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§1. Introduction.

The theory of minimal higher dimensional surfaces, especially its main branch -
the Plateau problem, has been intensively developed since in sixties, E.R.Reifen-
berg, H.Federer, W.H.Fleming, E.De Giorgi and F.Almgren proved existence
and almost regularity theorems for solutions of the higher dimensional Plateau
problem (or simply speaking, globally minimal surfaces) in different contexts
of geometric measure theory. After that, the other part of the theory, namely,
construction, classification and study of geometry of globally minimal surfaces
has been developed rapidly . The first non trivial example of globally minimal
surfaces was obtained by H.Federer by showing that every Kahler submanifold
is a globally (homologically) minimal one in its ambient Kahler manifold | Fe
1]. His method of employing the exterior powers of the Kahler form in Kahler
manifolds was been generalized for other Riemannian manifolds in the works
of M.Berger, H.B.Lawson, Dao Trong Thi, R.Harvey and H.B.Lawson ([Be],
[Ln 2], {D], [H-L]). Now, this method is called calibration method and it has
various applications in the study of geometry of globally minimal surfaces as
well as of (locally) minimal surfaces ([DGGW 1], [DGGW 2], [Le 1], [Le 2],
[LM], [Lr],...). The other interesting examples of globally minimal surfaces
was obtained by Fomenko [Fo 1, Le-Fo] using an estimate from below for the
volume of globally minimal surfaces in Riemannian manifolds. His idea came
from the Nevalinna one of using exhaustion function on algebraic manifolds.
His method allows us to construct homological minimal submanifolds when
the coefficient group of homologies may be as finite (Z,) as infinite (Z, R).
Note that the calibration method works only for homology groups with co-
efficients in R. But the Fomenko’s method depending on an estimate which
includes only the injective radius, riemannian curvature of ambient manifold
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and dimension of submanifolds, can not give us so much examples of globally
minimal surfaces. To our knowledge, up to now, all non-trivial examples of
globally minimal surfaces are obtained using the mentioned methods with ex-
eption of some globally minimal hypersurfaces provided with a large symmetry
group such that we can reduce the problem of higher dimension to dimension
2 which can be analysed completely. This reduction method was invented by

H.B.Lawson [Ln 1].

This paper is an attempt to fill the gap between the calibration method and
the Fomenko’s method. A new method may be also called an analog of the
calibration method for discrete coefficients of homology groups (of Riemannian
manifolds). The idea is simple, it also comes from complex geometry. Let
us recall the Crofton-type formula (which has originated in the Probability
Theory [Sa)).

Theorem. [Ch, p.146] Let f : M — P,(C) be a compact holomorphic curve
with or without boundary. Then

s #(f(M)ﬂ’y)d7 = Area(M) (1.1)

where v is a (complex) hyperplane of P,(C), and the space of these ones are
identified with P, equiped with the invariant measure, and #(X) denotes the
number of the connected components of X.

A more detailed analysis show that if we replace a holomorphic curve M by
any (real) two-dimensional surface M’ then the equation (1.1) turns to an
inequation, where the right part is greater than the left one. So, the Crofton-
type formula gives us a new proof of homological minimality of CP! | and
moreover, an estimate for measure of all (complex) hyperplanes meeting with
a fixed holomorphic curve k times (see Equidistribution Theorem [Ch, p.146]
and Theorem 4.1). In fact, some authors have used similar integral formulars
in oder to estimate the volume of 2-dimensional analytical sets in C*, but their
formulars concern only the simplest case of dimension 1 (cf.JK-R] and refer-
ences in that paper). Our idea is a natural generalization of the Crofton-type
formula. Namely, we want to estimate the volume of submanifold N C M by
its intersection number #(N N Ny) where Ny is a family of submanifolds in
M. Since the algebraic intersection number is a homology invariant we hope
to get an estimate from below for the volume of submanifolds realizing a given
cycle. The use of intersection number as a homology invariant explains the
analogy between this method and the calibration method, which essentially
employs another homology invariant - the Stokes formula. But in view of the
Federer’s stability theorem [Fe 2] the relation between these methods proves
to be more intimate, in many cases, the effectiveness of one method leads to
the effectiveness of the other one (see §4). Applying this intersection method
we obtain some old and new examples of globally minimal submanifolds in
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symmetric spaces. In few cases this give us a classification theorem of globally
minimal submanifolds in a certain class (see §3 and §4) and new properties of -
these ones such as equidistribution in measure of globally minimal surfaces.
Other applications of integral geometry to minimal surfaces will appear in
our next paper. This note also includes an appendix which presents a com-
plete proof of the Fomenko’s and the author’s announcement [Le-Fo|. As it is
mentioned above those results are closely related to these in the present note.

§2. General construction and examples.

Let us begin with simplest examples. Fisrt two examples are non-compact
and compact fibrations over Riemannian manifolds.

FEzample 2.1. Let M™ be a Riemannian manifold and T'M its tangent bundle.
Let the Riamanian metric on M be naturally lifted on TM. Then M™ realizes
a nontrivial cycle in the homology group H,,(TM, Z,) and moreover it has the
minimal volume in its homology class [M]. In order to prove it we consider the
compactification =1 of every fiber 77!(z),z € M and denote the resulted
bundle by TM*®. So if M’ is another submanifold in 7'M and realizing a cycle
(M) € H.(TM, Z) then M’ has to meet with every submanifold 7',z € M.
Consequently, the projection = : M’ — M is surjective. It easy to see that
the projection m decreases the volume element (in any dimension not exceed
dim(M) = m). Hence we get the assertion. This example intersesting because
if M is not orientable then H,(T'M,Z) = 0 and the classical calibration
method is not applicable!

Ezamples 2.2. Consider the group U, equipped with the Killing metric. Then
its subgroup S* of all diagonal elements is a homologically minimal subman-
ifold. Indeed, U, is a fibered space over S* : g — det(g) whose fibers are
congruent with the subgroup SU,.. Moreover, these fibers meet S perpendic-
ularly at only one point. We can argue further as in the first example and
conclude that S? is a homologically minimal submanifold in SU,.

Now let us give a general construction, which generally does not depend on fi-
brations (such simple fibrations as the above examples are occured very rarely).
Let us consider a Riemannian manifold M™. Suppose we have a family M of
n-dimensional submanifolds N, C M, y € M . Suppose further that M is a
manifold with an element volume p,. For every X C M denote by Sx C M
the set of all submanifolds IV, passing through the set X. Now we fixe a point
z € M and a k-dimensional subspace V¥ C T,M. Denote by B(z,V,r) the
geodesic ball of radius r in M with its center at = and its tangent space at
equal V. Now define a deformation coefficient cd(z,V) as follows:

Cd(ﬂ:, V) = lim 'UO!(SB(:.'V",))

r—0 vol(S,) - vol(B(z, V,r)) (2.1)



Put o(M)x = maz{cd(z,V¥) |z € M, V¥ C T.M}.

