫
u∈U(Z)\U(R)

f
(
u · diag(a1, ..., an)

)
du =

=

∫
uA∈U(Q)\U(A)

f
(
uA · diag(a1, ..., an)

)
duA, ai ∈ R+.

(5.2)

Here du, resp. duA, is the Hall measure on U(R), resp. U(A), normalized
so that U(Z)\U(R), resp. U(Q)\U(A), has volume 1. Clearly, CTn(f) is a
C∞-function on Rn

+, bounded by max |f(g)|.

Proposition 5.3. For every f ∈ Hn there is c ∈ R+ such that Supp(CTn(f))
is contained in the domain

a1 6 c, a1a2 6 c, · · · , a1...an−1 6 c,
1

c
6 a1 · · · an 6 c.

Proof. For (a1, ..., an) ∈ Rn
+ and u ∈ U(R) let V (a1, ..., an;u) be the vector

bundle on Spec(Z) associated to the class of u · diag(a1, ..., an) in the double
quotient. This bundle has a canonical admissible filtration

V1 ⊂ V2 ⊂ · · · ⊂ Vn = V (a1, ..., an;u)
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with rk(Vi) = i and Vi/Vi−1 ' O(ai). But given any vector bundle V on
Spec(Z), there is c ∈ R+ such that for any admissible filtration V1 ⊂ · · · ⊂
Vn = V with rk(Vi) = i, the numbers ai = deg(Vi/Vi−1) satisfy the conditions
of Proposition 5.3. This follows from Proposition 1.10, and we can clearly
find a common c for bundles varying in a compact subset of Bunn.

B. Twisted constant term and its adjointness. Let

dg =

∏n
i,j=1 dgij

det(g)n
, d∗a =

n∏
i=1

dai
ai

be the standard Haar measures on GLn(R) and Rn
+. We introduce notation

for the factors in the Iwasawa decomposition:

GLn(R) = U · Rn
+ ·On, g = u · a · k, a = (a1, ..., an).

We write a = a(g), aν = aν(g) etc. as functions of g ∈ GLn(R). Let dk be
the Haar measure on On of volume 1.

The Haar measure dg on GLn(R) has, in Iwasawa coordinates, the well
known form

dg = δ(a)du · dk · d∗a, (5.4)

where the Iwasawa Jacobian δ(a) is defined by

δ(a) = δn(a) =
∏

16i<j6n

aj
aj

=
n∏
i=1

a−n+2i−1
i . (5.5)

See, e.g., [32], §4.1, Exercise 20 for upper-triangular matrices. We also write
δn(g) = δn(a(g)) for g ∈ GLn(R).

Let us make Hn and C∞0 (Rn
+) ⊃ H⊗n1 into pre-Hilbert spaces via the

positive definite Hermitian scalar products

(f1, f2)H =

∫
GLn(Z)\GLn(R)

f1(g)f2(g)dg, (ϕ1, ϕ2) =
1

2n

∫
Rn+
ϕ1(a)ϕ2(a)d∗a.

More generally, in each case the scalar product makes sense whenever only
one of the arguments has compact support. Define the twisted constant term
of f ∈ Hn to be the function

C̃Tn(f)(a1, ..., an) = CT(f)(a1, ..., an) · δ(a)1/2. (5.6)
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Proposition 5.7. The map C̃Tn : Hn → C∞(Rn
+) is adjoint to ∗1n : H⊗n1 →

Hn, i.e., we have

(∗1n(ϕ), f)H = (ϕ, C̃Tn(f)), ϕ ∈ H⊗n1 , f ∈ Hn.

Proof. This is standard, we provide details for convenience of the reader. For
ϕ ∈ C∞0 (Rn

+) we define a function ϕ̃ on U\GLn(R)/On by

ϕ̃(g) = ϕ(a1(g), ..., an(g)) · δ(g)−1/2.

Translating the (iterated) formula (2.1) for the Hall product, into group-
theoretical terms, we have

(∗1n(ϕ))(g) =
∑

γ∈Bn(Z)\GLn(Z)

ϕ̃(γg)

(a pseudo-Eisenstein series). The adjointness then follows from the expres-
sion of dg in terms of the Iwasawa factorization:

(∗1n(ϕ), f)H =

∫
g∈GLn(Z)\GLn(R

f(g)
∑

γ∈B(Z)\GLn(Z)

ϕ̃(γg)dg

=

∫
x∈B(Z)\GLn(R)

f(x)ϕ̃(x)dx
def
=

∫
x∈B(Z)\GLn(R)

f(x)ϕ(x)δ(x)−1/2dx

=
1

2n

∫
y∈U(Z)\GLn(R)

f(y)ϕ(y)δ(y)−1/2dy

=
1

2n

∫
z∈U(R)\GLn(R)

∫
u∈U(Z)\U(R)

f(uz)ϕ(z)δ(z)−1/2dudz

(5.4)
=

1

2n

∫
a∈Rn+

CTn(f)(a)ϕ(a)δ(a)+1/2d∗a = (ϕ, C̃Tn(f)).

Corollary 5.8. The map C̃Tn : SHn → C∞0 (Rn
+) is injective.

Proof. By definition of SH as the subalgebra generated by H1, a non-zero
element f ∈ SHn has the form f = ∗1n(ϕ) for some ϕ ∈ H⊗n1 . We can regard

ϕ as an element of C∞0 (Rn
+). To prove that C̃Tn(∗1n(ϕ)) 6= 0, we notice that

by adjointness and by the positivity of the scalar product on H, we have(
ϕ, C̃Tn(∗1n(ϕ))

)
=
(
∗1n(ϕ), ∗1n(ϕ)

)
H

= (f, f)H > 0.
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C. The principal series intertwiners. We use the intertwiners in their
adelic form, as this form accounts for the appearance of the factors involving
the Riemann zeta in the function Φ(s) defining the shuffle algebra, see (4.10).

Let An be the diagonal subgroup in GLn. We have the identification

Rn
+ = U(A)An(Q)

∖
GLn(A)

/
Kn, Kn = On

∏
p

GLn(Zp).

