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The aim of these.notes is to generalize the main result of the

author's article [5] while also substantially simplifying the KO­

theoretic part of its proof. In particular, the Morita context for

group actions that played a central role in [5] doesn't occur here and

is replaeed by a sui~able version of Frobenius reciprocity.

Our notations and conventions follow [5]. All modules will be right

modules. Further assurnptions will be introduced as we go along.

1. DIAGONAL ACTION5 ON TENSOR PRODUCT5.

Let R. (i= 1 ,2) be algebras over same eommutative ring k and
1

let G be a group acting on each R. by k-algebra automorphisms. The
1

corresponding skew group rings will be denoted by S. = R. * G • They
1 1

are k-algebras, henee we eC;ln form the k-algebra 51 <lJ 1z 52 . Indeed,

51 0 1z 52 i 5 isomorphie to the skew 9 roup ring of G x G over R1 C1J k R 2
wi th respect to the obvious action of G·)( G on p. 1 ® Iz R2 . The rnaps

R 1 -> R 1 0 fz R 2 ' r ~> r ~ 1 , and G -> G x G , 9 I-> (g, 9 ) , give r i se

to a k-algebra map ~1: 8 1 -> 8 1 ~,(. 52 Explicitly, ~1 is given by

and ~2: 8 2 -> 8 1 «>fz S2 is defined similarly.

Now let V. be .S.-modules (i=1,2) Then V1 1S>h. V2 is a module
1 1

over 51 ~Iz 52 in the usual fashion, and hence via ~. a module over
1

each 5. e 5pecifieally we have for 51 , say,
1

(v. EV.,r
1

ER
1

,QEG)
11-
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2. FROBENIU5 RECIPROCITY.

Let H be a subgroup of G

corresponding skew group.rings. If

T2-module, then

and let T. = R. *Hc5.
1 1 - 1

V is an 5
1
-module and

be the

W is a

'ZI
T

S.
. 1
1

as S.-modules
1

products over

(i=1,2) , with the diagonal module operations on tensor

k , as defined in Section 1.

PROOF. The tz-linear map \\1 -> W0 T 52 ' w l--> w ~ 1 , yields a
2

k-linear map V fZl fl W -> V<!J 1z (W ~T S2) , v ® W l--> v 0 (w ~ 1) • This map
2

is linear over T 1 ®f<. T2

Therefore, this map is linear over each T. (acting via ~.) Since
1 1

V ~I:!. (W ~T2 S2) is a module over Si' we obtain Si-linear maps

!.p.
1

(v ~ w) ® s 1------> (v ~ (w ~ 1 )) · s

In particular, we have for i=1,2

c.p. ( (v ® w) ~ g) = vg ~ (w «l g)
1

Note that, as modules over the group algebra

(VEV,WEW, gEG)

f:.>. G c 5. , we have
- 1

and
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Moreover, the map ~. is the usual Frobenius reciprocity isomorphism
J.

between the modules on the right hand sides. Hence, in particular, it

is bijective (cf. e.g. [9, Thm.2.2 on p.15]).

•

From now on, we assume that R2 = k is a field and that the group

G is finite. We will write R1 = Rand S = R * G . Our goal is to

study the Grothendieck groups GO(S) and KO(S) of fin.gen. S-modules,

resp. fin.gen. projective S-modules, and their analogs for Rand

kG . Henceforth, we will implicitly assume that ~, or equivalentlv

R , is right Noetherian so that GO(S) and GO(R) are defined.