Suppose that o(M)r > 0. Then we get the following theorem.

Theorem 2.1. Let W is a compact k-dimensional submanifold in M. Then
its volume can be estimale from below:

vol(W) 2 o(B);" [ #(W\N,) (2.2)

Proof. 1t is easy to find a finite triangulation W7 on W thatis W = {J; W5 W,N W, =

t)
0 if ¢ # j, and besides, for every i the number of connection components of

W; with any submanifold N, is at most one. So we have:

vol(W) = Zvol(W’f) (2.3)

[ A#WNON)dy =3 [ #W:NW,)dy (24)

With the help of (2.3) and (2.4) Theorem 2.1 can be proved if we show (2.2)
for W¢ instead of W. Hence, in view of our assumption it suffices to prove:

vol(W*) > o (87" [ gy (2.2.¢)
ch
Letting € — 0 we get the infinitesmal version of (2.2.¢):

. vol B(z,T,V,r)
lim
=0 vol Spz1v,)

> (M) (2.2.0)

Obiviously, (2.2.0) follows from (2.1). By integration we obtain (2.2.€). The
proof is complete.

In the example 2.2 the set of subgroups which are congruent with SU, is
diffeomorphic to M = 8§ and o(M); = 1. In the example 2.1 if we exhauste
TM™ by compact bundles T Mg of tangent vectors of length R over M then we
can also get the deformation coefficient (T M),, =1, here the set of tangent
spaces TM is diffeomorphic to M.

Corollary 2.2. Lower bound of the volume of nontrivial cycles in Rieman-
nian manifolds. Suppose N C M is a k-dimensional submanifold realizing a
nontrivial cycle [N] € Hy(M™* G), G = Z or Z;. Let M be a family of
submanifolds N; realizing a nontrivial cycle [N*] € H, (M™% G). Let x be
the (algebraic) inresection number of [N] and [N*]. Then we get:

vol(N) > x - (M) - vol(M)



We note that Theorem 2.1 is still valid for a compact k-dimensional set W
almost everywhere smooth exept singularities of codimension 1. On the other
hand it is well known that homological volume-minimizing cycles are such ones
[Fe 1]. So Corolary 2.2 yields the following criterion for global minimality.

Corollary 2.3. Let N C M be a k-cycle almost everywhere smooth exept
singularities of codimension 1. Suppose that the inequality in Corollary 2.2
turns to an equality for N. Then N is a globally minimal cycle.

In most of our applications we are interesting in cycles of compact homoge-
neous Riemannian spaces. We shall denote () the group multiplication or the
action of a group on homogeneous spaces. Sometime we omit this denotation
(+) if one can not misunderstand. Let M = G/H where H is a compact group
in a compact group G. Let K be another compact subgroup of G. Denote L
the intersection of H and K. We consider the space M of all submanifolds
g+ K/L C G/H which are obtained from K/L by the left shift g,¢ € G.
Obviously, G transitively acts on M and its isotopy group is isomorphic to
the subgroup K. Suppose M = G/H and M = G/K are equipped with
G-invariant metric. The condition under which submanifold y-k/L C M con-
tains a point £ = (g- H)/H € M is the relation y € g- H - K. So we have the
following lemma.

Lemma 2.4. Letz = {gH} € M = G/H. Then the set S; € M = G/K is
the submanifold gH/L.

Let us denote {G the algebra Lie of the group G and so on. Before starting new
Theorem we consider the orthogonal decomposition of the following algebras:

IG= IH®IH® = IK @ IKC®
IK=ILglLX, IH= ILplL”

We identify the tangent space to M = G/H "at the point {eH} with the space
IHS. So the tangent space to its subspace K/L at the same point can be
identified with the orthogonal projection of IL¥ on LHC. For the sake of
simplicity we assume that /L and K/L are totally geodesic submanifolds in
G/K and G/H respectively. This means that, IL¥ C IH® and IL¥ C IK€,
Denote T the orthogonal complement to [L@ILF@IL¥ in IG. Our purpose now
is to compute the deformation coefficient cd(z, V) for £ € M. Without loss of
generality we can assume that z = {eH} = e and then V C I[HY = T. M.

Proposition 2.5. Let k = codim(K/L). Then the k-dimensional deformation
coefficient cd(e, V*) depends only on the H-action orbit passing through the k-
dimensional subspace V* on the space A*(1HC) .

Proof. Let us denote by ezp the exponential map from algebra Lie onto group
Lie and by Ezp the exponential from tangent space to Riemannian manifold.



According to Lemma 2.4 we have Sp(,v,,) = expV(r) - H/L since in this case
{(exzpv)L}/L = Ezpv for v € IL¥. Hence we get:

vol(ezpV(r) - H/L)

cd({eH}, V) = im BT - vol (BapV (7))

(2.5)

We choose an orthonormal basis of vector {v;} in V. Fix a point {zL} € H/L
where z € H C G. The tangent space to expV(r)- H/L at point z is the sum
of the tangent space T,(H/L) and T, (expV (r) - z). Consider the map

p:V — expV(r): z; v — eIpv- T

Its differential dp sends the vector v; to the projection of vector d/dty—oexptv;-
& € T:G on the tangent space T(;x)G/K at the point {zH} since G/K is the
quotient space of the right K-action on G . Denote 0;(z) the resulted vectors.
Then we have T, (ezpV(r) - z) = span(d;,i = 1,n). So (2.5) can be rewritten

as follows :
cd({eH},V) = (vol H/L)™! /H vl TCHTL) A Vi) s (2.6)

where T,(H/L) denotes the normed (N k)-vector associated with T, (H /L),
N-k = dim(H/L), and V, = 9, A ... A 6. Our next aim is to compute %;. Let
us choose an orthonormal basis fi..., fv of the space 1K = T(.x3G/K. The
shift L, : G/K — G/K; {9gK} — z - {gK} sends vector f; to the vector
fi(z) . Obviously, fi(z) is an orthogonal basis of the tangent space T(,x1G/K.

Lemma 2.6. The following relation holds for every 1,j:

< ﬁ.(x),f,(m) > =< U.‘,Ad,,fj > (2.7)

where <, > in the right part denotes the Killing metric in the algebra IG.

Proof.(cf. Lemma 1.1 in [Le 3].) It is easy to see that the left part of (2.7)
equals < z'9;(z), f; >. By the definition of ¥; and taking into account the
Ad_-invariance of the Killing metric we immediately get (2.7).

