Automorphisms and derivations of free Poisson algebras in two variables

Leonid Makar-Limanov ${ }^{1}$
Department of Mathematics \& Computer Science, Bar-Ilan University, 52900 Ramat-Gan, Israel and
Department of Mathematics, Wayne State University, Detroit, MI 48202, USA
e-mail:lml@math.wayne.edu
and
Umut Turusbekova, Ualbai Umirbaev
Department of Mathematics, Eurasian National University
Astana, 010008, Kazakhstan
e-mail: umut.math@mail.ru, umirbaev@yahoo.com

Abstract

Let P be a free Poisson algebra in two variables over a field of characteristic zero. We prove that the automorphisms of P are tame and that the locally nilpotent derivations of P are triangulable.

Mathematics Subject Classification (2000): Primary 17B63, 14H37; Secondary 17B40, 17A36, 16W20.

Key words: Poisson algebras, automorphisms, derivations.

1 Introduction

It is well known $[6,9,10,11]$ that the automorphisms of polynomial algebras and free associative algebras in two variables are tame. It was recently proved $[17,18]$ that polynomial algebras and free associative algebras in three variables in the case of characteristic zero have wild automorphisms. P. Cohn [4] proved that the automorphisms of a free Lie algebra with a finite set of generators are tame.

There are many other results, some of them quite deep, known about the structure of polynomial algebras, free associative algebras, and free Lie algebras. Though free Poisson

[^0]algebras are very closely connected with these algebras, only few results are known about them up to now. Say, one of the fundamental results about free associative algebras is the Bergman Centralizer Theorem (see [3]) which says that the centralizer of any nonconstant element is a polynomial algebra on a single variable. An analogue of this theorem for free Poisson algebras in the case of characteristic zero was proved in [12].

The question on the tameness of automorphisms of free Poisson algebras in two variables was open and was formulated in [12, Problem 5]. Note that the Nagata automorphism $[13,17]$ gives an example of a wild automorphism of a free Poisson algebra in three variables.

In [14] R. Rentschler proved that the locally nilpotent derivations of polynomial algebras in two variables over a field of characteristic 0 are triangulable. Using this result he gave a new proof of Jung's Theorem [9] on the tameness of automorphisms of these algebras.

In this paper we study automorphisms and locally nilpotent derivations of free Poisson algebras over a field of characteristic zero. In Section 2 we introduce several gradings of free Poisson algebras and describe some properties of homogeneous derivations of these algebras. In Section 3 we prove that the locally nilpotent derivations of two generated free Poisson algebras are triangulable and the automorphisms of these algebras are tame. These results are analogues of Rentschler's Theorem [14] and Jung's Theorem [9], respectively.

2 Homogeneous derivations

A vector space B over a field k endowed with two bilinear operations $x \cdot y$ (a multiplication) and $\{x, y\}$ (a Poisson bracket) is called a Poisson algebra if B is a commutative associative algebra under $x \cdot y, B$ is a Lie algebra under $\{x, y\}$, and B satisfies the following identity (the Leibniz identity):

$$
\{x, y \cdot z\}=\{x, y\} \cdot z+y \cdot\{x, z\} .
$$

Of course, the Leibniz identity just says that for every $x \in B$ the map

$$
a d_{x}: B \longrightarrow B, \quad(y \mapsto\{x, y\}),
$$

is a derivation of B as an associative algebra.
The map $a d_{x}$ also satisfies another similar identity:

$$
a d_{x}\{y, z\}=\left\{a d_{x}(y), z\right\}+\left\{y, a d_{x}(z)\right\} .
$$

It is just the Jacobi identity for B as a Lie algebra.
Let us call a linear homomorphism D of B to B a derivation of B as a Poisson algebra if it satisfies both the Leibniz and Jacobi identities. In other words, D is simultaneously a derivation of B as an associative algebra and as a Lie algebra.

There are two important classes of Poisson algebras.