For w ∈ Sn let Uw = U ∩ (w−1Uw). Using the above identification, we define
the operator

Mw : C∞0 (Rn
+) −→ C∞(Rn

+), (Mwϕ)(g) =

∫
u∈(U(A)∩Uw(A))\U(A)

ϕ(wug)du,

cf. [20], II.1.6. More generally, Mw(ϕ) can be defined if, for any g, the
function u 7→ ϕ(wug) on the domain of integration has sufficiently fast decay
(for example, has compact support). Here is an example, to be used later.

We consider the following domain in Cn:

Cn
> =

{
s = (s1, ..., sn) : sν − sν+1 > 1, ν = 1, ..., n

}
, (5.9)

where we put sn+1 = 0. For w ∈ Sn put

Φw(s) =
∏

16i<j6n
w(i)>w(j)

Φ(si − sj). (5.10)

Proposition 5.11. If s = (s1, ..., sn) ∈ Cn
>, then applying Mw to the function

a 7→ as gives a convergent integral, and it is found as follows:

Mw(as) = aw(s)Φw(s).

Proof. This is a version of the classical Gindikin-Karpelevich formula. More
precisely, the value of the adelic intertwiner is found as the Euler product
of the values of similarly defined local intertwiners (involving the integration
over the p-adic or real group). Each local integral is found by Gindikin-
Karpelevich to contribute the factor∏

16i<j6n
w(i)>w(j)

ζp(si − sj)
ζp(si − sj + 1)

,

where ζp is the pth Euler factor of the Riemann zeta, or the Gamma factor
for p =∞.
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For ϕ′ ∈ C∞(Rn′
+ ) and ϕ′′ ∈ C∞(Rn′′

+ ) we define ϕ′⊗ϕ′′ ∈ C∞(Rn′+n′′

+ ) by

(ϕ⊗ ϕ′′)(a1, ..., an′+n′′) = ϕ′(a1, ..., an′)ϕ
′′(an′+1, ..., an′+n′′). (5.12)

We will use similar notation in other situations without special explanation.

Having now defined all the ingredients of the equality (5.1), we explain
how it is proved. This is again a standard argument, using the Bruhat
decomposition of a Grassmannian into cells labelled by shuffles, cf. [20],
II.1.7 for the case of any parabolic subgroup in any reductive group.

To give some details in our particular case, let n = n′ + n′′ and Pn′,n′′ ⊂
GLn be the parabolic (block-lower-triangular) subgoup corresponding to (n′, n′′).
We denote Un′,n′′ its unipotent radical and An′,n′′ = GLn′ × GLn′′ the Levi
subgroup. Then the Iwasawa decompostion implies that

(
GLn′(Q)\GLn′(A)/Kn′

)
×
(
GLn′(Q)\GLn′(A)/Kn′

) ∼−→
∼−→

(
Un′,n′′(A)An′,n′′(Q)

)∖
GLn(A)

/
Kn.

(5.13)

Given f ′ ∈ Hn′ , f
′′ ∈ Hn′′ , let f be the function on the right hand side of

(5.13) corresponding to the function

(g′, g′′) 7−→ | det(g′)|n′′/2 · | det(g′′)|−n′/2 · f ′(g′)f ′′(g′′)

on the left hand side. Here |a| is the adelic norm of a. The Hall product
f ′ ∗ f ′′ is then given by the parabolic pseudo-Eisenstein series

(f ′ ∗ f ′′)(g) =
∑

γ∈Pn′,n′′ (Q)\GLn(Q)

f(γg).

Now, writing

C̃Tn(f ′ ∗ f ′′)(g) =

∫
u∈U(Q)\U(A)

∑
γ∈Pn′,n′′ (Q)\GLn(Q)

f(γug)δn(g)1/2du,

we notice that the Grassmannian Gr(n′,Qn) = Pn′,n′′(Q)\GLn(Q) splits,
under the right U(Q)-action, into

(
n
n′

)
orbits (Schubert cells)

Σw = Pn′,n′′(Q)\wU(Q), w ∈ Sh(n′, n′′).
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Notice that for w ∈ Sh(n′, n′′) we have Uw = U ∩ w−1Pn′,n′′w. This means
that we can write each γ ∈ Σw uniquely in the form γ = Pn′n′′(Q) · w · v for
v ∈ Uw(Q)\U(Q) and so

C̃Tn(f ′ ∗ f ′′)(g) =
∑

w∈Sh(n′,n′′)

∫
u∈U(Q)\U(A)

∑
v∈Uw(Q)\U(Q)

f(wvug)δn(g)1/2du

=
∑

w∈Sh(n′,n′′)

∫
ũ∈Uw(Q)\U(A)

f(wũg)δn(g)1/2dũ,

and we identify the integral over ũ corresponding to w, with Mw(C̃Tn′(f
′)⊗

C̃Tn′′(f
′′)). Note that this argument shows, in particular, that Mw is indeed

applicable in this case as the domain of integration reduces to a compact one
(since all we did was re-partition the integral for C̃Tn(f ′ ∗ f ′′)(g), which was
over a compact domain to begin with). We leave the rest to the reader.

Let us note a version of the above statement for the constant term of the
n-tuple Hall product. The proof is similar.

Proposition 5.14. Let ϕ1, ..., ϕn ∈ C∞0 (R+) and ϕ = ϕ1 ⊗ ... ⊗ ϕn ∈
C∞0 (Rn

+). Then

C̃Tn(∗1n(ϕ)) =
∑
w∈Sn

Mw(ϕ).

D. The Mellin transform of the constant term. For f ∈ Hn we set
Chn(f) =M(C̃Tn(f)).

Proposition 5.15. The Mellin integral for Chn(f) converges to an analytic
function in the region Cn

>.

Proof. The Mellin transform of C̃Tn(f)(a) = δn(a)1/2 CTn(a) differs from
M(CTn(a)) by a shift of variables, and our statement is equivalent to saying
that M(CTn(a)) converges for

Re(s1 − s2) > 0, Re(s2 − s3) > 0, · · · ,Re(sn−1 − sn) > 0, Re(sn) > 0.

To see this, note that by Proposition 5.3 and of boundedness of CTn(f), the
integral is bounded by

const

∫ c

a1=0

∫ c

a1a2=0

· · ·
∫ c

a1...an=0

as1−s21 (a1a2)s2−s3 · · · (a1...an)sn×

×d∗a1d
∗(a1a2) · · · d∗(a1...an).
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Since
∫ c

0
asd∗a converges for Re(s) > 0, the claim follows.