Let us continue the proof of Proposition 2.5. From (2.7) we obtain that v;(x)
is orthogonal to the tangent space at {H} to H/L. This also means that,

the polyvector z; 71V, collinear to the polyvector T associated with the space
T ClG. So (2. 6) and (2.7) yield

cd({eH},V) = jH <V Ads(T )] de (2.8)



where # denotes any representative of {zL} in H. Clearly, the space T is
invariant under the action Ady, , so Ad,T = T and the value under the integral
in the part of (2.8) does depend only on z. Now (2.8) yields Proposition 2.4
immediately.

Ezample 2.9. Let M = ™ = S0,41/80,, and M = §0,,,/SO0;1 the set of
great (totally geodesic) k-dimensional spheres in S". Here H = SO,, acts on
the Grassmanian Gu_x(T.M) = SO,/S(Or x O transitively. This means
that cd(z,V) is a constant {,_;. Taking into account (2.2.€), (2.2.0) (which
turn to equalities in this case) and (2.3), (2.4) we get:

Proposition 2.7 [Sa). Let V™% be a submanifold in S™. Then its volume can
be computed from the following formula:

vol(V) = ot - // #(V N S¥(2)) (2.9)

where (g = 1/2v0l(S**) - v0l(8$0s41/50k41) 7.

The same formula holds for a submanifold V C RP™ but we should replace
S* by RP*. Further, we note that any projective space RP* meets almost all
projective spaces of complementary dimension at one point (cf. Proposition
3.5). Hence in view of Corollary 2.3 we obtain:

Proposition 2.8. The projective space RP* has the minimal volume in its
homology class [RP*] € Hy(RP™, Z,) = Z,.

This proposition was obtain by Fomenko [Fo 1] using a different method of
geodesic defects.

Ezample 2.4. Let M = CP" = Upy1/(Un x Uh). Then T.CP™ = C™ = R™
and H = U, x U, does not acts on G(R?") transitively. But H acts on the
complex Grassmannian Gi(C™) transitively and H also acts on the Lagrangian
Grassmannian GL(C™) = U, /O, transitively. Hence we get:

Proposition 2.9. a) Crofton type formula. Let V** be a complez manifold in
CP™. Then its volume can be computed from the following formula:

vol(V¥#) = ¢¢ - [ #(VNCP™*(z)) s (2.10)

Un+l /Un—h-lr]

where the constant (¢ does not depend on V.

b) Let V™ be a Lagrangian manifold in CP". Then its volume can be computed
from the following formula:

vol(V") = (& [ #(V\RP™(2)) p= (2.11)

Un41/On41

where the constant (¥ does not depend on V.
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§3. Minimal cycles in Grassmanian manifolds.

We denote Gy R" the Grassmanian of unoriented k-planes through the origin in
R™ and its 2-sheeted covering by G} R*. We denote G,C™ and G H™ the com-
plex Grassmannian and the quaternionic Grassmannian correspondingly. The
question of finding out and classification of globally minimal cycles in Grass-
mannian manifolds has attracted attention of many mathematicians. The first
non-trivial result was obtained by A.T.Fomenko in 1972 using his method of
geodesic defects [Fo 1, Le-Fo] and by M.Berger in the same year using cali-
brations method [Be]. In particular Fomenko proved that that the standardly
embedded real projective space RP' — Gy R", | < n, is globally minimal cy-
cle, and Berger proved that H P* is homologically volume-minimyizing in H P"
if £ < n. Recently H.Gluck, F.Morgan and F.Ziller exploying Euler forms and
theirs ”adjusted powers” as calibration proved that if k = even > 4, then each

GTRF' c GfRM? C ... C G} R¥!

is uniquely volume minimizing in its homolgy class. [G-M-Z]. Tasaki showed
that the same proof implies Gy H™+* is uniquely volume minimizing in its
homology class in G, H™*" for all m , even and odd [T]. In this section using
our method we prove:

Theorem 3.1. The standardly embedded Grassmannian submanifold G (R¥™)
in Gi(R*™), k > 1, has the minimal volume in its homology class of homology
group H.(Gi((R*™), Z,). -

We will show in §4 that this theorem implies the mentioned G-M-Z Theorem.

But the G-M-Z Theorem implies our Theorem only in the case of m = event
because when m = odd, each G} R**™ bounds over the reals in Gff R"*+™.

Theorem 3.2. Classification Theorem. Let M be a volume-minimizing cycle
of non-trivial homology class [Gx(R™**)] € H.(G/(R™"),G) where G = Z or
Z, respectively. Then M must be one of these subgrassmannians.

Proof of Theorem 8.1. We consider the family M = SOp4m/SOi_g4m of ho-
mogeneous subspaces obtained from G;_(R'=*+™) by the action of the group
SO(R'"™) (see §2). According to Lemma 2.3 and formula (2.8) we get:

cd({eS(0; x Op)}, V) = /s onomysioon | < VAT > e

= V, Ad;T . .
so./so,,|< . > | p (3.1)

where T' denotes the normed polyvector associated with the tangent space to
the subspace G%(R**™) at e.



Clearly, the group SO, acts on the tangent space T.Gi(R*™) = R' ® R™
as the sum of m irreducible representations mn; of dimension I. Namely, in
the matrix representation of T.Gj(R'*™) — 80, these irreducible spaces
can be chosen as m columns. Further, we can choose an orthogonal basis
vi,..,0 4= 1,% in T such that v} belongs to j**-column R' ® vj. Denote
T; the polyvector v} A ... A vJ'-‘. Obviously, we have T = Ty A ... AT,,. So,
Ad;T = Ad:Ty A ... A Ad;T,,. Observe that the polyvector Ad:T; belongs to
the j**-column Rf. Straightforward calculation shows that :

| < V,Ad:T > | = |[] < V;, Ad:T; > | (3.2)

1=1
where V; is the orthogonal projection of V in #**-column.
We need the following proposition.
Proposition 3.2. Let fi(z) > 0. Then the following inequality holds:

(f, @) Sma@ o)™ < TT [ ()"

=1

Moreover, the inequality turns to an equality if and only if f;(z)/A; = fi(z)/A;
for every j > 2 and z € M and here A; = [, (fi)™.

Proof. The above inequality probably is well known. For the sake of com-
pleteness we give here a proof. Consider the polynom F(zy,...,zn-1) =
a;z — bxy - ... T 1 + a,,. Here z; > 0 and the coefficients q;,b are pos-
itive. We want to find a relation R(a;,b) which would be a necessary and
sufficient condition for non-negativity of the polynom F. Suppose that F' get
its minimum at z?. Let 29,2, ..., z} be positive and the rest be zeros. So we
get for every ¢ = 1, k the equation:

(OF[8zi)p0 = mag(zd)™ ! — bzl - 23 ...(k)...- 2% _, =0 (3.3)

where 2% = (z9,...,2% _,). Taking into account z% = 0 from (3.3) we obtain
that z2 = 0 for every k. This implies that either F' get its minimum at 0, ...0
or F get its minimum at z° € (R*)™? for which the equation (3.3) holds.

