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bundles with vanishing cohomologies give rise to a new class of maximal commutative
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0. Introduction.

0.1. From the geometric point of view, the Kedomisev- Petviashvili (KP) equations are
best understood as a set of commuting vector fields, or flows, defined on an infinite-
dimensional Grassmannian [S]. The Grassmannian Gr, () is the set of vector subspaces
W of the field L = C((z)) of formal Laurent series in z such that the projection W —
C((2))/C[[2])z is a Fredholm map of index p. The commutative algebra C[z7}] acts
on L by multiplication, and hence it induces commuting flows on the Grassmannian.
This very simple picture is nothing but the KP system written in the language of
infinite-dimensional geometry. A striking fact is that every finite-dimensional orbit (or
integral manifold) of these flows is canonically isomorphic to the Jacobian variety of
an algebraic curve, and conversely, every Jacobian variety can be realized as a finite-
dimensional orbit of the KP flows [M1]. This statement is equivalent to the claim that
the KP equations characterize the Riemann theta functions associated with Jacobian
varieties {AD).

If one generalizes the above Grassmannian to the Grassmannian Gr,(u) consisting
of vector subspaces of L®" with a Fredholm condition, then the formal loop algebra
gl(n, L) acts on it. In particular, the Borel subalgebra (one of the maximal commutative
subalgebras) of the Heisenberg algebra acts on Gr,(uz) with the center acting trivially.
Let us call the system of vector fields coming from this action the Heisenberg flows on
Grn(p). Now one can ask a question: what are the finite-dimensional orbits of these
Heisenberg flows, and what kind of geometric objects do they represent? Actually, this
question was asked to one of the authors by Professor H. Morikawa as early as in 1984.

In this paper, we give a complete answer to this question. Indeed, we shall prove (see
5.1 and 5.8)

THEOREM A. A finite-dimensional orbit of the Heisenberg flows defined on the Grass-
mannian of vector valued functions corresponds to a covering morphism of algebraic
curves, and the orbit itself is canonically isomorphic to the Jacobian variety of the curve
upstairs. Moreover, the action of the traceless elements of the Borel subalgebra (the
traceless Heisenberg flows) produces the Prym variety associated with this covering
morphism as an orbit.

REMARK: The relation between the Heisenberg algebras and the covering morphisms
of algebraic curves has been pointed out in [AB].

0.2. Right after the publication of works ([AD], [M1], [Sh1]) on characterization of
Jacobian varieties by means of integrable systems, it has become an important problem
to seek for a similar characterization of Prym varieties. We establish in this paper a
simple solution of this problem in terms of the multi-component KP system defined on
a certain quotient space of the Grassmannian of vector valued functions.

Classically, the Prym varieties associated with degree two coverings of algebraic
curves were introduced by Schottky and Jung in their approach to the Schottky prob-
lem [SJ]. The modern interests in Prym varieties were revived in [Mum1]. It promoted
further studies of Prym varieties in the modern algebraic geometry setting [Be], [DS].
Recently, the Prym varieties of higher degree coverings have been used in the study
of the generalized theta divisors on the moduli spaces of stable vector bundles over
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an algebraic curve [BNR]. A formula of [BNR] about the dimensions of the linear
system of the generalized theta divisors provides a mathematical proof of the Verlinde
formula in the level one case [Bo], which has an origin in conformal field theory. In
this direction, an inequality generalizing the formula of [BNR] has been established
in [L]. In the context of integrable systems, it has been discovered that Prym varieties
of ramified double sheeted coverings of curves appear as solutions of the BKP sys-
tem [DJKM]. Independently, a Prym variety of degree two covering with exactly two
ramification points has been observed in the deformation theory of two-dimensional
Schrédinger operators [No], [NV]. As far as the authors know, the only Prym varieties
so far considered in the context of integrable systems are associated with ramified, dou-
ble sheeted coverings of algebraic curves. Consequently, the attempts ([Sh2], [T]) of
characterizing Prym varieties in terms of integrable systems are all restricted to these
special Prym varieties.

Let us define the quotient Grassmannian Z,(0) as the quotient space of Gr,(0) by the
diagonal action of (14 C[[z])z)". The traceless n-component KP system is defined by
the action of the traceless diagonal matrices with entries in C[z7!] on Z,(0). Since this
system is a special case of the traceless Heisenberg flows, every finite-dimensional orbit
of this system is a Prym variety. Conversely, an arbitrary Prym variety associated with
a degree n covering morphism of algebraic curves can be realized as a finite-dimensional
orbit. Thus a characterization theorem of Prym varieties follows (see 5.14):

THEOREM B. An algebraic variety is isomorphic to the Prym variety associated with
a degree n covering of an algebraic curve if and only if it can be realized as a finite-
dimensional orbit of the traceless n-component KP system defined on the quotient
Grassmannian Z,(0).

0.3. An unexpected connection between moduli theory of algebraic curves and repre-
sentation theory of Virasoro algebras has emerged through the study of the Grassman-
nian Gry(0) of scalar valued functions of index 0 [ADKP], [BS], [KNTY], [W1]. The
relation between algebraic geometry and the Grassmannian comes from the Krichever
map of [SW], which assigns injectively a point of Gri(0) to a set of geometric data
consisting of an algebraic curve and a line bundle together with some local information.
The Krichever correspondence was enlarged in [M3] to include arbitrary vector bundles
on curves. The Grassmannian Gr,(0) appeared once again quite recently in connection
with the mysterious interplay of matrix models and the KP system (see for example,
(Ko], [W2]). In particular, it has been discovered that the partition function of the
size N X N matrix model is a 7-function of the KP system, and hence it determines a
unique point of Gr1(0) [KM]. Even though the question “why KP, and why the Grass-
mannian?” is not answered in the context of matrix models, one can speculate that
the Grassmannian Gr,(0) of vector valued functions should play an important role in
understanding the moduli spaces of covering morphisms of algebraic curves. We note
here that the framework of Gr,(0) gives us all algebraic curves with ¢-marked points
(1 £ £ < n), while the old Gr1(0) provides curves with only one marked point.

In this paper, we generalize the Krichever functor of [M3] so that we can deal with
arbitrary covering morphisms of algebraic curves. Let n = (ny,--- ,ns) denote an
integral vector consisting of positive integers satisfying that n =ny + -+ + n,.
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THEOREM C. For each n, the following two categories are equivalent:

(1) The category C(n). An object of this category consists of an arbitrary degree n
morphism f : C;, — Cp of algebraic curves and an arbitrary vector bundle F on
Cn. The curve Cy has a smooth marked point p with a local coordinate y around
it. The curve Cy, has £ (1 < £ < n) smooth marked points {p;, - ,pe} = f~!(p)
with ramification index n; at each point p;. The curve C, is further endowed
with a local coordinate y; and a local trivialization of F around p;.

(2) The category S(n). An object of this category is a triple (Ao, An, W) consisting
of a point W € ez Gra(n), a “large” subalgebra Ay C C((y)) for some y €
C[[z]], and another “large” subalgebra

L 4
A CP ) = PC(y)).