Proposition 5.16. For any f ∈ SHn, the function Chn(f) extends to a
meromorphic function on Cn.

Before giving the proof, we recall the properties of a classical type of
Eisenstein series due to Selberg [28].

For any s ∈ C we denote by E(s) the following function on Bun1:

E(s) : E 7−→ deg(E)s = exp(s · ln(deg(E))). (5.17)

The (formal) Hall product

E(s1) ∗ · · ·E(sn) = ∗1n(as11 ...a
sn
n ) (5.18)

is a series of functions on Bunn, known as the (primitive) Eisenstein-Selberg
series, see [28] and [11] §8.3.

Proposition 5.19. (a) The series (5.18) converges for s = (s1, ..., sn) ∈ Cn
>,

to a C∞-function on Bunn.
(b) For any g ∈ Bunn the function

(
E(s1) ∗ · · · ∗ E(sn)

)
(g) extends to a

meromorphic function in the si, with position and order of poles independent
on g.

(c) The twisted constant term of
(
E(s1) ∗ · · · ∗E(sn)

)
(g) as a function on

g is given by

C̃Tn

(
E(s1)∗· · ·∗E(sn))(a1, . . . , an

)
=

∑
w∈Sn

a
sw(1)

1 · · · asw(n)
n

∏
i<j

w(i)>w(j)

Φ(si−sj).

Proof. For (a), see, e.g., [11], §8.5, Remark, and take into account the Ringel
twist in the definition of ∗ which translates the shifts by 1/2 into shifts by 1.
See also [7], Proposition 10.4.3 for a slightly weaker statement.

For (b), see [11], §8.6-7.
Finally, (c) follows by the formula (5.1) applied to the function as, s ∈ Cn

>

(the application is legal because of the decay conditions) and then using
Proposition 5.11.

Proof of Proposition 5.16: It is enough to assume that f = f1∗· · ·∗fn, where
fν ∈ H1 = C∞0 (R+). Let Fν = M(fν) ∈ PW(C) be the Mellin transform
of fν . Then fν = N (Fν), and the inverse Mellin integral (understood as in
Proposition 3.8) can be taken along any vertical line Re(s) = σν .
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Let us now choose σ1, ..., σn such that σν+1−σν > 1 for each ν = 1, ..., n−1
and σn > 1. The equalities N (Fν) = fν then imply that

f(g) =
1

(2πi)n

∫
Re(sν)=σν

F1(s1) · · ·Fn(sn)
(
E(−s1)∗· · ·∗E(−sn)

)
(g)ds1 · · · dsn.

Substituting the formula for the twisted constant term of
(
E(−s1) ∗ · · · ∗

E(−sn)
)
(g) from Proposition 5.19(c) into the integral for f(g), we represent

C̃Tn(f) as the inverse Mellin transform of the function

F (s1, ..., sn) =
∑
w∈Sn

F1(sw(1)) · · ·Fn(sw(n))
∏
i<j

w(i)>w(j)

Φ(sj − si),

which is analytic in the region Re(sν+1) − Re(sν) > 1. Further, if we take
σ1, ..., σn such that σν+1− σν > 1, σn > 1, then F is bounded on the vertical
subspace Re(sν) = sν . Indeed, each Fi, being a Paley-Wiener function,
decays exponentially at the imaginary infinity. On the other hand, the lemma
below shows that Φ(s) is bounded on vertical lines Re(s) = σ0 > 1. Therefore
we can apply the Mellin inversion (Proposition 3.8) to F and obtain that

Chn(f) =M(C̃Tn(f)) = F (s1, ..., sn) and so it is meromorphic.

Lemma 5.20. For every σ0 > 1, the function Φ(σ0 + it) is bounded, as a
function of t ∈ R, and decays as |t| → ∞.

Proof. Indeed, for s = σ0 + it, σ0 > 1 we have

ζ(s)/ζ(s+ 1) =
∞∑
n=1

ϕ(n)n−s−1,

where ϕ(n) = |(Z/n)×| is the Euler function. This is bounded by∑
n · n−σ0−1 = ζ(σ0).

Further, Γ( s
2
)/Γ( s+1

2
) decays at infinity as s−1/2, as it follows from the Stirling

formula.

E. Intertwiners and the constant term. We now study the action of
the intertwiners Mw on the Mellin transform of the constant term.
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Proposition 5.21. For ϕ ∈ C∞0 (Rn
+) and any w ∈ Sn we have

M(Mw(ϕ))(s) = M(ϕ)(w(s)) · Φw(s).

Proof. Write ϕ as the inverse Mellin integral of a Paley-Wiener function F
over any vertical subspace σ+iRn inside Cn

>, and apply Proposition 5.11.

At this point, we can finish the proof of Theorem 4.13. It remains only
to prove that Ch is a homomorphism of algebras, i.e., that

Chn(f ′ ∗ f ′′) = Chn′(f
′)sChn′′(f

′′), n = n′ + n′′ (5.22)

for any f ′ ∈ SHn′ and f ′′ ∈ SHn′′ . Using the formula (5.1) for the left hand
side and the definition of the shuffle product s for the right hand side, we
write this as an equality of two sums over shuffles∑

w∈Shn′,n′′

M
(
Mw(C̃Tn′(f

′)⊗ C̃Tn′′(f
′′))
)
(s) =

=
∑

w∈Shn′,n′′

M
(
C̃Tn′(f

′)⊗ C̃Tn′′(f
′′)
)
(w(s)) · Φw(s).

