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Introduction

The well known Poisson summation formula applies to a
lattice T in R and a function £ E_C:(EU . It can be

written

A A
(1) ;7 almem = I almEm
YER . AER

A .
where f is the Fourier transform of £, while

rvolume (R/T), if yerT ,

i
al (v =y
10 , 1f YET,
and
1, if AT <« 2 ,
I\r'
a (A) =

{0, otherwise .

Notice the general structure of the terms. The functions £(y)
and %(A) are independent of I , while the coefficients ar(y)
and gr(k) are independent of £. The Poisson summation formula
has a number of applications. They all involve playing some éf

the terms off against the others.

The Poisson summation formula has a generalization to a
discrete subgroup of a general locally compact (unimodular) group

with compact quotient. It is the Selberg trace formula. For example,



suppose that G/@ 1is a semisimple algebraic group, which is
anisotropic. Then G(Q) 1is a discrete subgroup‘of the

locally compact group
G(A) = G(IR) x _G((Dz) ><G(CIJ3) ><GUI)S‘) X ouo

such that G(Q)\G(A) 1is compact. The Selberg trace formula is

~

(2) ] aStnrgy,e) = [ aS(migin,£), £ € CLGA)),
YE(G(@) el (G)
where (G(Q)) is the set of conjugacy classes in G(Q), IT(G)

is a set of (equivalence classes of) irreducible unitary represen-

tations of G(A), and

[

aﬂy)=vﬂmmKHmYRGmﬂ)
aC(m) = Multiplicity (r,L?(G(Q)I\G(A)),
I (v.£). = [ £ yx)ax,
€ (A, YIN\G (A)
I (m,£) = trace ( { f£(x)m(x)dx).
G(A)

Again, the terms have the same general stfucture. The functions
IG(Y,f) and IG(n,f) are invariant distributions on G(A)
which do not really depend on the @iscrete subgroup G(@). The
coefficients aG(Y) and aG(w) depend strongly on G(@), but
but are independent of £f. The Seiberg trace formula also has

many applications. Again, one obtains information about one

set of terms from a knowledge of the others.



If G/@ 4is not anisotropic, the quotient G(Q)\G(A) 1is
no longer compact, and the situation changes rather drastically.
The terms in (2) diverge (in several senses)and are in general
not defined. There are natural ways to truncate the integrals
that diverge, however, and one ends up with a trace f;rmula
that appears quite complicated. In this paper and'the‘next
one [1(f)], we shall show that the general structure of the
trace formula is rather simple. We shall establish an. identity

of the general form

(3) lef')lllwglﬂ1 I a6 - Z',wgllwgl'1j aM('Jr)IM('rr,f)d'n,
M ye (M(@)) M (M)

\
in which M ranges over a finite set of rational Levi subgroups
of G. The terms corresponding to M#% G represent contributions
from the boundary. They are what is left of the original integrals
that had to be truncated. The functions aM(Y) and aM(n) depend
only on the group M, and not its embedding in G. They are global
in nature, in that they depend on the rafional structure of M.
The functions IM(er) and IM(w,f) are invariant linear forms
in £f. They are local objects which are essentially independent of
the discrete subgroup G(@) of G{(A). The applications of the
general trace formula are only beginning. If they follow the
pattern of GL(2), one will be able to deduce information about
the discrete spectrum, which is arpriori wrapped up in the
definition of the function aG(W), from the other terms in the

trace formula.

We shall leave the global theory of (3), and the proof of

the formula itself, for the next paper [1(f)]. In this paper, we



shall study the functions IM(Y,f) and IM(ﬂ,f). These are
interesting objects in their own right. If M = G, IM(Y,f)

is just the orbital integral over Yy and IM(ﬂ,f) is the
character of 7. For general M they are more complicated,

but they retain many of the essential properties of the special

case,

It is best to take G to be a connected reductive group over a
number field F. If S 1is a finite set of valuations of F,

one can define

IM(Y.f), . Y € M(Fg),
and

I, (T, £), TET . (M(Fg)),

unit

as invariant linear forms on the chke algebra of G(Fs).

It is important to express them in terms of the local groups
G(FV). In §9, we shall prove splitting formulas for IM(er)
and IM(w,f) in terms of the corresponding objects on the
groups G(Fv), VvES. A related question concerns the case that
the data Yy and ©m come from a proper Levi subgroup M1 of

M. In §8 we shall prove descent formulas for IM(Y,f) and

IM(w,f) in terms of the corresponding objects for M Both

1.
sets of results will be proved from Proposition 7.1, which gives
a general descent property for (G,M) - families. This in turn

is closely related to a similar property for convex polytopes,

which we will leave for the appendix.



It is perhaps helpful to think of the distributions
IM(Y:f) and IM(n,f) themselves in terms of convex polytopes.
Indeed, the chambers of the restricted ‘Weyl group are dual to
a certain convex polytope HO. The grpups M. are parametrized
by hyperplanes-which intersect faces of Ho.orthogonally. If
we project HO onto such' a hyperplane, we obtain another convex
polytope HM . The geometry of HM then governs the descent
and splitting properties of the corresponding distributions.

The invariant distributioﬁs Iij,f) are obtaingd from
the weighted orbital integrals JM(Y,f) studied in [1(d}]. In
§2 we shall list the various properties that IM(Y,f) inherits
from JM(Y;f)- They all generalize well known properties of
ordinary orbital integrals. For example, the value of IM(Y,f)
at a general point YEZM(FS) can be appoximated by its values
at G-regular points in. M(Fg). If S consists of one Archimedean
valuation, IM(Y,f) ;atisfies a differential equation in .
It also has a simple forﬁula for the jump across the singular
hyperplane of a real root. If S consists of one discrete

valuation, IM(Y,f) satisfies a germ expansion in Y.

The distributions IM(n,f) are the values at X = 0

(and T unitary) of a more general family of invariant distributions

IM(‘!T,X,:E), 1T€H(M(FS)), XEBM;S '

which we introduce in §3. These are defined in terms of the

weighted characters



_ - (X)
JM(H,X,f) = I JM(HA'f)e’ dx,

iaM'S

studied in [1(e)]. It will follow from the definition.that
IM(W,X,f) is trivial if 7m 1is tempered (Lemma 3.1). However,
for general =, the distribution is more interesting. It turns
out to be closely related to the residues (in WA) of
JM(ﬂA,f). There are hints of this in Lemmas 3.2 and 3.3, but

a full explanation will have to await another paper.

It happens that the distributions IM(Y) and IM(W,X)
are not independent of each other. This is fortunate, because
in enhances the possibility of playing them off against each
other in the trace formula. If vy is restricted to a maximal
torus T(FS) in M(Fg), the weighted orbital integral Ty (v, £)
is compactly supported in y. However, it turns out that
IM(Y,f) is not compactly supported in Yy. The distributions
IM(w,X,f) may be viewed as the obstruction to this. In §4
we shall study various objects which arise naturally when one
tries to analize the asymptotic behaviour of IM(Y,f). We
shall define new invariant distributions ciM(Y,f) and
cIM(ﬂ,x,f) by improving the support properties at the expense
of properties of smoothness. In particular, we shall show that
GIM(Y,f) is compactly supported if y lies in T(FS) (Lemma 4.4.).
We shall also define certain maps BM and CBM
expansions for IM and °1 in terms of each other. These maps

M
are in fact determined by the asymptotic behaviour of IM(Y,f).

that provide

This sets the stage for Proposition 5.4. The result is an



important formula for cIM(Tr,x,f) as a contour integral
involving cBM(f). It follows that the distributions
cIM('rr,X,f) and I{(r,X,f) may be determined, at least in

principle, from the asymptotic behaviour of IM(Y,f).

In §6 we shall give a simple example of how Proposition 5.4
can be applied in practice. It is not known in general that an
invariant distribution annihilates functions whose orbital
integrals vanish. In Theorem 6.1 we shall show that this property
holds for IM(W,X) provided that it holds for I (y). (We will

M
establish the property for I, (y) in the next paper [1(£)]1.)

We have already mentioned the descent and splitting formulas
that are proved in §7-9. To illustrate the descent formulas,
we shall end the paper by discussing the example of GL(n).
We shall show that our invariant distributions often vanish
on functions associated with base change or the comparison with
central simple algebras. These.vanishing formulas (Propositions;
10.2 and 10.3) will in fact be required for base change.
Together with global vanishing results in [1(f),§ 8], they are
the starting point for a comparison of the full trace formula
of GL(n) with the twisted trace formula over a cyclic

extension.
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§ 1 Invariant harmonic analvsis

Let G Dbe a connected component of a reductive algebraic
group over a field F. We assume that G(F) .+ ¢. We write G"

for the group generated by G, and G0

for the identity
component of c'. a simple example to keep in mind is the

component

(1.1) G* = fGL(n)x...XGL(nJ))N B*

T
L

when 6* 1is the permutation
(11-00’£)_—)(2’o--;£'1)o

Then (G*)® is the semi-direct product of &  copies of GL(n)
with the cyclic group of order - ¢ generated by 6*. A more
general example is that in which G is an inner twist of G*.

By this we mean that there is a morphism
(1.2) n:G —» G* ,

which extends to an isomorphism n from G+ to (G*)*, such

that for every T € Gal(F/F), n~Tht equals a conjugation by an

element in G'. If G 1is of this form it is essentially the
connected component obtained from a central simple algebra by

cyclic base change.

We assume that F 1s a local or a global field of
characteristic 0. In this paper, S always stands for a finite

set of valuations of F with the closure property ([1(e)],§1).
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This simply means that if S contains no Archimedean
valuations, it consists entirely of valuations which divide
a fixed rational prime p. We fix a maximal compact subgroup

+ +
K =TT K,

veES
of G(FS), such that the group

+ 0
K,V = KV NG (FV)

is special for every non-Archimedean valuation. vES, Clearly,
K=T] K,
vES
is a maximal compact subgroup of GO(FS). Having fixed K, we
can form the Hecke space H(G(FS)). It consists of the smooth,
" compactly supported functions on G(FS) which are left and

right K-finite.

The Hecke space seems to be the correct space of test
functions to use in the trace formula. We are interested in
the continuous linear functionals or "distributions" on
H(G(FS)) .which make up the individual terms in the trace
formula. In the papers {1(d)] and [1(e)], we studied the
local properties of two such families of distributions. The
present article is a natural successor to (1(d)] and [1(e)],
and in a sense unites these previous two papers. We shall
attach invariant distributions to each of the distributions in
the two families. By studying the parallel behaviour of these,

we shall find that the two families are reallv quite closelyv related.
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We shall routinely adopt the notation of t1(d)] and [1(e}],
especially that of §1. of each paper. In particular, the letter
M 1is always understood to be a Levi subset of G which is in
good relative position with respect to K. More precisely, we
require that each K, be admissible relative to MO in the
sense of § 1 of [1(a)]. Recall that L{M) denotes the

collection of Levi subsets of G which contain M, and F (M)

denotes the set of parabolic subsets

P =MN MP € L{M) ,

which contain M. Recall also that we have the real vector

space

aM = Hom(X(M)F 'R) ,

which we assume has béen assigned a suitable Euclidean metric.
This provides a Euclidean metric by restriction on any

subspace of Ay-

In § 11 of [1(e)] we defined the Paley-Wiener space

I(G(F.)) of functions on

(G(Fg)) x a

TItemp G,S

There is a continuous map

T:f — £, £ € H(G(Fg)),
with o .
- : = A (X)
£ (n,X) = |, , -
G (™ X) Ilaﬁ,s. Ex(m, (f))e dh,  mell o (GIE V) XCay
from H(G(FS)) to I(G(FS)). More generally, consider the function
£, (T,X) = (£p) (7,X) = tr (I, (v, ,£))e”* (X) J
(T Py ii* p(my,f))e Can, TTEHtemp(M(Fs)),XEaM’S ,

M,S
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where for any PE€ P(m), fP is the function

m—> s, /% [ f £k 'mk)andk

K NP(Fé)
in H(M(Fé)), and I,(m,) 1is the representation in I{hemp(G(Fé))
induced from Ty Then
fr—1f,

is a continuous linear map from H(G(Fé)) to I(M(Fé)).

It is actually necessary to work with the larger spaces

H o (G(Eg)) = l%m H, o (GIF) )I'
and
Iac(G(Fs:)) = lim Iac(G(Fs;))P

T
introduced also in § 11 of [1(a}l]. (Recall that T denotes
a finite subset of II(K), and Hac(G(%;))r is the space of

functions £ on G(Fg) such that for any bEZCZ(aG S)' the
4

function

b

f{x) = £(x) b(H,(x))
belongs to H(G(Fs))r. Similarly, Iac(FS))F is the space
of functions ¢ on ILtemp(G(FS)) X aG,S such that for

every b, the function
b -
¢ (m,X) = ¢(m,X)b(X)

belongs to 'I(G(Fs)r). For there is an important map ¢M
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which sends H(G(§3)) to a space of functions on

(M(E;)) x a

IItemp M,S

which is not contained in I(M(Fg)). However, ¢M can be
defined on Hac(G(FS))"and it does map this space into

IaC(M(FS)) ([1(e), Corollary 12.2]). Moreover, it follows
directly from the definition that £ -——> fM extends to a

continuous map from Hac(G(Fé)) into '%C(M(Fé)). In particular,
T:£ ——+~fG, fe Hac(G(FS)),

maps Hac(G(Eé)) continuously into Iac(G(Fé))'

Proposition 1.1: Suppose that G either equals G0 or is

an inner twist of the component G* in (1.1). Then

T:if —> f £€ H, (G(Fg)),

GI

is an open, surjective map from Hac(G(FS)) onto IaC(G(FS)).

Proof: It is enough to establish the result with the. spaces
Hac(G(FS)) and IaC(G(FS)) replaced by H(G(Fs)) and I(G(FS)).
Indeed, the topologies on the larger spaces are defined so
that the openness assertion extends immediately. One extends
the surjectivity to the larger spaces by a partition of unity

argument on It is also clear that the valuations in S

HG,S'
may be treated separately. We shall therefore assume that S

consists of one valuation {v}, and that F is a local field.

Then F. = F._. = F.
S v
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Suppose first that F 1s non-Archimedean. The
surjectivity of the map H(G(F)) —> I(G(F)) follows
directly from the trace Paley-Wiener theorem of Bernstein,
'Deligne and Kazhdan [3], and its extension to nonconnected
groups by Rogawski [8]. It holds without restriction on G.
The openness is trivial, since H(G(F)) and J(G(F)) are

topological direct limits of finite dimensional spaces.

Suppose next that F 1is Archimedean. In the case that
G = GO, the surjectivity has been proved by Clozel and Delorme
(5(a)], [5(b)]. In [5(b)], the authors note that the theorem
can be claimed only for connected Lie groups. However, the
results of Knapp and Zuckermann, which were the reason for the
restriction, are known to hold in general [9]. The openness
assertion can also be extracted from the work of Clozel and

Delorme. For implicit in their proof of surjectivity is the

construction of a continuous section
I(G(FS)) —_— H(G(FS)).

(See the appendix to [1(f)].) If G 4is an inner twist of G¥*,
the trace Paley-Wiener theorem can be proved in the same way

as for connected groups. For the special case of base change

for GL(n) , see [2, Lemma I.7.1]. The more general case

follows the same way. Again, the openness of the map is implicit

in the proof of its surjectivity.

For the rest of this paper and also the next ocne [1(f)],

we shall assume that G satisfies the conditions of Lemma 1.1.
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That is, G equals G0 or G 1is an inner twist of fhe
component G* in (1.1). This is only because of the
limitations of Lemma 1.1. We shall,. in fact, write the papers
as if they applied to general G. In the next .paper, there
will be one argument in Galois cohomology that relies on the
special nature of G ([1(f)], Theorem 5.1). However, it seems
likely that both this argument and Lemma 1.1 could soon be

strengthened to include all. ‘G. The results of our two papers

would then apply without restriction.

Suppose that 8 is a continuous linear map from
HaCYG(FS)) to another topological vector space V. We shall say

that & is supported.on.characters if it vanishes on the kernel

of T. That is, if 6(f) = 0 for every function f € H__(G(F.))
such that fG = 0. If 6 has this property, there is a unique

continuous map
A
B:Jac(G(FS)) — V
such that
A —
B(fG) = 8(f), f € HaéG(FS))'

This is an immediate consequence of Lemma 1.1. Consider the
special case that V = €. Then 8 is supported on characters

if and only if it lies in the image of the transpose hap

T' 13 (G(F)) —> HI (G(F)).

