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DE CONCINI-KAC FILTRATION AND GELFAND-TSETLIN

CHARACTERS FOR QUANTUM glN

VYACHESLAV FUTORNY AND JONAS T. HARTWIG

Abstract. It was shown by the first author and Ovsienko [FO1] that the

universal enveloping algebra of glN is a Galois order, that is, it has a hidden
invariant skew group structure. We extend this result to the quantized case

and prove that Uq(glN ) is a Galois order over its Gelfand-Tsetlin subalgebra.
This leads to a parameterization of finite families of isomorphism classes of

irreducible Gelfand-Tsetlin modules for Uq(glN ) by the characters of Gelfand-

Tsetlin subalgebra. In particular, any character of the Gelfand-Tsetlin sub-
algebra extends to an irreducible Gelfand-Tsetlin module over Uq(glN ) and,

moreover, extends uniquely when such character is generic. We also obtain a

proof of the fact that the Gelfand-Tsetlin subalgebra of Uq(glN ) is maximal
commutative, as previously conjectured by Mazorchuk and Turowska.

1. Introduction

An important class of associative algebras, called Galois orders was introduced in
[FO1]. This class of algebras includes for example Generalized Weyl algebras over
integral domains with infinite order automorphisms (e.g. the n-th Weyl algebra
An, the quantum plane, q-deformed Heisenberg algebra, quantized Weyl algebras,
Witten-Woronowicz algebra ([B], [BO])); the universal enveloping algebra of gln
over the Gelfand-Tsetlin subalgebra ([DFO1], [DFO2]), associated shifted Yangians
and finite W -algebras ([FMO2], [FMO1]).

These algebras contain a special commutative subalgebra which allows one to em-
bed the algebra into a certain invariant subalgebra of some skew group algebra. In
particular, such an embedding enables the computation of the skew field of fractions
([FMO2],[FH]). Representation theory of Galois orders was developed in [FO2]. If
U is a Galois order over its commutative subalgebra Γ then one considers a category
of Gelfand-Tsetlin U -modules which are direct sums of finite-dimensional Γ-modules
parameterized by the maximal ideals of Γ. The set of isomorphism classes of ir-
reducible Gelfand-Tsetlin modules extended from a given maximal ideal m of Γ
is called the fiber of m. In the case in which fibers consist of single isomorphism
classes, the corresponding irreducible Gelfand-Tsetlin modules are parameterized
by the elements of Specm Γ (up to some equivalence).

A natural choice of a commutative subalgebra in many associative algebras is a
so-called Gelfand-Tsetlin subalgebra. Classical Gelfand-Tsetlin subalgebras of the
universal enveloping algebras of a simple Lie algebras were considered in [FM], [Vi],
[KW1], [KW2], [G1], [G2] among the others.

Gelfand-Tsetlin modules were studied in [O1] for gln, in [FMO2] for restricted
Yangians of gln and in [FMO1] for arbitrary finite W -algebras of type A.

In this paper we extend these results to Uq(glN ). This algebra contains a quan-
tum analog of the Gelfand-Tsetlin subalgebra of U(glN ), which we denote by Γq.
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2 VYACHESLAV FUTORNY AND JONAS T. HARTWIG

Based on the properties of so called generic Gelfand-Tsetlin modules obtained in
[MT], it was shown in [FH] that Uq(glN ) is a Galois ring with respect to Γq. This
allowed us to prove the quantum Gelfand-Kirillov conjecture for Uq(glN ) ([FH],[F]).

Note that unlike all the examples listed above, Uq(glN ) is a Galois rings with
respect to a subalgebra which not a polynomial algebra. Our first main result is
the following.

Theorem I. Uq(glN ) is a Galois order with respect to the Gelfand-Tsetlin subal-
gebra.

The technique used to prove Theorem I is based on the RTT-realization of
Uq(glN ) ([J],[KS]) and the De Concini-Kac filtration.

It was conjectured Mazorchuk and Turowska [MT] that Γq is a maximal com-
mutative subalgebra of Uq(glN ). As consequence of Theorem I we obtain a proof
of this fact.

Theorem II. The Gelfand-Tsetlin subalgebra of Uq(glN ) is maximal commutative.

Using the representation theory of Galois orders from [FO2] we obtain our third
main result.

Theorem III. The fiber of any m ∈ Specm Γq in the category of Gelfand-Tsetlin
modules over Uq(glN ) is non-empty and finite.

Another consequence of [FO2] and Theorem I above is that for a generic m (i.e.
from some dense subset of Specm Γq), there exists a unique (up to isomorphism)
irreducible Uq(glN )-module in the fiber of m. This was established previously in
[MT], because all such modules are generic Gelfand-Tsetlin modules in the termi-
nology of [MT].

Similarly to the case of finite W -algebras of type A [FMO2], we make the fol-
lowing conjecture about the cardinality of fibers for arbitrary m. We show that the
conjecture is valid for Uq(gl2).

Conjecture. For any m ∈ Specm Γq, the fiber of m consists of at most

2N(N−1)/2(1!2! . . . (N − 1)!)

isomorphism classes of irreducible Gelfand-Tsetlin Uq(glN )-modules. The same
bound holds for the dimension of the subspace V (m) in any irreducible Gelfand-
Tsetlin module V .

Notation. Ja, bK denotes the set {x ∈ Z | a ≤ x ≤ b}. The cardinality of a set S
is denoted #S. Throughout this paper, the ground field is C and q ∈ C is nonzero
and not a root of unity. We put C× = C \ {0}.

2. The algebra Uq(glN )

In this section we recall some facts about the quantized enveloping algebra
Uq(glN ) which will be used.

2.1. Definition. For positive integers N we let UN = Uq(glN ) denote the unital

associative C-algebra with generators E±i , Kj ,K
−1
j , i ∈ J1, N − 1K, j ∈ J1, NK and
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relations [KS, p.163]

KiK
−1
i = K−1

i Ki = 1, [Ki,Kj ] = 0, ∀i, j ∈ J1, NK,

KiE
±
j K

−1
i = q±(δij−δi,j+1)E±j , ∀i ∈ J1, NK,∀j ∈ J1, N − 1K,

[E+
i , E

−
j ] = δij

KiK
−1
i+1 −Ki+1K

−1
i

q − q−1
, ∀i, j ∈ J1, N − 1K,

[E±i , E
±
j ] = 0, |i− j| > 1,

(E±i )2E±j − (q + q−1)E±i E
±
j E
±
i + E±j (E±i )2 = 0, |i− j| = 1.