1) Symplectic algebras S_{n}. For each n algebra S_{n} is a polynomial algebra $k\left[x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right]$ endowed with the Poisson bracket defined by

$$
\left\{x_{i}, y_{j}\right\}=\delta_{i j}, \quad\left\{x_{i}, x_{j}\right\}=0, \quad\left\{y_{i}, y_{j}\right\}=0
$$

where $\delta_{i j}$ is the Kronecker symbol and $1 \leq i, j \leq n$.
2) Algebras of Lie type. Let g be a Lie algebra with a linear basis $e_{1}, e_{2}, \ldots, e_{k}, \ldots$. The symmetric algebra $S(g)$ of g (i. e. the usual polynomial algebra $\left.k\left[e_{1}, e_{2}, \ldots, e_{k}, \ldots\right]\right)$ endowed with the Poisson bracket defined by

$$
\left\{e_{i}, e_{j}\right\}=\left[e_{i}, e_{j}\right]
$$

for all i, j, where $[x, y]$ is the multiplication of the Lie algebra g is the Poisson algebra of type g.

From now on let g be a free Lie algebra with free (Lie) generators $x_{1}, x_{2}, \ldots, x_{n}$. It is well known (see, for example [15]) that in this case $S(g)$ is a free Poisson algebra on the same set of generators. We denote this algebra by $P=P\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$.

By deg we denote the standard degree function of the homogeneous algebra P, i.e. $\operatorname{deg}\left(x_{i}\right)=1$, where $1 \leq i \leq n$. Note that

$$
\operatorname{deg}\{f, g\}=\operatorname{deg} f+\operatorname{deg} g
$$

if f and g are homogeneous and $\{f, g\} \neq 0$. By $\operatorname{deg}_{x_{i}}$ we denote the degree function on P with respect to x_{i}. We have $\operatorname{deg}_{x_{i}}\left(x_{j}\right)=\delta_{i j}$, where $1 \leq i, j \leq n$. The homogeneous elements of P with respect to $\operatorname{deg}_{x_{i}}$ can be defined in the ordinary way.

If f is homogeneous with respect to each $\operatorname{deg}_{x_{i}}$, where $1 \leq i \leq n$, then f is called multihomogeneous. For every multihomogeneous element $f \in P$ we put

$$
\operatorname{mdeg}(f)=\left(m_{1}, m_{2}, \ldots, m_{n}\right)
$$

where $\operatorname{deg}_{x_{i}} f=m_{i}$ for all i and $1 \leq i \leq n$.
Let us choose a multihomogeneous linear basis

$$
x_{1}, x_{2}, \ldots, x_{n},\left[x_{1}, x_{2}\right], \ldots,\left[x_{1}, x_{n}\right], \ldots,\left[x_{n-1}, x_{n}\right],\left[\left[x_{1}, x_{2}\right], x_{3}\right], \ldots
$$

of the free Lie algebra g and denote the elements of this basis by

$$
\begin{equation*}
e_{1}, e_{2}, \ldots, e_{m}, \ldots \tag{1}
\end{equation*}
$$

Note that

$$
m \operatorname{deg}\left\{e_{i}, e_{j}\right\}=m \operatorname{deg}\left(e_{i}\right)+\operatorname{mdeg}\left(e_{j}\right)
$$

if $i \neq j$. So if $i<j$ then $\left\{e_{i}, e_{j}\right\}$ is a linear combination of e_{m} where all $m>j$.

The algebra $P=P\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$ coincides with the polynomial algebra on the elements (1). Consequently, the words

$$
\begin{equation*}
u=e_{i_{1}} e_{i_{2}} \ldots e_{i_{k}}, \quad i_{1} \leq i_{2} \leq \ldots \leq i_{k} \tag{2}
\end{equation*}
$$

form a linear basis of P. The basis (2) is multihomogeneous since so is (1).
Consider the Lie algebra $\operatorname{Der}(P)$ of all derivations of the Poisson algebra P. For every system of elements $f_{1}, f_{2}, \ldots, f_{n}$ of P denote by

$$
\begin{equation*}
D=\sum_{i=1}^{n} f_{i} \frac{\partial}{\partial x_{i}} \tag{3}
\end{equation*}
$$

a unique derivation of P such that $D\left(x_{i}\right)=f_{i}$ where $1 \leq i \leq n$. Then the derivations

$$
\begin{equation*}
v=u \frac{\partial}{\partial x_{i}} \tag{4}
\end{equation*}
$$

where $1 \leq i \leq n$ and u is an element of (2), constitute a linear basis of $\operatorname{Der}(P)$. For every element v of the form (4) we put

$$
m \operatorname{deg}(v)=\operatorname{mdeg}(u)-\epsilon_{i}
$$

where $\epsilon_{i} \in Z^{n}$ is the standard basis vector with 1 in the i th position and with zeroes everywhere else. Now one can define the multihomogeneous derivations of the algebra P and every element of $\operatorname{Der}(P)$ can be uniquely represented as the sum of multihomogeneous derivations of different multidegrees.

