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Nils-Peter Skoruppa

1. Introduction and Discussion. Fix a positive integer m and denote by S, ,, and

S5 m the space of holomorphic and skew-holomorphic Jacobi cusp forms of weight 2 and

index m respectively. By definition these are the spaces of smooth functions ¢(7,z) in

two variables 7,2 € C, Im7 > 0, which are periodic in 7 and z respectively with period

1, which satisfy ¢(=L 5)e'2”""‘é = 72¢(7,2) if ¢ is a holomorphic Jacobi form, and
2

roT

¢(—_;1-,;”_- e 2mmi = F|r|$(T,2) if ¢ is skew-holomorphic, and the Fourier expansions of

which have the form

21'r£("—}r_"—a-u+%ﬂiv+rz)
$(r,z)= D Ce(Ar)e

A, reZ
a=r2 modam

(T =u+1v)

where the coefficients C4(A, r) depend on r only modulo 2m and vanish for A > 0if ¢ is
a holomorphic Jacobi form, and for A < 0 if ¢ is skew-holomorphic.

Furthermore, we consider integral quadratic polynomials [a,b,c](z) = az® + bz + c.
The group SLy(Z) acts on these by [a,b,c]o (f; ’g) (z) = [a, b,¢] (%@) (yz + 6)2. For a
pair of integers A,r with A = 72 mod4m define

L(A,7):={ [ma,b,] |a,b,c € Z, b* —4dmac= A, b=rmod2m }.

This set is invariant under T'y(m) = (mzz %) N SL,(Z). For a fundamental discriminant
Ay which is a square modulo 4m we denote by x, : {[ma,bd,c]|a,b,c € Z} — {0,%1} the

generalized genus character introduced in [G-K-Z], i.e.

(Ao) if Ay divides 4% — 4mac such that (b — 4mac)/A,
Xa, ([ma,b,¢]) = n

0 otherwise.

is a square modulo 4m and ged(a,b,¢,Ag) =1

Here n is any integer relative prime to A and represented by one of the quadratic forms

myaz? +bzy+maecy? with m = mymg, my,me > 0. (If ged(a, b, ¢, Ag) = 1 such n,my, m,
2

exist, and if -(-t—'-——_‘-g—:-‘-ﬂ is a square modulo 4m the value ( %9-) is independent of the special
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choices of n or my,my, cf. [G-K-Z], Proposition 1.) Moreover, x,, is Fo(m)-invariant.

Finally, for any integral [a,b, ] and any integer N # 0 set

sign(a) if ac < 0
sign([a, b, ]) = { ()

0 otherwise,
and 1
( a .
_(ﬁ_ﬁ) fe=0,0<a< N
eN([a,b,C])=ﬁ +(%_%) fa=0,0<c< N
0 otherwise.

Note that for each discriminant A there are only finitely many integral polynomials [a, b, ¢]
with * — 4ac = A such that sign([a, b,¢]) or en([a,b,c]) is different from 0. Moreover,
sign([a, b,¢c]) # 0 implies b2 — dac > 0, and en{[a,b,c]) # 0 implies that b> —4dacis a
perfect square.

The aim of this paper is to state (and to prove) the following theorem.

Theorem. For A € SLy(Z) and integers Ag,ro with Ag a fundamental discriminant,
Ag = r mod4m, define

2 2
2«:‘(5;‘—“u+%ﬂﬂiv+n)
buvora(T2) = D Caspnn(Br)e "
a,re2
A=r? mod4m

where
Covord BT = S X0 (@) [sign(Q 0o A)+e, ., (Qo A)] _
QEL(AAg,rr)
Then ¢, ,,..(7,z) defines a holomorphic Jacobi form in Sz,, if Ay < 0, and a skew-

holomorphic Jacobi form in S3 ,, if Ag > 0. Moreover, any Jacobi form from S3 s or S3 ,,

is obtained as a linear combination of the functions ¢, , . (7,2).

Note that the sum defining C, , . (A,r) is actually finite since the expressions sign(Qo A)
and Emlel(Q o A) vanish for almost all @ with given discriminant AA, and that the term
Emjag (& © A) always equals 0 unless AAy is a perfect square. Note also that ¢, , _ (7,2)
for fixed Ag,ro depends only on the coset of A in I'gy(m)\SL2(Z), as is easily deduced
from the I'g(m)-invariance of x, and L{AAg,rr).

There are various intimate connections between Jacobi forms and elliptic modular

forms so that, via these connections, the stated theorem can also be read as a theorem
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about elliptic modular forms. The deepest of such connections is given by the fact that
the Fourier coefficients of an elliptic modular form, say a cusp form on I'o(m) of weight
two, and the values at the critical point of the twists of its L-series, or more generally its
periods, are given by the Fourier coefficients of a certain Jacobi form from Sz m or S3 .,
which is naturally attached to it.

To state it more precisely, there is, for each pair of integers Ag, 7q with rj = Ag mod 4m
and Ag being a fundamental discriminant, a lifting map Sa,,r, which associates to a Jacobi
form ¢ from $; ,, or S5 ,,, with Fourier coeflicients Cy(A,r) an elliptic modular form with
[-th Fourier coeflicient Za“ (%‘1) Cy (Ao (ﬁ)2 ,rg;'z—). These maps are Hecke-equivariant,
their images are all contained in a natural subspace Mz(m) of the space of all elliptic
modular forms of weight 2 on I'¢(m), big enough to contain all newforms of level m,
and, what is the essential part, there exist linear combinations of such maps which define
isomorphisms of Sy m @53 ,, with Ma(m) (cf. [S-Z],[S]). Thus for each A € SL,(Z), each
Ao, Ay, 70,71 with Ag,A; fundamental and rZ = Agmod4m, r? = A; mod4m we may

form the series

Z Z (%) Z Xa, (@) [Sign(Q 0oA)+e,,,,(Q0 A)] 2milt

121 | ajt QeL(AoA1($)2ror L)

(with ¢ varying in the Poincaré upper half plane H). This series then always defines an
elliptic modular form on I'g(m) of weight 2 (up to the addition of a constant if Ay =1
which can be read off from the Corollary in section 2 and is due to the fact that certain
cusp forms in S3 ,, lift to Eisenstein series). Moreover any new-form on I'g(m) of weight
2 is a linear combination of such series. (The precise span of these series is the space of
cusp forms in My(m) plus certain Eisenstein series coming from the (non-holomorphic)
Eisenstein series E; of weight two on SLy(Z).)

