FROBENIUS RECIPROCITY AND GO SKEW GROUP RINGS

.

.

•

by

Martin LORENZ

Max-Planck-Institut für Mathematik Gottfried-Claren-Str. 26 5300 Bonn 3

.

.

MPI 86-49

FROBENIUS RECIPROCITY AND G_{O} . OF SKEW GROUP RINGS

Martin Lorenz Max-Planck-Institut für Mathematik Gottfried-Claren-Str. 26 D-5300 Bonn 3, Fed. Rep. Germany

The aim of these notes is to generalize the main result of the author's article [5] while also substantially simplifying the K_0^- theoretic part of its proof. In particular, the Morita context for group actions that played a central role in [5] doesn't occur here and is replaced by a suitable version of Frobenius reciprocity.

Our notations and conventions follow [5]. All modules will be right modules. Further assumptions will be introduced as we go along.

1. DIAGONAL ACTIONS ON TENSOR PRODUCTS.

Let R_i (i=1,2) be algebras over some commutative ring k and let G be a group acting on each R_i by k-algebra automorphisms. The corresponding skew group rings will be denoted by $S_i = R_i * G$. They are k-algebras, hence we can form the k-algebra $S_1 \otimes_k S_2$. Indeed, $S_1 \otimes_k S_2$ is isomorphic to the skew group ring of $G \times G$ over $R_1 \otimes_k R_2$ with respect to the obvious action of $G \times G$ on $R_1 \otimes_k R_2$. The maps $R_1 \longrightarrow R_1 \otimes_k R_2$, $r \longmapsto r \otimes 1$, and $G \longrightarrow G \times G$, $g \longmapsto s(g,g)$, give rise to a k-algebra map $\mu_1 : S_1 \longrightarrow S_1 \otimes_k S_2$. Explicitly, μ_1 is given by

$$\mu_1\left(\sum_{g\in G} r_g^g\right) = \sum_{g\in G} r_g^g \otimes g$$

and $\mu_2: S_2 \longrightarrow S_1 \otimes_k S_2$ is defined similarly.

Now let V_i be S_i -modules (i=1,2). Then $V_1 \otimes_k V_2$ is a module over $S_1 \otimes_k S_2$ in the usual fashion, and hence via μ_i a module over each S_i . Specifically we have for S_1 , say,

$$(v_1 \otimes v_2)r_1g = v_1r_1g \otimes v_2g$$
 $(v_i \in V_i, r_1 \in R_1, g \in G)$.

2. FROBENIUS RECIPROCITY.

Let H be a subgroup of G and let $T_i = R_i * H \subseteq S_i$ be the corresponding skew group rings. If V is an S_1 -module and W is a T_2 -module, then

$$\mathbf{v} \otimes_{k} \left(\mathbf{w} \otimes_{\mathbf{T}_{2}} \mathbf{S}_{2} \right) \cong \left(\mathbf{v} \Big|_{\mathbf{T}_{1}} \otimes_{k} \mathbf{w} \right) \otimes_{\mathbf{T}_{i}} \mathbf{S}_{i}$$

as S_i -modules (i=1,2), with the diagonal module operations on tensor products over k, as defined in Section 1.

<u>PROOF</u>. The k-linear map $W \longrightarrow W \otimes_{T_2} S_2$, $w \longmapsto w \otimes 1$, yields a k-linear map $V \otimes_k W \longrightarrow V \otimes_k (W \otimes_{T_2} S_2)$, $v \otimes w \longmapsto v \otimes (w \otimes 1)$. This map is linear over $T_1 \otimes_k T_2$:

$$(v \otimes w) (r_1h_1 \otimes r_2h_2) = vr_1h_1 \otimes wr_2h_2 \longmapsto vr_1h_1 \otimes (wr_2h_2 \otimes 1) =$$
$$= vr_1h_1 \otimes (w \otimes 1)r_2h_2 = (v \otimes (w \otimes 1)) (r_1h_1 \otimes r_2h_2) .$$

Therefore, this map is linear over each T_i (acting via μ_i). Since $V \otimes_k (W \otimes_{T_2} S_2)$ is a module over S_i , we obtain S_i -linear maps

$$\varphi_{i} : \left(v \Big|_{T_{1}} \otimes_{k} W \right) \otimes_{T_{i}} S_{i} \longrightarrow v \otimes_{k} \left(W \otimes_{T_{2}} S_{2} \right)$$

$$(v \otimes w) \otimes S \longmapsto (v \otimes (w \otimes 1)) \cdot S .$$

In particular, we have for i=1,2 :

$$\rho_{i}((v \otimes w) \otimes g) = vg \otimes (w \otimes g) \quad (v \in V, w \in W, g \in G)$$

