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The aim of these notes is to generalize the main result of the
author's article [5] while also substantially simplifying the Ky
theoretic part of its proof. In particular, the Morita context for
group actions that played a central role in [5] doesn't occur here and

is replaced by a suitable version of Frobenius reciprocity.

Our notations and conventions follow [5]. All modules will be right

modules. Further assumptions will be introduced as we go along.

1. DIAGONAL ACTIONS ON TENSOR PRODUCTS.

Let R, (i=1,2) be algebras over some commutative ring £k and
let G be a group acting on each Ry by k-algebra automorphisms. The
corresponding skew group rings will be denoted by Si = Ri*-G . They
1% S2 Indeed,

S1 ®k52 is isomorphic to the skew group ring of Gx G over R1cﬂ2R2

are k-algebras, hence we can form the k-algebra S

with respect to the obvious action of G xG on IH @k_Rz . The maps

R1 —_> R1®kR2 , thb—>re®l1l , and G —> GxG , g |I—> (g,g) , give rise

to a k-algebra map p,:8, —> S, & S, . Explicitly, h, is given by
U1(zg€G rgg> = ngG rg geg ’

and o 82 —_—> S1 ®, S, 1is defined similarly.

Now let Vi be Si*modu1es {i=1,2) . Then \H QPVZ is a module
over S1 oh:SZ in the usual fashion, and hence via by a module over
each Si . Specifically we have for S1 , say,

(v1®v2)r1g=v1r1g®v2g (ViEVi’r1_€ R1,gEG)



2. FROBENIUS RECIPROCITY.

Let H be a subgroup of G and let Ti = Ri*HSSi be the

corresponding skew group .rings. If V is an S,l-module and W 1is a

Tz-module, then

1

V@j(W@ S) (V‘ ® W)@ S.
f T2 2 'I‘1 k Ti 1

as Si—modules (i=1,2) , with the diagonal module operations on tensor

products over k , as defined in Section 1.

PROOF, The hk-linear map W —> W@T 82 y WhH> woe 1 , yields a

k-linear map V@nfaw —> Vo, (W®T 52} , Vew —> ve (we 1) . This map

is linear over T @kT 2

1 2

(v ow) (r1h1 @rzhz) =vr1h1 ®Wr2h2 —> vr1h1 ® (wr2h2 ® 1) =

= Vr1h1 ® (w®1}r2h2 = (ve (we 1)) (r,lh1 ®r2h2)
Therefore, this map is linear over each 'I‘i (acting via ui) . Since
Ve, (We 5.,) is a module over S. , we obtain S,-linear maps
f2 T, 2 i i

oo (ol o) o

§; —™> Ve, (W B 52)
i 2

(voew)es b———> (ve (Wwe 1))} « s

In particular, we have for i=1,2

¢, ((vew) ®g) = vge (weg) (veVv,weW, gegG)
Note that, as modules over the group algebra kGg Si , we have
(V e, W) ®, S, g (V ®, W) o, kG
i kG

and



Y ®, (W ®T2 Sz> 5V o, (W GfaH !ZG)

kG

Moreover, the map @ ‘1s the usual Frobenius reciprocity isomorphism
between the modules on the right hand sides. Hence, in particular, it

is bijective (cf. e.g. [9, Thm.2.2 on p.15]).

3. GO and K0—$
From now on, we assume that R, = k is a field and that the group
G is finite. We will write R, = R and S =R*G . Our goal is to

study the Grothendieck groups GO(S) and KO(S} of fin.gen. S-modules,

resp. fin.gen. projective S-modules, and their analogs for R and

kG . Henceforth, we will implicitly assume that S , or equivalently
R , is right Noetherian so that GO(S) and GO(R) are defined.

