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Abstract

In an earlier paper we proved Jacquet-Mao’s metaplectic fundamental
lemma which is the identity between two orbital integrals (one is defined
on the space of symmetric matrices and another one is defined on the 2-fold
cover of the general linear group) corrected by a transfer factor. But we re-
stricted to the case where the relevant representative is a diagonal matrix.
Now, we show that we can extend this result for the more general relevant
representative. Our proof is based on the concept of Shalika germs for certain
Kloosterman integrals.

1 Introduction

This article extends the result of the author for Jacquet-Mao’s metaplectic funda-
mental lemma in [2] (which is announced in [1]) and in [3]. To state the results, we
introduce some notations.

Let F be a non-archimedean local field, O its valuation ring, and k its residue
field. Let p be the characteristic of k ((p, 2) = 1) and q be the cardinality of k. We
choose once for all a uniformizing element $ ∈ O (i.e a generator of the maximal
ideal of O). We write v for the valuation of F and |.| for the norm, normalised such
that |x| = q−v(x).

Let Br be the standard Borel subgroup of GLr (the subgroup of invertible upper
triangular matrices) with unipotent radical Nr, and let Tr be a maximal split torus
contained in Br. Let Sr be the variety {g ∈ GLr|tg = g} and Wr be the Weyl group
of Tr.

Let ψ : k → C∗ be a non-trivial additive character. We define an additive
character on Ψ : F → C∗ of F : Ψ(x) = ψ(resxd$), and a character θ : Nr(F )→ C∗
of Nr(F ) : θ(n) = Ψ

(
1
2

∑r
i=2 ni−1,i

)
.
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The local metaplectic cover G̃Lr(F ) of GLr(F ) is an extension of GL(F ) by

{±1} (cf. [8]). We can write the elements of G̃Lr(F ) in the form g̃ = (g, z), with
g ∈ GLr(F ) and z ∈ {±1} and the group multiplication is defined by

(g, z)(g, z′) = (gg′, χ(g, g′)zz′),

where χ is a certain cocycle (cf. loc.cit. for the definition of χ). This cover splits
(canonically) over Nr(F ) (the splitting σ over Nr(F ) is simply defined by σ(n) =
(n, 1)); it splits also over GLr(O). The splitting κ∗ over GLr(O) is defined by
κ∗(g) = (g, κ(g)). We denote by GL∗r(O) the image of GLr(O) via the splitting κ∗.

We say a function f on G̃Lr(F ) is genuine if it satisfies f(g, z) = f(g, 1).z.
The group Nr acts on Sr by n.s = tnsn and Nr ×Nr acts on GLr by (n, n′).g =

n−1gn. We say an orbit Nrs (resp. (Nr × Nr)g) is relevant if the restriction of θ2

(resp. (n, n′) 7→ θ(n−1n′)) on the stabilizer (Nr)s (resp. (Nr × Nr)g) of s (resp. of
g) is trivial. The relevant orbits Nrs have the representative of the form wt (where
w is the longest Weyl element of a standard parabolic subgroup in GLr and t lies in
the center of the corresponding Levi subgroup [9, Theorem 1]). The relevant orbits
(Nr×Nr)g have the representative of the form wGLrwt with w, t being as above and
wGLr = antdiag(1, . . . , 1) being the longest Weyl element of GLr. So we have then
a bijection between the sets of relevant orbits.

More precisely, the element wt can be described as follows. Let M be the stan-
dard Levi-subgroup of GLr of type (r1, . . . , rm), i.e M is the group of matrices of
the form diag(gi) with gi ∈ GLri . Let wM = diag(wGLri

). Let TM be the group
of matrices of the form diag(aiIdri) with Idri is the identity matrix and ai ∈ F ∗ -
the center of M . Then any element of the form wMt with t ∈ TM is relevant. All
relevant elements are obtained in this way. We denote by WR

r the set of relevant
elements in Wr. If w ∈ WR

r then the unique M such that w = wM is denoted by Mw.
We also write Tw for TM . For instance, if w = Idr then MIdr = GLr and TIdr = Tr.
The stabilizer of t ∈ Tr(F ) (resp. wGLrt) in Nr (resp. Nr × Nr) is trivial. In this
sense the diagonal matrices are representatives of the largest orbits.