A
The function 8 1is then just equal to the inverse image of

8 under T'. As in [1(e)], we shall often refer to elements
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in the dual spaces Héc(G(FS)) and Iac(G(FS)) as

distributions on Hac(G(Fs)) and Iac(G(Fs)).
Any map
G:Hac(G(FS)) —
which is supported on characters is also invariant. That is,
_ 0 1
0(L, £) = 8(R E), hEH(G(Fg) ), fe€H (G(F)),

in the notation of § 6 of [1(e)]. Conversely, it is likely that
every map which is invariant is supported on characters.
However, we shall not try to prove this. We shall be content
simply to show that those invariant maps' and distributions which
arise from the trace formula are supported on characters. The
proof will be based on a long induction, and will not be
completed until the next paper [1(f), Corollary 5.3], where

we will use a global argument introduced by Kazhdan. The proof
does not require that we keep track of which maps are invariant.
However, we shall do so, in order to motivate our constructions.
In fact, the reader might find it easier to proceed as if it

were known that all invariant maps were supported on characters.
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§ 2 The invariant distributions IM(Y)

We shall introduce one of the two families of invariant
distributions which occur in the trace formula. These
distributions are parametrized by elements in M(FS), and are
6btain¢d from weighted orbital integrals. They were defined in
§ 10 of [1(a)] 1in the ‘special case that G = c? and the

element in M(FS) was G-regular. The definitions of [1(a)l

relied on various hypotheses from local harmonic analysis.

Suppose that Yy is an element in M(Fs). In § 6 of [1(d)]

we defined the weighted orbital integral
= .
Iy (Y £), fECc(G(FS)) .

It is a distribution which depends only on the restriction of

f to
z L ., .
G(FS) = {xEIG(FS).HG(x) z} ,

for Z = Hg(y). The restriction of any function in Hac(G(FS)}
to this set coincides with that of a function in H(G(Fs)).
Conseguently, JM(Y) may be regarded as a distribution on
Hac(G(FS)). Arquing as in the proof of Lemma 6.2 of [1(e)],

we can transform the formula

M
Yy - Q
Tyly,£9) = 7§

Ty iEa o), £ECT(G(FL)),
geF oy M VR, ¢S

established in Lemma 8.1 of [1(a)], into

Iylv. Ly f) = ) J%Q(y,R £y, heH (GO(FSﬂ ).
QEF (M) ™ Q/h ac
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A similar formula,

My .
by (Lpf) = ] o, “(R, . £),

QeF () M Qb
holds for the map
dyflac (GIF)) —> T, (M(F ).

(see [1(e), (12.2)].) This suggests that we define an invariant

distribution

- 16 '
inductively by setting
AL
J (v, £) =} I, (y,9. (£), feEH__(G(F.)).
M Lel (M) M L ac =
However, we cannot say that IM(y) is supported on characters, -
A

so we do not know that IM(Y) is defined. We must proceed as
follows. Let LO(M) denote the set of elements L€ L(M) with

L #G. Assume inductively that for every LE LO(M) (and for every

S) that the distributions Iﬁ(y) are defined and are supported

on characters. We then define

(2.1) I, (v, £) = J (y,£) - 7§ 2Ly, (£)).
M M LE LO(M) M L

The invariance of Iy () follows_easily from the two formulas
above. (See [1(a), Proposition 4.1].) We shall carry this
induction assumption throughout the rest of this paper, aﬂd also
for much of the next one. The argument will be completed ohly

by Corollary 5.3 of [1(f)}], in which we shall show that
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Ig(y) is also supported on characters. Only then will QM(Y)
" be defined, and will we be able to write
"L
Tyly,£) = LE%(M)IM(Y:¢L(f)).

In the paper [1(d)] we investigated the local behaviour
of JM(Y:f) as a function of y. It is easy to see that IM(Y.f)
has similar properties. They can all be established inductively
from the corresponding properties of Jy(y,f). For example, if
Yy 1is a general element in M(FS), JM(er) is given in

[1(d),(6.5)] by a limit

JM(T,f) = lim rﬁ(y,a)JL(ay,f).
a—+1
The functions ﬁﬁ(y,a) here are defined in § 5 of [1(d)] in

terms of a certain (G,M) - family, and the limit is taken over
a in AM,reg(FS)' the set of points in AM(FS) whose
centralizer in G(FS) equals M(FS). Assume inductively that

M1 5 L M1
I, {(vy,g) = lim ) ro{y,a)I_ (ay,qg),
M ar1 LelMigy M L

for any M, €L,(M}) and g€]1_ (M, (F.)). A similar formula then
1 0 ac ,,1° 78
M M
1 AT
M

holds if I is replaced by I It follows from the
definition (2.1) that .IM(y,f) equals

M

AM

lin  §  rylv,a)3ptay,6) - 1 1 lay,

a+1 LEL (M) M ELO(L)

(£))).
1 1

M

Applying the definition again, we see that

. L
(2.2) I, (y,£) = 1lim )} r(y,a)I_(ay,£f),
M a+1 LeL (M) M L
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with a € A,

M, reg € L(M).

(Fé). More generally, suppose that L1
L

The induced space vy L= L1(Fé) was defined in § 6 of [1(d)].

It is a finite union of L?(Eé)—orbits. In Corellary 6.3 of

[1(d)] we found that

L L
JL ('Y ,f) = 1im r'L (Yra)JL(aer)f

1 a-1 LEL(L1) 1
with aEAT“1 reg'—(FS)' The formula
. z
‘ L L
(2.2%) I, (y ,f) = lim Y rp (y,a)I (ay,£),

1. a»1 LEL(L,) 1
with aEEAM,reg(Fs)’ follows inductively from this. In particular,

the limit on the right exists.

Suppose that o€ M(Fg) 1is a semisimple element such that

G0 is contained .in M. Then

(M,0 :
Tt 6 2o, yeam (rg),

in the notation of Lemma 2.2 of [1(d)]. Recall that this means
that JM(Y,f) coincides with the orbital integral of a smooth
function of compact support on M(FS), for ¥y near ¢ in
OMO(FS)' It follows inductively from (2.7) that that the same

property, namely
(2.3)  1,0v,6) BZo,  yeom (7)),
holds for the invariant distributions.

The distribution IM(Y) depends only on the MO(FS)-orbit of

Y, since the same is true of JM(Y). More generally suppose that vy
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belongs to MO(FS)GO(F). Then y-1My is another Levi subset

of G. If f belongs to H(G(FSD, the function
£ (x) = £(yxy )

belongs to the Hecke space with respect to the maximal

compact subgroup y~1Ky. We have the formula

J (y-1npfy) = JM(Y:f)-
y My

(See the remark following the proof of Lemma 8.1 of [1(d)]}.
It follows from (2.1) that

(2.4) I _, vy vy = 1,0v,0).
vy~ my .

Suppose that y belongs to
MO.(FS)GO(F) nK.

Then it is not hard to show that

(2.4%) I _, (v lyy,£) = Iy (Y, £),

y My

since IM(Y) is invariant.

Consider the case that S consists of one non-Archimedean

valuaticon v, and that F = FV = FS. Let ¢ be a semisimple

element in M(F). In Proposition 9.1 of [1(d)] we established

a germ expansion

JM(Y'f)N ) ) gﬁ(Y,G)JL(G,f).
LeEL (M) GE(OUL (F))
(0]
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(see [1(d),§ 9] for an explamation of the notation.) It

follows inductively from (2.1) that

(2.5) 1,0v,0) I ] l - 9y
Lel (M) §€ (ol (F))

o]

(Y,G)IL(ﬁ,f).

Consider finally the case that F = F,, = Fg is an
Archimedean local field. Suppose that T 1is a "maximal torus"
of G over F , in the sense of § 1 of [1(d)]. If 2z belongs
to the center of the associated universal enveloping algebra,
we have the differential equation

I 2z = Y al(y,z)d (v, £),
M el () 1 LL

for y in the open set’ Treg(F) of G-regular elements in

T(F) ({1(d), Proposition 11.1]). Using the definition (2.1)

inductively again, we convert this to a differential equation

L

(2.6) I,(vzf) = ) 3y(y,z)I_(y,f), YyeT__ . (F),
M Lely WL | reg

for the invariant distributions.The behaviour of IM(Y,f)'

as Yy appreoaches the singular set is also identical with

that of JM(Y,f). In particular, the jump around a semi-

regular point of noncompact type can be computed for any

derivative of JM(er)- It is given by a formula

(2.7)  lim (3(@)Ib(y ,£)-3 (W If(y__,£))= n
b r

lim{({u,) I
r-+0 M

(8§ _,£)
520 1™ S !

g 1

which is the analogue of Proposition 13.1 of [1(d)].

Similarly, Proposition 13.2 of [1(d)] becomes
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G -q
(2.8) (3 (u) I, (y,£) 1 Sc(£) D7 (y)] ' : w'GAreg .

These results follow once again inductively from the

definition (2.1).

We conclude the paragraph with a lemma which will be

needed for global applications.

LEMMA 2.1: Suppose that v 1is an unramified finite valuation

and that f 1is a function in Hac(G(Fv)) which is bi-invariant

under K_. Then
v
IM(Y,f) = JM(Y.f): w'EMiFv)f

PROOF: Suppose that L € Lé(M). Then

= ( , Z
bl = [ ERR(T Q) Ty (my £ AN,

. o *
iaf /iag

in the notation of [1(e),§7]. Here 1 1is a representation

in Htemp(L(Fv)), X 1is a point in aL,v whose projection
onto s o equals 2Z, and Q is any element in P(L). Since
, .
f is bi-invariant under ¥, the operator Ig (wk,fz) vanishes
‘ 0

unless T is unramified. Suppose then that 1w 1s unramified.
Let ¢ be a vector in the space on which B.(HAT acts which
is fixed by Kv' By the condition (Ra) in P1(e), Theorem 2.11,

the normalized intertwining operators

take values at ¢ which are independent of A. Recalling

the definitions in [1(e})], we see that
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RL(“A'QO)¢

_1R

lim  §  { T

(m Y$)8 (v)
u+0 QEP (L) QIQy  A+Vv T TQ

RQ_iQO(“A)

-1

(Lim

8..(v)
v+0 QEP(L) 2

) o

It thus follows that the function ch(f) vanishes . The
lemma is then an immediate consequence of the definition (2.1).

m}
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§ 3 The invariant distributions IM(n,X)

Next we shall define the other family of invariant
distributions which occur-in the trace formula. These

distributions are parametrized by pairs

(r,X), | TTEII(M(FS)), XEaM’S.

They are related to the weighted characters
Ty (7, X, ), , fE€H(G(Fg)),
studied in [1(e)].

In § 7 6f [1(e)] we observed that JM(W,X,f) was
dependent only on the restriction of £ to G(FS)Z , for
zZ = hG(X). Thus, as with the weighted orbital integrals, the
weighted characters may be regarded as distributions on

Hac(G(FS)), It follows from Lemma 6.2 of [1(e)] that

M
J Q(W,X,R

JM(‘"IXIth) = M Q,hf)'

QEF (M)

for any f¢ Hac(G(Fs)) and he¢€ H(GO(FS)1). Since a similar
formula holds for the map ¢M , we shall define an invariant

distribution

L, (T, X,£) = Ig(r,X,£), . £E€H__(G(F)),

inductively by setting

(3.1) I, (7,X,£) = J (n,X,£) - T (v, X, 6, (£)) .
Mo M ‘ LELy (M) M L
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Included in the definition is the induction assumption that
for any LE€E LO(M), and any pair {(m,X), the distribution
Iﬁ(v,x) is supported on characters. Observe that this
induction hypothesis is our second. Before we are done, we
shall be forced to take on several more of the same kind. All
but one of these will be resolved presently. We shall show

in §6 that our induction hypotheses are all contained in the
one of §2. But as we have already remarked, we shall carry the

hypthesis of § 2 into the next paper.

LEMMA 3.1: Suppose that w 1is tempered. Then

£,(T,X), if M = G,
{0 , if M *G.

IM(ﬁ,X,f) =
PROOF: If M = G, we have

IG(TrPfo) = fG(“rx) '

by definition, even if 1w 1is not tempered. If M % G, the

definitions alsoimply that

A
_ _ M
Ty (1%, £) = 6y (E,m,X) = I (T,X,6,(£)),

as long as 7® 1is tempered. The lemma follows inductively

from (3.1).

At first glance, one might guess that the lemma holds
for arbitrary = . However, this is decidedly not the case.

If m 1is not tempered, and if M * G; the difference
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JM(TTIXIf) - ch(f y T, X)

is no longer 0. For JM(n,x,f) is defined directly as

an integral over {“A}’ whereas ¢, (f,7,X) is defined by
analytic continuation from such integrals taken over tempered
representations. One finds that the difference depends in a
complicated way on the residues discussed in §8 of [1(e)].

We shall say more about this in another paper.
On the other hand IM(W,X(f) does not assume too many
values. Set

| _ £y e (X)
Iy, (T X,£) = I (r XDe ,

and consider this expression as a function of .

LEMMA 3.2: (a) As a function of , IM “(W,X,f) . is locally
!
constant on the complement of a finite set of hypersurfaces of

the form
p(aY) = N,
for NeR, and o a root of (G,AM).

{(b) For each PE€ P(M), let =€ be a small point in

P
the chamber {a§)+. Then
I, (m,X,£) = | P[] g 1 (1,%X,£)
M ’ .
s pep (M) MrHtEp ]

PROOF: The definition (3.1) may be rewritten
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A

3 L
J, (7, %X,£) - % I, (m,X,¢. (£)),
Mo LeLy (M) Mop L

(3.1%) In p(Tr,X,f)

-where

-u (X)

JM,}J-(“’X'f) J (ﬂurxrf)e

M

The first assertion (a) of the lemma will follow inductively
from this if we can establish the corresponding statement

for u(ﬂ,X,f). We may assume that £f belongs to H(G(FS)).

JM,
Then if p€ aﬁ is in general position, we have

: “A(x
Ty, (X E) = Iy (T, f)e (%) 9

\ M
+*
p+1aM’S

The required assertion then follows from the properties of

the function JM(”A’f)' (See § 6 of [1(e)].) This proves {(a).

Assume inductively that (b) holds if G 1is replaced by

any element L€ LO(M). Then

L L -1y AL

I (m, X, (£)) = IPT (M) - ) I (m,X,¢. (£)).
M,up ) L REPL{M) M,p+ER L

If we apply the assertion (a) to L, we see that this may be

written as

P tTh §IE X (6)).
pep(m) HTp

But it is an immediate consequence of the definition [1(e),§7]

of JM(ﬂu,x,f) that
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, .
J (m,X,£) = |P(M)] Y J (m,X,£)
M pep ) Mrbrs T

The second part (b) of the lemma follows from (3.1%*).

REMARK: The reader might want to keep a special case in
mind. Suppose that F =1R, 7 1is tempered and M = AMJ(SO
in particular, G 1is connected Chevalley group). Then from
the reducibility properties of the representations IP(wu),

one can see that the singular hyperplanes are all of the

form
p.(cxv') = n, GEZ(G,A.M), nex.

Therefore, IM u(n,x,f) is constant on the affine Weyl
!

chambers of aﬁ.
LEMMA 3.3. Suppose that . n-EH(M(FS)) is unitary. Then

the function
IM,M(H'X'f)' pea;i ’

is constant for g in a neighbourhood of the origin.

PROOF: First consider the function u(Tr,x,f). As in the

JM,
proof of the last lemma, we can assume that £ Dbelongs to

H(G(FS)), so that

- '
JM’“(ﬂ,X,f) = [ JM(HA,f)e (X)dA

1 *
H¥idy s
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By definition [1(e),§61,
Iy (M £) = tr(Ry (7, ,Py) IPO (my,£)),

where RM(“X’PO) is constructed from the normalized

interwining operators

R P (ﬂl) : 1 (ﬂl) ——% IP(WA)' P,POEIP(M).