To each nonzero vector $w \in Z^{n}$ we associate the so called w-degree (or weight degree) function $w d e g$ on P and $\operatorname{Der}(P)$. Put

$$
w \operatorname{deg}(u)=<\operatorname{mdeg}(u), w>, \quad w \operatorname{deg}(v)=<m \operatorname{deg}(v), w>
$$

where u and v are elements of the form (2) and (4) respectively, and $<,>$ is the standard inner product in R^{n}. Let P_{m} and $\operatorname{Der}_{m} P$ be the subsets of all w-homogeneous elements of degree m of P and $\operatorname{Der}(P)$, respectively. It is clear that the decompositions

$$
P=\oplus_{m \in Z} P_{m}, \quad \operatorname{Der}(P)=\oplus_{m \in Z} \operatorname{Der}_{m} P
$$

are gradings of the corresponding algebras. Moreover, for every element $d \in D e r_{m} P$ we have

$$
d\left(P_{k}\right) \subseteq P_{m+k}
$$

There is another natural degree function on P, just the total degree on P as a polynomial ring, where the degree is one for all elements of the homogeneous basis (1). Denote it by pdeg and observe that

$$
p d e g[a, b]=p d e g a+p d e g b-1
$$

for any p-homogeneous $a, b \in P$ if $[a, b] \neq 0$.
If v is an element of the form (4) then we put

$$
p d e g v=p d e g u-1 .
$$

Let P_{m}^{*} and $\operatorname{Der} r_{m}^{*} P$ be the subsets of all p-homogeneous elements of degree m of P and $\operatorname{Der}(P)$, respectively. It is again clear that the decompositions

$$
P=\oplus_{m \in Z} P_{m}^{*}, \quad \operatorname{Der}(P)=\oplus_{m \in Z} \operatorname{Der}_{m}^{*} P
$$

are gradings of the corresponding algebras and that for every element $d \in D e r_{m}^{*} P$ we have

$$
d\left(P_{k}^{*}\right) \subseteq P_{m+k}^{*}
$$

Recall that a derivation D of an algebra R is called locally nilpotent if for every $a \in R$ there exists a natural number $m=m(a)$ such that $D^{m}(a)=0$. The statement of the next proposition is well known (see, for example [8, Proposition 5.1.15]).

Proposition 1 Let $R=\oplus_{m \in Z} R_{m}$ be a graded algebra and suppose D be a locally nilpotent derivation of R such that

$$
D=D_{p}+D_{p+1}+\ldots+D_{q}, \quad D_{i}\left(R_{m}\right) \subseteq R_{i+m}, \quad p \leq i \leq q, \quad D_{q} \neq 0 .
$$

Then D_{q} is locally nilpotent.
Proof. If

$$
f=f_{r}+f_{r+1}+\ldots+f_{s} \in R
$$

where $f_{i} \in R_{i}, r \leq i \leq s$, and $f_{s} \neq 0$, then we put $\hat{f}=f_{s}$.
Let $a \in R_{m}$ and assume that $D_{q}^{i}(a) \neq 0$ for any i. It can be easily proved by induction on i that

$$
\widehat{D^{i}(a)}=D_{q}^{i}(a)
$$

Consequently, $D^{i}(a) \neq 0$ for any i and this gives a contradiction.
Let f be an arbitrary element of P and D be an arbitrary derivation of P of the form (3). We put

$$
f D=\sum_{i=1}^{n}\left(f f_{i}\right) \frac{\partial}{\partial x_{i}} .
$$

Put also

$$
S(f)=\left\{e_{i_{1}}, e_{i_{2}}, \ldots, e_{i_{k}}\right\}
$$

if $f \in k[S(f)]$ and $f \notin k\left[S\left(f_{i}\right) \backslash\left\{e_{i_{j}}\right\}\right]$, where $1 \leq j \leq k$. For D we put

$$
S(D)=S\left(f_{1}\right) \cup S\left(f_{2}\right) \cup \ldots \cup S\left(f_{n}\right)
$$