The last one is equivalent to:

b
0 _ 1/(m—1) 0ym—1 43
o= () D (3.4.9)

Hence we obtain;

m-1 m-1
T (22 = 2 ] (a0 (35)

=1 =1



The equations (3.4.1) and (3.5) yield:

1

mjf{m-— b mj\im-— H - - - m—
(22) /(m=1) z(;) /(m=1) H(ak) 1/(m-1) (@) 1/(m-1) (3.6)
k=1

Note that the equation (3.6) has only one solution in (R* N {0})™!. The
value of F' at this solution is

m-1

F(z,..,z2 ) =—(m—1)*- (%)m “J] a7 + am (3.7)

=1
Lemma 3.3. The polynom F takes non-negative values if and only if

(m=-12-0"<m™ []a

=1

Proof. Observe that if one of variables z; is zero or tends to infinity then the
polynom F' takes only positive values. So F' is non-negative if and only if
its value at the critical point (z9,...,2% _,) is non-negative. Now Lemma 3.3
immediately follows from (3.7).

Let us continue the proof of Proposition 3.2. Obviously it suffices to prove the
inequality for f;(z) > 0. We correspond every z € M the function

Fo(z1y.0y 2mm1) = "‘Z_‘; filz) ()™ - a(f[(f,-(:c))]/m)zl c 2yt Zgy + fn(2)

where @ = m - (m — 1)~%™. According to Lemma 3.3 the polynom F, takes

non-negative values on (R*)™!. Hence the polynom
FM(Zl, weny zm—l) = ,[M Fr(zl, reey Zm_]) Bz

also takes non-negative values. Applying Lemma 3.3 again we get the inequal-
ity in Proposition 3.2. Observe that the inequality turns to an equality if and
only if the critical point of Fps is also the critical point of F; for every z € M.
This yields the last assertion of Propostion 3.2.

Let us continue the proof of Theorem 3.1. Applying Proposition 3.2 to (3.2)
we get:

<V,Ad:T > |y < f < Vi, AdsT; >™ DV™ (38
&m| e < (AL [ 0] ) (3.8)
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Observe that the group SO, acts transitively on the Grassmannian of k-planes
in i-column R’ ® v;. Consequently we get

V;’AdiT' " pe = Vi ™ i,Adi-i ™ T
/so,/50~|< >™ | pe = (Vi) /;o,/sok(kT T > )™ u |
(3.9

From (3.1) (3.8) and (3.9) we imply:

edle, V) STLIVA- [ 1< Ty AdsTy > | e (3.10)

=1
Obviously ||Vi]| £ 1 and the equality holds if and only if V. = V; A ... A V,,.
Once again applying Proposition 3.2 to (3.8) we obtain

Proposition 3.4. The deformation coefficient cd(e, V) get its mazimum at Vg
if and only if there exists z € SO, such that Vo = Ad,T.

Now we study the intersection between Grassmannian submanifolds in G;(R'*™).

Proposition 3.5. For almost (in dimension sense) y € M = 8014m/SO01-k4m
space N, = §(G_1(R™*™) meets Gy(R**™) at only one point.

Proof. Geometrically, the embedding Gx(R+™) — G;(R*™) can be de-
scribed as follows:

Gr(R*™) 3 2 — z A vy, € Gy(RH™)

where v;_; denotes the subspace orthogonal to R* in R'. So the intersection
I(y) of the considered Grassmanians consists of those !-subspaces W; such
that:

Wi € (Ge(R*™) A v (YCrok(@ - B ™) Ag-v)  (3.11)

Clearly, the following lemmas yield Proposition 3.5.

Lemma 3.8. The set of all elements y € M such that the dimension of
i - RE R*=* is greater or equal 1 has codimension 1.

Lemma 3.7. If - RENR"* contains only the origin in R*™ then I(y)
contains only one element.

Proof of Lemma 8.6. It suffices to prove that the set of § € SO, of the
above property has codimension greater or equal 1 in SO;,,,. Let § belong
this set, then its entries (we consider § as a matrix) satisfy the equation:

vol(§ - vx Avix) =0 (3.12)

The solution to (3.12) is an algebraic hypersurface in SO,,,,. This completes
the proof.
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Proof of Lemma 8.7. Let W, € I(y). According to (3.11) W, contains both
R'"* and y - RF. By the assumption W; must be their spanning. This yields
the assertion.

Let us complete the proof of Theorem 3.1. Suppose V is a submanifold in
the same homology class of Gx(R¥*™). So V meets every submanifold N, =
7-Gi—x(R'=%t™) at least one time. With the help of Theorem 2.1, Proposition
3.4, Proposition 3.5 we immediately get

vol(V) > vol(G(R*¥™))

that completes the proof.

Proof of Theorem 3.2. Let N be a volume-minimizing cycle in the homology
class [GxR™**]. First we observe that N is almost everywhere smooth and
then we can apply Corollary 2.2 to N. On the other hand , since G, R™**
satisfies the condition in Corollary 2.3, we conclude that the cycle N satis-
fies this condition, too. In particular, we obtain that for almost all z € N
(in dimension sense) the tangent space T, N to N satisfies the condition of
maximal deformation coefficient : cd(z,T,N) = o(M). In view of Proposition
3.4 we obtain that the tangent space T,V is tangent to some subgrassmanian
g-Gx RF+™. Then we can apply Proposition 3.2 [G-M-Z], which states that such
a submanifold must be one of subgrassmannian ¢ - Gy R¥*™. Indeed, Propo-
sition 3.2 [G-M-Z] states for case of grassmanian of oriented planes Gif R*™,
but their grassmannian and our one are locally isometric, so their Proposition
is still valid in our case. This completes the proof of Theorem 3.2.

§4. Properties of M*-minimal cycles.

Let N be a k-cycle in Riemanian manifold M™ provided with a family M~
of submanifolds N} in M realizing a cycle [N]* as in Corollary 2.2. If the
inequality in this corollary for the volume of N turns to an equality we will
call N a M*-minimal cycle. Corollary 2.3 states that a M*-minimal cycle is
homologically volume-minimizing. Homological class [N] € H,(M) of such
a cycle will be called a M*-class. First we show that there is an anolog
of Fquidistribution Theorem for homologically volume-minimizing cycles in a
M~-homological class.

Theorem 4.1. Equidistribution Theorem. Let N' be a homological volume-
minimizing cycle in a M*-homological class. Then the set of Ny C M* such
that #(NXNN') # x is of measure zero. Here x equals the intersection number
of cycles [N] and [N*].

