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PREFACE

The following notes arosc fronl severallecture courses given at the Max-Planck­
Institute in Bonn in 1994-96. I have tried to surnrnarizc some results of recent
research, multifaceted anel fascinating, originated in rnathematical physies anel
quickly crystallizing into a new chapter of geornetry.

Thc first part of thc notes is devoted to Frobenius rnanifolds, both in Ioeal and
fornlal versions. The category of fonnal Frobenius rnanifolds serves as a receptaclc
for Quanturll Cohornology and its study is c10sely interwoven with that of rnoeluli
spaces of curves, operads anel perturbation fonnalisrn. The geollletric version of
this theory was alnlost singlchandedIy created by B. Dubrovin.

Thc first two Chapters constitute an introeluction to Dubrovin's paper [D2].
I have added the b&'3ics of supcrvcrsion, takcn frolll [KM], anel sor11e COlllputa­
tions related to thc quantlllll COhOlllOlogy of pl'ojective spaces. Thc treatlnent
of Schlesinger's picture was infiuenced by [H3], and thc presentation of the sixth
Painleve equation was borrowed from [Ma5]. I rnade every effort to untangle the
cOlllplex logical structure of thc theory and to stress the interconnections which are
severed when the presentation is linearly orelered.

The third Chapter is devoted to fonnal Frobenius rnanifolds, which in their
different guises are l'clatcd to thc moduli spaces of curves anel operaels. It is a
development of the picture presented in [KM] anel [KMK].

Thc second part of the notes is planned. It will bc dcdicated to thc algebraic­
geollletric construction of the Grornov-Witten invariants which form thc foundation
of Quantum Cohornology.
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o. Introduction:

What is Quantum Cohomology?

0.1. An overview. Let H = H* (V, k) be the cohornology space of a projective
algcbraic manifold V with coefficients in a field k of characteristic zero.

The quanturn cohornology H;uant(V) consists of H plus an additional piece of
data which can be described in at least three seeluingly unrelated ways:

i). As a fonnal series ("potential") <I> in coordinates on H whose third deriva­
tives can be used to dcfine on K <9 H the structllre of a Z2-gTaded COllllllutative
associative algebra, K being thc ring of all formal series in coordinates.

ii). As a family of polylinear cohomological operations [m]: H0n -+ H, n 2:: 2,
indexed by all hOlllolob'Y cla..l:3ses 'm E H*(Mo,n+l, k). Here MO,n+l denotcs the
11l0duli space of stable (n + l)-lllarkcd algebraic curves of genus zero (cf. [Ku] and
[KeJ.)

iii). As a "corupletc1y integrable systenl" on thc tangent sheaf of the fonnal
spectrum Spf(K) (i. e. a fonnal completion of H considered as a linear supernlan­
ifold.) In this context, the systen1 itself consists of one-parametric fanüly of ftat
connections on the tangent hundle of Spf(K).

The structures i)-iii) can and must be first described abstractly. We will do it
in luore detail in 0.2-0.4, and then diseuss in what sense they are equivalent in 0.5.

A constructive realbm.tion of these structurcs on eohornology spaces, i. e. quau­
tun1 cohomology of V in the proper sense, involves counting (parametrized) rational
curves on V and is thus related to some classical problen1s of enumerative algebraic
geollletry. In 0.6 and 0.7, we will give two exanlples of the potential <I> constructed
in this way, for V = p2 and for V = a quintic hypersurface in p4. The geornetry
unelerlying these eoustructions leads naturally to the deseriptions of the type i) anel
ii) .

Algebraic geolnetry furnishes also eOlnpletely inteb'Table systems of the type iii)
in a totally different way, relateel to the periods of algebraic integrals and variations
of Hodge strueture. We will diseuss two exanlplcs in 0.8 and 0.9.

If a potential <P obtaincd by counting curves on a rnanifold can be identified with
another potential W related to the periods on another lnanifold, this gives a strong
hold on the analytical properties of <I> and behaviour of its eoefficients. Existence of
such an identification for Calabi-Yau threefolds is thc fanlous Mirror Conjecture.
Hopefully, it constitlltes apart of a more general lllirror pattern.

We will now fix notation for the remaining part of the Introdllction. Denote
by (H, g) a Z2-graded finite dimensional k-linear space H endowed with an even
non-degenerate graded synllnctric bilinear forn1 g. Let {Li a } be a basis of H, gab =
9 (Lia, ßb), (gab) = ([Inb) - \ Li = L: Liagab ® Lib E H <9 H. Denote by {Xa} the dual
basis of the dual space of H. We will consider X

U as fonnal independent gracled
. cOIluuuting variables of thc salne parity as Li(J' Put K = k[[xa]J; this is the sarne

as the completecl synlllletric algebra of the dual space. Put Ba = 8/8xa : K -+ K.
We will write <I> a instead of 8a <I>, etc.
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0.2. Definition. A formal solution cI> 0/ the associativity equation8 on (H, g),
or simply a potential, is a fonnal senes <I> E K satisfying the following differential
equations:

\...J b d . ,""",;r,. ef ffi - ( 1)X ll (Xb+Xc) '""'" ffi ef ~T)va, ,C, . L.....J '1!abe9 '±' fcd - - L.....J '±'bceg '± fad

ef ef

where generally X denotes the Z2-parity of x.

Define a K -linear rnultiplication 0 on HK := K ®k H by the rulc

.6.a 0 ~b = L eJ?abcg
cd Lld .

cd

(0.1)

(0.2)

Clearly, it is supercollullutative.

0.2.1. Proposition. a). (HK, 0) is associative iiJ cI> is a potential. Multiplica­
tion 0 does not change ij one adds to 1> a polynomial of degree ::; 2 in x a

.

b). An element .6.0 01 the basis is a unit with respect to 0 iff it is even and
<I>obc = 9bc for alt b, c. Equivalently:

<!> = ~ 900(xO)3 + ~ L xOxbxc9bc + terms independent of xO. (0.3)
c;fO

Ir H = H*(V, k), g = Poincare pairing (gab = Iv ß a 1\ .6.b), and cI> is obtainecl
via a Gromov-Witten counting of rational curves on V, then (HK, 0) is called the
quantum cohomology ring 0/ V.

0.3. Moduli spaces Mon. Before giving thc next definition, wc recall some
basic facts about stahle curves of genus 0 with n 2:: 3 labcllecl pairwise clistinct
non-singular points (Xl"", X n ) (cf. [Kn], [Ke].) Such a curve is a tree of pl,s:
any two irreducible cOlllponents either are disjoint 01' intersect transverscly at one
point. Each cOIllponent lUllst contain at lcast tluce special (singular 01' labelled)
points.

The space Mon is a srnooth projective algebraic manifold of clilnension n - 3
supporting a universal fanlily X n -----t Mon of stable curves whose labelIed points
are given by n structure sections Xi; MOn -----t X n . An open subset ("big cell")
paramctrizes pl with n pairwise distinct points on it. The boundary, or infinity,
of MOn is stratified according to the degeneration type of fibers of Xn : the com­
binatorics of the inciclencc tree of the curve and the distribution of labelIed points
alnollg the cOIllponcnts. Thc nUluber of thc cOlllponellts dinlinished by one is the
codhnension of the stratuIll. Of course, the closure of such a straturn includes its
own boundary corrcspondillg to furthcr degeneration.

In particular, thc irreducible boulldary divisors Da of MOn correspolld to the
stable (unordered) 2-partitions a: {I, ... , n} = BIll S2, jBil 2: 2, clcscribing
the distribution of thc labclled points anlollg the two pI 's at the gcncric point of
Da. A choicc of thc ordcring of the partition dcfincs an idcntification of Da with
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M D,Ul +1 X M O,tl2+ I , ni = ISi I :on each pI, add to the labclled points thc intersection
point of the two cOlllponcnts. Thus we havc a family of closeel embeddings

!{Ja: M D,nt +1 X M 0,u2+1 ---t MOn (0.4)

inducing the restriction 1110rphisms of thc COhOIllOlogy groups with coefficients in k

(0.5)

Besides, Sn acts on Mon, H* (MOn) anel partitions ()" by rcnunlbering thc labelIed
points, and (0.5) is cOIllpatible with this action.

0.3.1. Definition. A structure of the Cohomological Field Theory (CohFT)
(01' an algebra over the 01Jerad H .. M 0, cf. [GeK}) on (H, g) consists of a family of
Sn -equivariant Z2 -even polylinear map'"

(0.6)

satisfying the following conditions. For every stable 2-partition U of {I, ... , n} and
all homogeneous f1, ... 'fn E H we have

'P~(ln(fl ® ... ® TU)) = €(u)(ln1 +1 ® 1n2 +1 ) (Q9Ti ® ß ® (Q9Ti)) (0.7)
iESl iES2

where €(u) is the sign of the ]Je'r7nutaion induced by u on the odd-dimensional classes

Ti·
Anothcr way of looking at such a strllcture is to make a partial elualization with

thc help of the Poincare pairing on M O,n+l and 9 on H. Then onc can rewrite
(0.6n +d as

(0.8)

that is: to interpret evcry dass m E H .. (MD,n+d as an n-ary Illttltiplication [171,]
on H lincarly depending on [171,]. Thcn (0.7) gives a cOlllplex systerll of quadratic
identities between these tnultiplications which are best clcscribed in the operaclic
formaliSIll (cf. [GeJ], [GcK], [GiKJ.)

However l thc situation Silllplifies considerably if we rcstrict ourselvcs to looking
only at thosc multiplications that corresponel to thc fundanlental classes [M0,11+1J E
H.. (MO,n+r) anel denote thCIn silnply by

(0.9)

These rnultiplications are supercomnlutative. Moreover:

0.3.2. Proposition. The identities (0.7) imply the following generalized asso­
ciativity equations for these 'rnultiplications: for any et, ß, f' (h l ••• ,On E H, 11. 2: 0
we have

a
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(0.10)

where (7 runs over 2-partitions a: {I, ... , n} = 8 1 U82 (non-necessarily stable),
and E are the standard signs.

In partic'Ular, for n = 0, 1 we get respectively

((a, ß), ,) = (a, (ß, ,)),

-J((a, ß)", J) + (-1)1' ((a, ß, J), ,) = (a, (ß, " J)) + (a, (ß, ,), J). (0.11)

Rernarkably, this fanlily of n~ary llluitiplieations is actually equivalent to the
whole structure deseribecl in 0.3.1: cf. the proof of the Theorern 0.5 below.

In conclusion, let us formally eornpare the systmn of operations (0.8) on H =
H* (V, k) (in the situation of quanttlln eohomology) with the luore traclitional Stccn­
rod operations.

i). Steenrod powers are defined on the cohornology with coefficients in F p

whereas we can allow characteristic zero coefficients (perhaps evcn Z.)

ii). Steenrod powers generate an algebra whcreas [m], m E H*(Mo,n+d are
elements of an opernd.

iii). Stcciliod powers are definecl solely in tenns of topology of V, whcrcas
to construct [m] we need additionally the structurc of aIgcbraic (or syruplectic)
manifold, in order to be able to dcfinc holomorphic curves on V.

0.4. Frobenius manifolds. The tenn "colnpietely intc6rrablc systeru" is uscd
rather indiscriminately in a wide varicty of contexts. The notion relevant here was
introduccd by B. Dubrovin (cf. [D1], [D2]) nncler the name of Frobcnius Inanifold.
We start with the fonnal version.

0.4.1. Definition. a). The stnu;ture of a fOITnal Frobenius rnanifold on (lI, g)
is a one-parametric systern of flat connections on the module of derivations 0/ K / k
given by its covariant derivatives

\7 A,Da (ab) := ;\ l: Aabcgcdad = ;\ l: A~bad
cd d

(0.12)

where A abc E K is a syrnrnetric tensor, ;\ an even parameter.

b). This structure is called potential one, if the tensor adAabc is totally syrnrnet­
nc.

More generally, a Frobcnins Inanifold (M, g, A) (in any of thc standard geolllctric
categories: smooth, analytic, algebraic (super)lnanifolds) is a manifold M endowed
with a flat Inetric 9 anel a tensor field A of rank 3 such that if we write the COlllPo­

nents of A in Ioeal g-flat coordinates, the conditions of 0.4.1 a) and eventnally b)
are satisfied.
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0.5. Theorem. For a given (H, g), there exists a natural bijection between the
sets 0/ the additional structures described above:

i). Fonnal solutions 0/ the associativity equations on (H, g), modulo terms 01
degree ~ 2.

ii). Structures 0/ the CohFT on (H, g).

iii). Structures 0/ the forrnal ]Ja tential Fra benius mani/old on (H, g) .

Easy part of the proof (sketch). We will first describe Inaps ii) -+ i) -+ ii'i).

ii) -+ i).

Asslull,e that wc have on (H, g) the structure of CohFT given by S0111e nlaps In
as in (0.6). Construct first the sYllllnetric polynonlials

(0.13)

anel fonn thc series

(0.14)

Keel ([Ke]) has dcscribed the linear relations betwccll the cohomology classcs of
the boundary divisors D q defincd in 0.3. Naluely, choose a quadruple of pairwise
distinct indices i, j, k, l E {I, ... , n}, 11, 2: 4. For a stable 2-partition a = {SI, ·S2}
write ijakl if i, j E Sb k, l E S2 for S0111e ol'dering of the parts. Thcn thc {ijkl}-th
Keel's relation is

(0.15)
q:ijakl a:ikajl

GeOIllctrically, it follows froIn the fact that the two sides of (0.15) are the two fibers
of the projection

- - /'"'V- 1
MOn -t M O,{ijkl} = M 0,4 = P

forgetting all thc labelled points except for Xi, Xj, Xk, Xl. The space M 0,4 has exactly
threc boundary points cOl'responding to thc three stable partitions of {i, j, k, l}. In
(0.15) WB use two of thcrn.

Noticc that thc existence of the forgetful lllorphislll is a non-trivial geollletric
fact, because on the level of tibers of X n (i. c. gcornctric points of thc luoduli) it
involves contracting thosc componcnts that becolllc unstable, cf. [Kn].

If we rcstrict y;'l(')'10' .. 0')'n) to Da using (0.7) thcn integrate over Dq anel take
into account (0.15), we will get aseries of bilinear identities: Vi, j, k, l

U~kl t(u)(Yjsd+I ® YjS,I+I) C~ IP ® ß ® (q~2 ,q)) =

U~jl t(u)(YjStI+l ® YjS21+d (~l Ip ® ß ® (~, ,q)) (0.16)
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On the othcr hand, writing thc associativity equations (0.1) for the scries (0.14),
one can directly show that they reduce to a subfanlily of the relations (0.16) 1 which
implies thc whole falnily by the standard polarization arguillent. Thus <I> encodes
the salne anlount of infonnation as {Yn } and (0.16).

i) ---+ iii).

Given a potential 1>, we silnply put Aahc = 8(!ch8c iJ? This is in fact a bijection,
because givell (H, g, A), thc symllletl'Y of Aabc and 8dAabc implics the existence of
cI> with A abc = 8a 8bD/-p, and the curvature vanishing equation \7i = 0 iInplics thc
associativity equations for cI>.

Difficult part of the proof. It remains to show that nothing is lost 01' gained
in the passage frOI11 In to ~L' Le., that thc arrow ii) --+ i) is both injcctivc alld
surjective. Injectivity is again easy, because USillg (0.7) consecutivcly one sees that
the knowledge of Yn allows us to rcconstruct integrals of In along all the boundary
strata, whosc classes span H*' (MOn)' But surjectivity requires a considerable work.
Basically, it reduces to showing that the ad hoc fonnulas for the integra.ls over the
boundary strata do definc a COhOI1101ogy dass, i. c., satisfy all the linear relations
between the classcs. A relnarkablc refon11ulation of this property asserts that the
homology of Inoduli spaces forms a Koszul operad. For details, see tbe Inain text.

0.5.1. Remark. What this last argunleIlt additionally shows, is that the struc­
ture of a CohFT on (H, g) can be rcplacecl by thc structurc of a Com111oo-algcbra
given by a falnily of n-ary operations, OIlC for each n 2:: 2, satisfying the gencr­
alized associativi ty relations (0.10). This struct ure looks simpier because it does
not involve thc IllOcluli spaces MOn which look cOlnpletely irrelevant also for the rc­
maining two dcscriptons. However, there are at least threc reasons not to elirninatc
the 11lOdllli spaces, and even to consider ii) as thc lUOst iInportant structure.

a). In thc applications to quantulll cohomology, the geometry of thc Grolnov­
Witten invariants naturally involves total Inaps In, not just thcir top dilnensional
tenus Yn describing the physicists' correlation functions.

b). Thc lügher genus theory at the IllOlllent can be fonllulatcd only in tenns of
the cohomological operations paralnetrized by thc homology classes of the mocIuli
spaces of stable curves M gn' The analytic part of the theory whcrc an analog of the
potential plays the ccntral role is very incomplctely ullclerstood (cf. [BCOV] and
[K06].) Besides, it seelllS that the COholllological operations cannot bc rcduced to
the correlation fllnctions because of the existence of coholnolo6'1' classcs vanishing
on the boundary.

c). Returning to the genus zero case, in the abstract fralnework of Commoo ­

algebras, there exisl;s an operation of their tensor product. It can bc definecl as
follows::

(H' 'I' ) (H" "I") (H' H'" "1),9, n 0 ,9, n = 0 ,g 0g , n

where In are given by

I ( '" ''') (''') I' ( , , ) I" ( " ")n '1 0'1 !SI ... 0 'n !SI'n := E , , f n'l 0 ... 0'n /\ n f1 0 ... !SI'n .

This is an iInportant anel natural operation necessary c. g. for the forrnlliation
of thc quantllln Kiinneth fonnula. However, it seClllS irnpossiblc to construct this
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product without invoking MOn' In fact, its existence is a reflection of the fact that
H* (MOn) fonn an operad of coalgebra..'3, and not just linear spaccs.

In particulaI', consider Coo-algberas of rank 1 (i. c. dim(H)=l.) In tenns
of potentials, they correspond to arbitrary power series in one variable <I>(x) =

Ln;:>:3 ~7 x n because the associativity equations in one variable are satisfied identi­

cally. Hence we can define a tensor rnultiplication of such series. It turns out to be
given by quite non-trivial polynolllials in the cocfficicnts involving a generalization
of the Petcrsson-Wcil VOhllllCS of Mon'

We will give now S0111e exaluples. Thc fuller treatluent will be givcn in the lnain
body of the text.

0.6. Quantum cohomology of p 2 • First, wc have

Denote by N(d) (for d 2:: 1) thc nunlbcr of rational curves of degree d in p 2 passing
through 3d-1 points in general position. The first few values of N(d) starting with
d = 1 are

1, 1, 12, 620, 87304, 26312976, 14616808192.

The potential q,p
2, by definition, is

1 00 3ä-l

<I>P2 (x~o + Y~l + Z~2) = Z(xy2 + x 2 z) + L N(d) (3: _I)! edy
:=

d=l

(0.17)

A direct cOluputation shows:

0.6.1. Proposition. The associativity equations (0.1) for the potential (0.17)
are equivalent to one differential equ.ntion for cp:

2
cpzzz = cpyyz - cpyyycpyzz (0.18)

which is in turn equivalent to the fnmily of recursive relations uniquely defining
N(d) staTling with N(l) = 1:

N(d) = ~ N(k)N(I)k 21 [l (~d - 4) _k (3d - 4)] , d 2:: 2.
Li 3k - 2 3k - 1

k+l=tl

(0.19)

0.6.2. Geometry. Thc identitics (0.19) showing that (H* (P2, Q), 9, epp2) is
actually an instance of thc structure deseribed above werc first provcd by M. Kont­
sevich. He skillfully applied an old trick of enllluerative geoluetry: in oreler to
understand the nU111ber of solutions of a nUlucrical problern, try to devise a degen­
erate case of the problem whcre it becolnes casier. In this setting, Kontsevich starts
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with a new problelll having one-dirnensioTJ,a[ space of solutions and looks at two
different degeneration points in the line of solutions.

More precisely, fix cl 2: 2 and consider a generic configuration in p2 consisting
of two labelIed points YI, Y2, two labclled lincs h,12, and a set of 3d - 4 unlabeIlcd
points Y. Look at thc space of quintuples (PI, Xl, X2, X3, X4, f) where Xi E pI are
pairwisc distinct points, f: pI -t p2 is a lllap of degree d such that f(Xi) = Yi
for i = 1,2; f(xd E Li for i=3,4, and Y C f(PI). We identify such diagrams if
they are isonlorphic (identically on P2.) Then we can asStnlle that (Xl, X2, X3, X4) =
(1,0,00, A). If A is fixed and generic, the nlullber of maps does not depend on it.
Kontsevich counts it by letting first A -t 00, and sccond A -t 1. In thc stable
limit, pI degenerates into two projcctive lines, anel we lUllst sunl over aH possible
distributions of {Xi} U f-l(y) on these cornponents. Conlparison of thc two limits
furnishes (0.19).

To Illake all of this rigorous, onc 111USt introducc not only the I110duli spaces of
stable curves, but also thc 11l0duli spaces of stable lnaps MOn (P2) paralnetrizing
Kontsevich-stable lllaps to p2. Then it will becolne clear that thc calculation we
sketched abovc furnishes a particulaI' case of the identities (0.16).

0.7. Quantum cohomology of a three-dimensional quintic. Let V C p4
be a Slllooth quintic hypersurface. Its even cohomology has rank foul' and is spanned
by the powers of a hyperplane section, thc odd coholnology has rank 204 and
consists of three-diInensional classcs. For a generic even element, = L x a ß a E
H*(V), denote by Y the coefficient at ßI := cI(O(l)) and put

1> v (,) = ~ (,3) + L n(d)Li3 (edY )

d>l
(0.20)

where (,3) Ineans the tripie self intersection index, Li3 (z) = Lm>l zm /111,3, and
n(d) is the appropriatcly dcfined ntUllber of rational curvcs of dcgrce d on V.

Before we turn to the definition of n(d) l let l1S notice that in this ca..se thc
associativity equations are satisfied with whatever choice of these coefficicnts! This
cau be checked by a direct calculation. An arguably more cnlightcning argument
runs as foHows: in quantunl COhOl1l0logy of any V, thc associativity equations lllUSt
reflcct thc degeneration properties of rational curves on V H•."; was thc case with p2.

Now, on a quintic, thc rational curvcs are typically rigid so that there is nothing to
degenerate. (See however thc discllssion in 0.7.3.)

AIgcbraically, thc quanturn COhOlllOlogy ring of the projectivc plane with 0­

multiplication (cf. 0.2 abovc) is senlisilllpie whereas that of the quintic is nilpotent.
B. Dubrovin has devcloped a rieh theory of the Frobcnius luanifolds with pointwise
semisimple nntltiplication in tangent sheaf. This should eventuaHy providc analytic
tools for the nlIIllerical theory of rational curves on Fano varieties. On the contrary,
potentials of the Calabi-Yau threefolds are conjecturally constrained by thc mirror
principle rather than associativity cquations.

0.7.1. A definit ion of the n umbers n (d). A naive argulllCnt showing that
the number of rational curvcs of dCbrrec d on V Illust be finite runs as follows.
The space of l11aps f: pI -t p4, (to, td f---7 (fo(to, h), ... , f4 (to, h)) of degree
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d is a Zariski open sllbset in thc space pSd+4 of the coefficients of fonns fi. The
condition F(!o(to, tl),"" !4(to, h)) = 0 where F = 0 is the equation of V furnishes
5d + 1 equations on these coefficients. If these equations were independent, the
space of colutions would be 3~dinlensional. It is acted upon effectively by Aut(Pl)
(linear reparametrizartions) which leaves us with finitely many equivalencc classes
of unparametrized curves.

Unfortunately, it is unknown whether there cxists a sufficicntly gencric V for
which these equations actually are independent after deleting degenerating lnaps.
The sYlnplectic approach to this problem going back to M. Grolllov uses a drastic
defonnation of the c0111plex structure of V destroying its integrability. In this way
the problem is put into general position. More precisely, only isolated non-singular
pseudoholomorphic spheres in V with normal sheaf O(-1) + O( -1) survive, they
can be counted directly, and their nUlnber is stable.

Another strategy which we will sketch below does not leave thc algebraic geoluet­
ric fraillework anel even allows one to calculatc n(d) using the salne degeneration
philosophy as in the Example 0.6, although in a rather different setting. This
construction is also due to M. Kontsevich ([K07]).

Consider a pair (C, f) where C is a connecteel curve of genus 0 (a tree of pI's) ,
f: C ---+ p4 a nlap of degree d such that the inverse image of any point in I (c)
is either O-dimensional, 01' a stable curve of genus zero whose labelled points are
intersection points with non-contracted cOlllponents. Such pairs (C, f) are called
(Kontsevich-)stablc IllapS (of genus zero, to P4.) There exists a diagraIll

- 4 - 4M(P ,d) f- Cd ---+ P

where M(P4, d) is the IllOduli space (or rather stack) of stahle lllaps of degree d,
M(P4, d) is the universal curve on it. Denote the right arrow (the universallnap)
by CPd, and the left arrow by 7r. Put Gd = CPd(O(5)), Ed = 7r.(Gd)'

0.7.2. a). M(p4,d) is a smooth orbilold 01 dimension 5d+ 1.

b). E d is a locally Iree sheal on it 01 rank 5d + l.

0.7.3. Definition. n(d) := CSd+l (Ed ).

Motivation for this definition is shnplc: if a quintic V is dcfined by s = 0, s E
r(p4 , 0(5)), then [; produces a scction sE r(M(p4, d), Ed ), and

CSd+l (Ed ) = the number of zeroes of s

calculated with appropriatecl Inultiplicities. But 8([4/]) = 0 for [cp] E M(p4, d) iff
4/d(Cd,[l.,O]) C V. Thus we siInply avoided thc problCIll of assigning ad hoc luulti­
plicities to actual rational curves on V (which Iuay have a "wrong" nonnal sheaf,
singularities, or conlC in fanülies) by reducing it to a calculation of Chern ntunbers
on orbifolds.

Moreover, we silnultaneously created a setting in which degeneration can easily
occur. In fact, instead of consiclering curves in a fixed quintic V, we are now looking
at curves in p4 lying in V, i. e., treat V as an "incidence condition", sinlilar to
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3d - 1 points in p2 in 0.6 above. We may now freely change thc equation S = 0 for
V and can take, c. g'l 09 = n~=o Si where Si E r(p4, 0(1)) are coordinates in p4.

To Hlake sense of the problenl of "counting rational curves on thc algebraic
symplex Voo := ut=o{Si = O}" Kontsevich proceeds as follows. Considcr the Gm ­

action on the whole setting (p4, 0 (5), M (p4 , d)) givcn by Si 1---1 eAi t Si, i = 0, ... , 4
where Ai are the paraHIetcrs of this action considered as independent variables.

0.7.3. Claim. a). V00 is th e 0 nly reduced quintic fixed with resTJect to ihis
action.

b). Fixed points of this action in M(P4, rl) consist of stable pairs (C, f) where C
is a tree oi p 1 's rnapped by f to the i-skeleton of V00 (consisting 0/ 10 projective
fines).

Each such (C, f) has a cOl1lbinatorial invariant (T, A) which is, roughly speaking,
the dual tree T of C each vertex of which is labelled either by zero (if thc respeetive
component of C is eontracted by f), or by thc narne of the line in thc skeleton to
whieh it is rnapped and the degree of this I1lap.

Bott's formula for Chern nUlnbers of a bundle E in a situation wherc Gm acts
upon the whole setting involves a sunl of loeal eontributions over the conneeted
components of the set of Gm-fixed points, each contribution depending on thc
weights of Gm on the nornlal shcaf of the COl1lpOnent and on the restrietion of E
upon it.

Kontsevich shows that in our ease we get a SUlll

n(d) = L W(T 1 ;\) (0.21)

where thc Bott rnultiplicities w( T, A) of the parallletrized curvcs in thc I-skeleton
of Voo are explicit but cOlnplex rational functions on thc panl.llleters A of thc Gm ­

action. Since n(d) IUUSt be a rational or even integral number, rniraculous cancella­
tions must take place in thc r.h.s. of (0.21) which are not at all evident algebraically.

Conlputer calculations furnish thc following values for the first foul' n(d)'s:

2875, 609250, 317206375, 242467530000. (0.22)

More direct rrlCthods of counting rational curves lead to the salne nurnbers.

Although in a sense the potential (0.20) is now explicitly known, it is still difficult
to identify it with its conjectural rnirror irnage which we will shortly dcscribe.

0.8. Moduli spaces of Calabi-Yau threefolds as a weak Frobenius
manifold. As the discussioll in 0.4 and 0.5 shows, the geOl1letry of a Frobcnitls
luanifold on M is basically defined by a flat structurc and a syl1uuetric cubic tensor
which is the third Taylor differential of a potential in flat coordinates. A flat metric
is then used in order to raise indices and write the associativity equations.