If /(1) = 3 a(l)e?™! is a new-cusp-Hecke eigen-form, L(f,s) = 3 5[(,2 its L-series,
¢ the unique Jacobi cusp form in S; ., or S’E,m corresponding to it via the lifting maps
Sa,,re With coefficients Cy(A, ) then, by considering the adjoint maps of the Sa, r, (with
respect to Petersson scalar products), it was proved in [G-K-Z] that

[Co(A, )" = R L(f,A,1).

Here L(f,A,3) = 3 (-?—) 5},’—) is the twisted L-series of f. (The symbols {:|-) denote

suitably normalized Petersson scalar products the definition of which for Jacobi forms
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will be recalled in section 2, and A is assumed to be fundamental and relatively prime
to m). This was proved for holomorphic Jacobi forms only but, without doubt, will be
true for skew-holomorphic ones two. (One can copy the proof given in [G-K-Z], using
the Proposition and its Corollary in section 2 of this paper to derive the corresponding
result for skew-holomorphic forms.) Thus the stated Theorem can then be used to produce
"Tunnel-like’ theorems in an algorithmic way, i.e. it can be used to describe explicitly a
computable (recursive) function of fundamental discriminants (namely, the left hand side
of the cited equation) which gives the values of all L(f,A,1) up to a non-zero constant
independent of A.

As an illustration of the theorem we consider the simplest non-trivial case, i.e. the case
m=11. The space of modular forms of weight 2 on I'¢(11) is spanned by the Eisenstein
series B(t) = Ey(t) — 11B5(11¢) with Ey(t) = 3} + gy + Sipy (T !) ¢ and
the cusp form S(t) = n(t)*n(11t)? where 5(t) = eT? [l (1 — e*™n*). The space 5% 1,

contains the ’trivial’ cusp form

2i| rar 52t :iv+(r+11 )z)
T(r,2):= Z (r —11s)e ( ’ )
rs€Z

which satisfies Sy 1(T") = E, as can easily be checked. The set I'g(11)\SL2(Z) is indexed
by elements of PY(Z/11Z) via d « To(11) ( 7 Yfor d € Z/11Z and with d’ denoting any
integer from the residue class d, and co « T'o(11). For P € P(Z/11Z) set ¢p =4, ,, (A
any matrix corresponding to P). Now a short calculation shows ¢g = oo = 0, ¢ = d_0

for all a, and

9 3 -3 3
T, ¢ = =T, ¢3 = ¢4, ¢5 = l_lT’ Pe = ﬁT'

br=07T 11

Computing the first few coefficients of Sy 1(@3) shows that they coincide with those of
$(S(t) + T E2(t)). Thus, by the theory quoted above, S1:1(5¢s + 3¢5) must be equal to
S(t), and this then yields funny formulas for the Fourier coefficients of S(t) and the values
L{S,A,1). The first few coefficients C(A,r) of 5¢3 + 3¢5 are

A 1 4 5 9 12 16 20 25 33 36 37 44 45 48 49 53 56 60 ...
c(Ar,)1 35 25 4 5 0 0 6 5 0 0 10 -3 10 -10 -5 ..

(For each A the symbol r, denotes that solution of r? = Amod44 which satisfies
0<r<11).



The idea for the proof of the theorem is roughly as follows. Any elliptic cusp form
on I'g(m) of weight 2, considered as a holomorphic differential on the compactification of
Fo(m)\H, is determined by its periods. As paths in the upper half plane for computing
the periods one may restrict to hyperbolic lines which connect 0 and rational numbers
equivalent to 0 modulo I'g(m). By the so-called 'Manin trick’ one can even restrict oneself
to consider path integrals of the form f:‘; * where A runs through a set of representatives
of To(m)\SLy(Z) (cf. [M]). On the other hand side there are the lifting maps Sa, r
from Jacobi forms to elliptic modular forms. Let Ka, r(7,2;t) be the corresponding
holomorphic kernel function with respect to the Petersson scalar product. Since a linear
combination of the Sa, ., is an injection it is then clear that all the the Jacobi forms
(Kag,ro(T,2;-)|f) together generate S; m and 53 ,, (f runs through the set of cusp forms
on I'y(m)). By the above any such scalar product can be written as a linear combination
of path integrals f}ﬁ;m Kao,ro(T,2;t)dt. Hence all these path integrals together generate
Sy,m and S3 ., . Thus, if we have explicit formulas for the kernel functions and if we can

carry out explicitly the integration along paths joining A0 and Aioo , then we can prove

a theorem like the one stated here. (It must be added that these scetched arguments are
not literally true since certain Jacobi forms in 53, lift to Eisenstein series so that, for

instance, some of the above path integrals are not a priori defined.)

For the case of holomorphic Jacobi forms the kernels X4, -, have been constructed
explicitly in [G-K-Z]. However, we do not take these kernels to deduce the Theorem but
instead we take certain non-holomorphic kernel functions. These arise as special cases when
one tries to construct Jacobi theta functions associated to indefinite quadratic forms. This
construction can be done and one arrives at the exact pendant in the theory of Jacobi

forms of the theta kernels which one uses in the theory of dual reductive pairs (cf.[S2]).