(5.23)

As f ′, f ′′ belong to the subalgebra SH, we can write them as

f ′ = ∗1n(ϕ′), f ′′ = ∗1n(ϕ′′)

for some ϕ′ ∈ C∞0 (Rn′
+ ), ϕ′′ ∈ C∞0 (Rn′′

+ ). By Proposition 5.14, we have

C̃Tn′(f
′) =

∑
w′∈Sn′

Mw′(ϕ
′),

and similarly for C̃Tn′(f
′). Substituting this to the LHS of the putative

equality (5.23), we find that it is equal to∑
w∈Sn

M(Mw(ϕ))
5.21
=

∑
w∈Sn

M(ϕ)(w(s)) · Φw(s), ϕ = ϕ′ ⊗ ϕ′′. (5.24)

On the other hand, writing s ∈ Cn as (s′, s′′) with s′ ∈ Cn′ , s′′ ∈ Cn′′ , we
have

M
(
C̃Tn′(f

′)⊗ C̃Tn′′(f
′′)
)
(s) = M(C̃Tn′(f

′))(s′) · M(C̃Tn′′(f
′′))(s′′),
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and so the summand in the RHS of (5.23) corresponding to w ∈ Shn′,n′′ , is
equal by Proposition 5.14, to Φw(s) times∑

w′∈Sn′
w′′∈Sn′′

M(ϕ′)(w′(s′)) · M(ϕ′′)(w′′(s′′)) · Φw′(s
′)Φw′′(s

′′) =

=
∑
w′∈Sn′
w′′∈Sn′′

Mw′×w′′(ϕ)((w′ × w′′)(s)) · Φw′×w′′(s),

and further summation over w gives the same result as (5.24).

6 Quadratic relations and Eisenstein series.

Let

S =
∞⊕
n=0

Sn, S0 = C,

be a graded associative algebra over C. The space of degree n relations
among elements of degree 1 is then

Rn = Ker{S⊗n1 −→ Sn} ⊂ S⊗n1 . (6.1)

Here we are interested in quadratic relations (n = 2) for the algebra SH
generated by SH1 = H1 = C∞0 (R+). Because of the analytic nature of
elements of H it is not reasonable to look for relations inside the algebraic
tensor product H1⊗H1 and we consider a completion of it, namely the space

H1⊗̂H1 := D(R2
+)abs

of absolutely tempered distributions on R2
+, see Corollary 3.9.

Proposition 6.2. If f ∈ H1⊗̂H1, then the series

∗̂1,1(f)(E) =
∑
E′⊂E

deg(E ′)1/2deg(E/E ′)−1/2f(deg(E ′), deg(E/E ′)), E ∈ Bun2,

converges absolutely, defining a distribution ∗̂1,1(f) on Bun2. The resulting
linear map ∗̂1,1 : H1⊗̂H1 → Dist(Bun2) extends the Hall mltiplication ∗1,1 :
H1 ⊗H1 → H2.
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Proof. The points (α, β) = (deg(E ′), deg(E/E ′)) lie on the hyperbola αβ =
deg(E). An absolutely tempered distribution decays exponentially at the
infinity of R2

+, in particular at the infinity of any such hyperbola. Now the
number of subbundles in E = (L, V, q) of given degree α = 1/a is one half
the number of primitive vectors in L of norm a. This number of all lattice
vectors of norm a grows linearly with a, so exponential decay of f ensures
the convergence.

Remark 6.3. It is possible that one can extendH to a bigger algebra, consist-
ing of some analogs of absolutely tempered distributions on the Bunn, which
have sufficient decay at the infinity. Note that the concept of a tempered
distribution on a semisimple Lie group was introduced by Harish-Chandra
[10].

We will therefore understand quadratic relations in SH is a wider sense,
as elements of the space

R̂2 = Ker(∗̂1,1) ⊂ H1⊗̂H1. (6.4)

Let also R2 be the space of entire functions F ∈ O(C2)pol such that

F (s1, s2) + Φ(s1 − s2)F (s2, s1) = 0. (6.5)

Proposition 6.6. The Mellin transform identifies R̂2 with R2.

Proof. This follows from an instance of Eq. (5.22) for m = n = 1 but ap-
plied to absolutely tempered distributions instead of functions with compact
support. The proof in the new case is the same, given the decay (to define
the Hall product) and the analyticity of the Mellin transform.

Note that R2 is a module over the ring O(C2)S2
pol of symmetric entire

functions of polynomial growth on vertical planes.

Example 6.7. Let P (s) = s(s− 1)(s+ 1). Then the function

F1,1(s1, s2) = P (s1 − s2)ζ∗(s1 − s2)

belongs to R2. Further, for any λ1, λ2 ∈ R+ the function

Fλ1,λ2(s1, s2) = (λs11 λ
s2
2 + λs21 λ

s1
2 )F1,1(s1, s2)
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again lies in R2 by the remark above. Let

∇a = P
(
a
d

da

)
= a3 d

3

da3
− a2 d

2

da2
.

The inverse Mellin transform of F1,1 is, in virtue of Proposition 3.10 and the
Riemann formula (3.13), equal to

Ψ1,1(a1, a2) = δ1(a1a2) · ∇a1θ(a
2
1) ∈ R̂2,

and the inverse Mellin transform of Fλ1,λ2 is the distribution

Ψλ1,λ2(a1, a2) = Ψ1,1(a1/λ1, a2/λ2) + Ψ1,1(a1/λ2, a2/λ1) ∈ R̂2.

This gives a 2-parameter family of quadratic relations in SH.

Remark 6.8. This 2-parameter family of relations is analogous to the family
of relations

[O(m+1)]∗[O(n)]−q[O(n)]∗[O(m+1)] = q[O(m)]∗[O(n+1)]−[O(n+1)]∗[O(m)]

in the Hall algebra of the category of vector bundles on P1
Fq , see [12] §5.2 or

[2], Lemma 16.

We now explain the relation of the above quadratic relations with the
functional equation for Eisenstein-Maas series

E(τ, s) =
1

2

∑
(m,n)=1

Im(τ)s

|m+ nτ |2s
, τ ∈ H, Re(s) > 1,

see [7], §3.1. It is classical that E(τ, s) extends to a function meromorphic in
the entire s-plane and satisfying the functional equation

E(τ, s) =
ζ∗(2s− 1)

ζ∗(2s)
E(τ, 1− s).

Further, the poles of E(τ, s) are all among the poles of the ratio of the ζ∗-
functions, in particular, they do not depend on τ .

On the other hand, recall (5.17) the function

E(t) : Bun1 → C, E 7−→ deg(E)t.