If we are interested in a dass of potentials for which the a...,sociativity equations
are trivial, like (0.20), we Inay as well forget about the lnetric, and caU the resulting
structure weakly Frobenius. This geollletry naturally arises from thc theory of
variation of Hodgc structure of Calahi~Yall threefolcls.
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Let'Tr: W -+ Z be a eOlllplete loeal family of Calabi-Yau threefolds. Recall that
each fiber W z is a projective algebraic l11anifold with trivial canonical bundle and
hi,o = 0 for i = 1,2. Denote by ( = 'Tr,.n&/z the invertible sheaf of holonlorphic

volume fornls on the fibers of 'Tr. We will construct an .c-2-valued cubic differential
form G: S3(Tz) -+ (-2 in the following way. First, according to Bogomolov­
Todorov-Tian, the Kodaira-Spencer Illap (following from 0 -+ Tw/z -+ Tw -+
'Tr* (Tz) -+ 0)

is actually an isoInorphislll so that the tangent space at z E Z can be identified with
H 1(Wz , Tw,J "-J H 1(Wz , n;) 0 .c(Z)-l. Second, the convolution i: Tw/z x nfv/z -+

n~/i induces the pairings

R 1 (") R 1 'T Rq rlP Rq+l rlP-l, 'Tr,. 'l: 'Tr,. IW/Z x 'Tr*,Hw/z -+ 'Tr*,Hw/z

01' else
R1'Tr* Tw/z -+ t'nd(-l,l)(EBp,qRq'Tr.nev/z)

which is essentially the gTaded sYInbol of the Gauss-Manin connection defined
thanks to the Griffiths' transversality condition. Iterating it three times and using
Serre's duality we get finally:

In order to identify .c-2 with tJz (which we need to define a weak Frobenius struc­
ture) we Inust choose a trivialization of the volume fon1l sheaf. In the context of thc
rnirror conjecture, this is achievcd by postulating that Z can bc partially cOlnpact­
ified by diIn(Z) divisors with nOTrnal interscction in such a way that the falnily W
can be extended to a faillily of "degcnerate Calabi-Yau's" anel the zero-dimensional
stratu1l1 of thc bOllndary W00 beCOInes a lnaximally degeneratc lllanifold, likc the
siInplex V00 in the faInily of quintics. A precisc description of this condition is fairly
technical, and we olnit it here; but see Deligne's paper [De2].

Thcn the rnollodrolny invariant part of H 3(Wz , Z)/(tOTS) arouncl zero will be
generated by one cycle , defined up to sign (n10re or less by thc definition of
Inaximal degeneration), anel we locally trivialize L by choosing a vohnllc fonn W z

on Wz in such a way that f W z = (2'Tri)3.
"h

The Rat coordinates in which G is thc third Taylor differential of a potential w­
ean bc eonstructcd in the salne context as thc action variables of the algebraically
complctcly integrable systCln whosc phase space is the family of Griffiths Jacobians
of Wz : cf. [DoM].

A faInily W is callcd thc mirror faInily for V if onc can identify thc wcak Frobe­
nins luanifold strncture on H 2 (V) obtained via curvc counting on V (A-Inodcl)
with that corresponding to the variation of Hodge structure for W (B-Illodel).

For the particular casc of quintics considcred in 0.7 the Inirror fanüly clepends
on one paralllctcr z, anel -Wz is obtained by resolving singularities of the spaces
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W z /(Z/5Z)3 wherc Wz C p4 is given by thc equation L:~=l XJ = Z rr~=l Xj, and

(Z/5Z)3 acts by Xj ~ ~jXj, ~J = 1, n~=l ~j = l.

All the periods 7/;(z) := J Vz of an cxplicit algebraic voluIne fonn along !z E
I~

H 3 (Wz , Z) (any horizontal cycle) satisfy thc Picard-Fuchs differential cquation a :=

zd/dz) :
[84

- Sz(S8 + 1)(58 + 2)(58 + 3)(S8 + 4)]7/;(z) = O.

It has foul' linearly independent solutions near z = 0:

()
~ (Sn)! n

7/;0 z =~ (n!)5)z ,

00 (5 )I (5n )
1/;1 (z) = log(z)1/;o(z) + 5~ (n;S) kEl k-

I
zn,

anel two lllorc for wbich we givc only thc top terms

An appropriate Hat coordinate on the z-l1nc by definition is ~(z). Unclcr the Inirror

correspondence, it becoilles y in (0.20) thllS locally identifying H 2 (V, C) (where V
is a generic quintic) to the Inoduli space of the dual falnily W. Putting

5 00

F(y) := <p v (y) = (jy3 +L n(d)Li3(edy
)

d=l

we havc thc following conjectural nürror identity:

(0.23)

(?) (0.24)

Since 7/Ji are explicitly known, one can check that the first cocfficients agree with
(0.22) .

However, conceptually (0.24) looks baffting. In order to rcducc onr problenl to
the proof of an explicit idcntity, we havc overshnplificcl the gconletry. In partic­
ular, the nlirror pattern rnnst involve SOllle operator of parity change or an odd
scalar procluct on the fuIl Frobenius supennanifold, because an even part of H* (V)
becoInes idcntified with an odd part of H* (W). E. Witten and M. Kontsevich sug­
gested that generally one should extend tbe rnoduli space of tbc Dlodel Brather
than restrict (to H 2 ) the Ill0duli of the probleIn A. This is cruciaIly hnportant for
understanding the nürror picturc for thc higher-dinlensional Calabi~Yau manifolds
wherc rational curves cease to be isolated anel a considerably larger (depencling on
diIn(V)) portion of H* (V) becornes affccteel by the instanton corrections. Accord­
ing to Kontsevich, one should construct defornHitions of a Calabi-Yau rnanifold in
a lllysterious universe of non-collunutative objects like Aoo-categories (cf. [Ko4]).



15

A. Givcntal [Giv2] achieved a rcrnarkable progress in proving the Mirror Conjec­
ture for cOIllplete intcrsections in toric varieties whcre the precise construction of
mirrors is due to Batyrev ([BaI], [BaB02].) He enriched Kontsevich's approach by
passing to the equivariant quanttun coholnology. 80r118 work rel11ains to be done in
order to cOlllplete his argurllents.

0.9. Weil-Petersson volumes as rank 1 Cohomological Field Theory.
Thc rank of the CohFT on (H, g) is, by definition, diln(H). Let it be 1. Assuille for
sinlplicity that g(6. o, 6.0 ) = 1 for a basis vector 6. 0 E Hand fix it. Then thc whole
structure boils down to a sequence of (non-necessarily hOlllogeneous) coholnolo6'1'
classes

Cn := In(6.~n) E H* (MOn)Sn, n 2:: 3

satisfying the identities

(0.25)

(0.26)

(cf. (0.6) and (0.7)).

By the Theorelll 0.5, we see that each such theory is uniquely detennined by the
coefficients of its potential

<I?(x) := L C~l ,
n.

n23
On =1- Cn

MOn

(cf. (0.14)) which can bc totally arbitrary because any series in one variable satisfies
the associativity equations. Thcrefore, rank Olle theories seerll to be rather trivial
objects. However, this is not so for at least two reasons: first, there are quite
interesting specific theories of algebro-geonlctric originj second, the behaviour of
<I? (x ) with respect to the tensor product of theories is non-trivial.

Here we give an exarnple (the first term of a hierarchy) of algebro-geometrie
theories.

There is a standard Wcil-Petersson hermitian rnetric on thc non-colnpact rlloduli
spaces Mon paralllctrizing irreducible curves. On the boundary this lllctric becomes
singular. Neverthelerss, its Kähler fOrIn extcnds to a closecl L2-current on Mon
thus defining a rcal cohonlology class w:; P E H 2 (MOn)Sn. There is also a purely
algebro-geonletric definition of this calss (sec [AC]). Consider the universal curve
Pn: X n -t M Ou' Let Xi C X n be thc divisors corresponding to the structure
sections, and w = Wx IM thc relative dualizing shcaf. Then

n On

(0.28)

The rnain property of w;;P is

Cornparing this with (0.26) one sees that

Cu := exp(w;;P /2rr2
) E FI*(Moul Q)

(0.29)

(0.30)
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is a rank one CohFT. lts potential is a generating function for the Weil-Petersson
voltnnes considered in [Z]:

00

;r..wp() ~ Vn n
'±' x:= L I( ),x .n. 11,-3.

n=3

Vn 1 r (w;; P)n-3

(n - 3)! .- 7T2(n-3) iMan (11, - 3)!

P. Zograf proved that V4 = 1, V5 = 5, VB = 61, V7 = 1379, and gcncrally

1~ i(n - i - 2) (17, - 4) ( 11, )
Vn = - L...J . ' Vi+2 Vn-i, 11, 2: 4.2 11,-1 ,t-l ~+1

i=l

(0.31 )

(0.32)

(0.33)

This is equivalent to a non-linear differential equation for <I>WP(3;). What is Iuore
renlarkable, the inverse function for the second derivative of the potential satisfies
a linear (modified Bessel) equation:

00

L Vn n-2
Y= X

n=3 (n - 2)1 (17, - 3)!

00 (_l)m-l
x = L m! (m _ 1)1 ym .

m=l
(0.34)

It is telupting to see this as another tiny bit of the general "mirror phenolnenon."
This can be considerably gencralized to the complcte description of the tensor
product of invertible rank one CohFT's. Thus, in addition to thc associativity
equations for the quantlun cohornology of pla.ne (alld other Fano Iuanifolds), the
hypergeoilletric equations for Calabi-Yau (nlade non-linear by a coordinate change)
we have onc more differential cquation of a sccIningly diffcrent origin.

0.10. Main themes. FroI11 this sketchy overview, it lUllSt bc clear that the
quantlun eohoI11ology is an execptionally rieh anel tightly woven structurc.

In this first part of thc notcs wc devote Chapters I, 11 to thc global geoIlletrie and
analytic thcory of Frobenius I11anifolds. Chapter 111 introduces thc rnore algebraic
aspects: fonnal Frobenius manifolds, lnocluli spaces and operads.

The projected second part of the notes will concentrate upon algebraic geoIlletric
constructions of the GroIllov-Wittcn invariants. In this first part they figure only
as examples or in axioInatic fonn.

There is one rnore structure that kccps appearing in all thc ralllifications of this
subject: trees and nlorc general graphs, eventually with labels. They enumerate
the strata anel cclls of M g,n l help to visualize the COIllposition laws of operads and
operadic algebra..", govern the counting of curves on quintics via Kontsevich's COll­

struction. Many generating functions and potentials 1-, when they can be cxplicitly
ca1culated, often appeal' in the guise of sums over labelled graphs of rather special
type, perturbation series, which are weH known in statistical physics and quantlun
field theory.

One can look at graphs as a Illere book-keeping device and treat theIn in ad hoc
manner whenever they appear. However, I thought it worthwhile to pay them lnore
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respect anel to use various categories of graphs as a cOlnbinatorial skeleton of the
theory.

0.11. Problems of higher genus. If we try to count higher genus curves
on algebraic manifolels, the general picture becoines less coherent, clue to Inany
unsolved probleIns. SOlne of thc Inain thelllCs adinit a generalization, but they fit
together 1110re loosely.

As we Il1entioned, in the description of Inodular spaces trees are replaced by
Inodular and/or ribbon graphs of arbitrary topology. There is also aversion of
Ill0dular operads.

A formalism of GroInov-Witten invariants is known, as weIl H..c; SOille construc­
tions of then1.

Perturbation serics becaIne 111uch Illorc cOlnplex, roughly speaking, they cor­
respond to the asylnptotic expansions of path integrals rather than solutions of
classical differential cquations.

Of the three descriptions of quantum coholnology suggested in 0.1, only thc
second one survives ill lügher genus, involving cohomalagical operations on H* (V)
parametrized by all classes in H* (Mg,n)' No reduction of this structllre to nllll1erical
invariants 01' solutions of differential cquations is known.

For the Calahi-Yau thrcefolds, an extension of thc mirror picturc (gcornctry
of nloduli spaces) is suggestcd in [BCOV], hut it is less weIl undcrstood anel less
binding than the genus zero mirror conjecture.

In short, a lot relnains to be done.

Our strategy is to throw in SOIlIC explanations about the lligher gcnus case when­
ever it looks appropriatc, hut defer a deeper treatlnent to thc second part.
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CHAPTER I. INTRODUCTION TO FROBENIUS MANIFOLDS

§1. Definition of Frobenius manifolds

and the structure connection

1.1. Supermanifolds. We will work throughout this section anel the next one
in the superextension of one of the classical catcgorics of manifolds Man: 0 00

, real
analytic, 01' complcx analytic. Whenever integration can bc avoided, Man lnay be
even a catcgory of Slllooth algcbraic lnanifolds over a ficld of characteristic zero. To
fix notation, we bricfly recall the basic framework of [Ma2], Ch. 4 and 5.

1.1.1. Definition. A supermanifold is a locally ringed space (M, OM) with the
following propertie8.

a) . CJ M = 0 M, 0 EB CJM, I is the structure sheaf 0 f Z2 -graded s1tperC01nmutative
rings.

b). Mrcd = (M,OM,rcd := OM/(CJM,d is a classical manifold, oby"ect 01 the
respective classieal eategory.

e). CJM is locally isomorphie to the exterior algebra t\(E) 0/ a free CJM,red -module
E.

A morphism 0/ superrnanifolds is a 1uorphism of loeally ringed spaces extending
a classical1norphism 01 underlying reduced m,anifolds.

We denote (M, OM) silnply M, whcn there is no risk of confusion.

1.1.2. Conventions. By x wc denote thc Z2-clegree, 01' parity, of a homoge­
neous object x (local functioll, veetor ficld, scalar product ete. )

If M is a supcnnanifold, loeal coorelinates in a neighbourhood of a point forrn a
fanüly of sections of the strueture sheaf which can be obtaineel as folIows. Choose
a local isolllorphislli r.p : t\(E) ---t GM as above, local coordinates (xl, ... , :Fm) on
M rcd , and free loeal generators (xm+ l

, ... , x m +n
) of E. Put xi = r.p(xi ). Then

(xl, . .. , x m +7l
) are local coordinates on M. Any local function on M can be ex­

pressed &0;; a polynonüal in anticotnmuting odd coordinates x11l+1 , ... , x m +n whose
coefficients are classical (000

1 analytie, ete. ) functions of the COllulluting even
coordinates x m +1

, ... ,x11l+7l
). Odd coordinates are sometinlcs denoted by Creek

letters.

If M is conneetcd, thc pair 111.ln is an invariant of M called its (super)diInension.
Whcn n = 0, we say that M is pure cvcu. Transition functions bctween various
loeal coordinate systellls, of course, necd not be linear in odd coordinates, e. g.
(x, ~,11) H (x + ~11, x~, X-111) is a transition fllnetion outside x = O.

The De RhaIn cOlllplex of sheaves on M is the universal (Z2l Z)-graded differ­

ential 0 M -algebra (nM 1 rl) wi t h odd differcntial d. T his means that dx = x+ 1,
anel the Lcibniz fOflllula reads

d(f!J) = clf 9 + (-1) I f dg.
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Notice that as GM-algebra, 0M is the symmetrie algebra of the OM-rllodule 01­
rather than cxterior one. This is the combined cffect of our choiee of odd d and the
rule of signs dcfining thc action of Sn upon p0n:

where €(a,p) is the sign of the perultItation indueed on odd Pi (i.c. when even Pi
are sinlply disregarded).

Given Ioeal coordinates (x(~) on M, they detennine the local vcctor fields Da =
D/ axa by thc rule

for any I in GM. Notice that aa = Xa and aaab (-l)XaXbDbDa so that the
superConulllltator, which wc dünote by the usual square brackcts [aa, ab], vanishes.
To shorten notation, a sign of the type (_l)Xa(xb+Xc) will be denoted (_l)a(b+c).

The tangent shcaf TM (resp. cotangent sheaf TM) is locally freely generated by
(aa) (resp. by (dx a ) with reverse parity.) .

A Riemannian rllctric on M is an even syrurllctric pairing 9 : S2 (TM) --+ (]M,

inducing an isomorphisrll g' : IM --+ IM' We put ga,b := g(8a,ab). Clearly, gab =

xa + Xb. No positivity condition is iUlposed, even in thc pure even ease over R.

A warning: in rnany situations it is necessary to considcr thc relative versions
of all these notions, that is, to work with submersions of supenuanifolds M -+ S
considered as a farnily pararlletrizcd by thc base S. Functions on S are "constants",
and since therc are no odd constants in Rar C, thc neeel for a base extension arises
in supergeornetry rnore often than in the pure even setting. The necessary changes
are routine.

The following strllcture is inlportant in the theory of Frobenius manifolds.

1.2. Definition. a). An affine flat structure on the supeml,anilold M is a

.5ubshealTft C TM 01 linear spaces 0/ paiT'wise (super)commuting vector jields, .5uch

, that TM = (]M (9 Tft (ten,sor IJToduct over the gTound field.)

Sections 0/ Tft are called fiat vector fields.

b). The metric g is eornpatible with the .sti/J.cture 1ft, il g(X, Y) is constant for
fiat X, Y.

In the snlooth or analytic ca.."c, an affine flat structllrc can also be equivalently
described by a cOlllplete atlas whose transition functions are affine linear, because
for a maximal cornrnuting set of linearly independent vector fields (Xa ) one can
findIoeal coordinates such that X a = 8/8xa , and they are defined up to a constant
shift. .

If a rnetric 9 is cOlupatible with an affine flat structurc, it is flat in the sensc of
the straightforward (not involving spinors) sllpercxtension of RieIllann geornetry.
The parallel transport endows Tft with the strllcture of loeal SystClU.

We now give the ccntn"Ll definition of these notes, duc to B. Dubrovin.
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1.3. Definition. Let M be a supermanifold. Consider a triple (T1t ,g, A) con­
sisting of an affine fiat strneture, a eompatible metrie, and an even syrnrnetrie
tensor A : S3(TM) --+ GM.

Define an GM -bilinear syrnmetr'ie multiplieation 0 = °A ,9 on TM:

where prime denotes a partial dualization, or equivalently,

A(X, Y, Z) = g(X ° Y, Z) = g(X, Y ° Z).

(1.1)

(1.2)

This means that the rnetric is invariant witk respeet to the rnultipIieation.

a). M endowed witk this strueture is ealled a pre-Frobenius manifold.

b). A loeal potential <I> for (Tlt, A) is a Ioeal even function sueh that for any flat
Ioeal tangent field.5 X, Y, Z

A(X, V, Z) = (XY Z)<I>. (1.3)

A pre-Frobenius manifold is ealled potential one, if A eve'T7Jwhere loeally adrnits a
potential.

e). A pre-Frobenius manifold is ealled assoeiative, if the multiplieation 0 is
associative.

d). A pre-Frobeniu.'1 manifold is ealled Frobenius, ij it is simultaneously ]Jotential
and assoeiative.

1.3.1. Rernarks. a). Ir a potential <I> exists, it is unlque up to adding a
quadratie polynomial in Bat loeal coordinates.

b). In flat Iocal coordinates (x(.~) (1.3) becolnes A abc = aa8b8ci:J!, and (1.2) can
bc rewrittcn as

aa ° ab = LAab
c8c,

c

whcre
A ab

c := LAabegec , (gab) := (Yab)-l.
e

Furthennore,

(aa ° ab) ° Oe = (2: A abeoe ) ° Oe = 2: A ab e AeefOfl
e ef

O(J. 0 (8b O ae) = aa 0 2:A/)(;e8c = (-I)u(b+e+c)LAbceAacf8f =
e ef

= (_I)a(h+c) L Abcc Aeafal
cf

(noticc our abbrcviated notation for signs.)

(1.4)

(1.5)
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COlnparing the coefficients of 8f in (1.5), lowering the superseripts and expressing
Aabc through a potential, we finally see that thc nation of the Frobenius lnanifold
is a geolnetrization of the following highly non-linear and overdcternlincd systelll
of PDE:

Va,b,c,d: 2:WabegefiP/cd = (_l)a(b+c) 2:iJ?bcege/iJ!/ad. (1.6)
e/ e/

They are called Associativity Equations, 01' WDVV (Wittcn-Dijkgraaf-Verlinde­
Verlinde) equations.

We willnow express (1.6) as a flatness condition.

1.4. Definition. Let (M, 9, A) be a pre-Frobenius manifold (we omit Tft in the
notation, since it can be reconstructed frorn g.) Define the following objects:

a). The connection \70 : TM --+ 0it- 0 TM welt determined by the condition that
flat vector Jields are \70 -horizontal.

Denote its covariant derivative along a vector field X by

\7o,X(Y) = ixCvo(Y)), ix(df (8) Z) = XI (8) Z.

b). A pencil of connections depending on an even parameter ,x:

\7 A : TM --+ oiJ. 0 TM: \7 A,X(Y) := \70,x(Y) +,xX 0 Y. (1.7)

We will call \7 A the stnLc ture connection 0f (.11.1, g, A) .

1.4.1. Remark. In Rat coordinates (1.7) reads:

c

Therefore \7 >. has vanishing torsion für any ,x. In particular, V'0 is the Levi-Civita
(super)connection for g.

Notice that the covariant differential \7>. is adel. As in the pure even ease, it can
be naturally cxtendcd to all nM.

1.5. Theorem. Let \7>. be the structure connection 0/ the pre-Frobenius man­
ifold (M,g,A). Put \7~ = ,x2R2 + ,xR1 (there is no constant tenn since \76 = 0.)
Then

a). R 1 = 0 {:::::::} (M, g, A) is potential.

b). R 2 = 0 {:::::::} (M, g, A) is associative.

Therefore (M, g, A) is Frobenius, ijj V' >. is flat.

Proof. a). Calculating the ,x-ternls in
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we see that R1 = 0 iff Va, b, c, e, DaAbc e = (-1 )ab8bAaee, or better

(1.9)

If A is potential, this follows frolll (1.3). Convcrsely, aSSUIIlC (1.9). Then for aB
c, d, the fonll Lb dxb Abed is closecl, hence locally exact by the sllperversion of thc
Poincare lenlllla. Thus we can find local functions B ed = (-1 )ed Bde such that

because A is synImetric. It follows that for all d, Le dxeB ed is closcd. By thc
same reasoning, we have locally B ed = 8eC d anel finally Cd = 8d 4:>, so that A bed =
8b8e8d fP.

b). Calculating thC.-\2 tenns in [\7).,x, \7 Al y](Z), we find that

R2,xy(Z) = X 0 (Y 0 Z) - (_l)XY y 0 (X 0 Z).

Hence if 0 is associative, R2 = 0, because 0 is always (super)coIlllllutative. Con­
versely, if R2 _ 0,

X 0 (Y 0 Z) = (_l) XY y 0 (X 0 Z) = (_l)X(Y+Z)y 0 (Z 0 X) =

= (_l)XY+xz+yZ Z 0 (Y 0 X) = (X 0 Y) 0 Z.

1.6. Induced structures. Let M' --+ M be any lnorphislll of supennanifolds
which is an isolllorphisIll locally at any point of M', for instance, an open elnbed­
ding, 01' an unralnifiecl covering of an open submanifold. Then all structures on M
described above illduce the respective structures on M'.

Induction on closed sublnanifolds is less comlllon. However, one can always in­
clnce a (prc-) Frobenius structure fr01l1 M to M red . Functions on M rcd are obtained
by factoring out all nilpotents (their ideal is generated by odd loeal coordinates.)
In the De R.hanl complex, the differentials of odel coordinates are factored out as
weH. Under this reduction, the fiat even coordinates by definition remain Rat; thc
even-even part of the llletric form renuüns the sanlC; new potential is the reduction
of thc old one. It is not difficllit to check that (1.6) after reduetion will becolne the
Associativity Equations for the recluced potential.

In Quantum COhOIllOlogy, this will allow 11S to restrict attention to thc pure cven
dimensional subspace if neecl be. However SOllIe infornlation will be lost thereby.

1.7. Example: cubic potentials. The simplest exaInplcs of Frobcnius Inan­
ifolds are furnishcd by potentials which are cubic fOrIns in fiat coordinates with
constant coefficients. The algebra of tangent vectors at any point is just a eOln­
lllutative (super)algebra with invariant scalar product, locally independent on thc
point (fiat loeal fields identify two algcbras at a neighborhood of any point.) For
Illore sophisticatcd exaluples, see §4 below and the next Chapter.
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§2. Identity, Euler Held, .

and the extended structure connection

2.1. Definition. Let (M, g, A) be a pre-Frobenius rnani/old. An even vector
field e on M .is called identity, if c ° X = X for all X.

If e exists at all, it is uniquely defined by 0, hence by 9 and A.

Converscly, given A anel e, there can exist at Inost one metric 9 Inaking (M, lJ, A)
a pre-Frobenius manifold with this identity:

g(X, Y) = A(e, X, Y).

This follows froln (1.2). If A has a potential <1>, this translates into a non-holnogeneous
linear differcntial equation for <I> snpplclnentillg thc Associativity Equatiolls (1.6):

V Hat X, Y, eXY<I> = g(X, Y).

In fact, if e = ~a eaDa, Da Hat, wc have fr'oln (1.3):

a

(2.1)

In IllOSt (although not all) irnportant cxarnplcs e itsclf is flat. If this is thc case,
one ean evcrywhere locally find a Bat coordinate system (xo, ... , x 71

) such that
~ = 8/8xo = 80 , and (2.1) beeomes

\:I a, b, <I>Oab = gab. (2.2)

Since an gab are constants, we get

2.1.1. Corollary. On a potential pre-Frobenius mani/old with flat identity
e = 80 (in a flat coordinate systern) wc have modulo tenns 0/ lieg/ce::; 2:

(2.3)

2.1.2. Co-identity. The rnctric 9 identifies TM anel TM' We will call the
co-identityand dcnote c the I-fonn which is thc ilnage of e (with reverse parity.)
More precisely, c is defined by

\:1)( E TM, ix(c) = g(X,e).

If (:cG
) is a loeal coordinate systenl, thcll

a
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Finally, if e and (xa) are Rat, then g(8a,e) are eonstant, and

(2.4)
a

2.2. Euler field. We will say that an even vector field E on a Inanifolel with Rat
Inetric (M,g) is conformal, if LicE(g) = Dg for SOUle constant D. In other worels,
for all vcctor ficlels X, Y we have

E(g(X, V)) - g([E, XJ, Y) - g(X, [E, V]) = Dg(X, V). (2.5)

It follows that in flat coordinates we have E = ~a Ea(x)8a where Ea(x) are poly­
nomials of degree ~ 1. In fact, E is a sunl of infinitesimal rotation, dilation and
constant shift. Hence [E, Tk-l C Tk-' Moreovcr, thc operator

V: Tlr -+ Tlr, V(X) := [X, E]- ~ X

is skewsymIlletric:

V Rat X, Y: g(V(X), Y) + g(X, V(Y)) = O.

2.2.1. Definition. Let E be an even vector Jield on a pre-Probenius manifolcl
(M, 9, A). It i." called an Euler Jield, if it is con,Jorrnal, and LieE(0) = doo for some
constant do, that is, Jor aU vector Jields X, Y,

[E, X 0 Y] - [E, X] 0 Y - X 0 [E, Y] = doX 0 Y. (2.6)

Notice that it suffices to check (2.5) anel (2.6) for X, Y in any (loeal) basis of
TM, becausc both sieles are OM-bilinear.

Clearly, any scalar nlultiple of an Euler ficlel is also an Euler field. One cau
use this relnark in order to nonnalize E by requiring that sorne non-vanishing
eigenvalue bcconlcs one. A convcnient choice is often do = 1, if we have reasons to
restriet oursclves to thc da i= 0 ease.

2.2.2. Proposition. Let E be a conformal vector field on a FTobenius manifold
(M, 9, <p). Then E is EuleT, iff

Ei!! = (do + D)i!! + a quaclratic polynonlial in flat coordinates. (2.7)

Proof. Clcarly, (2.7) is equivalcnt to the following stateInent: for all flat X, Y, Z

Now

XYZEi!! = (do + D)XYZi!!. (2.8)

XY ZE<I> = E~YYZiJ! - XY[E, Z]<I> - X[E, Y]Z<I> - [E, X]YZcI>. (2.9)
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Using (1.3), (1.2), and the fact that [E, T~] c Tk, we can rewritc thc right hand
side of (2.9) as

Eg(X 0 Y, Z) - g(X 0 Y, [E, Z]) - g([E, X 0 V], Z)+

+g([E, X 0 V]' Z) - g(X 0 [E, V], Z) - g([E, X] 0 Y, Z).

The first three tenns add up to Dg(X 0 Y, Z) = DXYZ<I>. The last thrcc tcrms
add up to dog(X 0 Y, Z) = doXY Z<I> precisely if E is Euler.

2.3. Gradings induced by E. Put now

(2.10)

Notice that wc are considering not necessarily flat fields, and shift the eigenvailles
by da. Similarly, put

(2.11 )

This is a graded sheaf 'of algebras.

2.3.1. Proposition. On any pre-Frobenius manifold M with Euler field E, the
sheaf TM ( *) is

a). A graded 0 M ( *) -module.

b). A graded super'corrunutative algebra with multiplication o.

c). A graded Lie supe/algebra with the bracket 01 degree -da.

This is proved by a. straightforward calculation which is left to thc reader.

As a corallary, since [E, E] = 0, we havc E E TM(do), so that Eon E TM(ndo),
01'

(2.12)

I da not see how to get in this setting thc cornulutation relations betwccn arbitrary
E°m. and Eon. Later we will obtain theIn for sernisirnple Frobenins rnanilolds, and
find (for do = 1) the algebra of vector ficlds on a liue.

2.4. Case of semisimple ad E. We will call the set of eigenvalucs of -ad E
on Tft, together with do and D, the s]Jectrurn of E. We will say that E is semi­
simple, if ad E, acting on flat fields, iso For scnüsiulple E wc can construct many
homogeneous elenwnts of 0 M (*) and TM (*) cxplicitly.

Let (Ba) be a loeal basis of TIJ such that

(2.13)

where (da) fonn apart of the spectnnll of E. (Wc assume here that thc ground
fielcl is C 01' else cOlllplexify the tangent shcaf.) Putting E = L: E(~(x)Ba, we find
froln (2.13) that oaEh = o~da' Hence ifoa = %xa , we have

E = L (daxa + ra)oa + L rbBb'
a: da.#O b: db=O
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By shifting x a , we ean make r a = 0 for da -# O. Multiplying x b by a eonstant, wc
ean make r b = 0 or 1 for db = O. So finally we cau choose loeal flat coordinates in
such a way that

E = L da x
a
8a + L 8b •

a: da #0 same b: d b =0

Clearly, E assigns definite degrees to the following loeal funetions:

ASSlllne now that M has an idcntity e. Fron1 (2.6) we get

[e, E] = eioe.