GO(RG) is a commutative ring with 1, with multiplication afforded

by 0
k

and 1 = [Il], /{. the "trivial" I{.G-module. Clearly, if W 'is

a kG-module then (.) ~kW transforms exact sequences of S-modules into

exact sequences of S-modules, where S operates via

J..1 = 1J. 1 : S -> SOll flG • Moreover, if \"1 is fin .gen. over kG and V

is fin.gen. over S then V~/~ VJ is also fin.gen. over S • Therefore,

[v] ~> [v ®Il W] yields an endornorphism of GO (8) • It is easy to check

that setting

[ V] • [W] : = [V ~ Il W]

we obtain a well-defined module action of GO(kG) on

depends only on the class [W] of W in GO(kG)

V 1 @fl (W1 ~/{. W2 ) ::: (V~fl ~'l;) 0 k W2 holds for all kG-modules

V ~ k. fl ::: V as S-modules.

W. , and
J.

The same definitions also make KO(S) a module over GO (/lG)

For this, one has to check that if V is fin.gen. projective over S

then so is V CXl k W , for any fin.gen. hG-module W . It suffices ta da

this for V = S : Using Frabenius recipracity with H = <1> we get
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as required. - The can9nical Cartan map c : KO(5) --> GO(5) is a

Go (QG)-module homomorphism.

5 5
LEMMA 1. The map Ind R 0 Res R : GO (5) -> GO (R) -> GO (5) is

mu 1 t i plica t ion b y [ fz G] EGO (h G) 0 n GO (S ) . The 5 a me also hol d 5 f 0 r

KO instead of GO .

PROOF. If V is a fin.gen. S-module then, using Frobenius reci­

procity with H = <1> , we otain

which proves the lemma.

•

We note one particular consequence of the lemma that will be used in

the next section: The ring R becomes an S-module via the obvious

isomorphism

5 5Clearly, Ind
R

0 Res
R

(R
S

)

the following

and so the lemma implies

CORROLARY. holds in GO(S)

4. p-GROUPS IN CHARACTERISTIC P .

If char fz = p > 0 and G is a Sy low p-subgr.oup of G , then
p

GO (lzGp ) = < [ I~] > == Z and, in particular, [ke:; ] = IG I [ Q] . There-
p p

fore, in GO (/zG) we have [IzG] = IGpl . Indf<~G [ Iz. ] , and the aboveflG
corollary gives p

[s]
f~G

= IGI· [R ] . Ind r~G [h]
p S P



- 5 -

in GO(S) . The following lemma is now obvious.

LEMMA 2. Let char 1<. :::: p > 0

af G. Then, for any homomorphism

I Gp I IP (5)

and let G be a Sylow p-subgroup
p

p : GO(S) --> Z , we have

•

Here we have written p(S) :::: p([S)) , for simplicity. Perhaps the most

co~monly used homomorphism GO(T) --> Z ,. for any right Noetherian ring

T , is Goldie's reduced rank function (cf. [2, Sect.2]). A quick defi­

nition of this function can be given as foliows. Let N denote the

nilpotent radical of T . Then the canonical inflation (ar restrietion)

map GO(T/N) --> GO(T) is an isomarphism ([1, p.454]). Moreover, TIN

has an Artinian ring of quotients Q:::: Q(T/N) . The reduced rank func­

tion is the composite function

composition
length over Q :> Z

The following is the main result of this note. It extends

[5, Theorem 2.4].

THEOREM. Assume that

(a) char fz :::: p and G is a fini te p-group· f. <1>

(b) KO(R):::: <[R]> , that is, all fin.gen. projective R-modules

are stable. free,

and (c) 1 rt. [S, S] :::: {L:. s . t. - t, s. I s, ,t. ES} , tha t i s , S:::: R * G
1111111

has a trace function which does not vanish on 1 .

Then, for any homomorphism p : GO(S) -> X , one has plp(p) for all

fin.gen. projective S-modules P.