2.2. De Concini-Kac filtration. [BG, Section I.6.11] Let αi = εi − εi+1, i ∈
J1, N −1K be the standard simple roots of glN where εi(diag(a1, . . . , aN )) = ai. Fix
the following decomposition of the longest Weyl group element:

w0 = si1 · · · siM = (s1s2 · · · sN−1)(s1s2 · · · sN−2) · · · (s1s2)s1, (2.1)

where si = (i i + 1) ∈ SN , and M = N(N − 1)/2. Let {βj = si1 · · · sij−1
(αij )}Mj=1

be the corresponding enumeration of positive roots of glN . One checks that

(β1, β2, . . . , βM ) = (β12, β13, . . . , β1N , β23, β24, . . . , β2N , . . . , βN−1,N ), (2.2)

where βij = εi − εj for all i, j ∈ J1, NK, i < j. Let Eβi , Fβi ∈ Uq(glN ) be the
correspodning positive and negative root vectors (see e.g. [BG, Section I.6.8]). The
following PBW theorem for Uq(glN ) is well-known:

Theorem 2.1. The set of ordered monomials

F rKλE
k := F r1β1

· · ·F rMβM ·K
λ1
1 · · ·K

λN
N · Ek1

β1
· · ·EkMβM (2.3)

where r, k ∈ ZM≥0 and λ ∈ ZN , form a basis for Uq(glN ).

Define the total degree of a monomial F rKλE
k to be

d(F rKλE
k) =

(
kM , . . . , k1, r1, . . . , rM ,ht(F rKλE

k)
)
∈ Z2M+1

≥0 , (2.4)

where

ht(F rKλE
k) =

M∑
j=1

(kj + rj)ht(βj) (2.5)

and ht(β) =
∑N−1
i=1 ai if β =

∑N−1
i=1 aiαi. Equip the monoid Z2M+1

≥0 with the
lexicographical order uniquely determined by the inequalities

u1 < u2 < · · · < uM

where ui = (0, . . . , 0, 1, 0, . . . , 0) with 1 on the i:th position.

Theorem 2.2 (De Concini-Kac). The total degree function d defined above equips

U = Uq(glN ) with a Z2M+1
≥0 -filtration {U(k)}k∈Z2M+1

≥0
. The associated graded algebra

grU is the C-algebra on the generators

Ēβi , F̄βj , K̄λ

i = 1, . . . ,M , α ∈ ZN subject to the following defining relations:

K̄αK̄β = K̄α+β K̄0 = 1

K̄αĒβi = q(α,βi)ĒβiK̄α K̄αF̄βi = q−(α,βi)F̄βiK̄α

Ēβi F̄βj = F̄βj Ēβi

ĒβiĒβj = q(βi,βj)Ēβj Ēβi F̄βi F̄βj = q(βi,βj)F̄βj F̄βi

(2.6)
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for α, β ∈ Q and 1 ≤ i, j ≤M .

Proof. That d actually defines a filtration follows from the commutation relation
known as the Levendorskĭı-Soibelman straightening rule [LS, Proposition 5.5.2]. See
[DK, Proposition 1.7] for details. �

Observe that the root vectors Eα, Fα, hence the De Concini-Kac filtration, de-
pend on the choice of decomposition of the longest Weyl group element.

A simple but important corollary which will be used implicitly throughout is
that

d(ab) = d(a) + d(b) = d(ba) (2.7)

for all a, b ∈ Uq(glN ), where now d(a) denotes the smallest k ∈ Z2M+1
≥0 such that

a ∈ U(k). This follows from the fact that the associated graded algebra is a domain.

2.3. RTT presentation. Uq(glN ) has an alternative presentation. It is isomorphic
to the algebra with generators tij , t̄ij , i, j ∈ J1, NK and relations

tij = 0 = t̄ji, ∀i < j, (2.8a)

tiit̄ii = 1 = t̄iitii, ∀i, (2.8b)

qδij tiatjb − qδabtjbtia = (q − q−1)(δb<a − δi<j)tjatib) (2.8c)

qδij t̄iat̄jb − qδab t̄jbt̄ia = (q − q−1)(δb<a − δi<j)t̄jat̄ib) (2.8d)

qδij t̄iatjb − qδabtjbt̄ia = (q − q−1)(δb<atjat̄ib − δi<j t̄jatib) (2.8e)

for all i, a, j, b ∈ J1, NK. An identification of the two sets of generators is given by
[KS, Section 8.5.4]:

t̄ii = K−1
i tii = Ki

t̄i,i+1 = (q − q−1)K−1
i Ei ti+1,i = −(q − q−1)FiKi

t̄ij = (q − q−1)(−1)i−j+1K−1
i Eβij tji = −(q − q−1)FβijKi

(2.9)

for j > i + 1, where Eβij , Fβij are the root vectors, defined previously in Section
2.2.

2.4. Gelfand-Tsetlin subalgebra. Let Uq = Uq(glN ). It is immediate by the

defining relations that, for each r ∈ J1, NK, the subalgebra U
(r)
q of Uq generated by

Ei, Fi,Kj for i ∈ J1, r − 1K, j ∈ J1, rK (or equivalently, by tij , t̄ij for i, j ∈ J1, rK)
can be identified with Uq(glr). Thus we have a chain of subalgebras

U (1)
q ⊂ U (2)

q ⊂ · · · ⊂ U (N)
q = Uq.

Let Zr denote the center of U
(r)
q . The subalgebra of Uq generated by Z1, . . . , ZN

is called the Gelfand-Tsetlin subalgebra and will be denoted by Γq. It is immediate
that Γq is commutative.