(2.14)

(2.15)

(2.16)

Hence our notation for the spectnllll will be eonsistent, if in the case of flat e wc
put e = 80 , and otherwise do not use 0 as onc of the subscripts in (2.13).

In ll10re invariant form (2.14) can be written as

E = L E[8],
sEC

where E[s] is the part of (2.13) consisting of sUllllllands with da = s for s -# 0, and
the reIllaining slunmands for s = O. This clecornposition cloes not depend on the
relnaining arbitrariness in thc choice of Iocal coordinates.

We can now prescnt some of our prcviolls rCllulrks in more COllcrete form. Put

T~[r] := {X E Tt I [X, E] = rX}.

(Noticc thc difference with (2.10).) Thcn thc condition (2.5) is equivalent to the
following oue:-

T~[da] and Tt[db ] are 'orthogonalunless da + db = D.

In fact, (2.5) in the basis (2.13) bcconlcs

that is,
(2.17)

In partieular, g(e, e) = 0 llnless D = 2rlo.

2.4.1. Proposition. (2.6) is equivalent tn any one 01 the following sets 01
equations writtcn in the basis (2.13):

(2.18)

(2.19)

This follows [raIn the hOIllogeneity of 111ultiplication.
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We now have thc following supply of homogeneous functions: eOlnponents of A
and rnixed lllonolnials in Ioeal funetions (2.15):

aII,co (xa)m
a Jloexp (nb

xb
) E GM C,~omada + b,Eo nbr

b
) , (2.20)

where m a E Z, nb E R (or C.)

2.5. Extended structure connection. Let M be a pre-Frobcnills Inanifold
with a confonnal vector field E. Put M := M x (PÄ \ {O, oo}), whcrc PÄ is thc

conlpletion of Spcc C["\,"\-1 Furthcnnore, put T = prM(TM)' If X is a vcctor field

on M, it nlay bc Iifted to M in two different guiscs: as a veetor ficld annihilating
"\, denoted again X, anel as a seetion of T, then denoteel X.

a .-
.- Choose a constant do anel put [ := E - do,,\ BA E TM' Clearly, X for ftat X span

T, whercas flat X and [ span TM' provided do =I 0, which we will assulnc.

2.5.1. Definition. Let M be a pre-Frobenius rnaniJold with a conJorrnal field
E, and do a non-zero constant. The extended str1.lcture connection Jor M is the con­

nection 9' on the sheaJ T on M, defined by the Jollowing Jormulas for its covariant

derivatives: Jor any IDeal vector fields X E TM, Y E T~,

.-.- -
\7x(Y) := .xX °Y,
.-.- -
V'E(Y) := [E, V].

(2.21)

(2.22)

2.5.2. Theorem. The extendcd strnctnre connection is flat iff M is Frobenius
and E is Euler' with LieE (0) = rioo.

Proof. Froln i2.21) it follows that the vanishing of the XY -eolllponents of
the eurvature of V' for all Hat X, Y is equivalent to thc ftatness of thc strueture
connection of M.

It remains to ealculate thc [X-colnponents, Lc. thc expression

9'[E,X](Y) - [~E' ~x](Y) (2.23)

for all Hat X, Y. Sinee (t',X] is thc lift ofthe Bat. ficld [E,X], froln (2.21) anel (2.22)- ..............
it follows that the first tenn of (2.23) is .-\([E, X] ° V). Furthernlorc, V'x(Y)-,,\X °Y, so that

..................... - _.-.-.- -
V'EV'X(Y) = A[E,X ° Y] - do.xX ° Y, V'x\7E(Y) = AX 0 [E, V].

We see that thc vanishing of this part of the curvaturc is equivalent to (2.6). This
finishes the proof.

Froln (2.21) and (2.22) one can derivc a fonnula for the eovariant derivative in
the .-\-direetion: if Y is Hat, we havc

--------.......... ...........,.;-............ ..-.. ........ - ~ ........

[E, Y] = V'E-~>'8;8>JY) = \7E(Y) - dOAV'8;8>' (Y) = .-\E °Y - dOA V'8;8>' (Y)

so that

(2.24)
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§3. Semisimple Frobenius manifolds

Let (M, g, A) be an associativc pre-Frobcnius 111anifold of cliInension n. In this
section and the next one we will aSSUlne that M is classical, that is, pure even.

3.1. Definition. M is called semisimple (resp. split semisirnple) if an isornor­
phism of the sheaves of CJM -algebras

(TM, 0)~ (OM 1 cOInponentwise Inultiplication)

exists everywhere locally (resp. globally.)

(3.1)

This rneans that in a loeal (resp. global) basis (Cl, .. ' 1 Cn ) of TM thc Inultipliea­
tion takes fornl

and in particular,
(3.2)

Such a faInily of idenlpotents is weIl defincd up to renurnbering. Another way of
saying this is that a scrnisirnple manifold comes with thc structure group of TM
reduced to Sn. Notice that Ci are generally not Hat, so that this reduetion is not
eonlpatible with that induecd by T~, with the structure group GL(n).

Hence if M is scrrüsitnple, there cxists an unraInificd covering of dcgree ::; n!,
upan whieh the induced pre-Frobenius strueture is split.

Denote by (vi) the basis of I-fonns dual ta (ed. FroIll (1.2) anel (3.2) we find

We will denote 9ii by 1Ji. Wc sec that the synulletrie 2-forrn representing 9 is
diagonal in the basis (vi):

(3.3)

Moreover, aceoreling to (1.2), A(ei' Cj, Ck) = §ij§ik1Ii, so that thc symInetric 3-forl11
representing A, is diagonal with the sanle eoefficicnts:

(3.4)

Finally, e := L:i Ci is thc identity in (TMl 0), and thc ca-identity, defined in 2.1.2,
niecly cOlnplcnlcnts (3.3) anel (3.4):

(3.5)

Thus thc Definition 3.1 can bc restated as folIows:
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3.2. Definition. The stnletUTe of the semisimple pre-Frobenius manifold on
M is determined by the following data:

a). A reduction of the str'lleture gr07LJ} of TM to Sn, speeified by a choiee 01 ioeal
bases (ei) and dual bascs (vi).

b). A flat metrie g, diagonal in (cd, (vi).
e). A diagonal e71bie tens01' A with the same coeffieients as g.

Associativity of (TM, 0) is autornatic in both descriptions. However, potentiality
(and the flatness of gwhich we postulated) are non-trivial conditions.

3.3. Theorem. The stnLet71re deseribed in the Definition 3.2 is Frobenius iff
the following conditions are satisfied:

a) . (ei, ej] = 0, 01' equ.ivalently, ei = D/ Dui, vi = du i for a [Deal eoordinate

system (ui) ealled eanonieal one.

b). TJi = ei 1] for a IDeal function 1] defined up to addition of a constant. Equiva­
Zent/y, E: is closed.

We will call11 the 1netrie potential of this structure. (Sornetimes this term refers
to h such that gab = ßaDbhj our n1caning is different.)

Canonical coordinates are dcfincd up to rcnurnbcring and constant shifts.

Proof. Let \7 >. be thc structurc conncction of the pre-Frobenius manifold M.
According to the Theorclll 1.5, M is Frobcnius iff thc curvature \7~ vanishcs, i. e.
iff

(3.6)

.Since M is associativc, anel sincc wc a..<;;sllIl1cd that 9 is Bat, wc havc to worry only
about thc "\-linear tenns in (3.6). Let us start with introducing the Riemannian
connection coefficicnts of g for thc basis Ck:

\7o,ci(Ck) = LrikqCq.
q

(3.7)

Since \7.\,x
"\~tefIns

\70 ,x + ,,\Xo (cf. (1.7)), the left hand side of (3.6) prodllces the

(VO,Ci + "\Ci O )(\7o,cj + ACjo)(ek) - (i H j) =

= "\Ci 0 Lrjkqcq + A LOjkfikqeq - (i H j) + ... =

q q

= A L(oiqr]k + Ojkr?k - Ojqr?k - dikrjk)eq + ...
q

Now introduce the Lie cocfficicnts

(Cil Cj) = L fijqeq.
q

The "\-tenns in thc right hand sidc of (3.6) cunount to

V.\,[ei,ej](Ck) = AL fij(}eq 0 ek + ... = ,,\fijkek + ...
q

(3.8)
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But the coefficient of ek in (3.8) vanishes. Thereforc, if M is Frobenius, then
(3.6) is satisfied, so that fijk = O. Hence Ci pairwise cOlnlnute, and Iocal canonical
coordinates u i do cxist.

Moreover, thc lcft hand side of (3.6) vanishes. Again, it. suffices to investigatc
thc meaning of this, looking only at "'-linear terms.

Recall that for any metric 9 = L 9ij du i duj the coefficients of the Levi-Civita
connection are given by the fonnulas

k" lk 1 ( )f ij = L.,; r ijl 9 , f ijk = 2 ei9jk - Ckgij + ej9ki .

I

The nonvanishing conncction cüeffitients of 9 = L 77i(du i )2 are (i =I=- j) :
. 1 1 . 1 1

r ii' = 277; Ci 77i, r i/ = - 277} ej 77i,

i i 1_1r ij = r ji = "2 77i ej77i. (3.9)

Hence putting V' := V'o (the Levi-Civita connection), V'i := V'O,Cil we havc

1 1 ,,1 1
V' i (ed = 2 77; ei17i . ei - L.,; "2 777 ej77i . ej,

j::j.i

1 -1 1 -1
Y'i(ej) = 21li Cj 77i' ei + 217j eiTlj' ej. (3.10)

Nüw, the vanishing of the "",-tenns in the left hand siele of (3.6) means that

Vi,j, k: ei 0 V'j(ek) + V'i(ej 0 ek) = (i H j). (3.11)

Using (3.10), one checks that (3.11) is ielcntically satisficd für 'i = j and for i =I=- j =I=­

k =I=- i, wherea..'3 the ca:~e i i= j = k gives

(3.12)

The same condition is übtaincd for k = i =I=- j. It follows that 17i = ei17 für S0l11e 7/,

defined at least locally.

Reading this argU111cnt in reverse dircction, we see that if a) anel b) are satisficd,
then Y' >. is flat, and M is Frobenius.

3.4. The Darboux-Egoroff equations. The Thcorcln 3.3 establishes a (not
very explicit) equivalence between thc following functional spaces on M (rnodulo
self-evident eql1ivalCIlce):

a) . Flat coordinatcs (x 1 , ... , X n ), Rat metric 9ab, funetion <I> (x) satisfying thc
Associativity Equations (1.6) anel sClnisimpIicity.

b). Canonical coordinates (u 1, ... , nU
), function 71 (u) such that thc Il1ctric 9 =

L:ei1J(dui)2 is flat, whcre ei = 8/8u i .

The constraints on 77, iInplicit in b), are called thc Darboux-Egoroff cquations.
In order to writc thetn down explicitly, let HS introduce the rotation coefficients of
the potential lnetrie:

1 17i'
"'1/ ••• - _ J
I~J .-

2 JTli77j
(3.13)
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3.4.1. Proposition. The diagonal potential metne 9 = ~ ei1](du i )2 is flat iff

Vk =I i i= j i- k :

(3.14)

and

(3.15)

Proof. This is established by a straightforward calculation, e0111plClllcnting that .
in the proof of the Theorelll 3.3. In fact, we now want to 111ake explieit the condition
\72 = 0 wherc \7 is the Lcvi-Civita conneetion. So we return to (3.6) at A = 0, i. e.

Nonvanishing eurvaturc eOlllponents can oeeur only for i i= j. Calclliating theIn
direetly we arrive to (3.14) and (3.15).

3.5. Proposition. Let e be the identity, and c the co-identity 0/ the semisirnple
Frobenius manifold. Then

a). c = d1], where 17 is the metric potential.

b). e is flut iff fOT all i, e1]i = 0, or equivalently, e1] = g(e, e) = const. This
condition is satisfied in the presence 01 an Euler field with D =1= 2do (see (2.5),
(2.16), (2.17).)

c). 1/ e is flat, and (xa
) is a flat coonlinate system" then

TJ = L xag(Ba, e) + const.
a

(3.16)

The fonuula (3.16) shows that in the passage froln the (x a
, <P)-dcseription to

the (ui , 17)-deseription the Inain infonnation is eneoded in the transition formulas
ui = ui (x), at least in thc prescnee of Hat identity.

Proof. The first clailu follows froln (3.5) and the Theorem 3.3 b).

Thc second Olle ean be obtainecl dircctly froll1 (3.10). We have

These derivatives vanish iff e1] = const. But e1J = L77i = g(e,e). Froln (2.17) it
follows that g(e, e) = 0 if D =I- 2do.

Finally, (3.16) is t hc la.." t fornlula in 2.1. 2.

Notice that the equatiolls er/i = 0 inlply (3.15).

We will now see that, likc the identity, thc Euler field is almost uniquely defined
by the eanonical coordinates, if it cxists at all.
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3.6. Theorem. Let E be a vector field on the sernisimple Frobenius manifold
M, do a constant.

a). We have Lie (0) = do(o), iff

(3.17)

where Ci are same constants.

b). For the field of the forrn (3.17) and a constant D, we have LicE(g) = Dg iff
for all i, E7Ji = (D - 2do)r/i, or equivalently

E7] = (D - dO)l7 + const. (3.18)

Thus in the presence of a non-vanishillg Euler field we nlay and will nonnalize
the canonical coordinates so that E = da L: uiei'

Proof. a). Put E = L:i Eiei and writc (2.6) for X = ek, Y = el. Since
[E, ek} = - L:i ek (Ei) . ei, we get ek (Ei) = dooik , so that Ei = da (ui + ci).

b). Likewise, (2.5) for X = ei, Y = Cj is identically satisficd fol' i -=1= j, anel is
equivalent to E7Ji = (D - 2da)77i for i = j. Since l7i = ei7] and Eei = eiE - doei,
this is the same as (3.18).

3.6.1. Grading. The sClnisiInplicity of ad E on T~ does not seenl to have a
gooel alternate fonnulation. HOWeVel', if it holels, then the grading of funetions and
vector fields defined in 2.3 becoines especially silnple in thc eanonical coordinates.
For instance, let da = 1; then Ef = sf iff f(A1L\ . .. 1 Aun ) = A8 f(u 1

, ••. , u n ).

Finally, we can cOlnplete the cominutation relations (2.12).

3.6.2. Proposition. 1/ da = 1, then

(3.19)

for ffi, n 2: 0 everywhere on M, and for arbitrary integral m, n outside of Ui(ui = 0)
that is, exactly wherc E is o-invertible.

In [act, [roln (3.2) Olle sees t hat Eom = 2.: 1ti'~ ei .

3.7. A peneil of flat metries. Equations (3.14) are stable with respect to
a semigroup of coordinate changes. Nalnely, let fi be arbitrary functions of one
variable such that ü i := fi(Ui ) fonn a Ioeal coordinate systenl, Ci = 8/ßui , r,i = ei7/
etc.

3.7.1. Proposition. 1f (eil/ij) satisfy (3.14), then (ei,'Yij) satisftJ (3.14) w,
weIl.

Proof. The rotation coefficients of fj := L:i ei7](dui )2 are (cf. (3.13))

1 1 ., 1

iij = 2Ciej77(ei77ej77)-"'I = rij(f:(u1
) fj(uJ))-"'I.

t
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Hencc for k -# i -# ] # k we have, in view of (3.14):

and
iikikj = Tik'Ykj(f:(ui ) fj(u j ))-! fk(Uk)-l

so that iij satisfy (3.14).

In order to satisfy (3.15) as well, we will have to restriet otirselves to the one­
paralnetric fanüly of Ioeal coordillate ehanges

(3.20)

(3.21)

which lllake sense on M>.. := {x E M IVi, u i f:. A}.

3.7.2. Theorem. Let M be a se1nisi1nple Frobenius manifold with canonical
coordinates (ni) and 1netric ]JotentiaI1]. Then the following statements are equiva­
lento

a). For all A, the stntcture (3.20) is se1nisimple Frobenius on M>...

b). The same for a particular valuc of A.

c). For all i f:. ],
L u

k
Ckrij = -,ij'

k

Moreover, (3.21) is satisfied ij E = L:k ukek is the Euter field on M with do = 1.

Notice that generally e= L: ek is not Hat for [j>.. and E = L itkek is not an Enler
field.

Proof. Let us start with deducing (3.21). If E is the Euler field with do = 1,
wc have L:k Uk1lik = (D - 2)1]i (sec ThcorCln 3.6 b).) Applying ej wc obtain
L:k U

k 1]ijk = (D - 3)1]ij. Hence

E '""" k '""" k [1 1]ijk 11]ij 1]ik 11]ij 11j k ]
Tij = L.: u ekTij = L.: u '2 J1]i1lj - 4: 11i J1li1]j - 4: 1]j J 11i1]j

1 11ij
= ---- = -Tij'

2 J11i1/j

Now we turn to the Darboux-Egoroff equations. We know froln the assunlptions
and Proposition 3.7.1 that (3.14) is satis~ed both for g and Y>.. The second half
(3.15) in this situation is cquivalcnt to

Vi f:.], L Tiklkj = -(ei + ej),ijl

k#i,j

so that it renlains to see the Inealling of (3.22) now writtell for tij, ej.

(3.22)
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We have, using (3.20), tij = "Yij(Ui - A)I/2(71.i - ,,\)1/2. Hellce für i -I- j

[

'"'" k ] , 1/2' 1/2Li u lik"Ykj+"\(ei+ej)"Yij (US-A) (uJ -,,\) =
k#i,j

[

'"'" k ] , 1/2' 1/2= Li u ek"Yij+"\(ei+ej)"Y,ij (US-A) (uJ -,,\) .=
k:f.i ,j

[
. ']' 1/2' 1/2= E rij - (u 1

- "\)eirij - (uJ - "\)Cj"Yij (u1
- A) (uJ - ,,\) .

On the other hand,

(3.23)

(3.24)

-(Ci + Cj)1ij = - [(u i - "\)Ci + (11/ - "\)ej] ["Yij(Ui - ,,\)1/2(Uj _ ,,\)1/2] =

[
. .]. 1/2' 1/2= - "Yij + (US - "\)ei"Yij + (uJ - "\)ejrij (u l

- ,,\) (uJ - ,,\) •

Comparing (3.23) and (3.24) one sees that their coincidence for one or for all values
of ,,\ is equivalent to (3.21). This fin ishes the proof.

3.7.3. Remarks. If E is Euler, thc Inetric' !JA in (3.20) can be written in
coordinate free fonn:

Y>.(X, Y) = g((E - A)-1 0 X, Y). (3.25)

In fact (3.25) is ftat on any Frobenills Inanifold with smnisitnple Euler field on it,
non-neccssarily sCInisinlplc: cf. [D2].

b). The inverse metrics 9;" on thc cotangent sheaf fann a pencil of ftat nlctrics
with twa Inarked points. Conversely, given such a pencil and two Illetrics g, h in it,
we can dcfine the spectrum of such data: zcroes of det (g - uh). If thc spcetnnn (u i )

forrns a loeal coorclinatc system, the pair (u i , h) has a chance to define thc FrobcniHS

structure: wc havc to check thc potclltiality of h written in ui-coordinates, which
is equivalent to thc flatness of the structural connectiün: see Theorem 3.3.

3.8. Summary. We now briefty SUlnnlarize the two descriptions of seIui-simple
Frobenius nlanifolds, stressing their parallclisll1.

WD VV picture

Flat coordinates (xo, ... , x n - 1
), Hp to affine transfonnations, can bc partially

nonnalizcd in the prescnce of E.

Metric with constant cocfficients ~ 9abclxadxb.

Potential <I>(x) satis~ying the WDVV-cquations (1.6), defined up to adding a
quadratic polynonlial in (xa).
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Flat identity e = 80 , additional equation 80<Pab = gab.

Euler field E = ~ Ea(x )8a, whcrc EU are of degree ~ 1. Additional cquation
E<p = (D + da)<!> plus quadratic tenns.

Darboux-Egoroff picture

Canonical coordinates ('lL1
, ... ,un

), up to rcnumbering anel constant shifts. Shifts
can be fixed in the presence of E.

Diagonal potential I1letric g = ~i eiTJ (du i )2, ei = 8/8ui
.

The llletric potential TJ(u) satisfying thc Darboux-Egoroff cquations (3.14), (3.15),
anel defincd up to adding a constant.

Flat iclentity e = Li ei, additional equation eTJ = const.

Euler field E = da L:i uiCi. Additional equation ETJ = (D - dO)TJ + const.

P(l$$age frorn WDVV to Darb01LX-EgorojJ

In the presence of an Euler field and a flat identity:

(u1
, ... , u71

) = the spectrum of Eo acting upon IM.
Metric potential 71 = L:a xag(8a,e).

3.9. A problem. It wüuld be itnportant to gcneralize thc notion of senüsiln­
plicity to supcnnanifolds. Herc are sonle scattercd observations suggesting that
there lnight be several different versions of it.

a). The Inain justification für considcring Frobcnius supcrmanifolds is the fact
that quantuln cohonlology (thcory of Grornov-Wittcn invariants) provides for any
projective algebraic or synIplectic V such a structure on an open (or fonna!) sub­
space of the conventional COhOIlIOlogy H* (V, C) considered as a linear superspace.
Not many Dlanifolds have pure even-diIncnsional coho111010b,)" so we need odd co­
ordinates.

b). If we look at the definition 1.2 fronl the vantage point of, say, supergrav­
ity, we will be tCIl1ptecI to replace the Illctric (gab) by alllOre refincd structure.
Thc standard nucleus of such a structure consists of a pair of pure odd integrable
distributions Ti, 7;. C TM such that the supcrcollunutator incltlces Cl Ilul.Xin1ally
nOll-degenerate rnap Ti (97;. -+ TM /(Ti EB T;.). There are two drawbacks to it. First,
such a structure secrns to be nowherc in sight in quanttnll COhOlIlOlob'Y. Seconel, in
its natural habitat it is cOIlIpleInentecl by new constraints depending on dirnension,
so that there is no dirnension independent gencralization of Riernannian gconletry
along these lines.

If one decides against this option, one shoulcl keep in I1lind alternative geon1etries
peculiar to sllpergcornetry, for instance, (a curved version of) IT-sylnlnetry, where
IT is the parity switch. For cxan1ple, in the picture of Calabi-Yau Mirror Synunetry
the cohomology spaces of nürror threefolcls V, V' are roughly speaking connected
by H(V) = ITH(V').

Procceding in this direction, we will have to rethink the ways to construct gen­
erating functions frolll GroIlIOY-WittCIl invariants.
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c). Finally, an extension of the notion of senüsilnlicity is suggested by the domi­
nant role of the Euler field E, or rather Lie algebra spanned by Eon. One can ilnag­
ine a structure, consisting of a supennanifold M, a representation of the Ncveu­
Schwarz (01' Raillond) Lie superalgebra in TM, and a superversion of thc equations
e1] = const, E11 = (D - do)1] + const. To find a superization of the Darboux-Egoroff
equations scelllS a sllbtler probicill.
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§4. Examples

4.1. Dimension oue. Let M be a connected simply connccted one-diIncnsional
Inanifold, for definitelless, cOlnplex analytic.

The strllcturc of pre-Frobenius Inanifold on M is given by an arbitrary pair
(8, cp) where 8 is a vcctor field without zeroes and cp a function:

Tft := C8, g(8, 8) = 1, 808 = cp8.

Two pairs (8, cp), (8', cp') dcfine thc saIne structure iff they coindcle 01' cliffcr by
cornmon slgn.

Such a structure is autoIuatically associative aud potential, hence Frobcnius. Let
Mo be the c0111plemcnt to thc zerocs of cp. On Mo there is an iclcntity e = cp- 18,
which is Hat iff 8cp = O. If 8 = d/dx, co-ielentity is c = cp(x)dx.

Mo is also thc dOll1ain of senüsilllplicity. Solving the equation e = d/du for u,
we get u = I cp(x)dx = I c.

Adefinite choice of u is equivalent to the choice of the would-be Euler field
E = ud/du with do = 1. A 11letric potential is 1] = u, hence Er} = u so that (3.19) is
satisfiecl with D = 2. Even if e is not Hat, we have [8, E] = 8, so that E is actually
an Euler field.

This rather dull pictllre will givc rise to quite non-trivial problerns in thc contcxt
of formal Frobcnius Illanifolels, when we will introduce anel calculate the operation
of tensor prodllct on them.

4.2. Dimension two. We will give here a local classification of two-diInensional
Frobenius structures with Hat identity and a sernisirnplc Euler field with da = 1. The
rllultiplication 0 in this situation is autoInatically associativc, so that the WDVV­
equations are eInpty, and it remains to find all potentials satisfyillg thc cquations
(2.2) and (2.7).

The final answer depends on the spectrum of E.

First, let (eiD = 1, dd be the spectnull of -ad E on T!A, (80 ,8d the respective
flat eigenvectors, e = 00. The classification starts branching depending on whether
d l =1= 0 01' d l = 0: this is our first critical value of dl . We choose Hat coordinates
(XO, Xl) such that (cf. 2.4)

(4.1a)

(Xl being definecl up to multiplication by a constant),

(4.1b)

(Xl being defined up to addition of a constant), 01' else

(4.1c)

Fronl (2.17) one sees that a cOInpatible non-vanishing flat Inetric can exist only
if D E {2,1 + eil, 2d1}, and for d l =I- 1 a non-degenerate Hat Inetric exists only if
D = 1 + d l , so that D = 1 + d l always.
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If d l =I- 1, we have 900 = 911 = 0, 901 = , =I 0; we can I1lake, = 1 by rescaling Xl·

If d l = 1 (this is the sccond eritical value of dl ), (9ab) ean be arbitrary sylnlnctric
non-degeneratc lnatrix.

Fronl (2.3) we obtain

1 1
<I>(xO, Xl) = 2xO(911(xl)2 + 90lXOXl + 3900(xO)2) + \lJ(x l

), (4.2)

and from (2.7)
E<I> = (d l + 2)<1> + a quadratie polynornial.

In thc ease (4.1e) this leads to

so that we can take

(4.3)

Thc ease (4.1b) leads to the equatioll

(4.4)

so that we ean take, after resealing Xl,

d 0 E X 08 + 28· n) = 2
2

(xO)2X I + ex1
.1 =, = ° I·~..l (4.5)

In thc ease (4.1a) with dl = 1, cI> ean be redueed to a eubie fornl with constant
eocffieients:

Finally, thc ease (4.1a) produces two I110rC eritieal valllcs d l = ±2:

(4.7)

1
cI> = 2(XO)2 x l + C (x l )2 log Xl,

1 .
cI> = 2(xO)2 x l + C (Xl )(2+d d /d 1 •

(4.8)

(4.9)

4.3. Dimension three: a promise. This is the first dimension where the As­
soeiativity Equations bCeOI1le non-eIllpty even in thc prcscnce of thc fiat idcntity.
Thc beautiful theory of three dinlcnsional sClnisimple Frobenius 111anifolds essen­
tially rednecs their study to that of a subfanlily of thc sixth Painlcve equations.
Wc will addrcss this conncetion in Chapter Ir.
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4.4. Quantum cohomology: brief encounter. Let V be a slllooth projec­
tive algebraic lllanifold over C (another version of thc thcory exists for compact
symplectic nlanifolds.)

Dcnote by H thc cohomology space H* (V, C) considered as a corr~plex analytic

linear superrnanifold. We endow H with its natural Hat structure T!I, Poincare forlll
9, and two vector ficlds e, E which can be described as follows. First, H aso a linear
space can be identified with global Hat vector fields. We denote by e the vector field
corresponding to the identity in the COhOlllOlogy ring that is, the dual fundamental
dass of V. Second, -ad E is the sCluisiIuplc operator on TJ, with .eigenvalue 1~ p/2
on HP{X, C): this determines thc first sUlllllland in thc dccomposition (2.14). The
second (Hat) one is the anticanonical dass of V.

Explicitly, let H* (V, C) = EI;) C.6.a , .6. a E H Iß a I(V, C), .6.0 the clual fundamental
dass. Then the coordinates (xG

) in this basis are global Hat coordinates on H, and

e = ao, E = l:(l - I~al )xaaa + L "bab,
a b:I ß bl=2

w here r b are defined by

Cl (Tv) = - K v = L r b .6. b ·

b: Ißbl=2

(4.10)

(4.11 )

Moreover, gab = Iv .6. a A .6. b (we iInaginc cohomology dasscs as differential fonns,
and use wedge for thc cup product.)

The relations (2.5) (resp. (2.16)) are satisfied with D = 2-dinIcV (resp. do = 1)
so that the total spectrum of E is

do = 1, da = 1 - .6.a of lllultiplicity eliln HIßal, D = 2 - ditne V.
2

(4.12)

The relllaining anel 1l10st irnportant structure i~ the potential cI>. Thc theory of
Gronlov-Witten invariants furnishes (at least for manifolds with K v ::; 0) a formal
series <.I> (x) in Hat coordinates satisfying all the axiollls of Frobenius stnlcture, with
Hat identity e anel the Euler field E, describcd above. Moreover, <.I> can be actually
represented as a scries in E-holllogeneous 1lIouolllials (2.20) (notice that they are
exponential in codilllension two coordinates), with nonncgative integers 1na and 111),

of E-dcb'Tee do + D = 3 - düne V. Coefficients of this scries are ccrtain numerical
invariants of thc space of stable Inaps of pointed curves of genus 0 to V.

Ir<p converges in a subdolnain M c H, it iuduces a structure of Frobcnius man­
ifold on M. Generally, its InaxiInal analytic continuation to an unranlificd covering
of a subdonlain of H should be considered as the Frobenius manifold rcpresenting
the quantum COhOlllOlogy of V.