In particular, JM(ﬂk’f) is regular at any point A where

the intertwining operators are all regular. But by Theorem 2.1
of [1(e)], the operators RPIPO(NA) are unitary whenever -ﬁh
is unitary. It follows that JM{“A’f) is regular if the real
part of A 1is near 0. By changing  the contour in the integral

above, we see that Jm u(“’x’f) is constant for u near O.
r

The lemma then follows inductively from the formula (3.1%).

For future reference; we state a variant of the last lemma.

Its proof is similar.

LEMMA 3.4 Suppose that =€ H(M(Fs)) is unitary and that

LeL(M). Then

L *
I (my,hp (X)) ,£), AEag o

is analytic for the real part of * A near O.

It is sometimes appropriate to take a standard represen-

tation p€ E(M(FS)) ([1(e),8§5]) instead of the irreducible .
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We noted in §7 of [1(e)] that the distributions JM(p,X,f)
could be defined in the same way as JM(n,x,f). We then
showed ([1(e)l, Proposition 7.1) that for any w€ NM(Fg)),

JM(n,X,f) had. an expansion

-2 (X)

Pl f L rz(my 0,03, (0% b, (x),EreT Bay,

* 1 %
P o €P+iaM,S/laL,S

with P and p summed over P(M} and {Z(M(FS))} respectively.
(The notation here follows [(1(e)]. In particular, fﬁ‘“x'px’ is
a meromorphic function obtained from the ratios .of the
normalizing factors for LEY and. Py+ As in Proposition 5.1 of
[1(e)], we write {E(M(FS))} and {f'{H(M(FS))} for the set

of orbits of the finite group

s = T 1 Bomu" (r ) /M°(F ) ,C¥)
veES

in Z(M(FS)) and H(M(ES)) respectively.) Arguing as

in the proof of Lemma 3.2(b), we obtain a similar expansion

(3.2) ,IM(n,x,f)

=P 1T Y S “A(X) 55
P

L L
) rM(nA,pA)IL(p ,hL(X),f)e

k] 5 %
eptiag g/iaf o

for the invariant distributions defined by the analogue of (3.1).
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§‘4 Some_ further maps and distributions

In this paragraph we shall study some supplementary
maps and distributions. These do not appear in the trace
formula, but they will be needed to relate the two families

of distributions we have already described.
The function
x —> ¢M(ff“ix)

does not have compact support. Our first task will be to

define a different map s with the property that for any

MI
feH(G(FG) ),

X —> °¢M(f,n,X)

does have compact support. However, the latter function turns
out not to be smooth in X. In order to describe it properly,

we must first introduce some larger function spaces.

Suppose that ¢ 1is a finite set of hyperplanes in an
Euclidean space a . The complement of ¢ in a 1is a union
of a finite set CC of open connected compeonents. For any
X€a, let C(X) denote the set of components in (. whose

closure contains X. If
(c,X), cel, Xe€a,
is any given pair, we set

mic,X) = vol(anx)(vol(BX))'1 ,
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where Bx is a small ball in a centered at X. Then

Yy m(c,X) = 1.
cel

As a function of X, m(c,X) 1is locally constant on the
strata of a defined by intersections of planes in ¢.-
Suppose that ¢' is a subset of ¢. Then any element <c'
in the corresponding set (' of components is a union of
elements in C together with a set of measure 0. It is

obvious that

(4.1) m(c',X) = ) m(c,X).
{c€C:ccc'}

We take a to be aG. For a given set ¢, we define
HQ(G(FS)) to be the space of functions £f on G(FS) such
‘that
(4.2) fix). = ] mic,Hg(x))£_(x), X € G(Fg),

c€C (H, (x)) ¢

where each function fc belongs to H(G(FS)). Similarly, let

$
1 (G(FS)) be the space of functions

¢: (G(FS)) x a,—>

Tt emp G

of the form

p(m,X) =} m(c,X) o (7,X),
) ceC (X) .
with ¢CE:I(G(FS)). In the manner of §11 of [1(e)], we assign

topologies to the two spaces. For example, we take Hé(G(FS))

to be a topological direct limit
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. ®
lim lim HN(G(FS))F .

T N

Here HS(G(FS))F denotes the space of functions f such
that each fC -belongs to the space HN(G(FS))F defined
in § 11 of [1(e)]. The topology on Hﬁ(G(FS))f is defined

by the seminorms

€]l = sup sup IDE_(x) |
c€eC {xeG(FS) :HG(x)ec}

‘"with D a differential operator on Now, the

collection of all ¢ 1is a partially ordered set. Define

R(etrg)) = 1in #* (G(rg))
0]
and
T(G(Fg)) = Lim I“'(G(FS)) .

o)
We point out that if S contains no Archimedean valuations,
a is just a lattice in a,., and the spaces H(G(Fg))
G,S ; G s
and T(G(FS)) equal H{G(Fg)) and T(G(Fg)) respectively.

In general, 'however, they are proper extensions.

We of course also have spaces W(L(FS)) and T(L(Fs))
for each L& L(M). In a similar fashion, we can define

extensions ﬂac(L(FS)) and IaC(L(FS)) of the spaces

Hac(L(FS)) and Iac(L(FS)).
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LEMMA 4.1: For L¢€ L(M), suppose that H 1is one of the
) ' .
spaces H (L(FS)), W{L(FS)) or WaC(L(FS)),_and 1 is

the correspondingspaﬁe I@(L(Fs)) ’ T(L(FS)) or Tac(L(Fg)). Then .
g_)'gL f gEH ?

is a continuous, open, surjective map from H onto I.

PROOF: As in Proposition 1.1, the lemma follows easily

from its analogue for H==H(G(FS)) and 1 =I(G(FS)).

In § 12 of {1(e)] we defined a map
f — ¢M,u(f)’ fEHac(G(F_S”’
for each € aﬁ. We then established that ¢M n maps
4
Hac(G(FS)) continuocusly to Iac(M(FS)) ([1(e), Theorem 12.11]).

The values of the function are defined by

¢M'u(f,v,x) = JM,u(n,x;f), HE‘Htemp(M(FS))'xeaM,S'
h, (X)
The value depends only on £ , SO0 it follows that ¢M "
’

can be defined foi any fE'ﬁac(G(Fs)). The map sends: ﬂac(G(FS))
continuously to IaC(M(Fs)). This applies in particular to
-¢M , which is the case that pu = 0. It follows easily that the

distributions I, (m,X) and I,(y) can be defined on ﬂac(G(FS)).

The most familar set of hyperplanes in ay is the collection
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{a

©
il

L:Le L(M), dim(A.M/AL) = 1}.

The associated components are just the usual chambers

{al:p € P(M)L

P

Let P(M,X) denote the set of elements P € P(M) such that

X belongs to the closure of al. These chambers are all

p*
+ .
congruent, so if ¢ = ag s with P € PM,X),

m(c,X) = 1PM,x) 17 .

For each P€E P(M), let Vp be a point in the associated

chamber (a;)+ in a} whose distance from the walls is

very large. The function (£,m,X) 1is then independent

¢M,vP

of VP‘ We define

c - -1
o (£,7,X) = |P(M,X)] % ¢ (£,7,X),
M peP(M,X) rVp

for feH, _(G(Fg)), TETT (M(Fg)) and XE€a We have

temp M,s’

already agreed that ¢M’vP maps Hac(G(FS)) continuously
to Tac(M(FS)). It follows easily from the definitions that

~

c . . ‘
f — ¢M(f) is a continuous map from Wac(G(FS)) to Iac(M(FS)).

The reason for introducing is that it maps functions

2%

of compact support to functions of compact support.
LEMMA 4.2: cq;M maps H(G(Fg)) ‘continuously to T(M(FS)).

PROOF: We must show that there is a positive integer N,
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depending only on the support of fEZW(G(FS)), such that

C¢M(f,n,X) is supported on the ball in of radius N.

M, s

Looking back at the definition of , we see that it is

c
ch
sufficient to show that for any P€ P(M), and for X in the

+
closure of apr]aMys'¢M,v

of radius N. Consider the decomposition (4.2) for £f. We can

(£E,7,X) 1is supported on the ball
P

of course assume that the functions on the right hand side
of this formula are each supported on a set which depends only
on the support of f. We may therefore assume that £ itself

belongs to H(G(Fs)). Then

(E,7,X) = f e-A(X)JM(wA,f)dA
P \)P+ia*1{1's

(4.3) oM, v

We need only show that as a function of X€a (4.3)

i
is supported on a ball which depends only on the support of f£.
The proof of this fact is straightforward and is similar to

an argument used in the derivation of Thecrem 12.1 of [1(e}].

FPor we have

JM(nA,f) = tr(RM("A'Po)IPO(”A'f))’

in the notation of [1(e)]. There is a standard estimate
for the function
1, (m,,£) .
PO A
(See [1(e),(12.7)].) Combined with the rationality properties
of R and the classical Paley-Wiener theorem, it yields the

M
required assertion.
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C

The map behaves the same way under conjugation as

Oy

LIVE
- 0 1
LEMMA 4.3: 1If fEﬂMJGWQ) and hE€H(G (Fg) ),

M
°¢MQ(R £) .

o
by (Lp ) o.h

) QEIE(M)

PROOF: According to [1(e),(12.2)]1,

M

Q
0 (L, £) = i) (R £),
M,vP h Qe F (M) M,vP Q,h
for each PE€ P(M), Therefore
“oy (LyE,m,X) = 1P, 3 ¢$Qv (Ry pErmeX) .
QEF (M) PEP (M, X) 'p '

Fix Q€ F(M), and set L = M_.. If P€ P(M), the point v

Q P
certainly belongs to the chamber (ainp)+ and is far from the
M.
walls. In particular, ¢MQv depends only on LNP, It
14
P

follows from (4.1) that
P —> PNL

maps P(M,X) surjectively onto PL(M,X) with the inverse

image of any point containing

1P (M,x) 1 1PR M, %) 7]

elements. Lemma 4.3 follows,

, 0

By the last lemma, c¢M(f) and ¢M(f) have the same

formal behaviour under commutation. We can therefore copy
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the construction of the distributions IM(Y) and IM(W,X),

but with C¢M playing of the role We obtain invariant

by

distributions

C
{ Iyly):ye€ M(FS)}

and
c . I
{ IM(W,X).(W,X)\_H(M(FS))X aM,S}
on ﬁac(G(FS)) such that
C Z CAL c
(4.4) I (Ylf) = J (Ylf) - I ‘Yf o) (£))
M M Lely () M L
and
o4 cAL c
(4.5) Iy(m/X,£) = I (m,X,£) - ] L (70X, "¢y (£))
. LELO(M)
for any f . 1Included in the definition are our third and

fourth induction assumptions, namely, that for any L€ LO(M),
the distributions cIﬁ(y) and cIﬁ(n,x) are supported on

characters. The significance of cIM(Y) is in the next lemma.

LEMMA 4.4: Suppose that T 1is a "maximal torus" of M over

F (in the sense of § 1 of [1(d})]). Then for any f(EW(G(FS)),

S
the function

Y —> I, (y,£), Y€ T(Fg),

has compact support.
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PROOF: It follows from ([1(d), Lemma 2.1 and the definition
(6.5)}) that the function
Y—'"*JM(Y,f) ' YET(FS),

has compact support. Assume inductively that the lemma holds
if G 1is replaced by any LE LO(M). By Lemma 4.2, the function
C¢L(f) belongs to T(L(Fg)). Lemma 4.1 then tells us that it is
the image of a function on ﬂ(L(FS)). Applying the induction

assumption, we obtain the compact support of
AL
Y —> IM(Y’¢L(f))' “{€T(Fs).

The lemma then follows from (4.4).

The distribution CIM(W,X) is to be regarded as a

companion of IM(W,X). The two have some rather similar

properties. For example, if w€ H(M(FS)), XtEaM S and
fe€W_ (G(F.)) are fixed, the function

ac S
(4.6) Iy L (TX D) = CIM(ﬂu,X,f)e-p(X) , eeay

satisfies the analogue of Lemma 3.2. It is locally constant
on the compiement of a finite set of hyperplanes defined by

roots, and it satisfies the mean value property

C 1 y C

: (m,X,f).
PEP (M)

Ty, (T, 6) = (P(M) ] T, pre,

Moreover, when 1 is tempered and X is in general position,

there is an open set on which (4.6) vanishes. However, for
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Iy u the open set is an infinite chamber which depends
’

on X.

LEMMA 4.5: Suppcse that 1w 1is tempered, fEZHaC(G(FS)),

and M+ G. Then

(a) IM(N,X,f) = 0,
and
-1 C
(b) | P(M,X) | y Iy v (m,X,£) =0
PEP (M, X) "Up

PROOF: The assertion (a) is just Lemma 3.1. We have

included it here only for the sake of comparison.

For the second assertion (b), we begin by observing that

c
Oy (Erm,X)
-1
= 1P, b gy (E,T,X)
PEP(M,X) ~'P
=P ] e Xy (o x,6).
PEP (M,X) P
Therefore, the given expression,
pPo,x) 1T T Cr o (mx,g)
PEP (M, X) P

is equal to the difference between C¢M(f,n, X} and

- A
1P, 17 g ) °r

. (m,%, %0 (£))
PEP(M,X) LELy (M)

L
M,vP
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A
Since depends only on the element R = PNL in

IM,vP )
PF(M,X), we can argue as in the proof of Lemma 4.3. The

" last expression becomes

I rPPeux Tt T 4L (mx, e (£)).
LELO(M) REFP™ (M, X) "R
We can assume inductively that the summand corresponding
to any L %M vanishes. But the summand correéponding to
L=M is just equal to C¢M(f,n,x). It follows that the

original expression vanishes.

COROLLARY 4.6: Suppose that =w,f and M are as in the

lemma, and that X belongs to a chamber al PEP (M) . Then

P’

°1 (r, ,X,£) = 0.

M P o

1f we try to compare (f) and C¢M(f) directly,

oM

we are lead to define invariant maps

c ~
) 6 :ﬂaC(G(FS)) — I M(Fg)) .

M" "M

We define them inductively by

A
(4.7) o (£) = So (£) - .3 o (4. (£))
M M Lely ) M T
and
c cL ¢
(4.8) Oy (£) = ¢, (£) - . ¥ Bl o (£)),

EELO(Mj
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for any fE‘HaC(G(FS)). Once again, the definition includes

induction assumptions, our fifth and sixth, that for any

L€ LO(M), the maps Bﬁ and Ceﬁ are supported on characters.

LEMMA 4.7: Suppose that wEHtemp(M(Fs)) and fEEWaC(G(FS)).

Then

(4.9) By (E,m,X) = IPOMLXIT§ 1, (M6,
PEP(M,X) 7P

and

(4.10) o, (£,7,%) = I (r,X,£).

PROOF: Acording to the definition, GM(f,ﬂ,X) equals the

difference between C¢M(f,n,x) and

AL
eM(¢L(f),n,x)
LELO(M)

7

By induction, we can assume that

AL L f -.1 A
e (o (£),7,X) = P (M,X) I X ﬁ; (r,X,9.(£)),
ML repPliM,x) M'VR L

for any L€ L,(M). The summand on the right is independent of

0
Vg+ as long as the point remains highly regular in (a§)+. It
follows from (4.1) that

AL -1 A
8o (o (£),m,X) = |P(M,X)| ) (7, X,¢, (£)).
ML PEP(M,X)Iﬁ'vP L

We must subtract the sum over I.ELO(M) of this expression
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from the function

c ) -1
o (£,m,X) = |P(M,X)I Y ¢ (£,7,X) .
M peP (M,X) 'Vp
Since
¢’ (flnlx) =J (“rxlf)l
M,VP M,vP
the result is just
P,x) 1T g I (m,X,£) .

peP (M,x) M'Vp

The equality of ‘this expression with 8,(f,7,X) 1is the

required formula (4.9).
The second formula (4.10) follows by a similar inductive

argument from (4.5) and (4.8).

LEMMA 4.8: Suppose that ,fezﬂac(G(Fs)). Y EM(Fg), n-én(M(FS)),

and Xe€a . Then the following formulas are valid.

M,S
(4.11) I (v,£) = ST (y,£) + LGLE(M) cgﬁ(y}eL(f)).
(4.12)  CI, (v,£) = I (y,£) + cho(m) Ih(y,%, (£))
(4.13) Iy(m X, f) = cIM(w,x,f) + LE%O(M)CQQ(H,X,BL(f))
(4.14) cIM(Tr,x,f) = IM(W,X,f) + Lezb(m)ga(ﬂ,x,ceL(f)).
(4.15)  Sou(6) + 7 cgﬁ(GL(f))=eH(f)+ ) ggtceL(f))={g:§22j

LELO(M) LELO(M)
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REMARK: We should keep in mind what will eventually be proved,
namely that the distributions and maps above are all supported
on characters. Once we know this, we will be able to change the righkt

hand side of each formula to a single sum over L€ L(M).