=1 i=1

In a certain matrix representation as subalgebras of the formal loop algebra
9l(n,C((y))) acting on the Grassmannian, they satisfy Ay C A, and An - W C
w.

The precise statement of this theorem is given in Section 3, and its proof is completed
in Section 4. One of the motivations of introducing a category rather than just a set
is because we need not only a set-theoretical bijection of objects but also a canonical
correspondence of the morphisms in the proof of the claim that every Prym variety can
be realized as a finite-dimensional orbit of the traceless multi-component KP system
on the quotient Grassmannian.

0.4. The motivation of extending the framework of the original Krichever map to in-
clude arbitrary vector bundles on curves of [M3] was to establish a complete geometric
classification of all the commutative algebras consisting of ordinary differential opera-
tors with coeflicients in scalar valued functions. If we apply the functor of Theorem C
in this direction, then we obtain (6.14), (6.15):

THEOREM D. Every object of the category C(n) with a smooth curve C,, and a line
bundle F on C, satisfying the cohomology vanishing condition

H%(Cn, F) = H‘(Cn,f)=0

gives rise to a maximal commutative algebra consisting of ordinary differential operators
with coefficients in n X n matrix valued functions.

The only commutative algebras of matrix ordinary differential operators known before
are constructed from locally cyclic coverings of curves, i.e. a morphism f : C — C)
such that there is a point p € Cy where f~1(p) consists of one point [Na, Appendix].
Since we can use arbitrary coverings of curves, the algebras we obtain in this paper form
a far larger class of totally new examples. As a key step from algebraic geometry of
curves and vector bundles to the differential operator algebra with matrix coefficients,
we prove the following (6.6):



THEOREM E. The big-cell of the Grassmannian Gr,(0) is canonically identified with
the group of monic invertible pseudodifferential operators with matrix coeflicients.

Only the case of n = 1 of this statement was known before. With this identification,
we can translate the flows on the Grassmannian associated with an arbitrary commu-
tative subalgebra of the loop algebras into an integrable system of nonlinear partial

differential equations. The unique solvability of these systems can be shown by using
the generalized Birkhoff decomposition of [M2].

0.5. This paper is organized as follows. In Section 1, we review some standard facts
about Prym varieties. The Heisenberg flows are introduced in Section 2. Since we do not
deal with any central extensions in this paper, we shall not use the Heisenberg algebras
in the main text. All we need are the maximal commutative subalgebras of the formal
loop algebras. Accordingly, the action of the Borel subalgebras will be replaced by the
action of the full maximal commutative algebras defined on certain quotient spaces of
the Grassmannian. This turns out to be more natural because of the coordinate-free
nature of the flows on the quotient spaces. The two categories we work with are defined
in Section 3, where a generalization of the Krichever functor is given. In Section 4,
we give the construction of the geometric data out of the algebraic data consisting of
commutative algebras and a point of the Grassmannian. The finite-dimensional orbits
of the Heisenberg flows are studied in Section 5, in which the characterization theorem
of Prym varieties is proved. Section 6 is devoted to explaining the relation of the entire
theory with the ordinary differential operators with matrix coefficients.

The results we obtain in Sections 3, 4, and 6 (except for 6.15, where we need zero
characteristic) hold for an arbitrary field k. In Sections 1 and 5 (except for 5.1, which
is true for any field), we work with the field C of complex numbers.

ACKNOWLEDGEMENTS: The authors wish to express their gratitudes to the Max-
Planck-Institut fiir Mathematik for generous support and hospitality, without it the
entire project would never have taken place. They also thank S. P. Novikov and
H. Tamanoi for useful comments given to the authors in the early stage of this work.

1. Covering morphisms of curves and Prym varieties.

We begin with defining Prym varieties in the most general setting, and then introduce
locally cyclic coverings of curves, which play an important role in defining the category
of arbitrary covering morphisms of algebraic curves in Section 3.

1.1. DEFINITION. Let f : C — Cj be a covering morphism of degree n between
smooth algebraic curves C and Cp, and let Ny : Jac(C) — Jac(Cp) be the norm
homomorphism between the Jacobian varieties, which assigns to an element ), M 4 €
Jac(C) its image 3, ng- f(g) € Jac(Co). This is a surjective homomorphism, and hence
the kernel Ker(Ny) is an abelian subscheme of Jao(C) of dimension g(C)— g(Cy), where
g(C) denotes the genus of the curve C. We call this kernel the Prym variety associated
with the morphism f, and denote it by Prym(f).
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1.2. REMARK: Usually the Prym variety of a covering morphism f is defined to be the
connected component of the kernel of the norm homomorphism containing 0. Since any
two connected components of Ker(/Ny) are translations of each other in Jac(C'), there
is no harm to call the whole kernel the Prym variety. If the pull-back homomorphism
f* : Jac(Cy) — Jac(C) is injective, then the norm homomorphism can be identified
with the transpose of f*, and hence its kernel is connected. So in this situation, our
definition coincides with the usual one. We will give a class of coverings where the
norm homomorphisms are injective (see 1.7).

1.3. REMARK: Let R C C be the ramification divisor of the morphism f of (1.1) and
Oc(R) the locally free sheaf associated with R. Then it can be shown that for any line
bundle £ on C, we have N¢(L) = det(f.L£) @ det (f.Oc(R)). Thus up to a translation,
the norm homomorphism can be identified with the map assigning the determinant of
the direct image to the line bundle on C. Therefore, one can talk about the Prym
varieties in Pic?(C) for an arbitrary d, not just in Jac(C) = Pic®(C).

When the curves C and C) are singular, we replace the Jacobian variety Jac(C) by
the generalized Jacobian, which is the connected component of H'(C, O%) containing
the structure sheaf. By taking the determinant of the direct image sheaf, we can define
a map of the generalized Jacobian of C into H l(CO,O"CO). The fiber of this map is
called the generalized Prym variety associated with the morphism f.

1.4. REMARK: According to our definition (1.1), the Jacobian variety of an arbitrary
algebraic curve C can be viewed as a Prym variety. Indeed, for a nontrivial morphism
of C onto P!, the induced norm homomorphism is the zero-map. Thus the class of
Prym varieties contains Jacobians as a subclass. Of course there are infinitely many
ways to realize Jac(C') as a Prym variety in this manner.

Let us consider the polarizations of Prym varieties. Let ©¢ and ©¢, be the Riemann
theta divisors on Jac(C) and Jac(Cy), respectively. Then the restriction of O¢ to
Prym(f) gives an ample divisor H on Prym(f). However, this is never a principal
polarization. In fact, it is of type (1, -, 1, n, -+, n), where the entry n is repeated
9(Cp)-times. There is a natural homomorphism ¢ : Jac(Cp) x Prym(f) — Jac(C)
which assigns f*£ ® M to (L, M) € Jac(Cy) x Prym(f). This is an isogeny, and the
pull-back of ©¢ under this homomorphism is given by

%" O1ac(6)(O¢) = Orac(co)(nOc,) ® Oprym(s)(H) -

In Section 3, we define a category of covering morphisms of algebraic curves. As a
morphism between the covering morphisms, we use the following special coverings:

1.5. DEFINITION. A degree r morphism a : C — C) of algebraic curves is said to
be a locally cyclic covering if there is a point p € Cy such that a*(p) = r - ¢ for some
geC.