Oue approach to the study of <P consists in thc identification of M (physicists' A­
model) with a Frobenius manifold constructcd by other 11lethods, e. g. fronl isolllon­
odronlic deformations or periods of the fanIilies of algebraic manifolds (physicists'
B-lllodel.) This can be called a general Mirror Progranl. The very first step in
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such an idcntification is thc cOlllparison of spcctra. Thc faluous h~l = hti mirrar
synunctry relation for thc Calabi~Yau thrcefolds expresses such an identification.

As an clclnentary cxcl'cisc, let us gucss which of the Inanifolds (4.5)-(4.9) can
represent quantum COhOlllOlogy. Only pI has two-dinlensional pure even cohomol­
ogy space, and -KPI has degrce two, so that E IUust bc of the type (4.1b). In fact,
the potential of (the quantlun cohomology of) pI is givcn by (4.5) with , = 1/2 in
the natural basis.

We conelnde this brief discussion by describing explicitly the potential 1> for all
projective spaces Pf'. Put ~a = the dual dass of the codiInension a hypel'plane,
, = L x a ~a, (,3) = the tripIe self-intersection index. Then

1 (x 2 )n 2 (xr)n r 1

<I>pr (x) = -:-(,3) + L N(d; 11,2, ••. , n,..) , , edx (4.13)
6 n2' n r ·

d,1&a 2:0

where N (dj n1, ... , n r ) is the nUlnber of rational curves of degrec d in pr intersect­
ing n a hyperplanes of codiInension a in general position. This nUlnbcr (suitably
interpretcd in certain boundary cases) can be non-zero only for La na(a - 1) =
(r +1)d+r - 3 whieh is cquivalent to the grading equation (2.7). The Associativity
Equations (1.6) follow fron1 a rather sophisticated analysis of degenerations. They
allow U8 to ca1culate rccursively all N (d; n1, ... , n r ) starting with a single ntnnber
N(l; 0, ... ,0,2) = 1 (there is only one line passing through two different points.)

In fact, the recursive relations obtained from (1.6) fann such an overdetcnnined
systelll that it is not ohviollS how to prove the existence of a solution to (1.6) and
(2.7) fonnally (i. e., withollt using thc geor!lctric interpretation.) For a fonndabout
proof, see eh. 11, 4.2 below. The cases 7' = 1 anel r = 2 are exceptional: we have
respectively

pI 1 2 z z2
1> (x~o + z~d = "2 X z + e - (1 + z + 2)~ (4.14)

1 00 3d-1

iIl
P2

(xßo + yßl + Zß2) = "2 (xy2 + x
2
z) + L N(d) (3~ _ 1)!edY

• (4.15)
d=l

Here the Associativity equations are equivalcnt to an explicit recursive fornlll1a for
N(d) (see Introcluction, (0.19).)

All these Frobenius structures are gencrically (or forrnally) selnisiInple. Notice
that in the senüsiInple case the potential 71 of the Poincare 11letric is sirnply the
linear fllllction 1] : H* (V, C) -t C : 7](1') = Iv" This is arestatement of (2.4).

4.5. Space of polynomials. The following beautiful cxample furnishes anothcr
series of sCIllisiInple Frobenius rnanifolds of arbitrary diInension. This cOllstruetion,
due to B. Dubrovin and K. Saito, admits various generalizations.

Considcf n-dilllensional affine space AU with coordinate functions al"", an'

Iden~ifyAn with the space of polynornials 1)(Z) = zn+l +a1z1&-1+. . ·+an . Denote by

Jr : An -t AU the covering space of clebrrce n! whose fiber over a point p(z) consists

of total orclerings of the I'oots of p' (z). In other words, .Ä.n supports functions
Pr , ... ,Pn such that

n

Jr*(p'(z)) = (n + 1) 11(z - pd;
i=r

(4.17)
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*() ( )i+l n + 1 ( ) .11'" ai = -1 --.(j i+ I PI, ... , Pn , t = 1, ... , n - 1
11, - t

and (j1(PI,"" Pn) = PI + ... + Pn = O. Wc will omit 11'"* in the notation of lifted
functions.

-
Let M c An be the open dense subspace on which

A. Vi, p" (Pi) i= 0 that is, Pi i= Pi for i i= j.

B. ui := p(pi) fornl Iocal coordinates at any point.

4.5.1. Theorem. M is a sernisimple Frobenius manifold with the following
st1itcture data:

a). Canon i cal coonlinates (ui), identity e = l:i Ci, Ci .= alDui 1 Euler field
E = l: uiei'

b). Flat metnc

with metnc potential

all,"", 1 '""' 2
1] = n + 1 = n - 1~ PiPj = 2(n - 1) LJ Pi .

i<i

(4.18)

(4.19)

Furthe1lnore, c, E and flat coordinates x(1), ... , x(n) can be calculated through
(al, . .. , an) (which are generically local coordinates as weIl):

e = alaan , i. c., ean = 1, eai = 0 for i < n. (4.20)

(4.21)

X(i) are the first Laurent coefficients of the inven,ion ofw = n+{/p(z) = z+O(llz)
near z = 00 :

(4.22)

n + 3 d(i)Finally, the spectrurn is D =
71+ I'

( ') i+1 (')Ex ~ = --x'.
n+1

Proof. Fronl (4.17) wc find

i+1
- -- 1 ::; i ::; n, more precisely,

11,+ l'

Furthermore

(4.23)

(4.24)
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because p' (pd = O. Thcrcfore thc polynoluial at the fight hand side of (4.24) (dc­
pending only on j) IUust be equal to

II z - Pi

i: i"#j Pj - Pi
(4.25)

(4.26)

because it has thc salue degree 11, - 1 anel takes the sarne values at PI,"" Pn'

Comparing (4.23) anel (4.25) we see first of all that

aal ff f n-l' II z - Pi 1 ()
Du) = coe . 0 Z In . _ ,= n (. _ ') = 11, + 1 11j'

i: i=/=j Pl P" i: i=/=j Pl P"

This 11leans that TI = ~ is thc nlctric potential of g (cf. Theorenl 3.3b.) Now
11,+1

sum (4.24) for all j. We obtain that I:~=I eakZn-k is a polynoluial of degree 11, - 1
taking value 1 at Z = Pb ... 1 Pn. Hence it is identically 1 that is,

ean = 1; ean-I = ... = eal = O.

This proves (4.20).
Let us llOW calculate E1]. Multiplying (4.24) by u j anel stuuming over all j we

see that I:k EakZn-k is a polynoluial of degree n - 1 taking the vallle 11,
j at z =

Pj' We know a polynoluial of degree 11, taking the same values: it is p(z). Hence
p(z) - L:k EakZn-k is divisible by p'(z) vanishing at all Pj' COluparing thc top two
coefficients we obtain

p(z) - LEakZn-k = _z_p'(z)
k 11.+1

that is,

11.+3
-- because
11, + l'

n-k
ak - Eak = -- ak

11.+1

In particular, Eal = _2_a }, so that D =
11,+1

which proves (4.21).

do = l.

We now turn to checking fiatncss of g. In fact, we can elo rather nlorc starting
with a neat elcscription of thc lnultiplication o.

Let p(z) be a point of M or its inutgc in An. Using dJr wc can identify the tangent
spaces at both points to the Milnor ring C [z] 1110d p' (z).

4.5.2. Lemma. dJr identifies the o-multiplication with rnultiplication in the
MilnoT' ring.

Proof. Explicitly,

(4.28)

dJr (ejlp) = aap
, modp'(z).

uJ

In view of thc previous calculations (see (4.24) anel (4.25))

ap II z - Pi ,-a. = ejp = 1110dp (z).
uJ p. - p'

i: i=/=j J "

Thc polynolllials at thc right hand siele of (4.28) are the basic idelupotcnts in thc
Milnor ring, exactly a.s ej in TM.
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4.5.3. Lemma. The 1netric {4.18} induces on the Milnor ring the scalar product

a(z)b(z)
g(a(z)lp, b(z)lp) = -fCSz=oo p'(z) dz.

Proof. The fight hand side of (4.29) cquals

~ res
z

- . a(z)b(z) dz =~ a(pj)b(pj) .
~ -PJ p'(z) ~ p"(p.)
J=1 J=1 J

(4.29)

(4.30)

Choosing a(z) = (17r(eilp), b(z) = d7r(ejlp), we sec from (4.28) ancl (4.26) that the
value of the fight ha.nd side of (4.30) is

4.5.4. End of the proof of Theorem 4.5.1. We can now prove silnultaneously
that 9 is flat anel X((l) are flat coordinates by showing that g(Oal Ob) are constant,
for Da := 0/ox(a).

In fact, froIll (4.22) wc gct, considering z as CL function of w anel x(a) ; p(z(w, x)) =

w H +1 so that

a:~:) (z(w, x)) = -p'(z(w, x))(w-a + O(w- n
-

1
)).

Substituting this into (4.29) we find

(4.31)

= -resz=oo p'(z)dz(w-a
-

b + O(w-n
-

2
)).

Replacing here thc local parameter z at infinity by wand taking into account that
p'(z)dz = (n + 1)wn dw we get

(4.32)

Finally, p(z) becolllcs hOlnogcncous of degrcc 1, if we assign to z thc E-dcgree
1 (') 'i + 1--. This inlplies that x 1 is of degrec --.

n+1 n+1

4.5.5. Corollary. The potential <I> is a polynomial 0f E ~degree D + do
2

2 + -- and the u.91Lal degree :::; n + 3 in fiat coordinates.
n+1

Since <I> is analytic in x(i) anel thc spcctrulll of -ad E is strictly positivc, the
Taylor series can contain only finitely many tenns of E~degreeD+rlo. Thc Inaxinlal
usual degree is furnishccl by (xl )(n+3).

Notice that quantull1 COhOlllOlogy cannot havc spectrum of this type.
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CHAPTER II. FROBENIUS MANIFOLDS

AND ISOMONODROMIC DEFORMATIONS

§1. The second structure connection

1.1. Preparation. Let (M, g, A) be a Frobenius (super)rnanifold , \70 the Levi­
Civita connection (on TM) of the Rat ruetric g. Recall that the (first) strllcture
connection on M is actually a pencil of Rat connections \7..\, cleterrnined by the
fonnula \7>.,x(Y) = \70 ,x(Y) +..\X 0 Y (see eh. I, (1.4) and (1.5).) Ir in addition
M is endowed with an Euler field E with do = 1, we can define thc extended
structure connection V on the sheaf T = priw(TM) on !Vi = M X (Pi \ {O, oo})
such that for X E TM, Y E Tft we have

........ ........ 1
\7x(Y) = ..\X 0 Y, \78/8>.(Y) = E 0 Y - X[E, Y] (1.1)

(cf. 1.2.5, in particular (2.24); we now omit a few extra hats in notation and conunit
the respective abuses of language.)

In this section and Chapter we will restriet ourselves to the case of semisiluple
cOIllplex Frobenius rnanifolds with an Euler field with du = 1 admitting aglobai
system of canonical coordinates (ui ). We will call the second str7Lcture connection
"V..\ thc Levi-Civita connection of thc Hat rnetric

9>.(X, Y) := g((E - ..\)-1 0 X, Y)

depending on a paranlcter ..\ and defined on the open subset M..\ c M where u i =I- ..\
for all i. Put 1\1 := U>.(M>. X {..\}) c M X Pi and denote by t the rcstrictioll of

priw(TM) to M.
In this section we will construct a flat extension "V of "V..\ to T which will also

be referred to as the sccond structure connection. Both extensions ~ and "V will
be further studiecl as isomonocIrolllic defornlations of their rcstrictions to thc ..\­
direction paralnctrizecl by M.

More preciscly, asSllIne that Tft is a trivial local systen1 (for instance, because

M is simply connecteel.) Put T := f(M, Tft). Then V (resp. "V) induces an
integrable family of connections with singularities on the trivial bundle on pl with

thc fiber T. The first connection V is singular only at ..\ = °and ..\ = 00 but
whereas 0 is a regular (Fuchsian) singularity, 00 is irregular one, so that V cannot
be an algebraic geonlctric Gauss-Manin connection, anel its rnonOdr0I11Y involves
thc Stokes phenorl1enon. To the contrary, the sccond connection V generally has
only regular singularities at infinity and at ..\ = 'lJ,i whose positions thus elepend on
the pararneters. It is eletennined by the conventional Il1onodroruy representation
anel has a chance to define a variation of Hodge strllcture. For 1110re details, see the
next section.

It turns out that both deformations havc a cornll10n rnoduli space and deserve
to be stlldied together. In fact, fibcI"wise they are ruore or less fonnal Laplace



· transforms of cach othcr. More to the point, thcy fonn a dual pair in the sense of
[Har].

In our calculations the key role will be played by thc GM-linear skew synlffictric
operator V : TM ---+ TM which is thc llnique extension of the operator defincd in
1.2.2 Oll flat vcctor fields by thc fornulla

D
V(X) = [X,E] - 2X for X E T~.

1.1.1. Proposition. a). We have Jor arbitrary X E TM :

D
V(X) = \Jo,x(E) - 2 x.

V(Jd = L(uj
- Ui)'ijJj.

j-:j;i

(1.2)

(1.3)

(lA)

Proof. Thc fact that -ad E - D Id is skew symlnetric with respcct to 9 was
2

checked in 1.2.2. Fonnula (1.3) defilles an GM-linear endomorphisI11 of TM which
coincides with (1.2) on the flat fields, as a calculation in flat coordinates shows.

To check (lA), we use (1.3) and Ch. I, (3.10):

1 [. L ' ] D ei- e"+ul\Jo .(e·)+ uJ\Jo .(e o
) ---. =

07i I ,e, I ,e, J 2 07i
rl" 11"I '-/... I

J-r- I

1 [ i (Tlii L 77ij ) L· (77ij Tli j ) ] D ei- Ci + u - Ci - - ej + uJ - ei + - Cj - - -.!1f 21]" 27]· 27]" 27]· 2!1fV'fl I j#i J j#i I J V'II

(1.5)

For j i- i, thc coefficient of fj in thc fight hand siele of (1.5) is (u j - Ui)'ij. For
j = i it vanishcs, becausc

1 + L u j 7lij = 1 + E7]i = D
" 27}i 21}i 2

J

(see Ch. I, Thcoreln 3.6 b).)

We can now state the Inain result of this section. In addition to (1.2), define thc
operator U : TM --+ TM :

U(X) :=EoX, (1.6)
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1.2. Theorem. For X, Y E pr-;} (TM) C TM (meromorphic vector fields on
TM x P 1 independent on ..\) put

,\

- 1 1
\Jx(Y) = \Jo,X(Y) - (V + 2" Id) (U - ..\)- (X 0 Y),

~ . 1 -1
\J 8 ;8A(Y) = (V + 2" Id) (U -..\) (Y).

(1. 7)

(1.8)

Then '9 is a flat connection on t whose restrietion on M x {..\} defincd by (1. 7) is
the Levi-Civita connection for !JA'

Remark. Rewriting (1.1) in the sanlC notation, we get

~x(Y) = \Jo,x(Y) +..\X 0 Y,

........ [1 D]\J8/8A(Y) = U + >:(V + 2Id) (Y).

(1.9)

(1.10)

Proof. We will first apply Ch. I, (3.10) in order to calculatc thc Levi-Civita
conuection for !JA in coordinates ui = log (ui - ..\). As in 1.3.7 we have

8· . ., .
e' = - = (u1

- ..\)e· 71· = (u t
- ..\)71' f7" = (u'" - ..\)(u) - ..\)71" + § .. (u'" - ')1'1''" 8ui l' ·,1 ',"', "') ""'J I) A 'n,

Then for i#- j

n (-) 1 r,ij _ 1 17ij _ 1 (i ') (). ') (TJi j 1]ij )
Vei ej = -~~ei + --~Cj = - U - A U - 1\ ~ei + -ej

2 TJi 2 17j 2 1]i T/j

so that
~ () 1 1]ij 1 17ij ( )\J ej c)· = --ei + - -CJ' = \J O e' C)· .

2 TJi 2 17j l 1

Similarly,

1( i 2 [TJii 1] 1Li' TJij- 11, -.-\) - +. Ci - - (71 -.-\) (u) - .-\) - e·
2 1]' u'" - ..\ 2 17' J

'" j#i )

so that

Vej (ed = ! [TJii _ . 1 ] ei _ ! '" u~ - ..\ 17ij e ..
2 1]' u'" - .-\ 2 D u'" -..\ T/' )

'" j#i J

Subtracting froln this (3.10) (Ch. I), we get

(1.11)

(1.12)

(1.13)
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and

(1.14)

In view of (1.4), we can write (1.11) and (1.12) together as

(1.15)

because ei 0 /j = Oij Ij. This fanlily of fonnulas is cquivalcnt to (1. 7) so that (1. 7)
is the Lcvi-Civita conncction for !JA' In particular, it is flat for each fixecl A.

Sincc [X, D/VA] = 0 for X E pr"i.l(TM), it rcnuüns to show that the covariant
derivatives (1. 7) anel (1.8) comlnute on M i. e. , that for all i, j

(1.16)

First of all, frünl (1.8) and (1.14) we find

(1.17)

Tügcthcr with (1.11) anel (1.12) this gives for i =1= j:

(1.18)

k . k .
1 '" (11, - nJ

1ljk) 1 ~ 11, - 'llJ 1Jjk (1 rJik 1 11,ik )+- L.J'ei . - ek + - L.J' - - - ei + - - ek +
2 . uJ - A 1Jk 2. . 11,J - A 11k 2 17i 2 1Jk

k:f;.) k:f;.],'l

(1.19)

Thc cüincidcIlce of coefficients of ek in (1.18) and (1.19) für i =1= j =1= k =1= i can be
checked with the hclp of the following idcntity which is equivalent to the DarbollX­
Egoroff cquation eh. I, (3.14):

1 (1Jik 17j k + 1Jij1Jik + 1Ji j 1Jj k)1Jijk = - , -- -- .
2 7Jk 7]i 17j

Thc coincidence of the coefficients of ei requires a littlc more work, anel we will givc
some details, again for thc casc i =j:. j.
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In (1.18) the coefficient of ei is

(1.20)

whereas in (1.19) we get

1 1 1]ij 1 (u
i
.- u

j
1]ij ) +-. - + - ei

4 uJ - A rli 2 uJ - A rJi

1L uk
- u

j
7]ik1]jk 1(7Jii 1) u

i
- u

j
1]ij+-. + - - - ----=--.-

4 u1 - A 1] .7Jk 2 7J' U t - A u i - A 7/i
k#i,j t t

(1.21)

To identify (1.20) anel (1.21) wc havc to get rid of the sunl Lk in (1.21). This can
be done with the help of eh. I, (3.14), (3.21) and (3.22):

k .
~ L 1L . - 11/ 1lik1]jk

4 .. 11,J - A 1]i7Jk
k#t,]

Thc reIuaining part of the calculation is straightforward, and we leave it to the
reader, as weH a.s the case i = j which is treatcd similarly.

1.3. Formal Laplace transform. Assume now that Tt is a trivial local

system. This Ineans that if we put T := r(M, Tt), there is a natural iS0I110rphisI11
OM0T-+TM.

Fonnulas (1.8) (resp. (1.10)) define two farni lies of connections with singularities
on the trivial vector bundle on Pl with fiber T, parametrized by M. Namely, denote
by DA the covariant derivative along D/ DA on this bundle for which the constant
sections are horizontal. Thcn the two connections are

~ (1)_1\78/8A = aA + V + 2" Id (U - A) , (1.22)

(1.23)

Let M, N be two C[A, aAl-modules. A fonnal Laplace transfor;n M --t N: Y f---t

yt is aC-linear lnap for which

(1.24)
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Thc archetypal Laplace transfonn is the Laplace integral

(1.25)

taken along a contour (not necessarily closed) in pl(C). In an analytical setting
we have to secure the eonvcrgcncc of (1.25), the possibility to derivate under thc
integral sign and thc idcntity

JoA(e-AI'Y(A))dA = O.

However, (1.25) Inay adrnit other interpretations, for instanee, in ternlS of aSYlnp­
totie scries.

Let now M (rcsp. N) be two C[A,o>.]-rnodules of loeal (ar fonnal, or distribu­
tion) sections of Pi x T so that the operators ~ . (U - A) (resp. AV) lllake sense
in M (resp. N) (cf. (1.22), resp. (1.23)), and assurne that we are given a fonnal
Laplacc transfonn !vI --+ N.

1.3.1. Proposition. We have:

- t...... D - 1 t 3-D...... D-l t
[\78/8>.((U - A)Y)] = ()..S]8/8>' + -2-) Y = A-r\78/8>.(A-2-Y ).

In particular, A~ y t is V-horizontal, if (U - A)Y is '\7 -horizontal.

Proof. Using (1.22)-(1.24), we find:

[ ]

t
- t 1[\78/EJ>.((U - A)Y)] = (0).' (U - A) + V + "2 Id)Y

Now we will 1110Te systelnatically review the defonnation picture.
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§2. Isomonodromic deformations

2.1. Singularities of meromorphic connections. Let N be a conlplcx
manifold, DeN a c10sed cOluplex submanifold of codimension onc, :F a locally
free sheaf of finite rank on N. A lllerolllorphic connection with singularities on D
is given by a covariant differential \7 : :F --+ :F 0 n1((1' + l)D) for SOl11e l' 2:: O. It is
called flat (01' integrable) if it is flat outside D. We start with a list of elcmentary
notions and constructions that will be needed later. They depend only on the local
behavior of :F and \7 in a neighborhood of D, so we will assumc D irredllcible.

i) Order of singularity. We will say that \7 as above is of order::; l' + 1 on D if
\7x (.r) c F (l'D) for any vector ficld X tangent to D (i. e. satisfying X JD C JD

wherc JD is thc ideal of D), and \7x(F) C :F((1' + l)D) in general. Locally, if
(t Ü

, t 1
, ... , t n

) is a coordinate systcIn on N such that t Ü = 0 is the equation of D,
the connection nlatrix of \7 in a basis of :F can be written as

(2.1)

where Gi = Gi(tO, t 1, ... , tU) are hololllorphic matrix functions.

ii) Restrietion to a transversal subm,anifold. Let i : N' --+ N be a c10sed enl­
bedding of a subrnanifold transversal to D, D' = N' n D, :F' = i*(.r). Then thc
induced connection \7' = i* (\7) on :F' is Hat anel of order::; l' + 1 on D' if "V he1.S
these properties.

iii) Residual connection. Assunlc now that \7 is of order::; 1 on D. Then one can
define a connection without singularities \7D on j* (.r) where j is the embedding of
D in N. Nanlely, to define \7~, (s') where s' E j* (.r), X' E TD , we cxtend locally
s' to a section s 0f .r, X' to a vector fieId X on N, calculate \7x (s) anel restrict
it to D. Oue checks that thc result eIoes not depend on the choices Iuaclc. In the
notation of (2.1), thc Inatrix of the residual eonnection cau be written as (1' = 0):

n

L Gi(O, t1
, ... , fl)dt i .

i=l

(2.2)

If \7 is flat, \7D is Hat.

iv) Principal part of order T + 1. Sinülarly to (2.2), we ean eonsiclcr thc nlatrix
function on D

(2.3)

which we will eall thc principal part of order T + 1 of \7. In more invariant tcrnls, it is
the OD-lincar Inapj*(F) ---1 j*(:F) indnced by F --+ j*(F) : s H (t0)r+l\78/8tO (S) ID.
It is weH elefincd, but depends on thc ehoice of Ioeal coordinates, and is nlultiplied
by an invertiblc IDeal function on D when this ehoice is changed. Henee its spectrum
is weIl definecl globally on D.

v) Ta1Twne.ss and resonance. Two general position conditions are iInportant in
the study of lllCr0I110rphic singularities of order::; l' + 1.



57

If r ~ 1 (irregular ease) , the singularity is ealled tarne, if the spectrulll 0 f its
principal part at any point of D is silnple.

If r = 0 (regular ease), the singularity is ealled non-resonant, if it is taIlle and
llloreover, the differenee of any two cigenvalucs licver takes an integer value on D.

2.1.1. Example: the structure connections. As in 1.3, we will assuille that
Tt is trivial, and its fibers are identified with the spaee T of global flat vector
fields.

Put N = M x Pi, :F = ON ®T. We ean apply the previous eonsidcrations to ~
and V.

Analysis 01 ~. Clearly, ~ has singularity of order 1 at A = 0 (i. e. on Da =
M x {O}) anel of order 2 at A = 00 (i. e. on Doo = M x {oo}): cf. (1.9) anel (1.10).
R.estricting ~ to {y} x pi for various y E M we ge't a fanüly of llleroillorphie
connections on P 1parametrized by M.

The residual conncction is defined on Da = M and it coineides with the Levi­

Civita eonnection of g. The principal part of order 1 on Da is V + D Id. The
2

eigenvalucs of this operator do not depend on y E Da: in Ch. I, 2.4 they wcre
denoted (da). Thcir description for the ease of quantum eohoillology (see eh. I,
(4.12)) shows that in this ease the prilleipal part is a17vays resonant.

The prindpal part of order 2 on D oo = M is (proportional to) U (cf. (1.10), use
the loeal equation J-L = ,.\-1 = 0 for D oo .) Hs eigenvalucs now depcnd on y E M :
they are just thc eanonical coordinates u i (y). We will call the point y tarne if
u i (y) #- u j (y) for i i= j. We will call M 'taIlle, if all its points are taule. Every M
eontains the InaxiInuIll taIlle subset which is open and dense.

Analysis 01~. According to (1.7), (1.8), ~ has singularities of order 1 at the
divisors ,.\ = u i and ,.\ = 00. These divisors do not intersect pairwise iff M is talue.

The principal part of order 1 at ,.\ = ui is -(V + ~ Id) . (eio).
2

Thc residual eonncction of ~ on ,.\ = 00 is again thc Levi-Civita conneetion V'a
of g. In fact, using (1.15) we find

v= d)..V a/ D)., + LduiVei =

i

Replacing ,.\ by thc local paralueter tL = ,.\-1 at infillity, wc have

'\7 = dJ1'\7 8//)1' + L dut\7 0 ,e; - J1 (V + ~ Id) (J1 U - Id) -1 (ei 0 )J
i

so that thc expression (2.2) (with (tL, 1L1, ... , um) in lieu of (tO, t t, ... ,CI)) beeonles
L:i duiV' 0lei = V'o·
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2.2. Versal deformation. We will now review thc basic results on thc defor­
lllation of nwrornorphic connections Oll P 1, restricting ourselvcs to the case of sin­
gularities of order :S 2. This suffices for applications to both structure connections,
Oll the other hand, this is prccisely the case treated in fuH detail by B. Malgrangc
in [MaI4], Theorclll 3.1. It says that thc positiollS of finite poles and the spectra
of the principal parts of order 2 form coordinates on the coarsc 1l10duli space with
tarne singularities. To be n10re precise, Olle has to rigidify the data slightly.

Let \70 be a lllcrolllorphic connection on a locally free sheaf ? on P 1of rank p,
with 7n + 1 2:: 2 tarne singlliarities (inc1uding A = 00) of order :S 2. CaU the rigidity
for \70 the following data:

) A 1 · f' I . 1 m m+la. nurn )enng 0 slngu ar pOInts: ao,"" ao , a = 00.

b). Thc subset I C {I, ... 1 m + I} such that a~ is of order 2 exactly when j E I.

c). For each j E 1, a nUlnbering (b{/, ... , lJbP) of thc eigenvalues of thc principal
part at a~.

Construct the space B = B(m,p, S) as thc universal covering of

(C rn
\ diagonals) x II (CP \ diagonals)

jE!

with the base point (ab; bbk
), let bo EBbe its lift. We denote by ai

1 bi k the
coordinate functions li fted to B. Let i : Pi -t B x Pi be the ernbedel ing A f---7 (bo, A),
and Dj the divisor A = aj in B x Pi.

2.2.1. Theorem .([Mal4], Th. 3.1). For a given (\70,?) with rigidity, there
exists a locally free sheaf F of rank p on Pi x B, a fiat meromorphic connection \7
on it, and an isorno"1Jhis'ln iO : i* (F, \7) -t (FO, \70) with tlte following pToperties:

D j , j = 1, ... , m + 1, are alt the poles of \7, of order 1 (res]J. 2) i/ j -# 1 (resp.
j E I.) // j E I, then (lJ.i 1 , ... , lJ.iP) (as functions on D j ) form the spectrum. of the
principal part 01 order 2 0/ \7 at D j .

It follows that the restr'ictions of \7 to the fibers {b} x Pi are endowed with the
induced rigidity, and i O is compatible with it.

The data (F, \7 1 iO) are unique np to unique isomorphism.

2.2.2. Comments on the proof. a). The case when all singularities are
of order 1 is easier. It is treated separately in [MaI3], Th. 2.1; for the thorough
study of this case and the treatluent of the Gauss-Manin connections see [DeI].
Since the second structure connection satisfies this condition, wc sketch Malgl'angc's
argulnent in this case.

Choose base points CL E U := Pi \ uj~~l {a~} and (b o, CL) E B x Pi. Notice that
(bo, a) belongs to V := B x Pi \ Uj~lDj.

Thc restriction of (?1 ~o) to U is detennined uniquely up to unique isolllor­
phisIll by thc lnonodrolny action of 1fl (U, CL) on thc space F, the geolnetric fiber
?(a) at a, which can be arbitrary. Shnilarly, there is a bijection between Rat
connections (F, \7) on V with fixe cl identification ?(a) ---t F(a) = Fand actions
of 1fl (V, (a, b)) on F. Hence to construct an extension (F, \7) to V together with an
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isonlorphisnl of its restriction to U with (FO, \70), it suffices to check t hat i induces
an isomorphism '1rl(U, a) -+ '1rl(V, (a, b)), which follows fronl the hOlnotopy exact
sequcnce and thc fact that B is contractible.

This argurnent explains thc tenu "isolllonodronlic deformation."