PROOF: We assume inductively that each formula holds when G
is replaced by a proper Levi subset. The formulas for G are
then easily estabished from the definitions. We shall prove

only (4.11).

It follows from the definitions (2.1) and (4.4) that

c
IM(Y,f) - IM(Y:f)

. A AL
= 1 CTEtSeten - 1 1 (vaey (E)).
LeLy (M) L,€L, (M) 1
By (4.7) the first of these sums equals
A A L
“In(yv,0.(£)) + ] I, Sihel 86, (o).
LQLO(M) L1€L0(M) LEL (M) ' 1

Applying (4.11) inductively to each L, € Ly(M), we obtain

Z CAL AL1 AL1
L I (v,0. (¢, (£))) =TI, (v,d, (£)).
LéL Tqmy M L 'L M Ly

Formula (4.11) then follows for G.
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§°5 A contour integral

The formulas (4-11f and (4.12) can be taken as motivation

for the introduction of the maps 6 and ©g The two

M M*
formulas describe the asymptotic behaviour of IM(Y). Their
value. lies in the fact that they'consist entirely of invariant
distributions. Of course it is the compagt support (Lemma 4.4)

of ¢

IM(YT that is essential here. We point out that this
property has come at the expense of properties of smoothness.
The original distribution- IM(Y:f) is not smooth in Yy , but
its singularities are not too bad.. For example, if F = IR,
{2.7) provides a simple formula for its jumps across singular

A
hyperplanes. The singularities of €1 (vy,£) are more complicated.
P M

C

The same sort of thing is true of C¢M, CIM(W,M) and 8

M
Each of these objects has better support properties than the

original one, but has worse properties of smoothness.

The distributions {Iﬁ(ﬂ,X)} and {clﬁ(w,x)} and the
maps {eﬁ} and {ceﬁ} are closely related. It turns out that
all of these objects can.be computed from each other. By
formula (4.15), either of the two sets of maps can be computed
from the other one. By Lemma 4.7, the maps can in turn be
computed from either of the families of distributions.

The other family of distributions could then be obtained from
(4.13) and (4.14). To complete the picture, we need to

c

establish a formula for cIM(n,x) in terms of the map 6

M
In this section we shall show how to write cIM(Tr,X) as a sum

of contour integrals of a certain meromorphic function. This
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meromorphic function is derived from CBM in the same way

that the weighted character
¢M(f 'TTA) = JM(TTK ' £)

can be obtained from the map ¢M' We shall review this latter

construction first.

Suppose that 7€ Htemp(M(Fs)), and let T be a finite

subset of M (K). For the moment, take f to be a function in

H(G(FS))P. The original definition of (f) was given in

qbM
§ 7 of [1(e)]. Recall that

¢M(f,n,x) = J i) (f,wl)e_l(X)dA,
La¥ M
+dM,s
where
by (E4Ty) = Jylmy ) = tr(RM(nA,PO)IPO(mA,f)), NEay o
in the notation of [1(e)]. As a function of 1, ¢M(f,nk) is

meromorphic. It has finitely many poles, which lie along

hypersurfaces of the form

- = cm
qvﬂﬂk) c 0, ceEC ,
where a 1is a root of (G,AM) and v is a valuation of F.
(As in [t (e)], q, a(A) equals A(aY) if v is Archimedean,

- v
and equals qvk(a ) if v 1is a discrete valuation with
residue field of order qv.) In fact, there is a finite

preoduct
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. ) =T Tla, (&) -c, ), Cy o EC
! (v,a) ! - ! ! .

which depends only on ® and T, such that the function

A= q, (e (E,my)

belongs to the rapidly decreasing Paley-Wiener space on

a* + iax . (If = a

M M,S in,s T 3y’
space is standard. Otherwise

the definition of the Paley-Wiener
1 1 %
aM,S is a lattice and 1aM,S
is compact. In this case, the definition is similar, except
that we impose no growth condition in the imaginary direction.)

More generally, ¢M(f,ﬂk) is meromorphic in w. In other words,

if M 1is a Levi subset of M over FS' and

T=0, . centemp(M(FS))’Aeiaﬁ ’

in the notation of § 6 of [1(e)], the resulting function of

A extends to a meromorphic function on a . 'From the Fourier

M,C

inversion formula on we obtain

¢M(f;ﬁl) = S ¢M(f.w,X)ek(X)dx.

au,s

Now, suppose that £ belongs to the larger space ﬂ(G(FS))F.

Then f has compact support, and we can still define

1. (m,,f) = [ f(x)1, (m, ,x)dx, P.E€P(M,
PO A G(Fs) PO A 0

and

o (Emy) = 3y () £) = ex (R (m Bg) Tp (7))
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Again, ¢ﬁ(f'nk) is meromorphic in w. In particular, it
is meromorphic function of X . There is a function q. F(A)

of the form above such that
N = qp )y (£,m)

belongs to the slowing increasing Paley-Wiener space on

* ig* .
aM + 1aM’S .

LEMMA 5.1: The function

¢M(f,1r,X), Xea ’

is rapidly decreasing on , and we have

M, s

(5.1) b (£ = S eyte,mxer Max,
M,s

PROOF: By definition [1(e)],

j . ‘ hG(X)

(f,7,X) = tr (R, (m, ,P,)I. (7, ,£ )

. . M'“A'""0°°P A
1a§'s/1aals 0

2"

where hG(x) = Z 1is the projection of X onto as and

: h (X) [
I w, £ ) = fx)I, (m,,x)dx.
P0 A G(Fsﬁ P0 A

As in (4.2), we can write f(x) as a finite sum

y m{c,H. . (x))f (x),
cEC(HG(x)) G €

e~ M X) 45

r
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where each function fc belongs to H(G(FS)). Then

o (£,7,X) = )} mic,X)o (£ _,m,X).
M c€C (X) Me

" 8ince each function ¢M(fc,n,x) is rapidly decreasing in X,
the same is true of ¢M(f,w,X). To prove the seccnd assertion

of the lemma, note that

a PO

/
IPO(nA,f) = [ 1 (my,£7)42,
G,S

since f has compact support. Consequently

_ Z
by (£,m ) = { tr(RM(ﬂA,PO)IPO(WK,f ))dz.

3G,s
The required formula (5.1) then follows from the Fourier
. - -
inversion formula on laM,S/laG,S .
We continue to assume that fE’F(G(FS)). Copying the

formula (5.1), we shall define

(5.2) CGM(f,ﬂ CeM(f,n,X)e*(X)dx.

S

)y =
A
2y

For the absolute convergence of the integral, we require a

lemma.

LEMMA 5.2: The function

C
eM(f,TT,X), * XG a. r

is rapidly decreasing on & .
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PROOF: The definition (4.8) is

l\
c ¢’ L,c
(5.3) 8, (£,m,X) = o, (f,7,X) = } 8 (9. (£),m,X).
L M Lelym M H
According to Lemma 4.2, each function C¢>L(f) belongs to

T(L(FS)). Lemma 5.2 then follows inductively from Lemmas 4.1

and 5.1.
[m]

For future reference, we record a corollary. It is proved

exactly the same way.

COROLLARY 5.3: Suppose that M# G, and that T is a "maximal

torus" of M over FS. Then the function
AM c
is rapidly decreasing.

We can now take up the study of the function (5.2).
Suppose that £ belongs to W(G(FS))F. It follows
inductively from (5.3) and (5.1) that

z ch c

C
By (E,my) = ¢ (E,7 (T, (£),m, ).
M A M rel () ML A

A)
This formula in turn tells us that CBM(f,ﬂk} has properties
which are similar to those of ¢M(f'ﬁl)° In particular,
CBM(f,nA) is analytic in 1w, and therefore also‘in A

Moreover, there is a function (A} of the form above

qw,F
such that

c
A — qﬁlr(h) By (E,my)

belongs to the slowly increasing Paley-Wiener space on
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. - .
aM + laM,S' Observe that the functions ¢M

can be analytically continued in w. They may therefore both

(f,ﬂk) and CeM(f’ﬂl)

be defined, as meromorphic functions of A, if 1w 1is replaced
by a standard representation 'pE-ﬂMiFS)).
Let us now take 1w to be any representation in

H(M(Fs)). Motivated by Lemma 6.1 of [1(e)], we define

L
(5.4) o (£,my) = ro(my0y)¢. (£,p,)
MITOA T e ) ps§ixm(FS))} METATTATTL A
and
(5.5) o, (£,m) = ] ) £y (1, 10,058 (£,0,) .

LeL(m) pe{zim(rg)} M

(The functions r;(wk,pk), we recall, were defined in §5 of
[(1(e)], "ané were shown to be rational functions of
{qv,a(k)}') Then we have

A
(5.6) = Se (f,m) = o (f,m) - ~ 3 CeE(Cs_(£),m,).
M A M A LELO(M) M L A

Once more, (£,7,) and CBM(f,nA) are meromorphic in A.

¢M
Again, there is a function a. F(A) of the form above whose
I
product with either of them belongs to the slowly increasing
av=Wi * *
Paley-Wiener space on ag + iaM'S .
PROPOSITION 5.4: Suppose that TEN(M(Fg)) and feW(G(FS)).

Then

c -1 (11 C -1 (X)
I (m,X,£) = lim |P(M)| ) f B(A) "By, (£,m))e dx,

3 *
B PEP (M) €P+laM,S

where X 1lies in the complement of a finite set of hyperplanes

and B 1is a test function in c”(a

o (3y S) which approaches the

Dirac measure at the origin.
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A
REMARKS 1: The function 8 belongs to the rapidly decreasing

Paley-Wiener space on aﬁ + iaﬁ gr SO the existence of the
r

integrals over €p + iaﬁ S follows from the remarks above.
. r

) c
2. If none of the poles of GM(f,ﬂA) meet iaﬁls ’

the right hand side of the formula simplifies to

A
lim [ 8%, (,m e Fax,
1%
B 138 s ,

3. Suppose that S consists of one discrete valuation.

Then is a lattice in a,, and B8 may be taken to be the

ay,s
Dirac measure. It can be removed from the formula. The formula

in this case holds for all values of X.

PROOF: We shall actually show that

N i ¢-
L S Lol LA T [ BmCe,empe Way

aM,s PEP (M) efiﬂis

for any X€ a and B¢ C:(a

C

M.S ). It follows easily from (4.5)
r

and Lemma 4.2 that

M,S
IM(W,X,f) is a piecewise smooth function

of X, whose singularities lie along a finite set of hyperplanes.
The required formula of the lemma would then hold for X in

the complement of these hyperplanes.

W& shall first derive an analogue of (5.7) for

JM(n,x,f). Since f has compact support, the function

JM(nl'f) = tr(RM(“A’PO)IPO(“A'f))
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exists., It in fact equals the function (f,wx) introduced

¢M
above. This is just the definition if w7 is tempered, and
the general case follows from analytic continuation, Lemma 6.1

of [1(e)], and the formula (5.4). Consequently

' _ Z
¢M(frﬂ.)\) ""a I JM(TrA'f )dzl
G,S

where

z. _ Z
JM(T]-)\'f ) = tr(RM(W)\'PO)IP (ﬂ'?\'f ).

0
By definition,
- h {X) _, _
JM(W,X,f) = |P{(M) I 1 ) i . J“(WA,f G Je A(X)dk.
. * . I
PEP (M) EP+laM,S/laG,S

Combined with the Fourier inversion formula in iaﬁ g’ these
; , _

facts lead without difficulty to the formula

- A -
(5.2) [ B (T,X-Y,£)dV=1P (1) | Ty f B(A) g, (£,m,)e AMX) gy,
ay g PEP(M)  eptiay o )

"We shall prove (5.7). According to (4.5), the left hand
side of (5.7) equals the difference between the left hand side

of (5.8) and

cAL c
| B(Y) "Iy (m,X-¥, ¢ (£)aY.

LELO(M) aM,s

Assume inductively that (5.7) holds for L. Then the last

expression can be written as
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porPReniTt T [ BMCRECy, (5) ,mpe ™ Mas,

3 *
LELO(M) REP (M) €R+laM,S

Since c¢L(f) belongs to T(L(FS)), the function

) . ' tE ax

. ch L C

A+T

is entire. We can therefore translate the contour of integration

by any vector in ai. The expression may consequently be written

as

LA D) [ BOCEECs L) mpet ®ay,

. 9 *
LELO(M) PEP (M) EP+laM,S

In particular, the sum over over L can be taken inside the inteoral

over A. Thus, the left hand side of (5.7) equals the product . -

of |P(M)]| with
2 I g(k)(¢M(f,ﬂA) - 2. c L(C¢ (f) i »e l(X)dX
P eptiaf ¢ LELq (M)

By (5.6), this is just the required right hand side of (5.7).

The proposition is proved.

) which is symmetric

Let 81 be a function in C:(aM S

about the origin, and set

BG(Y) = ¢ dlmaM B (e” Y), e>0, YEa

It is not hard to show from our definitions that
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Tqs c
°1, (m,X,£) = lim [ B_(¥)°T, (7,X-Y,£)aY

e~>0 aM’S
for any X€a, S It follows from (5.8) that
CIM(ﬂ,X,f) = limIP(M)I_1E - (ge)(A)CeM(f,ﬂA)e
e+0 P e +iak*

P M,S

A
for any X. In particular, we can determine CIM(w,X,f)

CGM for all values of X.

- A(X)

from

dx,
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§ 6.

!
(D

duction of induction hypotheses

|

The distributions IM(Y) do not have compact support
in Y. This circumstance is behind the existence of the
distributions IM(W,X). It is also the reason we have defined
the supplementary distributions and the maps BM and CBM.
The implication is that these objects could all be computed from
an adequate knowledge of the asymptotic behaviour of IM(Y)!
This will be the rcle of the integral formula in Proposition 5.4.
The formula is actually more suited to comparing distributions
on different groups than to evaluating them on a single group.
The same is of course true of the trace formula itself. However,
we can give one illustration here of how the integral formula

C

may be applied. We shall show that CIM(Y), IM(ﬂ,X), IM(W,X), 8

M

c

ang 8,, are all supported on characters, provided that the

M
same is true of IM(Y). In other words, we shall show that
induction hypotheses of § 3 and § 4 may be .subsumed in those of

§ 2.

THEOREM 6.1: Fix a Levi subset M and a function £ G'ﬁac(G(Fs))

such that Q;= 0. Assume that
IL(G,f) = 0

for each Le L(M) and 6E€ L(FS). Then

(a) ‘I lv,£) =0, Y £ M(Fg),

(b) 8., (£) = %8, (f) = 0,
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and

.

e = - -
(c) IM(TTerf) = IM(TT:er) =0, “-H(M(FS))t X= aM,S

In particular, the induction hyvotheses of § 3 and § 4 are all

implied by original induction assumption on § 2.
PROOF: If M = G, the definitions imply that
Iy (1, X,£) = °L, (1,X,£) = £,(m,X) = 0,

c =

and

We may therefore assume that M=% G. We may also take f to be a
function in H(G(FS)). For if 2Z -equals either hG(X)_ or
Ho(y), the restriction of any given function in wac(G(Fs)) to

thé set G(FS)Z coincides with that of some function in H(G(Fs)).

Assume inductively that the theorem has been proved if M

is replaced by any L€ L(M) with L+M. By (4.12) we have

CI (y,£) = I,(v,£) + § Z(y,%. (£)), yEM(FL)
M ! M ' M ’ L ’ ST g’ -
LELO(M)
Our latest induction assumption then implies that cBL(f) = 0

if L +M. Combining this with the hypothesis of the theorem,

we obtain
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c _ "M c .
(6.1) Iyl ,£) = Ty, 8, (£)).
Since f belongs to H(G(FS)), Lemma 4.4 tells us that the
left hand side has bounded support as a function of y in
the space of MO(FS}—orbits in M(FS). The same is therefore

true of the right hand side. For a given Xg a » the right

M,S
hand side is the orbital integral in

{YEM(FS)=HM(Y) = X}

of a function defined on M(FS)X. The tempered characters of

this function are just

C ~
8y (£,7,%) | TE M (M(FG)).