The reason for considering such theta kernels instead of the holomorphic Ka, ,, 1s as
follows. First of all, if one looks at the formula for Ka, », 8s given in [G-K-Z] then it seems
that the explicit computation of the integrals of Ka, r, along the paths from A0 and Aioco
involves some delicate convergence problems (which can perhaps be settled). Furthermore,
we would like to treat the case of skew-holomorphic forms as well but corresponding results
as for holomorphic Jacobi forms are not yet available in the literature. Now, apart from
the fact that the above mentioned theta kernels add a new aspect to the theory of Jacobi
forms (though not very surprising), they allow, and that is the main point, to give a

reasonable short proof from scratch of the theorem, a proof which at the same time includes
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holomorphic as well as skew-holomorphic Jacobi forms. Finally, the investigation of these
theta kernels as well as the computation of the corresponding path integrals exhibits, to

our opinion, some amusing aspects (if one likes such computations).

There remain two points to be mentioned with respect to the proof. The minor

Aico of the theta kernels but the

A0
symetrization ffo'w + f__:t;oo (for A¢ < 0) or the antisymetrization ffc;oo - _—;;1(:00 (for

Ay > 0), both taken, so to speak, in the sense of the Cauchy Hauptwert (to be precise,
we consider Jm([A]* + [gAg]*) where [A]* is the pullback operation on differentials of

one is that we shall not really consider the integrals

the isomorphism [A4] on the upper half plane induced by A and g denotes the diagonal
matrix with —1 and 1 in the diagonal). The reason for this is that the first integrals would
not exist in general since the theta kernels involve contributions which come from elliptic
Eisenstein series. However, to consider these symetrized or antisymetrized versions makes
perfect sense. The mappings which associate to an elliptic cusp form its path integrals

:(;oo + f__:(:oo or j[:w - ::(:00 respectively are both injective. It can be shown that
they define interesting rational structures on the space of modular forms of weight 2 on
I'o(m). These rational structures are the natural generalizations to weight 2 forms on

LCo(m) of those rational structures considered in [K-Z], and they will be investigated (for

arbitrary weight) in a forthcoming paper of J.Antoniadis.

A more severe point is that the proof of the theorem is not completely independent of
the literature. We have to cite the fact that the intersection of the kernels of all the Sa, ,,
equals 0, or, what sounds less complicated, that for any nonzero Jacobi form there is at
least one non-zero Fourier coefficient C(Ag#%,ryl) with some integer ! and fundamental A,
such that 2 = Aymod4m. This seems to be a fairly deep fact. Its proof depends on a
trace formula for Jacobi forms and was given in [S-Z] for holomorphic Jacobi forms. A
corresponding proof for the case of skew-holomorphic Jacobi forms is not yet available in
the published literature and will be given in [S]. The suspicious reader may thus divide the
stated theorem into two, one, unchanged but valid only for holomorphic Jacobi forms, and
a second one for skew-holomorphic Jacobi forms, but which must then be stated in the
weaker form that the span of the ¢, , . (7,2) is the orthogonal complement in S3 ,, with
respect to the Petersson scalar product of the intersection of the kernels of the Sa, v, -
This is what we shall actually prove (cf. the end of section 2). It is perhaps worthwhile to
mention that one could possibly circumvent this problem by considering more general theta

kernels which would yield lifting maps Sa, r, associated to arbitrary (i.e. not necessarily
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fundamental) discriminants Ag. This would mean to generalize the equation (3) in section
3, or, to say it in other terms, to study how many and what SLy(Z)-invariant vectors are
contained in the Weil-representation associated to a certain finite quadratic module the
definition of which can be read off from the cited identity. However, we did not pursue
this here.

A theorem of similar type as the above was proved by Kohnen and Zagier in [K-
Z] (in the quoted article it appears more as an incidental remark than as a theorem;
loc.cit.,p.236). They show that for each k any modular form on I'g(4) of weight k + 1
from the Kohnen-plus space can be written as a linear combination of certain explicitly
given functions which themselves are not modular functions but look very much like theta
series with spherical polynomials associated to the indefinite ternary form 4% — 4ac. Their
proof is based on the fact that the coefficients of a Kohnen-plus space Hecke-eigenform are
essentially given by the periods of the (via Shimura lift) associated modular form of level 1
and even weight around closed geodesics, and on an identity expressing such cycle integrals
explicitly as linear combination of what are usually called the periods of this associated
form (i.e. the values at the integer points in the critical strip of the L-series of this form;
loc.cit. Theorem 7). Although it is not this procedure that we try to carry over to Jacobi
forms to derive the stated theorem it probably could be done (and, as should be added,
the quoted article stimulated us very much to meditate on such a theorem). The formulas
given above for the Fourier coeflicients of weight 2 modular forms on I'g(m) should also
be very closely related to the formulas given in [M] for the Fourier coefficients of Hecke
eigenforms. It may be worthwhile to make this connection explicit.

Finally, it should be possible to generalize the theorem to the case of higher weight.
The corresponding theta kernels are easily constructed and on the other hand side the
Eichler-Shimura isomorphism will play a réle. Since we did not want to gain overweight
by too many technical considerations, we did not try to fulfill this program here, and we

shall publish the corresponding computations elsewhere.

2. Proof. As in the theorem, fix a fundamental discriminant Ay and an integer ry such
that Ay = rg mod4m. Set

2wi(%;—Au+%‘%ﬂiv+rz)
(1) Dagro(Trzit)i= D Cu(A,rit)e

A rez
Aazr?mod4m



where

Cua ) =vt Y x,, (@) % exp (_ WUQ(t)z)

2
QEL(AAO,rro) m|Qoly

and o = sign(Ag). Here
T=u+4+w, t={+ineH, z€C

(H=Poincaré-upper half plane of complex numbers with positive imaginary part) and we
use the notation
[a,b,c)(t) := alt|* + b + ¢ .