If $x=e_{i}$ then we denote by $p d e g_{x}$ the polynomial degree function with respect to x on P. Elements $f \in P$ and $D \in \operatorname{Der} P$ can be uniquely written as

$$
f=f_{0}+x f_{1}+\ldots+x^{m} f_{m}, \quad x \notin S\left(f_{i}\right), \quad 0 \leq i \leq m
$$

and

$$
D=D_{0}+x D_{1}+\ldots+x^{m} D_{m}, \quad x \notin S\left(D_{i}\right), \quad 0 \leq i \leq m,
$$

respectively. If $f_{m} \neq 0$ then $p d e g_{x}(f)=m$ and we put $l_{x}(f)=f_{m}$. Put also $p d e g_{x} D=m$ and $l_{x}(D)=D_{m}$ if $D_{m} \neq 0$.

Put $e_{i}<e_{j}$ if $i<j$.
Proposition 2 Let D be a derivation of P and x be the minimal element of $S(D)$. Then

$$
\operatorname{pdeg}_{x} D(f) \leq p d e g_{x} D+p d e g_{x} f
$$

This inequality becomes an equality iff $l_{x}(D)\left(l_{x}(f)\right) \neq 0$ and in this case

$$
l_{x}(D(f))=l_{x}(D)\left(l_{x}(f)\right)
$$

Proof. Without loss of generality we may assume that f is an element of the basis (2) and D is an element of the basis (4).

If $f=u v$ then $D(f)=D(u) v+u D(v)$. So if the Proposition is true for u and v it is also true for f. Because of that we can assume that the polynomial degree of f is one. Let us prove that in this case $p d e g_{x} D(f) \leq p d e g_{x} D$.

If $f=\{u, v\}$ then $D(f)=\{D(u), v\}+\{u, D(v)\}$. Denote by $L(x)$ the set of all elements e_{i} such that $e_{i}>x$. If, say $D(u)=x^{d} u_{1}$ where $S\left(u_{1}\right) \subset L(x)$ then $\{D(u), v\}=$ $\left\{x^{d} u_{1}, v\right\}=x^{d}\left\{u_{1}, v\right\}+d x^{d-1} u_{1}\{x, v\}$. As we remarked if $i<j$ then $\left\{e_{i}, e_{j}\right\}$ is a linear combination of e_{m} where all $m>j$. So both $S\left(\left\{u_{1}, v\right\}\right)$ and $S(\{x, v\})$ are subsets of $L(x)$ and we can conclude that $p d e g_{x} D(f) \leq p d e g_{x} D$ if it is true for u and v. It remains to check that $p d e g_{x} D(f) \leq p d e g_{x} D$ for f with $\operatorname{deg}(f)=1$. Since we can assume that $D=x^{d} u \frac{\partial}{\partial x_{i}}$ where $u \in L(x)$ and $1 \leq i \leq n$ we have $D\left(x_{j}\right)=0$ when $j \neq i$ and $D\left(x_{i}\right)=x^{d} u$.

So we proved that $p d e g_{x} D(f) \leq p d e g_{x} D+p d e g_{x} f$. To prove that $l_{x}(D(f))=l_{x}(D)\left(l_{x}(f)\right)$ in the case of equality take $f=x^{n} f_{n}$ and $D=x^{m} u \frac{\partial}{\partial x_{i}}$ where $\operatorname{pdeg}_{x}\left(f_{n}\right)=0$ and $u \in L(x)$. Since $D(f)=x^{n} D\left(f_{n}\right)+n x^{n-1} f_{n} D(x)$ only $x^{n} D\left(f_{n}\right)$ can contain x^{n+m} and we should show that $l_{x}\left(D\left(f_{n}\right)\right)=x^{m} D_{m}\left(f_{n}\right)$ where $D_{m}=u \frac{\partial}{\partial x_{i}}$. It can be done exactly as above by reduction first to the case when $\operatorname{pdeg}\left(f_{n}\right)=1$ and then to the case when $\operatorname{deg}\left(f_{n}\right)=1$.

Lemma 1 Let D be a derivation of P and x be the minimal element of $S(D)$. If D is locally nilpotent then so is $l_{x}(D)$.

