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PREFACE

The following notes arose from several lecture courses given at the Max—Planck—
Institute in Bonn in 1994-96. 1 have tried to summarize some results of recent
research, multifaceted and fascinating, originated in mathematical physics and
quickly crystallizing into a new chapter of geometry.

The first part of the notes is devoted to Frobenius manifolds, both in local and
formal versions. The category of formal Frobenius manifolds serves as a receptacle
for Quantum Cohomology and its study is closely interwoven with that of moduli
spaces of curves, operads and perturbation formalism. The geometric version of
this theory was almost singlehandedly created by B. Dubrovin.

The first two Chapters constitute an introduction to Dubrovin’s paper [D2].
I have added the basics of superversion, taken from [KM], and some computa-
tions related to the quantum cohomology of projective spaces. The treatment
of Schlesinger’s picture was influenced by {H3|, and the presentation of the sixth
Painlevé equation was borrowed from [Ma5]. I made every effort to untangle the
complex logical structure of the theory and to stress the interconnections which are
severed when the presentation is linearly ordered.

The third Chapter is devoted to formal Frobenius manifolds, which in their
different guises are related to the moduli spaces of curves and operads. It is a
development of the picture presented in [KM] and [KMKJ.

The second part of the notes is planned. It will be dedicated to the algebraic—
geometric construction of the Gromov-Witten invariants which form the foundation
of Quantum Cohomology.
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0. Introduction:
What is Quantum Cohomology?

0.1. An overview. Let H = H*(V, k) be the cohomology space of a projective
algebraic manifold V with coeflicients in a field k of characteristic zero.

The quantum cohomology Hy, ....(V) consists of H plus an additional picce of
data which can be described in at least three seemingly unrelated ways:

1). As a formal series (“potential”’) ® in coordinates on H whose third deriva-
tives can be used to define on K ® H the structure of a Z,—graded commutative
associative algebra, K being the ring of all formal series in coordinates.

ii). As a family of polylinear cohomological operations [m]: H®* — H, n > 2,
indexed by all homology classes m € H.(Mg,41,k). Here Mg 41 denotes the
moduli space of stable (n + 1)-marked algebraic curves of genus zero (c¢f. [Kn] and

[Ke).)

iii). As a “completely integrable system” on the tangent sheaf of the formal
spectrum Spf(K) (i. e. a formal completion of H considered as a linear superman-
ifold.) In this context, the system itself consists of one—parametric family of flat
connections on the tangent bundle of Spf(K).

The structures i)—iii) can and must be first described abstractly. We will do it
in more detail in 0.2-0.4, and then discuss in what scnse they are equivalent in 0.5.

A constructive realization of these structures on cohomology spaces, i. e. quan-
tum cohomology of V' in the proper sense, involves counting (parametrized) rational
curves on V and is thus related to some classical problems of enumerative algebraic
geometry. In 0.6 and 0.7, we will give two examples of the potential ® constructed
in this way, for V = P? and for V = a quintic hypersurface in P%. The geometry
underlying these constructions leads naturally to the descriptions of the type i) and
ii).

Algebraic geometry furnishes also completely integrable systems of the type iii)
in a totally different way, related to the periods of algebraic integrals and variations
of Hodge structure. We will discuss two examples in 0.8 and 0.9.

If a potential ® obtained by counting curves on a manifold can be identified with
another potential ¥ related to the periods on another manifold, this gives a strong
hold on the analytical properties of ® and behaviour of its coefficients. Existence of
such an identification for Calabi-Yau threefolds is the famous Mirror Conjecture.
Hopefully, it constitutes a part of a more general mirror pattern.

We will now fix notation for the remaining part of the Introduction. Denote
by (H,g) a Zy—graded finite dimensional k-linear space H endowed with an even
non-degenerate graded symmetric bilinear form g. Let {A,} be a basis of H, g4, =
g9(Aa, Ap), (6%°) = (gur)™, A =3 Arg® @A, € H® H. Denote by {z%} the dual
basis of the dual space of H. We will consider z* as formal independent graded
. commuting variables of the same parity as A,. Put K = k[[z*]]; this is the same
as the completed symmetric algebra of the dual space. Put 8, = 9/9z%: K — K.
We will write @, instead of 9,9, etc.



0.2. Definition. A formal solution ® of the associativity equations on (H,g),
or simply a potential, is a formal series © € K satisfying the following differential
equations:

Va,b,c,d: > ®apeg® @ peq = (—1)% EFE) N " o/ Doy (0.1)
ef ef

where generally T denotes the Zy—parity of «.

Define a K-linear multiplication o on Hyg := K ®; H by the rule

Aa © Ab = Z q’achCdAd- . (02)
cd

Clearly, it is supercommutative.

0.2.1. Proposition. a). (Hg,o0) is assoctative iff @ is a potential. Multiplica-
tion o does not change if one adds to ® a polynomial of degree < 2 in z°.

b). An element Ay of the basis is a unit with respect to o ff it is even and
DPope = gue for all b, c. Equivalently:

1 1
o= 5 goo(z®)3 + 3 Z z%2%2°g,. + terms independent of z°. (0.3)
c#0

If H= H*(V,k),g = Poincaré pairing (gup = fv Ag A Ap), and P is obtained
via a Gromov-Witten counting of rational curves on V, then (Hg, o) is called the
quantum cohomology ring of V.

0.3. Moduli spaces M,. Before giving the next definition, we recall some
basic facts about stable curves of genus 0 with n > 3 labelled pairwise distinct
non-singular points (z1,...,z,) (cf. [Kn], [Ke].) Such a curve is a trec of Pl’s:
any two irreducible components either are disjoint or intersect transverscly at one
point. Each component must contain at least three special (singular or labelled)
points.

The space Mo, is a smooth projective algebraic manifold of dimension n — 3
supporting a universal family X, — Mo, of stable curves whose labelled points
are given by n structure sections z;; My, — X,. An open subset (“big cell”)
parametrizes P! with n pairwise distinct points on it. The boundary, or infinity,
of My, is stratified according to the degencration type of fibers of X,,: the com-
binatorics of the incidence tree of the curve and the distribution of labelled points
among the components. The number of the components diminished by one is the
codimension of the stratum. Of course, the closure of such a stratum includes its
own boundary corresponding to further degeneration.

In particular, the irreducible boundary divisors D, of My, correspond to the
stable (unordered) 2-partitions o : {1,...,n} = S1][S2,18:| > 2, describing
the distribution of the labelled points among the two P’s at the generic point of
D,. A choice of the ordering of the partition defines an identification of D, with
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Mo n,+1XMony+1,7: = |S;| : on each P!, add to the labelled points the intersection
point of the two components. Thus we have a family of closed embeddings

Pa - Ho,nl-;-l X Mo,ng-i-l — HOn (04)
inducing the restriction morphisms of the cohomology groups with coefficients in &

¢, H” (HOn) - H” (H0,1n+1) ® H” (HO,nz+1) (0.5)

Besides, S, acts on Mo, H* (My,,) and partitions o by renumbering the labelled
points, and (0.5) is compatible with this action.

0.3.1. Definition. A structure of the Cohomological Field Theory (CohFT)
(or an algebra over the operad H My, cf. [GeK]) on (H,g) consists of a family of
S —equivariant Zy—even polylinear maps

I,: H® o H* (Mo, k), n>3 (0.6)

satisfying the following conditions. For every stable 2-partition o of {1,...,n} and
all homogeneous v1,...,vn € H we have

‘P;(In('h Q@ 'Yn)) = 5(0)(11114-1 ® Iﬂz-H) (® 1OA® (® 71')) (0-7)

1€ES, 1Sy

where e(a) is the sign of the permutaion induced by o on the odd-dimensional classes
Yi

Another way of looking at such a structure is to make a partial dualization with
the help of the Poincaré pairing on Mo 41 and g on H. Then one can rewrite

(0-6n+1) as .
H.(Myp1) @ H®" -5 H, n>2 (0.8)

that is, to interpret every class m € H.(Mgny1) as an n-ary multiplication [m]
on H linearly depending on [m]. Then (0.7) gives a complex system of quadratic
identities between these multiplications which are best described in the operadic
formalism (cf. [GelJ], [GeK], [GiK].)

However, the situation simplifies considerably if we restrict ourselves to looking
only at those multiplications that correspond to the fundamental classes [M 0,,1+1] €
H.(Mg n41) and denote them simply by

[Ho,n-i-ﬂ ® (71 QR FYu) = (717 toee )’Yﬂ)a n Z 2. (09)

These multiplications are supercommutative. Moreover:

0.3.2. Proposition. The identities (0.7) imply the following generalized asso-
ciativity equations for these multiplications: for any o, 8,7,61,...,0p € H, n > 0
we have

¢ () (e, B,6ili € 1), 7,85l5 € $2) =

22



> €' (o) e, (B,7,8ili € S1), 8515 € S2) (0.10)

where o runs over 2-partitions o : {1,...,n} = S]] Sz (non—necessarily stable),
and € are the standard signs.

In particular, for n = 0,1 we get respectively

({2, 8),7) = (e (B:7)),

(@, 8),7,8) + (1) ((@, 8,6),7) = (&, (8,7, 8)) + (e, (B8,7), 8)- (0.11)

Remarkably, this family of n—ary multiplications is actually equivalent to the
whole structure described in 0.3.1: ¢f. the proof of the Theorem 0.5 below.

In conclusion, let us formally compare the system of operations (0.8) on H =
H*(V, k) (in the situation of quantum cohomology) with the more traditional Steen-
rod operations.

i). Steenrod powers are defined on the cohomology with coefficients in F,
whereas we can allow characteristic zero coefficients (perhaps even Z.)

ii). Steenrod powers generate an algebra whercas [m], m € H.(Mg,+1) are
elements of an operad.

iii). Steenrod powers are defined solely in terms of topology of V, whereas
to construct [m] we need additionally the structure of algebraic (or symplectic)
manifold, in order to be able to define holomorphic curves on V.

0.4. Frobenius manifolds. The term “completely integrable system” is used
rather indiscriminately in a wide varicty of contexts. The notion relevant here was
introduced by B. Dubrovin (cf. [D1], [D2]) under the name of Frobenius manifold.
We start with the formal version.

0.4.1. Definition. a}. The structure of a formal Frobenius manifold on (H,g)
is a one-parametric system of flat connections on the module of derivations of K/k
given by its covariant derivatives

V.84 (ab) = A Z AachCdad =A Z Ag,,@d (0.12)

cd d

where Agpe € K is a symmetric tensor, A an even parameter.

b). This structure is called potential one, if the tensor OgAqp. ts totally symmet-
Tic.

More generally, a Frobenius manifold (M, g, A) (in any of the standard geometric
categories: smooth, analytic, algebraic (super)manifolds) is a manifold M endowed
with a flat metric g and a tensor field A of rank 3 such that if we write the compo-
nents of A in local g-flat coordinates, the conditions of 0.4.1 a) and eventually b)
are satisfied.
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0.5. Theorem. For a given (H,g), there exists a natural bijection between the
sets of the additional structures described above:

i). Formal solutions of the associativity equations on (H,g), modulo terms of
degree < 2.

ir). Structures of the CohFT on (H,g).

ii1). Structures of the formal potential Frobenius manifold on (H,g).

Easy part of the proof (sketch). We will first describe maps i) — 1) — 42i).

1) — ).

Assume that we have on (H, g) the structure of CohFT given by some maps I,
as in (0.6). Construct first the symmetric polynomials

Yoo HO Sk, Ya(n® - @) = f_ Lm® ®m) (0.13)
MOn

and form the series

®(z) := Z ( > %A, )®ﬂ) (0.14)

n>3

Keel ([Ke]) has described the linear relations between the cohomology classes of
the boundary divisors D, defined in 0.3. Namely, choose a quadruple of pairwise
distinct indices 7,4, k,1 € {1,...,n}, n > 4. For a stable 2-partition o = {S;, S5}
write ijokl if ¢, € S1, k,1 € Sy for some ordering of the parts. Then the {ijkl}-th

Keel’s relation is
Z D, = Z D, in H*(Myy,). (0.15)
oijokl o:ikajl

Geometrically, it follows from the fact that the two sides of (0.15) are the two fibers
of the projection
Mon = Mo (ijiy & Moq = P?

forgetting all the labelled points except for z;, ;, zx, z;. The space HOA has exactly
three boundary points corresponding to the three stable partitions of {7, 7, k,1}. In
(0.15) we use two of them.

Notice that the existence of the forgetful morphism is a non—trivial geometric
fact, because on the level of fibers of X, (i. e. geometric points of the moduli) it
involves contracting those components that become unstable, ¢f. [Kn].

If we restrict Y,(y1®- - ®7n) to D, using (0.7) then integrate over D, and take
into account (0.15), we will get a series of bilinear identities: Vi, 5, k, |

Z e(a)(Vis 141 ® V|5, 41) ® HPR®AD (® Ya) | =

ookl PeES 9€S52

D ) Vis+1®Visyr1) | @ neare (R) 1) (0.16)

aiikojl PES qeS2



On the other hand, writing the associativity equations (0.1) for the series (0.14),
one can directly show that they reduce to a subfamily of the relations (0.16), which
implies the whole family by the standard polarization argument. Thus ® encodes
the same amount of information as {Y,} and (0.16).

i) — 191).

Given a potential ®, we simply put Agpe = 8,950.P. This is in fact a bijection,
because given (H, g, A), the symmetry of Agp. and dzA,4c implics the existence of
® with Agpe = 0,8,0.®, and the curvature vanishing equation V2 = 0 implies the
associativity equations for &.

Difficult part of the proof. It remains to show that nothing is lost or gained
in the passage from I, to Yy, i.e., that the arrow ii) — %) is both injective and
surjective. Injectivity is again easy, because using (0.7) consecutively one sees that
the knowledge of Y;, allows us to reconstruct integrals of I,, along all the boundary
strata, whose classes span H* (M, ). But surjectivity requires a considerable work.
Basically, it reduces to showing that the ad hoc formulas for the integrals over the
boundary strata do define a cohomology class, i. ¢., satisfy all the linear relations
between the classes. A remarkable reformulation of this property asserts that the
homology of moduli spaces forms a Koszul operad. For details, sce the main text.

