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Abstract

In this paper we consider the adiabatic approximation of the atomic collision
problem. We show that the computation of transmission probabilities in this

approximation can be done by means of the resurgent analysis method. We

present a computational algorythm for transmission probahilities and give the

mathematical verification of this algorythm. All considerations are carried out on
the simple hut representative example of two-Ievel Zener model. The preliminary
knowledge of the atomic physics and the resurgent an.alysis is not supposed.

Introduction

The role of motion invariants of dinamic systems in classical mechanics seems quite

evident. It is well-known that for conservative systems, that is, for the systems whose

Hamiltonians do not depend on the tinle explicitely, one of such inva.tiants is the Cartan
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integral invariant

1= f pdx. (1)

At the same time, for noneonservative systems the question of motion invariants is

signifieantly more eomplieated. An important step in the solution of this problem was

done in remarkable papers [1], [2] by Paul Ehrenfest who introdueed there the nation

of an adiabatic invariant - one of the fundamental notions of mechanics.

To illustrate the above mentioned notion we consider an one-dimensional time

dependent Schrödinger equation with the Hamiltonian of the form

mv2

H = -2- + V (x,at),

a being a small parameter. In the latter equation the potential V ean depend on the
time t only via the variable 'T = a:t which ean be ealled a siow time.

Then, as it was shown by Ehrenfest, integral 1 is preserved in the adia.batic approx

imation, that is the relation

f pdx = const +0 (a)

takes plaee.

For multidimensional problems the similar result is easily obtained from the one
dimensional one provided that the variables ean be divided in the eorresponding Sehrö

dinger equation, sinee in this ease the multidimensional problem ean be redueed to
several one-dimensional ones. However, it ean be shown that for general multidimen

sional problems the similar result fails (this ean be demonstrated by the well-known

Fermi example).

The next result in this direetion was obtained by A. N. Vasilliev in early eightees.

He has shown that the expression for adiabatie invariants ean be improved by adding

lower-order terms in h:

I =f pdx + hIl + h
2 h +...

such that the quantity I will be preserved in the evolution. Thus, the notion of adiabatic

invariants was introdueed in the lTIOst general situation.

Further , the adiabatic invariants were a predmet of investigation in a lot of physical

and mathematical papers. We mention here the papers [3], [4], [5], [6], [7].

So, there arises a problem of investigation of Sehrödinger equations in the adiabatic

approximation. This means that oue has to investigate the asymptotic behavior of
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solutions to the time-dependent Schrödingcr equation

(2)

as Q' --+ O. The first result in this direction was obtained by M. Born and V. Fock

[4]. They have proved that the quantum states are preserved in the main term of

the adiabatic aproximation, tbat is, tbat if the solution to (2) satisfies tbe 'initial

condi tions' of the form

lim tP = tPn
t--oo

for some eigenfunction 1/;n of the Hamiltonian

then

li..To tP = tPn (x, R) exp [* JEn(R) dR]

where "pn (x, R) is an eigenfunction of the instanteneous Hamiltonian

h'J
--~ + V(X,T)

2'm

corresponding to the eigenvalues E n (R) (these are called adiabatic potential curves),

and T is the above mentioned slow time.
We remark also that, due to the well-known Wigner theorem adiabatic potential

curves da not intersect one another.

Tbe further investigation of the problem was done for different models. We mention
here the Zener model (see [8]) for which the Hamiltonian is a two-dimensional operator

with the matrix

The Schrödinger equation for this luodel can be solved explicitely and then the asymp

totics as Q' --+ 0 can be computed from the explicit expression for the solution. It
occurs that the transitions between the two states involved in this problems are of

exponential order 0 (e-.r;,\/o:), where ~ (the so-called Massey parameter) has the sense

of the shortest distance between the two adiabatic potential curves in question.
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The next model which is worth mentioning is the so-called Rosen-Zener-Demkov

model [9], [10]. This is also a two-Ievel model admitting the explicit solutions, and the
corresponding Hamiltonian is given by the matrix

where a and ß are some positive parameters. The asymptotic analysis of the exact
solution gives us the following value of the transition probability

The next step in the investigation of the finite-level models was done in the paper
[11] by E. C. G. Stueckelberg. In this paper the two-Ievel model

. d (u) (a(7) b(r)) ( u )
ta d7 v = b(7 ) C ( 7 ) V

was considered. The asymptotic expansion involving exponentially decreasing terms

(such as the transition probabilities are) was obtained in this paper with the help of
continuation of the solution to the complex plane and using the technique of model
equations in a neighbourhood of the (complex) turning point.