Proof. If $l_{x}(D)$ is not locally nilpotent then there exists x_{i} such that $l_{x}(D)^{k}\left(x_{i}\right) \neq 0$ for all $k \geq 0$. Put $a=l_{x}(D)\left(x_{i}\right)$. Note that $x \notin S(a)$ and $l_{x}(a)=a$. Using this and Proposition 2, we get

$$
l_{x}\left(D^{k}(a)\right)=l_{x}(D)\left(l_{x}\left(D^{k-1}(a)\right)\right)=\ldots=l_{x}(D)^{k-1}\left(l_{x}(D)(a)\right)=l_{x}(D)^{k}(a) \neq 0
$$

Consequently, D is not locally nilpotent.
Proposition 3 Let D be a derivation of P of the form

$$
D=D_{0}+x D_{1}+\ldots+x^{m-1} D_{m-1}+x^{m} \frac{\partial}{\partial x_{1}}, \quad x \notin S\left(D_{i}\right), \quad 0 \leq i \leq m-1
$$

where x is the minimal element of $S(D)$. Let f be an element of P such that $x_{1} \notin S(f)$. Then

$$
p d e g_{x} D(f) \leq m-1+p d e g_{x} f
$$

This inequality becomes an equality iff $D^{\prime}\left(l_{x}(f)\right) \neq 0$, where $D^{\prime}=D_{m-1}+m x \frac{\partial}{\partial x_{1}}$, and in this case

$$
l_{x}(D(f))=D^{\prime}\left(l_{x}(f)\right)
$$

Proof. The same considerations as in the proof of Proposition 2 show that

$$
p d e g_{x}\left(x^{m} \frac{\partial}{\partial x_{1}}(f)\right) \leq m-1+p d e g_{x} f
$$

and if $\frac{\partial}{\partial x_{1}}\left(l_{x}(f)\right) \neq 0$ then

$$
l_{x}\left(x^{m} \frac{\partial}{\partial x_{1}}(f)\right)=m l_{x}\left(x \frac{\partial}{\partial x_{1}}(f)\right) .
$$

Note that $D=D^{*}+x^{m} \frac{\partial}{\partial x_{1}}$ and $\operatorname{pdeg}_{x}\left(D^{*}\right) \leq m-1$. So applying Proposition 2, we can complete the proof of Proposition 3.

Lemma 2 Let D be a locally nilpotent derivation of P of the form

$$
D=D_{0}+x D_{1}+\ldots+x^{m-1} D_{m-1}+x^{m} \frac{\partial}{\partial x_{1}}, \quad x \notin S\left(D_{i}\right), \quad 0 \leq i \leq m-1
$$

where x is the minimal element of $S(D)$. If $x \neq x_{1}$ then $D_{m-1}+m x \frac{\partial}{\partial x_{1}}$ is also locally nilpotent.

Proof. Assume that $D^{\prime}=D_{m-1}+m x \frac{\partial}{\partial x_{1}}$ is not locally nilpotent. Then there exists x_{i} such that $D^{\prime k}\left(x_{i}\right) \neq 0$ for all $k \geq 0$. We put $a=D^{\prime 2}\left(x_{i}\right)$. It is not difficult to show that $x_{1}, x \notin S(a)$. So $l_{x}(a)=a$. Using this and Proposition 3, we get

$$
l_{x}\left(D^{k}(a)\right)=D^{\prime}\left(l_{x}\left(D^{k-1}(a)\right)\right)=\ldots=D^{\prime k}(a) \neq 0
$$

Consequently, D is not locally nilpotent.

Lemma 3 Let D be a multihomogeneous derivation of $P=P\left\langle x_{1}, x_{2}\right\rangle$ and $\operatorname{mdeg}(D)=$ $\left(m_{1}, m_{2}\right)$. If $m_{i} \geq 0$ for $i=1,2$ then D is not locally nilpotent.

Proof. Let D be a counterexample to the lemma with the minimal $\operatorname{deg}(D)$. By Proposition 1 , we can also assume that D is p-homogeneous. Let x be the minimal element of $S(D)$. By Lemma 1, it follows that $l_{x}(D)$ is also locally nilpotent. Put $\operatorname{mdeg}\left(l_{x}(D)\right)=\left(n_{1}, n_{2}\right)$. We can assume that $n_{1}=-1$ since $\operatorname{deg}\left(l_{x}(D)\right)<\operatorname{deg}(D)$. Then $l_{x}(D)=\alpha x_{2}^{n_{2}} \frac{\partial}{\partial x_{1}}$.

If $x=x_{1}$ then D contains a summand $l_{x}(D)=\alpha x_{1}^{m_{1}+1} x_{2}^{r} \frac{\partial}{\partial x_{1}}$. In this case D induces a nonzero locally nilpotent derivation of the polynomial algebra $k\left[x_{1}, x_{2}\right]$ with the same multidegree. It is impossible (see, for example [8], p. 91).