In [MH, Section 5] it is proved that Zr is generated by the coefficients of the

following polynomial in U
(r)
q [u−1]:

zr(u) =
∑
σ∈Sr

(−q)−l(σ)
r∏
j=1

(
tσ(j)j − t̄σ(j)jq

2(j−1)u−1
)
. (2.10)
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It will be useful to rewrite this polynomial in a different way. For this purpose it
will be convenient to use the notation

t
(k)
ij =

{
tij , k = 0,

t̄ij , k = 1.
(2.11)

A direct computation gives that

zr(u) =

r∑
s=0

(−1)rdrs(q
2u)−s, (2.12)

where

drs =
∑
σ∈Sr

(−q)−l(σ)
∑

k∈{0,1}r:
∑
ki=s

q2(k1+2k2+···+rkr)t
(k1)
σ(1)1 · · · t

(kr)
σ(r)r. (2.13)

Observe that dr0 = d−1
rr . Therefore, the (commuting) elements drs, 1 ≤ s ≤ r ≤

N , generate Γq, provided we allow taking negative powers of drr. In Lemma 2.5 we
show that these generators are algebraically independent.

2.5. Realization of Uq(glN ) as a Galois Γ-ring. We recall the definition of a
Galois ring from [FO1]. Let Γ be an integral domain, K be its field of fractions,
L be a finite Galois extension of K, and G = Gal(L/K) be the Galois group.
Let G act by conjugation on Aut(L) and let M be a G-invariant submonoid of
Aut(L). We require M to be K-separating, meaning m1|K = m2|K ⇒ m1 = m2

for m1,m2 ∈ M. The action of G on L and on M (by conjugations) extends
uniquely to an action of G on the skew monoid ring L ∗M by ring automorphisms.
Let K = (L ∗M)G denote the subring of invariants.

Definition 2.3 (Galois ring). A finitely generated Γ-subring U of K is called a
Galois Γ-ring if UK = KU = K.

Let Uq = Uq(glN ), and q is not a root of unity. We recall the realization of Uq as a

Galois ring obtained in [FH]. Let Λm = C[X±1
m1, . . . , X

±1
mm] be a Laurent polynomial

algebra in m variables and put Λ = Λ1 ⊗ · · · ⊗ ΛN ' C[X±1
mi | 1 ≤ i ≤ m ≤ N ].

Let L be the field of fractions of Λ. Let Wm be the Weyl group of type Dm, i.e.
Wm = Sm n Em where Em = {α ∈ (Z/2Z)m | α1 + · · ·+ αm = 0} with the natural

Sm-action. Let G =
∏N
m=1Wm. Then G acts on L by

g(Xmi) = (−1)αmiXmζm(i), 1 ≤ i ≤ m ≤ N, (2.14)

for g = (ζ1α1, · · · ζNαN ) ∈ G where ζm ∈ Sm, αm = (αm1, . . . , αmm) ∈ Em. Let
Γ = ΛG, and K = Frac(Γ). Let M be the subgroup of Aut(L) generated by the
set {δmi}1≤i≤m≤N−1, where δmi ∈ Aut(L) is given by δmiXkj = q−δmkδijXkj for

all 1 ≤ i ≤ m ≤ N − 1 and 1 ≤ j ≤ k ≤ N . Clearly M' ZN(N−1)/2, since q is not
a root of unity. One verifies that M is G-invariant.

Let K = (L ∗ M)G. The following theorem shows that Uq is isomorphic to a
Galois Γ-ring in K.

Theorem 2.4 ([FH]). (i) There exists an injective C-algebra homomorphism

ϕ : Uq −→ K
determined by

ϕ(E±m) =

N∑
i=1

(±δmi)A±mi, ϕ(Km) = A0
me (2.15)
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where e ∈M is the neutral element, and A±mi, A
0
m ∈ L are given by

A±mi = ∓(q − q−1)−1∓1

∏m±1
j=1

(
Xm±1,jX

−1
mi −X

−1
m±1,jXmi

)∏
j∈{1,...,m}\{i}

(
XmjX

−1
mi −X

−1
mjXmi

) , (2.16)

A0
m = qm

m∏
i=1

Xmi

m−1∏
i=1

X−1
m−1,i; (2.17)

(ii) UK = KU = K, where U = ϕ(Uq);
(iii) M is K-separating;
(iv) L is a finite Galois extension of K with Galois group Gal(L/K) = G;
(v) ϕ(Zm) = ΛWm

m for each m ∈ J1, NK and ϕ(Γq) = Γ = ΛG, where Zm =
Z(Uq(glm)) and Γq is the Gelfand-Tsetlin subalgebra of Uq;

(vi) The restriction of ϕ to Zm can be identified with the quantum Harish-Chandra
homomorphism:

ϕ|Zm = ξ−1
m ◦ hm,

where ξ : Λm → Uq(glm), ξ(Xmi) = q−iKi and hm : Zm → C[K±1
1 , . . . ,K±1

m ]
is the quantum Harish-Chandra homomorphism.

Proof. See [FH, Propositions 5.9-5.14]. �

We now prove that the generators drs from (2.13) are algebraically independent.

Lemma 2.5.

Γq ' C[drs | 1 ≤ s ≤ r ≤ N ][d−1
rr | 1 ≤ r ≤ N ]. (2.18)

Proof. By applying the quantum Harish-Chandra isomorphism hr : Zr → (U0
r )Wr

(see [FH, Lemma 5.3]) to the polynomial zr(u) from (2.10) (as in [MH, Section 5])
we get

hr(zr(u)) =(K1 −K−1
1 u−1)(K2 − q2K−1

2 u−1) · · · (Kr − q2(r−1)K−1
r u−1)

=qr(r+1)(K1 · · ·Kr)
−1

r∏
j=1

(q−2jK2
j − (q2u)−1)

So

hr(drs) = qr(r+1)/2(K̃1 · · · K̃r)
−1 · ers(K̃2

1 , . . . , K̃
2
r ), r ∈ J1, NK, s ∈ J0, rK

where K̃i = q−iKi, and ers is the elementary symmetric polynomial in r variables
of degree s. By the proof of [FH, Lemma 5.3], this shows that

Zr ' C[drs | s = 1, 2, . . . , r][d−1
rr ]. (2.19)

Recall that ΛG ' ΛW1
1 ⊗ · · · ⊗ΛWN

N . Let ϕ : U → K be the map from Theorem 2.4.
By parts (i) and (v) of that theorem, ϕ restricts to an isomorphism ϕ|Γq : Γq → ΛG

and ϕi := ϕ|Zm : Zm → ΛWm
m for each m ∈ J1, NK. Thus we have a commutative

diagram

Γq
ϕ|Γq // ΛG

Z1 ⊗ · · · ⊗ ZN

f

OO

ϕ1⊗···⊗ϕN// ΛW1
1 ⊗ · · · ⊗ ΛWN

N

g

OO
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where the vertical arrows are given by multiplication. The horizontal maps and g
are isomorphisms. Hence f is an isomorphism. Combining this fact with (2.19) we
obtain the required isomorphism. �

2.6. Harish-Chandra subalgebras.

Definition 2.6 (Harish-Chandra subalgebra). A subalgebra B of an algebra A is
called a Harish-Chandra subalgebra provided BaB is finitely generated as a left and
right B-module for any a ∈ A.