Finally, let us turn our attention to the general problem of atomic collisions. To be
short, we shall consider here the problem which involves one electron and two nudeL
The time-dependent Schrödinger equation for such a problem is

.ßt/; (Z 1 Z2)tat = -ß1/;+ 1_ -I + 1- -I t/;,
r - Rl r - R2

where r= (x, y, z) is the electron radius-vector, Rl and R2 are radius-vectors of the
nudei with charges Zl and Z2, and ß is the Laplace operator with respect to the
electrone variables (x, y, z) (see Figure 1). It is supposed that the two nuclei in question
are moving with respect to each other with the relative velocity v which is exactly the
small parameter of the adiabatic approxiluation. Such problems were considered from

physical point of view by E. Solov'ev (see [12]). The analysis of this problem can
be divided into two parts: the computation of the corresponding adiabatic potential
curves Ej (7) (7 = vt, as above), and the construction of the adiabatic asymptotics in
tbe problem witb known Ej •
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Figure 1: The simplest atomic collision.

The present paper is aimed at the investigation of the second of the two problems
listed above by means of the resurgent analysis.

Acknowledgments. This paper was written in the framework of the Exponeotial
Asymptotics program at the Isaac Newton Institute for ~1athematical Sciences (spring
semester of 1995). We are very grateful to the Institute and to the organizers of the
program, especially M. V. Berry and C. J. Howls, for their invitation and for very
stimulating environment. We are also very grateful to E. Solov'ev who attracted our
attention to this problem and the fruitful discussions with whom was of great use for
uso

1 Statement of the problem

To begin with, we recall shortly the general statement of the problem.
Consider a proton and some atom (hydrogen, for example) moving with respect to

each other with the relative velocity v. Then, in the adiabatic approximation one can
treat the motion of the heavy particles as a classical one, and the motion of the electron

as a quantum one. Thus, the transitions between electronic states in this system are
described with the help of the following Schrödinger equation:

(3)
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Here H(R) is the electronic Hamiltonian of the diatomic quasimoleeule (the exact form

of the Hamiltonian H(R) is not of importance for us), x = (Xl, x 2 ,x3
) are electronic

coordinates, and R is the internucIear distance, which can be written down in the form

d being an impact parameter l (see Figure 1; we neglect the curvature of the classical

trajectories of the heavy particles).

We recall that the adiabatic approximation is exactly the asymptotic expansion of

the unknown function 'l/J(x, t) with respect to the small parameter v.
Further, we are mostly interested in the computation of probabilities of transitions

between different electronic states occurring as a result of the described collision. From
this viewpoint it seelllS natural to pass to the population 0/ the atomic stateSJ represen

tation, that is, to expand the electron wave function ljJ(x, t) over tbe basis {ljJj (x, R)}
consisting of the eigenfunctions of the instantaneous electronic Hamiltonian H(R):

where

ljJ(x, t) = :L Cj(t)ljJj (x, R(t)) ,
j

H(R)1jJj (x, R) = E j (R) VJj (x, R) .

(4)

The eigenvalues E j (R) playing the role of effective potential are called adiabatic po
tential curves in the adiabatic approxilnation. The functions Cj(t) on the right in (4)

describe the evolution of the population of the j-th electronic state during the collisionj

clearly, these functions depend on the parameter v.

The naturality of representation (4) is confirmed by the Born-Fock theorem [4]

which claims that the population numbers ICj(t)1 do not change during a collision in

tbe limit v ~ 0, that is,

lim ICj( t) I = const.
v-o

The above stated problem prescribes also the 'initial conditions' for the functions

Cj(t) in question. Namely, if we investigate probabilities of the transitions from the

state jo to all other states, it is natural to put

() {
I, 1 = 10,

lim Cj t =
t--oo 0, j"# jo.

1Here and below we use atomic units for which h =1, m =1.
21n physics the probability for an electron to be in the given atomic space is called a population of

this state.
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(5)

Then the probabilities of the transition from the state ja to the state j are given by

Pjoj = llim Cj(t)1
2

•
t-+oo

Substituting expression (4) into equation (3) and expanding the resuft of the substitu
tion over the basis {1/'j (x, R)}, we obtain the following (infinite) system of differential
equations for the functions Cj (t):

.aCj (t)" (
t a = LJHjk(t)Ck t),

t k

where tbe (infinite) matrix IIHik (i)ll is the expression of the Hamiltonian jj (i) in tbe
considered representation. To separate the small parameter v explicitely, we introduce
the new variable T = vt ('slow' time), thus rewriting (5) in the form

. Bei (T, v) "" () ( )
tV aT = L....J H jk T Ck T, v ,

k

wbere the functions Hjk (T) depend on the variable T in a regular way.