We denote by C∞c (Sr(F )) (resp. C∞c (G̃Lr(F ))) the space of the smooth function

of compact support on Sr(F ) (resp. on G̃Lr(F )). Let φ be a function in C∞c (Sr(F ))

and f be a genuine function in C∞c (G̃Lr(F )) . For each wt as above, we consider
the orbital integrals of the form :

I(wt, φ) =

∫
Nr/(Nr)wt

φ(tnwtn)θ2(n)dn

and

J(wt, f) =

∫
Nr×Nr/(Nr×Nr)wGLr

wt

f(σ(n)−1(wGLrwt, 1)σ(n′))θ(n−1n′)dndn′.

Our main result is
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Theorem 1.1. Suppose that a function φ ∈ C∞c (Sr(F )) and a genuine function

f ∈ C∞c (G̃Lr(F )) satisfy the following identity

J(Idrt, f) = ∆r(t)I(Idrt, φ)

with ∆(t) is an explicit function for all t ∈ Tr(F ). Then for all w ∈ WR
r and

all t ∈ Tw(F ) there exists ∆w(t) (an explicit function calculated with the help of
∆i, 1 ≤ i ≤ r) such that J(wt, f) = ∆w(t)I(wt, φ).

If the first relation holds, we say that φ and f are matching. It is conjectured
that there is a matching relation between a Hecke function of S(F ) and of G̃Lr(F )
(fundamental lemma). Our theorem asserts that the matching relation for smaller
orbits, i.e w 6= Idr is determined by the matching relation of the largest orbits. In
the case when

f = f0((g, z)) =

{
κ(g)z, g ∈ GLr(O),

0, g 6∈ GLr(O),
φ = φ0(g) =

{
1, g ∈ GLr(O) ∩ Sr(F ),

0, g 6∈ GLr(O) ∩ Sr(F ),

the fundamental lemma has been proven for r = 2 by Jacquet ([4, 5]) and r = 3 by
Mao ([9]) and, in the case of positive characteristic, for any r by author ([2]) and
then, in the general case (with the residual characteristic large enough) by author
([3]).

The integral J above is in fact a Kloosterman integral which is considered in
[6, 7] (see. §2). So we have the following density theorem for Kloosterman integral:

Theorem 1.2 (cf. [7]). If the diagonal orbital integral J(t, f) of a function f ∈
C∞c (G̃Lr(F )) vanishes for all t ∈ Tr(F ), then all the orbital integrals J(wt, f) with
w ∈ WR

r and t ∈ Tw(F ) of f vanish.

Combining the theorem 1.1 and the theorem 1.2, we obtain the density theorem
for the orbital integral I (a Kloosterman integral for symmetric matrices):

Theorem 1.3. If the diagonal orbital integrals I(t, φ) of a function φ ∈ C∞c (Sr(F ))
vanishes for all t ∈ Tr(F ), then all the orbital integrals I(wt, φ) with w ∈ WR

r and
t ∈ Tw(F ) of φ vanish.

We now state the organization of this manuscript. The main tool we use to prove
the main theorem (Theorem 1.1) is Shalika germs which describe the asymptotic
behavior of the orbital integrals. In Section 2 (resp. 3) we recall this asymptotic
behavior of the integral J (resp. the integral I) and do some calculation for the
germ functions. The main theorem is proved by induction in Section 4. In this
section, we introduce some intermediate integrals which are designed to use inductive
argument. The germ relations are used to handle the cases when we can not use
these intermediate integrals.

The proof of the main theorem closely follows the guidelines of [7]. Most of this
work is written during my visit at MPIM. I thank the MPIM for a very pleasant
and productive visit.
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2 Computation of the germ on J side

For a convenience, we shall rewrite the orbital integral J . Suppose that w ∈ WR
r .

Then let Pw = MwNw be the standard parabolic subgroup which has Levi factor
Mw. Let Vw = Nr ∩Mw. We have

(Nr ×Nr)wGLrwt
= Nw

r := {(n1, n2)|wGLrn
−1
1 wGLrwn2 = w}

for all t ∈ Tw. Furthermore, if (n1, n2) ∈ Nw
r then n2,

tn
wGLr
1 := t(wGLrn1wGLr) ∈ Vw

and n2 = wn
wGLr
1 w. It implies that any point of the orbit of wGLrwt under the

action of Nr ×Nr can be uniquely written in the following form

wGLr

tu1wavu2

with ui ∈ Nw(F ) and v ∈ Vw(F ). Thus

J(wt, f) =

∫
Nw(F )×Nw(F )×Vw(F )

f((wGLr

tu1wavu2, 1))θ(u1u2v)du1dvdu2.