So $x \neq x_{1}$. If $x=x_{2}$ then $m_{1}=-1$. So $x>x_{2}$ and D can be written as in Lemma 2. By Lemma 2, it follows that $D^{\prime}=D_{m-1}+m x \frac{\partial}{\partial x_{1}}$ is a nonzero locally nilpotent derivation. Note that $p \operatorname{deg}\left(D^{\prime}\right)=0$ and D^{\prime} is p-homogeneous. Therefore D^{\prime} is a derivation of the free Lie algebra g generated by x_{1}, x_{2}. Obviously, $\exp \left(D^{\prime}\right)$ gives a nonlinear automorphism of g. But all automorphisms of g are linear [4].

3 The main results

Recall that a derivation of the free Poisson algebra $P\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$ of the form (3) is called triangular if $f_{i} \in P\left\langle x_{i+1}, x_{i+2}, \ldots, x_{n}\right\rangle$ for any i. It is clear that every triangular derivation is locally nilpotent. A derivation D of $P\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$ is called triangulable if there exists an automorphism φ such that $\varphi^{-1} D \varphi$ is triangular. R. Rentschler proved [14] that the locally nilpotent derivations of polynomial algebras in two variables over a field of characteristic 0 are triangulable. H. Bass gave [1] an example of a nontriangulable derivation of polynomial algebras in three variables.

Theorem 1 Let D be a locally nilpotent derivation of $P=P\left\langle x_{1}, x_{2}\right\rangle$. Then there exist a tame automorphism φ of P and $f\left(x_{2}\right) \in k\left[x_{2}\right]$ such that $\varphi^{-1} D \varphi=f\left(x_{2}\right) \frac{\partial}{\partial x_{1}}$.

Proof. Denote by I the ideal of P generated by $\left\{x_{1}, x_{2}\right\}$. Then $P / I \cong k\left[x_{1}, x_{2}\right]$ and D induces a locally nilpotent derivation D^{\prime} of $k\left[x_{1}, x_{2}\right]$. By Rentschler's theorem [14], there exists a tame automorphism ψ of $k\left[x_{1}, x_{2}\right]$ and $f\left(x_{2}\right) \in k\left[x_{2}\right]$ such that $\psi^{-1} D^{\prime} \psi=f\left(x_{2}\right) \frac{\partial}{\partial x_{1}}$. Denote by φ the extension of ψ to P such that $\left.\varphi\right|_{k\left[x_{1}, x_{2}\right]}=\psi$. Replacing D by $\varphi^{-1} D \varphi$ we can assume that $D^{\prime}=f\left(x_{2}\right) \frac{\partial}{\partial x_{1}}$. Then

$$
D=\left(f\left(x_{2}\right)+a\right) \frac{\partial}{\partial x_{1}}+b \frac{\partial}{\partial x_{2}}
$$

where $a, b \in I$.
We would like to show that $a=b=0$. Assume it is not the case. Consider $\operatorname{deg}_{x_{1}}$ and the corresponding highest homogeneous derivation R which is locally nilpotent by Proposition 1. But $R=c \frac{\partial}{\partial x_{1}}+d \frac{\partial}{\partial x_{2}}$ where $c, d \in I$ and either c or d is not zero. So R cannot be locally nilpotent by Lemma 3 .

Corollary 1 Let D be a locally nilpotent derivation of $P=P\left\langle x_{1}, x_{2}\right\rangle$. Then $D\left\{x_{1}, x_{2}\right\}=$ 0 .

Proof. If D is triangular then $D\left\{x_{1}, x_{2}\right\}=0$. Note that $\varphi\left\{x_{1}, x_{2}\right\}=\alpha\left\{x_{1}, x_{2}\right\}$ for every tame automorphism since it is true for every elementary automorphism.

Theorem 2 Automorphisms of free Poisson algebras in two variables over a field of characteristic zero are tame.