(6)

Now we sball introduce the finite-level approximation, which is based on the follow

ing facts. First of all, as it was already Inentioned (Born-Fock theorem), the principal
term of the adiabatic approxiInation corresponds to the absence of the transitions
between different electronic states. rvloreover, as it was already mentioned in the In

troduction, the probabilities of the transitions Pjoi and, hence, the subsequent terms of
the asymptotics of the functions Ci (t) in the adiabatic approximation decrea.se expo
nentially a.s v -. 0 with the exponential factor e-t:./v, where .ö. is the shortest distance
between the corresponding adiabatic potential curves (see Figure 2; oue can see that
the transitions between different states can occur in the region in which tbe distance

between the curves is minimal - the so-called region of quasiintersection). This means

that, if we are intended to investigate the asyrnptotic behavior of ci (t) in the variable v

modulo exponential terms with SOIne fixed type, we cau include into consideration only

a finite number of components Ck (t) corresponding to energy levels Ek (R) dosest to
the given potential curve E jo (R). Therefore we arrive at the finite-dimensional model

which coincides in form with (6) but with a finite matrix IIHjk (T)II.

Now we can formulate the corresponding mathematical problem.
Consider the system

. BCj ( T, v) '"""' () ( ) .tv aT = L Jljk T Ck T, v , J = 1,2, ... ,n
k

7
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(8)

H(r) =

~(,)

Quasiinlerseclion region

Figure 2: Quasiintersection.

of ordinary differential equations with the 'initial data'

{
I, j = jo.

li In Cj ( T, v) = ...J.
T--OO 0, j I jo.

wi th respect to the n unknowns

{cj(r,v), j = 1,2, ... ,n}.

The problem is to investigate the asymptotic behavior of solution to this system as

v ---.. 0 with exponential accuracy of arbitrary exponential type.

The above formulated problem will be solved in this paper with the help of the
resurgent analysis (see, for example [13]). To be short and dear, we shall present all
the calculations for the simplest Zener model, though all the computational procedure
can be applied to general problem of the type (7), (8). We recall that for Zener model

the matrix ii (T) = 11 Hjk (r) 1I has the form

alT b1 ~

b1 a2r 0
~ 0 a3T

so that for the corresponding two-level Inodel the matrix jj (T) is given by

H(r) = (a~r a~r)
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(9)
{

-iV~~l = 2rcl + C2,

. sb. .
-lV dr = Cl'

with some real values of the constants a, b, .\. To be definite, we shall choose al = -2,
b = -1, a2 = 0, thus considering the following system of two ordinary differential

equations:

In accordance with the resurgent analysis method, we search for solutions to system

(9) in the form

(10)
Cl (i, V) = .c [Cl (i, s)],

C2 ( r, V) = .c [C2 ( r, s )],

where Ci (i, s), j = 1,2 are endlessly-continuable3 analytic functions in the variable s
and ..c [Ci] is the Laplace transform4 of the function Ci (i, s) in the variable s, taken
at some of its ramification point s = 8 (r):

(11 )Cj(r,v)=.c[Cj(r,s)J= Je;·Cj(r,s)ds.
r(T)

In the latter formula r (i) is a standard contour encircling the singularity point 5 =
S (7) of the function Cj (i, s) (see Figure 3). Clearly, as it is usual in the resurgent
analysis, we have to investigate the asymptotic behavior of the functions in question
not only for real hut for complex values of i. In general, to do this one have to

require that the coefficients of the considered system of ordinary differential equation
has entire coefficientj in our Dlodel exalnple this requirement is obviously fulfilled. Now,

substituting expressions (11) for the components ci (7, v) of the solution into the system
(9) we obtain the following system for the unknowns Ci (7,5):

(12)
{

~=-2r~-~,

aa~2 = - aa~l.

Later on, as we shall see below, one can suppose that the solution {Cj (7, s)} of tbe
latter system has simple 5ingularities, that is, the singularities of the form

Go (7) ~ (s - 8 (r))j
Cj(i,S) = 5-8(7) +ln(s-S(i))~ j! ai+l(r)

]=0

(13)

3 An ~ndlessly.continuabl~ fundion is, roughly speaking, an analytic fundion having a discrete set
of singularities on its Riemannian surface (for exact definitions see, far example, [14], [13)).

4In the sequel we shall see that the fllndons Cj will be represented aB a surn of Laplace transforms
of the fundions Cj taken in different points of ramification of these fundions (see formula (21) below).
At present this fad is not of importance far uso
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Figure 3: The standard integration contour.

near each its singular point s = S (7) (see [13]). In this case expression (11) can be
considered as a result of resummation of the corresponding WKB-series

00

e~S(T) L viai (7).
i=O

(14)

However, as it is known, the asymptotics of the solution can involve different nurn

her of WKB-terrns for different\points x (the so-called Stokes phenornenon). So, to
investigate the solution with the ..help of the resurgent analysis, one has to:

- investigate the resurgent structure of the solution, that is, to determine the val

ues of actions for all WKB-terms which can be possibly involved in the asymptotic
expanSIon;

- investigate the Stokes phenomenon, that is to determine which singularities of the

type (13) will contribute to the asymptotic expansion for different values of x.