Denote by f ′ the function g 7→ f((wGLrg, 1)), ∀g ∈ GLr, then f ′ ∈ C∞c (GLr(f)). The
integral J is then the orbital Kloosterman integral Kloos(wt; f ′) which is considered
in [6](in loc. cit., it is denoted by I(wt; f ′)). This integral converges and defines a
smooth function on Tw(F ).

We let M be the standard Levi-subgroup of type (r − 1, 1). The corresponding
element wM is

( wGLr−1
0

0 1

)
. We denote by T

wGLr
wM the set of matrices t ∈ TwM

(F ) such

that det(t) = det(wM) det(wGLr). There exists a smooth function K
wGLr
wM on T

wGLr
wM

(cf. [6, 7]) with the following property: for any f ∈ C∞c (GLr(F )) there is a smooth
function of compact support ωf on TM such that

J(wMt, f) = ωf (t) +
∑
αβ=t

KwGLr
wM

(α)J(wGLrβ, f). (2.1)

Here, we still denote by f the genuine function in C∞c (G̃Lr(F )) defined by (g, z) 7→
zf(g) with f ∈ C∞c (GLr(F )). The sum is over all pairs in

{(α, β) ∈ (TwGLr
wM

, TGLr(F )) |αβ = t}.
The function K

wGLr
wM is the germ (for the side J) along the subset T

wGLr
wM . It is not

unique.
Let

J(a, r) := vol($mO)−1

∫
Ψ

[
x1 + x2 + · · ·+ xr

2a

]
⊗ dxi

The integral is over the subset of F r defined by:

xi ≡ mod $mO,
r∏
i=1

xi ≡ 1 mod a$mO.

Due to Jacquet [7], we have the following formula for the germ K
wGLr
wM .
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Proposition 2.1 ([7, Proposition 3.1]). Set

α = diag(a, . . . , a, a1−r det(wMwGLr)).

Then, for |a| sufficiently small,

KwGLr
wM

(α) = |a|−1−n(n−1)
2 J(a, r).

3 Computation of the germ on I side

As the previous section, we let M be the standard Levi-subgroup of type (r− 1, 1).
The discussion of [6, §2] applies to our situation where GLr(F ) is replaced by Sr(F )
and the group Nr × Nr (Nr × Nr acts on GLr by g 7→ tngn′) by the group Nr(F )
acting on Sr(F ). So, as before, there exists a smooth function L

wGLr
wM on T

wGLr
wM

with the following property: for any φ ∈ C∞c (Sr(F )) there is a smooth function of
compact support ωφ such that

I(wMt, φ) = ωφ(t) +
∑
αβ=t

LwGLr
wM

(α)I(wGLrβ, φ).

The sum is over all pairs in {(α, β) ∈ (T
wGLr
wM , TGLr(F )) |αβ = t}. The function

L
wGLr
wM is the germ (for the side I) along the subset T

wGLr
wM . It is not unique.

Let t = diag(a, . . . , a, a1−r det(wMwGLr)). Since ωφ is a smooth function of com-
pact support, we can choose |a| small enough such that ωφ(t) = 0. We consider the
pair (α, β) ∈ (T

wGLr
wM , TGLr(F )) such that αβ = t. Since det(α) = det(wMwGLr) =

det(t) (by definition), we have det(β) = 1. Moreover, β = diag(z, z, . . . , z) with
zr = 1.

We denote by [x] the integral part of a real number x. Let Km := Idr+$mglr(O)
be the principal congruence subgroup of GLr(F ). We let φ be a characteristic
function of wGLrKm ∩ Sr(F ) and the scalar

c1(r) := vol($mO)
−
[
r2

4

]
.

We have then the following lemma

Lemma 3.1. Let β = diag(z, z, . . . , z) with zr = 1 and φ as above. For m large
enough, we have then

I(wGLrβ, φ) =

{
1, if z = 1,

0, otherwise.
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Proof. Firstly, we calculate the integral I(wGLr , φ). This integral can be written as
follows

I(wGLr , φ) =

∫
φ(x)Ψ

(∑
i+j=r+2 xi,j

2

)
⊗ dxi,j

where x is a symmetric matrix such that

xi,j =

{
0, if i+ j < r + 1,

1, if i+ j = r + 1.