The following criteron for Γ to be a Harish-Chandra subalgebra of a Galois Γ-ring
was given in [FO1].

Proposition 2.7. [FO1, Proposition 5.1] Let U ⊆ (L ∗M)G be a Galois Γ-ring,
where Γ is finitely generated as a C-algebra. Then Γ is a Harish-Chandra subalgebra
of U if and only if m · Γ̄ = Γ̄ for every m ∈M, where Γ̄ denotes the integral closure
of Γ in L.

In [MT, Proposition 1], the following result was stated and a method of proof
was suggested. We give a short proof using Galois rings.

Proposition 2.8 ([MT]). The Gelfand-Tsetlin subalgebra Γq of Uq = Uq(glN ) is a
Harish-Chandra subalgebra.

Proof. We will use Proposition 2.7. By Theorem 2.4(v), in the realization of Uq
as a Galois algebra, Γ = ΛG and M = ZN(N−1)/2. It is enough to prove that
m · Γ ⊆ Γ̄,∀m ∈M. Since m acts by automorphisms, it is further enough to prove
that m · X ⊆ Γ̄ for some generating set X of Γ, for m in some generating set of
M. Since ΛG ' ΛW1

1 ⊗ · · · ⊗ ΛWN

N , it follows from [FH, Lemma 5.3] that ΛG is
generated by

xrs := ers(X
2
r1, . . . , X

2
rr), 1 ≤ s < r ≤ N,

x±1
rr := (Xr1Xr2 · · ·Xrr)

±1, 1 ≤ r ≤ N,
where ers is the elementary symmetric polynomial in r variables of degree s. Recall
that the action of M on L = Frac(Λ) is given by δji ·Xrs = q−δjrδisXrs. We have
δji ·x±1

rr = q∓δjrx±1
rr which even belongs to Γ, hence to Γ̄. For the other generators,

first recall the splitting polynomial for L/K [FH], where K = LG = Frac(Γ):

p(x) =

N∏
j=1

(x2 −X2
j1)(x2 −X2

j2) · · · (x2 −X2
jj)(x−Xj1Xj2 · · ·Xjj).

Since p(x) ∈ Γ[x], it is clear that all Xjr ∈ Γ̄, hence Λ+ ⊆ Γ̄, where Λ+ := C[Xji |
1 ≤ i ≤ j ≤ N ]. In particular, it follows immediately that δji · xrs ∈ Λ+ ⊆ Γ̄ for
s < r. �

3. Galois orders

We recall the definition of Galois orders from [FO1].

Definition 3.1 (Galois order). A Galois Γ-ring is a right (respectively left) Galois
Γ-order if for any finite dimensional right (respectively left) K-subspace W ⊆ UK
(respectively W ⊆ KU), W ∩ U is a finitely generated right (respectively left)
Γ-module. A Galois ring is Galois order if it is both right and left Galois order.
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Proposition 3.2 ([FO1]). Let U be a Galois Γ-ring. Then U is a Galois Γ-order
if and only if the following two conditions hold:

(i) Γ is a Harish-Chandra subalgebra of U ;
(ii)

∀u ∈ U, γ ∈ Γ \ {0} :
(
uγ ∈ Γ ∨ γu ∈ Γ

)
=⇒ u ∈ Γ. (3.1)

The following result shows that under certain circumstances, condition (3.1) may
be replaced by the condition that Γ be maximal commutative in U .

Proposition 3.3. Let U ⊆ (L ∗ M)G be a Galois Γ-ring where Γ is a Harish-
Chandra subalgebra of U . Then the following two statements hold:

(i) If Γ is a maximal commutative subalgebra of U , then U is a Galois Γ-order;
(ii) If U is a Galois Γ-order,M is a group and Γ is finitely generated and normal,

then Γ is a maximal commutative subalgebra of U .

Proof. (i) Suppose Γ is maximal commutative in U . By Proposition 3.2, it is enough
to show that (3.1) holds. Suppose that uγ ∈ Γ for some u ∈ U , γ ∈ Γ \ {0}. Since
Γ is commutative we get

γ1uγ = uγγ1 = uγ1γ, ∀γ1 ∈ Γ.

Since U is torsion-free as a right Γ-module, this implies that γ1u = uγ1 for all
γ1 ∈ Γ. This forces u ∈ Γ, since Γ is a maximal commutative subalgebra of U . The
case γu ∈ Γ is analogous.

(ii) We follow the proof of [FMO2, Corollary 6.7]. By [FO1, Theorem 4.1(3)],
U ∩ K is a maximal commutative subalgebra of U , so it suffices to show that
U ∩K = Γ. By [FO1, Theorem 5.2(2)], U ∩Le is an integral extension of Γ, where
Le = {λe | λ ∈ L} ⊆ L ∗M and e ∈M is the neutral element. Hence U ∩K is an
also an integral extension of Γ. Since Γ is normal, U ∩K = Γ. �

4. Uq(glN ) is a Galois order

In this section we give a proof that Uq(glN ) is a Galois order. The main technical
result is the following theorem which determines the leading terms of the generators
drs of Γq with respect to the De Concini-Kac filtration.

Theorem 4.1. The leading term of drs (see (2.13)), with respect to the De Concini-
Kac filtration using (2.1) as decomposition of the longest Weyl group element, is
obtained by taking

σ = (1 2 · · · r)s.
in the sum (2.13). That is,

lt(drs) = λ · t(0)
1+s,1t

(0)
2+s,2 · · · t

(0)
r,r−s · t

(1)
1,r−s+1t

(1)
2,r−s+2 · · · t(1)

s,r (4.1)

for some nonzero λ ∈ C.