This program will be realized in the subsequent Sections.

2 Resurgent structure of solutions

Our first goal is the computation of the resurgent structure of the functions Ci (T, v),
that is, of the structure of set of singularities of the functions Ci (T, s). As follows from
formulas (13), (14) above, the resurgent structure of a solution plays an important

role in investigation of its vVKB-expansion. Namely, if s = S (T) is an equation of the

10



set of singularities of the solution and {Si (i)} are different branches of (ramifying,

in general) function S (T), then Si (T) play the role of actions in WKB-terms of the

asymptotic expansion of the solution.
Clearly, the question whether there exists aresurgent solution to a system of the

form (7) is not a simple one. In our book [13] we prove the existence of the full

system of resurgent solutions to an ordinary differential equation of arbitrary order with

polynomial coefficients. The results obtained there can be generalized to the systems

of ordinary differential equations, and we can prove the existence of an endlessly

continuable solution with simple singularities to problem (7), (8) (in the case of system

of equations with polynomial coefficients) with singularities at points

S = Si (T),

where Si (T) are different branches of (ramifying, In general) solution of the corre
sponding Hamilton-Jacobi equation. For system (12) the Hamilton-Jacobi equation

rearls

(15)

We remark that for the particular system (9) the existence of resurgent solutions with simple

singularities can be proved directly. To do this, we shall search for the solution to this system in the

form of a Laplace integral

{

Cl (T, v) ={exp [tpT] Al (p, v) dp,

C:dT, v) = Jexp [~pT] A1(p, v) dp,
""I

where the functions Al (p, v) aod A 1 (p, v), as weIl as the integration contour I, are unkoowns. Sub
stituting the latter relations to the system (9), we obtain for Al (p, v), A1 (p, v) the following system

of equations:

{
pAI = 2ivdd~/ + A21

pA2 = Al.

The solution to the obtained system is given by

Al (p,v) = exp {t [-~ + !ln p]},
_ -1 {i [e:. I ]}A1 (p, v) - P exp ; - <t + 2 In P ,

80 that the corresponding solution (Cl, C2) to (9) has the form

{

CI (T, v) = Jexp {~ [PT - r; + ~ In p]} dp,
<, (T, v) = { exp {t [PT - r; + ~ In p]} p- l dp.

(16)

In the latter integrals one have to choose the integration contour I in such a way that these integrals
converge. The example of such a contour is drawn on Figure 4; one can choose any contour coming to
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Figure 4: The choice of the contour ,.

infinity in regions of exponential decrease of the integrang (marked on the Figure) and avoiding the
polar singularity p = 0 of the integrand.

Let us now rewrite the obtained expressions for solutions in the form of resurgent functions. To
do this , we perform the variable change

p2 1
S = pT - - + - In p

4 2

in (16), thus reducing the expression für the 8OIutions to the form

JC, (T, v) = Jexp [*sJ *(T, s) dp,

1C, (T, v) = {exp [*sJ p-l (T, s)*(T, s) dp,

where p (T, 8) is a solution to eqnation (17) wi th resped to p.

Now it is evident that the singularities of the fundions

{

Cl (T, s) =*(T, s) I

C2(T, s) = p-l (T, s)*(T, s) I

(17)

are posited at those points where the variable change given by (17) degenerates. These points can be

found from (17) together with

8{ p2 I} p 1
8p pT - "4 + "2 In p = T - "2 + 2p =0

and are given by

1T21~1( ~)
s=S(T)=-4+2+"2TVT2+1+"2ln T+V r2 + 1 .

12

(18)



One ean immediately verify that the function S (T) determined by the latter relation is a solution to
the Hamilton-Jacobi equation (15).

The eonstructed solution is not a solution with simple singularities in the above sense. However,

it is easy to eonstruct a solution with simple singularities applying the operator (8/88)-1/2 to both

of the functions Cl (T, s) and C'2 (T, s) (the definition of this operator one ean find in [15], [16], [13]).

Let us continue the investigation of the resurgent structure of a solution to (12).

Deriving S' (r) from the HamiIton·Jacobi equation (15) we 0 btain the expression for

the corresponding adiabatic potential curves

E (T) = S' (T) = T +J T 2 + 1 (19)

(the two different determinations of the square root correspond to the two adiabatic

potential curves in question). Now, integrating the obtained result along paths in the

complex T-plane from the origin to the arbitrary point T, we obtain the equation of

the singularity set of the solution (Cl (T,8), C2 (T,8)) to system (12) in the forms

(20)

The obtained set of singularities is drawn on Figure 5 a) - c) for three different

values of the variable T. Namely, Figure 5 a) corresponds to some real negative value

of T, Figure 5 b) corresponds to T = 0, and Figure 5 c) corresponds to some positive

real value of T.