Theorem 4.1 is a trivial consequence of Corollary 2.2. Applying this Theorem
to complex submanifolds in the complex projective manifolds C P™ we obtain
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the following corollary. Recall that H,(CP™, Z) = Z is generated by the
element [C P*].

Corollary 4.2. Let N%* be a complex submanifold realizing element r[C P¥] €
Hyx(CP™, Z). Then the set of (2n—2k)-dimensional projective space CPF~* €
CP™ such that #(CPI "N N?) # r is of measure zero (in the set of all CP}™*
which is diffeomorphic to SU™[SU™* provide with the invariant measure).

Proof. Applying Proposition 2.8.a to the cycle r CP* we get that all ho-
mological classes in H,(CP", Z) are M*-homological classes. The Federer’s
Theorem says that the complex submanifold N is volume minimizing in its
homological class. Hence we infer Corollary 4.2 from Theorem 4.1.

Volume-minimizing cycles in a M*-homological class possess some properties
similar to those of ¢-currents, where ¢ is some calibration on M. First we note
that the cycles under consideration are also M*-minimal. Further the tangent
space to a M*-minimal cycle belongs to a certain distribution of k—planes in
TM. Namely at every point z € M we put

I{z) = {v € Gx(TeM)| cd(z,v) = o(M*)}

Then M*-minimal cycles are integral submanifolds of the distribution I(z)
almost everywehere. Recall that the tangent spaces to a ¢-submanifold belong
to the distribution G4(M) = {v € TM| ¢(v) = 1}.

The similarity between M*-cycle and ¢-currents also appears in the following
theorem.

Theorem 4.3. Let N be a M*-minimal cycle realizing an element in homology
group Hy(M,Z). If M is a compact manifold then N is a ¢-current for some
calibration ¢ on M and the homology class [N] is stable.

Proof. Let us recall the Federer’s Theorem on stability of integral homology
classes.

Theorem. [Fe 2. For every o € Hy(M, G) we put mass(a) = min{volX* C
M| [X*] = a}. Then the following equality holds for « € Hy (M, Z).

Lim mass(na)

lim = = mass(ag)

where ap denotes the image of o under the map Hy(M,Z) — Hy(M,R).

If for some n € Zt we have mass(na)/n = mass(ag) we say that the homol-
ogy class « is stable.

Now assume N be as in Theorem 4.3. We observe that the cycle pN is also a
M*-cycle for all p € Z*. So we get

mass(p[N])/p = mass([N])
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Therefore, according to the Federer’s Theorem [/N] must be a stable class and
N is a volume-minimizing cycle in the class [N])p € H(M, R). It is well known,
that there is a calibration ¢ on M which calibrates N (cf. [D-F], [Le 4}).

Applying Theorem 4.3 to Theorem 3.1 we obtain the following corollary .

Corollary 4.4.[G-M-Z]. If the grassmannian of oriented planes G (RFt™)
realizes a non-trivial element in the homology group Him(GE(R*™), R) with
real coefficients, then G R*™ is a volume-minimizing cycle in its homology
class with real cefficients.

Proof. Obviously, Gy R**™ and its 2-sheeted covering G} R**™ has the same
homolgy groups with real coefficients. By Theorem 4.3 G RF*™ is a volume-
minimizing real current. Its is well known that in this case there exists an
invariants calibration ¢ on G{R"*™ such that ¢ calibrates G R¥t™. It is easy
to see that the lifted calibration ¢* on Gf R™*™ must calibrate G} R*+™ too.
This means that G} R¥+™ is a globally minimal submanifold.

§5. Appendix. Curvature estimate for the growth of globally mini-
mal submanifolds.

In this Appendix we give a complete proof of the Fomenko’s and author’s
announcement [Le-Fo]. In particular, we obtain an estimate for the growth
of the volume of globally minimal surfaces in Riemannian manifolds, new
isoperimetric inequality for globally minimal surfaces, an explicite formula of
the minimal volumes of closed surfaces in symmetric spaces and as a result,
new examples of globally minimal surfaces in these spaces. The technique of
the Fomenko’s method of geodesic defects employed in our proof is very close
to our technique in §2.

5.1. Defect of Riemannian manifolds and the volume of globally minimal sub-
manifolds.

a) Let B.(z) be the ball of radius r in a tangent space 7yM. Recall that
the injective radius R(z) of a Riemannian manifold M at a point z is defined
as follows R(z) = sup{r| ezp : B,(z) — M is a diffeomorphism }. The
injective radius R(M) of M is defined as: R(M) = infem R(z). Now we fixe
a point zo € M. We define k-dimensional deformation coefficient xx(z > o)
as follows (cf.[Fo 2]). Suppose that TI¥~! is a (k-1)-plane through z in the
tangent space Ty M. Denote D*-! the disk of radius ¢ in I1¥~!, and by S, the
disk ezp(D*'). We consider the cone CS, formed by geodesics joining the
vertex zp and the base S,. We put

_ . voliCS,
X(o > a0 0 = iy 20 =2

— - k-1
x(z > zo) = mglg.iMlk(:c, I 1).
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b)Let f(z) be the function which measures the distance between point z € M
and the fixed point z,. We set

Qk(wﬂ) = ’\kq(:cOa R(mﬂ))a
where Ay is the volume of the ball of radius 1 in R* and

a(zo,r) = eap( || (_max xi(z > 20))™ db)
We put
Q= xtl,lé‘i‘:l Qi (o).
The defined value is called the k-th geodesic defect of Riemannian manifold M.
The following theorem was obtained by Fomenko in 1972 {Fo 2].
Theorem 5.1.1. Let X* C M™ is a globally minimal surface. Then the
following inequality holds

volp(X*) > Qi > 0.

85.2. Lower bound for geodesic defects of Riemannian manifolds. New isoperi-
metric tnequalities.

Let the section curvature of manifold M in any 2-plane is not greater then a?

(ee Rorae/-1®R).
Theorem 5.2.1 [Le-Fo]. Lower bound of geodesic defects.
a) If a® > 0 and Ra < 7 then we have:

R
OW(M) > k My a'* f (sinat)t~! dt
]

b) If a®> > 0 and Ra > = then we have:

(M) > vol(S*(r = 1/a))

¢) If a =0 then we have (M) > M\ R
d) If a®* < 0 then we have:

‘ R
Qu(M) > kMg |af'~* / (shlaft)* dt
0
Theorem 5.2.2 [Le-Fo|. Upper bound of the deformation coefficient. Let r be
the distance between = and z,.

a) Ifa® > 0 and r < w/a then we have:
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Jo(sinat)*1dt
(sinar)k-1

Xe(z > z0) £

b) If a = 0 then we have:
Xk(z > z0) <

El

c) If a* < 0 then we have

"(sh|al)*t dt
e >y < B

Theorem 5.2.3 [Le-Fo). Isoperimetric inequality. Assume that X* is a glob-
ally minimal surfaces through a point ¢ € M. Let B,(r) be the geodesic ball
of radius v and centre at x. Denote A*~! the boundary of the intersection
X¥N B,(r) = Xk

a) If a* > 0 and r < min(R, 7 /a) then we have:

vol( A1) sin (ar)k!
vol(XE) — [5(sinat)*-1dt

Consequently, the following inequality holds

vol(A*~1) > k Ay a*~* sin*~!(ar)

b) Ifa =0 and r < R then we have:

vol(A¥1) > k Ay 7*~1 = the volume of the standard k-dimensional sphere S*
of radius 7.