Taking absolute values and writing [a, b, c] for @ and (b2 — 4ac)/A, for A we see that the

series defining J,_, (7,z;t) is dominated by

2 2
1 =2mi( fzv4rim (2 lat +bt+c| — e F,(a,b,
@ v Y ey, (g B e s

r,a,0,c€EZ, m|a
@ rrg mod4m

where F,(a,b,c) = (b® — 4ac) + ;2!'((1|t|2 + b€ + ¢)%. Since it is easily checked that, for
fixed ¢, the quadratic form F,(a, b, ¢) is positive definite, we deduce that the series in (1) is
normally convergent, i.e. uniformly convergent on compact subsets in the (7, z;t)-domain,
and defines a smooth function in 7,2, . Moreover 9, _ (7,2;t) is obviously periodic in
7 and z with period 1, and it can be checked by a tedious but routine application of the
Poisson summation formula that 9, . (7,2;t) transforms like a Jacobi form of weight 2
and index m under 7 — _TI’ z — £, like a holomorphic one for negative Ay, and like
a skew-holomorphic one for positive Ay. However, this also follows from the Proposition
below and we skip this computation.

Fix a matrix 4 € SLy(Z) and define

100
®)  Hr2)m [ (P55 AOTAD = sn( o), o, (7, 7 gAgt) Ao A7)
0
Here At = ‘;:_—ig for A = (: ’g), thus d(At) = ﬁ,, and g denotes the matrix ('0“: ,
thus gAg = (_"7 -6'6) The integral has to be taken along the line ¢t = iy with 5 ranging
from 0 to oo. We shall see below that the integral converges absolutely. Thus ¢(7,2) is
well defined and, of course, it inherits from ¥, . (7,2;t) the periodicity in 7,z and the

invariance property with respect to 7 — =1, z — £ . Thus, it will be a Jacobi form if it
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has the correct Fourier development. Indeed, we shall show next that ¢(7, z) has a Fourier
development which coincides, up to a non-zero constant, with thatof ¢, , _ (7,2) as given
in the theorem. This will then prove part of the theorem, namely that ¢, , _ (7,2)isa
Jacobi form.

To compute ¢(7,2) we first of all rewrite the integrand. Using the easily checked

identities
QUAY) o 5 _ QoA() O(4t) _ GoAw)
) TmArE o) '= (Imt)? ImAt  Imt

we can write

5U(A$ 7 t) = CU(A’ ! At)('yf + 6)_2 + C”(Aa r;gAgt)(—'ﬁ + 6)_2

- { T e, (@ T

n'Z
QEC(AAO,T’TO)

—sign(de) Y xno(Q)Q°f?—fg(t)e‘*“‘“°f' }

QEL(AAg,rro)
where we put A = ;ﬁ’—o[. Replace @ by —Q o ¢ in the second sum. Since [a,b,c]og =
[@,—b,c] we find that x, (~Q o g) = sign(Ag)x,,(Q) and that, for { = in and Qo A =:
[a,b,c], one has Qo A(t)+Qog? Ag(t) = 2 (—an® + ¢) and Q o/;a‘Ag(t) = Q?A(t) = an?+ec.
Thus

. 3 2
CU(A!r;t) = 2L Z XAQ([‘I‘) b,c] o] A_l) (_an-'_ E) e_A(an+.&) .
T (0,8, €C(BDo,rro)0A 77

Take here now a typical term with ac # 0 and set n = ,/|§ . Then

o0 “+ 00
/ (—an + ;—;-) e"’\(""*‘ﬁ):d—r? = —sign(a)\/lac|/ e_’\|“°|°(9)=dc(9)
0 —00

where c(8) = 2cosh(f) if ac > 0 and ¢(f) = 2sinh(f) if ac < 0. Thus the lat-
ter integral vanishes for ac > 0 (since then the integrand is odd) and otherwise equals
—sign(a)\/Mff:: e~ Macle® gz = —sign(a)\/ﬂlf—"l.

To handle terms with ac = 0 we rewrite the contribution to év(A, r;t) resulting from

these terms as

1.1
—2v* > Xa, (la,6,0]0A™") Ba(n) — > xa, (0,b,d04=1) Be( =)=
eamodm|ag|, bEZ emodm|ag|, bEZ nn
[a,8,0]EL(A A, rrp)oA [0,b,c]JeEL{Adg,rrp)ed



where

80(7]) — Z ze—)\zzrn

z2EeZ
z@a mod m|Ag|

and where we used that x, ([a,b,¢} o A™!) depends on @ only modulo m|A,|. Now by a

standard computation

I, et =520 (¢ (0 g ) =< (07

o= Y =

@a>0
ssumodZ

where

is the Hurwitz zeta-function, i.e. {(0,u) = 4 —u for 0 < u < 1. The integral [° 96(%);154177
is treated in exactly the same way after substituting n — %

Thus using the notation introduced for the statement of the theorem and disregarding
for the moment the question of whether interchanging of integration and summation for

the computation of ¢(r, z) is allowed or not (in fact, it is) we may summarize as:

/ 5,,(A,r;n)d(in) = 2iy/m|Ao| x (A,r—th coefficient of ¢, , . (7,2)).

0

But then, replacing the coefficients C,(A, r;t) in the defining equation (1) of 9, , (7,2;1)
by the integrals fow 5U(A,r; n)m in order to obtain ¢(r,z), we deduce ¢(r,2) =
2iy/m|A¢d 4,a0,r0(722). (When doing this replacement note that one can at the same
time replace the ¢A in (1) by |A| since [~ 6’,,(A, rin)d(in), i.e. the A,r-th coefficient of
® A, 8.0, (75 2), vanishes for A negative or positive accordingliy as A¢ is positive or negative.)

To complete the proof of the first part of the theorem, ie. that ¢, , . (7,2)isa
cusp form, it remains to show that for any r with r? = 0 mod 4m the 0, r-th coefficient of

P a ag.ro (T, 2) vanishes, i.e. that

Y Xao([a,0,0]047Y) (m|20| _ %)

0Ca<mjAg|
[a,0,0]€L(0,rrp)oA

- Y 0dea™) (5= 3).