0.5.1. Remark. What this last argument additionally shows, is that the struc-
ture of a CohFT on (H,g) can be replaced by the structure of a Commc,—algebra
given by a family of n—ary operations, one for each n > 2, satisfying the gener-
alized associativity relations (0.10). This structure looks simpler because it docs
not involve the moduli spaces My,, which look completely irrelevant also for the re-
maining two descriptons. However, there are at least three reasons not to eliminate
the moduli spaces, and even to consider ii) as the most important structure.

a). In the applications to quantum cohomology, the geometry of the Gromov-
Witten invariants naturally involves total maps [,,, not just their top dimensional
terms Y;, describing the physicists’ correlation functions.

b). The higher genus theory at the moment can be formulated only in terms of
the cohomological operations parametrized by the homology classes of the moduli
spaces of stable curves Hgn. The analytic part of the theory where an analog of the
potential plays the central role is very incompletely understood (cf. [BCOV] and
[Ko6].) Besides, it seems that the cohomological operations cannot be reduced to
the correlation functions because of the existence of cohomology classes vanishing
on the boundary.

¢). Returning to the genus zero case, in the abstract framework of Commo—
algebras, there exists an operation of their tensor product. It can be defined as
follows::
(H',¢", I)® (H", 9", I)) = (H' @ H",g' ® g", I.)

where [,, are given by
L@ ®...®7%8%) =V, Y )LN®. . . @V)ALI(NW®...07).

This is an important and natural operation necessary e. g. for the formulation
of the quantum Kiinncth formula. However, it seems impossible to construct this
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prodict without invoking Mo,. In fact, its existence is a reflection of the fact that
H,.(My,) form an operad of coalgebras, and not just linear spaces.

In particular, consider Cy—algberas of rank 1 (i. e. dim(H)=1.) In terms
of potentials, they correspond to arbitrary power series in one variable ®(z) =

Y>3 —T:r:" because the associativity equations in one variable are satisfied identi-
=2 n!

cally. Hence we can define a tensor multiplication of such series. It turns out to be

given by quite non—trivial polynomials in the coefficients involving a generalization

of the Petersson—Weil volumes of M,,.

We will give now some examples. The fuller treatment will be given in the main
body of the text.

0.6. Quantum cohomology of P2. First, we have
HY (P2 k) = kA;, A;=ci(O(1)), i =0,1,2.

Denote by N(d) (for d > 1) the number of rational curves of degree d in P? passing
through 3d —1 points in general position. The first few values of N(d) starting with
d =1 are

1, 1, 12, 620, 87304, 26312976, 14616808192.

The potential <I>P2, by definition, is

2 1 o zSd—l
P _ iy & 2 § dy ._
L&) (EAO + ‘yAl + ZAz) = E(Ey +x Z) + 2 N(d)(B—dll—)'e y =
1 2 2
5 (zy” +2%2) + (y, 2). (0.17)

A direct computation shows:

0.6.1. Proposition. The associativity equations (0.1) for the potential (0.17)
are equivalent to one differential equation for p:

Przz = ‘piyz — PyyyPyzz (0-18)

which is i turn equivalent to the family of recursive relations uniquely defining
N{(d) starting with N(1) = 1:

N(d)= > N(k)N(K [z (z’;‘: ~ 3) —k (gi ) ‘i)} ,d> 2. (0.19)

ktl=d

0.6.2. Geometry. The identities (0.19) showing that (H‘(Pz,Q),g,<I>P2) is
actually an instance of the structure described above were first proved by M. Kont-
sevich. He skillfully applied an old trick of enumerative geometry: in order to
understand the number of solutions of a numerical problem, try to devise a degen-
erate case of the problem where it becomes casier. In this setting, Kontsevich starts
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with a new problem having one-dimensional space of solutions and looks at two
different degeneration points in the line of solutions.

More precisely, fix d > 2 and consider a generic configuration in P? consisting
of two labelled points ¥1, y2, two labelled lines [4, 15, and a set of 3d — 4 unlabelled
points Y. Look at the space of quintuples (P*,z,, z3, 23, 24, f) where z; € P! are
pairwise distinct points, f : P! — P? is a map of degree d such that f(z;) =
for i = 1,2; f(z;) € §; for i=34, and Y C f(P!). We identify such diagrams if
they are isomorphic (identically on P2.) Then we can assume that (1,24, %3,274) =
(1,0,00, A). If X is fixed and generic, the number of maps does not depend on it.
Kontsevich counts it by letting first A — oo, and second A — 1. In the stable
limit, P! degenerates into two projective lines, and we must sum over all possible
distributions of {z;} U f~1(Y} on thesc components. Comparison of the two limits
furnishes (0.19).

To make all of this rigorous, one must introduce not only the moduli spaces of
stable curves, but also the moduli spaces of stable maps HOn(P2) parametrizing
Kontsevich-stable maps to P2. Then it will become clear that the calculation we
sketched above furnishes a particular case of the identities (0.16).

0.7. Quantum cohomology of a three-dimensional quintic. Let V C P*
be a smooth quintic hypersurface. Its even cohomology has rank four and is spanned
by the powers of a hyperplane section, the odd cohomology has rank 204 and
consists of three-dimensional classes. For a generic even element v = Y x4, €
H*(V), denote by y the coefficient at Ay := ¢;(O(1)) and put

BV (3) = (%) + 3 nld) Lia(e™) (0.20)
d>1

where (v*) means the triple self intersection index, Liz(2) = Y o, 2™/m>, and
n(d) is the appropriately defined number of rational curves of degree d on V.

Before we turn to the definition of n(d), let us notice that in this case the
associativity equations are satisfied with whatever choice of these coefficients! This
can be checked by a direct calculation. An arguably more enlightening argument
runs as follows: in quantum cohomology of any V| the associativity equations must.
reflect the degeneration properties of rational curves on V' as was the case with P2.
Now, on a quintic, the rational curves are typically rigid so that there is nothing to
degenerate. (See however the discussion in 0.7.3.)

Algebraically, the quanturn cohomology ring of the projective plane with o—
multiplication (cf. 0.2 above) is semisimple whereas that of the quintic is nilpotent.
B. Dubrovin has developed a rich theory of the Frobenius manifolds with pointwise
semisimple multiplication in tangent sheaf. This should eventually provide analytic
tools for the numerical theory of rational curves on Fano varieties. On the contrary,
potentials of the Calabi—Yau threefolds are conjecturally constrained by the mirror
principle rather than associativity equations.

0.7.1. A definition of the numbers n(d). A naive argument showing that
the number of rational curves of degreec d on V must be finite runs as follows.
The space of maps f : P! — P4 (to,t1) = (folto,t1), .., fa(to,t1)) of degree
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d is a Zariski open subset in the space P%¢+4 of the coefficients of forms f;. The
condition F(fo(to,t1),---, fa(to,t1)) = 0 where F' = 0 is the equation of V furnishes
5d + 1 equations on these coefficients. If these equations were independent, the
space of colutions would be 3-dimensional. It is acted upon effectively by Aut(P?)
(lincar reparametrizartions) which leaves us with finitely many equivalence classes
of unparametrized curves.

Unfortunately, it is unknown whether there exists a sufficiently generic V for
which these equations actually are independent after deleting degenerating maps.
The symplectic approach to this problem going back to M. Gromov uses a drastic
deformation of the complex structure of V destroying its integrability. In this way
the problem is put into general position. More precisely, only isolated non-singular
pseudoholomorphic spheres in V' with normal sheaf O(—1) + O(—1) survive, they
can be counted directly, and their number is stable.

Another strategy which we will sketch below does not leave the algebraic geomet-
ric framework and cven allows one to calculate n(d) using the same degeneration
philosophy as in the Example 0.6, although in a rather different setting. This
construction is also due to M. Kontsevich ([Ko7]).

Consider a pair (C, f) where C is a connected curve of genus 0 (a tree of P1’s),
f: C — P*amap of degree d such that the inverse image of any point in f(c)
is either 0—dimensional, or a stable curve of genus zero whose labelled points are
intersection points with non-contracted components. Such pairs (C, f) are called
(Kontsevich—)stable maps (of genus zero, to P*.) There exists a diagram

H(P‘I,d) — 6,1 — P4

where M(P4,d) is the moduli space (or rather stack) of stable maps of degree d,
M(P4,d) is the universal curve on it. Denote the right arrow (the universal map)
by @4, and the left arrow by 7. Put &g = ¢3(O(5)), Eq = . (Eq).

0.7.2. a). M(P*,d) is a smooth orbifold of dimension 5d + 1.
b). Eq 1s a locally free sheaf on it of rank 5d + 1.

0.7.3. Definition. n(d) := csq11{Eq).

Motivation for this definition is simple: if a quintic V' is defined by s =0, s €
(P4, O(5)), then s produces a section 5 € ['(M(P*,d), Ey), and

csd+1{Fq) = the number of zeroes of 3

calculated with appropriated multiplicities. But 3([¢]) = 0 for [¢] € M(P*,d) iff
(pd(_C-d,[q,]) C V. Thus we simply avoided the problem of assigning ad hoc multi-
plicities to actual rational curves on ¥V (which may have a “wrong” normal shealf,
singularities, or come in families) by reducing it to a calculation of Chern numbers
on orbifolds. ‘

Moreover, we simultaneously created a setting in which degeneration can easily
occur. In fact, instead of considering curves in a fixed quintic V, we arc now looking
at curves in P? lying in V, i. e., treat V as an “incidence condition”, similar to
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3d — 1 points in P2 in 0.6 above. We may now freely change the equation s = 0 for
V and can take, ¢. g., s = H?:o s; where s; € (P4, O(1)) are coordinates in P*.
To make sense of the problem of “counting rational curves on the algebraic
symplex Vi, := U?_,{s; = 0}” Kontsevich proceeds as follows. Consider the G,,—
action on the whole setting (P*, O(5), M(P*,d)) given by s; — eMits;, i =0,...,4
where A; are the parameters of this action considered as independent variables.

0.7.3. Claim. a). V. is the only reduced quintic fized with respect to this
action.

b). Fized points of this action in M(P4,d) consist of stable pairs (C, f) where C
is a tree of P1’s mapped by f to the 1-skeleton of Vo, (consisting of 10 projective
lines).

Each such (C, f) has a combinatorial invariant (7, A) which is, roughly speaking,
the dual tree 7 of C each vertex of which is labelled either by zero (if the respective
component of C is contracted by f), or by the name of the line in the skeleton to
which it 1s mapped and the degree of this map.

Bott’s formula for Chern numbers of a bundle E in a situation where G,, acts
upon the whole setting involves a sum of local contributions over the connected
components of the set of G,,—fixed points, each contribution depending on the
weights of G,,, on the normal sheaf of the component and on the restriction of E
upon it.

Kontsevich shows that in our case we get a sum

n(d) = Zw('r, A) (0.21)
where the Bott multiplicities w(r, A) of the parametrized curves in the 1-skeleton
of Vo are explicit but complex rational functions on the parameters A of the G,,—
action. Since n(d) must be a rational or even integral number, miraculous cancella-
tions must take place in the r.h.s. of (0.21) which are not at all evident algebraically.

Computer calculations furnish the following values for the first four n(d)’s:
2875, 609250, 317206375, 242467530000. (0.22)

More direct methods of counting rational curves lead to the same numbers.

Although in a sense the potential (0.20) is now explicitly known, it is still difficult
to identify it with its conjectural mirror image which we will shortly describe.

0.8. Moduli spaces of Calabi—Yau threefolds as a weak Frobenius
manifold. As the discussion in 0.4 and 0.5 shows, the geometry of a Frobenius
manifold on M is basically defined by a flat structure and a symmetric cubic tensor
which is the third Taylor differential of a potential in flat coordinates. A flat metric
is then used in order to raise indices and write the associativity equations.

If we are interested in a class of potentials for which the associativity equations
are trivial, like (0.20), we may as well forget about the metric, and call the resulting
structure weakly Frobenius. This geometry naturally arises from the theory of
variation of Hodge structure of Calabi-Yau threefolds.
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Let 7 : W — Z be a complete local family of Calabi-Yau threefolds. Recall that
each fiber W, is a projective algebraic manifold with trivial canonical bundle and
ht0 = 0 for ¢ = 1,2. Denote by £ = W,Q?WZ the invertible sheaf of holomorphic

volume forms on the fibers of 7. We will constrict an £~2-valued cubic differential
form G : 8%(Tz) — L£~2? in the following way. First, according to Bogomolov—
Todorov-Tian, the Kodaira-Spencer map (following from 0 — Ty z — Tw —
7™ (Tz) = 0)

KS: T;— Rl‘:fr,..Tw/z

is actually an isomorphism so that the tangent space at z € Z can be identified with
HYW,, Tw,) = HY(W,,Q2)® L(z)~". Second, the convolution 7 : Tyy/z X Q?/V/z —

o /12. induces the pairings

Rim.(3) : RIW*TW/Z X RqW*QIv)V/z — Rq“?r,.ﬂ’,;/lz
or else
R'm.Twiz = Snd(_l’l)(@p,qwa.ngz)

which is essentially the graded symbol of the Gauss—Manin connection defined
thanks to the Griffiths’ transversality condition. [terating it three times and using
Serre’s duality we get finally:

G: S*Tzy= S*(R'mTw,z) - Hom(w.ﬂ%wz,ﬂ*o,v) >~ L2,

In order to identify £72 with Oz (which we need to define a weak Frobenius struc-
ture) we must choose a trivialization of the volume form sheaf. In the context of the
mirror conjecture, this is achieved by postulating that Z can be partially compact-
ified by dim(Z) divisors with normal intersection in such a way that the family W
can be extended to a family of “degenerate Calabi-Yau’s” and the zero-dimensional
stratum of the boundary W, becomes a maximally degenerate manifold, like the
simplex V in the family of quintics. A precise description of this condition is fairly
technical, and we omit it here; but see Deligne’s paper [De2].

Then the monodromy invariant part of H3(W,,Z)/(tors) around zero will be
generated by one cycle v defined up to sign (more or less by the definition of
maximal degeneration), and we locally trivialize £ by choosing a volume form w,
on W, in such a way that f,h w, = (2mi)3.

The flat coordinates in which G is the third Taylor differential of a potential ¥
can be constructed in the same context as the action variables of the algebraically
completely integrable system whose phase space is the family of Griffiths Jacobians
of W,: cf. [DoM].