Proof. Let θ be an arbitrary automorphism of $P=P\left\langle x_{1}, x_{2}\right\rangle$. Then θ induces an automorphism ψ of $k\left[x_{1}, x_{2}\right]$. Denote by φ the extension of ψ to P such that $\left.\varphi\right|_{k\left[x_{1}, x_{2}\right]}=\psi$. By Jung's theorem [9], ψ and φ are tame. Changing θ to $\theta \varphi^{-1}$ we can assume that θ induces the identical automorphism of $k\left[x_{1}, x_{2}\right]$. Then,

$$
\theta\left(x_{1}\right)=x_{1}+a, \quad \theta\left(x_{2}\right)=x_{2}+b, \quad a, b \in I,
$$

where I is the ideal of P generated by $\left\{x_{1}, x_{2}\right\}$.
For every $h \in k[x]$ denote by D_{h} a derivation of P defined by $D_{h}\left(x_{1}+a\right)=h\left(x_{2}+b\right)$, $D_{h}\left(x_{2}+b\right)=0$. This derivation is locally nilpotent.

Now,

$$
D_{h}=\left(h\left(x_{2}\right)+\left(h\left(x_{2}+b\right)-h\left(x_{2}\right)\right)-D_{h}(a)\right) \frac{\partial}{\partial x_{1}}-D_{h}(b) \frac{\partial}{\partial x_{2}}
$$

since $D_{h}\left(x_{1}\right)=h\left(x_{2}\right)+\left(h\left(x_{2}+b\right)-h\left(x_{2}\right)\right)-D_{h}(a)$ and $D_{h}\left(x_{2}\right)=-D_{h}(b)$.
The ideal I is invariant under every derivation. Hence $\left.h\left(x_{2}+b\right)-h\left(x_{2}\right)\right)-D_{h}(a), D(b) \in$ I. Since D_{h} is locally nilpotent it is possible only if $\left.D_{h}(b)=h\left(x_{2}+b\right)-h\left(x_{2}\right)\right)-D_{h}(a)=0$ (see the proof of Theorem 1). Therefore $D_{h}\left(x_{1}\right)=h\left(x_{2}\right), \quad D_{h}\left(x_{2}\right)=0$ and $D_{h}(a)=$ $h\left(x_{2}+b\right)-h\left(x_{2}\right)$.

Put $h=x$. Then $D_{x}(a)=b$. Note that $\operatorname{deg} D_{x}(a) \leq \operatorname{deg} a$ since $D_{x}\left(x_{1}\right)=x_{2}$ and $D_{x}\left(x_{2}\right)=0$. So deg $b \leq \operatorname{deg} a$. We can exchange x_{1} and x_{2} in the definition of D_{h}, so $\operatorname{deg} a \leq \operatorname{deg} b$ and $\operatorname{deg} a=\operatorname{deg} b$. Of course, $\operatorname{deg} a=\operatorname{deg} b \geq 2$ since $a, b \in I$.

We now put $h=x^{2}$. Then $D_{h}(a)=2 x_{2} b+b^{2}$. Note that in this case deg $D_{h}(a) \leq$ $\operatorname{deg} a+1$ since $D_{h}\left(x_{1}\right)=x_{2}^{2}$ and $D_{h}\left(x_{2}\right)=0$. Consequently, $\operatorname{deg} a+1 \geq 2 \operatorname{deg} b=2 \operatorname{deg} a$, and $\operatorname{deg} a \leq 1$. This contradiction gives $a=0$ and $b=0$.

Corollary 2 Let φ be an arbitrary automorphism of $P=P\left\langle x_{1}, x_{2}\right\rangle$. Then $\varphi\left\{x_{1}, x_{2}\right\}=$ $\alpha\left\{x_{1}, x_{2}\right\}$, where $0 \neq \alpha \in k$.

So every automorphism of $P\left\langle x_{1}, x_{2}\right\rangle$ preserves $\left\{x_{1}, x_{2}\right\}$ up to the proportionality. An analogue of this result for free associative algebras is also true, i.e., every automorphism of the free associative algebra $k<x_{1}, x_{2}>$ in the variables x_{1}, x_{2} preserves the commutator [x_{1}, x_{2}] up to the proportionality. Moreover, the so called commutator test theorem [7] says that any endomorphism of $k<x_{1}, x_{2}>$ which preserves $\left[x_{1}, x_{2}\right]$ is an automorphism.

Problem 1 Is any endomorphism of the free Poisson algebra $P\left\langle x_{1}, x_{2}\right\rangle$ over a field of characteristic 0 which preserves $\left\{x_{1}, x_{2}\right\}$ an automorphism?