PROOF. Let P be a fin. gen. projective S-module wi th p ~ p (P)

By (b), [P]:::: n · [R] for same n . After replacing P by P e SmR .
for a suitable rn, we rnay assume that TI;;;: 0 • (Use Lemma 2. Actually,

n~ 0 is automatic, since Mt(R) is right Noetherian and hence direct­

ly finite for all t, cf. [4, Prop. 15.3].) In view of assumption (a),

Lemma 1 yields the following equalities in KO(S)
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I GI· [p] = [p ~R 5] ; n· [5]

Applying p (ar p 0 c rather) and using the fact that IGI divides

p (5) , by Lemma 2, we see that n divides p (P) so that p t n . The

equality lGI· [P] ; n· [5] in K
O

(5) says that, for some r ~ 0

We may clearly assurne that

V = plGl/p ~ Sr' h
U' , we ave

we obtain a ring isornorphism

p Ir, say r; pr' . Thus, setting

Sn+r ;: vP and, taking endomorphisrn rings,

M (S) e Mp(End Vs)n+r

By (e), the universal traee tr: S --> 8/[S,8] ;: A does not vanish

on 1. Defining, as usual, tr : M (8) --> A byn+r n+r
tr ([s .. ]); '.tr(s .. ) we obtain a trace funetion for M (8) withn+r 1J 1..1 11 n+r

tr (1 ) = (n+r) · tr (1) 1- 0 • Here we have used the fact that p t n+rn+r n+r
so that . n+r acts injeetively on the ~-spaee A • Therefore,

1n +r e [Mn +r (8) , Mn +r (S)] •

On the other hand, in

eomrnutator: 1; [A,B] for

M (fz) c M (End V
S

)
P P

- LP- 1 .A - . 1 1E. , 11; 1,1+

, the identity is a Lie

and B; Ll:~ E i + 1 ,i

This is a eontradietion, whenee plp(p) , as asserted.

•

5. SOME REMARKS.

(a) It is not enough to rnerely assume that pl.IGl in the above

theorem., For exarnple, if G; 8 4 is the symmetrie group on four letters

and S; IzGis t h e 9 r 0 up al ge br a 0 f G 0 ve r fz;;;; lF 3 ; R (so p; 3) ,

then S has two simple projeetive modules (ef. [8, p.166]). Thus the

theorem fails for the eomposition length function p .

(b) Exarnples of rings whieh satisfy hypothesis (b) of the theorem

include Ioeal rings and iterated polynornial rings over fields or, more
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generally, enveloping algebras of finite-dimensional Lie-algebras

([7, p.122]). Horeover, by the "twisted Grothendieck theorem ll [3, Thm.

27], if R is right Noetherian of finite global dimension with (b),

then (b) also holds for a~y skew polynomial or skew Laurent extension

of R. It follows fram a much more general recent theorem of J. 'Moody

[6] that group rings of torsion-free polycyclic-by-finite groups over

Noetherian domains of finite global dimension with (b) also satisfy (b).

(c) Viewing R as a subring of S::; R * G via r ~> r . 1

(1 ::; neutral element of G = identity af S), a trace function of R

with values in some abelian group A, tr: R --> A , extends to a

trace Tr: S --> A exactly if tr is G-invariant, that is

tr (rx ) = tr (r) holds for all r ER, x f G . Indeed, if Tr exists

then tr(r) ::; Tr(rx· x- 1 ) = Tr(x- 1 · rx) = tr(rx ) . Canversely, if tr

is G-invariant, then setting Tr(LXEGrXx) = tr(r 1 ) gives the desired

extension. Thus hypothesis lEl in the theorem is satisfied precisely if

R has a G-invariant trace function which is nanzero for 1 ER .

(d) Any (Morita-) equivalence of module categories

mod - S ~> mod - T , T any ring, induces a cornmutative diagram

~> GO (T)

i
-~> KO(T)

where the vertical rnaps are the Cartan maps. Therefore, if S satisfies

hypotheses ~ - lEl of the theorem, then the conclusion of the theorem

also holds for rings .;:. which ~ Horita eguivalent to S . In parti­

cular, if p : GO(T) --> ~ is Goldie's, reduced rank ~unction for such

a ring T, then we must have plp(T) which certainly rules out the

case where T is a domain.
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