Therefore, this last expression is compactly supported in

Xea . It follows that

- A (X
o (f,m,) = [ Se,(f,m1,Xe (X) 3

M,s

is an entire function of Xz a* .

Take a representation mwel (M(FS)), and a point

temp

iLE aﬁ s in general vosition. Apply Proposition 5.4 to the
F

representation nu. We obtain

ch o ALLC ~X (X)
Ty (7 X E) = lEm _I* B By (E,m ,y)e dx
1a
M,S
A -
=" ®un [ B -wCE,m0e KFan,
g p+iaz

M,S5
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Remember that B8 1s allowed to be any test function

which approacheé the Dirac measure at the origin. But

A
A —> B(A-p)

is the Fourier-Laplace transform of a function

X —> e_“(X)B(X)

which @also approaches the Dirac measure at the origin. We
A A
may therefore replace RB(A-u) by B(X). We obtain

-p (X A - (X '
e ¥ )CIM(nu,X,f) = lim [ B % (f,1)e B,

+ia%x
B laM,S

Now, the integrand - on the right is entire in A. It follows

that the integral over p-+ia§ g ¢can be deformed to any
1
other translate of iaﬁ g The outcome is that the function
-p(X)c, . e
e IM(ﬂ“,X;f) = IM,p(”’x’f)

is independent of p. At least, this is true for almost

all p and X. But by the formulas in § 4, the value of

this function at any p and X can be expressed in terms

of its values at nearly points in general position. It follows
that the function is independent 6f L, without exception.

Deforming u to each of the points

PEP(M,X),
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we obtain

Iy, (X E) = 1P T S (mx,f)

M peP(M,x) MrVp

It thus follows from Lemma 4.5 that
CIM'u(w,X,f) = 0.

Set pu = 0, and combine the last formula with that of

Lemma 4.7. The result is

“oy(£,m,%) = I (n,X,£) =1, ((7,X,£) =0,

M,0

for any we€l (M(FS)) and X € a

temp Therefore, the

M,S°
function ceM(f) vanishes. The assertions of the theorem can
now be easily proved. The required formula (a) follows
immediately from (6.1). The formula (b) follows from (4.15)

and the fact that the functions ©

BL(f),SLE L{M), all vanish.

To establish (c), £fix an arbitrary representation 1w in
H(M(FS)), and consider ‘- the function ceM(f,nA). The vanishing
of cGM(f) means that the function in zero if 7 is tempered.

By analytic continuation from the tempered case, it follows

that
SOy (Erpy) =0

for any standard representation p¢€ Z(M(FS)). A similar
formula is of course valid if M is replaced by any element

L€ L{M). Consequently, the expansion (5.5) implies that
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< =

in general. Apply Proposition 5.4. The formula

CIM(TT,X,f) =0,

follows. But with what has already been proved, the formula

(4.14 ) simplifies to

I, (m,X,£) = °1,(7,%,6).

This gives the final assertion (c)
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§ 7 A _property of (G ,M)-families

We would like to investigate the descent and splitting
properties of our distributions. We shall establish
splitting formulas in § 9. They reduce questions about the
distributions to the case that § contains onervaluation..
" The descent formulas, which we Shalllprove in § 8, reduce such
gquestion further to the case that the data which parametrize
the distributions are elliptic. Both properties were studied
in the earlier paper ([1(a)]1,§ 10, § 11), but under quite limited
circumstances. Only the distributions IM(Y) were discussed
there, and only for y regular. Moreover, we need to generalize
the formulas in another sense. For example, it is important
to be able to rewrite the distributions in which M 1is given
over a global field, in terms of distributions indexed by Levi
sets defined over local fields. We must intréduce new methods.
In this paragraph, we shall discuss a general descent formula
for (G,M) - families. The formula, whose verification. we will
postpone until the Appendix, will make the behaviour of our
distributions appear more transparent. In particular, it -will
provide a simple interpretation of the coefficients that appear

in the expansions of the distributions.
Suppose that

cP(A), Pe P(M), AEiaﬁ '

is a (G,M)- family ([1(a), § 61,[1(d), §1]1). Then
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-1
c,(A) = ¥ e (e (), XAE ia*
M pePuy T F ' '
is a smooth function whose value at A =0 we generally denote
cy ([1(a), Lemma 6.3]). Recall that for each L€ L (M) there

is an associated (G,L)- family

CQ(A), Qe P(L), A€ iai ’

and for every Q€ F(M), there is an associated (MQ,M)-family

Mo
cn (N, ReP Q) Aeiap .

For each of these we have the corresvonding functions

c. (A\) and cg()\). We shall find a formula for o (A) in

L
terms of the functions cg(k).

We shall actually study a family of functions derived from

{cp, (M)} which is larger than the collection
{CLU\) :Le LM},

This comes from a class of subspaces of ay which was introduced
in [7, §2]. Suppose first that bk is any vector subspace of

aM. Then

= al G
A= By & b o A,

M

where ah and &% stand for the respective orthogonal
complements of b and dg in ay "and u. By a root B oflk, we

mean the restriction to h of a root of (G,AM). For any such
B, let EL(B) be the set of roots of (G,AM) whose restriction

to b equals B. We say that bk 1is special if for every
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such B, the linear function

o
aEZ (B)

. h§ .
vanishes on aM. Assume that this is the case. The

roots partition b into a finite set of chambers, and to
each of these corresponds a system of positive roots. We shall
write P(h) for the collection of such systems of positive

roots, and we shall write

h+
g ! pePh),

for the corresponding chambers in . According to Lemma 2.2
of {7], every positive system y in P(h) has a uniquely

determined subset Ap which has the usual properties of simple

roots. Namely, Ap is linearly independent, and every element

in p can be represented as a nonnegative integral combination

of roots in Ap' Suppose that p€ P(h). Then there is a unique

element Q€ F(M) such that the chamber h; is contained in

aa. The restriction to & of any root of (Q,AM ) belongs to

Q

p. It follows easily that AP is the restriction to h of a

subset of the simple roots AQ.

Many of the constructions for the space a, can be

carried over to h. For example, if p€P(h), one can define

"co-roots"

g
1}

v
{a .aEAF} p
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and one can then set

8 (A) = (vol(hG/Z(A;)))-1 TT re”), . Ae€in

R €A
“*2p

One can also introduce the notion of an {aG,h)-family

of functions
cp()\), BEP(u), A€Ein* ,

by copying the definition of a .(G,M)- family. For any such

family, the number

cy = lim. cp(A) = lim  § e (M) (A)

A+0 A0 pepmf P
is defined. Pursuing the analogy further, we let L{hk) denote

the finite collection of subspaces of h of the form

b, = {HEh:B1(H) = ... =8

1 H) = 0} ,

2._(
for roots 61,...,8E of k. Any such bk, is also a special
subspace of ay. We write F(h) for the set of positive systems
q€ P(h1), where h1 = hq ranges over the spaces in L{(4).

For any (aG,h)-family, and elements h1E L(h) and g€ F(h),

there is associated an (aG;h1)-family and a (hq,h)-family.

Suppose that

{cp(k) : PEP(M)}
is a (G,M)~=family. If bt is a special subspace of Ay
we shall write Mh for the maximal element in L (M) such

that aM contains k. Then Mh is the Levi subset defined
b
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by the roots of (G,AM) which vanish on bh. Consider the
associated (G,Mh)- family

{c. (v):Q€eP(M ), vEIiaZ .
Q i Mh

For any B E€ P(h), there is a unique elemenF Q¢ P(Mh-) such

+ .
ot . \
that uIJ is contained in aQ. Define

CF(\)) = C (V) ’

for v restricted to the subspace ibh* of iaﬁ . Then

i

cp(v), peEP(L), veih* ,

is an (aG,b)- family.

Our main result will be an expansion for Cy in terms of

{CS:Q EFM)} .

The coefficients will be certain constants
a8 (k,1) L€ L(M)
M I ’ r
which we define as follows. For a given element L€ L{M),

consider the natural map

h L G
aM @ aM —_ aM

If the map is not an isomorphism, di(h,L) is defined to be

0. If the map is an isomorphism, we set dg(h,L) equal to

the volume in ag of the parallelogram generated by orthonormal
bases of ag and a;. Notice that in this case, the natural

map from aﬁ to hG is also an isomorphism. If T is any
bounded measurable subset of aL and T is its image in tG,

Ml’
then
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vol(T) = dg(h,L) vol(T).

In the special case that

h o= aM ' M1EL(M),

we shall write
G _ 4G
dM(M1’L) = dM(h,L).

.Fix a small point & in ah- and consider an element

M'
L€ L(M) with

dim(ag) + dim(al) 2 dim(a) .

Assume that £ is in general position in aﬁ, Then the
affine space g-+hG does not intersect ag unless
G _ .h L

or equivalently, unless dg(h,L) # 0. In this case, the spaces

g-rbG and ag intersect at one point. The point is nonsingular,

and so belongs to a chamber aa , for a unique element Q = QL

in P(L). Thus, £ determines a section
L — Q
from the set

(L€ LM :dg('h,L) +0)

into the fibres P(L).

PROPOSITION 7.1: Suppose that

CP()\), PEP(M), )\Eiab"& '

is a (G,M) - family. Then for any V€ ih*, we have
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Q
G L
c, (v) Yy di(bh,L)c, " (v).
b rel (v) M M

The proof of this proposition requires a study of
convex polytopes. In order not to interrupt the discussion,
we shall postpone the proof until the appendix. In the rest
of this paragraph, we shall derive some simple consegquences

of the proposition.

Most of the applicaticns of the proposition concern only
the case that v=0, so we state this separately.

COROLLARY 7.2: c ) aS(h L)cQL
. H u M ’ M .

Lel (M)

For certain natural (G,M)=families, Corollary 7.2 provides

a formula which is independent of the section L — QL .
COROLLARY 7.3: Suppose that for any L€ L(M), the number

' QeP(L) ,
is independent of Q. Then

ey = I aptmL)cy

Lel(M) M

Another special case of Corollary 7.2 pertains to products

of (G,M)~ families. Instead of (G,M), we take the pair
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(G,M) = (GxG,M xM) .

Then

and LfM) consists of the set of pairs

L = (L1,L2), L, eLlM).

i

Take U+ to be the space a, , embedded diagonally in ay

It 1is a special subspace. In order to apply the proposition,

we must fix a small point

E = (H,_H) r ] HeaM ?

in general position in the orthogonal complement of 1u.

For any pair L = (L1,L2) in L(M), it is clear that
G _ G
dM(h,L) = dM(L1rL2).

If this number is nonzero, we have
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For each i = 1,2, Hi is a point in general position in

aG , and belongs to a chamber a’

L Q
Q, € P{Ly). Then

for a unique element

(Ly,Ly) —> (Q,,Q,)

is the section determined by the point Z. Suppose that

{cP(A)} and {dP(A)} are two (G,M)- families. Then

is a (G,M)- family, where

P = (P,/Py), ' P1,P2€.P(M),
and
Its restriction to h is just
(cd) (A) = c (M)d (A), PeP(M),A€iax ,
P P P :

the product (G,M) - family. Corollary 7.2 in this case

becomes

G Q1.9
COROLLARY 7.4: (cd)y, = 1 dy (L, Ly)e, d,
L1.L2€L(M) )
where (01,02) stands for the value of the section at (L1,L2).‘

a
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Corollary 7.4 is reminiscent of earlier product
formulas for (G,M) - families, and in particular, Lemma 6.3
of [1(a)]. It seems to be independent of this result, but
it does imply Corollary 6.5 of [1(a}], which is a special
case. Suppose that {cpfk)} satisfies the condition of
Corollary 7.3. The formula in Corocllary 7.4 contains a sum

over pairs (L1,L2), with LiG P{(M) , such that
G
dM(L1,L2) # Oe

We shall fix L = L and use Corollary 7.3 with Lk = a

1 L
1
to interpret the remaining sums over L2. Take & to be the
projection of (-2H) onto the orthogonal complement of ag
.
. G
in  ay. Then
g + b = -2H + a, = Hy, +a. .
1 1

This intersects ag in the unique point H,. But for a

2

given L2, Qo is the unique element in P(Lz) "such that

H2 belongs to a’

0. Combining Corollaries 7.3 and 7.4, we
2 .

obtain.

(cd), = | cla
Moorelmy ME

This corollary 6.5 of [1(a)].

We shall conclude this paragraph with some supplementary
remarks on the Jacobians dg(h,L). Suppese that M1€ L (M)

is fixed, and that b 1is a special subspaée of Ay -
1
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Suppose that {cP(A)} is a (G,M) - family that satisfies
the condition of Corollary 7.3. We can apply Corollary 7.3
in-two stages, first with M1 as the base, and then with

M itself. We obtain

L
cy = ) dg (h,L1)cM1
Lyl ) M
= 7 a4y ) ] d;‘ (M, Licy .
L€l (M) 1 LEL 1(M)

L .
Let us agree to set dM1(M1,L) =0 if L, does not contain

both M, and L. Then

1

L
= 1 G L

C
b el (M) 1

On the other hand, the direct application of Corollary 7.3

gives

G

= -z dM

L
(k,L)c
Lel (M) M

“u
We can choose {cp(A)} so as to compare the coefficients
of these two expressions. Fix an element L€ L(M) with
dim(al) = aim(x®),
and set

cp) =TT, c, (A (a)), AEiar , PEPM),
o€ ZP
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r ) .
where ZP stands for the set of reduced roots of (G,AM),

and

Iez , if o wvanishes on aL ’
c (z) =
o L'I

, otherwise.

Then {cP(A)} is a (G,M) - family which satisfies the
condition of Corollary 7.3. It is easy to see that if L'

is any element in L (M) with
1
Cdim(ag ) = aim(x®),

then cﬁ vanishes unless L' = L. It follows that L gives

the only nonvanishing summand in the two expansions for Sy -
We obtain

G Ly G
(7.1) 4y (#3L) = Y 4, (M, ,L)dy (3,Iy) .
L1€L(M1) 1
Corollary 7.4 provides a slight variant of this formula.

Fix a special subspace of hca,. Let A{cP(A)} and {d,(})} be

M
(G,M)- families which both satisfy the condition of-Corollary 7.3.
The discussion following Corollary 7.4 can clearly be applied

to the resulting (a,,u) families. We obtain

B
(cd), = ¥ ¢ 'd .
b b,EL(E) B b

Applying Corollary 7.3 to the left hand side gives
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G L
(cd)y, = ) d’?(r,L) (cd)
8 LEL (M) M M

M 4L

= 1 ol (h Licy dy

LEL(M) M,EL (M)

1 1

We can also apply Corollary 7.3 to the right hand side. If

h
b, is contained in aM1,we define 4d 1(h,M1) exactly as we
defined dﬁ(h'M1)' but with aG replaced by h If h1
h
not contained in ay o+ we simply set 1(u M, )= 0. Note that

is

if G' is replaced by Gy =My then-: h-raG becomes a distinguished
’ 1

1
M and one'hgg' o :

h1 G,
(b} = &y (h+ag 4.

subspace of a

Applied in this context, Corollary 7.3 is easily converted to the
formula

B, ; h M
C = (h M )c
b M EL (M) %

1

Therefore, the right hand side equals

M
) (b,M,)c
boel(d) M EL(M)dM M %,
Ir M .
A 1 G L
¢boalmme,'s ¢ &€ m,,na
1, My 1" rel (M) My M,
' M
. 140
= ) y ( dyy Ty, M, )d (ay,L))cy, dy

M1€L(M) L€L(M1) Ir EL(h) 1 1

Arguing as above, one can see without much trouble how to
choose {c (A} and {dP(A)} so as to isolate any given pair
of coefficients. Equating the coefficients, one obtains

h

G 1 G
(7.2) az(k,L) = y o4, (bh,M4d7 (b,,L).
M h1€L(h) M 1 M1 1
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§ 8 Descent

We want to establish descent formulas for ocur various
distributions. For example, if MTEZL(M), and y 1is a G-regular
element in M(FS), then Lemma 10.3 of [1(a)] provides a formula

' A
for Iy (vy,£) in terms of the distributions I;(Y’fL)‘ This
1

formula, however, does not apply to arbitrary elements in M(FS).