The variables are the entries xi,j ∈ F with i + j ≥ r + 2, i < j, the entries xi,i ∈ F
with 2i ≥ r + 2.

The number of entries xi,j with i+ j ≥ r+ 2 is r(r−1)
2

. The number of entries xi,i
with 2i ≥ r+ 2 is r−

[
r+3

2

]
+ 1 =

[
r
2

]
. So the number of variables of above integral

is
r(r−1)

2
−[ r2 ]

2
+
[
r
2

]
=
[
r2

4

]
.

Now we take φ be a product of the characteristic function of wGLrKm and the
scalar c1(r), this integral is equal to

c1(r)

∫
Ψ

(∑
i+j=r+2 xi,j

2

)
⊗ dxi,j

integrated over the domain:

xi,j ≡ 1 mod $mO for i+ j = r + 2,

xi,j ≡ 0 mod $mO for i+ j > r + 2.

Moreover, since Ψ is of order 0, we have Ψ

(∑
xi,j

2

)
= 1. It implies that

∫
Ψ

(∑
i+j=r+2 xi,j

2

)
⊗ dxi,j = vol($mO)

[
r2

4

]
= c1(r)−1.

In consequence, the first assertion is proved.
Choosing m large enough such that z 6∈ 1 + $mO for all z which satisfy zr = 1

and z 6= 1. We have then tnwGLrn 6∈ wGLrKm,∀n ∈ Nr(F ). It follows the second
assertion.

As a consequence, we obtain that

LwGLr
wM

(α) = I(wMα, φ),

where
α = diag(a, . . . , a, a1−r det(wMwGLr)),
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and |a| is small enough.
We can write the orbital integral I(wMα, φ) as follows

I(wMα, φ) =

∫
φ(g′)Ψ

(∑
i+j=r+1 xi,j

2

)
⊗ dxi,j, (3.1)

where

g′i,j =


0, if i+ j < r,

a, if i+ j = r,

axi,j, if i+ j ≥ r + 1,

and xi,j = xj,i, if i + j ≥ r + 1. The variables are the entries xi,j ∈ F with
i + j ≥ r + 1, i < j, the entries xi,i ∈ F with 2i ≥ r + 1, except the entry Z = xr,r
which is a dependent variable. The entry Z can be computed from the condition
that det(g′) = det(wGLr).

Denote by c2(r) the number of variables of above integral. We have then

c2(r) =

[
r2 + 2r − 3

4

]
.

After a change of variables, (3.1) can be written as

I(wMα, φ) = |a|−c2(r)

∫
φ(g)Ψ

(∑r
i=1 xi,r+1−i

2a

)
⊗ dxi,j (3.2)

where

gi,j =


0, if i+ j < r,

a, if i+ j = r,

xi,j, if i+ j ≥ r + 1,

and xi,j = xj,i, if i+ j ≥ r + 1. The entry xr,r is defined by

ar−1 det(wM)xr,r + det



0 · · · 0 a x1,r

... . .
.

. .
.

. .
. ...

0 . .
.

. .
.

xr−2,r−1 xr−2,r

a . .
.
xr−1,r−2 xr−1,r−1 xr−1,r

xr,1 . . . xr,r−2 xr,r−1 0


= det(wGLr).

Let I be an subset of {(i, j)|1 ≤ i ≤ j ≤ r}. We denote by gI the matrix
obtained from g by replacing the entries gi,j and gj,i by 0 with (i, j) ∈ I. For the
instance, the above condition of xr,r can be written as follows

ar−1 det(wM)xr,r + det(g(r,r)) = det(wGLr).
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Since φ is a product of the characteristic function of wGLrKm and the scalar
c1(r), the above integral is equal to

|a|−c2(r)c1(r)

∫
Ψ

(∑r
i=1 xi,r+1−i

2a

)
⊗ dxi,j

integrated over the set:

xi,j ≡ 1 mod $mO for i+ j = r + 1,

xi,j ≡ 0 mod $mO for i+ j > r + 1, j > i, (i, j) 6= (r, r),

xr,r ≡ 0 mod $mO.

The last condition can be written as follows

det(g(r,r)) ≡ det(wGLr) mod ar−1$mO.

By single out the entries x2,r = xr,2 from the left hand side, we have:

2x2,rau+ x2
2,ra

2v + det(g(r,r),(2,r)) ≡ det(wGLr) mod ar−1$mO,

where u, v ∈ 1 + $mO. Both u and v depend only on the variables xi,j with
(i, j) 6= (2, r).