Hence follow the following inequalities:
vol(AXY) > (kr)~! wol(XK) (5.1)
vol(X¥) < (k)TF (As)TF (voly_1 A,)FT (b.2)

c) If a® < 0 then we have:

vol( A¥-1)
vol(XF)

(shla|r)*!
T (shlalt)—T dt

2

Hence we get

vol(A¥1) > k A sh¥1(|alt)/]al*?

The estimates in Theorems 5.2.1 and 5.2.2 are sharp, that is, in many cases
they turn to equalities. Roughly speaking, these theorems tell us that globally
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minimal surfaces tend to a position of "maximal cuvature” in their ambient
manifold. Now we show some consequences of Theorem 5.2.1.

Corollary 5.2.4. If M 1s a compact simply-connected symmetric space of
sectional curvature not greater than a then the volume of any non-trivial cycle
is not less than the volume of k-dimensional sphere of curvature a.

Corollary 5.2.5. The length of a homologically non-trivial loop in a manifold
M 1s not less then the double injective radius of M.

Corollary 5.2.6 Lower bound for the volume of a manifold.
a) If a* > 0 then we get:

R
vol(M™) > n A, a'™" / (sin at)™ ' dt
0

b) Ifa =0, then we get: vol(M™) 2 n A R*
c¢) If a®* < 0 then we get

R
vol(M™) > n A,|al*~" / (shlat)™ dt
0

Remark. The estimate in Corollary 5.2.6 coincides with that one, which is
obtained from Bishop’s theorem [B-C].

Now we infer from Theorems 5.2.2 and 5.2.3 the following consequence on the
growth of the volume of globally minimal surfaces.

Corollary 5.2.8. Let X* be a globally minimal surface in a complete non-
compact Riemannian manifold M of non-positive curvature. Then the function
V(r) = voly Bx(r) grows at least as a polynom of r of degree k, where Bx(r)
is a geodesic ball of radius r in X*. If the curvature of M has an upper bound
strictly less than zero then the function V(r) grows at least as the exponent of
T

Proof of Theorems and Corollaries. Let us write down an explicite formula
for the coefficient xx(z > zo,I15¥71). Suppose A(¢) is the shortest geodesic
curve joining the points zo = A(0) and z = A(r). So, for 0 < ¢t < r point
A(t) is not conjugated with z,. We now consider the case if z = A(r) is not
conjugated with zy (otherwise, we easely get that xi(z > zo) = o0). Choose
an orthonormal basis of vectors Y(r),...,Yi—1(r) in the plane [I*~! ¢ T, M.
(Let us recall that by definition IT¥~! has to be orthogonal to A(r)). We
denote K, the (k-1)-dimensional cubic in II¥~! with the edges pY(r). Then
the formula for deformation coefficient x(z > zo) can be rewritten as follows:

_ . vl (CK
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here we set I~(p =exp K, .
We denote A, the s-geodesic, joining points zo and exp,(sY;(r)). Put

d :
YJ(t) = E.;-[a:o/\i"

Then Yj(t) is an Jacobian vector field with the data Y;(0) = 0 : Y;(r) - the
chosen vector in I1¥71, and besides, for every ¢ we have Y;(t) L A(t). We note
that the tangent plane to the orthogonal section Kt,, of the cone CK, at the
point A(t) possesses the basis of vector Y; (1), .., Yi—1(t). Hence,

vols(Kip) = # (IVa(8) A o A Yeca (D)) + o(6).

This yields

k=1 _ UOI(CKp)
R b S

Jgvoli1 Kipdt  J5 IVA(#) A ... A Yii(2)] dt

=1 - = 5.1
p—d voly—1 K,, |Yi(r) A .. A Yia (7)) 51)
Proof of theorem 5.2.2. Put F(t) = |Yi(?)|- ... - |[Yk=1(t)|. Since [¥i(t) A ... A

Yi-1(t)] £ F(t) and this inequality turns to an equality at t = r, the formula
(5.1) yields
Io Fy)dt

xi(z > 2o, IIF1 ) < F(r)

(5.2)

We need the following lemmas.

Lemma 5.2.9. Suppose F(t) be in (5.2). If for all t and Y; the section cur-
vature S(A(t),Y;(t)) < a2, where a > 0, then the function F(t)/G(t) increases
on the interval [0,7]. Here G(t) = (sin at)¥~'/(sin ar)*!,

Lemma 5.2.10. Suppose the function F(t) and G(t) be in the Lemma 5.2.9.
Then the following inequality holds

BF@dt _ fiGRdt

F(r) G(r)
Proof of Lemma 5.2.9. The Rauch’s comparision Theorem [B-C} states that
the function f;(t) = |Y;(t)|/sinat increases on [0,7]. Hence the function

F(t)/G(t) =TI f; is such a function.

Proof of Lemma 5.2.10. Since the function F(t)/G(2) increases on the interval
[0,7], we get F(z,)G(r) < G(z;)F(r) for every 0 < z; < r. Hence we obtain

2 F(kr/n)G(r) < Z G(kr[n)F(r).

k=0
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Letting n — co we easely infer Lemma 5.2.10 from the above inequality.

Let us continue the proof of Theorem 5.2.2,

Taking into account (5.2) and lemmas 5.2.9, 5.2.10 we get

fJ F(t)dt < Ji(sinat)*1 dt
F(ry — (sinar)+1

Xk(w? Hk_‘) <

The proof of the first part in Theorem 5.2.2 is completed. In the same way

we can prove the rest parts (b) and (c).
Proof of Theorem 5.2.1. Let us recall the definition

Qi(zo,7) = Ak empf max xk(:r > z0))7" dt.

