FROBENIUS RECIPROCITY AND G SKEW GROUP RINGS

by

Martin LORENZ

```
Max-Planck-Institut
für Mathematik
Gottfried-Claren-Str. }2
5300 Bonn 3
    MPI 86-49
```

FROBENIUS RECIPROCITY AND G_{0}. OF SKEW GROUP RINGS

Martin Lorenz
Max-Planck-Institut fur Mathematik
Gottfried-Claren-Str. 26
D-5300 Bonn 3, Fed. Rep. Germany

The aim of these notes is to generalize the main result of the author's article [5] while also substantially simplifying the $\mathrm{K}_{0}{ }^{-}$ theoretic part of its proof. In particular, the Morita context for group actions that played a central role in [5] doesn't occur here and is replaced by a suitable version of Frobenius reciprocity.

Our notations and conventions follow [5]. All modules will be right modules. Further assumptions will be introduced as we go along.

1. DIAGONAL ACTIONS ON TENSOR PRODUCTS.

Let $R_{i}(i=1,2)$ be algebras over some commutative ring k and let G be a group acting on each R_{i} by k-algebra automorphisms. The corresponding skew group rings will be denoted by $S_{i}=R_{i} * G$. They are k-algebras, hence we can form the k-algebra $S_{1} \otimes_{k} S_{2}$. Indeed, $S_{1} \otimes_{k} S_{2}$ is isomorphic to the skew group ring of $G \times G$ over $R_{1} \otimes_{k} R_{2}$ with respect to the obvious action of $G \times G$ on $R_{1} \otimes_{k} R_{2}$. The maps $R_{1} \longrightarrow R_{1} \otimes_{k} R_{2}, r \longmapsto r \otimes 1$, and $G \longrightarrow G \times G, g \longmapsto(g, g)$, give rise to a k-algebra map $\mu_{1}: S_{1} \longrightarrow S_{1} \otimes_{k} S_{2}$. Explicitiy, μ_{1} is gi.ven by

$$
\mu_{1}\left(\sum_{g \in G} r_{g} g\right)=\sum_{g \in G} r_{g} g \otimes g,
$$

and $\mu_{2}: S_{2} \longrightarrow S_{1} \otimes_{k} S_{2}$ is defined similarly.
Now let V_{i} be s_{i}-modules $(i=1,2)$. Then $V_{1} \otimes_{k} V_{2}$ is a module over $S_{1} \otimes_{k} S_{2}$ in the usual fashion, and hence via μ_{i} a module over each S_{i}. Specifically we have for S_{1}, say,

$$
\left(v_{1} \otimes v_{2}\right) r_{1} g=v_{1} r_{1} g \otimes v_{2} g \quad\left(v_{i} \in v_{i}, r_{1} \in R_{1}, g \in G\right)
$$

2. FROBENIUS RECIPROCITY.

Let H be a subgroup of G and let $T_{i}=R_{i} * H \subseteq S_{i}$ be the corresponding skew group rings. If V is an S_{1}-module and W is a T_{2}-module, then

$$
\mathrm{V} \otimes_{k}\left(\mathrm{~W} \otimes_{\mathrm{T}_{2}} \mathrm{~S}_{2}\right) \cong\left(\left.\mathrm{V}\right|_{\mathrm{T}_{1}} \otimes_{k} \mathrm{~W}\right) \otimes_{\mathrm{T}_{\mathrm{i}}} \mathrm{~S}_{\mathrm{i}}
$$

as S_{i}-modules $(i=1,2)$, with the diagonal module operations on tensor products over k, as defined in Section 1.