One can see that for any T the singularity set of the solution consists of two different

lattices with step i7r. For any real value of T the first from these two lattices, corre

sponding to the positive determination of the square root in expression (20), contains

one real point, and the other contains 00 real point at all. When the variable T changes
from -00 to 0, these two lattices are moving one to another in the direction of the real

axis. Then (at the value T = 0) they go through each other and continue their motion

as T varies from 0 to +00 such that the distance between them infinitely increases.

Let us denote by S+ (correspondingly, S_) the real value of the function given by

(20) for positive determination of VT 2 +1 (correspondingly, the value of the function

S (T) having the imaginary part equal to i7r /2 for negative determination of vr2+ 1).
It is clear that the solution (Cl (T, v) ,C2 (T, v)) to system (9) which is given byexpression

(11) with the integration contour r (T) encircling the point S+ (T) (or any other point of

the first lattice) corresponds to the adiabatic potential curve E+ (T) (with the positive

value of VT2+ 1) whereas the same expression with r (T) encircling the point S_ (T) (or

6This expression dilfer from the expression (18) obtained above up to an additive eonstant -1/4.
Since the ehoice of the arbitrary constant in the action function is inessential, we UBe below the most
simple normalization.
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Figure 5: Resurgent structure of the solution.

any other point of the seconrl lattice) gives us a solution corresponding to the adiabatic

potential curve E_ (T) (with the negative value of VT'l + 1). Thus, to satisfy the 'initial

conditions' of the considered problem one has to choose for T < 0 the solution given

by (11) with the integration contour r (T) drawn on Figure 5 a).
Now we must continue the obtained solution to all real values of T and calculate

this solution for sufficiently large positive T. However, as it is clear from Figure 5,

when T goes across the value T = 0, the integration contour will be intersected by
infinitely many points from the second lattice of singularities. Clearly, as a result of

this intersection the topology of the integration contour will be changerl, since the

singularity point which intersects the integration contour can extract from it one or

two cantours of the same type but encircling this new point of singularity. Such a

phenomenon is known in the resurgent analysis as the Stokes phenomenon and, hence,

to investigate the continuation of the solution to positive values of Tone have to include

the Stokes phenomenon into consideration. This will be done in the following Section.

3 Investigation of the Stokes phenomenon

Up to the moment we have constructed a solution to equation (9) in the region T < o.
This solution is represented in a form of the integral (11) with the integration contour

r (T) drawn on Figure 5 a). However, as it was already mentioned in the end of

the previous Section, the topology of the integration contour can be changed during

14



the continuation of the constructed solutioI1 to all real values of T. This topological
rebuilding happens at T = 0 when the integration contour is intersected by singularities
of the integrand different from that encircling by the considered contour.

The mentioned topological rebuilding is due to the fact that any singular point
intersecting the integration contour can extract from it same another contour of the
same type. However, we do not know apriori how many contours of this kind (if
any) will be extracted from the integration contour as a result of the intersection. The

number of extracted contours depends on which branches of the integration contour
(which is posited on the Riemannian surface of the integrand) are really intersected
by the considered point of singularity. For example (see Figure 5 b)), the point A of
singularity of the integrand can intersect both branches r 1 and r 2 of the integration
contour (in this case two additional contours will be extracted from r (T) as a result of

the intersection). It can happen also that this point will intersect one of the branches
r 1 and r 2 (in this case only one new integration contour will be originated during
the intersection process). Finally, one can imagine that the point A comes along a
sheet of the Riemannian surface which does not contain both r 1 and r 2 (in this case
the intersection process does not lead to the appearance of new integration contours).
Thus, we see that, generally speaking, the integral representation of the solution in
different regions of the real axis Twill be of the form

Cj (r, v) = 2:>:.• [Cj (r, s)] = L: Je*'Cj (r, s) ds
k k rk(T)

(21)

rather than of the form (11). Here the surn is taken over some subset6 of the set of
points Sk of singularities of the integrands Cj (T, s) and the contour r k (T) is a standard
contours encircling the point Sk. The sum on the right in (21) can be infinite, but rnust

contain only a finite number of points of support in any half-plane Im s < A for
arbitrary real value of A.

From the above considerations it is clear that to compute directly the number of
contours extracted it is necessary to know the global structure of the Riemannian

surface of the integrand. Clearly, this task is not so simple in the general case.