0<e<m|Ag]
[0,0,c]€L(0,rrp)e A
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But this can be checked by a standard computation. (In fact, by the Dirichlet class number
formula each side equals —h'(Ag) if Ay < 0 and rry = 0mod 2m, and 0 otherwise, where
h'(Ao) denotes the class number of Q(v/Ag) for Ag < —4, and A'(—3) = 3,h'(—4) = 1.)
This completes the proof that ¢, , . (7,2) is a Jacobi cusp form apart from some
estimates which seem to be indispensable now. So assume first of all that ac # 0. Then

one has

o0
eZAac f
0

o0 1 _ 2 d o0
= 2\/|ac|f ‘17 + —T;| e Nacl(n +7117)?T" < 24 /|ac|f 2n e~ Macln? dn
1 1

2 e—A|ac|
A/ |ac|

(the first equality is obtained by setting  ~— /|ac|r, the second one by observing that the

C
._.a-r]+_
n

o0 1
et 8 g [ |y | bl 2
n 0 n n

differential under the integral is invariant by 7 %, the inequality by a crude estimate.)

Furthermore

= 0a(n)|d — A~ [00 ze " |d
/0 16a(n)ldn i > n

TEZ
zEa modm|ag]|

(set n — /\in in the first integral), and the latter integral is bounded by a constant «y

independent of a. Now

I

< 2wt Ze-%({%wrlm(z)) > e_’r[b;—4:¢)l’/00
0

re€Z a,b,c€EZ
ac7#0

+ 2 (/;w|9a(n)ldn+fomI9c(n)ldn)}

a,cmod m|Ag|

D ag.rg (7323 AACAL) — sign(B0)a, ., (7, 2 9 4t)d(g Agh)|

o~ tigr(ants) 40
n

[#
...an.{.—
Ui

where we wrote (b% — 4ac)/A for A in the definition of ¥, (7,2;t) and where we have
eventually enlarged by summing over all a,b,c € Z. Thus, since by the given estimates
for the integrals the right hand side is clearly convergent, we have justified the above

computation of ¢, , _ (7,2). Note that we have also proved

©)

-

I ny.ro (T, 25 At)d( At) — sign(Ag)J

(1,2; gAgt)d(gAgt) e~2mmlm () /v o(1)

ag,ro
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for v — oo where the O-constant is independent of u and z.

To prove the converse, i.e. that the ¢, , _ (7,2z) span S3n, and S3 ., we have
to introduce the Petersson scalar product. Let ¢(7,2) be any Jacobi cusp form from
S2,m or 53, , and let ¥(r,z) be any, say smooth, function on H x C such that
P(r, 2)e"2rmIm (/v = O(v*) for v — co with some k and an (-constant which is in-
dependent of u and 2. Then the Petersson scalar product (¢|1) of ¢(7,2) and ¢(r,2) is
defined by

= 1 T Ty L S.—4rmAly
($l¥) = 5 / /}_‘/0 /0 (T, AT + p)b(r, AT + e dAdpdudy.

Here, with respect to u and v, the integral has to be taken over the standard fundamental
domain F for H modulo SLy(Z),i.e. F = {r € H|— 1 <u < 1,|7| 2 1}, and the integral
is absolutely convergent since for a cusp form ¢(r, z) the expression ¢(r, z)e“z”mlm(')zl v
is exponentially decreasing uniformly in u and z for v — co. In particular, this defines a
non-degenerate scalar product on the finite dimensional spaces S5 ;, and 57 ,, . In the next
section we shall need a more conceptional way to look at the Petersson scalar product.

To explain this denote by J(Z) = SLy(Z) o« Z? the Jacobi-group over Z, i.e. the
set of all pairs A[A u] (A € SLy(Z) and A u € Z) equipped with the multiplication
A pl e A'[N, 4} = AA'[(A, w)A" + (A, 1)]. The Jacobi group actson HX C by YT -(r,2) =
(M %\%‘i) (for T = (: g) (A, #]) and on functions ¢(r, z) by

yr+6?
afB _ e—z"imff_‘; ar+8 2
(¢| ("r 5))(T’Z) (v +6)’ ¢(7T+5’7T+5)

BlIN, p(T, 2) = 2mim(ATr+22) (1,2 + At + ),

and also by

(4 (52)) - e (S 5)
v5)) = mroRr 18 P\ ¥ 6 T 18

and ¢|*[A, u] = ¢|[A, u]. It is easily checked that a holomorpic or skew-holomorphic Ja-
cobi form ¢ (of weight 2 and index m) satisfies ¢|T = ¢ or ¢[*YT = ¢ respectively
for all T € J(Z). If ¢(r,z) and 9(7,2) are as above and if ¥(r,z) additionally sat-

isfies the same transformation law with respect to J(Z) as ¢(7, z) then the expression
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é(7, 2)¥(, z)e_""”‘y:/"v2 (z = = + iy) is invariant by replacing (7,z) by T - (7, z) for all
T € J(Z). Moreover

(¢|¢) = / ¢(T,z)1,b(‘r, z_)e—-zrrmy?/vvz dv,
T(Z)\HXC

where dV = 5"‘;‘:?1—&1 is the J(Z)-invariant volume element on H X C and the integral has
to be taken over any fundamental domain of H x C modulo J(Z).

Take now ¢(r,z) from the orthogonal complement of the span of the ¢, , . (7,2) in
S2,m and S7 . Thus

(6) (¢|¢A,A0,r0) = 0
for all A, Ag,r9. We have to prove that (6) implies ¢ = 0. To interpret (6) note that
Fagiro (7, z;t) as a function of ¢, for fixed 7 and z behaves like an element from My(T'o(m)),

the space of elliptic modular forms on I'y(m) of weight 2. Indeed, the transformation
law 9, . (T,z; %?)(7T +6)72 =9, (1,21) for all (: ‘?) € Ty(m) is immediately
clear from the definition of J,__ (7,2;t) using (4) and the invariance of the L(A,r) and
Xa, under [o(m). This transformation law with respect to I'g(m) is then also fulfilled by
f(#) = {(¢[9,,.,(1)). Here, of course, we have to check that the Petersson scalar product
is defined, i.e. that J aooro

condition. But this follows easily from (2) which even shows that

(7,2;t) as a function in 7,z satisfies the correct boundedness
(r,2;1) e=2rmy’ /v

can be bounded by a polynomial in v and 5 which does not depend on u, z,£. Thus, for

Ag,ro

any cusp form ¢, the function f(¢) is smooth on H and can be bounded by a polynomial
in 1 independently of £&. We shall even show below that f(t) is an element of M,(T'o(m)).
Using (5) to justify interchanging of integrals we may rewrite (6) as
(7) fo (B9 400 (-5 5 A)Yd(AL) — sign(Do)(|D, ., (- 9Agt))d(gAgt)) = 0
and this is then a statement about modular forms. We apply the following Lemma.
Lemma. Let f(t) be a modular form from M;(To(m)), let € € {£1}. Assume that for
each A € SL,(Z) the integral

| Utanacan + estsasiato g,

0

taken along the path t = in, n € R, is absolutely convergent and equal to 0. Then f(t) is
identically 0.