35



Here t ∈ C is a fixed complex number. This function does not lie in H1 =
C∞0 (R). Nevertheless, the correspondence t 7→ E(t) can be seen as a kind of
H-valued distribution (“operator field”) on C (or, rather, on iR ⊂ C). That
is, for any Paley-Wiener function G(t) we have a well defined element∫

iR
E(t)G(t)dt ∈ H1.

This simply the function E 7→ f(deg(E)−1), where f = N (G) ∈ C∞0 (R+).

Proposition 5.19(a) implies that for Re(t1 − t2) > 0 the Hall product
E(t1) ∗ E(t2) defined as a formal series, converges to a real analytic function
on Bun2. This function essentially reduces to the series E(τ, s) above. Indeed,
let Eτ be the bundle of rank 2 and degree 1 corresponding to τ as in Example
1.5. Rank 1 subbundles E ′ = E ′m,n in Eτ are parametrized by pairs (m,n) ∈
Z2 of coprime integers, taken modulo simultaneous change of sign. Explicitly,
the primitive sublattice L′m,n of E ′m,n is spanned by m+ nτ , and we have

deg(E ′m,n) =
Im(τ)1/2

|m+ nτ |
, deg(Eτ/E

′
m,n) =

|m+ nτ |
Im(τ)1/2

.

Therefore
(E(t1) ∗ E(t2))(Eτ ) = E(τ, (t1 − t2 + 1)/2). (6.9)

This means that the product E(t1)∗E(t2) extends to a meromorphic function
of t1, t2 (with values in the space of functions on Bun2) and we can write a
formula looking like “quadratic commutation relations” in H:

E(t1) ∗ E(t2) − Φ(t1 − t2)E(t2) ∗ E(t1) = 0. (6.10)

The two summands in (6.10) are given by series converging in different re-
gions, having no points in common, and the relations should be understood
via analytic continuation. This way of understanding commutation relations
is quite standard in the theory of vertex operators [6]. In our situation it is
modified as follows.

In order to translate the relations (6.10) into actual elements of R̂2, we
can rewrite them in the form “free of denominators”

∗1,1

{
P (t1− t2) · ζ∗(t1− t2 + 1) · at11 at22 − P (t1− t2) · ζ∗(t1− t2) · at21 at12

}
= 0.

(6.11)
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Here we write E(t1)⊗E(t2) as the function (a1, a2) 7→ at11 a
t2
2 on Bun1×Bun1 =

R2
+. We then “compare coefficients” in both sides of this equality at any

λt11 λ
t2
2 , λν ∈ R+, by multiplying with λ−t11 λ−t22 and integrating (performing

the inverse Fourier-Schwartz transform) along any vertical 2-plane, which we
can choose separately for each summand. This gives a family of distributions
Ψλ1,λ2(a1, a2) ∈ R̂2 which is the same as in Example 6.7.

We can thus say that quadratic relations such as (6.10) are built into the
very definition of the shuffle algebra.

7 Wheels, cubic relations, and zeta roots.

A. Wheels. Let λ(s) be a meromorphic function on C with a simple pole
at s = 0 and no other singularities. In this section we sketch a general
approach to higher order relations in the symmetric shuffle algebra SSH(λ)
and illustrate it on the case of cubic relations in the shuffle algebra completion
of the spherical Hall algebra SH, which corresponds to

λ(s) = Λ(s) = ζ∗(−s)(s− 1)(−s− 1).

Our approach is based on studying the following additive patterns of roots
of λ which were introduced in [4] and used in the case when λ is rational.

Definition 7.1. A wheel of length n for λ is a sequence (s1, ..., sn) of distinct
complex numbers such that

λ(s2 − s1) = 0, λ(s3 − s2) = 0, · · · , λ(sn − sn−1) = 0, λ(s1 − sn) = 0.

Wheels (s1, ..., sn) and (s1 + c, ..., sn + c) for c ∈ C, will be called equivalent.

In other words, equivalence classes of wheels are the same as ordered
sequences

(z1, ..., zn) ∈ (C∗)n, λ(zi) = 0,
n∑
i=1

zi = 0,

q∑
i=p

zi 6= 0, (p, q) 6= (1, n).

Example 7.2. All wheels for Λ(s) have length 3 or more. The sequences
corresponding to wheels of length 3 have, up to permutation, the form

(z1, z2, z3) = (ρ, 1− ρ,−1),
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where ρ runs over nontrivial zeroes of ζ(s). Indeed, zeroes of Λ are of the
form s = ρ together with one more zero s = −1. So there are no pairs of
them summing up to 0 and the only triples summing to up 0 are as stated.

B. Relations and bar-complexes. Let S be a graded associative algebra
as in §6. A systematic way of approaching relations in S is via the bar-
complexes

B•n = B•n(S) =

{
S⊗n1 → · · · →

⊕
i+j+k=n

Si⊗Sj⊗Sk →
⊕
i+j=n

Si⊗Sj → Sn

}
.

Here i, j, k, ... run over positive integers. The grading is such that S⊗n1 is in
degree (−n), while Sn is in degree (−1). The differential is given by

d(s1 ⊗ · · · sp) =

p−1∑
i=1

(−1)i−1s1 ⊗ ...⊗ si−1 ⊗ sisi+1 ⊗ si+2 ⊗ ...⊗ sp,

so that the condition d2 = 0 follows from the associativity of S. It is well
known that

H−i(B•n(S)) = TorSi (C,C)n,

the part of the Tor-group which has degree n w.r.t. the grading induced from
that on S. In particular, the rightmost cohomology has the meaning of the
space of generators in degree n, and the previous one is interpreted as the
space of relations which have degree n with respect to the grading on the
generators (which, a priori, can be present in any degree).

As in (6.1), let Rn be the space of degree n relations among generators in
degree 1. For instance, quadratic relations are found as R2 = H−2(B•2). The
next case of cubic relations corresponds to the complex

B•3 =
{
S1 ⊗ S1 ⊗ S1,

d−3−→ (S2 ⊗ S1)⊕ (S1 ⊗ S2)
d−2−→ S3

}
.

We treat this case directly. Denote

R12 = R2 ⊗ S1, R23 = S1 ⊗R2 ⊂ S1 ⊗ S1 ⊗ S1.