The correct generalization must be stated in terms of induced
M

conjugacy classes. For any y(EM(FS), recall that ¥y 1 denotes

the induced space in M, (F.). If Yy is such that M =M_,
M 1°°8 T,y 7Y

then vy 1 is just the 'M?(FS)—orbit of y. In general, however,

M .

Y 1 is a finite union of M?(FS)-orbits {Yi} in M1(Fs).

We shall prove a formula for

M1 Z
I, (v ,f) = I, (y; £)
M1 i M1 i
. A L ,
in terms of the distributions IM(Y,fL) .

We shall in fact establish a more general result. Suppose

that b is a special subspace of a In § 7 we defined the

M.
Levi set My € L(M). If Y belongs to Mh(FS), we can define
the distribution J,(vq.£) on H_ _(G(Fg)) exactly as in the

special case that b = a (See" [1(d), (2.1) and (6.5)].)

M
We need only replace the volume v, (x) in [1(d), (2.1)]

by vh(x), the volume in hG of the convex hull of
. +
{HQ(X).LC PMy}, ann b*¢l .

Similarly, copying the definition of ¢, ([1(e), § 7]), we

can introduce a map
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dyifae(GIFg)) —> T, (My(Fg))

The constructions being identical to the special case that

b= 3, + we shall adopt obvious analogues of notation and

results that apply to the special case. In particular, we
define an invariant distribution Ih(Y1) on Hac(G(FS))

inductively by

h

A .

(8.1) I, (y,,£) =J (y,,f) - ) I, (v sd, (£)).
k' R €L (0) |- B 8

Included in the definition is the induction assumption that

h
for any h1E Lo(h), the distribution Ih1(y1) on Hac(Mh1(Fs))

is supported on characters. The next theorem will provide a
formula which resolves this new induction hypothesis in terms

of the'original one.

The space 4 1is always contained in ay - If the two
‘ L

spaces are the same, then Ih(y1,f) is just equal to
IM (Y1,f). However, this need not always be so. For example,
b

M could be defined over a subfield F

b 1 of F, and &t

could be the split component of M, over F1. This might
well be a proper subspace of the split component ay of

b
Mb over F, in which case Ih(y1,f) would not be equal to
I, (vi.0).
M, T

If Yy belongs to M(Fs), write

for the induced class in MU(FS)' and set
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I, 086 = Ity LE).

THEOREM 8.1: Given YEZM(FS), we have

G
Iy(y ,£) = [ dy

A
L
LeL (M) moob ac " "S

PROOF: Both sides depend only on the:values of £ on
{x€G(Fg)sH (%) = Hgi(y)}.

Since the restriction of £ to this subset coincides with
that of some function in H(G(FS)), we can assume that £
itself belongs to HLG(FS)). We shall a;so assume for the
moment that vy € M(FS) is such that My=GY . Then yb
equals Y and Jh(Y,f) equals

1

i0%(y) |2 £(x” Tyx) vy, (x) dx.

SR N
GY(FS)\G (FS)

Applying Corollary 7.2 to the (G,M)~ family

{vP(X) = e'k(?Pfx’):PeP(M)}

r
we write

L

- G Q

v, (x}) = 7 dx(h,L)v,~(x)
b el (M) M

This allows us to make a standard change of variables in the

integral over Gy(Fs)\GO(FS) ([1(d),(8.11)1), and we

find that J,(y,f) equals
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G

(8.2) ) - dy

(h,L) Ty (v, £, )
LeL (M)

Qr

Qur distribution Ih(y,f) equals the difference between

(8.2) and the expression

By
(8.3) I 1, (e, (£)).
o8 1

We can assume inductively that the theorem holds for each of

b
the distributions'Ih1(Y). Then (8.3) may be written

) ) dh1(h VI o) )
: 'IM I de)m,f
h€lgtb)  Tmy M L uy, M,
My o€ L (M) |

Now &y, (f)M is a function in IaC(M1(FS)). Its value at
1 1
any representation 7, €T (M, (Fg)) equals

1 temp
L , b
Here, Q0 is a fixed element in P(Mh), and Rh(w?,QO)

is obtained from the restriction to h of the (G,Mh)— family

RQ(\),TT}:{,QO) Q€ P(Mh_),\)fiia*hr

described in §6 of [1(e)]. It follows easily from Corollary 7.2

that

b, Lol (£. ).
1 ] My Qg

(See also the formula (7.8) of [1(a)].) Therefore (8.3) equals
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k M
1. G 2 L

Q
M1€L(M) LEL(M1) h1ELO(h) 1 1 L

(8.4) }) .

The section L —> QL is defined in (8.4) with respect
by
M
it is defined with respect to a point £ €a

in general position, while in (8.2)

h

M

turns out that the notation is consistent. For we need only
B

consider elements M1 such that dM (h,M1)¢ 0. This means

to some point E1 € a

However, it

that

and so there is a natural isomorphism

'a‘u-~ 2. /3 o St
M5 Ay e El141”:‘1=3M1 :

We take 51 to be the image of €£. Then if L 1is any

element in L(M;) with dg'(.h1,L) £ 0, we have
- 1

and E1+'h1 and &£+ B both intersect ag at the same point.

Consequently, for any given L, the parabolic QL in (8.4)

is the same as that in (8.2). In particular, Q is independent

L
of h1. Thus, the only part of the expression (8.4) which

depends on h1 is the sum

h
1 G
dM (h,M1)dM (hT’L) .

)
b €L, () 1
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This can be simplified. If L+M,, we can replace Lo(h)

by L(h), for the term corresponding to hl = a. vanishes.

By (7.2), the sum is equal to dﬁ(h,L). If L = M1,

G _ G

. M (h1IM1) = OI

1

since h1*a so in this case the summands are all zero.

G'
It follows that (8.4), which on the one hand equals the

original expression (8.3), also equals

M
. .G AT L
d (h,L)IMw(Yr¢M (f

) ) )) .
Lel () {M,€LT(M) M, + L} M 1 9

This is easily combined with (8.2). From the inductive
definition of Iﬁ(y) we see thét the difference between (8.25

and (8.3) equals | -

G

Iy

LEL (M)

(L) Iy (y,E, ).

Qr

Since (fQL)L equals fL , this bepomes

A
;7 aSwm,nyIiey, e
LEL(M)‘M M L

the required formula for Ih(y,f).

Now, suppose that vy 1is an arbitrary element in M(FS).

As in (2.2*), we can write
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b,
I (Y,£) = lim  § T (v,a) T (ay,f),
b ax1 b EL(n) 1
where a approaches 1 through the regular points in AM(FS).

The theorem will be established by arguing as in the

derivation of (7.2). For the function rh1(y,a) comes from
a (G,M) - family
rP(A,Y,a), PEP(M), )\Eiaﬁ '

which satisfies the condition of Corollary 7.3.(See [1(d) ,
Lemma 5.1]9 Moreover, we are assuming that a€aAy,(Fg) is

regular, so that MaY==Ga . Applying Corollary 7.3 and what

y
we have just proved, we obtain

rh1
p (v,a)Iy (ay,.f)
b €L (b) 1

h1 M,
dy (/M) (Y,a)Ih1(aY,f)

h1€L(h) MTEL(M)

h M

-3 I g won e 1 aS Tk qay,gy)
a, . M, LEL(M1) 1 1
M A
G 1 L
= d>(h,L) ¥ r, (y,a)I, (ay,£ ).
Lel (M) M moerlopn M M, L

1

>

The last step follows from (7.2). But

M1 Aﬁ
lim ) L Ty (y,a) Iy

a1 M1€L (M)

“L

by (2.2). Taking the limits in a thus gives us
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b _ G 2L
I (yi,5) = v aSw,mriy,£ .
b el M Moo L

This completes the proof.

We are of course interested in the special case that

h = 3y for some element M.I € L(M).
1

COROLLARY 8.2: Given YEM(FS) , we have

M

Iy (y 1,f) = Y d
1 LEL (M)

G AL
M(M1.L)IM(Y,fL)’ feH  (G(Fg)).

COROLLARY 8.3: Suppose that vy EfM(FS) is such that

H

M M . Then
Y "1,y

G

Iy(v.£) = )} dg

™., L) Il (v, £.)
. ’ Y . .
LeL (M) L M L

There is a similar descent property of IM(TT,X,f) .
Once again, it is important to work in a slight broader
context. Suppose again that Lk is a special subspace of

ay. If T GH(M-h(FS)) and X, €a , we can define the

1 M, 'S
distributions J.h(ﬂ1,x1,f) on Hac(G(FS)) exactly the

same way as in the special case that h = ay. (See (1(e) ,§6,§87].
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We can also define an invariant distribution
Ih(ﬂ1,X1) on Hac(G(FS)) inductively by
Al

- - 1
(8.5) Iy (my,Xf) = 3 (1, ,Xq, 1) hquO(h)Ih (j1,x,l.,¢h1(f)).

Included in the definition is the induction assumption that

h

Ih1(n1,x1) is supported on characters. This will be resolved
in terms of our original induction hypothesis by the next

theorem (together with Theorem 6.1).

Suppose- that ﬁETH(M(FS)) and XE€ 3y We shall write

/S°
I MK = Jh(nk,hh(X).f)e‘A‘x’dx,
o i
laM,S/le
for any f¢€ Hac(G(FS)). (Here hh(x) is the projection of
X onto k . As in [1(e)}], we shall often write T when we
really mean the induced representation wg = (nA)Mh.) The

integral clearly depends only on the restriction of f to
G(Fs))z, Z = hG(x). Since this is compactly supported, we
can always replace £ 1itself by a compactly supported'function.
It follows from standard estimates ([1(e), (12.7)]) that the
integral over X 1is absolutely convergent. Define an invariant
distribution Ib(ﬂ,x) on Hac(G(Fs)) inductively by

ab

- L 1
I, (mX,£) = J (m,%,f) I I (miXsdy (£)).

b1€L0(h)

It then follows that
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Ly (n,X,£) = J élh(wk,hh(x),f)e-A(X)dA,
- .
laM,S/th
with the integral converging absolutely.
THECREM 8.4: Given wEﬁH(M(FS)) and XEZaM g 1 we have
L (m.X,£) = N dﬁ(h,L)Eﬁ(w,x,fL) , fe H,(GIFg)).
Lel (M) _

PROOF: As above, we can assume that £ actually belongs to
H(G(FS)). It also happens that we can restrict w. For as in

Lemma 3.2(b), we have

-1 -ep(x)
Ih(“lxrf) = |[P()| z I (Tre X, f)e ’
pEAMY Cp. |

where for each p , €, denotes a small regular point in the

dual chamber (h*); . Suppose that L€ [ (M) 1is such that

dg(h,LJ # 0. Then the canonical map

* * * *
b /aG aM/aL

is an isomorphism. The chambers in the second space each contain
a fixed number of images of chambers (h*); . Moreover, for

any small regular point € in aﬁ , the number

= ' -£ (X)
IM,E(TTIX'f) - IM(WE,X;f)e

depends only on the chamber in aﬁ which contains €.

. Consequently



_ A -£_(X)
P 1T § Intr, L X.g)e F
REP (h) o
. _1. - AL
= | PT (M) L I (m,x,£;)
rRepl (M) MrER L

A
L, .
IM(TT,X,fL) .

It follows that if the theorem holds with 11 replaced by

“e , it then holds for 7w itself. We may therefore assume
p _

that 7w 1is in general position, as a point in some

aﬁ-prbit in H(M(Fs)).

The general position of 7 implies that the function

- h h
Jh (ﬂkrf) = tr(Rh (TT)\IQO)I (TT

+£))
Qy A

is analytic for A€ iaﬁ. Recall that QO is a fixed element

in P(M ), and Rh(ﬂﬁ,oo) is obtained from the restriction
u ,

to b of a (G,M ) - family

RQ(\)'?T?\'QO)' QEP(Mh)’\)Ela;ih
As in [1(a), (7.8)] we have
b h _ :
tr(Rh(“A’QO)IQO(ﬂA’f)) = tr(Rh(“A'PO)IPO(ﬂA'f))

for any fixed element POE P(M). It follows that
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Jh(v,x,f)

_A(X)dl

(I Jh(ﬂ)\-}- ’f)e-“(hh(x))du)e
laf o/iby "ikA H

=M XD gy

_.j* er (R (my Pyl T, (my,f))e
laM,S 0

If we apply Corollary 7.2 to the (G,M)~— family
RP(\)'TTA_'PO)’ PeP(M), \)Eiaﬁ ’

we find that J (7,X,f) equals

b
;7 awm,) er (R (n. 29T, (ms,8))e A K ay
LeL (M M ia* MOTATTOTTR, A

M'S

The argument used to prove Lemma 7.1 of [1(a)] then allows

us to write this last expression as

L
L ay(mm) [ oamry £y )e Mgy,
LEL (M) iaﬁ s L

It follows that Jh(ﬂ,X,f) equals

G

(8.6) L dy

, (B, L) I, X, £ ).
Lel (M)

Q]’.

Qur distribution Ih(ﬂ,x,f) equals the difference between

(8.6) and the expression
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Ah

(8.7) y

Vrx,0, (£)).
b €Ly (k) 'y by

The proof is now identical to that of Theorem 8.1. Assuming

inductively that Theorem 8.4 holds for the distributions
il
h1(n X), we are lead to an expansion of (8.7) into

AM1
d (h, L)I (m, X,¢M (f

) )) .
LEL(M) (M, et M) : :M, +L} M 1 9

It follows that the difference between (8.6) and (8.7) equals
A
] agn,L)I, (X, £
Lel (M)

the required formula for Ih(n,x,f).

Consider the special case that b = ay for some
‘ 1

element M1€ZL(M). Then the distribution

IM1(w,x,f) = Ih(n,x,f)
equals

I, (m,hy, (x),5)e Xay,
ia /la* 1 1
M M1'S

an absolutely convergent integral.
COROLLARY 8.5: Given TE I['(M(FS)) and XE€ aM g + e have
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M, Lel (M)

Suppose that Ik is a proper subspace of ay - Then

dﬁ(h,L) is nonzero only when L #G, in which case the
A
distributions IL are all well defined. Strictly speaking,

M
the two theorems are only valid for such b . However, until
we complete the induction in the next paper [1(£)], it will
be understood that g(fG) really means I(f), for any given
invariant distribution I on HaC(G(FS)). With this

temporary abuse of notation, the theorem and corollaries of

this paragraph are all valid as stated.

- G “L .
I, (m,X,£f) = ¥ dy (M, L) I (m, X, £), £eH (G(Fg)).

o
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§ 9. Splitting

The splitting properties are essentially special cases -
of Theorems£3ﬁlaﬁd 8.4. However, they are important enough
to discuss separately on their own. To state them, we take
S to be the disjoint union of two sets S1 and 82 .
2 have the closure property.

We

assume that both § and S

1
Theorem 11.1 of [1(a)] provides a splitting formula for
IM(y) that applies to elements Yy € M(FS) which are

"G-regular. We must generalize it to arbitrary elements in

M(Fg) .

PROPOSITION 9.1: Suppose that

Y =YYy o v; € M(Fg )

1

i

is any element in M(FS) . Then for anv function f € Hac(GC% ))

of the form

f = f1f2 , £, € HaC(G(FSi)) '
we have
L L
_ G A 1 N 2
Iyty,£) = [ dy (L, L) T, (Y1,f1’L1)IM (Yz.fziLz) .
];,1.,L2 € L (M)

PROOF: This is essentially a special case of Theorem 8.1. We

say essentially because we must in fact replace (G,M) by
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the pair
(G,M)y = (G x G, M x M) ,

in which the products are regarded as varieties over the ring
F x F . However, the definitions of § 8 extend in a straight-

forward way to this setting. We take & to be the space Ay

embedded diagonally in

Notice that

x S )

G(Fg) = (G X G)(Fg x Fg ) = G((F x F)
S S1 S g 2

2. 1

It follows without difficulty that

Obviously

so that

= (v y,) 0
Y1Y2 Y1Y2
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As we noted in the discussion prior to Corollary 7.4, L (M)

" is the set of pairs

L= (Ly, Ly) Ly € LM
Clearly

AL AL aab)

IM(Y1Y2' (f1f2)L) = Iy (vqo f1’L1)IM (v, ferz)
Since

G _ .G .
dyb,L) = dg(L,, L) ,

Theorem 8.1 gives the required formula for IM(Y,f) .
‘ o

REMARKS: 1. If we combine. Proposition 9.1 with Corollary
8.2, we obtain the formula

~L L
) Iylyqr £ VI (ygr £5)

Iyly £} = 1,L' L

L € L(M)
This was actually the splitting formula derived in Theorem 11.1
of {1(a)] in the special case of Yy regular.
2. According to the induction assumption of § 2, the

AL,

Fourier transform IMl(Yi) is defined if Li % G . However,

G
dy (M,G) = av(G,M) = 1,
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so there are terms in the formula of the proposition with

Li = G ., For these terms, it is understood that

A

as we agreed at the end of § 8.