We denote T := det(g(r,r),(2,r))− det(wGLr). Since x2,r ≡ 0 mod $mO, we have
T ≡ 0 mod a$mO. We have then u− vT ∈ 1 +$mO. It implies that u− vT has a
square root in F for m large enough. We shall denote its square root by

√
u− vT .

Moreover
√
u− vT ∈ 1 +$mO. The last condition can be read

a2v

(
x2,r −

−u−
√
u− vT

av

)(
x2,r −

−u+
√
u− vT

av

)
≡ 0 mod ar−1$mO.

For |a| small enough (i.e the valuation of a large enough), from the definition of

u, v and T , we have −u−
√
u−vT

av
∈ a−1$mO and −u+

√
u−vT

av
∈ −2a−1 +a−1$mO. Thus

above condition is equivalent to

x2,r ≡
−u−

√
u− vT

av
mod ar−2$mO.

Using this condition, we can integrate the variable x2,r away from the orbital
integral I to obtain the scalar factor |a|r−2vol($mO) multiple with a new integral.
The new integral has the same form of the old one but the domain of integration is
defined by:

xi,j ≡ 1 mod $mO for i+ j = r + 1,

xi,j ≡ 0 mod $mO for i+ j > r + 1, (i, j) 6= (r, r), (2, r)

T ≡ 0 mod a$mO.
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The determinant of g(r,r),(2,r) has the form∏
i+j=r+1

xi,j det(wG) + az

with z ∈ $mO. Thus the condition on T can read∏
i+j=r+1

xi,j ≡ 1 mod a$mO.

Now, we integrate over the variables xi,j with i + j > r + 1, j > i, (i, j) 6=
(r, r), (2, r) and we get

I(wMα, φ) = |a|r−2−c2(r)c1(r)vol($mO)c2(r)−[ r+1
2 ]+1I(a, r),

where the function I(a, r) is defined as follows.
If r = 2`, then

I(a, r) := vol($mO)−1

∫
Ψ

(
x1 + x2 + · · ·+ x`

a

)
⊗ dxi. (3.3)

The domain of integration is defined by

xi ≡ 1 mod $mO
x2

1x
2
2 . . . x

2
` ≡ 1 mod a$mO.

If r = 2`+ 1, then

I(a, r) := vol($mO)−1

∫
Ψ

(
2x1 + 2x2 + · · ·+ 2x` + x`+1

2a

)
⊗ dxi. (3.4)

The domain of integration is defined by

xi ≡ 1 mod $mO
x2

1x
2
2 . . . x

2
`x`+1 ≡ 1 mod a$mO.

We denote by γ(a,Ψ) the Weil constant, which is defined by the formula∫
Φ∨(x)Ψ

(
1

2
ax2

)
dx = |a|−1/2γ(a,Ψ)

∫
Φ(x)Ψ

(
−1

2
a−1x2

)
dx,

where Ψ : F → C∗ is an additive character, Φ is a Schwartz function over F and Φ∨

is its Fourier transform (Φ∨(x) =
∫

Φ(y)Ψ(xy)dy). We have:

9



Proposition 3.2. Suppose that the residual characteristic of F is larger than 2r+1.
Then, if m is large enough:

I(a, r) = |a|
[ r2 ]
2 γ(a−1,Ψ)−[ r2 ]J(a, r),

for |a| sufficiently small.

Proof. Firstly, we consider the case r = 2`+ 1. We change variables

x`+1 =

(∏̀
i=1

x−2
i

)
t

with t ∈ 1 + a$mO and integrate over t. We obtain

I(a, 2`+ 1) = |a|
∫

Ψ

(
δ

2a

)
⊗ dxi,

where the function

δ =
∑̀
i=1

2xi +
1∏`
i=1 x

2
i

.

We set xi = 1 + ui with ui ∈ $mO. This function can be written as

δ = 2`+
∑̀
i=1

2ui +
∏̀
i=1

1

1 + 2ui + u2
i

.

Now we consider the Taylor expansion of this function at the origin. It has the form:

r + 3
∑̀
i=1

u2
i + 4

∑
1≤i<j≤`

uiuj + higher digree terms.