1.6. PROPOSITION. Every smooth projective curve C has infinitely many smooth
locally cyclic coverings of an arbitrary degree.

PrROOF: We use the theory of spectral curves to prove this statement. For a detailed
account of spectral curves, we refer to [BNR] and [H].
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Let us take a line bundle £ over C of sufficiently large degree. For such £ we can
choose sections s; € H°(C, L), 1 = 1, 2, ---, r, satisfying the following conditions:
(1) All s;’s have a common zero point, say p € C, i.e., s; € H°(C,L(-p)),
1= 1)2$"' ' 7
(2) sr ¢ H°(C,L7(—2p)).
Now consider the sheaf R of symmetric O¢c-algebras generated by £~!. As an Oc-
module this algebra can be written as

'R’.:éﬁ".

=0

In order to construct a locally cyclic covering of C, we take the ideal Z, of the algebra
R generated by the image of the sum of the homomorphisms s; : £=7 — L™+, We
define C, = Spec(R/Z,), where s = (81,83, - ,8,). Then C, is a spectral curve, and
the natural projection = : C, — C gives a degree r covering of C. For sufficiently
general sections s; with properties (1) and (2), we may also assume the following (see
[BNR]):

(3) The spectral curve C, is integral, i.e. reduced and irreducible.

We claim here that C, is smooth in a neighborhood of the inverse image of p. Indeed,
let us take a local parameter y of C around p and a local coordinate z in the fiber
direction of the total space of the line bundle £. Then the local Jacobian criterion for
smoothness in a neighborhood of 7~1(p) states that the following system

"+ s (y)e™ 4 s (y) =0
rz" ! 45 (y)r =)z 4+ 501 (y) =0
1(¥)'z"  + sa(y)z 4 s (y) =0

of equations in (z,y) has no solutions. But this is clearly the case in our situation
because of the conditions (1), (2) and (3). Thus we have verified the claim. It is also
clear that #*(p) = r - ¢, where ¢ is the point of C, defined by z" = 0 and y = 0. Then
by taking the normalization of C, we obtain a smooth locally cyclic covering of C. This
completes the proof.

1.7. PROPOSITION. Let a : C — () be a locally cyclic covering of degree r. Then
the induced homomorphism a* : Jacd(Cy) — Jac(C) of Jacobians is injective. In
particular, the Prym variety Prym(a) associated with the morphism a is connected.

PROOF: Let us suppose in contrary that £ 2 O¢, and a*L = O¢ for some £ € Jac(Cy).
Then by the projection formula we have £ @ a,0O¢ = a,0¢. Taking determinants on
both sides we see that £ is an r-torsion point in Jac(Cy), i.e. L™ =2 O¢,. Let m be the
smallest positive integer satisfying that L™ 22 O¢,. Let us consider the spectral curve

C' = Spec(@ E"‘/l',)

=0
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defined by the line bundle £ and its sections

] =(31v32a"' 13m—1)3m) =(010,"' 1091) € @HO(CO’ci) .

i=1

It is easy to verify that C’ is an unramified covering of Cj of degree m. Now we claim
that the morphism a : C — () factors through C', but this leads to a contradiction
to our assumption that « is a locally cyclic covering.

The construction of such a morphism f : € — C' over Cy amounts to defining an
Oc¢,-algebra homomorphism

(1.8) ft: éﬁ“/I, — a,0c¢ .

=0

In order to give (1.8), it is sufficient to define an O¢,-module homomorphism ¢ :
L' — a,0c¢ such that ¢®™ : L™ = O¢, — «,O¢ is the inclusion map induced
by «. Since we have

HY(C,0¢) & H(Cy,a,Cc) 2 H(Cy, L ® a,0¢) = HY(Co, L™ ® a.0¢) ,

the existence of the desired ¢ is obvious. This completes the proof.

2. The Heisenberg flows on the Grassmannian of vector valued functions.

In this section, we define the Grassmannians of vector valued functions and introduce
various vector fields (or flows) on them. Let k be an arbitrary field, k{[z]] the ring of
formal power series in one variable z defined over k, and L = k((z)) the field of fractions
of k[[2]]. An element of L is a formal Laurent series in z with a pole of finite order.
We call y = y(z) € L an element of order m if y € k[[z]]e~™ \ k[[z]]z~™*!. Consider
the infinite-dimensional vector space V = L®" over k. It has a natural filtration by the
(pole) order

o ¢ PV c FO(VYy c FO™MD(Vv) -

aj; Ekean} .

In particular, we have F(™)(V) /F(m=1)(V) = & for all m € Z. The filtration satisfies

where we define

o0

2.1) Fm(V) = { > az T

=0

[j FM(V)y=V and ﬁ F™(v) = {0},

m=—oo Mm=-—00



and hence it determines a topology in V. In Section 4, we will introduce other filtrations
of V in order to define algebraic curves and vector bundles on them. The current
filtration (2.1) is used only for the purpose of defining the Grassmannian as a pro-
algebraic variety (see for example [KUS]).

2.2. DEFINITION. For every integer u, the following set is called the index pu Grass-
mannian of vector valued functions of size n:

Gro(p) = {W C V| yw is Fredholm of index u} ,
where yw : W — V/F(‘l)(V) is the natural projection.

Let Ny = {ord,(v) | v € W}. Then the Fredholm condition implies that Ny is
bounded from below and contains all sufficiently large positive integers. But of course,
this condition of Nw does not imply the Fredholm property of Yw when n > 1.

2.3. REMARK: We have used F(=)(V) in the above definition as a reference open set
for the Fredholm condition. This is because it becomes the natural choice in Section 6
when we deal with the differential operator action on the Grassmannian. From purely
algebro-geometric point of view, F(®)(V) can also be used (see 4.6).

The big-cell Gr}(0) of the Grassmannian of vector valued functions of size n is the
set of vector subspaces W C V such that 4w is an isomorphism. For every point
W € Grn(u), the tangent space at W is naturally identified with the space of continuous
homomorphism of W into V/W:

TwGrn(p) = Homeon (W, V/W) .

Let us define various vector fields on the Grassmannians. Since the formal loop algebra
gl(n, L) acts on V, every element £ € gl(n, L) defines a homomorphism

(2.4) W—VS5SV VW,
which we shall denote by ¥y/(£). Thus the association
Gra(p) 3 W — Yw () € Homeon(W, V/W) = TwGr,(p)
determines a vector field ¥(£) on the Grassmannian. For a subset = C gl(n, L), we use

the notations ¥w(E) = {Tw(€) | € € E} and ¥(E) = {¥(¢) | ¢ € E}.

2.5. DEFINITION. A smooth subvariety X of Gr,(u) is said to be an orbit (or the
integral manifold) of the flows of ¥(Z) if the tangent space TwX of X at W is equal
to U w(Z) as a subspace of the whole tangent space Tw Gr,(u) for every point W € X.