Next, we IUust extend (F, \7) to B x Pi. It sufficcs to do this separately in a
tubular lleighborhood of each Dj disjoillt from other Dk . The coordinate change
A l---t A - aj (01' AHA-1) allows us to assllllle that t he equation of D j is A = O.
Take a neighborhood W of 0 in which :;:0 cau be trivialized, dcscribe \70 by its
connection Inatrix, lift (:;:0, \70) to B x Wand rcstrict to a tubular lleighborhood
of Dj . On the complclncnt to Dj , this lifting can be canonically idelltified with
(F, \7) through their horizontal sections. Clcarly, it is of order::; 1 at Dj .

It rernains to establish that any two extensions are canonically isoIllorphic. Out­
side singularities, an isornorphislll exists and is unique. An additional arglllllent
which we OIlüt shows that it extends hololnorphically to B x Pi.

b). When \7 admits singularity of order 2, this argulnent must be cornpleted. Thc
extension of (FO, \70) first to V anel then to the singular divisors of order ~ 1 can be
done exactly as before. But both thc cxistence and the uniqucness of the extension
to the irregular singularities requires an additional Iocal analysis in order to show
that the sinlple spectnull of the prillcipal polar part detennines the singularity.
When forrnulated in tenns of the asyrnptotic behaviour of horizontal sections, this
analysis introduces the Stokes data as aversion of irregular monodromy, which also
proves to be defonnation invariant.

2.3. The theta divisor and Schlesinger's equations. In this subsection wc
will assullle that :;:0 = T ® Opl where T is a finite dilllensional vector space which

A

can be identified with thc space of global scctions of FO. This is thc C&C3e of thc two
structure connections, when thc local system T~ is trivial.

Then there exists a divisor 8, eventually ernpty, such that the restriction of F
to all tibers {b} x PL b ~ 8, is free. This cau be proved using the fact that a
locally free sheaf E on pI is free iff HO(P\E(-l)) = H 1(P\E(-1)) = 0, and that
the COhOlllOlogy of fibers is semi-continuous. For an aualytic treatnlent, see [MaI4],
sec. 4 anel 5.

Moreover, assunle that A = 00 is a singularity of order 1 (to achieve this for
the first structure connection, we IUUSt replacc A by A-1.) Then we can idcntify the
inverse iInage of Fon B\e x Pi with T®OB\8xPl cOlnpatibly with the respectivc
trivialization of :PJ. To this end trivialize F along A = 00 using the residual connec­
tion (see 2.1 iii) )and then take thc constant extension of each resichrally horizontal
section along Pi. (If therc are no poles of order 1, one can extend this arglullent
using a different version of the residual conllectioll, s~e [MaI4], p.430, RClnarquc
1.4.) .

Using this trivialization, we can define a lnerolnorphic intcgrable connection a
on :F with the space of horizontal scctions T on B \ 8 x pi. As sections of F, they
develop a singularity at 8. Therefore, thc respective connectioll fonn \7 - a is a
Inerorllorphic Inatrix one-fonn with eventual pole at 8.

The following classical result clarifics the structure of this fornl in thc case when
all poles of \7 are 01 order 1.
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2.3.1. Theorem. a). Let (al, ... ,am) be the /unctions on B describing the
>.. -coordinates 0/ finite poles oJ \l (with given rigidity.) Then

't"'7 a Lm A ( I 'H) d(>" - a
i

)
V= + ia, ... ,a \ .

/\ - a"
i=I

(2.4)

(2.5)tlj,

where Ai are rner01n01phic /unctions B -+ End (T) which can be considered as
multivalued rneromorphic functions of ai.

b). The connection (2.4) is flat iJJ Ai satisfy the Schlesinger equations

L
d(ai - ai )

dA j = [Ai, A j ] . ..
a" - aJ

i#j

c) . Fix a ta1n e point ao = ((La, ... , (Lo~ ). Then arb i trar7j initial conditi0 ns A? =
Ai(ao) define a solution of (2.5) holomorphic on B \ 8, with eventual pole at 8 01
order 1.

d). For any such solution \7 0/ (2.5), define the merornorphic i-Jonn on B:

(2.6)

dt
This form is closed, and for any local equation t = 0 0/8 the form Wv - - ~s

t
locally holorno7J)hic.

2.3.2. Corollary. For any solution \7 to (2.5), thcre exists a holomorphic /UTtC­

tion rv on B such that Wv = d log rv. It is defined uniquely 'Up to a multiplication
by a constant.

In fact, B is shnply connccted.

For a proof of TheorClu 2.3.1, we refer to [MaI3]: a), b), and c) are proved on
pp. 406-410, d) on pp. 420-425.

2.4. Hamiltonian structure of Schlesinger's equations. Thc equations
(2.5) can be written in Hanültonian fonn, with m tirnes and m timc-dcpendcnt
Haluil ton ians.

To be 1110re precise, let X be a Iuanifold with a Poisson structure given by
the Poisson bracket {, }, S a 1l1anifo ld with a coordinate systmll (t 1 , ... , Cn ) ,

(1/.1 , ... , 1/.m ) a fanüly of functions on X x S called Haluiltonians. Extend thc
bracket to X x S fiberwise. Then we cau define Tn, flows on X such that the
evolution of any fUllction F is governed by the equations:

8F
-8. = {1ij,F}.tJ (2.7)

These ftows COI1lIuute iff

Vj, k: {1i' 1i.} = 81ik _ 81i j

J' k 8ti atk . (2.8)
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Ta reprcsent (2.5) in this rann, wc chaose X = (End T)m, S = B. Thc Poisson
structure will bc the prodllct af 1n standard Poisson structures on thc Inatrix spaces.
If we choose a basis in T alld identify End T with the space of Inatrices (Aaß), thc
bracket of two nlatrix eleillents is

(2.9)

(I apologize for using thc subscript J in the Kronccker delta sYlllbal.)

Finally, put:

(2.10)

2.4.1. Theorem. Schlesinger's equations (2.5) are equivalent tn the equations

Vi,j,a,ß:

The flows (2.11) pairwise commute.

Proof. Rewrite (2.5) as

(2.11)

(2.12)

BAjnß _ [Ai, AjJoß
Bai a i - aj

On the other hand, in vicw of (2.10) 1

i 1= j. (2.13)

(2.14)

i I=j. (2.15)

(Noticc that thc Inatrix eleIllents of AJ· alld Ak pairwisc Poisson conlnlutc if j f:. k.)
A straightfol'ward calculation using (2.9) thcn shows that (2.12) (resp. (2.13))
coincides with (2.14) (resp. (2.15).)

The fact that (2.11) conllllute means that thc trajectories of the ftows starting at
one point are all contained in a nul1tisection of p which is equivalcnt to thc flatness
of \7 and to (2.5).
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§3. Semisimple Frobenius manifolds

as special solutions to the Schlesinger equations

3.1. Special solutions. Slightly gencralizing (2.5), wc will call a solution to
SchlesingerJs equations any data (M, (ui), T, (Ai)) where M is a cOlnplex 111anifold
of diluension 171 2: 2; (u I , ... , um) a systCIl1 of hololuorphic functions on M such
that dui frecly generate Ok and for any i i=- j, x E M, we have ui(x) -I ui (x); T a
finite ditnensional c0l11plex vector space; Ai : M --+ End T, j = 1, ... , m, a family
of holornorphic lllatrix functions such that

Vj: (3.1)

Let such a solution be given. SllInnüng (3.1) over all j, we find d(Lj A j ) = O.
Hence Li Aj is a constant Illatrix function; denote its valuc by W.

3.1.1. Definition. A solution to Schlcsinger's equations as above is called spe­
cial, if dirn T = m = dirn M; T is endowed with a cornplex nondegenerate q71adratic

form g,. W = - V - ! Id, where V E End T is a skew symmetrie operator with respect
2

to g, and finally

Vj:
1

Aj = -(V + - Id)Pj2
(3.2)

where Pj : M --+ End T is a /amily oj holornorphic matrix ju,nctions whose values
at any point of M constitute a complete system 0/ orthogonal projectors of rank one
with respect to g:

ra

PiPk = OikPi, LPi = IeIT, g(ItllPi ,lInPj ) = 0
i=l

(3.3)

ij i =I=- j. M oreover, .wc require that A j do not vanish at any point 0/ M.

3.1.2. Comment. We comrnited a slight abuse of language: the notion of
special solution involvcs a choice of additional data, the Inetric g. However, when
it is chosen, thc rest of the data is dcfined unambiguously if it exists at all.

In fact, assume that A j = WP j as abovc do not vanish anywhcre. Thcn thcy
havc constant rank olle. Hcnce at any point. of M wc have

so that
lIn Pi = nj: j#i EBk: k;fj lIn P k = nj: j;fiKer A j •

This Ineans that Pj can cxist for givcn A j only if the spaces Tj = ni: ii:jKer A j are
one-dinlensional anel pairwisc orthogonal at any point of M.

Converscly, asslune that this condition is satisfied. Definc Pj as the orthogonal
projector onto Tj. Thcn AiPj = 0 for i =I=- j bccause Tj = Iln Pj C Kcr Ai. Hcnce

rH m

A j = Aj(LPd = AjPj = (LAi)Pj = WPj .
i=l i=l
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Notice that all Aj are conjllgate to diag (-~, 0, ... ,0) and satisfy A; + ~ Aj = O.

These conditions, as weil as Ej A j = -(v+~ Id), are cornpatible with the eqllations

(3.1) and so must he chccked at one point only.

3.2. From Frobenius manifolds to special solutions. Given a scnüsirnple
Frobenius Inanifold with Hat identity and an Euler fielel E with da = 1, wc can
produce a special solution to Schlesiuger's cquations rephrasing thc rcsults of the
previous two sections.

Namcly, we first pass to a covering M of the subspace of tarne points of thc initial
manifold such that TiJ is trivial anel a global splitting can be chosen, represcnted

by the canonical coordinates (ni). Then we put T = r(M, Tft) and Ai = the
coefficients of the second structure connection written a..., in (2.4).

Bince this connection is Hat, (M, (ui), T, (Ai)) form a solution of (3.1).

Moreover, this solution is special. In fact, T cOlnes equipped with thc metric g.

Thc operator Ai is the principal part of order 1 of V at A = u i which is of the fornl
(3.2), with Pj = ejo.

Finally, this special solution COlnes with one Inore piece of data , the identity
e E T. We will axiomatize its properties in the following definition.

3.2.1. Definition. Consider a special solution to Schlesinger's equations as
in the Definition 3.1.1. A vector e E T is called an identity 0/ weight D for this
solution, i/

D
a). V(e) = (1- 2)e.

b). ej := Pj(e) do not vanish at any point of M.

For Frobenills Inallifolds with da = 1, a) is satisficd by Ch. I, (2.16) and (1.2).

3.3. From special solutions to Frobenius manifolds. Let (M, (ui), T, 9, (Ai))
hc a special solution, and e E T an idclltity of weight D for it.

3.3.1. Theorem. /f D :f: 1, these data conte frorr" the unique structure 0/
sernisimple split Frobenius mani/old on M, with fiat identity anti Euler field J as it
was described in 3.2.

Remark. I do not know whether the restriction D :f: 1 can bc renloved. (This
is the case d1 = 0 in 1.4.2.) For qllanttUIl cohornology, this cxcludes only the
casc of pI. Very interesting Frobenius Dlanifolds with D = 1 are constrllcted in
[D2], Appendix C. They are rclateel to thc universal elliptic curve anel the Chazy
equation, anel show that the Painleve property in fiat coordinates can fail.

Proof. Proceeding as in 3.2, hut in the reverse direction, we are bound to rnakc
the following choices.

Put ej = Pj(e) C GM ® T, j = 1, ... , rn. Identify GM ® T with TM by setting
ej = 8/8uj . Transfer thc llletric 9 fronl T to TM. Definc the llluitiplication on TM
for which ei ° ej = Oijej. Put 11i := g(ei' ei)'

We get a structure of sernisiInple prc-Frobenius rnanifold in thc sense of Ch. I,
Definition 3.2.
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To establish that it is Frobenius, it suffices to prove that ei1]j = ej1]i for all i, j:
see Ch. I, Thcorenl 3.3.

We have 1]j = g(c, Cj). Therefore

1 1 I-D
g(e, Aj(e)) = -g(e, (V + "2 Id) Pje) = g(Ve, ej) - "2 g(e ,ej) = 2 71j (3.4)

since V is skewsymnlctric, aud e is an eigenvector öf V. Furthennore, let \7 bc the
Lcvi-Civita connection of the fiat llletric g. Then derivating (3.4) we find for every
1,,):

I-D 8
-2- 8ui 7]j = g(\7ei (e), Aj(e)) +g(e, Y'ei(Aj(e))) =

8A·
= g(e, -8~ (e)), (3.5)

u l

because e E T so that \7(e) = O. If i #- j, we find froill (3.1)

This shows that if D t= 1, ei1]j = ej1]i.

It relllains to check that E = L:i uiei is the Euler field. According to the
Theorenl 3.6 b) of Ch. I, we IllllSt prove that E7lj = (D - 2)1]j for all j. Insert (3.6)
into (3.5) anel sum over i t= j. We obtain:

_ 2: ( i [Ai 1 A j] ( )) j ( aA j ( )- 9 c, u. . e + u 9 e, -a. e).
tL l - tLJ uJ

i: i#j

Fronl (3.1) it follows that

On the other hand,

Inserting (3.8) and (3.9) inta (3.7), we find

1 - D _ 2: ([ ] j 2: ( [Ai, A j ] )--Er]j - 9 e , Ai, Aj (e)) + 7L 9 e,. . (e) +
2 u l - uJ

i: i=lj i: i=lj

(3.7)

(3.8)

(3.9)
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= -g(e, [V + 2" Tel, (V + 2" Id)Pj ) (e)).
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(3.10)

Using thc skew sylnmetry of V, we see that the last expression in (3.10) equals
1-D

2 (D - .. 2)17j· Hence E1'/j = (D - 2)1Jj if D 1= 1.

3.4. Special initial conditions. Theorelll 2.3.1 c) shows that arbitrary initial
conelitioIlS for Schlcsingcr's equations deterrnine aglobaI meromorphic solution on
the universal covcring B(m) of Cm

\ {diagonals}, m 2: 2.

Fix a base point bo E B(m). Studying thc special solutions, we may anel will
identify T with the tangent space at !Ja thus climinating thc gauge freedonl. This
tangent space is already coordinatizecl: we have ei and e.

We will call a faluily of ulatrices A~, ... ,A~ E End T special initial conditions
if we can find a diagonal llletric 9 anel a skew syrnmetric operator V such that
AJ = -(V + ~ Id) Pj wherc Pj is the projector onto C ej.

Wc will clescribe explicitly thc space I(n~) of the special initial conditions.

3.4.1. Notation. Let R be any equivalence relation on {I, ... , n~}, IRI the
1111l11ber of its classes. Put F(n~) = (End cm)m, Furthennore, clenote FR(n~) thc
subset of families (Ab"" Am) in F(17~) such that R coincides with thc Ininilnal
equivalence relation for which iRj if Tr AiAj :j=. 0, and put In(m) = FR(rn) n1(171).

3.4.2. Construction. Denotc by I(1n) C C m X cm(m-l)/2 the locally closcd
subset dcfined by the equations:

m

L 11i = 0, 1]i #- 0 for all ij
i=l

Vij17j = -Vji1Ji for all i, j;

m DL Vij := 1 - - does not depend on j.
i=l 2

(3.11)

(3.12)

(3.13)

Each point of I(rn) detcrlllines the diagonal Inetric g(ei' Ci) = 1]i anel thc operator
V: ei f-t L:i Vijej which is skew synunetric with rcspect to 9 and for which e is an

1
eigenvector. Setting Ai = -(V + 2" Id) Pi we get a point in i(m).

This alnounts to forgetting (1Jd which furnishes thc surjective lllap I (rn) --+ I (1n)
because

3.4.3. Theorem. a). The SIJace [(rn) can be realizerl as a Zariski open dense
subset in c m +(m-l)(m-2)/2.
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b). Inverse image in l(m) 01 any point in IR(m) is a manifold 01 dimension 1
for IRI = 1, IRI - 1 for IR,I 2: 2.

Proof. Fixing 1]i, we can solve (3.12) anel (3.13) cxplicitly. Put Wij = Vij1Jj so
that Wij = -Wji anel (3.13) beconles

Vj: (3.14)

If we choose arbitrarily the values (Wij) for all 1 ::; i < j ::; 111, - 1, we can find
Wrnj frorn the first 111, - 1 cquations (3.14), anel then the last equations will hold
automatically:

D rn-I

Wmk = 1Jk(1- 2) - L Wik,

i=l

because of (3.11).

It retnains to dctenninc the fiber of the projection onto [(m).

We have for i #- j: Tr AiA j = VijVji' Hence in the generic case when all these
traces do not vanish, we can reconstruct 1]i compatible with given Vij fronl (3.12)
uniquely up to a conunon factor. Generally, for i, j in thc sanle R.-equivalence class,
(3.12) allows HS to deternline thc value 1li/rlj so that wc have IR! overall arbitrary
fac tors constrained by (3.11).

3.4.4.. Question. If we choose a special initial condition for the Schlesinger
equation, does the solution rernain special at cvery point?

Generically, thc answer is positive. If this is the case, we obtain the action of
the braid group Bdm as thc group of deck transformations on the space [(rn).

3.5. Analytic continuation of the potential. Thc picturc described in
this section gives a good grip on thc analytic continuation of a germ of senlisitnplc
Frobenius rnanifold (Mo,1no) in tenns of its canonical coordinates. Narnely, con­
struct thc universal covering M of the subset of the tanle points of Mo, then fix at
the point bo = (ui(mo)) E B(nl,) the initial conditions of M at 111,0. This provides
an open crnbedding (M, rno) c (B(rn), bo). Loosely speaking, we find in this way a
rnaximal tanle analytic continuation of the initial gcnn.

Now construct sorne global Hat coordinates (X U
) on B(1n) corresponcling to a

given Frobenius structure. Thcy 111ap B(rn) to a subdomain in C m . This is thc
natural dOlllain of thc analytic continuation of thc potential 1> of this Frobenius
structure, which is the lllOSt important object for Quantunl Cohorllology. Unfortu­
nately, its properties are not clear frolll this dcscription.



67

§4. Quantum cohomology of projective spaces

In this seetioD wc will apply the developed formalisIll to thc study of the quantnnl
eoholllology of projeetive spaces pr, r 2:: 2, first introduced in eh. I, 4.4. Onr main
goal is the calculation of thc initial eonditions of the relevant solutions to the
Sehlesinger's equations.

4.1. Notation. We start with recalling (and sODlewhat revising) thc basic
notation. Pnt H = H* (pr, C) = L::=o C,6,a, ,6,a = the dual cIass of pr-a c
pr. Denote the dual coordinates on H by Xo, ... , X r (lowering indices for visual
eonveniellce), 8a = 8/8xa. Thc Poinca.re form is (ga/)) = (gab) = (Oa+b,r)' The
tenn l (-)'3) in I. (4.13) is the cubic self-intcrseetion form, the classieal part of the
Frobenius potential

(4.1)

The remaining part of the potential is thc SUIU of physicists' instanton corrcctions
to the self-intersection form:

00

<I>inst(X) := L cI>d(X2' ••• ' :cr)edxt
,

d=1

where we will now writc <I> d as

(4.2)

00

cI>d(X2,' .. , x,,) = L L
n=2 at +"'+afl =

r(rl+l)+d-3+n

( )
xal ... X aI d; a1, ... , (Ln 11. •

n!
(4.3)

This Ineans that if we assign the wcight a - 1 to X a , a = 2, ... ,11, cI>d becoInes thc
wcighted homogeneous polynonüal of wcight (1' + l)d + r - 3. Moreover, if we assign
to edX1 the weight - (r + 1), <Pcl and cI> becolne weighted honlogencous fornlal series
of weight r - 3. (Notice that e in the exprcssions edx1 and alike is 2, 71828 ... ,
whereas in other contcxts e Illeans the identity vector field. This cannot lead to
confusion. )

Thc starting point of our study in this scction will bc the following rcsult.

4.2. Theorem. a). For each r 2: 2, there exists a unique forrnal solution 0/ the
Associativity Equations 1. (1.6') 0/ the form

(4.4)

fOT which 1(1; r, r) = l.

b). This solution has a non-empty convergcnce domain in EI on which it dcfincs
the structure 0/ scrnisimple Frobeni1ts rnanifold Hquant(pr) with fiat identity e = 80

and Euler field
r

with da = 1, D = 2 - T.

E = L(l - a)xa8a + (1' + 1)81
(J.=O

(4.5)
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c). The coefficient I(dj al, ... , an) is the n7Lrnber 01 rational curves 01 rlegree d
in pT intersecting n projective subspaces 01 codi1nensions al, ... an 2::: 2 in general
position.

Uniqueness of the fonnal solution can be established by shüwing that thc Asso­
ciativity Equations ilnply recursive relations for the coefficients of <I> which allow
one to express all of then1 through 1(1; T, r). This is an eleU1cntary exercise for
r = 2 (cf. Introduction, (0.19) .) A n10re general result (stated in the language
of Grolnov-Witten invariants but of cssentially COIl1binatorial nature) is proved in
[KM), Theoren1 3.1, and applied to the projective spaces in [KM], Claim 5.2.2.

Existence is a subtIer fact. The algebraic geometrie (01' sYlnplectic) theory of
the Gromov-Witten invariants providcs thc nllIubers I(dj (LI, . .. an) satisfying the
necessary relations, together with their nUlnerical interpretation: see [KM], [BM],
[FuO]. Another approach consists in calculating ad hoc the "special initial condi­
tioTIs" for the senüsilnple Frobenius Il1allifold Hquant(pr) in the sense of the previous
section and identifying the appropriatc special solution to the Schlesinger equations
with this Il1anifüld. Für r = 2, direct estiInates of the coefficients showing convcr­
gence cau bc found in [D2], p. 185. Probably, they can be generalized to all r.

Our approach in this section consists in taking TheorClll 4.2 for granted and
investigating thc passage to the Darboux-Egoroff picture as a concretc illustration
ofthe general theory. The net outcolne are fornullas (4.18) and (4.19) for the special
initial conditions.

Conversely, starting with theIn, we can construct the Frobenius structurc on the
space B(r + 1) a.'5 was explained in 3.5 abovc. Expressing the E-holllogencous flat
coordinates (xo, ... , x r ) on this space satisfying (4.17) in terms of the canonical
coordinates and then calculating thc Il1ultiplication table of the flat vector fields,
yve can reconstruct thc potential which now will be a germ of hololllorphic function
of (xa ). Because of the unicity, it IllUSt have the Taylor series (4.4). So the Theorelll
4.2 a),b) can be proved esscntially by reading this section in the reverse order. Of
course, thc last stateInent is of differcnt nature.

4.3. Tensor of the third derivatives. Most of our ca1culations in (T, 0) will
be restricted to the first infinitesin1al neighborhood of thc plane X2 = ... = X r = 0
in H. This just sllfficcs for the calculation of thc Schlcsinger initial conditions. We
denote by J the ideal (X2," .,xr ).

Multiplication by thc idcntity e = 00 is described by the cOll1ponents <I>oa b = bab

of the structure tensor. Of thc rmnaining cOIllponcnts, we will nccd only <I> la b which
allow us to calculate Illultiplication by 81 , and proceed inductively. This is where
the Associativity Equations are iIllplicitly used.

Obviously, <I>lOb = Olb.

4.3.1. Claim. We have

for 1 ::; a ::; l' - 1 : (4.6)

(4.7)
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(Here and below we agree that Xc = 0 for c > r.

Proof. The tenn Oa+1,b in (4.6) COlnes from <Dei' Thc rcmallung tenns are
provided by the sutlunands of total degree ::; 3 in X2, ... ,Xr in

For n = 2, the grading condition mcans that cl = 1, al = a2 = 1'. For n = 3, it
lneans that d = 1, a1 + a2 + a3 = 21' + 1. We know that 1(1; 1', r) = 1. Sinlilarly,
1(1; a1, a2, a3) = 1 in this range. This can bc dcduced formally fronl the Associativ­
ity Equations. A nice excrcise is to check that this agrees also with the geometrie
description (for instance, only one line intersccts two given gcncric lines anel passes
through a given point in the thrcc space.) So finally

X 2

The tenn bbOeXl in (4.7) comes from ;. Furthcrmorc,

anel

4.4. Multiplication table. The Inain fonnula of this subseetion is

(4.8)

We will prove it by consecutively calculating the powers 8~a. Thc interrnediatc
results will also bc used latcr. (Notice that O(J2 ) in (4.8) now means O(L:i J 28i ).)

First, we find froIn (4.6) alld (4.7) for 1::; a::; 1'-1:

r a-1

81 0 Ba = L <Pl a
b
8 b = 8a+1 + eXt

LXr+1-a+b8b + O(J2
),

b=O b=O

Then using (4.9) anel induction, we 0 btain

(4.9)

(4.10)

for 1 ::; a ::; l' :

a-2

fJ?a = fJa + eXt L(b + 1)xr+2-a+b8b + O(J2
).

b=O

(4.11)
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Multiplying this fonnula for a = l' by 81 anel using (4.10), we finally find (4.8).

From (4.11) it follows that ara for 0 ::; a ::; l' freely span the tangent sheaf.

4.5. Idempotents. Formula (4.8) allows us to calculate all ei nloel J2 thus
elenlonstrating sClnisbnplicity. Nanlely, denote by q the (1' + l)-th root of the right

• ...=.L 21Ti
hand SIele of (4.8) congruent to e r+1 lnoel J anel put ( = exp (1' + 1)' Then

1 r .. .
ei = r + 1 L(-~J(81 0 q-l)o) (4.12)

j=O

satisfy

for all i = 0, ... 1'. A straightforwarel check shows this.

4.5.1. Proposition. We have

_ 1 Lr
(-i j -xl--l..- ( XI ~ (b + 1 - jHr + 1 - j) 8 +

ei - -- e r+1 e L X r+b+2-j b
1'+1 1'+1

j=O b=O

~ (b + 1 - j)j ) 2+ Oj - L Xb+l-jO/J + O(J ).
1'+1

b=j+l

Proof. We have

q-l = e-#-r (ÖD - ~ :: ~ Xb+l Ö/,) + O(J2
).

b=1

Together with (4. g) this gives

-1 _...=.L ( ~ b+ 1 ) 281 0 q = e r+l 01 - L l' + 1Xb+1 0 b+1 + O(J ).
h=l

Hence

. t=.L( 0' . 0('-1) ~b+1 )
(01 0 q-l)1 = e- r+l 81 ) - J81 ) 0 L l' + 1Xb+1Ub+1 + 0(.12).

b=l

Iuserting this into (4.12) auel usiug (4.9)-(4.11) onee again, we finally obtain (4.13).

4.6. Metric coefficients in canonical coordinates. The lnetric potential 71
is silnply x r (see eh. T, (2.4).) Hence wc cau casily calculatc 7]i = eiXr' The answer
IS

(i r r (ib ~
7Ji = __e- X1

r+l - L b(1' + 1 - b) e-x1----;:+lxb + O(J2). (4.14)
l' + 1 b= 2 (1' + 1)2

As an exercisc, the reader can check that the saUle answer results fronl the (langer)
ealculation Of7Ji = g(ei,ed·

4.7. Derivatives of the metric coefficients. We now sec that the chosen
precision just suffices to ca1culatc the restriction of rlij, Tij anel the lllatrix elelllcnts
of Aj to the plane X2 = ... = X r =°any point of which cau be taken as initial one.
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4.7.1. Claim. We have

(4.15)

Noticc that (4.15) is SYIllIllctric in i, k as it should be.

This is obtained by a straightfol'ward calculation frorn (4.13) aud (4.14). The
nUIllcrical cocfficient in (4.15) COIlles a..'3 a combination of L:j=l j(i and L:j=l j2(j
which are then summed by standard tricks.

4.8. Canonical coordinates. Wc find u i from the fonllllla E 0 ei = uiei' To
calclllate Eoei, use (4.5), (4.13) and (4.9)-(4.11). We onüt thc details. The result
IS:

4.8.1. Claim. We have

r

u
i = Xo + (i(r + 1)em + L (aieffi X a + D(J2).

a=2

(4.16)

,
Thc reader can check that e(u,j = bij + D(j).

4.8. Schlesinger's initial conditions. Recall that the luatrix rcsidllcs Ai of
Schlesinger's eqllations for Frobenills lllanifolels are

(4.17)

(cf (1.13).) Substituting hcre (4.14), (4.15) anel (4.16), wc finally get the Illain
rcsult of this section.

4.8.1. Theorem. The point (xo, Xl, 0, ... lO) has canonical coordinates u i =
. ....=.L

Xo + (l(r + 1)e r+l .

The special initial conditions at this point (in the sense 0/ 3.4) corresponding to
H quant (pr) are given by

(j-k

Vjk = -1- (j-k

and
(i -Xl-r-

1]i = r + 1 e . r+ 1

As an exercise, thc reader cau check that

(j-k D r
- '""" -1----L 1 - (i- k - 2 - 2·

k: k:f;j

(4.18)

(4.19)
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§5. Dimension three and Painleve VI

The equations for the potential <I> 01' rnetric potential 11 gencrally fonn a system
of PDE. However, in the thrcc-dimensional smnisiInple case, in the prcsence of a
flat identity and an Euler field, they can be cffectively rcduced to one nonlinear
ODE belonging to the family Painleve VI. This section contains some details of
this study.

5.1. Normalization. i) Spectruln antI normalized /lat coordinates. We start
along the lines of Ch. I, 4.2, but with sOrne additional assumptionsj see [02], pp.
127-129 for thc general case.

Let M be a connccted simply conncctcd Frobenius rnanifold with Hat identity
and Euler ficld with da = 1. Thc rnost iInportant spcctruln point is D.