A family W is called the mirror family for V if one can identify the weak Frobe-
nius manifold structure on H2(V) obtained via curve counting on V (A-model)
with that corresponding to the variation of Hodge structure for W (B-model).

For the particular case of quintics considered in 0.7 the mirror family depends
on one parameter 2z, and W, is obtained by resolving singularities of the spaces
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W,/(Z/5Z)® where W, C P* is given by the equation 3
(Z/5Z)° acts by z; = £5z4, €2 =1, Hj=1 & =1.
All the periods %(z) := f,h v, of an explicit algebraic volume form along v, €

H3(W,, Z) (any horizontal cycle) satisfy the Picard—Fuchs differential equation g :=
zd/dz) :

S a8 = 2[1%, o), and

[0* — 52(50 + 1)(50 + 2)(50 + 3)(50 + 4)|¥(z) =

It has four linearly independent solutions near z = 0:

7/)1(»’«’):10g ¢0(z Z 71')5 (Z k™ )

k=n+1

and two more for which we give only the top terms

9a(2) = 3052V o(2) + .., () = (108 2) o(2) +

t\DIl—‘

An appropriate flat coordinate on the z-line by definition is %(z) Under the mirror

correspondence, it becomes y in (0.20) thus locally identifying H2(V, C) (where V
is a generic quintic) to the moduli space of the dual family W. Putting

Fly) =@V (y) = 25° + 3 nld)Lis(e™) (0.23)

6 d=1

we have the following conjectural mirror identity:

I (ﬁ) 5 P11Pa — ¢0¢3

7
( 2 Yo 2 "J’o

(0.24)

Since 3; are explicitly known, one can check that the first coefficients agree with
(0.22).

However, conceptually (0.24) looks baffling. In order to reduce our problem to
the proof of an explicit identity, we have oversimplified the geometry. In partic-
ular, the mirror pattern must involve some operator of parity change or an odd
scalar product on the full Frobenius supermanifold, because an even part of H*(V')
becomes identified with an odd part of H*(W). E. Witten and M. Kontsevich sug-
gested that generally one should extend the moduli space of the model B rather
than restrict (to H?) the moduli of the problem A. This is crucially important for
understanding the mirror picture for the higher-dimensional Calabi-Yau manifolds
where rational curves cease to be isolated and a considerably larger (depending on
dim(V)) portion of H*(V') becomes affected by the instanton corrections. Accord-
ing to Kontsevich, one should construct deformations of a Calabi—Yau manifold in
a mysterious universe of non-commutative objects like A —categories (cf. [Ko4]).
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A. Givental [Giv2] achieved a remarkable progress in proving the Mirror Conjec-
ture for complete intersections in toric varieties where the precise construction of
mirrors is due to Batyrev ([Bal], [BaBo2].) He enriched Kontsevich’s approach by
passing to the equivariant quantum coliomology. Some work remains to be done in
order to complete his arguments.

0.9. Weil-Petersson volumes as rank 1 Cohomological Field Theory.
The rank of the CohFT on (H, g) is, by definition, dim(H). Let it be 1. Assume for
simplicity that g{Ag, Ag) = 1 for a basis vector Ag € H and fix it. Then the whole
structure boils down to a sequence of (non-necessarily homogeneous) cohomology
classes

e = (AR € H* (Moa), n >3 (0.25)

satisfying the identities
Pnlcn) = Cnyjg1 ® Cnpt1, B =771+ Ng, N > 2 (0.26)
(cf. (0.6) and (0.7}).

By the Theorem 0.5, we see that each such theory is uniquely determined by the
coefficients of its potential

(I)(:L') ::Z— Ch = | Cn

(cf. (0.14)) which can be totally arbitrary because any series in one variable satisfies
the associativity equations. Therefore, rank one theories seem to be rather trivial
objects. However, this is not so for at least two reasons: first, there are quite
interesting specific theories of algebro-geometric origin; second, the behaviour of
®(z) with respect to the tensor product of theories is non—trivial.

Here we give an example (the first term of a hierarchy) of algebro—geometric
theories.

There is a standard Weil-Petersson hermitian metric on the non-compact moduli
spaces My, parametrizing irreducible curves. On the boundary this metric becomes
singular. Neverthelerss, its Kahler form extends to a closed L?-current on Mg,
thus defining a real cohomology class w,‘:V PeH 2(H0n)5". There is also a purely
algebro-geometric definition of this calss (see [AC]). Consider the universal curve
Pt Xy Mo, Let z; C X, be the divisors corresponding to the structure
sections, and w = wy 7, the relative dualizing sheaf. Then

wWP = only,, (cl(w(z ::7,-))2) (0.28)

i=1
The main property of w,‘f’P is
prlwy Py =w¥ P @1 +10wlr). (0.29)

Comparing this with (0.26) one sees that

Cn 1= GXI)(er;VP/Zﬂz) € H” (HOfH Q) (030)
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is a rank one CohFT. Its potential is a generating function for the Weil-Pctersson
volumes considered in [Z]:

=]

WP () = ZS m(;—ig)'m" (0.31)

n=

(n—3) ~ 7209 Jm " (n—3)! |

P. Zograf proved that v4 =1, vs = 5, vg = 61, vy = 1379, and generally

n—3 .

1 ifn—1—-2) (n—4 n
'Un:52%(1:_1)(1:_,_1)7}1'4-2”“—5 n 2 4. (0-33)

i=1

This is equivalent to a non-linear differential equation for W (z:). What is more
remarkable, the inverse function for the second derivative of the potential satisfies
a linear (modified Bessel) equation:

oo o ( 1 m—1
n—2 m
Z_: (n— 2 (n—3)! ‘ Z m! {m y ' (0:34)

It is tempting to see this as another tiny bit of the general “mirror phenomenon.”
This can be considerably generalized to the complete description of the tensor
product of invertible rank one CohFT’s. Thus, in addition to the associativity
equations for the quantum cohomology of plane (and other Fano manifolds), the
hypergeometric equations for Calabi-Yau (made non-linear by a coordinate change)
we have one more differential equation of a seemingly diffcrent origin.

0.10. Main themes. From this sketchy overview, it must be clear that the
quantum cohomology is an exceptionally rich and tightly woven structure.

In this first part of the notes we devote Chapters I, IT to the global geometric and
analytic theory of Frobenius manifolds. Chapter III introduces the more algebraic
aspects: formal Frobenius manifolds, moduli spaces and operads.

The projected second part of the notes will concentrate upon algebraic geometric
constructions of the Gromov—Witten invariants. In this first part they figure only
as examples or in axiomatic form.

There is one more structure that keeps appearing in all the ramifications of this
subject: trees and more general graphs, eventually with labels. They enumerate
the strata and cells of Hg,n, help to visualize the composition laws of operads and
operadic algebras, govern the counting of curves on quintics via Kontsevich’s con-
struction. Many generating functions and potentials ®, when they can be explicitly
calculated, often appear in the guise of sums over labelled graphs of rather special
type, perturbation series, which are well known in statistical physics and quantum
field theory.

One can look at graphs as a mere book-kecping device and treat them in ad hoc
manner whenever they appear. However, I thought it worthwhile to pay them more
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respect and to use various categories of graphs as a combinatorial skeleton of the
theory.

0.11. Problems of higher genus. If we try to count higher genus curves
on algebraic manifolds, the general picture becomes less coherent, due to many
unsolved problems. Some of the main themes admit a generalization, but they fit
together more loosely.

As we mentioned, in the description of modular spaces trees are replaced by
modular and/or ribbon graphs of arbitrary topology. There is also a version of
modular operads.

A formalism of Gromov-Witten invariants is known, as well as some construc-
tions of them.

Perturbation series become much more complex, roughly speaking, they cor-
respond to the asymptotic expansions of path integrals rather than solutions of
classical differential equations.

Of the three descriptions of quantum cohomology suggested in 0.1, only the
second one survives in higher genus, involving cohomological operations on H*(V)
parametrized by all classes in H*(#M, ,). No reduction of this structure to numerical
invariants or solutions of differential equations is known.

For the Calabi~Yau threefolds, an extension of the mirror picture (geometry
of moduli spaces) is suggested in [BCOV], but it is less well understood and less
binding than the genus zero mirror conjecture.

In short, a lot remains to be done.

Our strategy is to throw in some explanations about the higher genus case when-
ever it looks appropriate, but defer a deeper treatment to the second part.
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CHAPTER 1. INTRODUCTION TO FROBENIUS MANIFOLDS

§1. Definition of Frobenius manifolds

and the structure connection

1.1. Supermanifolds. We will work throughout this section and the next one
in the superextension of one of the classical categories of manifolds Man: C, real
analytic, or complex analytic. Whenever integration can be avoided, Man may be
even a category of smooth algebraic manifolds over a field of characteristic zero. To
fix notation, we briefly recall the basic framework of (Ma2], Ch. 4 and 5.

1.1.1. Definition. A supermanifold is a locally ringed space (M, Opr) with the
following properties.

a). Opm = Opo @ Opm is the structure sheaf of Zy—graded supercommutative
TiNgs. :

b). Miea = (M,Opmred := Om/(Opmp) is a classical manifold, object of the
respective classical category.

¢c). O is locally isomorphic to the exterior algebra A(E) of a free OM red ~module
E.

A morphism of supermanifolds is a morphism of locally ringed spaces extending
a classical morphism of underlying reduced manifolds.

We denote (M, Ops) simply M, when there is no risk of confusion.

1.1.2. Conventions. By Z we denote the Z,—degree, or parity, of a homoge-
neous object z (local function, vector field, scalar product etc. )

If M is a supermanifold, local coordinates in a neighbourhood of a point form a
family of sections of the structure sheaf which can be obtained as follows. Choose
a local isomorphism ¢ : A(E) — Oy as above, local coordinates (Z!,...,Z™) on
M;cq, and free local generators (Z™F!, ..., z"%") of E. Put 2* = (F*). Then
(z!,...,z™*™) are local coordinates on M. Any local function on M can be ex-
pressed as a polynomial in anticommuting odd coordinates x™*1, ... ™% whosc
coefficients are classical (C°, analytic, etc. ) functions of the commuting even
coordinates z™+! ..., z*"). Odd coordinates are sometimes denoted by Greek
letters.

If M is connected, the pair m|n is an invariant of M called its (super)dimension.
When n = 0, we say that M is pure even. Transition functions between various
local coordinate systems, of course, need not be linear in odd coordinates, e. g.
(z,&,m) = (z + €n,x€,x71y) is a transition function outside z = 0.

The De Rham complex of sheaves on M is the universal (Z,, Z)-graded differ-

ential Opr—algebra (3, d) with odd differential d. This means that do = z + 1,
and the Leibniz formula reads

d(fg) = df g + (=1)T f dg.
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Notice that as Ops—algebra, Q3}, is the symmetric algebra of the Oy —module 2},
rather than exterior one. This is the combined effect of our choice of odd d and the
rule of signs defining the action of §,, upon P®":

J(7J1 ®--- ®pn) = E(0':p)po"1(1) Q- ®pa“(n)a

where ¢{o,p) is the sign of the permutation induced on odd p; (i.e. when even p;
are simply disregarded).

Given local coordinates (z,) on M, they determine the local vector fields d, =
0/0z* by the rule

df =) dz°0.f

for any f in Op. Notice that 5,, = T, and 9,0, = (~1)%® 0,0, so that the
supercommutator, which we denote by the usual square brackets [d,, 5], vanishes.
To shorten notation, a sign of the type (—1)F(Fs+%) will be denoted (—1)a(+e),

The tangent sheaf Ty (resp. cotangent sheaf Tyy) is locally freely generated by
(3,) (resp. by (dz,) with reverse parity.) '

A Ricmannian metric on M is an even symmetric pairing g : S?(Ty) — Our,
inducing an isomorphism ¢’ : Tar = Ty, We put gap := ¢(9a, ). Clearly, gop =
T, + Tp. No positivity condition is imposed, even in the pure even case over R.

A warning: in many situations it is necessary to consider the rclative versions
of all these notions, that is, to work with submersions of supermanifolds M — S
considered as a family parametrized by the base S. Functions on § are “constants”,
and since there are no odd constants in R or C, the need for a base extension arises
in supergeometry more often than in the pure even setting. The necessary changes
are routine.

The following structure is important in the theory of Frobenius manifolds.

1.2. Definition. a). An affine flat structure on the supermanifold M is a
subsheaf T,;'; C Tat of linear spaces of pairwise {super)commuting vector fields, such
that Ty = Op ® TAIJ (tensor product over the ground field.)

Sections of TA"; are called flat vector fields.

b). The metric g 15 compatible with the structure Tf;, if g(X,Y) is constant for
fat X,Y.

In the smooth or analytic case, an affine flat structure can also be equivalently
described by a complete atlas whose transition functions are affine linear, because
for a maximal commuting set of linearly independent vector fields (X,) one can
find local coordinates such that X, = 3/9z%, and they are defined up to a constant
shift.

If a metric ¢ is compatible with an affine flat structure, it is flat in the sense of
the straightforward (not involving spinors) superextension of Riemann geometry.
The parallel transport endows ‘TAJ; with the structure of local system.

We now give the central definition of these notes, due to B. Dubrovin.
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1.3. Definition. Let M be a supermanifold. Consider a triple (Tl\]},g, A) con-

sisting of an affine flat structure, a compatible metric, and an even symmetric
tensor A : S3(Ty) — Oup.

Define an Ops-bilinear symmetric multiplication o = o4 4 on Tps:

Tt ® Tor = SHT) 5T BTar: X@Y = XoY (1.1)
where prime denotes a partial dualization, or equivalently,
AX,)Y,Z2)=g(X oY, Z)=g(X,Y 0 2Z). (1.2)

This means that the metric is invariant with respect to the multiplication.

a). M endowed with this structure is called a pre—Frobenius manifold.

b). A local potential ® for (TA{,, A) is a local even function such that for any flat
local tangent fields X,Y, Z

A(X,Y,Z)= (XY Z)®. (1.3)

A pre—Frobenius manifold is called potential one, if A everywhere locally admits a
potential.

c). A pre-Frobenius manifold is called associative, if the multiplication o is
associative.

d). A pre~Frobenius manifold is called Frobenius, if it is simultaneously potential
and associative.