Since the quadratic form

3
∑̀
i=1

X2
i + 4

∑
1≤i<j≤`

XiXj

is equivalent to the quadratic form

∑̀
i=1

2i+ 1

2i− 1
Y 2
i

10



by a unipotent transformation (see. [7, Lemma 5.1]), after a unimodular change
variables, this Taylor expansion may be written in the form:

δ = r +
∑̀
i=1

2i+ 1

2i− 1
x2
i + higher degree terms.

We can choose m large enough such that the origin is the only critical point in
the domain of integration. Using the principle of stationary phase, there exists a
neighbourhood 0 ∈ Ω in F such that for |a| small enough I(a, r) is the product of
the factors:

|a|Ψ
( r

2a

)
,∫

Ω

Ψ

(
2i+ 1

2(2i− 1)a
x2
i

)
dxi =

∣∣∣∣ 2i+ 1

(2i− 1)a

∣∣∣∣−1/2

γ

(
2i+ 1

(2i− 1)a
,Ψ

)
.

Using the property of Weil constant, we have:

γ

(
2i+ 1

(2i− 1)a
,Ψ

)
= γ

(
2i+ 1

2i− 1
,Ψ

)
γ(a−1,Ψ)

(
2i+ 1

2i− 1
, a−1

)
.

Since the residual characteristic of F larger than 2r + 1, we have 2i+1
2i−1

∈ O∗. So
above equation simplifies to

γ

(
2i+ 1

(2i− 1)a
,Ψ

)
= γ(a−1,Ψ)

(
2i+ 1

2i− 1
, a−1

)
.

In consequence, we have:

I(a, 2`+ 1) = |a|
`
2

+1Ψ

(
2`+ 1

2a

)
(2`+ 1, a−1)γ(a−1,Ψ)`.

For the case r = 2`. We set

x` = t

(
`−1∏
i=1

xi

)−1

.

Since
∏`

i=1 x
2
i ≡ 1 mod a$mO, we have t2 ≡ 1 mod a$mO. For m large enough

and |a| small enough, this condition is equivalent to t ≡ ±1 mod a$mO. Moreover
t =

∏`
i=1 xi ≡ 1 mod $mO, so t ≡ 1 mod $mO. We now integrate over t to get

I(a, 2`) = |a|
∫

Ψ

(
δ

a

)
⊗ dxi,
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where the function

δ =
`−1∑
i=1

xi +
1∏`−1
i=1 xi

.

Using the proof of [7, Proposition 2.1], we have:

I(a, 2`) = |a|
`+1
2 Ψ

(
`

a

)
(`, a−1)γ(a−1,Ψ)`−1.

In summary, we get

I(a, r) = |a|
[ r−1

2 ]
2

+1Ψ
( r

2a

)
(r, a−1)(1/2, a−1)r−1γ

(
a−1,Ψ

)[ r−1
2 ]

. (3.5)

In the other hand, reusing the proof of [7, Proposition 2.1], we have:

J(a, r) = |a|
r+1
2 Ψ

( r
2a

)( r

2r−1
, a−1

)
γ
(
a−1,Ψ

)r−1
. (3.6)

Comparing (3.5) and (3.6) we obtain the proposition.

Resuming the argument above, we obtain the following proposition:

Proposition 3.3. For

α = diag(a, a, . . . , a1−r det(wM) det(wGLr)

and |a| is small enough,

LwGLr
wM

(α) = |a|r−2−
[
r2+2r−3

4

]
+ 1

2 [ r2 ]γ(a−1,Ψ)−[ r2 ]J(a, r).

In particular,

LwGLr
wM

(α) = |a|
[
r2

4

]
+ 1

2 [ r2 ]γ(a−1,Ψ)−[ r2 ]KwGLr
wM

(α).

Note that to simplify the formula, we used the following identities:[
r2 + 2r − 3

4

]
−
[
r + 1

2

]
−
[
r2

4

]
= −1

and
r(r − 1)

2
+ 1 + (r − 2)−

[
r2 + 2r − 3

4

]
=

[
r2

4

]
.

The second relation follows from the first and the Proposition 2.1.
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4 Proof of the main theorem

We shall prove the Theorem 1.1 by induction on r. It is trivial when r = 1. We
suppose that it is true for 1 ≤ r′ < r.

Firstly we consider WR
r 3 w 6= wGLr . We have then that the relevant element

wt has the following form

wt =

(
w1t1 0

0 w2t2

)
with witi is the relevant element of GLri . For a convenience, we shall introduce
some intermediate orbital integrals.