We have then an inclusion R12 + R23 ⊂ R3 of subspaces in S⊗3
1 . The left

hand side of this inclusion is, by definition, the space of those cubic relations
which follow algebraically from the quadratic ones. Thus the quotient

Rnew
3 = R3/(R12 +R23)

can be seen as the space of “new”, essentially cubic, relations.
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Proposition 7.3. Assume that the multiplication map S1 ⊗ S1 → S2 is
surjective. Then Rnew

3 is identified with H−2(B•3), the middle cohomology
space of B•3 .

Proof. Denote for short

V = S⊗3
1 , A = R12, B = R23, C = R3,

so that A,B ⊂ C ⊂ V . Under our assumption, the complex B•3 can be
written as

V
δ−3−→ (V/A)⊕ (V/B)

δ−2−→ V/C,

with δ−3 being the difference of the two projections, and δ−2 being the sum
of the two projections. It is a general fact that in such a situation the middle
cohomology is identified with C/(A + B). Explicitly, if (v + A,w + B) ∈
Ker(δ−2), then v + w ∈ C. The image of v + w in C/(A + B) depends only
on the class of (v+A,w+B) in Ker(δ−2)/ Im(δ−3). We leave the rest to the
reader.

C. Localization of the bar-complexes. We now apply the above to the
two graded algebras

SSH(λ) ⊂ S :=

(⊕
n

O(Cn)Sn , ?

)
.

By definition, these algebras coincide in degrees 0 and 1, and SSH(λ) is
the subalgebra in S generated by the degree 1 part which is S1 = O(C).
Accordingly, the space of relations of any degree n among degree 1 generators
in S and SSH(λ) are the same. As in §6, we will look at relations as elements
of the completed tensor product. That is, for any two Stein manifolds M
and N we write

O(M)⊗̂O(N) := O(M ×N)

and understand S⊗̂n1 = O(Cn) accordingly. The version of the bar-complex
of S using ⊗̂, has the form

B•n =

{
O(Cn)→ · · · →

⊕
i+j+k=n

O(Cn)Si×Sj×Sk →
⊕
i+j=n

O(Cn)Si×Sj → O(Cn)Sn
}

Notice that each term of this complex is a module over the ring O(Cn)Sn of
symmetric entire functions, and the differentials, coming from multiplication
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in S, are O(Cn)Sn-linear. This means that B•n is the complex of global
section of a complex of vector bundles B•n on the Stein manifold Symn(C).
Explicitly, for i1 + ...+ ip = n we denote by

πi1,...,ip : Symi1(C)× · · · Symip(C) −→ Symn(C)

the symmetrization map (a finite flat morphism). Then

B−pn =
⊕

i1+...+ip=n

(πi1,...,ip)∗ O∏
Symiν (C), (7.4)

in particular, B•n is a complex of holomorphic vector bundles on Symn(C).
This allows us to approach the cohomology of B•n (and, in particular, relations
in S) in a more geometric way, by studying the cohomology of the fibers

B•n,T = B•n ⊗OSymn(C) OT

of the complex B•n over various points T ∈ Symn(C). Now, our main technical
result is as follows.

Theorem 7.5. Let T = {s0
1, ..., s

0
n} ∈ Symn(C) be an unordered collection of

distinct points. Suppose that no subset of T (in any order) is a wheel. Then
B•n,T is exact everywhere except the leftmost term, where the cohomology is
1-dimensional.

Recall that similar exactness of all the bar-complexes B•n(S) for a graded
algebra S means that S is quadratic Koszul. The wheels represent therefore
local obstructions to Koszulity for S.

D. Cubic relations in SH and zeta roots. Before giving the proof of
Theorem 7.5, let us explain how to apply it to the case of cubic relations for
λ = Λ. Let ρ be a nontrivial zero of ζ(s). Denote by Wρ ⊂ Sym3(C) the
subset of points {s1, s2, s3} such that, after some renumbering of the si we
have s2 − s1 = ρ, s3 − s2 = 1 − ρ (such a renumbering is then unique). Let
W be the union of the Wρ over all nontrivial zeroes ρ of ζ(s). The following
is then straightforward.

Proposition 7.6. (a) Each Wρ is a complex submanifold in Sym3(C), iso-
morphic to C, the symmetric function s1+s2+s3 establishing an isomorphism.

(b) For ρ 6= ρ′ we have Wρ ∩Wρ′ = ∅.
(c) A point {s1, s2, s3} ∈ Sym3(C) lies in W , if and only if it is a wheel

(in some numbering).
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Theorem 7.7. Let λ(s) = Λ(s).
(a) The multiplication map S1⊗̂S1 → S2 is surjective, so, by Proposition

7.3, the space
H−2(B•3) = H0(Sym3(C), H−2(B•3))

is identified with the space of new cubic relations in S as well as in in
SSH(Λ).

(b) The support of the coherent sheaf H−2(B•3) is equal to W =
⊔
Wρ. If

ρ is a simple root of ζ(s), then H−2(B•3) ' OWρ in a neighborhood of Wρ.

Remark 7.8. From the point of view of this section, a cubic relation in SSH
is an entire function F (s1, s2, s3) ∈ O(C3) = S⊗̂3

1 mapped to the zero element
of S3 by the symmetric shuffle multiplication. On the other hand, from the
more immediate point of view of §6, a cubic relation in the spherical Hall
algebra SH is a distribution f(a1, a2, a3) on R3

+ = (Bun1)3, mapped to the
zero distribution on Bun3 by the Hall multiplication. The relation between
f and F is that of the Mellin transform. Note that whenever f(a1, a2, a3) is
a relation, then so is the rescaling f(αa1, αa2, αa3) for any α ∈ R+. Taking
a weighted average of such rescalings, i.e., a convolution∫ ∞

0

f(αa1, αa2, αa3)ϕ(α)d∗α

corresponds, on the Mellin transform side, to multiplying F (s1, s2, s3) by a
function of the form ψ(s1 + s2 + s3). Since s1 + s2 + s3 is a global coordinate
on each Wρ, Theorem 7.7 admits the following striking interpretation: the
space of new cubic relations in SH modulo rescaling is identified with the
space spanned by nontrivial zeroes of ζ(s).