Frorn the start, wc will exclude from consideration two 0/ the critical val1l,cs oi
D. Narnely, we will assurne D :/; 1 in order to be able to usc in the semisirnplc case
Theorem 3.3.1, and D #- 2 which guarantccs that thc spectrrnl1 of -ad E on T~ is
simple.

In fact, in the notation of Ch. I, 2.4, this spcctrurn must bc of the fonn

(do, dl, d2 ) = (1, ~, D - 1), whcre thc cigcnvector for do = 1 is ÖD = e, g(e, e) = 0;

the eigenvector for d2 = D - 1 is uniquely normalizcd by the condition g (e, 82) = 1 j

and the one for ~ is uniquely up to sign normalized by g(Öl' Öl) = 1. Thus

(gab) = (gab) = (Oa+b,2).

Wc can now consider three Hat coordinates (xo, Xl, X2) such that Ba = B/8xa
defincd up to a shift (anel sign change for :1;1') Their final normalization will depcnd
on the Euler field.

The spectnnn of V = -ad E - D Id is (1 - D, 0, D - 1) .
2 2 2

ii) Euler field and nonnalized potential. If D i= 0,1, tllen all da da not vanish,
and we can choose X o, so that

D i= 0: (5.1)

(Notice that the origin (xa ) = (0) cannot be tarne scrnisirnple because E vanishes
there.)

Für D = 0 wc obtain an extra paralneter (cf. Ch. I, 2.4) which we denote r + 1
to confonn with (4.5); Xl renlains defined only Hp to a sign change and shift:

D=O: (5.2)

We will assHnlc T + 1 =1= 0; then thc sign can bc norrnalized by Re (7' + 1) > 0.

Thc potential can be written in thc fonn (eh. I, (2.3)):
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It is defined up to a ql1adratic polynonlial in (xa ) and 11l11st satisfy Eip = (D+ 1)<1>+
q, where q is also a quadratic polynonlial. We can try to make q = 0 hy replacing
<I> with 1> + panel solving (E - 1 - D)p = q. Ir D i- °and D =I -1, such p cxists
and is unique. If D = -1, we cannot kill a possible constant tenn c in q which is a
new parameter. If D = 0, we can unamhiguously kill any quadratic polynonlial in
(Xll X2) hut thc tenn containing Xo will rmnain. So our final nonnalization is:

D i- ±1, 2 :

D = -1:

Ecp=(D+1)cp,

E<p = c.

(5.3)

iii) Associativity Equations. A straightforward check shows that all the Associa­
tivity Equations follow frolll oue of them, which can be written as

_ 2
CP222 - 4'112 - 4'111 CP122· (5.4)

In [D2], p.128, equations (5.3) and (5.4) are rcduced to an ODE for the function f
which is defined in thc following way.

If D "I 0, ±l, 2, put {j = ~ - 2. Then (5.3) means timt locally 'P can be written

4 -lf( 0)as Xl X 2 X2 X I'

If D = -1, we can put similarly cP = 2clogXI + f(x2x14).

If D = 0, we have cP = X21f (Xl + (r +1)log X2)' We will copy Dubrovin's cquation
for 1 in this case:

f"'[(r + 1)3 + 2/' - (r + 1)/"] - 1"2 - 6(r + 1)2/" + 11(r + 1) f' - 6f = 0. (5.5)

Thc case D = °is the lnost interesting for us bccausc it includes the quantum
cohonlolgy of p 2 . It is not easy to rccognizc in (5.5) a classical eqllation. Below we
will describe how Dubrovin uses thc additional sernishnplicity condition in oreIer to
rcc!tlce it to PVI.

5.2. Semisimplicity and tameness. At a tarne sernisitnple point of M, the
operator Eo has siulple spectrurn (canonical coordinates of this point.) Conversely,
if this is true, one can write down explicitly the ideInpotents ei as polynornials in
E. This critcritun is sufficiently practical for use in flat coordinates.

5.3. Analyticity. Consider now the case whell <I> is analytic at thc origin.
(Recall that if D = 0, the origin can be any point along the Xl-axis, so its choice
is the saUle as the choice of Xl')

5.3.1. Proposition. a). The origin can be tarne .9crnisimple only ij D = 0. In
this case the norrnalized analytic potential cau be wrilten in the f01m

(5.6)

so that Ei!! = cI> + (r + 1) xOxl'
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b). The Associativdy Equation.'J are equivalent to the following recu1'sive relation.5
for the coefficients M (11,) :

M(n + 3) = (r: 1)4 2: (~) [M(k + I)M(1 + l)(k + 2)2(1 + 2)2_
k+l:=n
k ,12:0

-M(k)M(l + 2)(k + 1)3(l + 3)] . (5.7)

Hence any formal solution is uniquely defined by the choice of M(O), M(l), M(2)
which can be arbitrary.

c). The point (000) is tame semisimple iff the polynomial

3 M(O) 2 8M(1) 3M(2)
u- u- u--......;........

(r+1)3 (r+1)2 r+1

has no multiple roots.

For the qualltlll11 coholnology of p 2
, wc have r + 1 = 3, M(n) = 0 unless

n = 3d - 1, and M(2) = 1. If we put N(d) := M(3d - 1), (5.7) beconlcs (0.19).

Proof. a). As we have already reInarked, (000) cannot bc taIne senüsimple with
E of thc fonn (5.1) since E vanishcs at this point. Olle casily sees that for D = 0,
(5.6) is normalized.

b). This is a rcstatcment of (5.4).

c). We will use the criterilUU of 5.2. FroIn (5.2) one sees that one cau look at
the spectrum of 810 in lieu of Eo. The nnl1tiplication tablc at the origin is

4M(1) M(O)
81 0 81 = (r + 1)2 80 + (r + 1)3 81 + 82 ,

8 0 a - 3M(2) a 4M(1) a
1 2- r+1 o+(r+1)2 1·

Hence
3 M(O) 2 8M(1) 3M(2)

det (810 -uld) = -u + ( )3 'lL + ( )2 U + .
r+1 r+1 r+1

This' finishes the proof.

5.3.2. Exercises. a). Calculate fornlal (at the origin) potentials for D #- O.

b). Calculate thc special Schlcsinger's initial conditions at the origin for thc
potential (5.6).

5.4. Introduction to the PVI equations. These equations fonn a family
PVIo ,ß",6 depending on foul' paraIneters 0:, ß, '"'(,8, and classically written as:

d2X 1(1 1 1) (dX) 2 ( 1 1 1) dX
dt 2 ="2 X + X-I + X - t rlt - t + t - 1 + X - t -;]t+
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X(X-1)(X-t) [ t t-1 t(t-1)]
+ t2(t - 1)2 Cl: + ß.1\2 +, (X _ 1)2 + 8(X _ t)2 .

They were discovered around 1906 anel have been approacheel fronl at least three
different directions.

a. Study 0/ non-linear ordinary differential equations 0/ thc .gecond order whose
solutions have no movable critical points.

Their classification prograll1 was initiated by Painlcve, but he inadvcrtently olnit­
ted (5.8) duc to an error in calculations. It was B. Ganlbier [G] who cOlnpleted
Painleve's list and found (5.8).

b. Study 0/ the isomonodr01nic de/ormations 0/ linear differential equations.

c. Theory 0/ abelian integrals de]Jending on parameters and taken over chains
with boundary (not neces.sarilj; cycles.)

These two approaches are dne to R. Fuchs [F].

In thc subsequent developmcnt of the theory, relationship with isolnonodromic
defonnations proved to bc lnost frnitfnl. Bricfly speaking, (5.8) can be obtaincd
by a change of variables [rolli Schlcsinger's equations with four singular points and
the two-dimensional space T. This dcscription can be used in oreIer to connect
PVI to the three dimensional Frobenius lnanifolds. For sorne recent research anel
bibliography the reader Inay consult [JM], [01], [H1], [H2].

In this scction we take up the sOlllcwhat neglected approach via abelian integrals
allel algebraic geolnetry.

Thc Inain outcome of this approach is thc representation of (5.8) as an equation
on the Inultisection of an (arbitrary nonconstant) pencil of clliptic curves with
markeel sections of oreler two. In particular, passing to the cla.'3sical unifonnization,
we will find the following equivalent ronn of (5.8):

5.4.1. Theorem. The equation (5.8) ü; equivalent to

where
1

(0'0, ... l0'3) := (a, -ß, I: 2 - 8),

(To, ... , T3 ) = (0,1, T, 1 + r), and p(z, r) is the Weierstrass /unction.

(5.9)

(5.10)

(5.11)

5.4.2. Theorem. Any potential 0/ the form (5.6) can be eXIJ1'essed through a
solution to (5.9) with (ao, ... ,(Y3) = (~, 0,0,0) that is,

d2 z 1
dT2 = - 87T"2 pz (z, T)

In ]Jarticular, the solution corres]Jonding to p2 passes through a point of order three
on an elliptic curve with complex rnultiplication by cubic root 01 unity.

Below wc will give a nlorc detailcd version and a proof of both theoreIlls.
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The last result givcs exaet meaning to the stateluent "mirror of p 2 is a peneil of
elliptic eurves with lllarked seetions of order two and an additional mllltiseetion."
It is eoneeivable that a sirnilar pieturc will cmergc for all homogeneous anel toric
Fano manifolds and for all Fano eomplete interseetions in them.

An intriguing quest ion about the analytie nature of the particular solution corre­
sponding to p2 reluains open. There are theorellls saying that Sohltions of (5.8) are
generieally "new" transeendents. Thcre are also luany exalnples of the partieular
solutions reelucible to 1110re classical funetions, like hypergeolnetric ones.

5.5. Painleve equations and elliptic pencils. We start with thc following
classical result.

5.5.1. Theorem (R. Fuchs, 1907). The eqnation (5.8) can be written in the
fonn

t(1 - t) [t(1 - t)_d
2

+ (1 _ 2t)~ _ ~] l(X,Y) ----;::==:====d::::::;:x:::::;:=====:=
dt2 dt 4 00 .jx(x - l)(x - t)

_ Y ß tY (t - 1)Y (0 _ ~) t (t - 1)Y
- a + ...y2 +, (X - 1)2 + 2 (X - t)2

where y2 = X(X - I)(X - t).

Proof. First, let us clarify thc Ineaning of (5.12). Consider thc family of clliptie
curves E --+ B paralnetrized by t E pI \ {O, 1,00} := B : the curve Et is thc
projective closurc of y2 == X(X - I)(X - t). Points at infinity of {Et } fOrIn a
scetion Do of this falnily whieh is the zero section for the standarcl group law on
fibers. Choose in Et(C) a path fronl Do(t) to the point (X(t), Y(t)) of a loeal
seetion. Thc operator

d2 d 1
Lt :== t(1 - t)- + (1 - 2t)- - -

dt 2 dt 4

annihilates thc periods Jdx along closed paths in Et(C) bceause
y

[

fJ2 BI] dEIEX 1 y
t(1 - t) -8t-2 + (1 - 2t) Bt - 4 y == "2dEIB -(x---t-)2

(5.13)

(5.14)

f) j(X,Y) dx
where we put -8 (x) = 0 anel dEIBt = O. Applying L t to - wc get

t 00 Y
1 I(X,Y)
- ( y )2 plus the contribution of the houndary sections which together with
2 x - t

00

the right hand siele of (5.12) alnounts to (5.8).

5.5.2. j.L-equations. The eqllation (5.12) is an instanee of thc general con­
struction which was used in [Mal] to provc the funetional Morclell eonjceture. We
will bricfly describe it llOW.
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A J-L-equation is a system of non-linear PDE in which independent variables are
(local) coordinates on a nlanifold Band unknown functians are represented by a
section S of a fanüly of abelian varieties (ar complex tori) 1r : A ---7 B. To write
this system explicitly, assurne B srnall erraugh so that 7f*(O~/B) and VB (sheaf.of
differential operators on B) are OB-free, and make the following choices:

a. An (9B~basis of vertical 1~forms Wl, ... ,Wn E r (B, 7f* (0~/B) ).

b. A system of generators of the VB-module of the Picard-Fuchs equations

tL~j)1Wi = 0, j = 1, .. . ,N,
i=l I

(5.15)

where ! runs over families of closed paths in the fibers spanning H 1(B t ).

C. A family of rueromorphic functions <I>{j), j = 1, ... , N on A.

The respective J-L-equation for a local (multi)-section s: B ---7 A reads then

n (SL L~j) in Wi = s*(<I>(j)),
i=l 0

j=l,.",N, (5.16)

where 0 denotes the zero section.

One drawback of (5.16) is its dependence on arbitrary choices. Clearly, trus
can be reduced by taking account of the transfonnation rules with rcspcct to the
changes of various generators. For elliptic pencils, the result takes a neat form.

Let again E --+ B be a non-constant one-dimensional family of elliptic curves.
We temporarily keep the assumption that 7f*(Ok/B) and the tangent sheaf TB are

free. For any symbol of order two (J E 8 2 (78) and any generator W of 7f*(Ok/B)
denote by La,w the Picard-Fuchs operator on B with the syrnbol (J annihilating all
periods of w.

5.5.3. Lemma. For any loeal seetion s, the expression L",w18

W is OB­

bilinear in a and w.

Proof. Obviously,

where /, gare functions on B. Thc lernrna follows.

Thus the expression

(5.17)

depends only on sand is cornpatible with restrietions to open subsets of B. This
means that the natural domain of the right hand sides for elliptic J-L-cquations is

the set of merornorphic sections <I> of the sheaf 1r* [82 (01) (9 (1r*Ok/B)-l] .
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Noticc that the Kodaira-Spencer isolnorphisln (and eventually a choice of the
theta-characteristic of B) allows us to identify <P with a merol11orphic section of
(Ok/B)3 or 7f*(01)3/2 ac; wen.

We will now lift the Fuchs-Painlcve cquation (5.12) to the c1assical covering
space, which in particular will make transparent the nature of its right hand side.

5.5.4. Uniformization. Consider the family of elliptic curves pararnetrized by
the upper·half-plane H: E'T := C/(Z + Zr) H rEH. Recall that

p(z, T) := z12 + L' ((z + m~ + n)2 - (mT ~ n)2 ) , (5.18)

1
!Jz(z,r) = -2L()3' (5.19)

z + ffir +n

We have

pz(z,r)2 = 4(p(z,r) - el(r))(p(z,r) - e2(r))(p(z,r) - e3(r))

where

(5.20)

Ti
ei(r) = p(2' r), (To,···, T3) = (0,1, r, 1 + r) (5.21)

anel el + e2 + e3 = 0. Functiolls panel !Jz are invariant with respect to the shifts
Z2 : (z, r) I-t (z+rnr+n, r) and behave in the following way uncler thc full modular
group r :

p ( z d' aT + I~) = (ct + ei) 2P(z, r),
er + cr + (

gJz ( z d' aT +~) = (ct + d)3 pz (z, r).
cr+ cr+

Consider now the rnorphisrn of fanlilies cp: {E'T} -f {Et } induced by

( ) (x _p(z,r)-el y_ pz(z,r) _ e3 -e1 )
z, r 1-+ - , - / ,t - .

e2 - el 2(e2 - ed3 2 e2 - el

This is a Galois covering with the group f(2) t>< Z2. We have

(5.22)

(5.23)

(5.24)

(5.26)

• (dE/BX) 1/2cp Y = 2(e2 - ed eiE/HZ. (5.25)

In the future fonnulas of this type we will omit cp. anel denote clifferentials over

a base B by d.!,.. For instance, d.!,. ( z d) = d.J..
z

, whereas d ( z ) =
er + er + d cr + d

dz czdr
cr+d (cr+d)2'

It follows from (5.25) that if we denotc by Tl (resp. T2) the irnage of [0,1] (resp.
[O,l]r) in {Et }, then

1d.J..X ( 1/2 1 d.!,.X 1/2Y = 2 ez - er), -- = 2r(e2 - ed
11 12 Y

so that the operator L t froln (5.13) annihilates periods (5.26) as functions of r.

We can now prove Theorem 5.4.1 in the following fonn:
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5.5.5. Claim. The lift of (5.12) to the (z, T)-space C x H is (5.9).

Proof. Following the lead of 5.5.3, we will directly calculate thc p.-equation for
d2 d2

{E'T }, choosing w = dJ.z (instcad of dJ.X/Y) and a = d 2 (instcad of t 2(1- t)2 d 2 .)
T t

Since periods of dJ.z are gencratcd by 1 and T, the relevant Picard-Fuchs operator

is simply ::2. From the Lemma 5.5.3 and (5.26) it follows that

1/2 d
2

t(l - t)Lt 0 2(e2 - ed = Z(T) dT 2 '

Using (5.24) and cou1paring SYlllbols, we see that

(5.27)

Since Cl + e2 + e3 = 0, we can replace (eIe; - e2e~)2 by (eie) - cjeD 2 for any i #- j.
It follows that

c .= Oi>j(ei - ej)2
. (eIe; - e2e~)2

is a 1l1odular fUllction for the full lllodular group without zeroes anel poles, hence a
constant. A calculation with thcta-functions, here oInitted, shows that C = -97r2

,

so that finally

(5.28)

for thc respective sections. Wc can 1l0W consccutively cOlnpare thc sUlllmands in
thc right hand side of (5.8) with thosc in (5.9). The first sumnHl.nd gives

For the relllaining ones we havc to use thc addition fornullas

so that, say, for i = 3 we gct

(C2 - ed2
(p(z, T) - e3)2
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1 1 -3/2 1 + 7= -"2(0 - 2)(e2 - el) tJz(Z+ -2-,7).

Thc reulaining two sUIlllnands are treated siInilarly. This finishes thc pr?of.

In [Ma5] Theorem 5.4.1 was used in order to give an algebraic geometrie descrip­
tion of thc Painleve VI equations and of thcir Haruiltonian strueture.

5.5.6. 84-symmetry and the Landin transform. As an application of (5.9)
we will eonstruct some natural transformations of PVI.

a. The classical 84 -symmetry. IsoInorphislTIS of elliptie pencils with rnarked
sections of order two (E, Dd which do not conserve the labelling of D i induce
transfornlations of PVI pcrnnIting ai. In the fonn (5.9), they act on the solutions

as eompositions of the transforrnations of two types: (Z,7) H ( z , ar +~)
CZ + 7 e7 +

inelexed by cosets f /f(2), anel (z, T) f--7 (z + ~i, r) shifting the zero section.

b. The Landin transform. From (5.19) oue easily deduees Landin's identity

. 7
= Pz(Z,7) + pz(z + 2,7).

Hence if Z(7) is a solution to PVI with pararneters (ao, a1, ao, ad, we have

d2
Z ( r ) 7 1 1 + 7

dr2 = ao[pz(z, T) + Pz(Z + 2' r)] + adpz(z + 2' r) + pz(z + -2--'-' r)J =

1 r1 2z(r) T 1 T

= 4 d(7/2)2 =aoPz(z'2)+n1PZ(z+2'2)'

that is, Z(27) is a. solution to PVI with pararneters (4ao,4a1, 0,0). The eonverse
statenlent is true as well. In this way we get the following bijections between the
sets of sohltions to (5.9):

and in particular
(o:o,O,ao,O) H (4ao,O,O,O).

(5.29)

(5.30)

5.5.7. The symmetry group W. Put now ai = 20:;,i = 0, ... ,3. In (02],
Okamoto found out that the following group W of thc transforrnations of thc pa­
ranleter spaee (nd can be birationally lift.ed to the group acting on the space of all
solntions of all Painlevc VI equations. By definition, W is generated by

a). (ad H (ciad, where ci = ±1.
b). Pennutaions of (ai)'

3

c). (ad H (ai + nd, where ni E Z and L ni == 0 (2).
i;;;;O
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This result. goes back to Schlesinger who discovered the general discretc symlne­
tries of his eqllatiollH. It is renlarkable howcver that they act so neatly on a specific
reduction representcd by PVI. Explicit fonnulas are quite conlplicatcd even for the
shnplest shift (ai) H (ai + 2oiO ), and composition quickly makes thenl unnlanagc­
able.

5.6. From Frobenius to Painleve. Followillg [D2J, Appendix E, we willllow
describe the Inap which produces a solution to (5.8) for any analytic potential of
the fornl (5.6).

Let <I>(xo, Xl, X2) be the genn of analytic function of the fonn (5.6), satisfying
the Associativity Equations, for which (000) is a tarne selnisilnple point with non
zero canonical coordinates, 01' equivalently, M(2) =1= O. For a, b = 0,1,2 calculate
consecutively the following functions of (xo, Xl, X2):

(5.31)

(5.32)

(5.33)
p = - Gr2 + G02G12G22 - GnG12G22 - G~2GOl .

Denote by (Ul, U2, U3) the eigenvalues of thc operator Eo. Since they are local
canonical coordinates, q and p are functions of Ui. Finally, put

U3 - UI q - Ul
t = , X(t) = .

U2 - UI U2 - UI
(5.34)

The fact that locally X depends only on t and not on separate 'lLi follows from the
equation E<I> = <I> + (r + 1)XOX1'

5.6.1. Claim. The function X(t) satisfies the PVI equation (5.8) with param-
eters

(5.35)

MoreoverJ we have

(5.36)

In fact, Dubl'ovin in [D2J, Appendix E, deduces a 1110re general statement appli­
cable to the case D =1= 0 at scmisiInple points as weIl. We will I'estrict oursclves to
cOlnparing notation. Dur (xo, Xl, X2) are Dubrovin's (tl, t2 , t3 ). Dur functions Ga!)

correspond to Dubrovin's goß and are caIculated with the help of Dubrovill's (3.17),
(3.18) and (1.9) (sllperscripts being lowered with our Poincare form (Oa+b,2)') Dur
fonnulas (5.32) and (5.33) are Dubrovin's (E.8); (5.35) is obtained from the fact
that Dubrovin's J1. is -1 for D = O. Finally, (5.34) and (5.36) are Dubrovin's (E.16).
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t

Dubrovin also shows how to reconstruct the potential knowing X(t). This in-
volves integration which explains the discrepancy in the nllIllbers of constants (al­
ready noticed by the attentive reader.)

5.6.2. Potential für p 2 . We can now calculate the Painleve initial conditions
for p 2 at the point X a = O. According to Theorenl 4.8.1, we have (up to renunlber­
ing) ('lLl' 'lL2, U3) = (3,3(,3(2), ( = e2ni / 3 at this point. After ca1culating (5.31), we
obtain q = p = 0, again at the origin. Then (5.34) and (5.36) give

1 1
t = (+ 1, X(( + 1) = -, X'(t) = -3'

1-(
(5.37)

Obviously, thc elliptic curve y2 = X(X - 1)(X - ( - 1) admits conlplex mlllti­
plication by ( : the q~coordinate can be sinlply rnultiplied by (. The point q = °
reluains invariant, hellce it IUUSt be of.order three on this curve. (I do not see the
meaning of thc last condition X' (t) = l.)

It is interesting to rCIuark that thc point (5.35) in the pararneter space of PVI in
a sense also corresponds to the "half period." More precisely, the (ad-coordinates
of this point are (ao , ... a3) = (3,0,0,0). By the Schlesinger-Okaluoto shift we can
reduce this point to (1,0,0,0).

The point (0,0,0,0) corrcsponds to the .equation d2 z/dr2 = °trivially solvable
with two arbitrary constants; all X(t) can bc expressed via Weicrstrass function.
The salue is trllc for thc shifted point (2, 0,0,0) by Okanloto. The p2-point lies
exactly half-way in between.
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CHAPTER III. FORMAL FROBENIUS MANIFOLDS

AND MODULI SPACES OF CURVES

§1. Formal Frobenius manifolds

and Cornmoo-algebras

In this Chapter we return to the supergeometric setting of Chapter I, §1. (01'
rather to its fO~Inal version.)

1.1. Formal Frobenius manifolds. Let k be a supercornrnutative Q-algcbra,
H = EB a k..6. a a free (Z2-graded) k-Inodule of finite rank, 9 : H (9 H --+ k an
even symIuetric pairing which is non-degenCI'atc in the sense that it incltlces an
isolllorphisIn g' : H --+ H t where H t is the dual module.

Denote by K = k[[Ht]] the cOlnpleted symrnetric algebra of Ht. In other words,
if L:a x aß a is a generic even eletnent of H, then K is the algebra of formal series
k[[xa ]].

1.1.2. Definition. The structure of the formal Frobenius manifold on (H, g) is
given by an even potential «P E K, defined up to quadratic terms, and satisfying the
Associativity Equations (1.6).

In other words, the multiplication law ..6.(1o..6.b = L c «P abc.6.c turns HK = K ®k H
into a supercomrnutative K -algebra.

1.1.3. Examples. a). If (M,g,«PM) is a Frobenills Inanifold over k = R 01'

C, x a point of M, put H = TM,x (the tangent superspace at x identified with the
space of local flat tangent ficlds), 1> = the illlage of «P M in the cOIupletion of thc
local ring 0 M ,x, (x a ) a systcln of Ioeal flat coordinates vanishing at x.

More generally, we can start with a relative Frobenius lllanifold M / S where
S is affine 01' Stein, and a section x : S --+ M with norillal sheaf triviali...:ed by
the vertical flat vector ficlds. The cOlllpletion a]ong this section will be a fonnal
Frobenius Inanifold over k = r(S,Os).

b). Quantulll eohoInology, briefly described in Chapter 1,4.4, furnishes nlany ex­
amples of fonnal Frobenius structurcs on the COhOlllOlogy Inodulcs (H = H* (V, k),
9 = Poincare pairing), sec e.g. potentials (4.13) of projective spaees.

In this scction we will show that thc Taylor cocffi.cients of a fornlal potential «P
can be interpreted as a family of lnllitilinear composition laws on H fllrnishing a
beautiful gcneraliJ~ationof thc usual cOlnmutative algebra. Let (H, g) bc as in 1.1.

1.2 Definition. The structure of the cyclic Cornmoo-algebra on (H,,q) is a
sequence 0/ even polylinear maps On : H0n --+ H, n = 2,3,... .satisJying the
following conditions:

a). Higher cornrnutativity: On are Sn -syrnmetric (in the sense of superalgebra).

We will denote 0n(-)'1 ® ... (9 Tn) by (-)'1, ... ,Tn).
b). Cyclicity: the tcn.sors
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are Sn+ 1 -syrnmetric.

c}. Higher associativity: Jor all rn 2:: 0 and Ci, ß, 1,01, ... ,Om E H, we have

L e'(a)((a, ß, Oi 1i E Sd, T, Jj I] E S2) =
u: Sl U S2;;;;{1, ... ,m}

L c"(a)(a, (ß, I, Oi li E 8d, Oj I] E 8 2 ). (1.2)
a: Sl U S1;;;;{1, ... ,m}

1.2.1. Comments. In (1.2) a runs over all ardercd partitians of {I, ... ,rn}
into two disjoint subsets. Thc signs c' (a), e" (a) are defined as follows: fix an
initial orclering, say, (a, ß", Ol" .. , Om), thcn calculate thc sign of the penllutatioll
induced by a Oll the odd argtullents in (1.2).

b). Far m = 0, (1.2) reaels

((a, ß),,) = ((a, (ß, ,)),

and for m = 1

-~((a,ß)",o) + (-I)' ((a,ß,o),,) = ((a, (ß",o)) + (a, (ß,,),o).

(1.3)

The general cOlnbinatarial structurc of (1.2) cau bc IllCInorized as fallows: start
with (1.3) and distribute (01, ... 10m) in all passible ways between the brackets
at bath sieles, without introclucing new brackets and retaining the initial ordering
inside each bracketed group.

c). Thc tenn "cyclic" comes fraln cyclic cohomology. One cauld also say that
9 IUUSt be an invariant scalar product with respect to all multiplications: COIllpare
(1.1) to Chapter I, (1.2). Choosing On = 0 for all n 2:: 3, we will get a couvcntional
comnnltative algebra with invariant scalar praduct.

1.3. Abstract Correlation Functions. Clearly, given 9, on and ~l+1 uniquely
deternline each ather. It will be usefnl to axiomatizc the functional equations
bctwecn ~t+l which turn out ta bc cquivalcnt to thc highcr associativity laws.

1.3.1. Definition. A systern 0/ Abstract Correlation Functions (A CF) on (H,g)
is a family of Sn -sym1netric even polynomials Yn : H0n ---+ k, n = 3,4,5, ...
satis/ying the Jollowing coherence relations:

for aU n 2:: 4, all pairwise distinct i,], k, l E {I, ... , n} and aU rl, ... ,rTl E H,
we have

L e(a)(Y1 s 11+ 1 ® Y1S11+l)(®pESlrp ® ~ ® (®QES1rQ)) = (j +-+ k), (1.4)
a: ijakl

where ~ = I: ~ag(J.b ® ~b.

Here a runs aver stable part itions 0 f {I, ... , n} (this lueans that !Si I 2:: 2), anel
the notation ijakllneans that either i,j E SI, k,l E S2, or i,] E S2, k,l E 81 .
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1.4. Correspondence between formal series, families ofmultiplications,
and families of polynomials. Let <I> E k[[H t ]] be a fornlal series. Disregarding
tenllS of degrce ::; 2, write

00 1
<I> = ~ -YnLn!

n=3

(1.5)

where Yn E (Ht)®n cau also be considered as an even synuuetric lllap H0n -t k.
Having thus produced Ynl we can define the synulletric polylinear lllultiplications
On satisfying (1.1). Clearly, both correspondences are bijective.

We can now forrnally statc the rnain result of this section.

1.5. Theorem. Thc c017'espondence 0/ 1.4 establishes a bijection between the
sets 0/ the /ollowing structures on (H, g):

a). Forrnal Frobenius 'mani/olds.

b). Cyclic Cornrnoo -algebras.

c). Abstract Correlation Functions.