PROOF. The k-linear map $W \longrightarrow W \otimes_{T_{2}} S_{2}, w \longmapsto w \otimes 1$, yields a k-linear map $V \otimes_{k} W \longrightarrow V \otimes_{k}\left(W \otimes_{T_{2}} S_{2}\right), V \otimes W \longmapsto V \otimes(w \otimes 1)$. This map is linear over $T_{1} \otimes_{k} T_{2}$:

$$
\begin{aligned}
& (v \otimes w)\left(r_{1} h_{1} \otimes r_{2} h_{2}\right)=v r_{1} h_{1} \otimes w r_{2} h_{2} \longmapsto v r_{1} h_{1} \otimes\left(w r_{2} h_{2} \otimes 1\right)= \\
= & v r_{1} h_{1} \otimes(w \otimes 1) r_{2} h_{2}=(v \otimes(w \otimes 1))\left(r_{1} h_{1} \otimes r_{2} h_{2}\right) .
\end{aligned}
$$

Therefore, this map is linear over each T_{i} (acting via μ_{i}). Since $\mathrm{V} \otimes_{k}\left(\mathrm{~W} \otimes_{\mathrm{T}_{2}} \mathrm{~S}_{2}\right)$ is a module over S_{i}, we obtain S_{i}-linear maps

$$
\begin{aligned}
& \varphi_{i}:\left(\left.\mathrm{v}\right|_{\mathrm{T}_{1}} \otimes_{k} \mathrm{~W}\right) \otimes_{\mathrm{T}_{\mathrm{i}}} \mathrm{~S}_{\mathrm{i}} \longrightarrow \mathrm{~V} \otimes_{k}\left(\mathrm{~W} \otimes_{\mathrm{T}_{2}} \mathrm{~S}_{2}\right) \\
&(\mathrm{v} \otimes \mathrm{w}) \otimes \mathrm{s} \longmapsto(\mathrm{v} \otimes(\mathrm{w} \otimes 1)) \cdot \mathrm{s} .
\end{aligned}
$$

In particular, we have for $i=1,2$:

$$
\varphi_{i}((v \otimes w) \otimes g)=v g \otimes(w \otimes g) \quad(v \in V, w \in W, g \in G)
$$

Note that, as modules over the group algebra $k G \subseteq S_{i}$, we have

$$
\left.\left(\mathrm{V} \otimes_{k} \mathrm{~W}\right) \otimes_{\mathrm{T}_{\mathrm{i}}} \mathrm{~S}_{\mathrm{i}}\right|_{k G} \cong\left(\mathrm{~V} \otimes_{k} \mathrm{~W}\right) \otimes_{k \mathrm{H}} k G
$$

and

$$
\left.\mathrm{V} \otimes_{k}\left(\mathrm{~W} \otimes_{\mathrm{T}_{2}} \mathrm{~S}_{2}\right)\right|_{k \mathrm{G}} \approx \mathrm{~V} \otimes_{k}\left(\mathrm{~W} \otimes_{k \mathrm{H}} k \mathrm{G}\right)
$$

Moreover, the map φ_{i} is the usual Frobenius reciprocity isomorphism between the modules on the right hand sides. Hence, in particular, it is bijective (cf. e.g. [9, Thm.2.2 on p.15]).
3. G_{0} and K_{0} -

From now on, we assume that $R_{2}=k$ is a field and that the group G is finite. We will write $R_{1}=R$ and $\dot{S}=R * G$. Our goal is to study the Grothendieck groups $G_{0}(S)$ and $K_{0}(S)$ of fin.gen. S-modules, resp. fin.gen. projective S-modules, and their analogs for R and $k G$. Henceforth, we will implicitly assume that S, or equivalently \underline{R}, is right Noetherian so that $G_{0}(S)$ and $G_{0}(R)$ are defined.
$G_{0}(k G)$ is a commutative ring with 1 , with multiplication afforded by \otimes_{k} and $1=[k]$, k the "trivial" $k G$-module. Clearly, if w is a kG-module then (.) $\otimes_{k} W$ transforms exact sequences of $s-m o d u l e s$ into exact sequences of S-modules, where S operates via
$\mu=\mu_{1}: S \rightarrow S \otimes_{k} k G$. Moreover, if W is fin.gen. over $k G$ and V is fin.gen. over S then $V \otimes_{k} W$ is also fin.gen. over S. Therefore, $[V] \longmapsto\left[V \otimes_{k} W\right]$ yields an endomorphism of $G_{0}(S)$. It is easy to check that setting

$$
[V] \cdot[W]:=\left[V \otimes_{k} W\right]
$$

we obtain a well-defined module action of $G_{0}(k G)$ on $G_{0}(S):\left[V \otimes_{k} W\right]$ depends only on the class [W] of W in $G_{0}(k G)$, $V_{1} \otimes_{k}\left(W_{1} \otimes_{k} W_{2}\right) \cong\left(V \otimes_{k} W_{1}\right) \otimes_{k} W_{2}$ holds for all $k G-m o d u l e s W_{i}$, and $\mathrm{V} \otimes_{k} k \cong \mathrm{~V}$ as S -modules.