1.3.1. Remarks. a). If a potential ® exists, it is unique up to adding a
quadratic polynomial in flat local coordinates.

b). In flat local coordinates (z*) (1.3) becones Agp. = 8,09.P, and (1.2) can
be rewritten as

aa ° 8b = Z Aabcac: (14)

where
Aabc = ZAabegeca (gab) = (gab)_l-
e

Furthermore,

(au ° 8(}) 00, = (Z Aabeae) 0d, = Z AabeAecfafy
¢

ef
Oy 0 (61, o 66) = 0,0 Z Apcf0, = (_l)a(b+c+c) Z AbceAacfaf =
e ef
= (_l)a{h+c) Z AbceAeafaf (15)
cf

(notice our abbreviated notation for signs.)
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Comparing the coefficients of 9y in (1.5), lowering the superscripts and expressing
Agpe through a potential, we finally see that the notion of the Frobenius manifold

is a geometrization of the following highly non-linear and overdetermined system
of PDE:

Va,be,d: Y Dapeg® Brog = (—1)20) N Bpoeg® B paq. (1.6)
ef ef

They are called Associativity Equations, or WDVV (Witten—Dijkgraaf—Verlinde—
Verlinde) equations.

We will now express (1.6) as a flatness condition.

1.4. Definition. Let (M, g, A) be a pre-Frobenius manifold (we omit TAJ; in the
notation, since it can be reconstructed from g.) Define the following objects:

a). The connection Vo : Tar = QL @ Tar well determined by the condition that
flat vector fields are Vo-horizontal.

Denote its covariant derivative along a vector field X by
Vo,x(Y) =ix(Vo(Y)), ix(df ®2)=Xf®Z.
b). A pencil of connections depending on an even parameter A:

Va T = QU ®Tar: Vax(Y)i=Vox(Y)+AXoY. (1.7)

We will call V, the structure connection of (M, g, A).

1.4.1. Remark. In flat coordinates (1.7) reads:

V0. (06) =AY Aat®0c = X8a 00y = (—1)** A8y 0 0, = (—1)*V 5 5,(0a). (1.8)

Therefore V) has vanishing torsion for any A. In particular, Vg is the Levi-Civita
(super)connection for g.

Notice that the covariant differential V) is odd. As in the pure even case, it can
be naturally extended to all ©23,.

1.5. Theorem. Let Vy be the structure connection of the pre—Frobenius man-
ifold (M, g, A). Put V3 = A2Ry + A R, (there is no constant term since Vi = 0.)
Then

a). Ry =0 < (M,g, A) is potential.
b). Ro =0 < (M,g, A) is associative.
Therefore (M, g, A) is Frobenius, iff V) is flat.

Proof. a). Calculating the A-terms in

[Vo,8, + Adao, Vo8, + A0p0](de)
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we see that Ry = 0 iff Va, b, ¢, e, 8,Ap.° = (—1)°°0,A4.°, or better
Va,b,c,d, OgApea = (—1)®8pAscq. (1.9)

If A is potential, this follows from (1.3). Conversely, assume (1.9). Then for all
¢, d, the form ), dz® Apeq is closed, hence locally exact by the superversion of the
Poincaré lemma. Thus we can find local functions Bgq = (—1)°¢Bg. such that

Aped = OpBea = (=10, Bpg = (—1)" A,

because A is symmetric. It follows that for all d, 3" dx®Beg is closed. By the
same reasoning, we have locally B,y = 8.Cy4 and finally Cy = 04®, so that Apeq =
Op0,04P.

b). Calculating the A% terms in [V x, Va,y](Z), we find that
Roxy(Z)=Xo(YoZ)— (—1))??}’ o(XoZ).

Hence if o is associative, Ry = 0, because o is always (super)commutative. Con-
versely, if Ry =0,

Xo(YoZ)=(-1)X"Yo(X02Z)=(-1)XF+Dy 6 (ZoX) =

= (-1))??'”?2'*' Zo(YoX)=(XoY)oZ

1.6. Induced structures. Let M’ — M be any morphism of supermanifolds
which is an isomorphism locally at any point of M’, for instance, an open embed-
ding, or an unramified covering of an open submanifold. Then all structures on M
described above induce the respective structures on M’.

Induction on closed submanifolds is less common. However, one can always in-
duce a (pre-) Frobenius structure from M to M;eq. Functions on M,.q are obtained
by factoring out all nilpotents (their ideal is generated by odd local coordinates.)
In the De Rham complex, the differentials of odd coordinates are factored out as
well. Under this reduction, the flat even coordinates by definition remain flat; the
even—even part of the metric form remains the same; new potential is the reduction
of the old one. It is not difficult to check that (1.6) after reduction will become the
Associativity Equations for the reduced potential.

In Quantum Cohomology, this will allow us to restrict attention to the pure even
dimensional subspace if need be. However some information will be lost thereby.

1.7. Example: cubic potentials. The simplest examples of Frobenius man-
ifolds are furnished by potentials which are cubic forms in flat coordinates with
constant coecfficients. The algebra of tangent vectors at any point is just a com-
mutative (super)algebra with invariant scalar product, locally independent on the
point (flat local fields identify two algebras at a neighborhood of any point.) For
more sophisticated examples, see §4 below and the next Chapter.
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§2. Identity, Euler field,
and the extended structure connection

2.1. Definition. Let (M,g, A) be a pre-Frobenius manifold. An even vector
field e on M .is called identity, ifeo X = X for all X.

If e exists at all, it is uniquely defined by o, hence by ¢ and A.

Converscly, given A and e, therc can exist at most one metric g making (M, g, A)
a pre-Frobenius manifold with this identity:

g(X,Y) = A(e, X,Y).

This follows fromn (1.2). If A has a potential ®, this translates into a non-homogeneous
linear differential equation for ® supplementing the Associativity Equations (1.6):

Viat XY, eXY®=g(X,Y). (2.1)
In fact, if e = " €%d,, 9, flat, we have from (1.3):

A, X,Y) =) €9, XY® =eXYD.
4]

In most (although not all) important examples e itself is flat. If this is the case,
one can everywhere locally find a flat coordinate system (z°,...,z") such that
e = 0/8z° = &y, and (2.1) becomes

\:fa, b, (I)gab = Gab- (2.2)

Since all gqp are constants, we get

2.1.1. Corollary. On a potential pre-Frobenius manifold with flat identity
e =3y (in a flat coordinate system) we have modulo terms of degree < 2:

1 1
®0,... 2" = -2-3,'"0 Z GupZ®a” + Eg()a:co:n“ + 3 goo(z)? | + ¥zt . .. 2™).
a,b#0 a#0
(2.3)

2.1.2. Co-identity. The metric g identifies Tps and Ty;. We will call the
co-tdentity and denote e the 1-form which is the image of e (with reverse parity.)
More precisely, € is defined by

VX € Tu, ix(e)=g(X,e).

If (%) is a local coordinate system,then

€= Z dz®g(0q, €).
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Finally, if e and (z®) are flat, then g(0,,€) are constant, and

e=dn, n= Zm“g(@a,e). (2.4)

2.2. Euler field. We will say that an even vector field F on a manifold with flat
metric (M, g) is conformal, if Lieg(g) = Dg for some constant D. In other words,
for all vector ficlds X,Y we have

E(g(X,Y)) - g([E, X],Y) — 9(X,[E,Y]) = Dg(X,Y). (2.5)

It follows that in flat coordinates we have E =3 E%(z)d, where E%(z) are poly-
nomials of degree < 1. In fact, £ is a sum of infinitesimal rotation, dilation and
constant shift. Hence [E, TA{I] C TAJ;. Moreover, the operator

Vi Th = T, VX) = (X B - 2 X

is skewsymmetric:

Vflat X,Y : g(V(X),Y)+g(X,V(Y)) =0.

2.2.1. Definition. Let E be an even wvector field on a pre—Frobenius manifold
(M, g, A). It is called an Euler field, if it is conformal, and Lieg (o) = dgo for some
constant dy, that is, for all vector fields X, Y,

[E,XoY]—[E,X]oY - Xo[E,Y]=doX 0. (2.6)

Notice that it suffices to check (2.5) and (2.6) for X,Y in any (local) basis of
Ta, because both sides are Ops—bilinear.

Clearly, any scalar multiple of an Euler field is also an Euler field. One can
use this remark in order to normalize E by requiring that some non-vanishing
eigenvalue becomes one. A convenient choice is often dy = 1, if we have reasons to
restrict ourselves to the dg # 0 case.

2.2.2. Proposition. Let E be a conformal vector field on a Frobenius manifold
(M, g,®). Then E is Euler, iff

E® = (do + D)® + a quadratic polynomial in flat coordinates. (2.7)
Proof. Clearly, (2.7) is equivalent to the following statement: for all flat X,Y, Z
XYZE® = (do+ D)XYZP. (2.8)

Now

XYZE® = EXYZ® - XY[E, Z)® — X[E,Y )2 - [E, X]Y Z®. (2.9)
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Using (1.3), (1.2), and the fact that [F, bel] C 'TA";, we can rewrite the right hand
side of (2.9) as

Eg(XoY,Z)—g(XoY,[E,Z])~g([E,X Y], Z)+

'}'g([E:XOYLZ) - g(X °© [Ea Y]aZ) _g([E$X]°Ya Z)
The first three terms add up to Dg(X oY, Z) = DXY Z®. The last three terms
add up to dog(X oY, Z) = do XY Z® precisely if E is Euler.

2.3. Gradings induced by E. Put now
Tu(r) ={X e Ty !|[E,X]=(r —do) X}, Tam(*) = BrecTum(r). (2.10)

Notice that we are considering not necessarily flat fields, and shift the cigenvalues
by dg. Similarly, put

Ou(s) = {f € Om | Ef = sf}, Opr(%) := BoccOn(s). (2.11)

This is a graded sheaf of algebras.

2.3.1. Proposition. On any pre-Frobenius manifold M with Euler field E, the
sheaf Tar(x) is

a). A graded O (x)—module.

b). A graded supercommutative algebra with multiplication o.

¢). A graded Lie superalgebra with the bracket of degree —dy.

This is proved by a straightforward calculation which is left to the reader.

As a corollary, since [E, E] = 0, we have E € Ty (dy), so that E°" € Tar(ndy),
or
([E,E°"] = (n — 1)doE°™. (2.12)

I do not see how to get in this setting the commutation relations betwecen arbitrary
E°™ and E°". Later we will obtain them for semisimple Frobenius manifolds, and
find (for dg = 1) the algebra of vector fields on a line.

2.4. Case of semisimple ad E. We will call the set of eigenvalues of —ad £
on 7}&, together with dg and D, the spectrum of E. We will say that E is semi-
simple, if ad F, acting on flat fields, is. For semisimple £ we can construct many
homogeneous elements of Opr(x) and Tas(*) explicitly.

Let (8,) be a local basis of T, such that
[Oa; B] = du0a (2.13)

where (d,) form a part of the spectrum of E. (We assume here that the ground
field is C or else complexify the tangent sheaf.}) Putting £ = Y E*(z)d,, we find
from (2.13) that 9, E® = 6% d,. Hence if 8, = 0/0x*, we have

E= Y (dag®+7%0+ Y 1°0.

a:dy,#0 b: dp=0



32

By shifting %, we can make r® = 0 for d, # 0. Multiplying z° by a constant, we
can make ? = 0 or 1 for d, = 0. So finally we can choose local flat coordinates in
such a way that

E= Y dyz®0a+ Y 6 O (2.14)

a:dy 70 someb: dp, =0

Clearly, F assigns definite degrees to the following local functions:
Ez?® = d,z® for dy #0; Eexpa’ =exp«® or 0 for dy = 0. (2.15)
Assume now that M has an identity e. From (2.6) we get
[e, E] = dye. (2.16)

Hence our notation for the spectrum will be consistent, if in the case of flat e we
put e = Jp, and otherwise do not use 0 as one of the subscripts in (2.13).

In more invariant form (2.14) can be written as

E=)E[s],

seC

where E[s] is the part of (2.13) consisting of summands with d, = s for s # 0, and
the remaining summands for s = 0. This decomposition does not depend on the
remaining arbitrariness in the choice of local coordinates.

We can now present some of our previous remarks in more concrete form. Put
Tl = {X € T} |[X,E] = rX}.

(Notice the difference with (2.10).) Then the condition (2.5) is equivalent to the
following one:

T}{; [da] and '7']3; [dy] are 'orthogonal unless d, +dy = D.
In fact, (2.5) in the basis (2.13) becomes

Va,b: g(daaaa ab) + g(aa) dbab) = Dgap

that is,
(da + db — D)gab = 0. (2.17)

In particular, g(e,e) = 0 unless D = 2dj.

2.4.1. Proposition. (2.6) is equivalent to any one of the following sets of
equalions written in the basis (2.13):

Va,b,c: EALS = (d() —dy —dp + dc)AabC, (2.18)
Vab,c: Edue = (do+ D — do — dy — dg) Aape. (2.19)

This follows from the homogeneity of multiplication.
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We now have the following supply of homogeneous functions: components of A
and mixed monomials in local functions (2.15):

H (£*) e H exp (npz®) € Op Z Made + Z ngr® | (2.20)
0

a:dg #0 b:dy=0 a:dga #0 b:dp=
where m, € Z, np € R (or C.)

2.5. Extended structure connection. Let M be a pre-Frobenius manifold
with a conformal vector field E. Put M = M x (P} \ {0,00}), where P} is the
completion of Spec C[A, A~1]. Furthermore, put T = pris(Tar). If X is a vector field
on M, it may be lifted to M in two different guises: as a vector field annihilating
A, denoted again X, and as a section of 'T', then denoted X.

Choose a constant dg and put £ := F — dg/\% € Tg;- Clearly, X for flat X span

'?', whereas flat X and € span T3z, provided do # 0, which we will assume.

2.5.1. Definition. Let M be a pre-Frobenius manifold with a conformal field
E, and dy a non-zero constant. The extended structure connection for M 1is the con-
nection V on the sheaf T on M, defined by the following formulas for its covariant
derivatives: for any local vector fields X € Ty, Y € TA";,

Vx(¥):=rXo7Y, (2.21)
Ve(¥) =[E, Y] (2.22)

2.5.2. Theorem. The extended structure connection is flat iff M is Frobenius
and E is Euler with Lieg (o) = dpo.

Proof. From (2.21) it follows that the vanishing of the XY-components of

the curvature of ¥V for all flat X,Y is equivalent to the flatness of the structure
connection of M.