On the side J , for a function f ∈ C∞c (GLr1+r2(F )) we define the intermediate
integral

Jr1r2

[(
g1

g2

)
, f

]
:=

∫
f

[
wGLr1+r2

(
Idr1
tX Idr2

)(
wGLr1

g1

wGLr2
g2

)(
Idr1 Y

Idr2

)]
×

× θ
[(

Idr1 X + Y
Idr2

)]
dXdY

=

∫
f

[
wGLr1+r2

(
Ar1 Ar1Y

tXAr1
tXAr1Y +Br2

)]
θ

[(
Idr1 X + Y

Idr2

)]
dXdY

where Ar1 := wGLr1
g1 ∈ GLr1(F ), Br2 := wGLr2

g2 ∈ GLr2(F ) and the domain of
integration is Mr1×r2(F )- the set of matrices of size r1 × r2.

Fixing f ∈ C∞c (GLr1+r2(F )), the function Jr1r2(g1, g2) := Jr1r2

[(
g1

g2

)
, f

]
is a

smooth function of support compact on GLr1(F )×GLr2(F ).
Associated with the action of (Nr1 × Nr1) × (Nr2 × Nr2) on GLr1 × GLr2 we

consider the double orbital integral

J(w1t1, w2t2; Jr1r2)

:=

∫
Jr1r2(n

−1
1 wGLr1

w1t1n
′
1, n

−1
2 wGLr2

w2t2n
′
2)θ(n1n

′
1)dn1dn

′
1θ(n2n

′
2)dn2dn

′
2,

where the (ni, n
′
i) is integrated over Nri ×Nri divided by the stabilizer of wGLri

witi.
We have then

J

((
w1t1

w2t2

)
, f

)
= J(w1t1, w2t2; Jr1r2) (4.1)

We can also define the partial orbital integrals J1(w1t1, g2; Jr1r2) and J2(g1, w2t2; Jr1r2).
For example

J1(w1t1, g2; Jr1r2) :=

∫
Jr1r2(n

−1
1 wGLr1

w1t1n
′
1, g2)θ(n1n

′
1)dn1dn

′
1,
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where the (n1, n
′
1) is integrated over Nr1×Nr1 divided by the stabilizer of wGLr1

w1t1.
If we fix w1t1, this integral defines a smooth function of compact support on GLr2(F ).
Moreover, we have:

J(w1t1, w2t2; Jr1r2) = J(w2t2, J1(w1t1, •; Jr1r2))

and
J(w1t1, w2t2; Jr1r2) = J(w1t1, J2(•, w2t2; Jr1r2)).

On the side I, for a function φ ∈ C∞c (GLr1+r2(F )) we define the intermediate
integral

Ir1r2

[(
g1

g2

)
, f

]
:=

∫
φ

[(
Idr1
tX Idr2

)(
g1

g2

)(
Idr1 X

Idr2

)]
θ

[(
Idr1 2X

Idr2

)]
dXdY

=

∫
f

[(
g1 g1X

tXg1
tXg1X + g2

)]
θ

[(
Idr1 2X

Idr2

)]
dXdY

where gi ∈ GLri(F ) and the domain of integration is Mr1×r2(F )- the set of matrices
of size r1 × r2.

Fixing f ∈ C∞c (GLr1+r2(F )), the function Ir1r2(g1, g2) := Ir1r2

[(
g1

g2

)
, f

]
is a

smooth function of support compact on GLr1(F )×GLr2(F ).
Associated with the action of Nr1 ×Nr2 on GLr1 ×GLr2 we consider the double

orbital integral

I(w1t1, w2t2; Ir1r2) :=

∫
Ir1r2(

tn1w1t1n1,
tn2w2t2n2)θr1(n1)dn1θr2(n2)dn2,

where the ni is integrated over Nri divided by the stabilizer of witi. We have then

I

((
w1t1

w2t2

)
, φ

)
= I(w1t1, w2t2; Ir1r2) (4.2)

We can also define the partial orbital integrals I1(w1t1, g2; Ir1r2) and I2(g1, w2t2; Ir1r2).
For example

I1(w1t1, g2; Ir1r2) :=

∫
Ir1r2(

tn1w1t1n1, g2)θr1(n1)dn1,

where the n1 is integrated over Nr1 divided by the stabilizer of w1t1. If we fix w1t1,
this integral defines a smooth function of compact support on GLr2(F ). Moreover,
we have:

I(w1t1, w2t2; Ir1r2) = I(w2t2, I1(w1t1, •; Ir1r2))
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and
I(w1t1, w2t2; Ir1r2) = I(w1t1, I2(•, w2t2; Ir1r2)).