2.6. REMARK: There is a far larger algebra than the loop algebra, the algebra gl(n, E)
of pseudodifferential operators with matrix coefficients, acting on V. We will come back
to this point in Section 6.



Let us choose & monic element

(2.7) y=2z"+ Z cmz ™™ € L

m=1

of order —r and consider the following n X n matrix
0 0 vy
( 10 0 \
1
(2.8) ha(y) =

0
1 0
\ 1 0/

satisfying that h,(y)" = y- I, where I, is the identity matrix of size n. We denote by
H()(y) the algebra generated by ha(y) over k((y)), which is a maximal commutative

subalgebra of the formal loop algebra gl(n,k((y))). Obviously, we have a natural
k((y))-algebra isomorphism

Hewy(y) = k(v)[z)/(z" = v) = k(')

where z is an indeterminant.

2.9. DEFINITION. For every integral vector n = (n;,na,- -+ ,ng) of positive integers n;
such that n = ny + ny + -+« + ny and a monic element y € L of order —r, we define a
maximal commutative k((y))-subalgebra of gi(n, k((y)) by

[4 £
Hn(y) = @H(n;)(y) = @ k((yl/nj)) ’

where each H(y;)(y) is embedded by the disjoint principal diagonal blocks:

H(nl)(y)
H(ﬂz)(y)

H(ru)(y)

The algebra H,(y) is called the mazimal commutative algebra of type n associated with
the variable y.

As a module over the field k((y)), the algebra H,(y) has dimension n.

2.10. REMARK: The lifting of the algebra H,(y) to the central extension of the formal
loop algebra gl(n, k((y))) is the Heisenberg algebra associated with the conjugacy class
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of the Weyl group of gl(n, k) determined by the integral vector n ([FLM], [Ka], [PS]).
The word Heisenberg in the following definition has its origin in this context.

2.11. DEFINITION. The set of commutative vector fields ¥(H,(y)) defined on Gr,(u)
is called the Heisenberg flows of type m = (ny,ng, -+ ,n,) and rank r associated with
the algebra H,(y) and the coordinate y of (2.7). Let Hn(y)o denote the subalgebra
of Hy(y) consisting of the traceless elements. The system of vector fields ¥ (Ha(y)o)
is called the traceless Heisenberg flows. The set of commuting vector fields \IJ(k((y)))
on Gry(p) is called the r-reduced KP system (or the r-reduction of the KP system)
associated with the coordinate y. The usual KP system is defined to be the 1-reduced
KP system with the choice of y = z. The Heisenberg flows associated with H ... 1)(z)
of type (1,---,1) is called the n-component KP system.

2.12. REMARK: As we shall see in Section 4, the H,(y)-action on V is equivalent to the
component-wise multiplication of (4.1) to (4.4). From this point of view, the Heisenberg
flows of type n and rank r are contained in the ¢-component KP system. What is
important in our presentation as the Heisenberg flows is the new algebro-geometric
interpretation of the orbits of these systems defined on the (quotient) Grassmannian
which can be seen only through the right choice of the coordinates.

2.13. REMARK: The traceless Heisenberg flows of type n = (2) and rank one are
known to be equivalent to the BKP system. As we shall see later in this paper, these
flows produce the Prym variety associated with a double sheeted covering of algebraic
curves with at least one ramification point. This explains why the BKP system is
related only with these very special Prym varieties.

The flows defined above are too large from the geometric point of view. The action of
the negative order elements of gl(n, L) should be considered trivial in order to give a
direct connection between the orbits of these flows and the Jacobian varieties. Thus it
is more convenient to define these flows on certain quotient spaces. So let

(2.14) Ha(y)™ = Haly) Ngl(n, k[[y]}y)

and define an abelian group

(2.15) Ta(y) = exp(Hn(y)_) =I,+ Ha(y)™ .

This group is isomorphic to an affine space, and acts on the Grassmannian without
fixed points. This can be verified as follows. Suppose we have g - W = W for some
g=1I,+h €Th(y) and W € Gry(u). Then h-W C W. Since h is a nonnilpotent
element of negative order, by iterating the action of h on W, we get a contradiction to
the Fredholm condition of Y.

2.16. DEFINITION. The quotient Grassmannian of type n, index p and rank r associ-
ated with the algebra Hy(y) is the quotient space

Zn(ﬂ',y) = Grn(#)/rn(y) .

11



We denote by Qn y : Gra(ps) — Zn(p,y) the canonical projection.

Since T'n(y) is an affine space acting on the Grassmannian without fixed points, the
affine principal fiber bundle @y, , : Grn(p) — Zn(y,y) is trivial. If the Grassmannian
is modeled on a complex Hilbert space, then one can introduce a Kahler structure on
it, which gives rise to a canonical connection on the principal bundle @, ,. In that
case, there is a standard way of defining vector fields on the quotient Grassmannian by
using the connection. In our case, however, since the Grassmannian Gr,(u) is modeled
over k((z)), we cannot use these technique of infinite-dimensional complex geometry.
Because of this reason, instead of defining vector fields on the quotient Grassmannian,
we give directly a definition of orbits on Z,(u,y) in the following manner.

2.17. DEFINITION. A subvariety X of the quotient Grassmannian Z,(u,y) is said to
be an orbit of the Heisenberg flows associated with Hn(y) if the pull-back Q7L (X) is
an orbit of the Heisenberg flows on the Grassmannian Gr,(u).

Here, we note that because of the commutativity of the algebra H,(y) and the group
I'n(y), the Heisenberg flows on the Grassmannian “descend” to the quotient Grassman-
nian. Thus for the flows generated by subalgebras of H,(y), we can safely talk about
the induced flows on the quotient Grassmannian.

2.18. DEFINITION. An orbit X of the vector fields ¥(Z) on the Grassmannian Gr,(u)
is said to be of finite type if X = Qn y(X) is a finite-dimensional subvariety of the
quotient Grassmannian Zn(,y).

In Section 5, we study algebraic geometry of finite type orbits of the Heisenberg flows
and establish a characterization of Prym varieties in terms of these flows. The actual
system of nonlinear partial differential equations corresponding to these vector fields
are derived in Section 6, where the unique solvability of the initial value problem of
these nonlinear equations is shown by using a theorem of [M2].

3. The Krichever functor for covering morphisms of algebraic curves.

The original Krichever correspondence of [Kr] is a construction of an exact solution
of the entire KP system out of a set of algebro-geometric data consisting of curves and
line bundles on them. This correspondence was formulated as a map of the set of these
geometric data into the Grassmannian by Segal and Wilson [SW]. Its generalization
to the geometric data containing arbitrary vector bundles on curves was discovered in
[M3]. In order to deal with arbitrary covering morphisms of algebraic curves, we have
to enlarge the framework of the Krichever functor of [M3].

3.1. DEFINITION. A set of geometric data of a covering morphism of algebraic curves
of type n, index p and rank r is the collection

(f: (Cn,AaHa}?a@) — (Coip)ﬂ-?f*f! ¢)>
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of the following objects:

(1) n = (ny1,n2, - ,ng) is an integral vector of positive integers nj such that n =
ny+ng+---+ng

(2) Ch is a reduced algebraic curve defined over k, and A = {p1,p2,-+ ,pe} is a set
of £ smooth rational points of Cy,.