It remains to calculate the £ X-components, i.e. the expression
Viex)((¥V) = [Ve, Vx](V) (2.23
for all flat X, Y. Since [£, X] is the lift of the flat field {E, X], from (2.21) and (2.22
it follows that the first term of (2.23) is A([E, X)o Y). Furthermore, V x(Y)
AX oY, so that
VeVx(V) = A[E, X o Y] = doAX o ¥, VxVe(Y) = AX S [E,Y].

We see that the vanishing of this part of the curvature is equivalent to (2.6). This
finishes the proof.

S

From (2.21) and (2.22) one can derive a formula for the covariant derivative in
the A-direction: if Y is flat, we have

[E,Y] = 6'jﬁ:—do,\a/a,\(?) =Vp(Y) - do)ﬁa/ax(?) =)EoY - do)\ea/a)\(?)
so that

————

doVosoa(Y) = EoY — ~[E,Y). (2.24)
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§3. Semisimple Frobenius manifolds

Let (M, g, A) be an associative pre—Frobenius manifold of dimension n. In this
section and the next one we will assume that M s classical, that is, pure even.

3.1. Definition. M is called semisimple (resp. split semisimple) if an isomor-
phism of the sheaves of Oy —algebras

(Tar, 0) = (0%, componentwise multiplication) (3.1)

exists everywhere locally (resp. globally.)

This means that in a local (resp. global) basis (ey, ..., e,) of T the multiplica-
tion takes form
O fieyo O _gje)) =D figses,
and in particular,
e; 0 ej = b e;j. (3.2)

Such a family of idempotents is well defined up to renumbering. Another way of
saying this is that a semisimple manifold comes with the structure group of Tas
reduced to S,. Notice that e; are generally not flat, so that this reduction is not
compatible with that induced by Tn‘;, with the structure group GL(n).

Hence if M is semisimple, there exists an unramified covering of degree < n!,
upon which the induced pre-Frobenius structure is split.

Denote by () the basis of 1-forms dual to (e;). From {1.2) and (3.2) we find
glei ex) = gleioei, ex) = gles, ei 0 ex) = ikgii-

We will denote g;; by 7;. We see that the symmetric 2-form representing g is
diagonal in the basis (v*):

g= Z?}i(rfi)z. (3.3)

i

Moreover, according to (1.2), A(e;, e;,ex) = §;;0,xmi, so that the symmetric 3-form
representing A, is diagonal with the same coefficients:

A= Zni(b’")‘q. (3.4)

Finally, e := ), e; is the identity in (7, o), and the co-identity, defined in 2.1.2,
nicely complements (3.3) and (3.4):

£ = Zmui. (3.5)

i

Thus the Definition 3.1 can be restated as follows:
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3.2. Definition. The structure of the semisimple pre—Frobenius manifold on
M is determaned by the following data:

a). A reduction of the structure group of Tar to Sy, specified by a choice of local
bases (e;) and dual bases (*).

b). A flat metric g, diagonal in (e;), (V).
c). A diagonal cubic tensor A with the same coefficients as g.

Associativity of (Tas, o) is automatic in both descriptions. However, potentiality
(and the flatness of ¢ which we postulated) are non—trivial conditions.

3.3. Theorem. The structure described in the Definition 8.2 is Frobenius iff
the following conditions are satisfied:

' = du' for a local coordinate

a). lei,e;] = 0, or equivalently, e; = 8/0u’, v
system (u') called canonical one.

b). n; = e;n for a local function n defined up to addition of a constant. FEquiva-
lently, € is closed.

We will call 5 the metric potential of this structure. (Sometimes this term refers
to h such that g, = J,0ph; our meaning is different.)

Canonical coordinates are defined up to renumbering and constant shifts.

Proof. Let Vj be the structure connection of the pre-Frobenius manifold M.
According to the Theorem 1.5, M is Frobenius iff the curvature V2 vanishes, i. e.
iff

Vi, jok s [Vaer Vael(ek) = Va e e;)(ex). (3.6)

‘Since M is associative, and since we assumed that g is flat, we have to worry only
about the A-linear terms in (3.6). Let us start with introducing the Riemannian
connection coefficients of g for the basis ey:

v[),c,- (ek) = Z Pikqeq- (37)
q

Since V) x = Vo x + AXo (cf. (1.7)), the left hand side of (3.6) produces the
A-terms
(Voe; + Aei0)(Voe, + Aejo)(ex) — (i & J) =

= Aeg oZI‘jk“‘eq—i— AZ&ijikqeq - (i > ]) 4+ .=
q q
=AY (8T + 6T — 85T% — 68 )eq + ... (3.8)
q
Now introduce the Lie coefficients
lesvej) = ) fij%eq.
q
The A-terms in the right hand side of (3.6) amount to

VA,[e,—,e_,-}(ek) = A Z fijqeq o¢p+ = Af,-jkek + ...
q
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But the coefficient of e in (3.8) vanishes. Therefore, if M is Frobenius, then
(3.6) is satisfied, so that f;;* = 0. Hence ¢; pairwise commute, and local canonical
coordinates u* do exist.

Moreover, the left hand side of (3.6) vanishes. Again, it suffices to investigate
the meaning of this, looking only at A-linear terms.

Recall that for any metric g = Y g;jdu*dw’ the coefficients of the Levi-Civita
connection are given by the formulas

: 1
Lk = Zf‘iﬂglk, Lije = i(eigjk — €xgij t €5 Gki)-
i

The nonvanishing connection coeffitients of g = 3 n;(du?)? are (i # 7) :

oy 1
[y = 3" Yegmi, Ti? = —3" Lemi,

1 _
3T €M (3.9)

Hence putting V := Vg (the Levi—Civita connection), V; := Vg .., we have

Fiji — Fjii —

1 _ 1 _
Vi(ei) = o et - e — Z 5" Yemi - €5,
i

1 _ 1 _
Vi(e;) = o' lej'?h' e+ 5" 13:‘713’ "€ (3.10)
Now, the vanishing of the A-terms in the left hand side of (3.6) means that
Vi,j,k . eiij(ek)-%V,-(ejoek) = (‘L(—)j) (3.11)

Using (3.10), one checks that {3.11) is identically satisfied for + = j and for ¢ # j #
k # 1, whereas the case ¢ # j = k gives

eitl; = €. (3.12)

The same condition is obtained for k = 7 # j. It follows that 7; = e;n for some 7,
defined at least locally.

Reading this argument in reverse direction, we see that if a) and b) are satisfied,
then V, is flat, and M is Frobenius.

3.4. The Darboux—Egoroff equations. The Theorem 3.3 establishes a (not
very explicit) equivalence between the following functional spaces on M (modulo
self-evident equivalence):

a). Flat coordinates (z!,...,z™), flat metric g4, function ®(z) satisfying the

Associativity Equations (1.6) and semisimplicity.

b). Canonical coordinates (u!,...,u"), function 7(u) such that the metric g =
3 ein(du’)? is fat, where e; = 8/0u*.

The constraints on 7, implicit in b), are called the Darboux—Egoroff equations.
In order to write them down explicitly, let us introduce the rotation coeflicients of
the potential metric:

1 iy

) VT

Yij (3.13)

where as before, 7; = e;n, 5i; = e;e;n.



37
3.4.1. Proposition. The diagonal potential metric g = 3 e;n(du®)? is flat iff
VELit Ak
exYij = YikVkj (3.14)
and
evij = 0. ' (3.15)

Proof. This is established by a straightforward calculation, complementing that -
in the proof of the Theorem 3.3. In fact, we now want to make explicit the condition
V2 = 0 where V is the Levi-Civita connection. So we return to (3.6) at A = 0, i. e.

V,‘Vj (Gk) = VjV,-(ek).

Nonvanishing curvaturc components can occur only for ¢ # j. Calculating them
directly we arrive to (3.14) and (3.15).

3.5. Proposition. Lete be the identity, and € the co—identity of the semisimple
Frobenius manifold. Then
a). € = dn, where n is the metric potential.

b). e is flat iff for all i, en; = 0, or equivalently, en = g(e,e) = const. This
condition is satisfied in the presence of an Euler field with D # 2dy (see (2.5),
(2.16), (2.17).)

c). If e is flat, and (z®) is a flat coordinate system, then

n= Z:ﬂ“g(&a, e) + const. (3.16)

The formula (3.16) shows that in the passage from the (z®, ®)-description to
the (u',7)-description the main information is encoded in the transition formulas
u* = u*(x), at least in the presence of flat identity.

Proof. The first claim follows from (3.5) and the Theorem 3.3 b).

The second one can be obtained directly from (3.10). We have

Vi(e) = Vile; + Zej) == t - €.

These derivatives vanish iff en = const. But en = 3 n; = g(e, e). From (2.17) it
follows that g(e,e) = 0 if D # 2d,.

Finally, (3.16) is the last formula in 2.1.2.
Notice that the equations ern; = 0 imply (3.15).

We will now see that, like the identity, the Euler field is almost uniquely defined
by the canonical coordinates, if it exists at all.
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3.6. Theorem. Let E be a vector field on the semisimple Frobenius manifold
M, do a constant.

a). We have Lie (o) = dg(o), iff

E =dy Z(u' + ey, (3.17)

1

where ¢t are some constants.

b). For the field of the form (8.17) and a constant D, we have Lieg(g) = Dg iff
for all i, En; = (D — 2dy)n;, or equivalently

En = (D — do)n + const. (3.18)

Thus in the presence of a non—vanishing Euler field we may and will normalize
the canonical coordinates so that F = dg ) u'e;.

Proof. a). Put E = Y, E'e; and write (2.6) for X = e, Y = ¢;. Since
[E,ex] = — 3, ex(EY) - €;, we get ex(E') = dodix, so that E* = do(u! + ¢').

b). Likewise, (2.5) for X = e;, Y = ¢; is identically satisfied for ¢ # j, and is
equivalent to En; = (D — 2dg)n; for ¢ = j. Since 7; = e;n and Fe; = e;F — dye;,
this is the same as (3.18).

3.6.1. Grading. The semisimplicity of ad E' on Tnf[ does not seem to have a
good alternate formulation. However, if it holds, then the grading of functions and
vector fields defined in 2.3 becomes especially simple in the canonical coordinates.
For instance, let dy = 1; then Ef = sf ifl f(Aul,..., Au™) = X f(u!, ..., u™).

Finally, we can complete the commutation relations (2.12).

3.6.2. Proposition. Ifdy =1, then
[Eom’ Eon] — (n _ m)Eo(m+n—l) (319)

form,n > 0 everywhere on M, and for arbitrary integral m,n outside of U;(u* = 0)
that is, exactly where E 1s o-invertible.

In fact, from (3.2) one sees that E°™ = 3" ul'e;.

3.7. A pencil of flat metrics. Equations (3.14) are stable with respect to
a semigroup of coordinate changes. Namely, let f; be arbitrary functions of one
variable such that ' := f;(u*) form a local coordinate system, & = /04, 7%; = &
ete.

3.7.1. Proposition. If (e;,vi;) satisfy (8.14), then (&;,%:;) satisfy (3.14) as
well.

Proof. The rotation coefficients of §:= ", &n(dut)? are (cf. (3.13))

D T . o
Hii = gegn(enen) = vi; (fi (') £ (7)) 7.
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Hence for k # 1 # j # k we have, in view of (3.14):

Ex¥i; = Yinvis (f] (u) f}(uj))_%fk(ﬂk)-l,

and
FikVrj = YikYes (fi(u') f}(uj))_ﬁfk(uk)—l
so that ¥;; satisfy (3.14).

In order to satisfy (3.15) as well, we will have to restrict ourselves to the one—
parametric family of local coordinate changes

i@t =log (u' — X), & = (u* — Nei, ga = Y _(u' = \)Ten(du’)? (3.20)

i

which make sense on My = {z € M |Vi, v’ # A}.

3.7.2. Theorem. Let M be a semisimple Frobenius manifold with canonical
coordinates (u*) and metric potential . Then the following statements are equiva-
lent.

a). For all A\, the structure (8.20) is semisimple Frobenius on M.
b). The same for a particular value of A.
¢). For alli # j,
Zukek’m = —Yij. (3.21)
k

Moreover, (8.21) is satisfied if E =Y, uFex is the Euler field on M with do = 1.

Notice that generally & = 3" &, is not flat for gy and £ = Y @%¢, is not an Euler
field.

Proof. Let us start with deducing (3.21). If E is the Euler field with dp = 1,
we have Y, ufn = (D — 2)m; (see Theorem 3.6 b).) Applying e; we obtain
>k uFniz = (D — 3)1;;. Hence

1 7k 1 7imik 1 ni;m5k
Evi; = wkeryi; = u* {_ gk _ 2 My _ - _'hi —
? zk: ? ; 2V AN 4niTT

_Lomy
2 \/Tin;
Now we turn to the Darboux-Egoroff equations. We know from the assumptions

and Proposition 3.7.1 that (3.14) is satisfied both for g and §. The second half
(3.15) in this situation is equivalent to

—Yij-

Vidd, > vtk = —(ei + €)%, (3.22)
g

so that it remains to see the meaning of (3.22) now written for %;;, &;.
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We have, using (3.20), :; = vi;{u* — A)}/2(w? — X)Y/2. Hence for i # j

D s = | D vem (uF = A | (o = NVl - AV =
k#i,j k#i,3

= | D wFvemes + Ales + )y | (08 = NV - N)VP =
ey

= Z 'll.kek'}';'j + A(Ei + 63)"7’1] (ui — /\)1/2('11,3 - ,\)1/2 =
ksi,j
= [Evij — (0 = ANesvij — (00 — Nejyig] (uf — NV — A)V2, (3.23)
On the other hand,

~(& + &) = — [(u' = Nei + (= MNe;] [’Yij(“i - N2 - /\)1/2] =

= — [yij + (' = Neyij + (0¥ — Aejrig] (ub — A2 — M2, (3.24)

Comparing (3.23) and (3.24) one sees that their coincidence for one or for all values
of A is equivalent to (3.21). This finishes the proof.