This Lemma is probably known to the specialists, but for the sake of completeness we

give the short proof in Section 4.
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Applying this Lemma we deduce from (7) that (¢|9, , (%)) = 0 for all 4, Ag,r.

To investigate this we need the following Proposition.
Proposition. Forr,t € H,z € C, r = u+1v,t = £ + in define

f r2-4%a r-“+.|2 Aqgl .
Z 62"'(—4m—a“+ﬁ—ﬂ‘”+”+-’|50|€)e_nm|Ao|n°/u

€T
riEerpg mod 2m

O(r,2,t) =

S

Then one has

. 22
e—2mm#

(yr+6)*

(th)—ﬁ

TE

(80)8(r, 2,00+ > > (40)

A i1

0 (5248245

AO ro

Here A runs through a set of representatives A = ('r ) for ( ) \SL2(Z) and for each
such A the expression (y746)* equals (y7+6)? for negative Ay, and it equals (v7+8)|y7+6|
for positive Ay. Moreover, € = i for Ay < 0, ¢ = 1 for Ay > 0, and (%D-) =1ifAg =1

and (%‘1) = 0 otherwise. ,

We shall prove the proposition in the next section. Note that the given formula for

Y,4,.., (T, 2; ) may also be written as

(1,2; 1)

Ao ro

a 10
\/_| ol (SR )miT (T, z)-{—ZZZ(Eﬁ 75( Ao.z,,o.lxa) (1, 2; lst)
21 s€2
with
wi "‘a—rg_au —‘iﬂ—lra Slivtrz xmn?
K,A,'_(T,z;t)ze2 ( o utTIm )‘ermgn(A)f _-IKF"_
and

T(r,2) = Z (r— ms)em(m-" Ea w+(r+ma)z).

r,s€Z
Here T runs through a complete set of representatives for J(Z)oo\J(Z) (with J(Z)eo =
[0,Z] (; ?)) and ’|*’ stands for the action ’|’ or ’|*’ accordingly as A, is negative or
positive. This action refers to the first pair of variables, of course. A simple consequence
of this formula is then

14



Corollary. Let ¢(7,z) be a Jacobi cusp form from S; ;n or S3 ,,, with Fourier coefficients
Co(A,r). Then (|9

expansion

agrg (s31)) is a modular form of weight 2 on To(m) with Fourier

CICPNCRL) ) omilt
070 =(4 T 20YC (Ao 12 rod e
(—ie)/m|Bol () (4IT) + 2 (Z(—r“) #(Do(¥) ))

i>1 all

From the Corollary (proof in the next section) we now obtain that our ¢(7,z), i.e.

any ¢(7,z) which is orthogonal to the span of the 9 7, 2;1), must necessarily satisfy

aowrol
Cy(Aol?,19l) = 0 for all I > 1 and all fundamental disocr;nﬁnants Ag and all 7y such that
A¢ = rimod4m, or, eqivalently, that it must necessarily lie in the intersection of the
kernels of all the lifting maps ¢(7,2z) — (4|, . (-,";t)). But this implies ¢ = 0. For
holomorphic Jacobi forms this was proved in [S-Z](Theorem 3), for skew-holomorphic ones

this will be proved in [S]. This completes the proof of the theorem.

3. Proof of the Proposition and its Corollary. Summing over @ = [a,b,¢] and

replacing the discriminants A by (b —4mac)/Ao in the definition of 9, (7,2;t) we can

write
2
v‘l’ 2mi ("i?nn;; u+r24|:|°:|,tr2 iv+rz)
LN (r,z;t) = -7;? Z e fra(r,a,b)
bervrg mod am
where
:f ae .. _ag¢ o
fr,t(r, a, b) = Z e?ﬂ't(l—uu ]TETD w) %

cEZ
ronEbQ—ttmac mod 4m|Ag|

—_ v am 2 2
XXa, ([ma,b,c]) (mat? + bt + c) e miaen? TR

To fr4(r,a,b), the sum over ¢, we now apply the Poisson summation formula. Thus we

write
Fra(r a8 = 3 $ras(d)g (lA_d0—|>
d€Z
where
Yra(d) = I—Li_o_l zdle | Xa, ([ma,, o) €2 ™ EaT
cmod|Ag
r?apgmbd—damac mod dmiagl
and

+o0 - __ aw 2 . '
g(d) = / e ™2™ (mat? + bt + c) e maonT (AT (—zmicd y

—00
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Here we used that x,_([ma,b,c]) depends on ¢ only modulo |Ag|. Furthermore we use
_ T if Ay <0

T = .
-7 i Ag>0

Now, by a simple computation

g(d) =~ mBoln? 1. D ari(mag b)) y—amiaoly? TR
ol AT +d ot

for (a,d) # 0, and
2
g(d) =1 (M) n?b

v
for (a,d) = 0. For (a,d) # 0 let ! be the greatest common divisor of a,d, set v =a/l, § =
d/1 and choose any matrix A in SL;(Z) such that 4 = (

: ;) Then we can write

2

g( id \ _ \/”_nlAan??Z 1D omitming b MR —wpemiiaty
IAQ' higiN1 I(")’T + 6) at

Inserting this into the formula for f;.(r,a,b) and then summing in the resulting formula

for 9 T,2;t) over | > 1 and a complete set of representatives A for ((1) ?) \SL:(Z)

instead of a,d € Z we obtain

J/m|Ag| O
ﬂao,ro(T>z;t) = _"i',il,r_ol 5’;{ ‘10(7-1 270;010)