(3) II = (w1, -+ ,m¢) consists of a cyclic covering morphismj : Upj — Uj of degree
r which maps the formal completion U,; of the affine line A} along the origin
onto the formal completion U; of the curve C, along p;.

(4) F is a torsion free sheaf of rank r defined over Cy, satisfying that

p = dimg H°(Cy,, F) — dim H'(Cy, F) .
(5) @ = (¢1,"--,¢¢) consists of an Oy,-module isomorphism
85+ Fu; = 754 (0u,;(-1)) ,

where Fy; is the formal completion of F along p;. We identify ¢; and c; - ¢; for
every nonzero constant ¢; € k*.

(6) Cp is an integral curve with a marked smooth rational point p.

(7) f:Cn — C, is a finite morphism of degree n of Cp, onto Cy such that f~1(p) =
{p1,--- ,pe} with ramification index n; at each point p;.

(8) 7 : Uy — U, is a cyclic covering morphism of degree r which maps the formal
completion U, of the affine line A}, at the origin onto the formal completion U,
of the curve Cy along p.

(9) m; : Upj — Uj; and the formal completion f; : U; — U, of the morphism f at
p; satisfy the commutativity of the diagram

i
Uoj — U

¥ 1 lf;

Uo — Up,

where ¥; : Uy; — U, is a cyclic covering of degree n;.
(10) ¢ : (fuF)uy, — w,(®§=l 5. (Ou,; (—1))) is an (f.Ocn)Up-moduIe isomor-

phism of the sheaves on the formal scheme U, which is compatible with the
datum ® upstairs.

Here we note that we have an isomorphism ;. (Oy,;(—1)) = Oy, (-1)®" as an Oy, -
module.

Recall that the original Krichever functor is really a cohomology functor. In order
to see what kind of algebraic data come up from our geometric data, let us apply
the cohomology functor to them. We choose a coordinate z on the formal scheme U,

and fix it once for all. Then we have U, = Spec(k[[z]]). Since ¢; : U,; — U, is a

13



cyclic covering of degree nj, we can identify U,; = Spec(k[[2!/"]]) so that y; is given
by z = (/™)™ = z;-"', where z; = z}/% is a coordinate of U,;. The morphism =

determines a coordinate -
y=2z"+ Z emz™t™
m=1

on U,. We also choose a coordinate y; = y'/™ of U; in which the morphism f; can

be written as ¥y = ‘yl/ J " = y-j . Out of the geometric data, we can assi a vector
J g gn
subspa.ce W of V by

W = ¢(H®(Co \ {p}, £ F))
- HO(U \{P},’ﬁ@"ﬂbp OU,,( 1)))

j=1

. (3_2) =H° (Uo \ {O},@l,bj. (OU”. (—1)))

I 4
= H°(U, \ {0}, GB Oy, (—1)®™)

= H°(U, \ {0},00,(~1)®") = k((2))®" =V .
Here, we have used the convention of [M3] that

HO(CU \ {p},OCo) = li_I’nHO(CUaOCo(m P))
HO(U, \ {0}, 00,) = lim B (Us, Ou, (m)) = k(2)) ,

etc. The coordinate ring of the curve Cy determines a scalar diagonal stabilizer algebra
Ao = m* (HO(CD \ {p}s OCo))

C 7 (H(Up \ {p}, Ou,))

C H°(U, \ {0},0u,)

=L Cgl(n,L)

satisfying that Ao - W C W, where L is identified with the set of scalar matrices in

gl(n, L). The rank of W over Ay is r - n, which is equal to the rank of f,F. Note that
we have also an inclusion

Ao = H(Co\ {p}, Oc,) C H(U, \ {p}, Ou,) = k((¥))

by the coordinate y. As in [M3, Section 2 and 3|, we can use the formal patching
Co = (Co \ {r}) UU, to compute the cohomology group

H°(Up \ {p},0v,)
H®(Co \ {p},Oc,) + H°(U,,Oy,)

. kW)
Ao + k[[y]]

(3.3)

HY(Cy,0¢,) =

(3.4)

14



Thus the cokernel of the projection Y4, : Ao — k({y))/k[[y]] has finite dimension.
The function ring

4
An = H(Ca \ A,0c,) c @ H*(U; \ {p;},Ov;)

i=1

also acts on V and satisfies that A, - W C W, because we have a natural injective
isomorphism

An = Ho(Cn \ A!‘OCn) & HO(CO \ {P},ftOCn)
c H(Up \ {p},(£:0c,)v,)

¢
=H*(U, , i+ Ou;
(3.5) ( P \ {P} @f] U )

¢
= @ k() [Pn; (y)]

= Hn(y) C gl(n:k((y))) )

where h,,(y) is the block matrix of (2.8) and Hn(y) is the maximal commutative
subalgebra of gl(n,k((y))) of type n. In order to see the action of A, on W more
explicitly, we first note that the above isomorphism is given by the identification y'/" =
hn;(y). Since the formal completion Fy;, of the vector bundle F at the point p; is a
free Oy,-module of rank r, let us take a basis {e, e, ,e,} for the free H*(U;, Ovu; )-
module HO(UJ-,J-'U,. )- The direct image sheaf f;.Fy, is a free Oy,-module of rank n;-r,
so we can take a basis of sections ,

a/n;
(3.6) {y @ eﬁ}ogc:(n; 1<8<r
for the free H*(U,, Oy, )-module H(U,,, f;. Fy; ). Since H*(U;, Fy,) = H*(U,, fiuFu;),
H°(U;,0vy;) = H°(U,, fj«Ouy;) acts on the basis (3.6) by the matrix hn;(y) ® I, where
I, is the identity matrix acting on {e1, €2, - ,e,}. This can be understood by observing

that the action of y'/" on the vector
n-1
(CO) Clyrtty cn—l) = Z Cuya/"
oa=0

is given by the action of the block matrix h,(y).

3.7. REMARK: From the above argument, it is clear that the role which our = and ¢
play is exactly the same as that of the parabolic structure of[Mum2]. The advantage of
using 7 and ¢ rather than the parabolic structure lies in their functoriality. Indeed, the
parabolic structure does not transform functorially under morphisms of curves, while
our data naturally do (see 3.14).
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The algebra H,(y) has two different presentations in terms of geometry. We have
used

4
Ha(y) = H (U, \ {p},(£.0c.)u,) = @D K(®)) [hn; ()] < g1(n, k(%))

in (3.5). In this presentation, an element of H,(y) is an n X n matrix acting on
V = H°(U, \ {p},(f+F)u,). The other geometric interpretation is

¢ ¢ ¢
Ha(y) 2 H° (U, \ {p}, P £;» Ov;) = P H°(U; \ {p;}, Ov;) = D k(%)) -
i=1 j=1 j=1
In this presentation, the algebra Hy(y) acts on
t
V=H° (Up \ {p}, ™. @ Vs (Ouoj(_l)))
j=1

o

P~

H°(Uo;j \ {0}, Ov,;(-1))

1

k((z;))

7

-

3

by the component-wise multiplication of y; to z;. We will come back to this point in
(4.4).