3.7.3. Remarks. If E is Euler, the metric g in (3.20) can be written in
coordinate free form:

WX, Y)=g((E-X"1oX,Y). (3.25)

In fact (3.25) is flat on any Frobenius manifold with semisimple Euler field on it,
non—necessarily semisimple: ¢f. [D2)].

b). The inversc metrics §§ on the cotangent sheaf form a pencil of flat metrics
with two marked points. Conversely, given such a pencil and two metrics g, 2 in it,
we can define the spectrum of such data: zeroes of det (g —uh). If the spectrum (u*)
forms a local coordinate system, the pair (u*, h) has a chance to define the Frobenius
structure: we have to check the potentiality of /i written in u*~coordinates, which
is equivalent to the Hatness of the structural connection: see Theorem 3.3.

3.8. Summary. We now briefly summarize the two descriptions of semi-simple
Frobenius manifolds, stressing their parallelism.

WDVYV picture
Flat coordinates (z°,...,2z"~1), up to affinc transformations, can be partially
normalized in the presence of F.
Metric with constant coefficients ¥ gqpdz®dz®.

Potential ®(z) satisfying the WDV V-equations (1.6), defined up to adding a
quadratic polynomial in (z®).
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Flat identity ¢ = dy, additional equation dgPqp = gas-

Euler field E = > E%(x)d,, where E® are of degree < 1. Additional cquation
E® = (D + do)® plus quadratic terms.

Darbouz—Eqoroff picture

Canonical coordinates (u!, ..., u™), up to renumbering and constant shifts. Shifts
can be fixed in the presence of F.

Diagonal potential metric g = >, e;n (du')?, e; = 8/0u’.

The metric potential n(u) satisfying the Darboux—Egoroff equations (3.14), (3.15),
and defined up to adding a constant.

Flat identity e = }_, e;, additional equation en = const.
Euler field F = dy ), u*e;. Additional equation En = (D — dp)n + const.

Passage from WDVV to Darbouz-Eqoroff
In the presence of an Euler field and a flat identity:

(ul,...,u™) = the spectrum of Eo acting upon 7ys.
Metric potential 7 =) %g(0,, €).

3.9. A problem. It would be important to generalize the notion of semishm-
plicity to supermanifolds. Here are some scattered observations suggesting that
there might be several different versions of it.

a). The main justification for considering Frobenius supermanifolds is the fact
that quantum cohomology (thcory of Gromov-Witten invariants) provides for any
projective algebraic or symplectic V such a structure on an open (or formal) sub-
space of the conventional cohomology H*(V, C) considered as a linear superspace.
Not, many manifolds have pure even-dimensional cohomology, so we need odd co-
ordinates.

b). If we look at the definition 1.2 from the vantage point of, say, supergrav-
ity, we will be tempted to replace the metric {(g.s) by a more refined structure.
The standard nucleus of such a structure consists of a pair of pure odd integrable
distributions 7,7, C Tar such that the supercommutator induces a maximally
non—degenerate map 77 ® 7, — Tar /(Ti®T;). There are two drawbacks to it. First,
such a structure seems to be nowhere in sight in quantum cohomology. Second, in
its natural habitat it is complemented by new constraints depending on dimension,
so that there is no dimension independent generalization of Riemannian geometry
along these lines.

If one decides against this option, one should keep in mind alternative geometries
peculiar to supergeometry, for instance, (a curved version of) II-symmetry, where
IT is the parity switch. For example, in the picture of Calabi—-Yau Mirror Symmetry
the cohomology spaces of mirror threefolds V, V' are roughly speaking connected
by H(V) = IH(V').

Proceeding in this direction, we will have to rethink the ways to construct gen-
erating functions {from Gromov—Witten invariants.
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¢). Finally, an extension of the notion of semisimlicity is suggested by the domi-
nant role of the Euler field £, or rather Lie algebra spanned by E°*. One can imag-
ine a structure, consisting of a supermanifold M, a representation of the Neveu—
Schwarz (or Ramond) Lie superalgebra in Ty, and a superversion of the equations

en = const, En = (D —do)n+ const. To find a superization of the Darboux—Egoroff
equations seems a subtler problem.
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§4. Examples

4.1. Dimension one. Let M be a connected simply connected one—dimensional
manifold, for definiteness, complex analytic.

The structure of pre-Frobenius manifold on M is given by an arbitrary pair
(8, ¢) where d is a vector field without zeroes and ¢ a function:

TA’; = C0, ¢(0,8)=1, 800 = d.

Two pairs (9, ), (9',¢') define the same structure iff they coincide or differ by
commorn sign.

Such a structure is automatically associative and potential, hence Frobenius. Let
My be the complement to the zeroes of ¢. On My there is an identity ¢ = t,a -19,
which is flat iff 3¢ = 0. If 9 = d/dz, co-identity is € = p(z)dz.

My is also the domain of semisimplicity. Solving the equation e = d/du for u,
we get u= [ p(z)dz = [e.

A definite choice of u is equivalent to the choice of the would—be Euler field
E = ud/du with dy = 1. A metric potential is 7 = u, hence En = u so that (3.19) is
satisfied with D = 2. Even if e is not flat, we have [0, E] = 0, so that E is actually
an Buler field.

This rather dull picture will give rise to quite non—trivial problems in the context
of formal Frobenius manifolds, when we will introduce and calculate the operation
of tensor product on them.

4.2. Dimension two. We will give here a local classification of two-dimensional
Frobenius structures with flat identity and a semisimple Euler field with dy = 1. The
multiplication o in this situation is automatically associative, so that the WDVV-

equations are empty, and it remains to find all potentials satisfying the equations
(2.2) and (2.7).

The final answer depends on the spectrum of E.

First, let (dg = 1,d;) be the spectrum of —ad E on ’TJ{;, (0o, 01) the respective
flat eigenvectors, e = dy. The classification starts branching depending on whether

dy # 0 or dy = 0: this is our first critical value of di. We choose flat coordinates
(20, z') such that (cf. 2.4)

di #0: E =2z +d,z'dy, (4.1a)
(z! being defined up to multiplication by a constant),
dy=0: E=2z)+20 (4.1b)
(z! being defined up to a;ddition of a constant), or clse
di=0: FE=2z%9,. (4.1¢)

From (2.17) one sees that a compatible non—vanishing flat metric can exist only
if D€ {2,1+ dy,2d,}, and for d; # 1 a non—degenerate flat metric exists only if
D =1+4dq, so that D =1+ d; always.
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If dy # 1, we have goo = g11 = 0, gor = ¥ # 0; we can make vy = 1 by rescaling z;.
If diy = 1 (this is the second critical value of d1), (gas) can be arbitrary symmetric
non-degenerate matrix.

From (2.3) we obtain

1 1
®(z° z") = §$0(911($1)2 + go1z’z' + 3 goo(z®)?) + T(z"), (4.2)

and from (2.7)
E® = (d; + 2)® + a quadratic polynomial. (4.3)

In the case (4.1c) this leads to

:1:030[% (922! + ¥(2')] = v(z°)22! + 2¥(z!) + a quadratic polynomial

so that we can take

di=0,E=2%): &= % (z0)2z". (4.4)
The case (4.1b) leads to the equation
1

0¥ (z') = ¥(z') + a quadratic polynomial in z

so that we can take, after rescaling !,
dy =0, E=2%)% +20,: &= %(:1:0)23:1 +e® (4.5)

In the case (4.1a) with d; = 1, ® can be reduced to a cubic form with constant
coefficients:

1 1
d]_ = 0, F= 27080 + .’L‘lal : o = '2-11:0(911(.’131)2 + ggll‘o.'.l’,‘l + gggo(ﬂln)z) + C(.’I)l)a.
(4.6)
Finally, the case (4.1a) produces two more critical values dy = £2:
1
dy=-2, E=1% —2z'9,: &= -2—($0)2x1 + clog !, (4.7)
1
dy=2, E =20 +22'0,: ®= -2~(a:0)2.7;1 + c(z')*log xt, (4.8)

1 .
dl # 0, 1, :|:2, E= :3080 + d](Elal : P = 5(230)2.'121 + C(.’L‘l)(z-i_dl)/d‘. (49)

4.3. Dimension three: a promise. This is the first dimension where the As-
sociativity Equations become non-empty even in the presence of the flat identity.
The beautiful theory of three dimensional semisimple Frobenius manifolds essen-
tially reduces their study to that of a subfamily of the sixth Painlevé equations.
We will address this connection in Chapter II.



4.4. Quantum cohomology: brief encounter. Let V be a smooth projec-
tive algebraic manifold over C (another version of the theory exists for compact
symplectic manifolds.)

Denote by H the cohomology space H*(V, C) considered as a complez analytic
linear supermanifold. We endow H with its natural flat structure 7}}", Poincaré form
g, and two vector fields e, £ which can be described as follows. First, / as.a linear
space can be identified with global flat vector fields. We denote by e the vector field
corresponding to the identity in the cohomology ring that is, the dual fundamental
class of V. Second, —ad F is the semisimple operator on 7}';, with eigenvalue 1 —p/2
on HP(X,C): this determines the first summand in the decomposition (2.14). The
second (flat) one is the anticanonical class of V.

Explicitly, let H*(V,C) = ®CA,, A, € H%[(V,C), Ap the dual fundamental
class. Then the coordinates (%) in this basis are global flat coordinates on H, and

AV I
e=0d, E=) (1- |—72—|)a: Oat+ Y 100, (4.10)
a b |A5|=2
where r? are defined by
Cl(Tv) =—-Ky = Z TbAb. (411)
b |Ap|=2

Moreover, gy, = i, Ao A Ay (we imagine cohomology classes as differential forms,
and use wedge for the cup product.)

The relations (2.5) (resp. (2.16)) are satisfied with D = 2—dimcV (resp. dy = 1)
so that the total spectrum of E is

A
do=1,d,=1- -2—a of multiplicity dim H'?¢), D =2 — dim¢V. (4.12)

The remaining and most important structure is the potential ®. The theory of
Gromov-Witten invariants furnishes (at least for manifolds with Ky < 0) a formal
series ®(z) in flat coordinates satisfying all the axioms of Frobenius structure, with
flat identity e and the Euler field F, described above. Moreover, ® can be actually
represented as a scries in E~homogeneous monomials (2.20) {(notice that they are
exponential in codimension two coordinates), with nonnegative integers m, and ny,,
of E-degree dy + D = 3 — dimg V. Coefficients of this series are certain numerical
invariants of the space of stable maps of pointed curves of genus 0 to V.

If ® converges in a subdomain M C H, it induces a structure of Frobenius man-
ifold on M. Generally, its maximal analytic continuation to an unramified covering
of a subdomain of H should be considered as the Frobenius manifold representing
the quantum cohomology of V.

One approach to the study of ¢ consists in the identification of M (physicists’ A—
model) with a Frobenius manifold constructed by other methods, e. g. from isomon-
odromic deformations or periods of the families of algebraic manifolds (physicists’
B-model.) This can be called a general Mirror Program. The very first step in
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such an identification is the comparison of spectra. The famous hi} = h%f mirror
symmetry relation for the Calabi-Yau threcfolds expresses such an identification.

As an elementary exercise, let us guess which of the manifolds (4.5)-(4.9) can
represent quantum cohomology. Only P! has two-dimensional pure even cohomol-
ogy space, and —Kp: has degree two, so that £ must be of the type (4.1b). In fact,
the potential of (the quantum cohomology of) P! is given by (4.5) with v = 1/2 in
the natural basis.

We conclude this brief discussion by describing explicitly the potential ¢ for all
projective spaces P". Put A, = the dual class of the codimension a hyperplane,
v =>1%A,, () = the triple self-intersection index. Then

r 1 e ()
P (z) = (v + Z N(d;ng,...,n.) (z7) (=) ede! (4.13)
6 ng!...n,.!
d,ng >0
where N(d;ny,...,n,} is the number of rational curves of degree d in P” intersect-

ing n, hyperplanes of codimension a in general position. This number (suitably
interpreted in certain boundary cases) can be non-zero only for 3" ng(a — 1) =
(r+1)d+r— 3 which is equivalent to the grading equation (2.7). The Associativity
Equations (1.6) follow from a rather sophisticated analysis of degenerations. They
allow us to calculate recursively all N(d;n,,...,n,) starting with a single number
N(1;0,...,0,2) = 1 (there is only one line passing through two different points.)

In fact, the recursive relations obtained from (1.6) form such an overdetermined
system that it is not obvious how to prove the existence of a solution to (1.6) and
(2.7) formally (i. e., without using the geometric interpretation.) For a roundabout
proof, see Ch. II, 4.2 below. The cases r = 1 and r = 2 are exceptional: we have
respectively

1 2
O (080 + 201) = S0tz ke (L4 2+ %), (4.14)

(I’Pz(:cA + yA1 + z2A7) L (zy® + z%z) + iN(d,) - et (4.15)
1 = —(m1 —— e, .

Here the Associativity equations are equivalent to an explicit recursive formula for
N(d) (see Introduction, (0.19).)

All these Frobenius structures are generically (or formally) semisimple. Notice
that in the semisimple case the potential  of the Poincaré metric is simply the
linear function n: H*(V,C) — C: n(y) = f,, 7. This is a restatement of (2.4).

4.5. Space of polynomials. The following beautiful example furnishes another
series of semisimple Frobenius manifolds of arbitrary dimension. This construction,
due to B. Dubrovin and K. Saito, admits various generalizations.

Comnsider n—-dimensional affine space A™ with coordinate functions ay,...,ay,.
Identify A™ with the space of polynomials p(z) = 2" *14a,2" "1+ - -+a,. Denote by
w1 A" — A" the covering space of degree n! whose fiber over a point p(z) consists

of total orderings of the roots of p'(z). In other words, A™ supports functions

P1s- - -, Pn sSuch that
n

' (p(2) = (n+ 1D [[(z - pi); (4.17)

i=1
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1_Hn-%—l
n-1

™ (as) = (-1)

and o1(p1,...,pn) = ;1 + -+ + pn = 0. We will omit 7* in the notation of lifted
functions.