Example 4.2. As an example, we determine directly the leading term of d42. The
most significant component of the total degree (2.4) is the height. Using (4.2)-(4.3),
it is easy to see that there are four permutations in S4 which gives the maximal
possible height 8:

(13)(24), (14)(23), (1324), (1423).

The monomial associated to such a permutation σ is

t
(k1)
σ(1)1t

(k2)
σ(2)2t

(k3)
σ(3)3t

(k4)
σ(4)4
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where ki = 0 if σ(i) > i and ki = 1 if σ(i) < i. After the height we need to compare
the exponent of Fβ34 in the four different monomials, because β34 is the largest
positive root in the ordering

β12 < β13 < β14 < β23 < β24 < β34

(see (2.2)). This exponent is the same as the exponent (either 1 or 0) of t
(0)
43 due

to the identifications (2.9). But this exponent is 0 in all four cases because none of
the permutations map 3 to 4.

So we look at the second largest positive root, which is β24. As in the previous
case, we ask if σ(2) = 4 in any of the four permutations. There are two for which
this holds, (13)(24) and (1324). The others do not map 2 to 4 which means their
corresponding monomials are of lower total degree.

To compare the two candidates (13)(24) and (1324) we look at the third largest
root, β23. But σ(2) 6= 3 in both. Next is β14 but again σ(1) 6= 4 in both. Next
is β13 and now σ(1) = 3 for both σ = (13)(24) and σ = (1324). Next is β12 and
σ(1) 6= 2 in both. So we still don’t know which monomial is largest. We have
compared the 1 + 6 biggest components of the total degree, namely the height and
the 6 exponents of the negative root vectors Fβ .

Thus we turn to comparing the remaining 6 exponents of the positive root vectors
Eβ . Now care must be taken since, by (2.4), these are ordered in reverse relative
to the positive roots themselves. Therefore, the next component to compare is the
exponent of Eβ12

because β12 is the smallest root. By (2.9), this is the same as the

exponent of t
(1)
12 so we check if the permutations satisfy σ(2) = 1. None of them

do, so we move on, checking Eβ13
which amounts to checking if σ(3) = 1. Here

we finally get a discrepancy, (13)(24) satisfies this, but (1324) does not. Therefore
(13)(24) is the permutation that gives the leading term in d42.

Of course, (13)(24) = (1234)2, so this proves Theorem 4.1 in the case (r, s) =
(4, 2).

The following notation will be used for a permutation σ ∈ Sr:

c<(σ) = #{i ∈ J1, rK | σ(i) < i}, c>(σ) = #{i ∈ J1, rK | σ(i) > i}.

The following lemma describes which nonzero terms appear in drs.

Lemma 4.3. Let s ∈ J1, rK and let σ ∈ Sr. Then the following two statements are
equivalent.

(i) t
(k1)
σ(1)1t

(k2)
σ(2)2 · · · t

(kr)
σ(r)r 6= 0 for some k ∈ {0, 1}r with

∑r
i=1 ki = s;

(ii) c<(σ) ≤ s and c>(σ) ≤ r − s.

Proof. This follows from the fact that t
(1)
ij 6= 0 iff i ≤ j and t

(0)
ij 6= 0 iff i ≥ j. �

Define the height of a permutation σ ∈ Sr by

ht(σ) :=

r∑
i=1

|σ(i)− i|. (4.2)

The motivation for this terminology comes from the fact that

ht(σ) = ht(t
(k1)
σ(1)1t

(k2)
σ(2)2 · · · t

(kr)
σ(r)r) (4.3)

where the right hand side is given by (2.5) and the identification (2.9).
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As the next step towards proving Theorem 4.1, we show that the permutation
σ which gives the leading term of drs has to be a derangement (i.e. σ(i) 6= i ∀i ∈
J1, rK).

Lemma 4.4. Let s ∈ J1, rK and let σ ∈ Sr be a permutation such that

t
(k1)
σ(1)1t

(k2)
σ(2)2 · · · t

(kr)
σ(r)r 6= 0

for some k ∈ {0, 1}r with
∑
i ki = s. Then there exists a σ̃ ∈ Sr such that

(i) t
(l1)
σ̃(1)1 · · · t

(lr)
σ̃(r)r 6= 0 for some l ∈ {0, 1}r with

∑
i li = s;

(ii) t
(l1)
σ̃(1)1 · · · t

(lr)
σ̃(r)r ≥ t

(k1)
σ(1)1 · · · t

(kr)
σ(r)r;

(iii) σ̃ is a derangement.

In particular, the permutation σ such that (4.1) holds (for some λ ∈ C× and k ∈
{0, 1}r with

∑
i ki = s) must be a derangement.

Proof. If σ already is a derangement, there is nothing to prove (take σ̃ = σ). So
suppose f := #{i ∈ Sr | σ(i) = i} > 0. It is enough to construct σ̃ satisfying
properties (i)-(ii) with #{i ∈ Sr | σ̃(i) = i} = f − 1 because then we can iterate
this construction to arrive at a permutation satisfying all three conditions (i)-(iii).

We introduce some terminology. An element (i1, i2) ∈ J1, rK2 is called a σ-drop
(respectively σ-jump) provided σ(i1) = i2 and i2 < i1 (respectively i2 > i1). As
a visual support we will draw parts of permutations as graphs with vertices on a
square lattice, vertices (a, b) and (a+ 1, d) connected iff σ(b) = d. See Figure 1 for
an example. Then drops and jumps are simply as in Figure 2.

1

3

4

2

1

Figure 1. Pictorial representation of the cyclic permutation (1432).

i1

i2

(a)

i′1

i′2

(b)

Figure 2. A σ-drop (A) and a σ-jump (B). The diagrams mean
i2 = σ(i1), i1 > i2 and i′2 = σ(i′1), i′1 < i′2.
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A σ-drop (i1, i2) will be called drop-admissible if we can “add another drop
between i1 and i2”, that is, if there exists j ∈ J1, rK with σ(j) = j and i2 < j < i1.
Then we can put σ̃ = σ ◦ (i1 j). With this σ̃ we have

c<(σ̃) = c<(σ) + 1, c>(σ̃) = c>(σ).

Similarly, a σ-drop (i1, i2) is jump-admissible if there exists j ∈ J1, rK with σ(j) =
j and j /∈ Ji2, i1K. Then σ̃ = σ ◦ (i1 j) satisfies

c<(σ̃) = c<(σ), c>(σ̃) = c>(σ) + 1.