The pull-back through the morphism f gives an embedding Ay C A,. As an Ap-
module, 4, is torsion free of rank n, because Cj is integral and the morphism f is of
degree n. Using the formal patching C;, = (C, \ A)UU; U--- U Uy, we can compute
the cohomology

@;:1 HO(UJ \ {pj}7 OU;)

H'(Ca,Oc,) & — LAl
H (CR\A:OCu)"'@j:lH (Uj3OUj)

(3.8) R L (D)
An + @iy Ky )]
o Ha(y)

"~ An+ Ho(y) Ngl(n, k[ly]])

This shows that the projection

Hy(y)
Ha(y) N gl(n, k[[y]])

has a finite-dimensional cokernel. These discussions motivate the following definition:

7A, :An —
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3.9. DEFINITION. A triple (Ap, An, W) is said to be a set of algebraic data of type n,
index u, and rank r if the following conditions are satisfied:

(1) W is a point of the Grassmannian Gr,(u) of index p of the vector valued func-
tions of size n.

(2) The type n is an integral vector (ny,--- ,ng) consisting of positive integers such
that n =n; +--- 4 ny.

(3) There is a monic element y € L = k((z)) of order —r such that Ag is a subalgebra
of k((y)) containing the field k.

(4) The cokernel of the projection ¥ 4, : Ao — k((v))/*{[y]] has finite dimension.

(5) An is a subalgebra of the maximal commutative algebra Ha(y) C gl(n, k((y)))
of type n such that the projection

An —_ Hn(y)

YA Ha(y) 0 gl(n, K[[y]])

has a finite-dimensional cokernel.

(6) There is an embedding Ay C A, as the scalar diagonal matrices, and as an
Ag-module (which is automatically torsion free), A, has rank n over Ag.

(7) The algebra A, C gl(n,k((y))) stabilizes W C V, ie. An-W CW.

The homomorphisms ¥ 4, and ¥4, satisfy the Fredholm condition because (7) implies
that they have finite-dimensional kernels. Now we can state

3.10. PROPOSITION. For every set of geometric data of (3.1), there is a unique set of
algebraic data of (3.9) having the same type, index and rank.

PROOF: We have already constructed the triple (Aq, An, W) out of the geometric data
in (3.2), (3.3) and (8.5) which satisfies all the conditions in (3.9) but (1). The only
remaining thing we have to show is that the vector subspace W of (3.2) is indeed a
point of the Grassmannian Gr,(z). To this end, we need to compute the cohomology
of f.F by using the formal patching Cy = Spec(Aq) U U, (for more detail, see [M3}).
Noting the identification

4
@D i (Ov.;(-1)) = Oy, (-1)®"
j=1

as in (3.2), we can show that

H(Co, f.F) = H*(Co \ {p}, £ F) N H*(Uy, £ Fu,)
> W N H® (Up, 7(Ou, (-1)%™))
(3.11) =WnH(U,,Ou,(-1)°")
=Wn (k[[z]]z)ean
= Ker(Yw),
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and

1 N H°(U, \ {p}, f+F)
H (Co, . F) = HO(CO\{p},ft}-)+H0(UP!f“}-UP)

~ H(Up \ {p}, 7 (Oy,(-1)®™))
- W+ HO(Up, m(Oy,(-1)®7))
(3.12) . H*(Uo \ {0}, 00,(-1)®")
~ W+ H(U,,0y,(-1)®")
~ _ K%
W+ (k[[2]})®"
= Coker(Yw) ,

where Yw is the canonical projection of (2.2). Since f is a finite morphism, we have

H(Co, fuF) = HY(Cn, F). Thus
(3.13) B = dimk HO(Cn, f) - dimk HI(C,,, .7:) = dimk Ker(’Yw) - dimk Coker(‘)’w) y
which shows that W is indeed a point of Gr, (). This completes the proof.

This proposition gives a generalization of the Krichever map to the case of covering
morphisms of algebraic curves. We can make the above map further into a functor,
which we shall call the Krichever functor for covering morphisms. The categories we
use are the following:

3.14. DEFINITION. The category C(n) of geometric data of a fixed type n consists of
the set of geometric data of type n and arbitrary index p and rank r as its object. A
morphism between two objects

<f: (Cn,A,H,f,‘b) — (Co,p,‘rr,f.f,¢))
of type n, index yu and rank r and
(f': (Ch, A\ IU, F',8") — (Co, 0, 7', fuF', ¢'))

of the same type n, index y' and rank r' is a triple (e, §, A} of morphisms satisfying
the following conditions:

(1) a: Cy — Cy is a locally cyclic covering of degree s of the base curves such that
a*(p) = s-p', and 7 and ©' are related by # = @ o n' with the morphism & of
formal schemes induced by a.

(2) B: CL — Cy, is a covering morphism of degree s such that A' = 8~1(A), and
the following diagram

B

C’ ——— Cn

n
|#
'

| i
Co —— Co

18



cominutes. N
(3) The morphism B; : U} — U; of formal schemes induced by 3 at each p;- satisfies

;= ﬁj o m; and the commutativity of

(4) A : BuF' — F is an injective O¢,-module homomorphism such that its com-
pletion A; at each point p; satisfies commutativity of

Aj

(ﬂ*f')Uj - Fu

F,-(qs;-)la rlw

Ej-r}.ou.,-(“l) mjxOu,; (—1).

In particular, each Aj is an isomorphism.

3.15. REMARK: From (3) above, we have r = s - r'. The condition (4) above implies
that F/B.F' is a torsion sheaf on Cy, whose support does not intersect with A.

One can show by using (1.6) that there are many nontrivial morphisms among the sets
of geometric data with different ranks.

3.16. DEFINITION. The category S(n) of algebraic data of type n has the stabi-
lizer triples (Ao, An, W) of (3.9) of type n and arbitrary index pu and rank r as its
objects. Note that for every object (Ap, An, W), we have the commutative algebras
k((y)) and H,(y) associated with it. A morphism between two objects (Ap, An, W)
and (A, AL, W') is a triple (1, €,w) of injective homomorphisms satisfying the follow-
ing conditions:

(1) ¢ : Ap — Ay is an inclusion compatible with the inclusion k({(y)) C k({y'}))

defined by a power series

ts+41 a2 + e

y=yy")=y" +a1y"t +asy

(2) € : Ay, — A}, is an injective homomorphism satisfying the commutativity of
the diagram

A, — A

! !

Hn(y) T’ Hn(y'):
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where the vertical arrows are the inclusion maps, and

L ? ‘
£: Hn(y) = @ k((yl/uj )) N @k((yl'llﬂj )) o Hn(yl)

j=1 j=1

is an injective homomorphism defined by the Puiseux expansion

of (1) for every n;. Note that neither € nor £ is an inclusion map of subalgebras

ylln,- —_ y(yt)l/n,' — yla/n,— + blyf(a-}-l)/n,- + b2yl(a+2)/n,- N

of gl(n,L).