Jt+l(p1$ ﬁpn)a T:=1,...,‘TL—1

Let M C A™ be the open dense subspace on which

A. Vi, p"(p:i) # 0 that is, p; # p; for i # j.
B. u! := p(p;) form local coordinates at any point.

4.5.1. Theorem. M is a semistmple Frobenius manifold with the following
structure data:

). Canonical coordinates (u'), identity e = 3 . e;, e; = 8/0u’, Euler field
E =53 u'e;.

b). Flat metric

(dut)?
Z T (4.18)

with metric potential

1 2

_ ‘ 3 4.19

K n+1 n— pr] (n—l)zp' (4.19)
Furthermore, e, E and flat coordinates (1), ... 2 can be calculated through

(a1,...,an) (which are generically local coordinates as well):
e =0/day, 1. e, ea, = 1,eaq; =0 for i < n. (4.20)
- 0
E= 1a; 4.21
n+1 g(z +Dag- da;’ ( )

z) are the first Laurent coefficients of the inversion of w = "“*i/p(z) = 24+ 0(1/2)
near z = 00 :
2 @) ,,,(n)
pEwt
w w

+ O(w™"1). (4.22)

7+ 3 46 14+ 1

Finally, the spectrum is D = = , 1 <1 < n, more precisely,

_ n+1’ n+1
Ee® = Lo
n+1
Proof. From (4.17) we find
= ! (4.23)
n; = = . .
TP pg) (D) i (i — p5)
Furthermore
out 9 i 2.0 y
61_'3. —_ u_ — (p(p )) — ﬂ zn—k (4'24)

owl oul oul
k=1

= z=p;
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because p’(p;) = 0. Therefore the polynomial at the right hand side of (4.24) (de-
pending only on j) must be equal to

[T ==~ (4.25)
iy P9 P

because it has the same degree n — 1 and takes the same values at py,...,pn.
Comparing (4.23) and (4.25) we see first of all that

8(11

— = coeff. of 2" ' in

o 11
1IiFE)

z—-pi 1
pi=pi Iliigi(0i — pi)

=(n+1)y. (4.26)

ay . . . :
This means that 5 = — T is the metric potential of g (cf. Theorem 3.3b.) Now

sum (4.24) for all j. We obtain that Y ;_, eaxz"~" is a polynomial of degree n — 1
taking value 1 at z = py, ..., p,. Hence it is identically 1 that is,

ea, =1; eay,_; =---=-ea; =0.
This proves (4.20).

Let us now calculate E7. Multiplying (4.24) by »/ and summing over all j we
see that 3, Faxz"~* is a polynomial of degree n — 1 taking the value v at z =
p;. We know a polynomial of degree n taking the same values: it is p(z). Hence
p(z) = 3, Eax2™~* is divisible by p’(2) vanishing at all p;. Comparing the top two
coefficients we obtain

z
z) - Y FEapz" %= !
p(2) ; k n+1p(z)
that is,
n—~k
ay — EBay, =
¥ “h n+1 e
2 3
which proves (4.21). In particular, Fa; = ap, so that D = nj_--—, because
J ) n+1 n+1
o=1L

We now turn to checking flatness of g. In fact, we can do rather more starting
with a neat description of the multiplication o.

Let p(2) be a point of M or its image in A™. Using dr we can identify the tangent
spaces at both points to the Milnor ring C[z] mod p'(z).

4.5.2. Lemma. dn identifies the o—multiplication with multiplication in the
Milnor ring.

Proof. Explicitly,

dr (ejlp) = 9p mod p'(z).

Aud
In view of the previous calculations (see (4.24) and (4.25))
Op z—pi '
57 =GP = il;{j pys— mod p'(2). (4.28)

The polynomials at the right hand side of (4.28) are the basic idempotents in the
Milnor ring, exactly as e; in Tpy.
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4.5.3. Lemma. The metric (4.18) induces on the Milnor ring the scalar product

a2 bDly) = rosemcn“ 5 (4.29)

Proof. The right hand side of (4.29) equals

n

Zresz_pja zl Z Z (4.30)

Choosing a(z) = dr (eilp), b(2) = dm (ejlp), we sce from (4.28) and (4.26) that the
value of the right hand side of (4.30) is

i
pu(I;) ) = g(ei|P’ €5 IP)'
J

4.5.4. End of the proof of Theorem 4.5.1. We can now prove simultaneously
that ¢ is flat and z(*) are flat coordinates by showing that g(8,,d) are constant,
for 8, := 8/0z(®.

In fact, from (4.22) we get, considering z as a function of w and «(®) : p(z(w,)) =
w"T! so that

dp
B(I;(’l)

Substituting this into (4.29) we find

(2(w,2)) = —p'(2(w, 2))(w™* + O(w™h)). (4.31)

§(Balp, Buly) = —res,— m(aapabp)pd(z) -

= —T1€S;—00 P (2)dz(w ™" + O(w™""2)).

Replacing here the local parameter z at infinity by w and taking into account that
P (2)dz = (n+ 1)w™dw we get

g(aay ab) = (TL + 1)5a+b,n+1~ (432)

Finally, p(z) becomes homogencous of degree 1, if we assign to z the E-degree

. . 3 . 741
T This implies that £ is of degree ol

4.5.5. Corollary. The potential © is a polynomial of E-degrec D + dy =
2+
n

and the usual degree < n+ 3 in flat coordinates.

Since @ is analytic in z® and the spectrum of —ad E is strictly positive, the
Taylor series can contain only finitely many terms of E-degree D+dy. The maximal
usual degree is furnished by (z1)("+3),

Notice that quantum cohomology cannot have spectrum of this type.



50

CHAPTER II. FROBENIUS MANIFOLDS
AND ISOMONODROMIC DEFORMATIONS

§1. The second structure connection

1.1. Preparation. Let {M, g, A) be a Frobenius (super)manifold, Vg the Levi-
Civita connection (on Tpr) of the flat metric g. Recall that the (first) structure
connection on M is actually a pencil of flat connections Vy, determined by the
formula V x(Y) = Vo x(Y) +AX oY (see Ch. I, (1.4) and (1.5).) If in addition
M is endowed with an Euler field F with dy = 1, we can define the extended
structure connection ¥ on the sheaf 7 = pri,(7Ta) on M=Mx (P \ {0,00})
such that for X € Tpy, Y € 7'}{, we have

Vx(Y) = AX o, Topon(Y) = EoY — {[E,Y] (L.1)

(cf. 1.2.5, in particular (2.24); we now omit a few extra hats in notation and commit
the respective abuses of language.)

In this section and Chapter we will restrict ourselves to the case of semisimple
complex Frobenius manifolds with an Euler field with dy = 1 admitting a global
system of canonical coordinates (u'). We will call the second structure connection
V the Levi-Civita connection of the flat metric

WX Y)=g((E- AT 0X,Y)

depending on a parameter A and defined on the open subset My C M where ut # A
for all . Put M := Uy(M) x {A\}) € M x P} and denote by 7 the restriction of
pri (Tar) to M.

In this section we will construct a flat extension V of V to T w}gich will also
be referred to as the second structure connection. Both extensions ¥V and V will
be further studied as isomonodromic deformations of their restrictions to the A-
direction parametrized by M.

More preciscly, assumne that Tﬂ); is a trivial local system (for instance, because
M is simply connected.) Put T := I'(M, Tf;) Then V (resp. V) induces an
integrable family of connections with singularities on the trivial bundle on P} with
the fiber T. The first connection V is singular only at A = 0 and A = oo but
whereas 0 is a regular (Fuchsian) singularity, co is irregular one, so that ¥ cannot
be an algebraic geometric Gauss—Manin connection, and its monodromy involves
the Stokes phenomenon. To the contrary, the second connection V generally has
only regular singularities at infinity and at A = u* whose positions thus depend on
the parameters. It is determined by the conventional monodromy representation
and has a chance to define a variation of Hodge structure. For more details, see the
next section.

It turns out that both deformations have a common moduli space and deserve
to be studied together. In fact, fiberwise they are more or less formal Laplace
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~ transforms of cach other. More to the point, they form a dual pair in the sense of
[Har].

In our calculations the key role will be played by the Ops—linear skew symmetric
operator V : Ty — Tar which is the unique extension of the operator defined in
1.2.2 on flat vector fields by the formula

V(X)=[X,E] - %X for X € T, (1.2)

1.1.1. Proposition. a). We have for arbitrary X € Ty :
D

V(X)zVO‘X(E)——iX. (1.3)
b). Lete;j = /0, f; = ej//m;. Then
V() = S0 - s . (1.4)

J#i

D_.. S
Proof. The fact that —ad F — -2—Id is skew symmetric with respect to g was

checked in 1.2.2. Formula (1.3) defines an Ops—linear endomorphism of 7as which
coincides with (1.2} on the flat fields, as a calculation in flat coordinates shows.

To check (1.4), we use (1.3) and Ch. I, (3.10):

D , D e
) = , i S - 2’ Je, | — = 2 =
V(f,) V()’f'(E) 2f‘ V(),e_/ /iTi . u CJ 5 ﬁ
1 ; ; D e
e; +u'Voe, (e + E WV (e5)]| — = — =
N 0.ci(e:) ~ o) | = 5 NA

1 ' Tfu Mg ( ij )ij ) D e
e; +ut ; -5 | + eit+ e || — — . (1.5

i for "

For j # 1, the coefficient of f; in the right hand side of (1.5) is (v’ — u')v;;. For
7 =1 it vanishes, because

(see Ch. 1, Theorem 3.6 b).)

We can now state the main result of this section. In addition to (1.2), define the
operator U : Tar — Tar ¢
UX):=FEoX, (1.6)

so that U(f;) = u* fi.
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1.2. Theorem. For X,|Y € pr;;(TM) C Ty (meromorphic vector fields on
Tmxpi independent on ) put

Vx(¥) = Vox(V) — (V4 5 1) (= )7 (X oY), (L.7)
Tojor(Y) = (V4 5 1) (= 2)71(Y). (1.8)

Then V is a flat connection on T whose restriction on M x {)\} defined by (1.7) is
the Levi-Civita connection for §,.

Remark. Rewriting (1.1) in the same notation, we get

Vx(Y)=Vox(Y)+AX 0, (1.9)
~ 1 D
Proof. We will first apply Ch. I, (3.10) in order to calculate the Levi-Civita
connection for §y in coordinates i’ = log (u* — A). As in 1.3.7 we have
i} 0 i . ;
€ = i = (U - /\)eia = (U - )\)77;, 7h3 ('U' - ’\)( )7]1_1 + 6;3( /\)m,

Fij = iy (wt = W)V — W)V,
Then for 2 # 7

. 17, 1 1 . : .y -
Ve(#) = 7 g+ - "’Jé' =S =N =) (ﬂei + n—%ea‘)

2 7 27 UL T3
so that 1 4
- 1'7. , Tlio
Ve(ej) = 5-,;76:‘ + 5;];1‘3;:‘ = Voe{5)- (1.11)
Similarly,
- 1 1 7
Vé.(ez)—ﬁkvz_i @'V3=
: Pl
1 . o | Thi 1 1 i 7
E(u —)\) l:nz +u1 Iy 8,—52(“ —A) (’U,J—)\)—; 5
JFi
so that . . _
= 1 Tii 1 1 uw — A 771’3’
Veles) == | —— — i— = - — e;. 1.12
i(e0) 2[7},‘ u‘—)\}e Q;u'—/\ n; K ( )

Subtracting from this (3.10) (Ch. I), we get
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and

= 1 1 w — b
(Voo = Vo) (f) = =5 = fi — ; —— i Iy (1.14)

In view of (1.4), we can write (1.11) and (1.12) together as

(Ve = Voedlf) == (V4 31) @-NTeof) (119

because e; o f; = 4;; f;. This family of formulas is equivalent to (1.7) so that (1.7)
is the Levi-Civita connection for §y. In particular, it is flat for each fixed A.

Since [X,0/8A] = 0 for X € pry; (Tum), it remains to show that the covariant
derivatives (1.7) and (1.8) commute on M i. e. , that for all 7,

ves'€76/a>‘(f3g‘) = v8/8;\6’»3.- (ej)« (1.16)

First of all, from (1.8) and (1.14) we find

< 11 1 uf =l o
Va/a,\(ej)=§m_/\ej+—z . L (1.17)

Together with (1.11) and (1.12) this gives for i # j:

. . Loy |11 1 ub — ut . .
v Ve.(e; - — i+ = — 3 1.1
a/ax e(€j) = ) m | 2w _/\et + 5 TR ex| + (1 © j), (1.18)
k#i
R 1 1 1 Niq 1 4
VeV ei) = - — — e+ e |+
€ 3/8)\( J) 2wl — A (2 i 1 ) nj €j
1 u® — w1 1 wk — ud ik (1 ik 1 i
22 (uJ—A ﬂk)ek+22,?tj—/\ Mk 21], e,+21’kek +
kst ki
1 'u,i - uj 1],’j 1 Nis 1 1 uk —A ik
- — — |- — == i— = - .| - 1.19
PARTHECID N ¥ 2(1],— u— A ¢ 2;#11.‘—-)\ nkek ( )

The coincidence of coefficients of eg in (1.18) and (1.19) for ¢ # j # k # i can be
checked with the help of the following identity which is equivalent to the Darboux-
Egoroff equation Ch. I, (3.14):

1 o . .
Th]k = — Thk )Jk + ntjntk + ni_?n]k )
2 Wk yh 75

The coincidence of the coefficients of e; requires a little more work, and we will give
some dctails, again for the case 7 # 5.
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In (1.18) the coefficient of e; is

1 1 'Ui lu —'lLJ 7]13

i —_— 1.20
4 ut — X 4 uwi— A N5 ( )
whereas in (1.19) we get
1 1 s 1 ’U.i - U.j Nij
S e [ ——— 2 4
4 ul — X 1 +2e, (uJ—/\ )
u* — UJ MMk 1 s 1 ut — M
- — = — 1.21
+ Z — ik + 2\ uwi-A) uwr—-X oy ( )

To identify (1.20) and (1.21) we have to get rid of the sum ), in (1.21). This can
be done with the help of Ch. I, (3.14), (3.21) and (3.22):

1/2

uk —u-’ 7 T n ,

It Z Rk ! Z uk‘Yik’ij - Z YikVkj | =
w — A M w — X /2
k#m s kst ks, j
L gl
= ;1/2 (=75 — wleini; — Wejviy + vl (e + e)v;) =
1

42
-1 ,1 _"ﬁ_}_(uj_ui) Hﬁ_j_lnij;?ii 1o .
2 Ul — A T T’H 2 ni 2 T]‘inj

The remaining part of the calculation is straightforward, and we leave it to the
reader, as well as the case 1 = j which is treated similarly.