See Figure 3 for an illustration of the possible scenarios in the case of a σ-drop.

i1

j

i2

(a)

i1

j

i2

(b)

i1

j

i2

(c)

Figure 3. The three possible ways the i1, j, i2 piece of σ̃ = σ ◦
(i1 j) can look like, when (i1, i2) is a σ-drop: i1 < j < i2 (A),
j > i1, i2 (B), and j < i1, i2 (C). The σ-drop (i1, i2) is drop-
admissible in case (A), and jump-admissible in (B) and (C).

Analogously, a σ-jump (i1, i2) is jump-admissible if ∃j ∈ J1, rK with σ(j) = j and
i1 < j < i2. A σ-jump (i1, i2) is drop-admissible if ∃j ∈ J1, rK with σ(j) = j and
j /∈ Ji1, i2K.

We will now show that there always exists a jump-admissible σ-drop or σ-jump.

i1

i2

i3

ip

ip+1

Figure 4. Illustration of a permutation σ satisfying conditions (a)-(d).

We know that σ is not the identity permutation since
∑
i ki = s ≥ 1. Thus there

exists a tuple (i1, i2, . . . , ip, ip+1) ∈ J1, rKp+1, where p > 2, such that (see Figure 4)

(a) ij+1 = σ(ij) for j ∈ J1, pK;
(b) i1 > i2;
(c) ij < ij+1 for j ∈ J2, p− 1K;
(d) ip > ip+1.
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Note that we do not exclude the possibility that (ip, ip+1) = (i1, i2). Also, since σ
is not a derangement, there is some j ∈ J1, rK \ {i1, . . . , ip+1} fixed by σ.

If j /∈ Ji2, i1K, then (i1, i2) is a jump-admissible σ-drop (as in case (B) or (C) in
Figure 3). So suppose i1 > j > i2. If j < ip then (ia, ia+1) is a jump-admissible
σ-jump for the a ∈ J2, p−1K with ia < p < ia+1. So suppose j > ip. Then (ip, ip+1)
is a jump-admissible σ-drop. This proves that, provided σ(j) = j for some j, there
always exists a jump-admissible σ-drop or σ-jump.

Similarly one proves there always exists a drop-admissible σ-drop or σ-jump.
If c<(σ) < s then we add a drop by putting σ̃ = σ ◦ (i j) where (i, σ(i)) is a

drop-admissible σ-drop or σ-jump. Then σ̃ will have one more drop than σ but the
same number of jumps. That is, c<(σ̃) = c<(σ) + 1 ≤ s and c>(σ̃) = c>(σ) ≤ r− s
which by Lemma 4.3 ensures that property (i) is satisfied.

Analogously, if instead c>(σ) < r− s we add a jump by putting σ̃ = σ ◦ (i j) for
appropriate i.

Clearly σ̃ has one less fixpoint than σ.
It remains to verify that property (ii) holds. The change from σ to σ̃ has the

following effect on monomials:

t
(kj)
jj t

(ki)
σ(i)i 7−→ t

(kj)

σ̃(j)jt
(ki)
σ̃(i)i = t

(kj)

σ(i)jt
(ki)
ji

(unchanged factors omitted).
If j is not between i and σ(i), then by definition of the height (4.2) one checks

that ht(σ̃) > ht(σ) so (ii) holds by just looking at the height, which is the most
significant part of the total degree (see (2.4)).

If j is between i and σ(i), then ht(σ̃) = ht(σ) so we must compare roots in order
to establish property (ii).

Suppose i < j < σ(i). Then the change from σ to σ̃ corresponds to

t
(0)
σ(i)it

(kj)
jj 7−→ t

(0)
σ(i)jt

(0)
ji

The change in total degrees is

d(Fβi,σ(i)
) 7−→ d(Fβj,σ(i)

Fβij )

Since βj,σ(i) > βi,σ(i), βi,j (recall the ordering (2.2)) it follows that property (ii)
holds in this case. The case i > j > σ(i) is analogous, keeping in mind that Eβ are
ordered in reverse. The proof is finished. �

The following result describes the height of the permutation giving rise to the
leading term.

Lemma 4.5. Fix r ∈ Z>0 and let s ∈ J1, rK. Let σ ∈ Sr be the permutation which
gives rise to the leading term of drs. That is,

lt(drs) = λt
(k1)
σ(1)1t

(k2)
σ(2)2 · · · t

(kr)
σ(r)r (4.4)

for some nonzero λ ∈ C and some k ∈ {0, 1}r with
∑
i ki = s. Then

ht(σ) = 2s(r − s). (4.5)

Proof. First we prove that ht(σ) ≥ 2s(r − s). Let τ = (1 2 · · · r)s. We show that
ht(τ) = 2s(r − s). Since

τ(i) =

{
i+ s, i+ s ≤ r
i+ s− r, i+ s > r
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we have by definition of ht(τ)

ht(τ) =

r−s∑
i=1

(i+ s− i) +

r∑
i=r−s+1

(i− (i+ s− r)) = 2s(r − s).

Since (4.4) is the leading term of drs, we in particular have ht(σ) ≥ ht(τ) = 2s(r−s)
by definition of total degree of a monomial (2.4).

It remains to show that ht(σ) ≤ 2s(r − s). By Lemma 4.4, σ is a derangement.
Thus

ht(σ) =

r∑
i=1

|σ(i)− i| =
∑

i:σ(i)<i

(i− σ(i)) +
∑

i:σ(i)>i

(σ(i)− i),

where the first sum has s terms and the second has r − s terms. Clearly we have
the estimate∑

i:σ(i)<i

(i− σ(i)) +
∑

i:σ(i)>i

(σ(i)− i)

≤ (r + (r − 1) + · · ·+ (r − s+ 1))− (1 + 2 + · · ·+ s)

+ (r + (r − 1) + · · · (s+ 1))− (1 + 2 + · · ·+ (r − s)) = 2s(r − s).

This proves the claim. �

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. The case r = s is trivial: By (2.13), drr = λ · t(1)
11 · · · t

(1)
rr ,

where λ ∈ C×. Thus drr has only one term, corresponding to the identity permu-
tation (1). Thus the conjecture holds in this case because (1 2 · · · r)r = (1). So
we may assume s < r.