Further, as we have seen above (see formulas (13) and (14)), each point Sk of

singularity of the integrand in (21) corresponds to same WKB-term which might be
included into the asymptotic expansion of the constructed solution (though can not be

inclucled in it). Actually, the \VKB-term (14) is involved into the asymptotic expansion
of the solution if and ooly if the corresponding point of singularity of the integrand

6This subset is called a support of the resurgent funetion in question. The notion of a support of
aresurgent function is strongly connected with different physical and mathematical notions; see, for
example, the paper [17] on complex rays method.
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is encircled by some integration contour in the integral representation of this solution,
that is, if this point corresponds to one of the terms on the right in (21). We shall refer

points of singularities included into representation (21) as aetive points and all other
points of singularity as passive points for the given value of the variable T. As it is clear

from the above considerations the property of the point to be passive or active can be
changed exactly at those points T at which one point of singularity of the integrand
in (21) intersects the integration contour encircHng the another point of singularity.
For the considered example it can happen only for such values of T for which the real
part of the action S+ (T) coincides with the real part of the action S_ (T), that is, in
the case, when the two lattices in question lay on one and the same vertical line in
the complex plane s. The set of such points is called a Stokes set of the functions in

question.
Later on, the Stokes set divides all the complex plane C.,. into a number of regions

which will be referred below as the Stokes regions.

Finally, there are points in the complex plane C.,. which are ramification points of
the adiabatic potential curves (and, consequently, the ramification points of the action
function). In the resurgent analysis such points are called IDeal points of the resurgent
function in question and we denote by :F the set of focal points. As we shall see below,
these points playa crucial role in the investigation of the asymptotic expansions of
the solutions to the considered equations. In our example we have two focal points
T = ±i at which two lattices of singularities of the functions Cl (T, s) and C'2 (T, s)
coincide with each other. The difference between the set of focal points and the Stokes
set of the given resurgent function is that the first one has complex codimension 1 in
the complex plane C.,. whereas the second one has in this plane the real codimension

1. Hence, the Stokes set divides the plane C.,. ioto Stokes regions, and the set of focal

points does not divide C.,. at all.

Thus, to give the full description of the Stokes phenomenon one has to determine
the set of active points of singularity in each Stokes region.

One ean present more exact description of the Stokes phenomenon using the not ion of micro
functions. To come to lhis nolion we remark thal each integral on the right in (21) will not be
changed if we add to the integrand same endlessly-continuable analytic function whieh ia holomorphie
in a neighbourhood of the corresponding point 8k of singularity. ThuB, the value of the term in the
representation (21) depends not on the functions Cl and C2 themselves but on the equivalence dass
of these functions modulo functions regular near the point 8k. Such equivalence classes are ealled
(endlessly-continuable) microfunetions supported at the point Sk and are none more than singular
parts of Cl and C2 at the point Sk. The space of microfunctions supporled at the point Sk we shall
denote by M,•.

Further, as we have seen above, each term of the (exponential) WKB-expansion of the solution
eorresponds to exactly one term of the representation on the right in (21), thal is, to exactly one

16



mierofunction supported at same point of singularity of the integrands Cl and C2. Therefore, we ean
represent the asymptotic expansion of the functions in question as (infinite, in general) vectors

(22)

where Cj". are some elements of the spaee M,,, for some point Bk of singularity of the function
Cj (T, s). We denote by M the spaee of vectors (22), so that the asymptotic expansion of the solution
ean be represented as an element from M x M.

Now the change of the asymptotie expansion at points of the Stokes set ean be treated as a
homomorphism

T:MxM-+MxM

whieh ia ealled a connection homomorphism in the resurgent analysis.

Thus, the computation of the Stokes phenomenon is exaetly the computation of the Stokes homo

morphism at each point on the Stokes set.

So, to compute the asymptotic expansion of the solution with the exponential ac
curacy, one has to solve the following two problems.

1. To compute WKB asymptotic expansions corresponding to each point of singu

larity.
2. To select the set of active points of singularity for each value of T.

Then the asymptotic expansion of the solution will be simply the sum of WKB
expansions (or, more exactly, of the resums of these expansions since the corresponding
asymptotic series diverge) computed at each active point for any value of T.

We claim that both these problems can be solved with the help of complexification
in the variable T. As it was already mentioned, the solution of both problems strongly

depends on tbe position of the ralnification points of the adiabatic potential curves, or,
in other words, of the focal points for the constructed solution.

Let us describe first the computation of the \VKB-expansions. Ta do this, we first

investigate the behavior of points of singularities of the functions Cl (T, s) and C'l (T, s)
when the point T is tracing a path 11 in the complex plane C-r shown on Figure 6. This
path having the origin at the point T = 0 goes along the imaginary axis to the point
T = i, encircles this point counterclockwise and then comes back to the origin.

It is easy to verify that when T moves along the imaginary axis from the origin
to the point T = i, the singular points of the functions Ci (T, s) will move along the
trajectories shown on Figure 7 b) (on Figures 7 a) and c) the initial and the final states
of this motion is shown, the points of the first lattice are shown on this Figure by
crosses whereas the points of the second lattice are shown by points; in the situation
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Figure 6: Paths of analytic continuation.

of Figure 7 e) these two laUiees eoineide with eaeh other sinee i = i is a foeal point).