(3) w: W' — W is an injective Ap-module homomorphism. We note that W' has
a natural A,-module structure by the homomorphism e. As in (2), w is not an

inclusion map of the vector subspaces of V.

3.17. THEOREM. There is a fully-faithful functor

between the category of geometric data and the category of algebraic data. An object
of C(n) of index p and rank r corresponds to an object of S(n) of the same index and

rank.

PROOF: The association of (Ag, An, W) to the geometric data has been done in (3.2),
(3.3), (3.5) and (3.10). Let (a,B,A) be a morphism between two sets of geometric
data as in (3.14). We use the notations U = U; \ {p;} and U; = U, \ {p}. The

kn : C(n) = §(n)

homomorphism ¢ is defined by the commutative diagram

Similarly,

Ay —— HCo\{p},0c,) —— H(U3,0u,)

TR -]

Ay —— HYCy\{p'},0c;) —— H'(U'S, 00 ).

An — H(Ca\A,0c,) — @5:1 HO(U;’OU:')

| 7 o |

A, —— HY(CL\ A, 0c;) —— @i, H'U'},0u;)
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defines the homomorphism e. Finally,

w! —_— w! —_— w

H(Co\ {p'}, 1. F") —— H(Co\{p}, fuBuF') —— H*(Co\ {p}, f.F)

ik f‘ll f‘l*
4

HY(C\A,F) —2= HYCa\ABF) —— H(Ca\AF)

! ! !

. ®Bje . 5 ®A; \
®jH°(U'J-, I'J;) -_— @,‘Ho(Ujaﬂj* l')’,!) —— @jHo(Ujan,')

~

determines the homomorphism w.
In order to establish that the two categories are equivalent, we need the inverse
construction. The next section is entirely devoted to the proof of this claim.

The following proposition and its corollary about the geometric data of rank one are
crucial when we study geometry of orbits of the Heisenberg flows in Section 5.

3.18. PROPOSITION. Suppose we have two sets of geometric data of rank one having
exactly the same constituents except for the sheaf isomorphisms (®, ¢) for one and
(®',¢') for the other. Let (Ag, An, W) and (Ag, An, W') be the corresponding algebraic
data, where Ay and A,, are common in both of the triples because of the assumption.
Then there is an element g € I'y(y) of (2.15) such that W/ =g - W.

ProOOF: Recall that
4
é: (ftf)U,, — Tu (@ "/’jt (OUoj(_l)))
j=1

is an ( f.Oc, ) U, -module isomorphism. Thus,

g=¢'0¢ :m, (@%bj.(ou.j(—l))) — (é}%‘- (Ov,j(—l))).

j=1

is also an ( f*OCn)U -module isomorphism. Note that we have identified ( fe OCn)U
P P
as a subalgebra of Hy,(y) in (3.5). Indeed, this subalgebra is Hn(y) N gl(n, k[[y]}).

Therefore, the invertible n x n matrix
g € k*®" + gl(n, K{[ylly) = k*®" + gl(n, k[[2]]2)
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commutes with Hn(y)Ngl(n, k[[y]]), where k* denotes the set of nonzero constants and
k*®" the set of invertible constant diagonal matrices. We recall that k[[z]] = k[[y]],
because y has order —1. The commutativity of g and Ha(y) N gl(n, k[[y]]) immediately
implies that g commutes with all of H,(y). But since H,(y) is a mazimal commutative
subalgebra of gl(n, k((y))), it implies that g € 'n(y). Here we note that ¢} o ¢; 71 is
exactly the j-th block of size n; x n; of the n x n matrix ¢, and that we can normalize
the leading term of ¢’ o ¢;™! to be equal to I,; by the definition (5) of (3.1). Thus
the leading term of g can be normalized to I,. From the construction of (3.2), we have
W' = g - W. This completes the proof.

3.19. COROLLARY. The Krichever functor induces a bijective correspondence between
the collection of geometric data

(f:(Ca,AILF) — (Co,pym, f.F))

of type n, index p, and rank one, and the triple of algebraic data (Ag, An, W) of type
n, index p, and rank one satisfying the same conditions of (3.9) except that W is a
point of the quotient Grassmannian Z,(p,y).

Proor: Note that the datum & is indeed t'he block decomposition of the datum of
¢. Thus taking the quotient space of the Grassmannian by the group action of I, (y)

exactly corresponds to eliminating the data & and ¢ from the set of geometric data of
(3.1).

4. The inverse construction.

Let W € Gr,(u) be a point of the Grassmannian and consider a commutative sub-
algebra A of gl(n,L) such that A-W C W. Since the set of vector fields ¥(A) has
W as a fixed point, we call such an algebra a commutative stabilizer algebra of W.
In the previous work [M 3], the algebro-geometric structures of arbitrary commutative
stabilizers were determined for the case of the Grassmannian Grq(u) of scalar valued
functions. In the context of the current paper, the Grassmannian is enlarged, and
consequently there are far larger varieties of commutative stabilizers. However, it is
not the purpose of this paper to give the complete geometric classification of arbitrary
stabilizers. We restrict ourselves to studying large stabilizers in connection with Prym
varieties, which will be the central theme of the next section. A stabilizer is said to
be large if it corresponds to a finite-dimensional orbit of the Heisenberg flows on the
quotient Grassmannian. The goal of this section is to recover the geometric data out
of a point of the Grassmannian together with a large stabilizer.

Choose an integral vector n = (ny,ng, -+ ,ny) with n = ny +.-. + n, and a monic
element y of order —r as in (2.7), and consider the formal loop algebra gl(n, k((y)))
acting on the vector space V = L®". Let us denote y; = hn,(y) = y*/". We introduce
a new filtration

e Hn(y)(""“") C Hn(y)("“) C Hn(y)(rm-}-r) C..
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in the maximal commutative algebra

L

L ]
(4.1) Hy(y) = @ B(w)[y'/™] = EB k(™)) = D k()

=1

by defining

(4.2) Hn(y)(rm) = {(01(91)3 o }a((yl)) ‘ max [ordlh (al)r' T aordy;(at)] < m} y

where ordy; (a;) is the order of a;(y;) € k((y;)) with respect to the variable y;. Ac-
cordingly, we can introduce a filtration in V' which is compatible with the action of
Hu(y) on V. In order to define the new filtration in V geometrically, let us start
with U, = Spec(k[[z]]) and U, = Spec(k[[y]]). The inclusion k([y]] C k[[z]] given by
y = y(z) = 2" + ;2™ + ¢pz"t? +... defines a morphism 7 : U, — U,. Let
U; = Spec(k[[y;]]). The identification y; = y'/" gives a cyclic covering f; : U; — U,
of degree n;. Correspondingly, the covering v, : U,j ~— U, of degree n; of (9) of (3.1)
is given by k[[z]] C k[[z}/™]]. Thus we have a commutative diagram

El[2"/™]] e K{[y/"]]

¥ T Tf,-‘

k)l e—— Kyl

of inclusions, where 7} is defined by the Puiseux expansion

(43) Y; = .yl/nj — y(z)lfnj = zr/n,- + alz(r-l-l)/n,' + azz(r+2)/n,- NI

of y(z). Recall that in order to distinguish from U, = Spec(k[[2]]), we have introduced

the notation U,; = Spec(k{[!/™]]) for the cyclic covering of U,. The above diagram
corresponds to the geometric diagram of covering morphisms

i
Uoj — Uj

o s

Uo — UP .