Now we can continue with the induction argument. If wi = Idri then w = Idr.
From the hypothesis of the theorem and the identities 4.1 and 4.2 we have:

J(t1, t2; Jr1r2) = ∆r(diag(t1, t2))I(t1, t2; Ir1r2).

Using the relation between the double integrals and the partial integral, it implies
the following

J(t1, J2(•, t2; Jr1r2)) = ∆r(diag(t1, t2))I(t1, I2(•, t2; Ir1r2)). (4.3)

Since the identity (4.3) is true for all ti ∈ Tri , so when we fix t2 we obtain a
matching relation over GLr1 . Using the inductive hypothesis, there exists ∆w1 such
that

J(w1t1, J2(•, t2; Jr1r2)) = ∆w1(diag(t1, t2))I(w1t1, I2(•, t2; Ir1r2)).

Reusing the relation between the double integrals and the partial integrals, we obtain
the matching relation over GLr2

J(t2, J1(w1t1, •; Jr1r2)) = ∆w1(diag(t1, t2))I(t2, I1(w1t1, •; Ir1r2)).

We use the inductive hypothesis on r2, to get ∆w1,w2(diag(t1, t2)) such that

J(w2t2, J1(w1t1, •; Jr1r2)) = ∆w1,w2(diag(t1, t2))I(w2t2, I1(w1t1, •; Ir1r2)).

So we obtain the transfer factor ∆w(t) for the relevant element wt with w of
the form diag(w1, w2). In particularly, we have ∆wM

(recall that M is the standard
parabolic subgroup of type (r − 1, 1) of GLr).

The only transfer factor which can not be obtained from above processing is
∆wGLr

. To find it, we shall use the germ relation which we mentioned in the section
2 and 3.

Recall that we have:

J(wMt, f) = ωf (t) +
∑
αβ=t

KwGLr
wM

(α)J(wGLrβ, f)

and
I(wMt, φ) = ωφ(t) +

∑
αβ=t

LwGLr
wM

(α)I(wGLrβ, φ),

where wf , wφ are smooth function of compact support, t ∈ TwM
and the sums

are over all pairs in S := {(α, β) ∈ (T
wGLr
wM , TwGLr

)|αβ = t}. Given (α, β) ∈
(T

wGLr
wM , TwGLr

) then all the pair (α′, β′) ∈ (T
wGLr
wM , TwGLr

) satisfied α′β′ = αβ has
a form (zα, z−1β) with z is a r-th root of unity.
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Given β ∈ TwGLr
, we choose α = diag(a, . . . , a, a1−r det(wMwGLr)) with |a| so

small that ωf (αβ) = ωφ(αβ) = 0. We get then:

J(wMαβ, f) =
∑
z|zr=1

KwGLr
wM

(zα)J(wGLrz
−1β, f)

and
I(wMαβ, φ) =

∑
z|zr=1

LwGLr
wM

(zα)I(wGLrz
−1β, φ).

Moreover, with |a| small enough, using the proposition 3.3, we have:

KwGLr
wM

(zα) = c.LwGLr
wM

(zα)

with c(a, z) := |az|−
[
r2

4

]
− 1

2 [ r2 ]γ((az)−1,Ψ)[
r
2 ]. Combining them with the matching

relation of φ and f on the orbit of wMαβ (which is had been proved), we obtain∑
z|zr=1

KwGLr
wM

(zα)(J(wGLrz
−1β, f)− c.∆wM

(αβ)I(wGLrz
−1β, φ)) = 0.

As follows from the proof of the [7, Lemma 4.1], this condition implies that

J(wGLrz
−1β, f)− c(a, z).∆wM

(αβ)I(wGLrz
−1β, φ) = 0

for all z. In particularly, we have:

J(wGLrβ, f) = c(a, 1).∆wM
(αβ)I(wGLrβ, φ).

Since the above equations don’t depend on the choice of a, we can denote
c(a, 1).∆wM

(αβ) by ∆wGLr
(β). This is a transfer factor which we want to find for

the matching relation on the orbit of wGLrβ.
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