Aetually, we have

5i8= -%+i;Jl-82 +4& ~02]'

5 im -4 + i [f -nJ1 - J2 - 4& ~ 82] ,

and one ean easily verify that the real and imaginary parts of the two laUer funetions

are monotonie when 0 < B < 1.

Later on, when i is at point a (see Figure 6), that is, B= l-~ for same small positive
c, the two points S+ (iB) and S_ (iO) are both elose to the point s = -1/2+i1r/4. When
i eneircles the small loop around the foeal point i = i, these two points will rotate
to the angle 37r and, henee, these two points will be exehanged during this rotation.

Actually, one has

( . . ) 1 i7r 3J2I / l!.a )S± 1 +ee10 = -- +- ± __e3 ~e:z +0 (c;~ .
2 4 4

The stated assertion is a direct consequenee of tbe latter formula.
Finally, if the point i goes back from tbe value i = i (1 - c;) to the origin, the two

considered points will be moving back along the trajectories shown on Figure 7 b) to
tbe initial position. Thus, as a result of tracing the path /1 shown on Figure 6, tbe two
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Figure 7: Dynamics of the resurgent structure along 11 0

points A and B shown on Figure 7 a) will be interchanged (as weIl as all other pairs
of points obtained from A and B with shifting by i1r).

The Ioop I. determines an element I. of the fundamental group 1r. (C T \.1'") of the

complement C T \:F of the set F of focal points in the plane C p As we have shown
above, the action of this element on the Riemannian surface of solutions C. and C2

to system (12) interchanges the points of singularity A and B. Hence, the analytic

continuation of these functions considered in a neighbourhood of the point A along the

path I. gives the value of the same functions in a neighbourhood of the point B. Since
the correspondence between expansions (13) and (14) is one-to-one, we can claim that
the WKB-element corresponding to the point B is a result of the analytic continuation
of the WKB-element corresponding to the point A.

The action of the element 12 of the fundamental group 7r. (C T \F) corresponding to
the path 12 drawn on Figure 6 can be investigated in the similar way. However, this
element interchanges the points of singularity A and C (see Figure 7 a)), not A and B.

Let us now pass to the solution of the second problem listed above. The matter

is that there exists a method of computation of the Stokes phenomenon based on
the so-called resurgent equations. This method is based on the fact that the solution

(c. (7, v), C2 (r, v)) to system (9) is clearly an entire function of the variable 7 whereas

the asymptotic series given by WKB-elements ramifies around singular points of the
adiabatic potential curves. Hence, the variation of the WKB expansions originated by
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Figure 8: Computation of the Stokes phenomenon.

ramification of the action S (r) and of the amplitude

00

a (r, v) = L viaj (r)
j;O

must be cancelled out with the additional terms appearing in the asymptotics due to the
Stokes phenomenon. One can write down the corresponding relations and try to obtain
the information about the change of asymptotic expansions from these relations. This

program can be fulfilled with the help of the so-called alient derivative. Unfortunately,
the presentation of the theory of alient derivatives is (ar out of the framework of the
present paper; the reader can find the detailed explanations of all this theory in [18],
[14], [19], [20], [21], [13]. Here we shall mention only that the computation of changes
in asymptotic expansions when intersecting Stokes lines with the help of the alient
differential calculus is possible only in a neighbourhood of some focal points and only in
the case when both the point defining the integration contour and the point intersecting
this contour are those coinciding with one another when r approaches this focal point.
So the question arises: how cau one compute the change of asymptotic expansion when
one point intersect the integration contour determined by the other point if these two
points are posited on some nonvanishing distance from each other? Such a situation,
typical for the problems of the considered type, is shown, for example, on Figure 5 b)
where the point A of singularity intersects the integration contour apart from its origin
B.
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The answer to this question can be obtained again with the help of the analytic
continuation along paths 11 and 1'J drawn on Figure 6 together with the corresponding
Stokes lines. Namely, instead of continuation along the segment of the real axis from
the point T = -c to the point T = c for some c > 0 (this segment intersects one of
the Stokes lines, see Figure 8) one can use the continuation along the path 11 (drawn
on the same Figure) along which the intersections with all the Stokes lines in question
occurs in a neighbourhood of the focal point T = i. We have chosen the path 11 gince,

as it can be seen from Figure 7 the two points A and B in question (see Figure 5 b))
are elose to each other in a neighbourhood of the foeal point T = i.

The result of computations of the Stokes phenomenon for the considered example
is shown on Figure 5 c). Here one caO' see that all points of the lattice born by S_ (T)
lying above the real axis in the complex plane C~ are active for T > 0 and, hence,
all these points determine nontrivial contributions to the asymptotic expansion of the
solution in this region.