GO(hG) is a commutative ring with 1, with multiplication afforded
by ®, and 1 = [k] , k the "trivial" ijmodule. Clearly, if W 1is
a kG-module then (.} @hvl transforms exact sequences of S-modules into
exact sequences of S-modules, where S operates via

b= By S —> Se®, kG . Moreover, if W 1is fin;gen. over kG and V

7}

is fin.gen. over S then v«ﬂ‘w is also fin.gen. over § . Therefore,
(V] —> [\fektv] yields an endomorphism of GO(S) . It is easy to check

that setting

(V] » W] := [VcskW]

we obtain a well-defined module action of GO(kG) on G,(8S) : hf@kw]

(
0
depends only on the class [W] of W in GO(kG) ’
V,|®h Hﬁ @hwz)s ﬂJ@htﬁ) @hwz holds for all hG-modules Wi , and

V@h!azv as S-modules.

The same definitions also make KO(S) a module over GO(kG) .
For this, one has to check that if V 1is fin.gen. projective over S
then so is VWskw , for any fin.gen. kG~module W , It suffices to do

this for V = § : Using Frobenius reciprocity with H = <1> we get

dimbw
W)@RS;R @RS =S5

: dimbw
S@hw= (R@RS) ®LW'=- (Re®

/ N



as required. - The canonical Cartan map c : KO(S} —_> GO(S) is a
GO(hG)-module homomoxrphism. )

S S .
LEMMA 1. The map IndR° Resp GO(S) —_> GO(R) —> GO(S) is
multiplication by [kG]EﬁGO(kG) on Gy(S) . The same also holds for

KO instead of G

0

PROOF. If V is a fin.gen. S-module then, using Frobenius reci-
procity with H = <1>

, we otain

5 S _ _ o~ 1 =
IndRo ResR (V) =V ®RS = (V@h k) ®RS = V@h (k ®, kG) = V@k hG ,

which proves the lemma.

We note one particular consequence of the lemma that will be used in

the next section: The ring R becomes an S-module via the obvious
isomorphism

(IxEGX)S = (szGX)R' = R

S S . S _ . . .
Clearly, IndRc»ResR(RS) = IndR(RR) = SS , and so the lemma implies
the following

CORROLARY. [S] = [RS] - [RG] holds in GO(S)

4. p-GROUPS IN CHARACTERISTIC p

If chark= p>0 and Gp is a Sylow p-subgroup of G , then

GO(ka) = <[] >= Z and, ;n particular, [hGp] = IGp!- fk] . There-

fore, in GO(hG) we have [kG] = IGp1 -Indtg [R]l] , and the above
corollary gives p

1 kG

(s] + Indy . [f]

IGPI - [R



in GO(S) . The following lemma is now obvious. “

LEMMA 2. Let chark = p>0 and let Gp be a Sylow p-subgroup
of G . Then, for any homomorphism p : GO(S) —> & , we have
[G_|{p(S)

p P
]

Here we have written o {(S) = p([S]) , for simplicity. Perhaps the most
commonly used homomorphism GO(T) —> Z , for any right Noetherian ring

T , is Goldie's reduced rank function (cf. [2, Sect.2]). A guick defi-
nition of this function can be given as follows. Let N denote the

nilpotent radical of T . Then the canonical inflation (or restriction)
nap GO(T/N) —_ GO(T) is an isomorphism ([1, p.454]). Moreover, T/N
has an Artinian ring of quotients @ = Q(T/N) . The reduced rank func-

tion is the composite function

composition

~ O nQ
Gy (T) > Gy (1/N) —LDs ¢ (o) leneth over @, 4

The following is the main result of this note. It extends
[5, Theorem 2.4].

THEOREM. Assume that

(a) charf = p and ¢ 1is a finite p-group # <1> ’
(b) K, (R) = <[R]> , that is, all fin.gen. projective R-modules
are stable free,
and (c) 1¢(s,s] = {Zisiti-tisi | s,»t; €8}, that is, S = R*G
has a trace function which does not vanish on 1
Then, for any homomorphism p : GO(S) —> % , one has pl|p(P) for all
fin.gen. projective S-modules P .