Ao,"o(

m| Aol 1 0 amimlye?iide —m i
# 0ol DT RS SR o (7,7, €158, 1, 18) TR
A D1

Here for any a,d € Z and any z' € C

24 _32 2 b2 .
LI%PEB""“'*—' ‘_': ': w+rz+bz')

27ri(
o(r,2,2';a,d) = E Yrap(d)e
rbEZ
bErrg modim

We shall prove in a moment that

ezWiml"E:W 7 (T,z,fifz-irl’ *o" i1y, 16)

1)

a2
_ e ITimI s ‘P(A,T z £ .9 I)
(v r+8)(47+8)] ¥ T(YT+ ) Ao
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Here on the right hand side that squareroot has to be taken which is positive or has positive
imaginary part. Moreover A’ = (f{: g:) equals A if Ay is negative and it equals (_f"_y “5‘8 )
if Ay 1s positive. Now

Yros) = o D Xag([0,b,)TTET

l 0| cmod |Ag|

if r2Ay = b2 mod 4m|A¢| and = 0 otherwise. So assume r2A, = b2 mod4m|Ay|. Then
Aolb?, thus x, ([0,5,¢]) = (42) and hence 1ro(l) = (5*) €]Ao|7? since Ay is funda-
mental (recall ¢ = 4,1 for Ay < 0,> 0, respectively). For the same reason we find that
re = T:g_on mod 4m and b = rro mod 2m imply Ag|b and r = Aioro mod 2m, and vice versa.
Thus, summing in the sum defining (7, 2, £; 0,1) over Ays instead of b we can write in the

notation of the proposition
d : —mm|Ag|n?/v A -3
—= (7, 2,sign(Ag); 0, 1) e = (32)e|Ao|T%8(T, 2; 1).

Inserting this in the last formula for 4, . (7,2;t) and summing over A’ instead of A if
Ay > 0, thereby noticing that A(7) = A(—7) = —A'T, we now easily recognize the asserted
formula.

To prove (1) we write first of all for a,d € Z

o(1,2,2';a, d) = Z Yrap(d) Im (7, 2) 19m|thb(‘T',z'),

r mod 2m, d mod 2m|Ap]|
b@rrg mod2m

where J , for any NV, p is the basic function

TjN’p(T, Z) — Z e2wi(;{-§r+az) )

2EZ
s=pmod 2N

We shall show that for all a,d € Z and for all 4 = (%4 € SLy(2)

. 152 2
J2mim (o 35

at+p oz P “1> )
2 ’ sy T~ ) ,dM = ,2,2; ,d
[(v' + 8)(v7 + 6)] (P(‘r’TJré’ oy w(r,2,750,d)

where (%7 ) = Aif Ay < 0 and = @ —F) otherwise. Replacing 2’ by 64234 and o d
v 6 v 6 & Ao ’

by ly,16 this then clearly implies (1).
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Now the left hand side of (2) defines an action of SL3(Z) on functions in 7, 2,2’ as is
easily proved. Thus to verify (2) it suffices to check it for some generators A of SL,(Z),
say A= (3]) and A= (] 7). The first case is trivially verified. To treat the second one

recall (or prove by Poisson summation)

e—?‘n'l'Né _1 z e_ai ~2xipa
T () i
Ti TT 2N ocmod 2N

Thus, for A = (0 -1) the left hand side of (2) becomes

10

1 Zﬂi(rr‘: —bb')
—_— Yr—ap(a e ® S Oam (T, 2) Y y(F, 2
2em|Aol} m;m (a) .:.,g,.,, m,re(7,2) Damiaal b (7, 2')

b mod 2m|Ag) b mod 2m|Ag|
bErrg mod2m

with € =1 for Ay < 0 and = 1 otherwise. We thus have to show that

25—7”|1/—\_l;-|? > ¢r,-d,b(a)e2ﬂi("7m o ) = Y a0 (d)

rmod2m, bmod 2mjAp]
b=rrg mod 2m

if ¥ = r'romod2m and = 0 otherwise. Inserting the defining formula for +...(-) and
taking on both sides of the last equation the finite Fourier transform with respect to a
modulo |Ag| all culminates in the identity

. rr'Ao—bb' +2m(a c'+a'e)
! Zmlagl

! 2w
2emlAg [} b
2%em| Ao} > Xa, ([ma,b,c])e

r mod 2m, b mod 2m|Ag|
a mod | Apl, ¢ mod |&g]
‘mrrp mod 2m

+2a0=b2—4macmod 4m|Ap|

(3)

b=rromod2m and
VAN T
Xa,([ma', ¥, c]) if [r2A0 = b2 — 4macm0d4m|Ao|]

0 otherwise,

This can now be proved using standard Gauss sum identities and we leave this to the
reader.
The proof of the corollary is the usual exersise in unfolding an integral. First of all

write, according to the formula immediately before the Corollary,
[(@.iﬂ)—ld)(r, 2)d ..., (7, 2;8) + mi(52) (T, 2)T(r, z)] o—dmmy?/v,2