The same definitions also make $K_{0}(S)$ a module over $G_{0}(k G)$. For this, one has to check that if V is fin.gen. projective over S then so is $V \otimes_{k} W$, for any fin.gen. $k G$ module W. It suffices to do this for $V=S$: Using Frobenius reciprocity with $H=<1>$ we get

$$
S \otimes_{k} W=\left(R \otimes_{R} S\right) \otimes_{k} W \cong\left(R \otimes_{k} W\right) \otimes_{R} S \cong R^{\text {dim }} k^{W} \otimes_{R} S \cong S^{\text {dim } k^{W}}
$$

as required. - The canonical Cartan map $c: K_{0}(S) \longrightarrow G_{0}(S)$ is a $G_{0}(k G)$-module homomorphism.

LEMMA 1. The map $\operatorname{Ind}_{R}^{S} \circ \operatorname{Res}_{R}^{S}: G_{0}(S) \rightarrow G_{0}(R) \longrightarrow G_{0}(S)$ is multiplication by $[k G] \in G_{0}(k G)$ on $G_{0}(S)$. The same also holds for K_{0} instead of G_{0}.

PROOF. If V is a fin.gen. S-module then, using Frobenius reciprocity with $H=\langle 1\rangle$, we otain

$$
\operatorname{Ind}_{\mathrm{R}}^{\mathrm{S}} \circ \operatorname{Res}_{\mathrm{R}}^{\mathrm{S}}(\mathrm{~V})=\mathrm{V} \otimes_{\mathrm{R}} \mathrm{~S}=\left(\mathrm{V} \otimes_{k} k\right) \otimes_{\mathrm{R}} \mathrm{~S} \cong \mathrm{~V} \otimes_{k}\left(k \otimes_{k} k G\right) \cong \mathrm{V} \otimes_{k} k G
$$

which proves the lemma.

We note one particular consequence of the lemma that will be used in the next section: The ring R becomes an S-module via the obvious isomorphism

$$
\left(\sum_{x \in G} x\right) S=\left(\sum_{x \in G} x\right) R \cong R
$$

Clearly, $\quad \operatorname{Ind} R_{R}^{S} \operatorname{Res}_{R}^{S}\left(R_{S}\right)=\operatorname{Ind} R_{R}\left(R_{R}\right)=S_{S}$, and so the lemma implies the following

CORROLARY. $[S]=\left[R_{S}\right] \cdot[k G]$ holds in $G_{0}(S)$.
4. p -GROUPS IN CHARACTERISTIC p.

If char $k=p>0$ and G_{p} is a sylow p-subgroup of G, then $G_{0}\left(k G_{p}\right)=\left\langle[k]>\cong Z\right.$ and, in particular, $\left.\quad\left[k G_{p}\right]=\right| G_{p} \mid \cdot[k]$. Therefore, in $G_{0}(k G)$ we have $[k G]=I_{p} \mid \cdot \operatorname{Ind}_{k G_{p}}^{k G_{p}}[k]$, and the above
corollary gives

$$
[S]=\left|G_{\mathrm{p}}\right| \cdot\left[R_{S}\right] \cdot \operatorname{Ind}_{k G_{\mathrm{P}}}^{k G}[k]
$$

in $G_{0}(S)$. The following lemma is now obvious.

LEMMA 2. Let char $k=p>0$ and let G_{p} be a sylow p-subgroup of G. Then, for any homomorphism $\rho: G_{0}(S) \xrightarrow{\longrightarrow}$, we have $\left|G_{p}\right| \rho(S)$.