4 Formulation of the computational algorythm

In the previous Section we have obtained that the asymptotic expansion of the solution
to (9) for T > 0 (in particular, for large real values of T) consists of the WKB element
corresponding to the adiabatic potential curve E+ (T) and of all analytic continuations
of this WKB element along paths It, 111'JII, 11/211/21t, ... , each corresponding to the
adiabatic potential curve E_ ('T).

Similar one can obtain the following rcsult valid for general problems of the form
(7), (8).

The asymptotic expansion 0/ the solution to the problem (7), (8) /or sufficiently

large positive values 0/ the variable 'T consists of the W/(B-element corresponding to

the adiabatic potential curve E jo (T) and of all continuations 0/ this element along all

elements of the basis 0/ the fundamental group 1l'1 (er \.1") taken with coefficients arising

due to the Stokes phenomenon.

We shall not present here the praof of the stated assertion since it goes more or less

similar to the consideration of the above example. The reader cao coostruct this proof
by himself or herself.

In conclusion we remark that just the same computations lead to the asymptotic
investigation of the overbarrier reflection phenomenon in quantum mechanics (see, for
example, [22]). What is more, numerical computations in the simplest case of quadratic
potential coincide exactly with the above computations for the two-level Zener model.

21



References

[1] P. Ehrenfest. Adiabatische Invarianten und Quantentheorie. Ann. d. Phys., 51,

1916, 327.

[2] P. Ehrenfest. Adiabatische Transformationen in der Quantentheorie und ihre Be

handlung durch Niels Bohr. Naturwissensch., 11, 1923, 543.

[3] M. Born. Das Adiabatenprinzip in der Quantenmechanik. Zeitschrift für Physik,

40, 1926, 167.

[4] M. Born and V. Fock. Beweis des Adiabatensatzes. Zeitschrift für Physik, 51,

1928, 165 - 180.

[5] P. A. M. Dirac. The adiabatic invariants of the quantum integrals. Proc. Royal

Soc., A 107, 1925, 725.

[6] E. Fermi and F. Persico. Il principio delle adiabatiche e la nozione de forza vivo

nella nuova meccanica ondulatoria. Lincei Rend., 4, No. 6, 1926, 452 - 457.

[7] M. D. Kruskal. Asymptotic theory of hamiltonian and other systems with all

solutions nearly periodic. Journ. Alalh. Phys., 3, No. 4, 1962, 806 - 828.

[8] C. Zener. Non-adiabatic crossings of energy levels. Proc. of Royal Soc., 137. A,

No. A833, 1932, 696 - 702.

[9] N. Rosen and C. Zener. Double Stern-Gerlach experiment and related collision

pnenomena. Phys. Rev., 40, 1932, 502 - 507. Second Series.

[10] Yu. Demkov. Soviel Physics, JETP, 18, 1964, 138.

[11] E. C. G. Stueckelberg. Theorie der unelastischen Stösse zwischen Atomen. Hel
velica Physica Acta, 5, 1932, 369 - 422.

[12] E. A. Solov'ev. Nonadiabatic transitions in atomic collisions. Sov. Phys. Usp., 32,

No. 3, 1989, 228 - 250.

[13] B. Sternin and V. Shatalov. Borel.Laplace Transform and Asymptotic Theory.

CRC-Press, Florida, 1995. To appear.

[14] B. Candelpergher, J.C.Nosmas, and F.Pham. Approche de La Resurgence. Her

mann editeurs des sciences et des arts, 1993.

22



[15] B. Sternin and V. Shatalov. On the Fourier-Maslov transform in space of ramifying
analytic functions. A1atem Zametki, 17, No. 6,1991,107 - 118.

[16] B. Sternin and V. Shata.lov. Differential Equations on Complex Manilolds. Kluwer
Academic Publishers, Dordrecht, 1994.

[17] B. Sternin and V. Shatalov. Complex rays method and resurgent analysis. Isaac
Newton Inst. for Math. Sei., Preprint, May 1995.

[18] J. Ecalle. Les Fonclions Resurgentes, I, 11, 111. Publications Mathematiques
d'Orsay, Paris, 1981 - 1985.

[19] E. Delabaere, H. Dillinger, and F. Pham. Resurgent methods in semi-classical
asymptotics. To appear.

[20] E. Delabaere. Introduction to the Ecalle theory. In E. Tournier, editor, Computer

Algebra and Differential Equations, number 193 in London Mathematical Soeiety
Lecture Note Series, 1994, pages 59-102. Cambridge University Press, Cambridge.

[21] E. Delabaere. Resurgence equationnelle et resurgence quantique de l'equation de
Schrödinger. To appear.

[22] L. D. Landau and E. ~1. Lifshitz. Quantum A1echanics (Non-relativistic Theory),

volume 3 of Course 0/ Theoretical Physics. Pergamon Press, Oxford, U. K., third
edition, 1977.

23