This fact is also true (with a similar proof) for the Hall algebras corre-
sponding to arbitrary compactified arithmetic curves ( = spectra of rings of
integers in number fields) as well as (with an easier, more algebraic proof) for
Hall algebras of smooth projective curves X/Fq. Note that for X = P1 there
are no new cubic relations [12, 2], while for X elliptic, new cubic relations
were found in [25]. Our results show that presence of cubic relations is a
general phenomenon, holding for all curves X/Fq of genus > 1.

We will give a detailed proof of Theorem 7.5 and a sketch of proof of
Theorem 7.7, which will be taken up and generalized in a subsequent paper.
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E. Permuhohedra and the proof of Theorem 7.5. Our approach, sim-
ilar to that of [1, 19], uses the permutohedron, which is the convex polytope

Pn = Conv
(
Sn · (1, 2, ..., n)

)
⊂ Rn

of dimension (n − 1). Thus vertices of Pn are the n! vectors (i1, ..., in) for
all the permutations. It is well known that faces of Pn are in bijection with
sequences (I1, ..., Ip) of subsets of {1, ..., n} which form a disjoint decompo-
sition. We denote [I1, ..., Ip] the case corresponding to (I1, ..., Ip). Subfaces
of [I1, ..., Ip] correspond to sequences obtained by refining (I1, ..., Ip), i.e., by
replacing each Iν , in its turn, by a sequence (Jν,1, ..., Jν,qν ) of subsets of Iν
forming a disjoint decomposition. Thus, as a polytope,

[I1, ..., Ip] ' P|I1| × · × P|Ip|, dim[I1, ..., Ip] = n− p.

Let C•(Pn) be the cochain comlplex of Pn with complex coefficients. The
basis of Cm(Pn) is formed by the 1F , the characteristic functions of the m-
dimensional faces. We choose an orientation for each face. Then

d(1F ) =
∑
F ′⊃F

εFF ′ · 1F ′ .

Here the sum is over (m+ 1)-dimensional faces F ′ containing F , and εFF ′ =
±1 is the sign factor read from the orientations of F and F ′.

On the other hand, (7.4) gives a natural basis of Bn−1−m
n,T labeled by the

disjoint union of the preimages

π−1
i1,...,ip

({s0
1, ..., s

0
n}), i1 + · · · ip = n.

For a subset I ⊂ {1, ..., n} let TI = {s0
i |i ∈ I} ⊂ T . Elements of each

π−1
i1,...,ip

({s0
1, ..., s

0
n}) are precisely the

(TI1 , · · · , TIp) ∈ Symi1(C)× · · · × Symip(C)

for all sequences of subsets (I1, ..., Ip), forming a disjoint decomposition of
{1, ..., n}. Denoting by eI1,...,Ip the corresponding basis vector in Bn−1−m

n,T , we
get an isomorphism of graded vector spaces

B•n,T
∼−→ C•(Pn)[n], eI1,...,Ip 7→ 1[I1,...,Ip]. (7.9)
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To see the differential in B•n,T from this point of view, consider the matrix

L = ‖λij‖, λij = λ(s0
i − s0

j), 1 6 i, j 6 n, i 6= j.

Let F ⊂ F ′ be a codimension 1 embedding of faces of Pn. That is, F ′ =
[I1, ..., Ip] and F is a minimal refinement of F ′, i.e., is obtained by replacing
some Iν by (I ′, I ′′) where I ′, I ′′ are nonempty sets forming a disjoint decom-
position of Iν . We put

λFF ′ =
∏
i′∈I′
i′′∈I′′

λi′i′′ .

It is immediately so see that the λFF ′ satisfy the multiplicativity property
for any pair of composable codimension 1 embeddings:

λFF ′λF ′F ′′ = λFF ′ , F ⊂ F ′ ⊂ F ′′.

This implies that by putting

dL(1F ) =
∑
F ′⊃F

λFF ′ · εFF ′ · 1F ′ ,

we obtain a differential dL in C•(Pn,C) with square 0. This is a certain
perturbation of the cochain differential for Pn. We then see easily:

Proposition 7.10. The isomorphism (7.9) defines an isomorphism of com-
plexes

B•n,T −→
(
C•(Pn), dL

)
[n].

Note that the perturbed differential dL can be written for any system
L = ‖λij‖i 6=j of complex numbers. Conceptually, L is a C-valued function on
the root system of type An−1. We simply refer to L as a matrix.

By a wheel for L we mean a sequence of i1, ..., im of indices such that

λi1,i2 = λi2,i3 = · · · = λip−1,ip = λip,i1 = 0.

Theorem 7.5 is now a consequence of the following result.

Proposition 7.11. Let L = ‖λij‖i 6=j be an n by n matrix without wheels.
Then

(
C•(Pn), dL

)
is exact outside of the leftmost term, where the cohomology

(kernel) is 1-dimensional.
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Proof: For a face F = [I1, ..., Ip] of Pn we put

λF =
∏
µ<ν

∏
i∈Iµ
j∈Iν

λij. (7.12)

Then for an embedding F ⊂ F ′ of codimension 1 we have

λF = λF ′ · λFF ′ .

This means that we have a morphism of complexes

Ψ :
(
C•(P ), dL

)
−→

(
C•(P ), d

)
, Ψ(1F ) = λF · 1F ,

where d is the usual cochain differential. As Pn is a convex polytope,
(
C•(P ), d

)
is exact outside the leftmost term, with H0 = C. We now analyze the kernel
and cokernel of Ψ. For a face F of Pn as before we call the depth of P the
number of factors in (7.12) which are zero. In other words, we put

Z = {(i, j) : i 6= j, λij = 0} ⊂ {1, ..., n}2. (7.13)

Then the depth of F is the number

dpt(F ) = #
{

(i, j) ∈ Z : ∃µ < ν : i ∈ Iµ, j ∈ Iν
}
. (7.14)

Note that if F is a subface of F ′, then dpt(F ) > dpt(F ′). Therefore we have
a descending chain of polyhedral subcomplexes

P (r) =
⋃

dpt(F )>r

F ⊂ Pn, r > 0.

Lemma 7.15. (a) The complex Coker(Ψ) is isomorphic to the relative cochain
complex C•(Pn, P

(1)).
(b) The complex Ker(Ψ) has a filtration with quotients isomorphic to the

relative cochain complexes C•(P (r), P (r+1)), r > 1.