Here we have written $\rho(S)=\rho([S])$, for simplicity. Perhaps the most commonly used homomorphism $G_{0}(T) \longrightarrow \mathbf{Z}$; for any right Noetherian ring T , is Goldie's reduced rank function (cf. [2, Sect.2]). A quick definition of this function can be given as follows. Let N denote the nilpotent radical of T. Then the canonical inflation (or restriction) $\operatorname{map} G_{0}(T / N) \rightarrow G_{0}(T)$ is an isomorphism ([1, p.454]). Moreover, T / N has an Artinian ring of quotients $Q=Q(T / N)$. The reduced rank function is the composite function

$$
G_{0}(T) \stackrel{\sim}{\sim} G_{0}(T / N) \xrightarrow{. \otimes T / N^{Q}} G_{0}(Q) \xrightarrow{\text { composition }} \xrightarrow{\text { length over } Q} \mathbb{Z}
$$

The following is the main result of this note. It extends [5, Theorem 2.4].

THEOREM. Assume that
(a) char $k=p$ and G is a finite p-group $\neq<1>$,
(b) $K_{0}(R)=\langle[R]\rangle$, that is, all fin.gen. projective R-modules are stable free,
and
(c) $1 \notin[S, S]=\left\{\sum_{i} s_{i} t_{i .}-t_{i} s_{i} \mid s_{i}, t_{i} \in S\right\}$, that is, $S=R * G$ has a trace function which does not vanish on 1 .

Then, for any homomorphism $\rho: G_{0}(S) \rightarrow \mathbf{g}$, one has $p \mid \rho(P)$ for all. fin.gen. projective S-modules P.

PROOF. Let P be a fin.gen. projective S-module with $p \nmid \rho(P)$. By (b), $\left[P_{R}\right]=n$: $[R]$ for some n. After replacing P by $P \oplus S^{m}$ for a suitable m, we may assume that $n \geq 0$. (Use Lemma 2. Actually, $n \geqq 0$ is automatic, since $M_{t}(R)$ is right Noetherian and hence directly finite for all t, cf. [4, Prop. 15.3].) In view of assumption (a), Lemma 1 yields the following equalities in $K_{0}(S)$:

$$
|G| \cdot[P]=\left[P \otimes_{R} S\right]=n \cdot[S]
$$

Applying ρ (or $\rho \circ \dot{C}$ rather) and using the fact that $|G|$ divides $\rho(S)$, by Lemma 2 , we see that n divides $\rho(P)$, so that $p \nmid n$. The equality $|G| \cdot[P]=n \cdot[S]$ in $K_{0}(S)$ says that, for some $r \geq 0$,

$$
P^{|G|} \oplus S^{r} \cong S^{n+r}
$$

We may clearly assume that $p \mid r, ~ s a y ~ r=p r '$. Thus, setting $V=\mathrm{P}^{|\mathrm{G}| / \mathrm{P}} \oplus \mathrm{S}^{\mathrm{r}^{\prime}}$, we have $\mathrm{S}^{\mathrm{n}+\mathrm{r}} \cong \mathrm{V}^{\mathrm{p}}$ and, taking endomorphism rings, we obtain a ring isomorphism

$$
M_{n+r}(S) \cong M_{p}\left(\text { End } V_{S}\right)
$$

By (c), the universal trace tr $: S \rightarrow S /[S, S]=: A$ does not vanish on 1. Defining, as usual, $\operatorname{tr}_{n+r}: M_{n+r}(S) \longrightarrow A$ by $\operatorname{tr}_{n+r}\left(\left[s_{i j}\right]\right)=\sum_{i} \operatorname{tr}\left(s_{i i}\right)$ we obtain a trace function for $M_{n+r}(S)$ with $\operatorname{tr}_{n+r}\left(1_{n+r}\right)=(n+r) \cdot \operatorname{tr}(1) \neq 0$. Here we have used the fact that $p \nmid n+r$ so that $n+r$ acts injectively on the $k-s p a c e ~ A . T h e r e f o r e$, $1_{n+r} \notin\left[M_{n+r}(S), M_{n+r}(S)\right]$.

On the other hand, in $M_{p}(k) \subset M_{p}\left(E n d V_{S}\right)$, the identity is a Lie commutator: $1=[A, B]$ for $A=\sum_{i=1}^{p-1} i E_{i, i+1}$ and $B=\sum_{i=1}^{p-1} E_{i+1, i}$. This is a contradiction, whence $p \mid \rho(P)$, as asserted.