Proof. We start with the correspondence a) He). The Associativity Equations
for <I> can be writtcn as

V(1" b, C, d, L <I>abegef <I> fcd = ((1, H b H C Ha),
ef

(1.6)

wherc thc subscripts label a basis of H. Rcprescnting <I> as in (1.5) anel writing
, = L:a x U .6.awe sec that (1.6) is equivalent to

L (nI ~ 3)! Y,q (-y0(n, -3)0l:.a0l:.b0l:.c)ge f (n2 ~ 3)! Y,., (l:. f 0 l:.c0l:.d0-y0(n, -3)) =
ni 2:3; e,j

1
= L (nI - 3)'(n2 _ 3)! (Yn1 ®Y;1~)(,0(nl-3)®~a®~b®~®.6.c®~d®,0(n2-3)) =

ni?:3

(a H b H C Ha). (1. 7)

In orcler to elcduce (1.7) frolll thc cohcrencc relations (1.4), we proceed as follows.
Fix n 2: 4, consider in (1. 7) only thc tenns with nl +n2 - 2 = n, and Iuultiply thcm
by (nI + n2 - 6)! The resulting identity is a particular case of (1.4), corresponeling
to thc following choices:

(i,), k,l) = (nI + 712 - 5,nl + n2 - 4,nl + 712 - 3,711 + n2 - 2).

Since all the arguI11ents except for the foul' deltas coincidc, SlUlllnation over the
partitions in (1.4) will prodllce thc binoluial coefficient which we necd. (Actually,
we have , E HK, but this eloes not violate (1.4).)

Arguing in reverse order, we can deduce (1.4) fronl (1.7). Then one first obtains
(1.4) with apart of ,'s coinciding, bclonging to HK and being gencric even elements.
An easy version of the polarization arguIucnt then gives thc desired conclusion.
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We now turn to the corresponclence b) f-t c). Thc relation (1.1) can be rewritten
as

('1"" ,'u) = LYn+1(,1 ® ... ® ,n ® 6.a)gab6.b.
ab

From here we cleduce

(1.8)

= L Y";,1~+1(LYn1 +1 ('1 ® ... ® 'n1 ® 6.c)gC~6.d 0 ,n1+1 0 ... 0 ,n1+n2-d =
ab cd

= L(Y";,1 1 +1 ® Y";,t~+l)('l 0· .. 0,n1 06. 0,nl +10' .. 0,n1 +n2_106.a)gab6.b • (1.9)
ab

The associativity relations (1.2) will cxactly luatch thc coherence relations (1. 7)
rewritten via (1.9) if wc put m+ 3 = 11.1 +11.2, a =,I, ß = ,2" = '111+ 1; i = 2,j =
1, k = nl + 1, 1 = m + 3.

1.6. Identity. If a fonnal Frobenius luanifold (H, 9, <1» adlnits a flat identity
e, it can be iclentified with a basic elCluent 6.0 , In the respective structure of thc
cyclic Cornmoo-algcbra thc fonnula (2.3) of Chapter I transforms into thc followiIlg
definition of identity, perhaps slightly counter-intuitive:

for 11. = 1,

otherwise.
(1.10)

In fact, this formula for n = 1 is equivalent to the statenlent (.6.0 , .6.a ) = .6.a for all
a, or else 9((6.0 , 6. a ), 6. b) = 9ab for all a, b. But in view of (1.1), thc left hand siele
is the sanle as

a

which is gab in vicw of Chapter I, (2.2).

1.7. The Euler operator. Thcre is not much new to add to thc discussion of
§2, Chapter 1. It is probably worth noting that in the fonnal situation thc grading
incluced by E interacts with thc natural gTacling on K in which H is of degrce 1. If in
the sernisimple decolliposition of E (2.14), Chapter I, thc tenn L: ab is prcsent, then
the grading relation (2.7), Chapter I, connccts Yn +1 to Yn , otherwisc they beeonle
cleeoupled. This last possibility occurs in quantum COhOlllOlogy for Inanifolds with
vanishing canonical dass so that the general constraints of Frobenius Inanifolds
beconle less stringent for such Inanifolcls.

1.8. Semisimplicity. (H, 9, <1» is called (fonnally) semisitnple if the k-algebra
H with the structure constants <Pab C(O) is isolnorphic to kU

• One cau provc then that
HK is isolllorphic to Kn. The basic idelnpotents ei E HK havc the salne properties
as in the geolnetric theory.

1.9. Why alternative descriptions? The fornlal version of Frobenius geolll­
etry is natural frolll thc vicwpoint of qllantllIll coholnology: thc relevant sructure
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initially is formal, and only after some work <I> can bc analytically continued and
geolnetrized.

The refornullation in tenns of On suggests a non-trivial extension of the notion
of cOlnlnutativc algebra and cOlnbined with opcradic fonnalisnl (about which later)
leads to an unexpected generalization of other classical structurcs. For exarnplc,
oue can introduce and study the notion of Lieoo-algebras, given by a family of
Sn-skeWSYUUlletric polylinear brackets [ ]n : H0n ---1 H, n = 2,3, ... satisfying
the lügher .1 acobi identitics: for all k 2: 2, l 2: 0, al, ... ,ak, b1 , ••• ,bl E H thc
expression

L E(i,j)[[ai' aj], al,"" ai,"" Q,j, ... ,ab bl , ... , bd
i<j

IUUSt vanish for l = 0 and be equal to [[al,"" ak], bl , ... ,bt] otherwise. This
structure was called gravity algebra by E. Gctzlcr. It is dual to C01Tl.moo in thc
same sense as Lie algebras are dual to thc COIlllllutative ones (Quillen, Kontsevich,
Kapranov anel Ginzburg.)

It would be interesting to find and study a geoluetric counterpart of this structurc
(for which Lieoo would be a fonnal version), with an appropriate notion ofpotcntial.

Finally, the structurc of Abstract Correlation Functiolls turns out to be a trun­
cated version of an apparently lunch· richer object, consisting of maps In: H0n ---1

H*(MOn, k), n 2: 3, where MOn arc thc Illoeluli spaces of stable curves of genus zero
with n labelIed points. These luaps are constrained by thc relations coming froIn
the geolnetry of Mon which extend and "explain" the farnlaI identities (1.4).

The IUOSt relllarkc'Lble fact is that this rich structure is in fact equivalent to its
truncated version, thus to Cornrnoo and fonnal Frobenius lllanifolds. On thc other
hand, it adnlits an intrinsic operation of tensor prochlct, quite uncxpectcd in either
of the previous elescriptions, geollletric anel fonnal alike.

The re~naining part of this Chapter will be devoted to this structure.
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§2. Pointed curves and their graphs

MOChlE spaces (orbifolds, stacks) 0 f curves with labelled points are stratified
according to their degeneration type. In this section we review the conlbinatorial
structure of this stratification.

2.1. Definition. A ]Jrestable curve over a scheme T is a fiat proper mO/[Jhisrn
1r: C -+ T whose geometric fibers are reduced one-dimensional schemes with at
most ordinary double points as singularities. fts genus is a locally constant function
on T: g(t) := dirn H1(Ct , Oe t ).

2.2. Definition. Let S be a finite set. An S-]Jointed (equivalently, S-labelled)
prestable curve over T is a family (C, 7f, Xi Ii E S), where 7f: C -+ T is a prestable
curve, and Xi are sec tions such that fo r any geornetric point t ofT we have Xi (t) #­
Xj(t) for i #- j and Xi(t) are smooth on Ct. Points Xi(t), i E S, and singular points
of Ct are called special.

Such irreducible curve is called stable if 2g - 2+ ISI > 0 and if every non-singular
genus zero cornponent of any Ct contains at least three special points. A generul
prestable pointed curve is called stable if all its connected components are stable.

2.2.1. Remark. Let (C, 7r, Xi li E S) be an S-pointed prestable curve. It is
stable iff automorphisIll groups of its geoluetric fibcrs fixing the labe11cd points are
finite.

2.3. Definit ion. A (finit e) graph T is the data (F'Tl Vr ,an jr) where Fr is a
(finite) set (of flags), Vr a finite set (of vertices), 8r : Fr -+ Vr is the bouuda'TiJ
map, and jr: Fr -+ Fr is an involution, j';' = id.

An isomorphism T -+ (j consists 01 two bijections Fr -+ F(Tl Vr -+ Va, compatible
with 8 and j.

Two-elernent orbits of jr fonn the set Er of edges, and one-element orbits form
the set Sr 01 tails.

It is convenient to think of graphs in tenns of their geolnetric realizations. For
each vertex v E Vr put Fr (v) = 8; 1 (v) and considcr thc topological space "star of
v" consisting of lvi := IFr (v) I senüintervals having one comrnon bOllndary point.
These selniintcrvals IUUSt be labe11ed by their rcspective Hags. Thcn take the union
of a11 stars and replace every two-clelnent orbit of jr by a seglnent joining the
respective vertices so that these two Hags become halves of the edge, and taUs
becolne non-paired Hags.

A graph T is callcd connectcd (resp. siluply connected) if its geollletric realization
IITII is so.

2.4. Definition. A modular graph is a gra]Jh T together with (L map g: Vr -+
Z;:::o, v H gv. An isornorphism of two modular graphs is an isomorphisrn of the
underlying graphs preserving the g-labels of vertices.

A modular graph (T, g) is called stable if lvi ~ 3 for all v with gv = 0, and lvi ~ 1
for alt v with 91) = 1.
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2.5. Definition. The (dual) modular graph (T, g) 0/ a prestable S -pointed curve
(C, 7f, Xi Ii E S) over an algebraically closed field consists 0/ the following datn.:

a}. FT = the set 0/ branches 0/ C passing through special points.

b). VT = the set of irreducible C01nponents 01 C, 9v = the genus 0/ the normal­
ization 0/ the C01nponent con'espondint to v (denoted sorr~etimescv .)

c). 8r (f) = v, iff the branch f belongs t0 the component Cv .

d). jT(!) = /, / -# /, ijj the two brancl~es f,7 intersect at a C01nmon double
point. Therefore, edges of T bijectively co,respond to the singular points of C.

e). ),1' (/) = /, iff / is a branch passing through a labelIed point 0/ C. Thus the
tails 0/ T bijectively correspond to the labelIed points 0/ C and to the set 8 01 their
labels.

We will somctitncs call thc isonlorphisln dass of (T, g) the c01nbinatorial type 0/
c.

If C is stahle, thc cornbinatorial type of C is stable, and vice vcrsa. Any nlodular
graph represents thc cOlnbinatorial type of SOIne scnlistable labelled curve.

2.6. Proposition. Let (T, g) be the cornbinotarial type of a prestable 8 -pointed
connected curve (C, 1f, Xi li E 8), g = genus 0/ C, 11, = 181. Then we have

9 = L 9v + diln H 1 (IITII),
vEVT

9 - 1 = L (9v - 1) + JET)'
vEVT

L lvi = 21Er l+ n.
vEVT

Proof. Consicler thc nornlalization morphisnl

!: Il Cv = C 4 C
vEVT

- -
where Cv is the nornlalization of Cv . The cxact sequence of sheaves on C

generates an exact sequence of linear spaccs

(2.1)

(2.2)

(2.3)

Moreoyer,
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Hence we get

1 - IVrl + IErl- 9 + L 9v = 0.
vEVT

Replacing here IEr j - 1Vr 1 by

(since Ilrll is connectecl) we get (2.1). Replacing L:VEV
T

9v -IVrl by L:vEV
T

(9v - 1)
we get (2.2). Finally, both sieles of (2.3) are equal to IFrl counted in two different
ways.

2.6.1. Corollary. Far any (g, n) with 2g - 2 + n > °there exist only finitely
many isomorphisrn classes of connected stable modular graphs of genus 9 with tails
{1, ... , n} (ar simply stable (g, n)-graphs).

Mare precisely, if (r, 9) is connected and slable, then:

a). lVrI ::; 2g - 2+n, with equality sign exactly an graphs far which (.r;v, n) = (0,3)
or (1, 1) far alt vertices v.

b). Far'Y 2:: 2,

29 - 2 + n
card {v I9v = ,} ::; .

2, - 2

c). lET I :s 3g - 3 + n, wilh equality sign exactly on graphs wilk 9 = 0, (gv, Iv I) ==
(0,3) for aU vertices.

Proof. Adding (2.1) to one half of (2.3), we get:

Stability hnplies that gv - 1 + ~lvl 2: ~ fo~ 9v = 0,1 and 2: 9v - 1 for gv 2: 2. The
first two assertions of the Corollary now follow directly.

Froln (2.2) one sees that

equality sign corresponding to a11 9v = 0 and hence lvi = 3 in view of a).

2.6.2. Remarks. a). There exist infinitely Inany unstable (0,2), (0,1) aud (0,0)
graphs.

b). The stable Inodular graphs with 9v = °allel lvI = 3 for a11 v describc
Inaxhnally degenerate pointeel curves. Such curves havc no Inocluli because cach
cOIllponent is a pI with three special points on it.



91

2.6.3. Corollary. a). Stable connected modular (0, n)-graphs are trees with
vertices of valency 2: 3.

b). Any isomorphisrn of such graphs is uniquely defined by its restrietion on
tails.

c). IVTI - IETI = 1 for such graphs.

2.7. Combinatorics of degeneration. Let (T, g), (a, h) be connected stable
lnodular graphs with the salne (01' explicitly identified) set of tails S = ST = Su' We
will write (T, g) 2: (a, h) if there exists a family of stable curves with an irredllcible
base such that the generic geonlctric fiber has thc cOlnbinatorial type (T, g), SOllie
other geoInetric fiber has the type (a, h), and the specialization of the structure
sections induces the given identification of tails.

When the set S is fixed, this relation becomes a partial order, called specializa­
tion. If (T,g) > (a, h) and any interIncdiate (p, k) coincides with either (T,g) 01'
(a, h), we wi 11 say that (a, h) is a codimension one specialization of (T, g) .

Any codilnension one specialization (T, g) > (a, h) can be uniquely specified by
the data of one of the two types:

a). Splitting. Choose a vcrtex v E VT of genus 9v 2:: 0, a decomposition 9v =
9~ +9~ and a partition of thc set of the flags incident to v: FT(v) = F~(v) u F~'(v),

such that both subsets arc jT-invariant. Ta obtain (a, h), replacc thc vertex v in
T by two verticcs v', v" connected by an edge e, put 9v' = g~}, 9v" = g~:, Fu(v') =
F; (v) U {e'}, Fu (v") = F;' (v) u {eil} where e', eil are thc two halvcs of e. Thc
remaining vertices, ftags and incidence relations are the salne for T and a.

Geometrically, this describes the following degeneration: thc irredllcible C0I11PO­
nent Cv splits into two irredllcible Cllrves, alnong which the special points of Cll

are distributed as specified by thc partition of Hags. Thc new edge e "is" the new
singular point CV' n Cv"'

b). Acquisition of a loop/cusp. Choose a vertex v E VT of genus 9v 2: 1. Put
Vu = VT , keep all the g-labels of vertices the sanlC except for 9v which is replaced
by 91J - 1 in a. Finally, add two new Rags fOrIning one ju-orbit (a loop) to Fr (v).

Geometrically, this corresponds to adegeneration of Cv acquiring a new cusp.
Thc genus of the nonnalization is thereby rcduced by one.

Arbitrary cOlnbinatorial specialization of thc stable modular graphs can be real­
ized geonlctrically.

2.8. Stratified moduli spaces. For any (g,n) with 2g - 2 + 11, > 0 there
exist two basic types of 1l10duli spaces: Mg,n and M g,n' The first Olle classifies only
irreducible stahle n-labelled curves, the second Olle arbitrary ones. Thc precise
definition/construction of these spaces varies depending on thc context. There are
versions of the type "coarse 11l0duli spaces", uorbifolds", "IllOduli stacks" .

In all versions, however, thc following intuitive picture can be lllade prccisc.

a). My,o(g 2: 2), MI,I' M O,3 are the basic SlllOOth orbifolds of dirnension 3g-3, 1, 0
respectivcly. Each of thenl carries thc universal curve C --+ M.
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b). Mg,n is the n-th (resp. (n-l)-th, (n-3)-th) relative power ofthe respcctive
C ----1 M, with partial diagonals (and evcntually incidence Iod with 1 or 3 basic
structure sections) cleleted.

We cau sinülarly define Mg,s paratnetrizing S-marked curves.

c). For any stable connected n-Iabellcd graph (T, g) put

where G is the alltolnorphislll group of (T, g) identical on tails. This is the tnocluli
space of stable n-labelled curves of the cotnbinatorial type (T, g). In fact, cleforming
such a curvc is cquivalent to inclependcntly defornüng its irreelucible cOtnponents
keeping track of special points anel their inciclence relations.

d). Finally, we have a clecomposition of M g,n into pairwise clisjoint locally closed
strata indexecl by the isomorphisIll classes of n-graphs:

The stratulll M(a,h) belongs to the closure of M(r,g) exactly when (7,9) > (a, h).
In the next section we treat the genus zero case in more detail. An essen­

tial simplification is duc to the fact that stable n-trees have uo non-trivial n­
autotnorphislllS (that is, automorphislllS iclcntical on leaves.) Therefore Inoduli
spaces of genus zero are actually sInooth Inanifolds.
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§3. Moduli spaces of genus 0

This section is areport on the structurc of the moduli spaces of curves of genus
zero elaborating the general discussion of the previous section. We give precise
statements but often onlit or only sketch the proofs which can be found in [Kn] and
[Ke]. We work in the category of schcmcs over an arbitrary fidel (in ruost cascs,
Spec Z would do as weil.)

3.1. Theorem. a). For any n 2 3, there exists a universal n-pointed stable
curue (7fn : GOn -+ MOn; Xi, i = 1, ... , n) 0/ genus zero. This means that any such
curve over a scheme T is induced by a unique morphism T --+ Mon.

b). MOn is a s1nooth irreducible projective algebraic variety 0/ dimension Tl, - 3.

c). For any ..,table n-tree T, there exists a locally closed reduced irreducible sub­
scheme D(T) C MOn parametrizing exactly curves 0/ the cornbinatorial type T. fts
codimension equals the cardinality 0/ the set 0/ edges IETI that is, the number 0/
singular points 0/ any curve 0/ the type r. This subscheme depends only on the
n-isomorphis1T~ cla.9s 0/ T.

d). MOn is the disjoint union 0/ aU D(r). The cloSUTe of any 0/ the strata D(r)
is the union 0/ alt strata D((J) such that T > a in the sense 0/ 2. 7.

Let an be the onc-vcrtex n-tree. We will denote D(an) by Mon and thc indllced
stable curve by 7rn : COn --+ Mon. It classifies thc irreducible pointcel curves. Its
geonletric points are systerus of n pairwise distinct points on pI considered up to
a common /ractionallinear transformation.

The codiInension one strata are labelled by the isomorphisnl classes of stable
one-edgc n-graphs a. Each such dass can be identified with an unordered partition
{I, ... , n} = SIll 82 , stability Ineans that 18i l ~ 2 for i = 1,2. The curve Gau over
D(a) has two cornponents, and the partition 8 1 U8 2 corresponds to thc distribution
of the structure sections Xi bctwccn these cornponeIlts. Of course, with obvious
rnodifications we can rcplace here {I, ... ,n} by any finite set 8.

3.2. Examples. The following pictures show thc structure of Man with its
canonical stratification, and thc structure of COn, for n = 3,4,5.

Fig. 1



94

M 03 = M 03 is sitnply a point, and COn is pI endowed with three points labelled
by 1,2,3 because tbc fractionallinear group acts sitnply transitivcly on thc ordered
tripies.

M 04 is as weIl pI with three labelled points, hut this time the labels are one­
edge stahle trees with tails {I, 2, 3, 4} corresponding to the divisorial strata, and
M 04 is the c01l1plen1ent to these three points. Furthennore, C 04 is a surface fibered
over pI anel endowed with 4 labelIed sections. In addition to theIn, there are
six COInponents of degcncrate fibers. One can check that all the ten curvcs are
exceptional of the first kind, fonning a configuration weH known in the theory of
the DeI Pezzo sllrfaces. In fact, C04 is isoillorphic to thc (rigid) DeI Pezzo surface of
degree 5, which can be obtained by blowing up four points of p2 in general position.
It is known that Ss, and not just 84 (renurnbering sections) acts on such a sllrfacc.,
In our contcxt this eRn be explained by the fact that C04 can be identified with
M 05 (non-canonically) or rather with SOllle Mos, ISI = 5 canonically; thc reader
is invited to describe S. .

Fig. 2

Of course, M 05 is thc eompleillent to the ten boundary divisors lllarked by the
stahle 5-trecs with one edge. Each of these divisors contains thrce Q-diInensional
strata lllarked by thc stable 5-trees with two edges.

We see an erllerging pattern: CO,n is isornorphic to M O,n+ I . It can be explained
by the following eonsiderations.

Consider a stable pointed curve (C, Xl, ... XH+I) of genl1s Qover a field. We will
say that (C, Xl, ... , X n ) is obtained frolll it by forgetting the point Xn+I. However,
(C, xl, ... , xn ) Illay weIl be unstable. This will happen precisely when thc COlllPO­
nent of C supporting X n +l has only Olle additionaliabelled point, say Xj. In this
ease we ean contract this component to its interscction point xj with some othcr
conlponent of C, thus getting the n-pointed curve (C', Xl, ... , X j -1, xj, ... ,xH ). We
will call the last step stabilization, anel the resulting construction (forgetting plus
stabilization whcnever necessary) stable jorgetting.
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3.3. Theorem. a). There is a canonical moryhism Pn+1 : M 0,n+1 -t MOn
which acts on the isornorphisrn classes ?f (n +1) -pointed curves by stably forgetting
the last point.

b). There exists a canonical isomorphism /-Ln ; M O,n+l -t COn comrnuting mith
projections to MOn.

Thc first statenlcnt is not obvious bccause it is not clear that collapsing of
unstable cornponents can be perforulcel unifonnly over a base.

F. Knudscn ([Kll],~2) provcs both statcrncnts in the following way. He rernarks
that not only M O,n+l but GOn as weIl rcprcscnts a natural functor, namely

Con(T) = {T-falnilics of stable (0, n)-curves with an extra scetion ~}/(iso).

No restriction is iInposeel on this extra seebon. Thc universal family is GOn X M GOn
On

fibered over GOn via the sccond projeetion, with relative diagonal as ~.

Therefore it suffices to produce a funetorial bijection between the T-farnilies of
the types (C, Xl, ... , X n , xn+d anel (D, YI, ... ,Yn,~) respectively. This bijection
is elefined via two ll1utually inverse birational lnaps: a morphisln C -t D anel a
blow up D -t C. Tbc first one Illaps G to the projective spectrulll of the sheaf
of algebras generated by WCfT(XI + ... + x n ) where WefT is thc relative dualizing
sheaf. One easily sees that it blows down preciscly those cOll1ponents of thc fibers
which beconle unstable after reIlloving Xn+I. We will not describe the second rIlap.

Forgetful 11lorphisIns can be used in order to establish relations between the
cohornology classes of strata.

For n 2: 4, choose pairwise distinct i,j, k, 1 E {I, ... ,n} and astahle 2-partition
a of {I, ... , n}. Recall that we write 'ijakl if i, j and k, 1 belong to the different
parts of a. Let /.L : MOn -t M O,{ijkl} be thc iterated forgetful nlorphisIll stably
forgetting all points except for Xi,.'Cj, Xk, X,. The three boundary points of M D,{ijkl}

correspünd tü the three different stahle partitions of the labels; choüse one of theill,
say {i, j} U {k, l}.

3.4. Theorem. The fiber 0/ 11. over this ]Joint is the scheme theoret,ical union
U a : ijakID(a).

Für a prüüf, see [Knl, Theorenl 2.7, anel [Ke], p. 552, Fact 3.

3.4.1. Corollary. Let (D(u)] be the cohomology (or Chow) dass of D(a). Then
for any quadruple i, j, k, l E {I, ... ,n} we have

L [D(a)] - L [D(r)] = O.
ijakl kjril

(3.1)

In fact, (3.1) is the difference of two fibers of the forgetfullTIOrphislll.

In orcler to state thc second corollary, we introduce S0111e notation. For two
unordered stahle partitions a = {SI, S2} and r = {Tl, T2} of S put

a(a, r);= the nUlllbcr of non-mnpty pairwise

distinct sets all10ng Sa n Tb, a, b = 1,2.
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Clearly, a(a, r) = 2,3, or 4. Moreovcr, a(a, r) = 2 Hf a = r, and a(a, r) = 4 iff
there exist pairwise distinct i, j, k, l E S such that sinnl1taneously ijakl and ikrjl.
Ir a(a, r) = 3, wc sOlllctirnes call a and r cornpatible. A farnily of 2-partitions
{ab' .. ,am} is called good, if for all i f:. j, ai and aj are compatible.

3.4.2. Corollary. 11 a(a, r) = 4, then

D(a) n D(r) = 0. (3.2)

In fact, D (a) and D (r) belong to two different fibers of an appropriate forgetful
morphisrn to P 1 .

3.5. The ring structure of H*(Mos). Keel [Ke] has shown that the dual
classcs of [D( r)] generate thc ring H· (Mos), whereas (3.1) and (3.2) generate the
ideal of relations.

More precisely, for a given finite set S of cardinality 2:: 3, consider a fall1ily
of independent cornmuting variables Du indexed by stable unordcred 2-partitions
of S. Put Fs = k[Da ] (Fs = k for ISI = 3.) This is a b'Tadcd polynomial ring,
deg Du = 1. Define the ideal Is C Fs generated by the following elements:

a). For each ordered quadrllple i, j, k, l E S

R ijkl ;= L Da - L D'T EIs·
ijakl kj'Til

b). For each pair a, r with a(a, r) = 4:

Finally, put Hs= K[Da]/Is .

3.5.1. Theorem (Keel (KeJ). The map

Da I---t dual dass of D(a)

induces the isomorphism 01 rings (doubling the degrees)

Hs ....::.., H*(Mos, k) = A*(MOS)k.

(3.3)

(3.4)

(3.5)

Here A· is the Chow ring.

Keel's presentation (3.5) in principle solves the problern of algorithmic calcu­
lations in the cohon1010gy ring. In practice, however J even thc lnost basic prop­
erties of this ring are not obvious for Hs, c.g. thc fact that H~ = 0 for i >
ISI - 3, dirn H1s1 - 3 = 1, and the Poincare pairing is perfect dllality.

In thc next section we will neecl 1110re precisc information about the homogeneous
components not only of Hs,but Is as weIl. The relnaining part of this subsection
is devoted to the preparatory work. Wc keep notation of the Theorem 3.5.1.

The n1ononüal Dal ... Daa E Ps is called good, if the falnily of 2-partitions
{al, ... ,aa} is good, i.e. a(ai, a j) = 3 for i f:. j. Notice that the relevant divisors
are then pairwise distinct. In particular, Da and 1 are gooel.

Consider astahle S-tree r. Any eelge e E ET defines a stable partition a(e) : if
one cuts e, the tails of thc resulting two trees (exccpt for halves of e) fonn a(e).
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3.5.2. Proposition. a). The rnonomial

7n(T):= rr Der(e)
eEET

is good.

b). For any °::; 7' ::; 181 - 3, the map 7 f------7 m (7) establishes a bijection between
the set of good mononlials of degree 7' in Fs and stable 8 -trees 7 with lET 1 = r

modulo S-isomorphis'ms. There are no good monomials of degree > ISI- 3.

Proof. a). Let f bc a flag of a tree 7 whose boundary is the vcrtex v. It dcfincs
a subtree of T which we will call the branch of f. If f is itself a tail, its branch
consists of f anel v. In general, it cornprises all vertices, fiags and edges that can be
reached (in geoluetric reali~ation) by a no-return path starting with (v, f). Dcnote
by S(f) the set of leaves on this branch (or the set of their labels.)

Let now e =f:. e' E Er' There exists a sequence of pairwise distinct edges e =
eo, e~, ... ,e~, e~+1 = e', r 2:: 0, such that ej and ej+ 1 have a cOlunlon vertex Vj.

Let 7.t be the rCIllaining vcrtex of c, w that of c'. Let S' be thc set of all tails of T

belonging to the branches starting at 'lt but not with a Hag belonging to c; sinlilarly,
let 8" be thc sct of all tails of 7 belonging to the branches that start at 'W but not
with a Rag belonging to e'. Finally, let T be thc set of all tails on the branches
at va, ... 'V f ' not starting with the Hags in eo,' .. ,C~+1 (we idcntify tails with their
labels). Since T is stable, all threc sets S', S" and T are non-CInpty, and

a(e) = {8',8"llT}, a(e') = {S'llT, S"}.

It follows that a(a(e), a(e')) = 3 so that 711.(T) is a good nlonoluial.

b). For r = 0, 1 thc assertion is clear. Asslune that for some r 2: 1 the map
T f------7 7n(7) is surjectivc on good IllonOlnials of degree r. We will prove then that
it is surjective in thc dcgree r + 1.

Let 111' bc a good rnononüal of elegrce r + 1. Choose a divisor Der of m' which is
extremal in the following sense: one elelnent, say SI, of the partition a = {SI, S2}
is miniInal in thc set of all elelnents of all 2-partitions a' such that Der' divides m'.
Put m' = D er 711. Since m is good of degree T, we have m = 7n(T) for S0111e stable
8-tree T. We will show that rrt' = 7n(7') where T' is obtained fronl 7 by inserting a
new edge with tails Inarked by 8 1 at an appropriate vertex v E VT • In othcr words,
7' is a codiInension olle specialization of 7 in the sense of 2.7.

First we lnust find v in 7. To this end, consider any edge e E Er anel thc respec­
tive partition a(e) = {S~, S~}. Since r71.' is good, wc have a( {SI, 52}' {S~, S~}) = 3.
As SI is IniniInal, one sees that exactly one of the sets {S~, S~} strictly contains SI.
Let it be 8~. Orient e by declaring that the dircction frolll thc vertex (corrcspond­
ing to) S~ to 8~ is positive. We clainl that with this orientation of all edges, for
any w E VT there can be at most one edgc outgoing from w. In fact, if 7 contains
a vertex w with two positively orienteel Hags fland /2, thcn 81 must be contained
in the two subsets of S, branches 8(fl) anel 8(12)' But their intersection is enlpty.