Note that, as modules over the group algebra $kG \subseteq S_i$, we have

$$(\mathbf{V} \otimes_{k} \mathbf{W}) \otimes_{\mathbf{T}} \mathbf{S}_{i} | \cong (\mathbf{V} \otimes_{k} \mathbf{W}) \otimes_{kH} kG$$

and

$$\nabla \otimes_{k} \left(\mathbb{W} \otimes_{\mathbf{T}_{2}} S_{2} \right) \Big|_{kG} \cong \nabla \otimes_{k} \left(\mathbb{W} \otimes_{kH} kG \right)$$
.

Moreover, the map φ_{i} is the usual Frobenius reciprocity isomorphism between the modules on the right hand sides. Hence, in particular, it is bijective (cf. e.g. [9, Thm.2.2 on p.15]).

<u>3.</u> G_0 and K_0 .

From now on, we assume that $R_2 = k$ is a field and that the group G is finite. We will write $R_1 = R$ and S = R * G. Our goal is to study the Grothendieck groups $G_0(S)$ and $K_0(S)$ of fin.gen. S-modules, resp. fin.gen. projective S-modules, and their analogs for R and kG. <u>Henceforth</u>, we will implicitly assume that S, or equivalently R, is right Noetherian so that $G_0(S)$ and $G_0(R)$ are defined.

 $G_0(kG)$ is a commutative ring with 1, with multiplication afforded by \otimes_k and $1 = \lfloor k \rfloor$, k the "trivial" kG-module. Clearly, if W is a kG-module then (.) $\otimes_k W$ transforms exact sequences of S-modules into exact sequences of S-modules, where S operates via $\mu = \mu_1 : S \longrightarrow S \otimes_k kG$. Moreover, if W is fin.gen. over kG and V is fin.gen. over S then $V \otimes_k W$ is also fin.gen. over S. Therefore, $[V] \longmapsto [V \otimes_k W]$ yields an endomorphism of $G_0(S)$. It is easy to check that setting

 $[V] \cdot [W] := [V \otimes_{b} W]$

we obtain a well-defined module action of $G_0(kG)$ on $G_0(S) : [V \otimes_k W]$ depends only on the class [W] of W in $G_0(kG)$, $V_1 \otimes_k (W_1 \otimes_k W_2) \cong (V \otimes_k W_1) \otimes_k W_2$ holds for all kG-modules W_1 , and $V \otimes_k k \cong V$ as S-modules.

The same definitions also make $K_0(S)$ a module over $G_0(kG)$. For this, one has to check that if V is fin.gen. projective over S then so is $V \otimes_k W$, for any fin.gen. kG-module W. It suffices to do this for V = S : Using Frobenius reciprocity with H = <1> we get

$$S \otimes_{k} W = (R \otimes_{R} S) \otimes_{k} W \cong (R \otimes_{k} W) \otimes_{R} S \cong R \qquad \text{dim}_{k} W \qquad \text{dim}_{k} W$$

as required. - The canonical Cartan map $c : K_0(S) \longrightarrow G_0(S)$ is a $G_0(kG)$ -module homomorphism.

<u>LEMMA 1</u>. The map $\operatorname{Ind}_{R}^{S} \circ \operatorname{Res}_{R}^{S} : G_{0}(S) \longrightarrow G_{0}(R) \longrightarrow G_{0}(S)$ is multiplication by $[kG] \in G_{0}(kG)$ on $G_{0}(S)$. The same also holds for K_{0} instead of G_{0} .

<u>PROOF</u>. If V is a fin.gen. S-module then, using Frobenius reciprocity with $H = \langle 1 \rangle$, we obtain

$$\operatorname{Ind}_{R}^{S} \circ \operatorname{Res}_{R}^{S} (V) = V \otimes_{R}^{S} = (V \otimes_{k}^{k} k) \otimes_{R}^{S} \cong V \otimes_{k}^{k} (k \otimes_{k}^{k} kG) \cong V \otimes_{k}^{k} kG$$

which proves the lemma.