5. SOME REMARKS.

(a) It is not enough to merely assume that $p|l G|$ in the above theorem. For example, if $G=S_{4}$ is the symmetric group on four letters and $S=k G$ is the group algebra of G over $k=\overline{F_{3}}=R \quad(s o p=3)$, then S has two simple projective modules (cf. [8, p.166]). Thus the theorem fails for the composition length function ρ.
(b) Examples of rings which satisfy hypothesis (b) of the theorem include local rings and iterated polynomial rings over fields or, more
generally, enveloping algebras of finite-dimensional Lie-algebras ([7, p.122]). Moreover, by the "twisted Grothendieck theorem" [3, Thm. 27], if R is right Noetherian of finite global dimension with (b), then (b) also holds for any skew polynomial or skew Laurent extension of R. It follows from a much more general recent theorem of J. Moody [6] that group rings of torsion-free polycyclic-by-finite groups over Noetherian domains of finite global dimension with (b) also satisfy (b).
(c) Viewing R as a subring of $S=R * G$ via $r \longmapsto r \cdot 1$ $(1=$ neutral element of $G=$ identity of $S)$, a trace function of R with values in some abelian group $A, \operatorname{tr}: R \rightarrow A$, extends to a trace $\operatorname{Tr}: S \longrightarrow A$ exactly if $t r$ is G-invariant, that is $\operatorname{tr}\left(r^{x}\right)=\operatorname{tr}(r)$ holds for all $r \in R, x \in G$. Indeed, if $T r$ exists then $\operatorname{tr}(r)=\operatorname{Tr}\left(r x \cdot x^{-1}\right)=\operatorname{Tr}\left(x^{-1} \cdot r x\right)=\operatorname{tr}\left(r^{x}\right)$. Conversely, if tr is G-invariant, then setting $\operatorname{Tr}\left(\Sigma_{x \in G} r_{x} x\right)=\operatorname{tr}\left(r_{1}\right)$ gives the desired extension. Thus hypothesis (c) in the theorem is satisfied precisely if \underline{R} has \underline{a} G-invariant trace function which is nonzero for $1 \in \mathrm{R}$.
(d) Any (Morita-) equivalence of module categories
$\bmod -\mathrm{S} \xrightarrow{\sim} \bmod -T, T$ any ring, induces a commutative diagram

where the vertical maps are the Cartan maps. Therefore, if $\underline{\text { S }}$ satisfies hypotheses (a) - (c) of the theorem, then the conclusion of the theorem also holds for rings T which are Morita equivalent to S. In particular, if $\rho: G_{0}(T) \rightarrow \mathbb{Z}$ is Goldie's, reduced rank function for such a ring T, then we must have $p \mid \rho(T)$ which certainly rules out the case where T is a domain.

ACKNOWLEDGEMENT. The author is supported by the Deutsche Forschungsgemeinschaft / Heisenberg Programm (Lo 261/2-2).
[1]
[2]
H. BASS: Algebraic K-Theory, Benjamin, New York, 1968.
A.W. CHATTERS and C.R. HAJARNAVIS: Rings with Chain Conditions, Pj.tman, London, 1980.
F.T. FARRELL and W.C. HSIANG: A formula for $K_{1}\left(R_{\alpha}[T]\right)$, in: Proc. Symposia in Pure Math., Vol. 17, pp.192-218, Amer. Math. Soc., Providence, 1970.

4] K.R. GOODEARL: Von Neumann Regular Rings, Pitman, London, 1979.
M. LORENZ: K_{0} of skew group rings and simple Noetherian rings without idempotents, J. London Math. Soc. (2) 32, 41-50 (1985).
J. MOODY: Induction theorems for infinite groups, announcement, 1986.

7] D. QUILLEN: Higher algebraic K-theory I, in: Lecture Notes in Math., Vol.341, pp.85-147, Springer-Verlag, Berlin 1973.
J.P. SERRE: Représentations Linéaires des Groupes Finis, $2^{\text {nd }}$ ed., Hermann, Paris, 1971.
R.G. SWAN: K-Theory of Finite Groups and Orders, Lect. Notes in Math., Vol.149, Springer-Verlag, Berlin, 1970.