Let σ ∈ Sr be the permutation which gives rise to the leading term of drs. That
is,

lt(drs) = λt
(k1)
σ(1)1t

(k2)
σ(2)2 · · · t

(kr)
σ(r)r

for some nonzero λ ∈ C and some k ∈ {0, 1}r with
∑
i ki = s. By Lemma 4.4, σ

is a derangement. In particular, k is uniquely determined: ki = 0 iff σ(i) > i and
ki = 1 iff σ(i) < i. Moreover, since σ is a derangement, Lemma 4.3 implies that

s = #{i ∈ J1, rK | σ(i) < i}. (4.6)

We will now show that

σ−1(r) = r − s. (4.7)

This is equivalent to that t
(0)
r,r−s occurs in lt(drs). By (2.9) and that the Ki don’t

contribute to the total degree, we have d(t
(0)
r,r−s) = d(Fβr−s,r ). To show (4.7), note

that t
(0)
r,r−s occurs in the monomial corresponding to τ = (1 2 · · · r)s. Thus it is

enough to prove that if t
(0)
ji occurs in the leading monomial of drs then βij ≤ βr−s,r.

Suppose the opposite is true, i.e. that σ−1(j0) = i0 ∈ Jr− s+ 1, j0− 1K for some
j0 with i0 < j0 ≤ r. We show that this leads to a contradiction in the height of σ.
We have

ht(σ) =

r∑
i=1

|σ(i)− i| =
∑

i:σ(i)<i

(i− σ(i)) +
∑

i:σ(i)>i

(σ(i)− i). (4.8)
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The first sum has s elements, by (4.6), and the second one has r− s terms, since σ
is a derangement. Since σ(i0) = j0 > i0, we may estimate the first sum from above
by assuming that i runs through the s largest elements of J1, rK\{i0}, and σ(i) just
runs through the s smallest elements of J1, rK. That is,∑

i:σ(i)<i

(i− σ(i)) ≤ (r + (r − 1) + · · ·+ (r − s)− i0)− (1 + 2 + · · ·+ s)

= r − i0 + s(r − s− 1). (4.9)

On the other hand, i0 does belong to the summation range of the other sum and
therefore∑

i:σ(i)>i

(σ(i)− i) ≤ (r + (r − 1) + · · ·+ (s+ 1))− (1 + 2 + · · ·+ (r − s− 1) + i0)

= (r − s− 1)s+ r − i0, (4.10)

i.e. the sum of the r − s largest elements of J1, rK minus the smallest sum of r − s
elements of J1, rK requiring that one of them is i0. Combining (4.8)-(4.10) we obtain

ht(σ) ≤ 2(r − s− i0) + 2s(r − s) < 2s(r − s) (4.11)

since i0 > r− s by assumption. This contradicts Lemma 4.5 and finishes the proof
of (4.7).

Then, since βr−s−1,r−1 is the largest positive root of the form βr−s−1,j where
j < r, βr−s−2,r−2 is the largest positive root of the form βr−s−2,j with j < r − 1,
and so on, we conclude that the leading term of drs must have the form

λ · t(0)
1+s,1t

(0)
2+s,2 · · · t

(0)
r,r−s · t

(k1)
σ(r−s+1),r−s+1 · · · t

(ks)
σ(r)r.

But
∑
ki = s which forces ki = 1 for i ∈ J1, sK. So σ(i) < i for i ∈ Jr − s + 1, rK.

Since d(t
(1)
ij ) = d(Eβij ) for i < j and by definition (2.4) of the total degree, the

Eβ are ordered in reverse with respect to the order of the positive roots β, we are
led to the question: What is the smallest possible root βij (i < j) which may still
occur in the monomial?

We know that {σ(r − s + 1), σ(r − s + 2), . . . , σ(r)} = {1, 2, . . . , s}. Thus, the
smallest root we can get is β1,r−s+1, obtained iff σ(r−s+1) = 1. But this happens
for the permutation τ = (1 2 · · · r)s. So, to have any chance of getting a larger
monomial we must continue. But at each step we see that the smallest possible
root is βi,r−s+i for i = 1, 2, . . . , s. This proves that (1 2 · · · r)s indeed is the
permutation that gives the leading term of drs. �

Define
X(r, s) = t(1)

sr (4.12)

for each 1 ≤ s ≤ r ≤ N . Then, by Theorem 4.1, X(r, s) occurs in the leading term
of drs and does not occur in the leading term of any other dab, (a, b) 6= (r, s).

For u ∈ Uq we let lt(u) ∈ grUq denote the corresponding leading term.

Lemma 4.6. Let γ ∈ Γq. Then

lt(γ) = lt
(
µ

∏
1≤s≤r≤N

dkrsrs

)
for some µ ∈ C×, krs ∈ Z≥0 ∀s < r and krr ∈ Z. Moreover krs is the number of
occurrences of X(r, s) in lt(γ).
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Proof. By Lemma 2.5, Γq is a semi-Laurent polynomial algebra in the drs:

Γq ' C[drs | 1 ≤ s ≤ r ≤ N ][d−1
rr | 1 ≤ r ≤ N ].

The number of occurrences of X(r, s) in
∏
r,s lt(drs)

krs is equal to krs. Thus∏
lt(drs)

krs =
∏

lt(drs)
lrs =⇒ krs = lrs ∀r, s.

This in turn implies that the set

{
∏
r,s

dkrsrs | krs ∈ Z≥0∀s < r, krr ∈ Z}

is totally ordered. Thus, for any γ ∈ Γq we have lt(γ) = lt(λ
∏
dkrsrs ) where krs

equals the number of occurrences of X(r, s) in lt(γ). This proves the claim. �

An algebra of the form

A(Q,m, n) = C〈a1, . . . , am, a
±1
m+1, . . . a

±1
n | aiaj = Qijajai∀i < j,

aka
−1
k = 1 = a−1

k ak, k > m〉

for some Qij ∈ C×, will be called a quantum semi-Laurent polynomial algebra.
Now we can prove Theorem I from Introduction.

Theorem 4.7. Uq(glN ) is a Galois order with respect to its Gelfand-Tsetlin sub-
algebra.