Theorem 5.2.1 (a) yields

el k-1
Q0,7 > Mt ea:p./;) ftsznat) dt

o(sinar)k-ldr

Put
(sinat)* dt

2i(r) = M empf 5 (sma‘r)" ldr’

Clearly , we can infer Theorem 5.2.1(a) from the following identity

Oi(r) = kA a* /Or(sz'n at)¥=1 dt

(5.3)

Proof of Formula (5.8). Put ®;(r) equal the right part in (5.3). We observe
that the functions ®,(r) and ®}(r) satisfy the same differential equation:

®u(r)  _ _ ®i(r) _ Si(sinat)de
(0/0r)®i(r)  (0/0r)®i(r) (sin ar)F-1

Let us consider the limit

lim Pp(r) lim A exp f§ (fo(sinar)F-1dr)~Y(sin at)*~' dt
r0 Di(r) | 0 k Apal=F [T (sin at)*=1 dt

Taking into account the increaseness of the function (ar/sinar)
interval [0, ] where 0 <t < w/a and using Lemma 5.2.10 we obtain

(sinat)*? k-1 k

L(sinar)*1dr = [Srk-1dr t
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Combining (5.5) and (5.6) yields the following inequality

. ®r(r) <l Apexp fy kt~ldt
re di(r) — oo & Apal=Fk [T(sinat)k-1dt

Fix e > 0. Since limy_,o(sinat/at) = 1 > 1 —¢ we get the following inequality.

o, (r) exp fo (kft)dt
< —
im ey S B T o) (o) et
T‘k
= lim ————— = (1 — ¢)'~*

r—0 ‘rk(l —_ 5)“ 1

Since the inequality (5.7) holds for all € > 0 we have

. Bi(r) —k
| < lim(1l — =1
lim gy < lim(1 = e’

On the other hand, applying the inequality sinat < at to (5.5) we get

: k=1 1=k L., —k
b Op(r) > lim A exp( [y (sin ayr) a'FkyFdy
r—0 (I)"( ) r—~0 k )\k fD e -1 dt

Fixed € as above we have

/f (1 — &)(ay)*? dy)r_,c _

Oi(r)
lim > lim ezp( b1 gk 1

r—0 Q¥ (r) r—0

(1
= hmr ea:p(/

— 5 k ! kdy) rk((l-a)"-l—l)

Letting € — 0 we infer from (5.9)

limq’ (r) > lim (- —o* -1
r—0 ‘I)k( ) e—0

Now we obtain from (5.8) and (5.10)

lim ()

=/ 1
D7)

(5.8)

(5.11)

The differential equation (5.4) for ®4(r) and ®j(r) has the same initial data
(5.11). So we get the identity ®; = @, that completes the proof of Theorem

5.2.2 (a).

The rest parts (c), (d) can be proved in the same way. The part (b) follows
from that fact if R > m/a then we have Qx(M) > Qi (zo,7/a) > vol(S*,1/a).

This completes the proof of Theorem 5.2.2.
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Proof of Theorem 5.2.3. We denote C A¥~1 the geodesic cone of base A*~! and
vertex at point z. Since XF is a globally minimal surface and the cone C' A*-!
is homological to X* we have vol(XF) < vol(C A*-'). Hence we conclude

vol( AF1) > vol( Ak-1)
vol(XFY ~ vol(CA%-1) —
) (sinar)s1

> - >
- (9%3’5 Xely > 2))7 2 f5(sinat)k-1dt

(5.12)

(The second inequality in (5.12) is infered from the following formula
vol(CAF 1) = /A,'f-l xk(y > z,l’l:;'l)dy

here HL"'I denotes the tangent space to Aﬁ‘l at y. The third inequality in
(5.12) is a consequence of Theorem 5.2.2(a).)

We infer from (5.12) the following inequality

k-1 k=1

(stnar) (sinar)
> 0
Jo(sinat)k-1dt — #(r) fo(sinat)k-1dt

Combining (5.13) and Theorem 5.1.1(a) yields

vol(C A*=1) > wol(XF)

(5.13)

vol A¥1 > k A a** (sinar)*!

that completes the proof of Theorem 5.2.3(a). The rest parts of Theorem 5.2.3
can be proved in the same way.

Proof of Corollary 5.2.4. It is well known that a compact symmetric simply-
connected space satisfies the relation: Ra = 7. So we get Corollary 5.2.4 from
Theorem 5.2.1.

Proof of Corollary 5.2.5.. Clearly, A, = 2. So we obtain (M) > foldt =
2R.

Proof of Corollary 5.2.6.a. Let dim(M) = m. Then vol(M) 2> Q,,(M). With
the help of (5.3) we obtain 0, (M) > &,(R) = k Mxa'~* fJ(sinat)F~' dt. This
completes the proof Corollary 5.2.6.a. The rest assertions can be proved in
the same way.

5.8. Ezplicit formula for geodesic defect of symmetric spaces. List of globally
minitmal Hegalson’s spheres.

Suppose M is a compact symmetric space. Let us compute the deformation
coefficient associated with fixed point e € M. Without loss of generality we
compute this coefficient at point Ezptz € M where z is a vector in the Cartan
space B of the tangent space IM to M at e. We shall redenote x((Ezprz) =
xx(Ezprz > €).
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Theorem 5.8.1. Let {a;} be the roots systems of symmetric space M with
respect to B. Suppose = is a vector of unile length in B . Without loss of
generality we assume that ay(z) 2 ... 2 op(z) =0 = apyi(z) =

a) If k < p then the following equality holds

Jo sin(an(z)t) - ... - sin(ax(z)t) dt.

(Eﬂ:p?'z) sin al( ) <8N a‘k(.'B)T

b) If k > p then the following inequality holds

Js sin(ey (m)t) o - sin(apoy (z)t)tFP dt
sin(ai(z)r) - ... sin(ap_1(z)r)rk-»

xx(Ezprz) = i

Lemma 5.3.2. Let {v,...,u0x} € M be an orthonormal frame which consist-
ing of the eigenvectors of eigenvalues o?(z), ...,af,(:c), v10,...0 of the operator
ad’. Denote V(t) the prallel vector field along the geodesics Exptx such that
Vi(0) = v; and denote W;(t) the Jacobian vector field along Exptz such that

W;(0) = v;. Then we have the following relation

- if 1 < p then W;(t) = oy(z)™! sin(e(z)) V (1),

- if 1 > p then Wi (t) = tVi(¢).