We note one particular consequence of the lemma that will be used in the next section: The ring R becomes an S-module via the obvious isomorphism

$$\left(\sum_{\mathbf{x}\in\mathbf{G}}\mathbf{x}\right)\mathbf{S} = \left(\sum_{\mathbf{x}\in\mathbf{G}}\mathbf{x}\right)\mathbf{R} \cong \mathbf{R}$$

Clearly, $\operatorname{Ind}_R^S \circ \operatorname{Res}_R^S(R_S) = \operatorname{Ind}_R^S(R_R) = S_S^{-}$, and so the lemma implies the following

<u>CORROLARY</u>. [S] = $[R_S] \cdot [kG]$ holds in $G_0(S)$.

4. p-GROUPS IN CHARACTERISTIC p .

If char k = p > 0 and G_p is a Sylow p-subgroup of G, then $G_0(kG_p) = \langle [k] \rangle \cong \mathbb{Z}$ and, in particular, $[kG_p] = |G_p| \cdot [k]$. Therefore, in $G_0(kG)$ we have $[kG] = |G_p| \cdot Ind_{kG_p}^{kG}[k]$, and the above corollary gives

$$[S] = |G_p| \cdot [R_S] \cdot Ind_{kG_p}^{kG}[k]$$

in $G_0(S)$. The following lemma is now obvious. \cdots

LEMMA 2. Let char k = p > 0 and let G be a Sylow p-subgroup of G. Then, for any homomorphism ρ : G_0(S) —> Z , we have $|G_p| \left| \rho(S) \right|$.

Here we have written $\rho(S) = \rho([S])$, for simplicity. Perhaps the most commonly used homomorphism $G_0(T) \longrightarrow Z$, for any right Noetherian ring T, is Goldie's reduced rank function (cf. [2, Sect.2]). A quick definition of this function can be given as follows. Let N denote the nilpotent radical of T. Then the canonical inflation (or restriction) map $G_0(T/N) \longrightarrow G_0(T)$ is an isomorphism ([1, p.454]). Moreover, T/N has an Artinian ring of quotients Q = Q(T/N). The reduced rank function is the composite function

$$G_0(T) \xrightarrow{\sim} G_0(T/N) \xrightarrow{\cdot \otimes_T/N^Q} G_0(Q) \xrightarrow{\text{composition}} Z$$

The following is the main result of this note. It extends [5, Theorem 2.4].

THEOREM. Assume that

- (a) chark = p and G is a finite p-group $\neq <1>$,
- (b) K₀(R) = <[R]> , that is, all fin.gen. projective R-modules are stable free,
- and (c) $1 \notin [S,S] = \{ \Sigma_{i} s_{i} t_{j} t_{i} s_{i} | s_{i}, t_{i} \in S \}$, that is, S = R * Ghas a trace function which does not vanish on 1.

Then, for any homomorphism ρ : $G_0(S) \longrightarrow Z$, one has $p|\rho(P)$ for all fin.gen. projective S-modules P.

<u>PROOF</u>. Let P be a fin.gen. projective S-module with $p \not| \rho(P)$. By (b), $[P_R] = n \cdot [R]$ for some n. After replacing P by $P \oplus S^m$ for a suitable m, we may assume that $n \ge 0$. (Use Lemma 2. Actually, $n \ge 0$ is automatic, since $M_t(R)$ is right Noetherian and hence directly finite for all t, cf. [4, Prop. 15.3].) In view of assumption (a), Lemma 1 yields the following equalities in $K_0(S)$:

$$|G| \cdot [P] = [P \otimes_{D} S] = n \cdot [S]$$

Applying ρ (or $\rho \circ c$ rather) and using the fact that |G| divides $\rho(S)$, by Lemma 2, we see that n divides $\rho(P)$, so that $p \nmid n$. The equality $|G| \cdot [P] = n \cdot [S]$ in $K_0(S)$ says that, for some $r \ge 0$,

$$P^{|G|} \oplus S^{r} \cong S^{n+r}$$

We may clearly assume that $p \mid r$, say r = pr'. Thus, setting $V = P^{\mid G \mid / p} \oplus S^{r'}$, we have $S^{n+r} \cong V^p$ and, taking endomorphism rings, we obtain a ring isomorphism

$$M_{n+r}(S) \cong M_p(End V_S)$$
.

By (c), the universal trace tr : $S \longrightarrow S/[S,S] =: A$ does not vanish on 1. Defining, as usual, $tr_{n+r} : M_{n+r}(S) \longrightarrow A$ by $tr_{n+r}([s_{ij}]) = \sum_i tr(s_{ii})$ we obtain a trace function for $M_{n+r}(S)$ with $tr_{n+r}(1_{n+r}) = (n+r) \cdot tr(1) \neq 0$. Here we have used the fact that $p \nmid n+r$ so that n+r acts injectively on the k-space A. Therefore, $1_{n+r} \notin [M_{n+r}(S), M_{n+r}(S)]$.