Proof. Suppose uγ = γ1 for some u ∈ U, γ, γ1 ∈ Γ \ {0}. Consider the leading
terms on both sides. Since grUq is a quantum semi-Laurent polynomial algebra
(by Theorem 2.2), it is in particular a domain. So

lt(u)lt(γ) = lt(uγ) = lt(γ1).

We count the number krs of occurrences of the distinguished variable X(r, s) in
lt(γ1), for each r, s. Then we count the number lrs of occurrences of X(r, s) in
lt(γ). Then we look at

ũ = u− λ
∏

1≤s≤r≤N

dkrs−lrsrs , (4.13)

where λ ∈ C× is to be determined. We have

ũγ = γ1 − λ
∏
r,s

dkrs−lrsrs · γ.

By Lemma 4.6,

lt(γ1) = lt
(
µ
∏

dkrsrs

)
, lt(γ) = lt

(
ξ
∏

dlrsrs
)

for some µ, ξ ∈ C×. Thus

lt
(
λ
∏

dkrs−lrsrs · γ
)

= λ · lt
(∏

dkrs−lrsrs

)
· lt(γ) = λξ

∏
dkrsrs = lt(γ1)

provided we choose λ = µ/ξ. Then lt(ũγ) < lt(uγ). By induction we are reduced
to the case when the total degree d(uγ) = d(γ) which implies that lt(u), hence u

has degree (0, 0, . . . , 0) ∈ Z2M+1
≥0 , which means that u ∈ C[K±1

1 , . . . ,K±1
N ] ⊆ Γq.

This completes the proof. �
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5. Maximal commutativity of Gelfand-Tsetlin subalgebras

It is well known that the Gelfand-Tsetlin subalgebra of U(glN ) is maximal com-
mutative (see for example [O2]). It is also known that the Gelfand-Tsetlin sub-
algebra is maximal commutative in Yp(glN ) and in any finite W -algebra ([FMO2,
Corollary 6.7]). It is natural to ask if the analogous statement holds for Uq(glN ).
This was explicitly conjectured to be the case by Mazorchuk and Turowska in [MT].
Using Theorem 4.7, we can now prove this conjecture, establishing our second main
theorem.

Theorem 5.1. The Gelfand-Tsetlin subalgebra of Uq(glN ) is maximal commuta-
tive.

Proof. By Theorem 2.4, Uq(glN ) is a Galois ring with respect to Γq. In that real-
ization, M is a group. By Lemma 2.5, Γq is a finitely generated normal integral
domain and by Proposition 2.8, Γq is a Harish-Chandra subalgebra. Thus, combin-
ing Theorem 4.7 and Proposition 3.3, it follows that Γq is a maximal commutative
subalgebra of Uq(glN ). �

6. Application to Gelfand-Tsetlin characters

6.1. Gelfand-Tsetlin modules over Galois orders. We recall main results on
the representations of Galois orders obtained in [FO2]. Let U be a Galois order
over commutative noetherian subring Γ. All rings in this section are assumed to be
algebras over an algebraically closed field.

Denote by Specm Γ the set of maximal ideals of Γ. A finitely generated module
M over U is called a Gelfand-Tsetlin module with respect to Γ if

M =
⊕

m∈Specm Γ

M(m),

where

M(m) = {x ∈M | mkx = 0 for some k > 0}.
Given m ∈ Specm Γ, let F (m) be the fiber of m consisting of isomorphism

classes of irreducible Gelfand-Tsetlin U -modules M with respect to Γ such that
M(m) 6= 0. Equivalently, this is the set of left maximal ideals of U containing m
(up to some equivalence). If M is such irreducible module with M(m) 6= 0 then
we say that a character m extends to M . If any m has a finite fiber then one can
use Specm Γ to get a ”rough” classification (up to some finiteness) of irreducible
Gelfand-Tsetlin U -modules.

Let Λ be the integral extension of Γ such that Γ = ΛG and ϕ : Specm Λ →
Specm Γ. Then ϕ−1(m) is finite for any m ∈ Specm Γ. Fix any lm ∈ ϕ−1(m). Set

StM(m) = {x ∈M|x · lm = lm}.
The set StM(m) does not depend on the choice of lm.

Theorem 6.1. (i) [FO2, Theorem A] Let U be a Galois order over a finitely
generated Γ, m ∈ Specm Γ. If the set StM(m) is finite, then the fiber F (m)
is non-trivial and finite.

(ii) [FO2, Theorem B] There exists a massive subset X ⊂ Specm Γ such that
any m ∈ X extends uniquely to an irreducible Gelfand-Tsetlin module (up
to an isomorphism).
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6.2. Extension of characters for Uq(glN ). For any m ∈ Specm Γq the set
StM(m) is finite. Since Uq(glN ) is a Galois order over the semi-Laurent poly-
nomial Gelfand-Tsetlin subalgebra, then Theorem III follows immediately from
Theorem 6.1. Hence, we obtain a classification of irreducible Gelfand-Tsetlin mod-
ules by the maximal ideals of Γq up to some finiteness which corresponds to the
finite fibers of maximal ideals of Γq and up to some equivalence between maximal
ideals (when they give isomorphic Gelfand-Tsetlin modules).

For a generic m ∈ X from some dense subset X ⊂ Specm Γq, M acts freely
on X and M ·m ∩ G ·m = {m}. Therefore, if U = Uq(glN ), then U/Um is an
irreducible Uq(glN )-module for any m ∈ X.

6.3. Cardinality of the fibers for gl2. We show that the conjecture about the
size of the fibers from the introduction holds for gl2.

It is easy to check that Uq(gl2) is isomorphic to the generalized Weyl algebra

R(σ, t) where R = C[K1,K
−1
1 ,K2,K

−1
2 ][t] where σ(t) = t+(K1K

−1
2 −K

−1
1 K2)/(q−

q−1), σ(Ki) = qδi2−δi1Ki. Under this isomorphism, the Gelfand-Tsetlin subalgebra
is identified with R. Since any generalized Weyl algebra is free over its distin-
guished subalgebra R, it follows that Uq(gl2) is free as a right (and left) module
over the Gelfand-Tsetlin subalgebra. Now using [FO2, Theorem 5.2(iii)] and [FO2,
Lemma 3.7], analogously to the proof of [FO2, Corollary 6.1], we obtain the desired
bound from the conjecture in this case.
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