PROOF. Let P be a fin.gen. projective S-module with p [ p(P)
By (b), [PR] = n f[R] for some n . After replacing P by PeosS”

for a suitable m , we may assume that nz20 . (Use Lemma 2. Actuallyv,
nz 0 1is automatic, since Mt(R) is right Noetherian and hence direct-
ly finite for all t , cf. {4, Prop. 15.3).) In view of assumption (a),

Lemma 1 yields the following eqgualities in KO(S)



IGl«[P] = [P®RS] = n-[S]

Applying p (or peo ¢ rather) and using the fact that |G| divides
p(S) , by Lemma 2, we see that n divides p(P) , so that p/}n . The
equality G| « [P] = n-[S] in KO(S) says that, for some rz0 ,

P|GI o 5T = gN*tT
We may clearly assume that p|r , say r = pr' . Thus, setting
_ LIGl/p r' n+r _ ..p , , |
vV =P e S , we have 8§ =V and, taking endomorphism rings,

we obtain a ring isomorphism

Mn+r(5) = Mp(End vS)
By (c¢), the universal trace tr : S —> S/[S5,S] =+ A does not vanish
on 1. Defining, as usual, tro, f Mn+r(S) —> A Dby
trn+r([sij]) = Zitr(sii) we obtain a trace function for M__ (S) with
tr (1 ,.) = (n+r) - tr(1) # 0 . Here we have used the fact that p f n+r

so that " n+r acts injectively on the k-space A . Therefore,

1n+r ¢ [Mn+r{s)’Mn+r(S)]

On the other hand, in Mp(k)C:Mp{End Vs) , the identity is a Lie

. _ ' - vp-1. - tp-1
commutator: 1 = [A,B] for A zi=1lEi,i+1 and B zi=1Ei+1,i
This is a contradiction, whence plp(P) , as asserted.
B

5. SOME REMARKS.

(a) It is not enough to merely assume that p|lGl in the above

theorem. For example, if G = S4 is the symmetric group on four letters
and S = kG is the group algebra of G over hk = iﬁ; =R (so p-=3),
then S has two simple projective modules (cf. [8, p.166]). Thus the

theorem fails for the composition length function o

{b) Examples of rings which satisfy hypothesis (b) of the theorem
include local rings and iterated polynomial rings over fields or, more



generally, enveloping algebras of finite-dimensional Lie-algebras

([7, p.122]). Moreover, by the "twisted Grothendieck theorem" [3, Thm.
27], if R is right Noetherian of finite global dimension with (b),
then (b) also holds for any skew polynomial or skew Laurent extension
of R . It follows from a much more general recent theorem of J. Moody
[6] that group rings of torsion-free volycyclic-by-finite groups over

Noetherian domains of finite global dimension with (b) also satisfy (b).

(c) Viewing R as a subring of S = R*G via r l—> r -1
(1 = neutral element of G = identity of 8), a trace function of R
with values in some abelian group & , tr : R—> A , extends to a
trace Tr : S —> A exactly if tr 1is G-invariant, that is
tr(rx) = tr{r) holds for all re€R,xeG . Indeed, if Tr exists
then tr(r) = Tr(rx -x_1) = Tr(x_1 « rx) = tr(rx) . Conversely, 1if tr
is G~invariant, then setting Tr(ZxEerx) = tr(r1) gives the desired
extension. Thus hypothesis (c) in the theorem is satisfied precisely if

R has a G-invariant trace function which is nonzero for 1€R

(d) Any (Morita-) equivalence of module categories

mod -S —> mod-T , T any ring, induces a commutative diagram

GO(S) > GO(T)
“ T
KO(S) = KO(T)

where the vertical maps are the Cartan maps. Therefore, if S satisfies

hypotheses (a) - (c) of the theorem, then the conclusion of the theorem

also holds for rings .T which are Morita equivalent to S . In parti-
cular, if p : GO(T) —> Z is Goldie's, reduced rank function for such

a ring T , then we must have p|p(T) which certainly rules out the
case where T is a domain.
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