Proof: The matrix of Ψ is diagonal in the chosen bases, and Im(Ψ) ⊂ C•(Pn)
is spanned by the 1F , F ∈ P (1), which shows (a). As for (b), for each r > 0
we have the cochain subcomplex C•(Pn)>r ⊂ C•(P ) spanned by 1F with
dpt(F ) > r, with C•(Pn)>1 = Ker(Ψ). The quotient C•(Pn)>r/C•(Pn)>r+1

is identified with C•(P (r), P (r+1)) in a way similar to (a).
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Note that the weights of faces of Pn and the polyhedral subcomplexes
P (r) are defined entirely in terms of the subset Z in (7.13) which can be,
a priori, arbitrary. Now, absense of wheels in L (or, what is the same, in
Z) means that after an appropriate renumbering of {1, ..., n}, any (i, j) ∈ Z
satisfies i < j. Such renumbering does not change the combinatorial type of
any of the P (r). Proposition 7.11 is therefore a consequence of the following
purely combinatorial fact.

Proposition 7.16. Let Z ⊂ {(i, j)| 1 6 i < j 6 n} be any subset of pos-
itive roots for An−1. Then each polyhedral complex P (r) is either empty or
contractible.

Proof. For a permutation σ ∈ Sn let

O(σ) =
{

(i < j)| σ(i) < σ(j)
}

be the set of order preserving pairs of σ. Thus the weak Bruhat order on Sn

is given by
σ 6 τ iff O(τ) ⊆ O(σ).

Now, fir a face F ⊂ Pn we have

dpt(F ) = min
[σ]∈Vert(F )

|O(σ) ∩ Z|. (7.17)

Indeed, for F = [σ] a vertex this is precisely the definition (7.14), while for
F = [I1, ..., Ip] the minimum in the RHS of (7.17) is achieved for σ arranging
each Iν in the decreasing order and is equal to dpt(F ).

Let D = |Z|. Then for r > d we have P (r) = ∅, while for r 6 d we
have that P (r) contains at least the vertex [e] corresponding to the unit
permutation. Further, by (7.17), the set Vert(P (r)) ⊂ Sn is a “left order
ideal” with respect to the weak Bruhat order: with each τ , it contains all
σ 6 τ . This implies that P (r) contracts onto [e].

This finishes the proof of Theorem 7.5.

F. Proof of Theorem 7.7 (sketch). (a) It is enough to prove that the
map of the fibers B−2

2,T → B
−1
2,T over any T = {s0

1, s
0
2} ∈ Sym2(C) is surjective.

If s0
1 6= s0

2, it follows from Theorem 7.5, as there are no wheels of length
2. Assume now that s0

1 = s0
2 = s0. The fiber of p1,1∗OC2 at {s0, s0} is then
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O(C)/m2
s0 , the space of first jets of sections of OC at s0. Since Λ(s) has a first

order pole at 0 with residue 1, for any analytic function f(s1, s2) we have

lim
s1,s2→s0

(?̂1,1F )(s1, s2) =
1

2

d

dt

∣∣∣∣
t=0

F (s0 + t, s0 − t).

This implies that the subspace ms0/m
2
s0

of jets vanishing at s, will map sur-
jectively onto the fiber of OSym2(C) at {s0, s0}.

(b) For T = {s1, s2, s3} ∈ Sym3(C) let CT be the skyscraper sheaf at T .
We have a spectral sequence

Eij
2 = Tor

Sym3(C)
i (Hj(B•3),CT ) =⇒ Hj−i(B•3,T ). (7.18)

We analyze it backwards, using the information about the abutment to say
something about E2 and then about the Hj(B•3). Some parts of this anal-
ysis involve straightforward computations which we omit, highlighting the
conceptual points only.

First, let ∆ ⊂ Sym3(C) be the locus of T such that si = sj for some
i 6= j. Note that W ∩∆ = ∅. Theorem 7.5 implies that for T /∈ W ∪∆ the
abutment of (7.18) is zero for j− i > −3 and this implies that both H−2 and
H−1 of B•3 are zero outside W ∪∆.

Next, B−1
3 = OSym3(C), so d−2(B−1

3 ) is a sheaf of ideals there and therefore

H−1(B•3) is the structure sheaf of an analytic subspace W ⊂ Sym3(C). By
the above the support of W is contained in W ∪∆.

Next, we analyze (7.18) in the case when T ∈ W . The permutohedron
P3 is a hexagon, so for T /∈ ∆ the complex B•3,T is, by Proposition 7.10,
the perturbed cochain complex of this hexagon corresponding to the matrix
L = ‖λij‖ = ‖Λ(si − sj)‖. If T ∈ W , then, after renumbering, we have
λ12 = λ23 = λ31 = 0, while other λij 6= 0. ¿From this it is an elementary
computation to find the dimensions of the cohomology spaces of B•3,T to be

h−3 = 3, h−2 = 3, h−1 = 1.

This, shows that W contains W . Further, let ρ be a nontnrivial zero of ζ(s)
of multiplicity ν and Wρ be the part of W supported on Wρ. We can then
analyze the last map in complex B•3 near T = {ρ+ c, 1− ρ+ c,−1 + c} ∈ Wρ

directly, using the family of perturbed differentials dL : C1(P3) → C2(P3)
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with L = ‖Λ(si − sj)‖ depending on {s1, s2, s3} near Wρ. This is again
an elementary computation which yields that Wρ is isomorphic to the νth
infinitesimal neighborhood of Wρ in an embedded surface. In particular, if ρ
is a simple root, then Wρ = Wρ as an analytic subspace.

This means that W = H−1(B•3) is given locally in Sym3(C) − ∆ by two

equations and so dim Tor
Sym3(C)
1 (H−1(B•3),CT ) = 2 for any T ∈ W . From the

equality h−2(B•3,T ) = 3 and the spectral sequence (7.18) we then conclude

that dim(H−2(B•3) ⊗ CT ) = 1, and so W ⊂ supp(H−2(B•3)). The statement
that H−2(B•3) = OWρ near Wρ for a simple root ρ, uses an additional local
calculation which we omit. We also omit the analysis of the case T ∈ ∆
which shows that the support of H−2(B•3) does not meet ∆.
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