It is sometimes uséful to combinelthe splitting and
descent properties into one formula. Suppose that for each
v € §, Mv is a Levi subset of M which is defined over
Fv . We can of course apply all our earlier definitions with

F replaced by Fv . In particular, we have the real vector

space a, , and the map
v

H : MV(FV) — 2

My My

We should point out that even if M& equals M , the spaces

ay and Ay need not be equal, for they are defined relative
V‘ .

to the different fields Fv and F . Set

ves Y

and

vES v

If we think of M as a Levi subset of M defined over Fg .
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it will be clear how to extend our earlier definitions. For

example, L(M) will denote the set of

vesS

Given such an L , we can define the distribution
L
on Hac(L(FS)) , and the map

f —> ft

from Hac(G(FS)) to IaC(L(FS)) . We also have a constant

dﬁ(M,L) . It is defined to be zero unless the natural map

M L G
ay & a, —> ay

-

G .
'is an isomorphism, in which case dy (M,L) 1is the volume in
aﬁ of the parallelogram generated by orthonormal bases of

M L
aM and aM .

COROLLARY 9.2: Suppose that Y = Yy is a point in
: _ VES
M(Fs) , and that

M M
vo= T T v,

veES
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is the induced space in M(FS) . Then

A
M . G L
Iyly +£) = ) dy M, O I (v, £))
L€L (M)

for any function f¢€ Hac(G(FS)) .

PROOF: It is easy to see how to extend Theorem 8.1 in a
formal way so that it includes Corollary 9.2 as well as
Proposition 9.1 as special cases. Alternatively, the
corollary follows by rgpéatedly applying Theorem 8.1

and Proposition 9.1 directly.

REMARKS: 1In the special case that vy is regular, a
similar formula was stated in [1(a), Corollary 11.3]
However, the proof there does not apply in the generality
claimed. For in [1(a)] we failed to account for the fact
that the space Ay depends on the ground field over which
M 1is taken. Theorem 12.1 of [1(a)] is likewise affected,

for it depends on Corollary 11.3. As established in [1(a)] '

these results are only valid if G 1is an inner twist of a

split group. We hasten to add, however, that § 11 and

§ 12 of [1(a)] have since been subsumed in other results,
and are no longer -needed. For example, Theorem 12.1 of

[1(a)] can be replaced by the assertion that ¢y Maps
Hac(G(FS)) continuously to Iac(M(FS)) . This was established

as Theorem 12.1 of [1(a)] . It can also be proved quite
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simply by applying Corollary 7.2 directly to the (G,M) -
family from which ¢M(f,n,X) is defined. However, the
proof in [1(e)] has the advantage of providing an
obstruction, in terms of residues, for a function ¢M(f)

to lie in I(M(FS)) .

CORCLLARY 9.3: For each v € S , set Mv = M , and suppose

that the distributions
Yy) L, € L(M)), v, € M_(F)

are supported on characters. Then the corresponding distri-

M S

for FS are also supported on characters. In particular,
the induction assumption of § 2 is valid for (GVF,S) ’

provided that it holds for each (G/F,, {vh .

PROOF: We need only consider the case that L = G . Fix

Y €-M(FS) . We must show that IM(Y) annihilates the
functions £ € H(G(FS)) such that fG = 0 . We leave the
reader to check that any such function can be approximated

by one of the form
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| £, £ € H(G(F)) ,
ves V v v
in which fw G = 0 for some valuation. w in S . Corollary
r

9.2 tells us that ‘IM(Y) -vanishes on this latter functien.

The splitting formula for the dual distributions is

similar. Let

mo= o, e Ty s ™y € H(M(Fsi)) ’
be an arbitrary representation in H(M(FS)) , and consider.
a point

X = (X, X)), _ X; € M5, °

For each f € Hac(G(FS)) , we shall write

: =) (X
Ty (T X, £) = f Ty (my X 4%, fe (XY g5 .

- (X
L, (1,%,8) = [ I (m x+x,,0ePar,

*
where each integral is taken over the direct sum of iaM g
r
1
%*
and iaM g 7 modulo the diagonally embedded image of
=2
*
iaM 3 Both integrals converge absolutely, and we have
’
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_ . AL
Iy(m X, £) = J,(1,X,£) - | I (miX, 6, (£))

L € Ly(M)

Specializing Theorem 8.4, we obtain

PROPOSITION 9.4: Let mw=m, @1 and X = (X1, X2) be

1 2

as above. Then for any function

we have
L L
_ G AT Ay’ 3
Ly(m/X,£) = X Ay (DyqrLy) Iy (“1’x1'f1,L1)_IM (“2’x2'f2,L2) )
L1,L2 € L(M)

REMARK: Proposition 9.4, and also the results Theorem 8.4
and Corollary 8.5 of the last paragraph, have obvious
analogues if T is replaced by a standard representation

p € I (M(Fg))
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§ 10. The example of GL(n). Local vanishing properties

Let us look at an example. We shall show that for
GL(n), the invariant distributions sometimes vanish. These
vanishing results, which extend those of § 14 of [1(a)],
demonstrate how the descent formula of §8 can be usefully
applied. They will also be needed in the study of base change

for GL(n).

The first lemma is a companion to Lemma 14.1 of [1(a)].
Together, the two results summarize the algebraic properties

of GL(n) that are behind the vanishing. results.

LEMMA 10.1: Suppose that G = GL(n). Let L,L and L be

1/ 2

Levi subgroups of G over F, with L1 < L and L1c:L2, such

that

G

dr

1(L'L2) + 0.

Then the natural map

X(L)p @ X(Ly)  —> X(Ly)p

is surjective.

PROOF: Fix an isomorphism
Ly —> GL(n1)X...><GL(nr)

If
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X —» X, X ... XX ’ xiEGL(niA) ’

is an arbitrary point in L set

1'

xi(x) = det(xi), 18isr.

Then
{xy : vSis)

is a basis of XI(L Once the isomorphism above is fixed,

1) g
the group LE€ L(L1) corresponds canonically to a partition of
the set {1,...,r} into disjoint subsets ST""’Sp' The

characters

-|'Xi' 1s3sp,

form a basis of X(L)F. Similarly, L, corresponds to a

partition of {1,...,r} into disjoint subsets T1,...,Tq.

We must show that each X belongs to X(L)F ® X(Lz)F

The nonvanishing of dg (L,Lz) is equivalent to the
1
property that

* * *
aL ® aL —_3> A P

is a surjective, with 1-dimensional kernel
{(Z’-Z), : ZTEagl

The reader can check that this implies (a) that p+g =r + 1,
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and (b), that no proper nonempty subset of {1,...,r} is a
simultaneous union of sets Sj or Tk’ According to the
condition (a), one of the .two partitions contains a set
consisting of one élement. To be definite, we can assume that
Sp = {r} . Then the character X, belongs to X(L)F ® X(L,)p-
The element r also belongé to a unique set Tk , and the
condition (b) implies that Tk contains more than one element.
In other words, T, = Tk ~{r} is not empty. We obtain two

- s s \
disjoint partitions S1,...,Sp_1 and T1""’Tk""’Tq of the

set {1,...,r-1}, which also satisfy the conditions {(a) and (b).

Since the character

T X3
ieTy

belonds to X(L)F ® X(L the lemma follows by induction on r.

2)F'
a
For the rest of this paragraph we shall assume that we have

been given an inner twist

n: G—» G* = (GL(n) X ... xGL(n))406* ,

as in (1.2). We shall let 'E denote the smallest extension of

F over which the image of the cocycle

n-n , 0 € Gal(F/F) ,

in G+/Go splits. Then E 1is a cyclic extension of F whose

degree ﬂE over F divides £ . This is just the setup for base

change of a central simple algebra. One can show that
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c?(r) s GL(3.,D ® E)x...xGL(2,D @ E), L. =222,

\ ) .
-

L

1

where d is a divisor of n, and D 1is adivisionalgebra of

degree a? over F.

We shall write G' for the group GL(n), embedded diagonally
in (G*)O. We are going to show that our invariant distributions
on G' wvanishon certain data related to .G, in a sense that
depends only on the integer d and the field E. Suppose that L
is a Levi subgroup of G' (defined over F). As in [1(a)], we

write

p(L) = (n1,...,nr), n, 2 n, 2 ... 2n_

for the unique partition of n such that
L 5 GL(n,)X...x GL(n_) .

We shall say that L comes from G if d divides each of the

integers n,. This means that there is a Levi subset M of G

i
such that L = M', In other words, L is embedded diagonally in (M*)Q,
where M* is a product of components of the form (1.1) which is related

to M by inner twisting. Suppose that L, < L are two other

1 2
Levi subgroups of G' with
G' .
dL1 (M ,L2) +£0.
Then if L2 comes from G, Lemma 14.1 of [1(a)] asserts that

L1 also comes from G.
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Recall that an element 46 €G'(F) 1is F-elliptic 1if it lies
in a maximal torus of G' which is anisotropic over F,
modulq A,. We shall write G'(F)ell for the set of such
elements. By the theory of elementary divisors every conjugacy
class in G'(F) 1is induced. from an elliptic class. In other
words, for any &8 € G'(F) there is a Levi subgroup L, of

G', and an element. T EIW(F) such that ¢ belongs to the

ell’

1
induced conjugacy class TG . The pair (L1,r) is uniquely
determined by ¢ up to G'(F)-conjugacy. We shall say that §
comes from G if the group L1 comes from G, and if for every

*
character 51 € X(L1)F’ the element 51(T) belongs to NE/F(E ),
the image of the norm from E*. We shall write G'(E)G for
the set of such elements. We shall alsoc write G'(F)G simply
for the set of elements & €G'(F) such that £(¢) belongs to
& ' .

NE/F‘E ) for any ¢ € X(G)F. Then G (F)G is a subset of
G'(F)G. Observe that if M' 1is a Levi subset of G' which comes

from G, we can alsoc define the subsets M'(F)M < M'(F)M of

M'(F).

Suppose now that F is a local field, and that S = {v},

so that F = Fv = FS. Let f' be a fixed function in H(G' (F))
such that
(10.1) IG,(;,f') =0

for any G}-regular element ¢ € G'(F) which does not belong

to G'(F)G.

PROPOSITION 10.2: Suppose that M' 1is a Levi subgroup of G
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which comes from G, and that ¢ belongs to M'(F)M. Then
I (8,£') =0,

unless ¢ 1lies in M'(F)M .

REMARK: If M' = G', the proposition is essentially a
restatement of the definition of £'. It is of course the case

M' # G' that is interesting.

PROOF: Assume that IMF(G'f') # 0. Fix .a pair

Ml
(L1;T), T EL.I(F)ell r CET '

and a charécter E1EZX(L1)F. We must show that L comes from

1

M and that 51(T) belongs to N (E*).

E/F

The situation is made to order for our descent formula.

For Corollary 8.2 immediately yields an expansion

I, (8,£) = )T 2 (e )
Mr ’ 12 L1 fL 4

L
LZEL(Lj) 1 2

and hence the existence of some L., € L(L1) with

2

I\Lz
(M',L,) T, “(T,£1 ) +0.
1 1 2
G|
Ly

G

9L

The nonvanishing of d (M',Lz) allows us to apply Lemma 10.1.

We obtain

E178+ 8,5, £ € X(M") ., &, EX(LZ)F .
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L

Now the distribution ﬁLz(f,fi ) belongs to the closed linear
1 2
span of
(26 )
I CI 1
I R

where ¢ ranges over the G-reqgular points in L2(F) with

£, (1) = £,(2)

AL
But ILz(T’fi ) does not vanish, so there exists such a ¢
1 2
with
AL2
IL (le' } = IG(le') #0.

2 Ly

It follows from the definition of £' that L2 comes from G,
and that 52(1) belongs to NE/F(E*). Applying_Lemma 14.1 of
[1(a)], we see that L1 a;so comes from G. This obviously implies

that L1 comes frgm M, our first required c¢ondition. Moreover,

by assumption, the element

E(T) = £(6) h
belongs to NE/F(E*). Therefore, the element

&4 (t) =€(1) &,(1)

-

also belongs to NE/F(E*). This is the second required condition.

[m]
There is a parallel vanishing property for the distributions

1 [] -
IM,(n,Y}f ), TelIM(F)), ¥ Easz .
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We shall only deal with the first half of it here. .The other

half will appear as Lemma II.8.1 .of [2].

PROPOSITION 10.3: Suppose that M' is a Levi subgroup of G'
which comes from G and that ‘L1 is a Levi subgroup of M'.

Then
Iy (m,¥,£Y) = 0,

for any YEay, . and any induced representation

M -
ﬂ-—ﬂ1'k | AEia s

I,v € H(L1(F)),

1

unless L1 comes from M.

PROOF: The proof is similar to that of the last proposition.
It is enough to show that if L, does not come from M , then
the Fourier transform

- )
I, (7. ,¥,,£") = f T, (i Ly ene g
me (Tyr¥y tar 0 Jian me (M9 0¥y

L1 ,V M'IV

vanishes, for every point Y. € a v whose projection onto

1 L.,
1
Ay equals Y. The descent formula, Corollary 8.5, yields
r
T, (7, Y. £ ;a8 22 £1 )
v AT, £ = M',L,)I Ta,rY, £}
LR Lyel(Ly) I O

The proposition then follows as above from [1(a), Lemma 14.1].

a
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REMARK: Obivously, a similar vanishing property holds if =«
and T, are replaced by standard representations p € L (M'(F))

and P € Z(L1(F))-

The function £' 1is intended to come from a function on
G(F) by a transfer of-orbitél integrals. To make this more
plausible, we shall describe the set G'(F}G in terms of
the norm mapping -from G(F) to G'(F). This discussion is
not really needed‘here, but will be used .in the article [2]

(in combination with §I.2 of that paper).

We shall first recall some elementary facts, for which

F can be a general field. Any element

y = (y1,...,ym) X g*

in G* is (G*)O—conjugate to the point

(1,...,1,y1...y£) 0%,
Consequently, yg is (G*)p-conjugate to an element in G',
which is uniquely determined up to G'-conjugacy. We obtain a
bijection from the (G*)O—orbits in G* onto the conjugacy
classes in G'. A given orbit in G* meets G*(F) if and

only if the corresponding conjugacy class in G' meets G'(F).

Suppose that Yy belongs to G(F). For ény o € Gal(F/F),

we have

1 %=17% = %Y (v .
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By assumption, ncn-1 is an inner automorphism of (G*) ",
Since the centralizer of n{(y) intersects G¥*, the points
n(y)° and n(Y) are (G*)O-conjugate. Thus, Gal(F/F)
preserves the (G*)O-orbit of n(y). Equivalently, Gal(F/F)
preserves the G'-orbit of (n(Y))Q. It follows from the theory
of elementary divisors that the G'-conjugacy class of n(Y)g
has a representative in G'(F). The same is therefore true of
the (G*)O-orbit of n(y). In other words, there is an element

c, in (G*)® such that the point

-1
* = ¢ c
Y Yn(\() Y

belongs to G*(F). One can, in fact, assume that y* 1is of the

form

(10.2) (1,00, y") » 8%, Y'E€ GLP(F).