We denote U = U, \ {0}, Uy; = Usj\ {0}, U; = U\ {p}, and U} = U;\ {p;} as before.
The k((y))-algebra Hy(y) is identified with the H°(U;, Oy, )-algebra

Ha(y) = H( U*GBf,.OU (;'BH“( ,0u;) -
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Corresponding to this identification, the vector space V = L®" as a module over
L = H®(U*,Oy,) is identified with

I r] ¢
(44) V=H° (U:,EB'/)J‘- (OU.,-(-l))) = @H“(U;j,ouu.(—l)) = P k(1))

i=1 1=1

The H,(y)-module structure of V is given by the pull-back @}_, 7}, which is nothing

but the component-wise multiplication of k((y!/")) to k((2!/")) through (4.3) for each
j. Define a new variable by z; = 2!/ . We note from (4.3) that y; = y;(2"/™ ) = y;(z;)
is of order —r with respect to z;. Now we can introduce a new filtration

ooV cym cytmid L

in V by defining
(4.5)

t
vim = {(01(21),“' ,vl(Zt)) € @k((zj)) 1 max [Ofdzl(vl)a"‘ aOsze(”l)] < m} '

where ord;; (v;) denotes the order of v; = v;(z;) with respect to z;.

4.6. REMARK: The filtration (4.5) is different from (2.1) in general. However, we
always have V(%) = FO(V) and V(=1 = F(=1}(V). This is one of the reasons why we
have chosen F(~1)(V) instead of an arbitrary F(*)(V) in the definition of the Grass-
mannian in (2.2).

It is clear from (4.2) and (4.5) that H,(y)("™) . V(™) ¢ y{(rmi+m3a) and hence V is
a filtered H,(y)-module. With these preparation, we can state the inverse construction
theorem.

4.7. THEOREM. A triple (Aq,An, W) of algebraic data of (3.9) determines a unique
set of geometric data

(f: (_Cn;A,H)f7¢) — (Co’p’ﬂ’f*f’ ¢)) ’

PROOF: The proof is divided into four parts.

(I) Construction of the curve Cy and the point p: Let us define A((,"n) = Ao Nk([y]ly™™,
which consists of elements of Ag of order at most m with respect to the variable y.
This gives a filtration of Ay:

"'CA{()rm—r) CAgrm) cAgrm+r) c---

Using the finite-dimensionality of the cokernel (4) of (3.9), we can show that A has
an element of order m (with respect to y) for every large integer m € N, i.e.

(4.8) dimg Af,rm)/A((,rm—r) =1 forall m>>0.
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Since Ag - W C W, the Fredholm condition of W implies that 4™ = 0 for all m < 0.
Note that Ag is a subalgebra of a field, and thus it is an integral domain. Therefore,
the complete algebraic curve Cy = Proj(grAg) defined by the graded algebra

oC
grdo = P 4™

m=0

is integral. We claim that Cy is a one-point completion of the affine curve Spec(Ay).
In order to prove the claim, let w denote the homogeneous element of degree one

given by the image of the element 1 € A((,o) under the inclusion Af,") - Af,' . Then
the homogeneous localization (grAg)((w)) is isomorphic to Ag. Thus the principal open
subset D+ (w) defined by the element w is isomorphic to the affine curve Spec(Ay). The
complement of Spec(A4,) in Cy is the closed subset defined by (w), which is nothing
but the projective scheme

o0
Proj (@ Ay™ /Ag"“"’)

m=0

given by the associated graded algebra of grAy. Take a monic element a, € Af,"") \
A((]""_r) for every m >> 0, whose existence is assured by (4.8). Since a; - a; = a;y;
mod Af,"'"r’ _r), the map

o0
C: @D AT /AT k],

m=0

which assigns z™ to each a,, for m >> 0 and 0 otherwise, is a well-defined homomor-
phism of graded rings, where z is an indeterminant. In fact, ¢ is an isomorphism in
large degrees, and hence we have

Proj (@ Alrm /Ag'"‘"’) = Proj(klz]) = p.

m=0

This proves the claim.

Next we want to show that the added point p is a smooth rational point of Cy. To
this end, it is sufficient to show that the formal completion of the structure sheaf of
C, along p is isomorphic to a formal power series ring. Let us consider (grA4,)/(w™).

The degree m homogeneous piece of this ring is given by AS™ /(w"A{™ ™), which
is isomorphicto k- @y @ k- @Gnow @ - @ k- ap—nsrw™ ! for all m > n >> 0. From

this we conclude that
gr(4o)/(w™) = klz, w]/(w")

in large degrees for n >> 0. Therefore, taking the homogeneous localization at the
ideal (w), we have
(97(A0)/ (™)) (uyy = Flw/al/((w/)")
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for n >> 0. Letting n — oo and taking the inverse limit of this inverse system, we see
that the formal completion of the structure sheaf of Cy along p is indeed isomorphic to
the formal power series ring k[[w/z]]. We can also present an affine local neighborhood
of the point p. Let @ = a(y) € Aq be a monic, nonconstant element with the lowerest
order. It is unique up to the addition of a constant: a(y) — a(y) + ¢. This element
defines a principal open subset D*(a) corresponding to the ring

(grho)a) = grdo[a™'],
(4.9) = {a”*b| b€ A, { >0, ord,(b) — i - ord,(a) < 0}
C F[[v]] -

Since the formal completion of Cj along p coincides with that of Dt (a) at p, and since
the structure sheaf of the latter is k{{y]] by (4.9), we have obtained that k[[w/z]] = k{[y]].
Thus y is indeed a formal parameter of the curve Cy at p.

(II) Construction of C, and A: Since A, C Hy(y), it has a filtration AU™ = A, n

Han(y)™ induced by (4.2). The Fredholm condition of W again implies that A"™ =0
for all m < 0. So let us define C,, = Proj(grA, ), where

o0

grin, = @ Alrm)

m=0

This is a complete algebraic curve and has an affine part Spec(A,). The complement
Ch \ Spec(A4,) is given by the projective scheme

o0
Proj (@ Aslrm)/AS‘rm—r)) .

m=0

The finite-dimensionality (5) of (3.9) implies that for every ¢-tuple (vq,- -+ ,v¢) of pos-
itive integers satisfying that v; >> 0, the stabilizer algebra A, has an element of the
form

t
(a1(1), -+, ae(ye)) € An C @k((yj))

i=1

such that the order of a;j(y;) with respect to y; is equal to v; forall j = 1,--- ,£. Thus
for all sufficiently large integer m € N, we have an isomorphism

Agrm)/AS‘rm—r) o k@l .

Actually, by choosing a basis of AT™ / AY™ ") for each m >> 0, we can prove in the
similar way as in the scalar case that the associated graded algebra @._, AT™ Am=)
is isomorphic to the g