On the other hand, in $M_p(k) \subset M_p(\text{End } V_S)$, the identity is a Lie commutator: 1 = [A,B] for $A = \sum_{i=1}^{p-1} iE_{i,i+1}$ and $B = \sum_{i=1}^{p-1} E_{i+1,i}$. This is a contradiction, whence $p \mid \rho(P)$, as asserted.

5. SOME REMARKS.

(a) It is not enough to merely assume that p||G| in the above theorem. For example, if $G = S_4$ is the symmetric group on four letters and S = kG is the group algebra of G over $k = \overline{IF_3} = R$ (so p=3), then S has two simple projective modules (cf. [8, p.166]). Thus the theorem fails for the composition length function ρ .

(b) Examples of rings which satisfy hypothesis (b) of the theorem include local rings and iterated polynomial rings over fields or, more

generally, enveloping algebras of finite-dimensional Lie-algebras ([7, p.122]). Moreover, by the "twisted Grothendieck theorem" [3, Thm. 27], if R is right Noetherian of finite global dimension with (b), then (b) also holds for any skew polynomial or skew Laurent extension of R. It follows from a much more general recent theorem of J. Moody [6] that group rings of torsion-free polycyclic-by-finite groups over Noetherian domains of finite global dimension with (b) also satisfy (b).

(c) Viewing R as a subring of S = R * G via $r \longmapsto r \cdot 1$ (1 = neutral element of G = identity of S), a trace function of R with values in some abelian group A, tr : $R \longrightarrow A$, extends to a trace Tr : $S \longrightarrow A$ exactly if tr is G-invariant, that is tr(r^{X}) = tr(r) holds for all $r \in R, x \in G$. Indeed, if Tr exists then tr(r) = Tr($rx \cdot x^{-1}$) = Tr($x^{-1} \cdot rx$) = tr(r^{X}). Conversely, if tr is G-invariant, then setting $Tr(\Sigma_{x \in G} r_x) = tr(r_1)$ gives the desired extension. Thus hypothesis (c) in the theorem is satisfied precisely if R has a G-invariant trace function which is nonzero for $1 \in R$.

(d) Any (Morita-) equivalence of module categories $mod - S \xrightarrow{\sim} mod - T$, T any ring, induces a commutative diagram

where the vertical maps are the Cartan maps. Therefore, if <u>S</u> satisfies hypotheses (a) - (c) of the theorem, then the conclusion of the theorem also holds for rings <u>T</u> which are Morita equivalent to <u>S</u>. In particular, if ρ : G₀(T) -> Z is Goldie's, reduced rank function for such a ring T, then we must have $p|\rho(T)$ which certainly rules out the case where T is a domain.

ACKNOWLEDGEMENT. The author is supported by the Deutsche Forschungsgemeinschaft / Heisenberg Programm (Lo 261/2-2).

REFERENCES.

- [1] H. BASS: Algebraic K-Theory, Benjamin, New York, 1968.
- [2] A.W. CHATTERS and C.R. HAJARNAVIS: Rings with Chain Conditions, Pitman, London, 1980.
- [3] F.T. FARRELL and W.C. HSIANG: A formula for $K_1(R_{\alpha}[T])$, in: Proc. Symposia in Pure Math., Vol. <u>17</u>, pp.192-218, Amer. Math. Soc., Providence, 1970.
- [4] K.R. GOODEARL: Von Neumann Regular Rings, Pitman, London, 1979.
- [5] M. LORENZ: K₀ of skew group rings and simple Noetherian rings without idempotents, J. London Math. Soc. (2) <u>32</u>, 41-50 (1985).
- [6] J. MOODY: Induction theorems for infinite groups, announcement, 1986.
- [7] D. QUILLEN: Higher algebraic K-theory I, in: Lecture Notes in Math., Vol.341, pp.85-147, Springer-Verlag, Berlin 1973.
- [8] J.P. SERRE: Représentations Linéaires des Groupes Finis, 2nd ed., Hermann, Paris, 1971.
- [9] R.G. SWAN: K-Theory of Finite Groups and Orders, Lect. Notes in Math., Vol.149, Springer-Verlag, Berlin, 1970.