Then the element

y' = (y) ¥ o= cYn(Y)'ch: (y

Y l"‘IY')

belongs to G'(F), and is uniquely determined up to G'(F)-conju-
gacy. The correspondence Yy —>» y' gives a map from GO(F)—orbits
in G(F) ‘into G' (F)-conjugacy classes, which is easily seen to
be injective. This is the norm from G(F) to G'(F). The symbol
y' can denote either a conjugacy class or some element in the

class.
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If vy is as above, the function

n,(x) = cYn(x)c;1 -, x€GT

maps GY onto G;* . But y* is of the form (10.2), and one
sees immediately that GY*' equals G;,. Therefore, ny is an
isomorphism from GY onto G;, . It follows easily from the
definitions that it is actually an inner twist. Now, suppose
that o € G(F) 1is semisimple. Then the group G, together
with the inner twist,
- . t
nc.G0 —_— Gc’
satisfies our original conditions on G (with £ =1). We shall
denote the corresponding norm mapping from. conjugacy classes

. . -1,
{pu} in GU(F) to conjugacy classes {cunc(u)cu } in Gé,(F)
by

U_)l-'-c:l
If

Y =gy , }.L'C'GO_(F),

one can take

and one obtains

{(10.3) p'=a'u’, .
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We return to the case that F is a local field.

LEMMA 10.4: The image of the norm map is G'(F)G. In other
words, G'(F)G is the union over all Yy €G(F) of the conjugacy

classes y'.

PROOF: Suppose that & 1is an arbitrary element in G'(F).

G

Then &€ 1 , where T EIW(F)ell for a Levi subgroup L, of

G'. This means that ¢ 1lies in the conjugacy class of 1v,
where v belongs to the Richardson orbit in G% corresponding

to the Levi subgroup L Suppose that 6 equals the norm

1,17

of an element Yy €& G(F) with Jordan decomposition ¥y =ou.

Then (10.3) yields

which is just the Jordan decomposition of y'. We can therefore

assume that T=0¢' and v =u2.- Now ug

o g+ 1s conjugate in Gé,(F)

to the element -uo" On other words, the inner twist

. ' = 1
Ng ¢ G0 —_— GO, GT

maps u to the Richardson orbit in G% corresponding to L, o

It follows that L is the image of a Levi subgroup of G,

1,1

over F. But any such subgroup will necessarily be of the form

M{ G’ where M1 is a Levi subset of G over F which contains
r

¢ . Moreover
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is an inner twist, with respect to which 1  1is .thenorm of o.

Conversely, given 6 =1v, suppose that L comes from a Levi

1

subset M1 of G and that T 1is the norm of an element
c€iM1(F). Working backwards, we see that & is. the norm of

an element Y =o0u in G(F).

We have obtained a reduction of the. proof. We have only to
establish, for any L1 = M{ which comes from G, and any elliptic
: . M '
element T‘EIW(F), that 1 belongs to LT(F) 1 if and only

if T=0' for some elment UEZM1(F). We may assume that

= ' =
L1 = Q and M1 G.

One way is quite formal. Let Gaﬁ‘ be the quotient of G
by the derived subgroup of GO. Then Gab is a component which
satisfies the same hypothesis as G. Writing {G(F)} in general
for the set of GU(F)-orbits in G(F), we embed the norm map

{(G(F)} — {G'(F)} in a commutative diagram

{c(®m} — {G'(F)} {GLn(F)}

l ldet

{Gab(F)} —_— {Géb(F)} F* .

The subset G'(F)G of G'(F) consists of those elements whose

image in F* 1lies in the subgroup NE/F(E*). But

3 * * =g g1
Gab(F) (E* x , .. x E*) 361, L —ZQE ’
{ v J
£1
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where 01 is an automorphism

(y1,..-,yl1) — (yz,---,yz1.0(y1)), inEE*,

for a fixed cgenerator ¢ of Gal(E/F). The lower horizontal

arrow in the diagram can be identified with the map

(y1,...,yQ?) m81 —> NE/F(Y1)"‘NE/F(YQ1)' yie;E* .

It follows that any element in G'(F} which is a norm from

G(F) 1lies in c'(F)C.

Conversely, suppose that T 1is an F-elliptic element
(relative to G) in G'(F)G. Then tT€T'(F), where T' 1is a
maximal torus in G' over F which is anisotropic modulo

A_.. Fix an isomorphism T'(F) = F* , where F,/F is an

G’ 1 1
extension of degree n. Then the restriction of the determinant

tc T'(F) 1is identified with NF1/F . The theory of simple

0 0

algebras attaches a maximal torus T of G° . to the algebra

In fact, there is a subgroup ™" of & over F, such that

g.=gg ]

+ [
T(F) _T (F)nG(F)-(E?xo-oxE?)n81l . 1 E r

L Y J
9“1

where 91 is an automorphism

(u1,o--ru£1) —_— (uzp-o-,ug"l'c(u‘l)), uiEE? -
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Here o 1is the automorphism of E1/F1 determined by a generator
of Gal(E/F). It follows that there is an element c. €G such

that

t —> c_ n(t)'icT'1 , T € T(F),

the restriction of the norm to T(F), corresponds to the map

21
' ‘[_T *
(01,-..,112‘ ) A e _—> i NE1/F1 (ui), U.i e E1-

1 i=1
.It is an exercise in local class field theory to show that the

image of this map is the subgroup
{yeFy : NF1/F(y) €NE/F(E*)} p

of F?. (See Lemma I.1.4 of [2].) It follows that T equals

c', for some element o € G(F). This completes the proof of the

lemma.
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Appendix. Convex polytopes

Let 2 be afinite dimensional Euclidean space. A
convex polytope 1T 1in a 1is the convex hull of a finite
set of points. Fix such a @ , and let F(II) denote the
finite set of closed faces of 1 . Then F(II) is a partially -
ordered set whose elements are convex polytopes in their own
right. The maximal element is just I , while the minimal
elements form the subset ?(H) of faces which are just
points. The faces in P(ll) are of course called the vertices
of II . Suppose that F 1is a face in F () . The (open)
dual cone a; is defined as follows. Choose a point XF
in F which does not lie on any proper subface of F , and
form the cone generated by I - XF . Then a. is the relative

F

interior of the corresponding dual cone. That is, a; is the

intersection, over all points X in the complement of F
in @1 , of the half open spaces

{yea: <Y, XX, > < 0} .,

F

Let af  denote the subspace of a spanned by CF-Xp and
let aj be the orthogonal complement of a¥ in a . Then
a; is an open convex cone in ag which is independent of

o

It is a basic fact that a 1is the disjoint union of

the cones a; . Let us recall how this is proved. The dual

cones consist of cosets of aH and are invariant under
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translaticn of 1 . We may therefore assume that 1 contains
. A
the origin as an interior point. Let 1 be the polar set of
. A
m([4, § 6, § 9]) . More precisely, I is the intersection,

over all points X € T , of the closed half spaces
{vy ea: <¥,Xx>5 1}

A
Then @I 1is another convex polytope, whose interior contains

the origin. There is an incidence reversing bijection

A A
F <——> F between the proper faces of I and 1 , and

+

F is just the cone generated by the relative interior of

a
A
F . But any half line through the origin will intersect the
relative interior of a unique proper face % . Therefore, a
is indeed a disjoint union of the cones a;
Suppose that h is a vector subspace of a , and let
Hh be the projection of T onto hk . Then Hh- is also a
convex polytope. We shall construct a section from Hh info
T . We must first fix a peint £ in ah , the orthogonal
complement of h in a , which is in general position. Let

F(II,E£) denote the set of faces F € F(lI) for which the set

+

hg,F = (£ +h) N ag
is not empty. Then (£ + k) 1is a disjoint union over
F(Il,t) of the sets hg o Define
L4

Mg} = l;J F .

F & F(I,¢)
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The general position of £ implies that if F belongs to
F(I,&) and if F1 € F(II) is a face which is contained in
F , then F1 also belongs to F(IM,E) . It follows that
NM{%) 1is a subcomplex of I ..

LEMMA A.1: The orthogonal projection of a onto h maps

M(g) bijectively onto T .

Proof: Let n Dbe a point in Hh . The fibre at n 1is the

set
™ =10n (n + ah) .

We must show that 1" intersects T(f) at precisely one
point.

The faces of (£} are the elements in F(II,£) . Observe
that F(I,£) is the subset of faces F € F(II) such that

£ belongs to (al

p + b) . On the other hand, 1" is also a

convex polytope, and its faces are of the form
Fl=Fnn", F € F(I)

*Many of these intersections will be empty. Moreover, if n
is not in general position, different F will éive the
same intersection. However, let us define F(II) to be the
set of elements F € F(II) such that F'' contains a point
Xg in the relative interior of F . Any such F will be

minimal among those faces which have the same intersection
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n

with 1" . Clearly F —> F' is a bijection from F (I)

onto the set of faces of ik .
Suppose that F € Fn(H) , and that F, € F(I) is some

other face such that F? = FN, Then

However, F 1is minimal, so it is actually a face of F1 . This

means that a* is contained in the closure of a+ It follows

F1 F
easily that

Thus, in studying the intersection of TI(£) with Hn , we
need only consider those faces of 1II(§) which belong to
Fh ()

Suppose again that F € F() . We shall find the dual

cone a+ of Fn . Set
FN '

_ My |
cF-{t(xxF).tzo,xer[}

and
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Fh
Then
n _ h
Cf = CF na .
But CF and ah are both polyhedral cones. As is well

known, the dual cone of their intersection equals the sum
of their dual cones. It follows that the closure of af

FN

equals the sum of the closure of a; with h . Taking

the relative interior of these closed cones, we obtain

We know that a 1is the disjoint union of the cones
a;n . We can therefore éxpress a as the disjoint union,

7

over F € F(I), of the cones a; + b . In particular,

£ lies in precisely one such cone. But £ 1is in general

position, so we can assume that the cone in which it lies

is open, and corresponds to a vertex of 1" . We have thus
shown that there is precisely one face of T" which meets

T(g) , and that this face is a vertex. In other words, Hn

meets [(£) 1in precisely one point, as required:

Our purpose in discussing convex polytopes has of

course been for their connection with (G,M)- families.
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Let us consider a typical example. For each Q € F(M) ,

let € a' be the usual vector defined by the square

Po & g

root of the modular function. Let HM denote the convex

hull of the finite set

{pp : P € PMT) .

Then HM is a convex polytope, which lies in ag . There

is an order preserving bijection
Q —> I

from F(M)}) onto the set of faces of HM . Moreover, the

dual cone of Hg is just the chamber a’ Thus, the face

Q -
HS and the chamber ag are of complementary dimensions,

and they intersect orthogonally at the point OQ . Consider
the (G,M)- family given by
N *
(A.1) c, ) = MR p e pany, a € tay .
C -A (H)

Then cM(A) is just the integral of e over T, .
(See § 6 of [1(a)] .) More generally, suppose that »
Q € F(M) . Then Hg lies in the affine space pQ + ag '
and inherits a Euclidean measure dH from that on aﬁ .
We have

Q - (H) *

c =

(A.2) u (A | 0 © dH , M€ ay o

My
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Q

In particular, ch is just the volume in pQ + aM of the
Q
face HM .

Now, as in § 7, suppose that h is a épecial subspace

of aM . Let HM,h

claim that the . (aG,h)"family associated to bé(k)}' is

be the projection of m, onto h . We

alsc the one attached to the polytope I . If § 1is

M,k
any element in P(h) , let Q be the unique element in

P(Mh) such that h; is contained in aa , and define o

onto k . Then

R

to be the projection of pQ

v(pp) *
cp(v) = e ' p € Py, v € ibh ,

- 1s the associated (aG,h)- family. On the other hand, HM h
. ’

is the convex hull in h of the set

{pp : g € P(h)} .

For it is trivial that I contains the convex hull. The

M'h
converse is a minor extension of Lemma 3.1 of (1(b)] , and
is proved the same way. Our claim, then, is justified. In

particular, as in § 6 of [1(a)] , we can write

(A.3) cy (V) = 1 e~V (H) g , v € ibn" ,
T, b

where dH is the Euclidean measure on h .

We shall want to apply Lemma A.1. As before, let £ be
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a point in a; in general position, and write F(M,§) for

the set of elements Q € F(M) such that the set

+
hE.Q = (g+h) N aQ

is not empty. Then

E+h = -L,} hE:Q

Q € F(M,E)

is a decomposition of £+h into a polyhedral complex. The
vertices correspond to the parabolics QL introduced in

§ 7. The maximal cells correspond to the set
P(M,E) = P(M) n F(M,E) .

We note that P(M,g) 1is just the set of P € P(M) which

are contained in one of the parabolics QL

interest are the cells which are translates.in &+h of the

. Of particular

+ . .
chambers hp in h . Let us write Pext(M,E) for the

subset of elements P € P(M,£) such that the closure of

+ . . . . . ‘
aP intersects h in an open set. This intersection must

+

necessarily be the closure of a chamber hp(B) , for a
uniquely determined element g(P) in P (h) . We claim
that the map P —> p(P) 1is a bijection from Pext(M,g)

onto P(h) . Far suppose that g 1is an arbitrary element

in P{(h) . Let Q be the unique element in p(Mh) such
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that aa contains a} » and let R be the unique element
in PMh(M) such that £ belongs to a; . Then P = Q(R)
is the unigque element in Pext(M,E) with ?(P) =1 . We
point out that Dp(P) is just the projection of pp onto
h

We will use Lemma A.1 to study the function
L
ch(v) ' v € ib .

Observe that the maximal cells in the complex

ne = \J 12

Q € F(M,8)

correspond to the parabolics QL ; where L ranges over the

Q
elements in L(M) with dﬁ%h,L) # 0 ., Let HML
Q .
projection of HML onto h . Then Lemma A.1 asserts that
9
HM I is the disjoint union of the sets HML '
I

with a set of measure 0 . It'follows from (A.3) that

be the

together

c, (v) = [ e V(B gy - Y f eVl gy |
b it L @
M,h ¥ L
' M
Fix L for the moment, and let H ——> H denote the
orthogonal projection of a; onto hG . We are assuming

that dg(h,t) # 0 , so that this map is an isomorphism,

and

o G
dH. = dM(h,L)dH .
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Moreover,

o~VIH) _ -viH)

*
since v Dbelongs to ib . It follows that

e-v(H)dH .

J o,

I

I 4 eV al = aS(n,L)
~ T
HM M

Combining these formulas with (A.2) , we obtain

Q
v = 1 dpmnclo) v € il
L € L(M)

On the other hand, we have

vip,) -
cy (V) = §y e F 8, (V) 1
g e P
vip_) -1
= ) e P faie) V)

P € Pext(M.E)

from our correspondence between Pext(M,E) and P(h) . It

thus follows that

-1

Q ‘
G L (
(A.4) I agtmLic,tv) = ] e Blo L, 7,

L € L{M) : P E.Pext(M,E)
for any point v € ih* , and for {qp(l)} the (G,M)=— family
given by (A.1)

Our ultimate purpose has been to prove Proposition 7.1.
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We can at last do this. Suppose that {CP(A)} is an

arbitrary (G,M) - family. The expression

Q
G L,.-
T dy(mTie (h)
L € L(M)

equals

G . -1
Z dM(h,L) . E cP(l)BPnﬁk) \
L € L(M) {p€PM : P<Ql
Let rp E(A) denote the sum, over all elements L € F (M)
i .

with dg(h,L) *+ 0 and with Qp = P, of the terms

-1

G
dM(h,L) ean(“
Then
(A.5) 7 aS(h,L) Ly - ) (A) (A)
) M CM - CP rPrE *
L € L(M) Pe P (M,E)

*
Set A equal to a point v in ih , and for the moment

take {cP(v)} to be the (G,M) - family defined by (A.1)

Then we can combine (A.5) with (A.4) . We obtain
vip_) v(ppl
P -1 _ P
§ e 8o pp V) = v e rE'E(v)
P EP o (ME) p € P(ME)
. -1
The functions {GF(P)(U) }  and {rP,E(v)} are all rational

in v . Furthermore, by Lemma A.1 , the projection of the set

{pP:p € P(M,E)}
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ontoc 1o 1s injective. Therefore the exponential
functions

vip_)
v —> e ’ ' PEP(Myg) 7

are linearly independent over the field of rational functions.

Setting the coefficientsequal to 0 , we find that

-1
' ep(P)(v)

p,gV) = 9

, if P € Pext(M’E) '

r
, otherwise.

Returning to the case that {CP(A)} is arbitrary, we substitute

the formula for r (v) into the right hand side of (A.5) .

P,£
We obtain

Q
G L
2 dM(hrL) CM

L € L(M)

(v)

- . -1
= Y cP(v)ep(P)(v)

P € 'Pext(M,&_',)

-1

y c#(v)ep(\))
p € P(h) »

ch(v)

This completes the proof of Proposition 7.1.
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