18



10 —drmy'? v
=Z Z(erq)7§¢(T"z')K‘Aoaﬂ'roo(T,’z’;ZSt)e 4 v / U'z
T

1>1 2€Z
Here we still use y and v for the imaginary parts of z and 7 respectively. Furthermore T
runs through a complete set of representatives for J(Z)oo\J(Z) and for each such T we
use (7',2') = T o (1,2), ¥’ and v’ denoting the imaginary parts of z’ and 7' respectively.
Thus unfolding the integral of the right hand side taken over a fundamental domain of
H x C modulo J(Z) with respect to the J(Z)-invariant measure dV = 2494280 we obtain

the expression

/ ZZZ(A") R TP 1) Sk RATCP 1
T(Z)ou \HXC 1ot 012 rgs

a [>1 s€Z

But
2
2m (%"m—ﬁ u+'—frJn£liv+rz) 2mice — 1mF2

Ka (T 23t)=¢ e e v

(with o = sign(Ay)), a fundamental domain for H x C modulo J(Z) is given by the set
{(r, A7+ )]0 < u, A, p < 1,0 < v}, and for z = A7 + p one has dV = Wﬁ. Thus,

carrying out the integration with respect to u and g we obtain

A 18 —2mics
ZZ (TO) 7504’(&032,1‘03)3 il La(n)

i>1 s€2

where

too —41'r +I °| 2 4rpsd+mA? v —xmi2y?
I,i(n) = / / ) Zolv— dAdv

dv

_ - e T ’T[sl(w+w)w sdw
2 (IADIISI 0

_(_In ’e_z,ru,h,f“e—wuam(d‘ﬁ;)’dﬁ
|Aolls] 0

1
5 +o0 .
— ( IT] ) e—21‘rl|a|7]/ e—41'l'l|3|'rys.mh2 Beode
|8olls] —oo

3 +o0
— ( 177 ) e—2rr!|a|q/ e—4xl|a]qsinhnecosh 0d6 = 1 e—21rl|s|17.
|Aolls] —co 2|8} s|

W3y 2,2
/ooe ( AQI + lo?u)
0
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Observing that %e”“"""“”’“'ﬂ = 0 for —os < 0, and that Cy(A, —7r) = —Cy(A,r)
for skew-holomorphic ¢ (as it is easily deduced from ¢(r,2) = ( |* ( 0 _1)) (r,2) =

—¢(7, —z)) we obtain the formula for the Fourier development of (¢|9, . (-,";t)) as given
in the Corollary. Note that this formula shows in particular that (¢[J, ., (,*;t)} is holo-
morphic. Since we saw in section 2 that it is bounded by a polynomial in 5 independently

of ¢ we deduce that it must even be regular at the cusps. Thus it is a modular form.

4. Proof of the Lemma. For t = in one has gAgt = —A? and thus f(gAgt)d(gAgt) =
— f(— AT)d( A%). Decompose f(t) as f4(t)+if_(t) with fu(t) = ( FO+F= t)) The
modular forms f () and f_(t) have real Fourier coefficients, i.e sa.tlsfy f+(—-1) = f1(2),
and hence fi(—A?)d(Af) = fr(At)d(At). Thus, for t = in, the differential f(At)d(At)+
ef(gAgt)d(gAgt) equals 2Re [f (At)d(At)} + 2:Re[f-(At)d(At)] if e = —1 and equals the
same expression but with Re replaced by Im and multiplied by ¢ if ¢ = +1. We assume the
first case, the other one can be treated similarily. The assumption about f then implies
that for all A € SLy(Z) both integrals Oioo Re[f+(At)d(At)] are absolutely convergent
and equal to zero. Thus we may assume that f equals f; or f_, or, more generally, that f
itself has the property that all the integrals (:oo Re [f(At)d(At)] converge absolutely and
equal 0, and we have to show that f(t) vanishes identically.

To prove this, consider ¢(B) := Bt° Re [f(t)d(t)] for B € T'y(m) and £, € H. Note
that ¢(B) does not depend on the ch01ce of tg. Now let A, B € SLy(Z) such that ABA™! ¢
Lo(m), let B = £T™8T™S ... T™ S with n; € Z and T, S denoting the generators
((lli , (0 _1) of SLy(Z) respectively, and set B; := £T™1ST™S ... T" §, By := 1. Write
P(ABA™Y) = [7" Re[f(At)d(AD)] (1, = A o), [2 = [ + [or 4.+ [, , and
fB’“““R f(At)d(At)] = [T 4 Re [f(AB;t)d(AB;t)]. Note that one has T™+ St; =
—; + nj41. Thus, setting ¢; = in and letting n tend to 0, it is easily deduced from the
assumptions about f, that f:mj St Re [f(AB;t)d(AB;jt)] — nj41f(ABjico). Here f(s),
for any rational number s or 8 = 100, denotes the constant term in the Fourier expansions
of f(t) at the cusp s. Summarizing, we have o(ABA™!) = J—U nj41f(ABjioo).

In particular, choosing B =1 = —TSTSTS in this identity and observing (1) = 0,
we obtain f(Aico) + f(A1)+ f(AO) =0 for all A € SLy(Z). But this implies f(s) = 0 for
any cusps s. Namely, write s = % with relative prime integers a,+, and choose integers
8,6 such that ad — Sy = 1. We can even choose 3,8 such that § and v + § are prime to
m, except in the case m even and v odd, where we choose §,4 such that v + 6 is prime to

m and ged(m, §) = 2 (If a given solution 6 of ad — v = 1 has not these properties then
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choose an integer v such that § + yv = —2ymodm' (resp. mod2m’' if m is even and + is
odd), where m' is the product of all primes of m which do not divide v, and replace 6, 5
by é§ + yv, B — av). Setting A = (: g), we find Adico = s, A1 = :I , A0 = %, and, since
v + 6, 6 are prime to m (except for the case ...) the cusps Al, A0 are equivalent modulo
T'o(m) to the cusp 0 (except for the case ... where A0 is equivalent to ). Thus, we have
f(s)+2f(0) =0 (or f(s)+ f(0)+ f(3) = 0if m is even and + is odd). Since this equation
holds for any s, we now deduce that f(t) vanishes at the cusps.

But then we conclude that Re[f(¢)dt] induces a harmonic differential on the com-
pactification of To(m)\M, which, by the above, satisfies [,° Re[f(¢)dt] = 0 for all
B € SLy(Z) and all {;. Hence the function F(?) := f:o Re [f(t")dt'] induces a har-
monic function on this compact Riemann surface (to prove the invariance under To(m),
use F(Bt) = F(t) + ft?tc' Re[f(t")dt'] for B € TI'g(m)), hence F(t) is constant, hence
Re[f(t)dt] = 0, and since f(t) is holomorphic, this finally implies that f(¢) vanishes iden-
tically.
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