Note that the positive answer to Problem 1 implies the Jacobian Conjecture for $k\left[x_{1}, x_{2}\right]$ [8].

It is well known $[6,11]$ that Aut $k\left[x_{1}, x_{2}\right] \cong$ Aut $k<x_{1}, x_{2}>$, where $k<x_{1}, x_{2}>$ is the free associative algebra generated by x_{1}, x_{2}.

Corollary 3 Let k be a field of characteristic zero. Then,

$$
\text { Aut } k\left[x_{1}, x_{2}\right] \cong \text { Aut } k<x_{1}, x_{2}>\cong \operatorname{Aut} P\left\langle x_{1}, x_{2}\right\rangle .
$$

This isomorphism is also interesting in the context of paper [2] since $k<x_{1}, x_{2}>$ is a deformation quantization of $P\left\langle x_{1}, x_{2}\right\rangle$ and because it shows that the group Aut $P\left\langle x_{1}, x_{2}\right\rangle$ has a nice representation as a free amalgamated product of its subgroups (see, for example [5]).

Acknowledgments

The authors wish to thank several institutions which supported them while they were working on this project: Max-Planck Institute für Mathematik (the first and the third authors), Department of Mathematics of Wayne State University in Detroit (the third author), and Instituto de Matemática e Estatística da Universidade de São Paulo (the first author).

References

[1] H. Bass, A non-triangular action of G_{a} on A^{3}, J. of Pure and Appl. Algebra, 33(1984), no.1, 1-5.
[2] A. Belov-Kanel, M. Kontsevich, Automorphisms of the Weyl Algebra, Letters in Mathematical Physics, 74 (2005), 181-199.
[3] G. M. Bergman, Centralizers in free associative algebras, Trans. Amer. Math. Soc., 137 (1969), 327-344.
[4] P. M. Cohn, Subalgebras of free associative algebras, Proc. London Math. Soc., 56 (1964), 618-632.
[5] P. M. Cohn, Free rings and their relations, 2nd Ed., Academic Press, London, 1985.
[6] A. G. Czerniakiewicz, Automorphisms of a free associative algebra of rank 2, I, II, Trans. Amer. Math. Soc., 160 (1971), 393-401; 171 (1972), 309-315.
[7] W. Dicks, A commutator test for two elements to generate the free algebra of rank two, Bull. London Math. Soc., 14 (1982), 48-51.
[8] A. van den Essen, Polynomial automorphisms and the Jacobian conjecture, Progress in Mathematics, 190, Birkhauser verlag, Basel, 2000.
[9] H. W. E. Jung, Uber ganze birationale Transformationen der Ebene, J. reine angew. Math., 184 (1942), 161-174.
[10] W. van der Kulk, On polynomial rings in two variables, Nieuw Archief voor Wiskunde, (3)1 (1953), 33-41.
[11] L. Makar-Limanov, The automorphisms of the free algebra with two generators, Funksional. Anal. i Prilozhen. 4(1970), no.3, 107-108; English translation: in Functional Anal. Appl. 4 (1970), 262-263.
[12] L. Makar-Limanov, U. U. Umirbaev, Centralizers in free Poisson algebras, Proc. Amer. Math. Soc. 135 (2007), no. 7, 1969-1975.
[13] M. Nagata, On the automorphism group of $k[x, y]$, Lect. in Math., Kyoto Univ., Kinokuniya, Tokio, 1972.
[14] R. Rentschler, Operations du groupe additif sur le plan, C. R. Acad. Sci. Paris, 267 (1968), 384-387.
[15] I. P. Shestakov, Quantization of Poisson superalgebras and speciality of Jordan Poisson superalgebras, Algebra i logika, 32(1993), no. 5, 571-584; English translation: in Algebra and Logic, 32(1993), no. 5, 309-317.
[16] I. P. Shestakov and U. U. Umirbaev, Poisson brackets and two generated subalgebras of rings of polynomials, Journal of the American Mathematical Society, 17 (2004), 181-196.
[17] I. P. Shestakov and U. U. Umirbaev, Tame and wild automorphisms of rings of polynomials in three variables, Journal of the American Mathematical Society, 17 (2004), 197-227.
[18] U. U. Umirbaev, The Anick automorphism of free associative algebras, J. Reine Angew. Math. 605 (2007), 165-178.

[^0]: ${ }^{1}$ Supported by an NSA grant and by grant FAPESP, processo 06/59114-1.