It follows that thcre exists exactly Olle vertex v E VT having uo outgoing edges.
Moreover, SI is contained in thc set of la.bels of the tails at v by construction. If we
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now define T' by inserting a new eclge c' at 'U so that u(e') = u, we will clearly have
m' = m(T'). If l' :::; ISI - 4, the tree T' cannot be unstable because, first, !SII ;::: 2,
anel second, at least two Inorc ftags converge at v: otherwise the unique inconling
cclge would produce the partition {Sb S2} = u which would mean that Da divieles
already m(T).

For r = ISI- 3, this arguInent shows that m ' cannot exist because all the vertices
of T have valency three.

It reIllains to check that if ru(Td = rn(T2), then Tl and T2 are S-isornorphic.

Assurne that this has been checked in clegree :::; rand that deg Tl = deg T2 =
r + 1. Choose an extrernal divisor Da of m(Td = rn(T2) as above and contract thc
respective edges of Tl, T2 getting the trecs T~, T~. Since m(T~) = m( T~) = rn(Ti) / Da,
T~ and T~ are S~isoInorphicby the inductive assurnption. This isomorphism respects
the rnarked vertices 'U~, v2 corresponding to the contracted edges because as we have
seen they are uniquely defined. Hence it extencls to an S-isomorphisrn Tl --+ T2.

3.5.3. Remark. Since the boundary divisors intersect transversally, the iInage
of m(r) in H* (Mos) is the dual class of D(T).

3.6. Multiplication formulas. In this subsection we will show that gooel
nlonomials Inodulo Isspan Hsand thercfore, dual classes of strata span H* (Mos).
This will follow frorll thc 1110re precise fornul1as (3.6)-(3.9) allowing one to express
recursively a product of gooel monoInials modulo 1s as a linear cOlllbination of gooel
nlonoInials.

Let u, T be two stable S-trees, IEal = 1. We have to consider the following
alternatives.

a). Dam(r) i.'i a gnod monornial. Thcn

(3.6)

where T is obtained fronl T' by contracting the edgc in Er' whose 2-partition coin­
eides with that of u.

More generally, if rn(u )rn(T) is a gooel I1l0nOInial, then

n~(u)m(T) = 1n(u x T) (3.7)

wherc the clirect product is thc categorical one in thc category of S-trees and
S-rnorphislllS, to be desribcd Inter. We can identify Eaxr with Ea UE'Tl ancI
PI: (j X T --+ u (resp. P2: P X T ---t T) contracts edges of the second factor (resp.
of the first one).

b). There exists a divisor Da' 0/ 1n(T), IEal1 = 1, such that a(u, u') = 4. Then

(3.8)

in view of (3.4).

c). Da divides m(T). Then let e E Er bc the cdge corresponding to Uj VI, 'U2 its
vertices, (Vi l e) the corrcsponding Rags.
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We will write several different expressions for Dam(T) fiod Is, corresponding to
various choiccs of nnordered pairs of distinct fiags {L, J} C FT (VI) \ {(VI, e) }, {k, l} c
FT (v2) \ {(V2' e)}. For each choice, put

Tl = FT(vd \ {L,J,(vI,e)},

T2 = FT (V2) \ {k, l, (V21 e)}.

Notice that because of stability the set of such choices is non-eIllpty.

3.6.1. Proposition. For evenJ such choice we have

D a 1n(T) - L m(trT,e(T)) - L m(trT,e(T)) rnoel Is (3.9)
TCT1 TCT'j
ITI~I IT1~I

where trT,e (T) is the tree obtained frol1~ T by "transplanting all branches starting in
T to the middle point 0f the edge e." (A n empty SUffi is zero).

Fig. 3. Transplants: arrows correspond to branches

Remark. We can also describe tTT,e(T) as a result of inscrting an extra edgc
instead of the vertex VI (resp. V2) and putting thc branches T to the comnlon
vertex of the new edge and e. There exists a weIl defined edge in tTT,e(T) whose
contraction prodllces T.

Proof. Wc choose pairwise distinct labels on the chosen branches i E S(L), j E

S(]), k E S(k), l E S(l) and thcn calculatc the elernent (see (3.3))

I4jkl' n~(T) = (L D p - LD p ) m(T) - 0 rl10d Is· (3.10)
ijpkl kjpil

Clearly, ijakl, so that for all tenns Dp of the second SUITl in (1.5) wc have a(a, p) = 4
so that DpTn(T) EIs. Arllong the tenns of thc first sunl, therc is one Da' If ijpkl
and p i=- 0', then D p cannot divide 1n(T). Otherwise p would correspond to an cdge
e' =1= c, but the 2-partition of such an edge cannot break {i, j, k, l} into {'i" j} anel
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{k, l} as a glance to a pictul'c of r shows. It follows that Dpm(r) = rn(p X r) as in
(3.7). The projection p x r -t r contracts thc extra edge onto a vertex that can be
only one of the ends of e, otherwise, as abovc, the condition ij pkl cannot hold. It
should bc clear by now that p x r IUUSt be one of the trees trT,e (r), and that cach
tree of this kind can be uniquely representcd as p x r for some p with ij pkl. But
fronl (3.10) it follows that

DaTn(r) == - 2:= Dpm(r) mod 18
ijpkl
pf.a

which is (3.9).

3.7. Integral Qver the fundamental class. Thc functional JMo,s : H*(Mo,s) -t

k is given by

{
I, if deg m(r) = 181- 3,

rn(r)~ .o othcrwlse.

Notice that dcg m(r) = 181- 3 iff lvi = 3 for all v E Vn and D(r) is a point in this
case.
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§4. Formal Frobenius manifolds

and Cohomological Field Theories

4.1. Definition. In the notation 01 1.1, the structure of the (tree level) Coho­
mological Field Theory (CohFT) on (H, g) is given by a farnily of even linear maps
(correlators)

In : H0n -+ H*(MoH , k), n = 3,4, ... (4.1)

satisfying the following conditions:

a). Sn -covariance (with respect to the natural action of Sn on botk sides of
(4. 1).)

b). Splitting, 01' cornpatibility with restriction to the boundary divisors: for any
stable ordered partition a : {1, ... , n} = S 1 U S 2, ni = 1Si I, and the respective rnap

we have

where ß = Eßagab (SI ßb is the Casirnir element, and €(a) is the sign of the per­
rnutation induced on the odd argurnents 1'1, ... ,1'n.

Let (H, 9,1*) be a CohFT. lts correlation /unctions are polylinear functionals

1'" : H(il}n -t k, Yn('Yl l8i ... l8i 'Yn) := 1_ In (-yl l8i ... l8i 'Yn) (4.3)
MOn

where the integral denotes the valne of the top dimensional com]Jonent 0/ In on lhe
fundamental cycle 0/ Mon, cf. 3.7 above.

4.2. Proposition. Gorrelation f1lnctions 01 lL CohFT satisfy the aX1,oms of
A bstracl Correlation Functions (Definiti0 n 1.3.1.)

Proof. Clcarly, functiollals (4.3) are synl111ctric, because In are Sn-covariant.

In order to check (1.4), look at (3.1), this tilne interpreted as the linear relation
bctwecn the hOlllOlogy classes of thc boundary divisors. This irnplies

Substituting (4.2) into (4.4) wc obtain (1.4).

We can now state thc ccntral result of this section und Chapter:
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4.3. Theorem. Each ACF is the systern of correlation functions of the uniq71e
CohFT. Thus: the following notions are equivalent:

a}. Fonnal Froben'lus rnanifolds.

b}. Cohomological Field Theories.

Before proving this theormn, we will discuss two relateel thernes.

4.4. Tensor product. Let {H', g', I:J anel {H", g", I~} be two CohFT's.
Define H = H' 0 H" and 9 = g' 0 g". Put

I ( '" , tO\ ") (' ")1' ( , , ) /\ 1"( "tO\ tO\ ") (4 r.)n {I ® {I 0 ... 0 fn 'CI fn := Cf, { n 'h 0 ... 0 fn n {I 'CI ••• 'CI {u .LI

where €(,', (") is our standard sign in superalgebra, and /\ is the cup product in
H*(Mon , k).

Claim. (H, 9, 1*) is a CohFT.

One can ea...,ily check Sn-invariance and (4.2).
Thanks to the Theorenl 4.3, this tensor product operation cau be defined on

C mn111,00 -algebras anel fonnal Frobenius rnanifo lds. But even if (4.5) looks very
simple on the level of the full CohFT's, it cannot be trivially restricted to thc former
structures. In fact, they are directly fonnulated in tenns of the top cornponents of
In whereas the tensor prodllct involvcs cornponcnts of all degrees.

4.5. Complete Cohomological Field Theories. Cornplete, as opposed to
trce level, CohFT structure on (H, g) is given by a farnily of maps

indexed by a11 stable pairs (g, n). They rUllst satisfy thc fo11owing extension of thc
genus zero a.xiorlls:

a). Sn-invariance for all g.

b). Splitting: for any 91,92,91 + 92 = 9, and (J as above, such that (gi, ni + 1)
are stable, we nlust have

wherc t.p : M 9i ,ni +1 X M 92,n2+1 -+ M 9,n is thc respective bounclary morphisrll
corresponding to thc clegeneration describecl in 2.7a).

c). Acquiring a cusp: for 9 2: 1

(4.8)

where'lj; : M g-I,1I+2 -+ M 9>n is the bounclary Inorphisrn described in 2.7b).

Thc theory of Grornov-Witten invariants actually furnishes such a structure on
the cohonlology spaces of projective algebraic anel sYlnplectic nHlnifolds. Hence it
is very hnportant to study the cOlnpletc CohFT's. The tensor procltlct fonnula
extends to the cornplete case and plays thc roje of thc Kiinneth fornllila for thc
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Gromov-Witten invariants. However, it is not clear how to pass frorll a cOlllplete
CohFT via fonna] generation functions to a meaningful geonlctric pictllre extending
the theory of Frobcnius manifolds.

Technically, the difference between thc tree level and the conlplete case rcflects
our very incornplete uuclerstanding of the topology of M g,n for 9 ~ l.

We IlOW start proving Theorenl 4.3. We sha11 first show that if a CohFT with a
given systern of correlatioll functions exists at all, thcn it is llnique.

4.6. Proposition. Let (H, g, I.) be a CohFT with correlation function.r; (Yn ).

Then for any stable n-tree r we have

Since thc hornology classes of D (T) span H. (Mon, k) (cf. 3.6), this establishes
the uniqueness.

Proof. Let us explain the rncaning of (4.9). We use the extension of the formal­
ism of direct products to thc arbitrary finite sets S. Then, say, Yn("Yl ® .. '®"Yn) can
be replaced by Y8 (®iE8"Yd, and thc argument of ®VEVr Yp,.(v) mnst be some linear
combinatioll of the elernents of the fonn ®VEVr (®jEFr(v)Cij), Ci! E H. If f is a tail
marked by i, we choosc Ci! = "Yi in (4.9). Otherwise f is a half of an edge {f, !},
anel each such edge contributes ß.

The fornnda (4.2) furnishes a particular case of (4.9) for the one-eelge tree T. But
we ean iterate (4.2) refining the inclusion D(r) C Mon to a sequellce o[ codimension
Olle boundary cmbcddings and using (4.2) at each step. A conternplation will
convince the reader that (4.9) will be the final answer, independent on the chosen
refinmnent. This proves the Proposition 4.6.

It rernains to establish that if (~l) is an arbitrary ACF, then the formulas (4.9)
actually define a CohFT. The ollly problem is to check that for any n 2:: 3 anel
"Yl, ... ,"Yn E H, there exists a cohom,ology dass In ("Y1 ® .. '®"Yn) E H· (M On, k) which
as a linear functional on (D(r)] is defined by (4.9). Then it will be autornatically
Sn~invariant, and will satisfy (4.2).

In other words, it rernains to show that all linear relat ions between [D (r )] are also
satisfied by the right hand sieles of (4.9). Again, for thc codirnension one case this
is a built.-in property: Keel's relations (3.3) between (D(r)] are precisely refiected
in the qnadratic relations (1.4) postulated for any ACF. To deal with arbitrary
codirnension, wc will start with a generalization of Kcel's relations.

4.7. Basic linear relations. As in 3.6, we will work with classes of boundary
strata in H* (M08), represented by thc classes of gooel Illonornials in F8 nlod 18.

Let ISI 2: 4. Consider a systenl (r, v, 1,,], k, l) where r is an S-tree, v E VT is a
vertex with 1v I 2:: 4 anel 1,,] l k, l E Fr (v) are pairwise distinct flags (taken in th is
order). Put T = Fr(v) \ {I,],k,l}. For any ordered 2-partition ofT, Q = {T11 T2 },

(one 01' both Ti can bc erupty) we cau definc two trees r' (Ci) and r" (Ci). The
first oue is obtained by inserting a new edge e at v E V with branches {t,], Tl}
and {k, T, T2 } at its cclges. Thc second one corresponds sinlilarly to {k,], Tl} and
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{I, T, T2 }. We renünd that sei,) is the set of labels of tails belonging to the branch
of I: sec Figure 4.

4.7.1. Proposition. We have

R(r,v,z,j,k,l):= I)1n(r'(a)) -m(r"(a))) EIs·
0:

(4.10)

Proof. Choose i E 8(z), jE S(j), k E S(k), l E S([), and calculate ~jkl1n(r) E
Is, where R-ijkl is definecl by (3.3). Considcr for instance the sUffirnancls Da 1n(r)
for ijO'kl.

Frorn the picture ofr it is clear that Da cloes not clividc m(r). If Da1n(r) does
not vanish rnodnlo 1s, we rllust have D a 1n(r) = 1n(O' X r), allel a x r is of the type
r'(a). Silnilarly, the sUffirllands of Darn(r) with kjO'il are of thc type m(r"(a)).

4.8. Theorem. All linear relations rnodulo 18 between good monornials 0/ de­
gree r + 1 are spanned by the relations (4.10) for JETI = r.

Proof. For T = 0 this holds by the definition of 1s. Generally, denote by H*s
thc linear space, gcnerated by the sYlnbols J-L( r) for all 8-isorllorphislll classes r of
stahle S-trees satisfying thc analog of the relations (4.10)

r(r, V , z,J, k, l) := L[/L(r'(a)) - JL(r"(a))J = O.
0:

(4.11)

Denote by 1 the syrnbol J-L(p) wherc P is the one-vertex tree.

4.8.1. Main Lemma. There exü,ts on H ..s a structure of Hs-module given by
the following multiplication forrnulas reproducing (3.7), (3.8) and (3.9):

(4.12)

ij Dam(r) ü; a good rnono1nial;

(4.13)
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if there exist" a divisur D (JI 0/ rn( r) such that a(a, a') = 4,.

DaJJ,(r) = - L JL(trT,e(r)) - L JL(trT,e(T)),
TcT1 TcT'J
ITI~l ITI~l

(4.14)

if D (J divides M (r), and e correspond.s to a. The notation in (4.14) is the 8 ame as
in (3.9).

Deduction of Theorem 4.8 from the Main Lemma. Since thc lnonomials
m(r) satisfy (4.10), thcre exists a surjective linear rnap a : H.$ --+ Hs, p,(r) H

m(r). On the other hand, frOlll (4.12) it follows that m(a)JL(r) = JL(a x r) if
m(a )m(r) is a good 1l10nollüal. Hence we have a linear 1l1ap b : Hs --+ H.$ :
m(T) H JL(T) = <,11.( r) 1 inverse to a. Thcreforc diln H.$ = dilll Hs so that thc
Theorenl 4.8 follows.

We now start proving the Main LClnln<1.

4.8.2. (4.14) is weIl defined. The right hand side of (4.14) formally depencls
on the choice of I, J, k, T. We first check that different choices give the sarne answcr
rnodulo (4.11). It is possible to pass frorn one choke to another by replacing one
flag at a time. So let us consider I' "# I, J, k, land write the difference of thc right
hand sieles of the relations (4.14) written for (r, v, I,J, k, [) anel (T, v, I',j, k, I). Thc
tenns corresponding to those T that do not contain {I, z'} cancel. This includcs all
tenns with T c T2 . The rernaining SUlU can be rewritten as

L [JL(tTTU{I'} (T)) - JL(h'TU{i} (r))]
TCT1 \ {l,ll 3}

where now T can be Clnpty.

(4.15)

We contend that (4.15) is of the type (4.11). More prccisely, consider any of the
trees trTufil} (T), tTTu{I} (T) and contract the eeIge whose vertices are incident to
the flags 2,),t'. We will get a tree a and its vertex v E Vor' The pair (a,v) up to
a canonical isomorphisrll does not depend on thc transplants we started with. In
Fa (v) there are flags 1" J, I' and one 1110re flag whosc brauch contains both k and l
and which wc denote Ti,. Thcn (4.15) is -T(a,v,l,,),I',h). This is illustrated by the
Figure 5.
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4.8.3. Operators Da on H*s pairwise commute. We have to prove thc
identities

(4.16)

Consider scveral possibilities separatcly.

i). There exists a divisor Da 0/1n(r) such that a( (Tl, (T) = 4, so that D a1 J-L( r) = O.

If D a2 J-L(r) = 0 as weIl, (4.16) is trne. If D a2 J-L(r) = J-L((T2 x r), then Da dividcs
rn(0"2 X r), anel (4.16) is again true. Finally, if Da~ divides 1lt(r) , thcn (12 f:. a
(otherwise 'm(r) would not bc a gooel lllonornial). Hcnce thc tran.'3plants trT,e(r)
involveel in the fonullia of the type (4.14) which we can use to calculatc D a2 J-L(r)
will all contain an edge corresponding to a so that D a1 (trT,e(r)) = 0, and (4.16)
again holds.

Thc sanlC argurnent applies to the case whcn D a2 J-L(r) = 0.

Frolu now on we lllay anel will assunlc that for any divisor Da of m(r) we have
a(a, 0"1) ::; 3, a(O", (2) :::; 3, anel that 0"1 f:. a2.

ii). a(aI, (12) = 4 anti Da~ divides nt(r).

Then D t71 does not divide 1n(r), so that Da,p,(r) = J-L(alxr), and Da'J(DatlJ,(r)) =

O. On the other hand, Da2 J-L(r) is a SUIll of transplants to the Illidpoint of the eelge,
corresponding to (12. Each such transplant ha..'5 an edgc giving the 2-partition (12,

so that Da, (Da'JIL(r)) = O.

The case a(aI, (2) == 4 anel D a1 /m(r) is treated in the salne way.

Hence from this point on we can anel will in addition assume that a(aI, 0"2) == 3.

iii). D a1 doe.., not divide 7n(r).

If D(12 eIoes not dividc 7n(r) as weH, then Du, (Da2 J-L(r)) == Dat J-L(a2 X r) .
J-L(al x a2 x r) = Da'J(DalJ-L(r)). If Da2 divides m(r), we will use a carefully chosen
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fonnulas of the type (4.14) for thc calculation of DU2 P,(r). Namely, let VI be the
(unique) vertex of r which gcts replacecl by an edge in 0"1 x r, and let e2 bc thc
eeIge of r corrcsponding to D t72 • Let U2, Ul bc the vcrtices of e2 such that 'lLl can
be joined to VI by a path not passing by e2.

Consicler first the subcase Ul =f. VI· Choose SOInc 2, J E Fr ClJ,2) and k, TE Fr (ud
in such a way that l starts a path leading froIn Ul to VI' Use these 2, J, k,l in a
fonnula of the type (4.14) to ca1clllate Du2 J-L(r) and thcn DUl (Du2 J-L(r)), that will
insert an eclge instead af the vertex VI which survives in all thc transplants cntering
DU2 J-L (r). Then ca1culate Da'J (Dad/'(r )) by first inserting thc edge at VI, and thcn
canstructing thc transplants not nloving 2,), k, T. Since by our choicc of [ we never
transplant the branch containing VI, the two calculations will give the saIne result.

Now let VI = Ul. Let {SI, 52} be the 2-partition of S corresponding to 0"1. Sincc
0"1 x r exists, {SI, S2} is induced by a partition of Fr(vd = 51 IJ 52. We denote
by 82 thc part to which the flag (VI = Ul, e2) belongs. Let t = 82 \ ({ (VI =
Ul, e2)} UFr (U2))' This set is non-eInpty because othcrwisc e2 would correspond
to {SI, S2} and we would have 0"(= 0"2. Take 2,) E Fr (U2), k E 81 and lET: see
Figure 6.

Now consider DU2 (Dal J-L( r)) and Dal (DU2 J-L( r)). To calculatc thc first expression
we form a sum of transplants of 0"1 x r. To calculatc the second one, we farnl
transplants of r 1 anel then insert an edge at VI = Ul.

The transplants corrcsponding to thc branches at U2 will bc the seune in both ex­
pressions. The transplants corresponding to thc subsets T C '1'\ {l} will also be thc
sanle. In addition, thc second expression will contain the tcnns - Dal (J-L( trT,e2 (r)))
whcre T n 81 =f. 0. But each such term vanishes. In fact, consider the 2-partition
p = {R I, R2 } of S corresponding to the eeIge of trT,e2 (r) containing the flag
(VI = UlJ e2), and let k, l E R l . A glance to the thircl tree of thc Figure 6 shows
that a(p,O"d = 4, because if f E T n SI, t E seE), thcn ktO"I il and klpit. Hence the
extra tenns are irrelevant.

The case when Du'J eIoes not divide rr/'(r) is treatecl in thc same way. It remains
to consicler the last possibility.

iv). D al and D U2 divide rn(r), a(O"ll 0"2) = 3.
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Denote by ei (resp. e2) the edge corresponding to 0"1 (resp. a 2) . Let 71, 1, 'lL2

(resp. Vb V2) be thc verticcs of el (resp. e2) nUlnbercd in such a way that there is
a path [roln 'lL2 to VI not passing through eb e2 (the case 71,2 = VI is allowed). To
calculate thc multiplication by D a1 choose I,) E F Ul (r) \ {(UI' ed}, t on the path
from U2 to VI if U2 =I- VI, and [ = (VI, e2) if U2 = VI; k E FT (V2) \ {tl. To calculate
the product by Da2' choose sinülarly k', l' E FT (V2) \ {(V2, e2)}, I' E FT (VI) on the
path [rOln Vt to 7L2, if VI =I- 'lL2, and "1,' = (U2' ed if VI = 71,2, J' E FT (vd (see Figul'e
7).

The critical choice here,is that off anel I'. It ensures that calclliating Da1 (Da'Jtl(r))
and Da'J (Dadl( r)) we will get the salne SUITI of transplanted tl'ees. This enels the
proof of (4.16).

4.8.4. Compatibility with ls-generating relations. If D al D a2 = 0 be­
cause a(aI,0"2) = 4, oue sees that D a1 (Du2 IL(r)) = 0 looking through various
subcases in 4.8.3. It l'emains to show that R-ijkltl(r) = 0 wherc Rijkl is defined by
(3.3).

Cousider the sluallest connected subgraph in r containing the flags i, j, k, l. Thc
Figure 8 givcs thc following exhaustivc list of alternatives. Paths frolu i to j allel
from k to l: i) have at least olle C01111110n edge; ii) have exactly olle CümUlon vertex;
iii) da not illtcrsect.

Consider theIn in turn.

i). Let e bc an edge COInnlOIl to thc paths ij and klo Denote by p the respcctive
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2-partition. Thcn ikpjl 01' üpkj. Thercfore any SUIlllnand of R ijkl annihilatcs D p

so that ~jkl/-L(T) = 0 in vicw of (4.13).

ii). Let v be the vertex COIlIIllon to the paths ij and klo Thcn exactly thc saIllC
calculation as in the proof of thc Proposition 4.7.1 shows that

o

(notation as in (4.10) and (4.11)).

iii). This is tbe 1110st cOlllplex case. Let us draw a luore detailed picturc of T in
thc neighborhood of thc subgraph we are considering (Figurc 9).

Let VI bc the vertex on the path ij which is connccted by a sequence of edges
el, ... ,em (m 2:: 1) wi th the vcrtex Vm on thc path kl so that ea has verticcs
(va, V a+l) in this order. Let Ta bc thc set of flags at Va which da not coincide with
Z,J, k, l, and da not belong to ea-ll ea .

Consider any stllumand Der 0 f Rij klo If j kail , thcn Der /L (T) = 0 because each
edge ea determines a partition p of S such that ijpkl. From now on wc aSSUlue that
ijakl. Thcn Der/L(T) can be nonr-ero if one of the two alternatives holds:

a). For SOllle Val therc cxists a partition Ta = T~ UT~/,(with IT(~I 2: 1, IT~' 2: 1,
exccpt for thc casc a = 1 wherc T{ can be Clupty, and a = m whcre T:n can be
elupty) such that the following two sets

81 = 8(z) II 8(]) IIS(T{) ll· .·ll 8(T~),
82 = 8(T~/) II S(Ta+d ll···ll 8(Tm)II S(k) II 8(l)

form thc 2-partition corrcsponding to a. In this case

and aXT is obtained by inserting a new edge at Va and by distributing T~ and T~'

at different vertices of this edge.

b). For SOlue ea , the two sets

81 = 8(z) IISCi) II(ll S(Ti )),

iSa
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S2 = ( Jl S(Ti)) Jl S(k) Jl S(l)
i~a+I

fornl the 2-partition corresponding to a.

In t his case Da divides 171, ( T), and in order to calculate Da J-L (T) using a forrnula
of thc type (4.14) we HlUSt first choose two pairs of fiags at thc two vertices of Va'

Contributions fronl a) anel b) comc with opposite signs, and we contend that
they cOIllpletely canccl each other.

To see the pattern of the cancellation look first at the case a) at VI' It brings
(with positive sign) thc contributions corresponding to thc following trees. Fonn all
the partitions Tl = T{ UT{' such that T{' =1= 0, where Tl = Fr (VI) \ {2, J, (VI, el)}.
Transplant all T{'-branches to thc nlidpoint of Cl. Denote thc ncw vertex v~' The
result is drawn as Figure 10.

Now consiner the tenns of the type b) for thc edge el. If m = 2, wc choose for
the calculation of Dad/' (T) (whcrc al corresponds to Cl) the flags 2,], Je, T. If 1n > 2,
we choose thc flags 2,], (V2, ed, t E T2 . Then wc get thc surn of two contributions.
One will consist of thc trces obtained by transplanting brauches at VI' They conle
with negative signs and exactly cancel the previously considered tenns of the type
a). Ir 171, = 2, thc sccond gToup will canccl thc terms of the type a) corning froIn V2.

Consider a sOInewhat more difficlllt case 171, > 2. Then this sccond group of
tenns COInes fronl thc trecs indexcd by the partitions T2 = T~ U T~', t E T~', T~ =1= 0.
Branchcs corresponding to T~ are transplanted to the nüdpoint v~ of the edge Cl.

These terms corne with negative signs: see Figure 11.
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These trees in turn eaneel with those cOllling from the terms of the type a) at
the vertex V2 with positive sign. However, there will be additional terms of the type
a) for which t E T~. They will caneel with Olle group of transplants eontributing to
Da'JJ-L(T) where a2 corresponds to the edge e2 of the Figure 9, if for thc calculation
of Da'JJ-L(T) one uses (4.14) with the following choice offlags: (v2,ed,t at one end,
(V3, ed, SOllle t' E T3 at thc other end (this last choice IUUSt be replaced by k, T, if
m = 3).

The saIlle pattern continues until all the terms eaneel.

4.8.5. Compatibility with relations (4.11). By this time we have chccked
that the action of any cleIuent of Fs/1s on thc individual generators tl(T) of H*s
is weH defi ned luodu10 the span 1*s 0 f relat ions (4.11). I t rCIllains to show t hat
the subspace in ffiTkll(T) spanned by these relations is stable with respcct to this
action. But the calculation in thc proof of the Proposition 4.7.1 shows that

where Tijkl is obtained fronl R;,jkl by replacing m(a) with J-L(O'). To mllitiply this
by any elenlent of Hswe can first Iuultiply it by 1YL(T), then represcnt the result as
a linear eOlnbination of good mononüals, and finally multiply each good Inonoluial
by Tijkl. The result willlie in 1*s.

This finishes the prüof of the Main Lemllla and the Theoreln 4.8.

4.9. End of proof of the Theorem 4.3. According to the relnark at the last
paragraph of 4.6, it rClnains to show that if we start with an ACF Yn : H0n --+
k, n 2: 3, (Definition 1.3.1) and extend these polynomial lllaps to all stable trees 0'

by putting

Ya (0iE So- Ti) = (0VE Vo- YPo-(1J))(®iE So- ri ® ß0
E

o-)

then YT will satisfy the following version of thc relations (4.10):

LYT'(O) = LYTI/(ß)·
a ß

(4.16)

(4.17)

The notation is explained in the first paragraph of 4.7. Recall that we start with
a tree T, in which a vertex v anel foul' tails I,), k, I are lnarked. Thc trces T', T"
are obtaineel frorn T by inserting an eelge at v. This ean be done in lnany ways,
paranletrized by 2-partitions of FT (v). Thcy induec 2-partitions of {I, J, k, T}. We
put to the left those which break this quadrllple into {I, j} n {k,I}, and to the right
those which break it into {z, I} n {k, j}. Tbe retnaining partitions do not eontribute.

To prove (4.17), rewrite cvery sunnnand using (4.16). Look at the factor ~
eorresponding to the inserted edgc, anel rcpresent it as L: ~agab 0 ßb. After some
flunbling with indices, one ean recognize in the obtained expression a linear com­
bination of iclentities (1.4) written for various argunlcnts anel the one vertex tree
with Rags STo