Proof of Lemma 5.3.2. In the tangent space IM the vector field tv; is a Jaco-
bian field along the ray tz. It is well-known that the vector field dEzpy.(tv;)
is also a Jacobian vector field along the geodesic Fxptz C M [He]. Let us
write an explicit formula for the differential of the exponential mapping at
point z (cf. [He]). We will identify M with the quotient G/ H, moreover, the
tangent space {M with the orthogonal complement to the algebra IH in the
algebra IG. We denote exp the expnential mapping from the algebra to the

group. Then ezptr is an element in G acting on M and we denote dr(ezptz)
the differential of this action. We have

00 42 .
dBopa(tv) = dr(ezpta) 3 L0%(%)

= on+ )
= dr (ezptz) ZO (tho Zn)l 1()_' D" 0 =
= dr(emptm)"it”afzi‘;)t v = Smc(r?i:;)t)(dr(emptm)v;) (5.13)

Now we observe that the parallel vector field V; is obtained from the vector v;
by the shift dr(ezp) along the geodesic Exptz, that is, V;(t) = dr(exptz)v;.
Hence we get Lemma 5.3.2 from (5.13).
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Proof of Theorem 5.8.1. Now we compute the coefficient xx(Ezprz,I1¥71).
We observe that the tangent space T1*~1(¢) to the normal section of the cone
CD*! at the point Ezptz can be respresented as the sum ¥ a,—l’[f'l(t) where
a; are constants and I1¥~! (t) is the basis in the space Ag—1(Tgzpiz M) such that
ITI¥-1(¢) is generated by the orthonormal frame of vectors W;(t) € Tgzpe M.
Using formula (5.1) we get

o Rl T e T (1) de
xe(Ezprz, IIF1) = = ;
#l )= )] > [Ty ()]

Hence we obtain

Ji Iy (1)
I, (r)

Combining Lemma 5.3.2 , Lemma 5.2.9 and Lemma 5.1.10 we get

xk(Ezprz) = max

I IH.f“](tth _ fs sin(en(z)t) - ... - sin(ax(z)t) dt
YO, () sin(ay(z)r) - ... - sin(ag(z)r)

if £ < p. In the same way we can prove the theorem in the case £ > p. The
proof of Theorem 5.3.1 is complete.

Corollary 5.3.3. If M is a symmetric space of rank = 1 ,that is, dim B =1,
then the deformation coefficient xi(Ezprz) depends only on r.

a) For M = S™ (or RP"™) we have xi(r) = [J(sint)*1 dt/(sinr)F1.
b) For M = CP™ we have

ST (sin/2t)(sint)* -2 dt
sin \/2r(sin )22

xi(r) =

¢) For M = HP™ we have

R4 (33n/2t)*(sin t)*—1 dt
lr) (Sin\/ir)l’v(sin I

We immediately obtain the following consequence.

Corollary 5.3.4. [Fo]. For any k < n the standardly embedded space RP™
(and CP™, HP" resp.) has the volume = Qp(RP™) (and Qax(CP™), Qup(HP™)
resp.) and therefore is a globally minimal submanifold.

Let us now compute geodesic defects Qx(RP"), QoxCP", Qi (HP™). Clearly,
Qx(RP™) = vol(S*(1)) can be computed from the following formulas. First
we take integration over parallel section of the unit ball

n/2
A =2X / cos*a da
0
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Taking into account (5.3) we get

x/2
vol S¥(1) = (k 4+ 1)hpyy = 2/\kk'[ sin* lada
0
Hence we obtain the following identity

2k X fg'” sinflada

k+1= 5.14
2k fgwfg cosFtlada (5:14)

We infer from (5.14) the following equation

n/2 /2
_/(; sin"tlada = E%fo sin*lada (5.15)
Using (5.15) we easely get
ok rkok+1
Aok = o Adkg1 = m

Let us compute §,:(CP™) = vol(CP*). Using Corollary 5.3.3 and taking into
account R(CP™) = n/sqrt2 we get

dt _
(sin\/Z_t)(sin t)2k-1 B

w/agrt2
M (CPY) = /\gkea:pfo

- xfagre2
= 2k / " (sinV/3t V) (sin t) 2 dt =
0
1
— 2% A / 21 dz = 72 k!
0
In the same way we compute Qq(HP™) = vol(H P*). We have

dt
sin/2t)3(sin t) -4

n /2
Qu(HP™) = /\4ke:l:p/0 (

/2
= 4k)\4k/ (sinV/2t]V2)3(sint)* 4 dt =
0
1
=22k4k/\ 4k—4 1 — 2 dy =
41:_/0 Y ( y*)dy
=72k 2% 2k + 1)1

Remark. Operator ad? coincides with the Ricci transformation R, : y — R,z
in the tangent space M. Therefore, the deformation coeflicient xx(Ezprz) get
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the maximal value if and only if the plane II¥*~? is an eigenspace with the maxi-
mal eigenvalue of the induced Ricci transformation in the space Ax_1Trzp, - M.
Roughly speaking, the curvature at point Ezprz in direction (rz, [T¥7!) get
the maximal value.

It is well known that in a symply connected irreducible compact symmetric
space M there are totally geodesic spheres of curvature a? where a? is the
upper bound of section curvature on M. Further, any such sphere lies in some
totally geodesic Hegalson’s sphere of maximal dimension i(M). All Hegalson’s
spheres are equivalent under the action of group Iso(M). Moreover they are
of the same curvature a®. Now we immediately get from Corollary 5.2.9 the
following Proposition.

Proposition 5.3.5. If a Hegalson’s sphere S(M) realizes a non-trivial cycle
in a homology group of space M then it is a globally minimal submanifold in

M.

Now we write the list of homologically nontrivial Hegalson’s spheres. This
list can be obtained by analysis the Fomeko’s list of totally geodesic spheres
realizing a non-trivial cycles in symmetric spaces [Fo 2].

1) If M is a symple compact group then i(M) = 3 and S(M) is a group
generated by a root of maximal length.

2) M = SUipm/SUI x SU,, (M) =2

3) M = S0442/5(01 x Oy), (M) =2

4)M = SUZn/Spna 3(M) =9

5)M = Spmin/SpPm X Sp,, (M) = 4 (this sphere is the quaternion projective
space HP').

6) M = S0,,/U,, i(M)y=2

)M = F,;/Sping, i(M) = 8. The global minimality of this sphere was proved
by Fomenko [Fo 1].

8)M = Ad Eg/T" Spinl0,  i(M) = 2.

9 M = AdE;/T" Es, (M) =2.

Remark. In all cases if the dimension of Hegalson’s spheres i(M) =2, the
corresponding symmetric space are Kilerian manifolds, so their Helgason’s
spheres are diifeomorphic to CP!. It would be interesting to find calibrations
which would calibrate the Hegalson’s spheres in 4) and 7). We also conjecture
that all Hegalson’s spheres are M*-minimal submanifolds. Y.Ohnita shows
that any Hegalson’s spheres are stable minimal submanifolds [O].

In conclusion we show a consequence of Theorem 5.2.1 for non-compact sym-
metric spaces. It is well known that the upper bound of section curvature of
these spaces is zero [He].

Corollary 5.3.3. Let X be a flat totally geodesic submanifold in a non-
compact symmelric space M. Then X is a globally minimal submanifold.
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