1.3. Formal Laplace transform. Assume now that 7};; is a trivial local

system. This means that if we put T := ['(M, Tﬂ{;), there is a natural isomorphism
Om@T — T

Formulas (1.8) (resp. (1.10)) define two families of connections with singularities
on the trivial vector bundle on P} with fiber T', parametrized by M. Namely, denote
by Jx the covariant derivative along d/3X on this bundle for which the constant
sections are horizontal. Then the two connections are

. 1
Va/aA =0\ + (V—l— 51(1) (u - /\)_1, (1.22)

D
‘Vojon=0r+U+ < (v += Id) (1.23)

Let M, N be two C[A, dx\]-modules. A formal Laplace transform M — N : Y —
Yt is a C-linear map for which

(=AY)t = 9\ (Y"), (0,Y)E = AY". (1.24)
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The archetypal Laplace transform is the Laplace integral
Yip) = /e"’\“Y()\)d/\ (1.25)

taken along a contour (not necessarily closed) in P!(C). In an analytical setting
we have to secure the convergence of (1.25), the possibility to derivate under the
integral sign and the identity

/8,\(6"“‘Y(/\))d,\ = 0.

However, (1.25) may admit other interpretations, for instance, in terms of asymp-
totic series.

Let now M (resp. N) be two C[A, dx]-modules of local {or formal, or distribu-
tion) sections of P} x T so that the operators V - ( — A) (resp. AV) make sense

in M (resp. N) (cf. (1.22), resp. (1.23)), and assuine that we are given a formal
Laplace transform M — N.

1.3.1. Proposition. We have:

= = D -1 3—D ~ D=1
[Vasor((U = MY = (AVgior + —5—=) Y = A7 Vgon(A77 YY),
2

In particular, AE Y s e—horizontal, if U — N)Y is V-horizontal.

Proof. Using (1.22)—(1.24), we find:

[Vosor((U = NY))* = [(& U-N+V+ %Id)Y} =

= [A(U+3A)+V+%Id] Yt =

D-1

= [A%,m + Id] Yt = A5V, 00 (AT YY),

Now we will more systematically review the deformation picture.
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§2. Isomonodromic deformations

2.1. Singularities of meromorphic connections. Let N be a complex
manifold, D C N a closed complex submanifold of codimension one, F a locally
free sheaf of finite rank on N. A meromorphic connection with singularities on D
is given by a covariant differential V : F —» F @ Q}({(r +1)D) for some r > 0. It is
called flat (or integrable) if it is flat outside D. We start with a list of elementary
notions and constructions that will be needed later. They depend only on the local
behavior of F and V in a neighborhood of D, so we will assume D irreducible.

1) Order of singularity. We will say that V as above is of order < r+ 1 on D if
Vx(F) c F(rD) for any vector field X tangent to D (i. e. satisfying XJp C Jp
where Jp is the idecal of D), and Vx(F) C F({r + 1)D) in general. Locally, if
(t0,¢1,...,t") is a coordinate system on N such that t® = 0 is the equation of D,
the connection matrix of V in a basis of F can be written as

dt? = dt
G“(tﬂ)—rHJFZG"(TdF (2.1)
=1

where G; = G;(t°,t},...,t") are holomorphic matrix functions.

i) Restriction to a transversal submanifold. Let i : N’ — N be a closed em-
bedding of a submanifold transversal to D, D' = N'n D, F' = i*(F). Then the
induced connection V' = i*(V) on F' is flat and of order < 7+ 1 on D’ if V has
these properties.

ii1) Residual connection. Assume now that V is of order < 1 on D. Then one can
define a connection without singularitics V2 on j*(F) where j is the embedding of
D in N. Namely, to define VZ,(s') where s’ € j*(F), X' € Tp, we extend locally
s’ to a section s of F, X' to a vector field X on N, calculate V x(s) and restrict
it to D. One checks that the result does not depend on the choices made. In the
notation of (2.1), the matrix of the residual connection can be written as (r = 0):

1
> G0, e, (2.2)
=1

If V is flat, VP is flat.

iv) Principal part of order r + 1. Similarly to (2.2), we can consider the matrix
function on D
Go(0,,...,t%) (2.3)

which we will call the principal part of order »+1 of V. In more invariant terms, it is
the Op-linear map j*(F) — j*(F) induced by F —= j*(F) : s = (t°)" Vg a0(s) |p.
It is well defined, but depends on the choice of local coordinates, and is multiplied
by an invertible local function on D when this choice is changed. Hence its spectrum
is well defined globally on D.

v) Tameness and resonance. Two general position conditions are important in
the study of meromorphic singularities of order < 7 + 1.
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If r > 1 (irregular case), the singularity is called tame, if the spectrum of its
principal part at any point of D is simple.

If r = 0 (regular case), the singularity is called non-resonant, if it is tame and
moreover, the difference of any two ecigenvalues never takes an integer value on D.

2.1.1. Example: the structure connections. As in 1.3, we will assume that

7}3; is trivial, and its fibers are identified with the space T' of global flat vector
fields.

Put N = M x P}, F = Oy ® T. We can apply the previous considerations to v
and V.

Analysis of v. Clearly, ¥ has singularity of order 1 at A = 0 (i. ¢. on Dy =
M x {0}) and of order 2 at A = 00 (i. €. on Dy, = M x {o0}): cf. (1.9) and (1.10).
Restricting v to {y} x P} for various y € M we get a family of meromorphic
connections on P} parametrized by M.

The residual connection is defined on Dy = M and it coincides with the Levi-
. . . . D
Civita connection of g. The principal part of order 1 on Dy is V + Eld' The

eigenvalues of this operator do not depend on y € Dy: in Ch. I, 2.4 they were
denoted (d,). Their description for the case of quantum cohomology (see Ch. I,
(4.12)) shows that in this case the principal part is always resonant.

The principal part of order 2 on Dy, = M is (proportional to) ¢ (cf. (1.10), use
the local equation = A~! = 0 for De.) Its eigenvalues now depend on y € M :
they are just the canonical coordinates u'(y). We will call the point y tame if
ut(y) # o’ (y) for i # j. We will call M ‘tame, if all its points are tame. Every M
contains the maximum tame subset which is open and dense.

Analysis of_ﬁ. According to (1.7), (1.8), V has singularities of order 1 at the
divisors A = u* and A = co. These divisors do not intersect pairwise iff M is tame.

. 1
The principal part of order 1 at A = u* is —(V + 3 Id) - (e;0).

The residual connection of V on A = oo is again the Levi-Civita connection Vg
of g. In fact, using (1.15) we find

6 = d/\va/a,\ + Zduiﬁe; =
i

. . 1
= d\Vosor+ D du[Voe, — (V+ 7 1d) U = A) 7! eso)).
Replacing A by the local parameter g = A~1 at infinity, we have

. . . 1
V=duVasou+ Y du'[Voe —p(V+ 51d) (utd - Id) ™ (e;0)]

so that the expression (2.2) (with (g, %', ..., u™) in lieu of (¢°,¢',...,¢")) becomes
Zi d‘u'Vo’ei = Vo.
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2.2. Versal deformation. We will now review the basic results on the defor-
mation of meromorphic connections on P}, restricting ourselves to the case of sin-
gularities of order < 2. This suffices for applications to both structure connections,
on the other hand, this is precisely the case treated in full detail by B. Malgrange
in [Mald], Theorem 3.1. It says that the positions of finite poles and the spectra
of the principal parts of order 2 form coordinates on the coarse moduli space with
tame singularities. To be more precise, one has to rigidify the data slightly.

Let V° be a meromorphic connection on a locally free sheaf 7% on P} of rank p,
with m + 1 > 2 tame singularities (including A = co) of order < 2. Call the rigidity
for VO the following data:

m+1

a). A numbering of singular points: a{l), L., agt, a = 00.

b). The subset 7 C {1,...,m+ 1} such that a{, is of order 2 exactly when j € I.

c¢). For each j € I, a numbering (bf;l, ceey b'gp ) of the eigenvalues of the principal
part at a.

Construct the space B = B(m,p, S) as the universal covering of

(C™ \ diagonals) x H(Cp \ diagonals)
jel

with the base point (ab; 2%, let by € B be its lift. We denote by af, b/* the
coordinate functions lifted to B. Let i : P} — BxP} be the embedding A — (bo, A),
and D; the divisor A = a7 in B x P}.

2.2.1. Theorem ([Mal4], Th. 3.1). For a given (V°, F) with rigidity, there
exists a locally free sheaf F of rank p on P} x B, a flat meromorphic connection V
on it, and an isomorphism i : i*(F,V) — (FO, V") with the following properties:

Dj, j=1,...,m+1, are all the poles of V, of order 1 (resp. 2) if j # I (resp.
jel.)Ifjel, then (W',..., 9P} (as functions on D;) form the spectrum of the
principal part of order 2 of V at D;.

It follows that the restrictions of V to the fibers {b} x P} are endowed with the
induced rigidity, and i° is compatible with it.

The data (F,V,i°) are unique up to unique isomorphism.

2.2.2. Comments on the proof. a). The case when all singularities arc
of order 1 is easicr. It is treated separately in [Mal3], Th. 2.1; for the thorough
study of this case and the treatment of the Gauss-Manin connections see [Del].
Since the second structure connection satisfies this condition, we sketch Malgrange’s
argument in this case.

Choose base points @ € U := P} \ U;-":ﬁl{a%} and (bg,a) € B x P}. Notice that

(bo,a) belongs to V := B x P} \ UL, D;.

The restriction of (F% V) to U is determined uniquely up to unique isomor-
phism by the monodromy action of w1 (U, a) on the space F, the geometric fiber
F%a) at a, which can be arbitrary. Similarly, there is a bijection between flat
connections (F, V) on V with fixed identification F°(a) — F(a) = F and actions
of m1(V, (a,b)) on F. Hence to construct an extension (F, V) to V together with an
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isomorphism of its restriction to U with (F°, V?), it suffices to check that 7 induces
an isomorphism 7y (U,a) — m1(V,(a,b)), which follows from the homotopy exact
sequence and the fact that B is contractible.

This argument explains the term “isomonodromic deformation.”

Next, we must extend (F,V) to B x P}. It suffices to do this separately in a
tubular neighborhood of each D; disjoint from other Dy. The coordinate change
A A—al (or A — A71) allows us to assume that the equation of D; is A = 0.
Take a neighborhood W of 0 in which F° can be trivialized, describe V° by its
connection matrix, lift (F°, V%) to B x W and restrict to a tubular neighborhood
of D;. On the complement to Dj;, this lifting can be canonically identified with
(F, V) through their horizontal sections. Clearly, it is of order < 1 at D;.

It remains to establish that any two extensions are canonically isomorphic. Out-
side singularities, an isomorphism exists and is unique. An additional argument
which we omit shows that it extends holomorphically to B x P}.

b). When V admits singularity of order 2, this argument must be completed. The
extension of (F9, V?) first to V and then to the singular divisors of order < 1 can be
done exactly as before. But both the existence and the uniqueness of the extension
to the irregular singularities requires an additional local analysis in order to show
that the simple spectrum of the principal polar part determines the singularity.
When formulated in terms of the asymptotic behaviour of horizontal sections, this
analysis introduces the Stokes data as a version of irregular monodromy, which also
proves to be deformation invariant.

2.3. The theta divisor and Schlesinger’s equations. In this subsection we
will assume that FO =T ® Op1 where T'is a finite dimensional vector space which
can be identified with the space of global sections of F°. This is the case of the two
structure connections, when the local system TAJ; is trivial.

Then there exists a divisor ©, eventually empty, such that the restriction of F
to all fibers {b} x P}, b ¢ ©, is free. This can be proved using the fact that a
locally free sheaf £ on P! is free iff HO(P!,£(-1)) = HY(P!,£(-1)) = 0, and that
the cohomology of fibers is semi-continuous. For an analytic treatment, see [Mald],
sec. 4 and 5.

Moreover, assume that A = oo is a singularity of order 1 (to achieve this for
the first structure connection, we must replace A by A~1.) Then we can identify the
inverse image of F on B\ © x P} with T@OB\@XP}\ compatibly with the respective
trivialization of F°. To this end trivialize F along A = co using the residual connec-
tion (see 2.1 iii))and then take the constant extension of each residually horizontal
section along P}. (If there are no poles of order 1, one can extend this argument
using a different version of the residual connection, see [Mald], p.430, Remarque
1.4.) '

Using this trivialization, we can define a meromorphic integrable connection &
on F with the space of horizontal sections 7 on B\ © x P}. As scctions of F, they
develop a singularity at ©. Therefore, the respective connection form V — @ is a
meromorphic matrix one—form with eventual pole at ©.

The following classical result clarifies the structure of this form in the case when
all poles of V are of order 1.
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2.3.1. Theorem. a). Let (a',...,a™) be the functions on B describing the
A-coordinates of finite poles of V (with given rigidity.) Then

d(X — a?)

V=B—+—ZA,—(CL1,...,G,"‘) P

i=1

(2.4)

where A; are meromorphic functions B — End(T") which can be considered as
multivalued meromorphic functions of a;.

b). The connection (2.4) is flat iff A; satisfy the Schlesinger equations

, d(a* — a’
Vi, dA; =) [Ai, Aj] _(E_—E"l (2.5)
i
¢). Fiz a tame point ag = (a},...,a}"). Then arbitrary initial conditions A) =

A;(ap) define a solution of (2.5) holomorphic on B\ ©, with eventual pole at © of
order 1.

d). For any such solution V of (2.5), define the meromorphic 1-form on B:

d(a’ — a?)
wy = Z'D‘ (Aidy) == (2.6)
i<
. . : dt .
This form 1is closed, and for any local equation t = 0 of © the form wy — Y 18

locally holomorphic.

2.3.2. Corollary. For any solution V to (2.5), there ezists a holomorphic func-
tion Ty on B such that wy = dlogte. It is defined uniquely up to a multiplication
by a constant.

In fact, B is simply connected.

For a proof of Theorem 2.3.1, we refer to [Mal3]: a), b), and c) are proved on
pp. 406-410, d) on pp. 420-425.

2.4. Hamiltonian structure of Schlesinger’s equations. The equations
(2.5) can be written in Hamiltonian form, with m times and m time-dependent
Hamiltonians.

To be more precise, let X be a manifold with a Poisson structure given by
the Poisson bracket {, }, S a manifold with a coordinate system (t!,...,t™),
(H1,...,Hm) a family of functions on X x S called Hamiltonians. Extend the
bracket to X x § fiberwise. Then we can define m flows on X such that the
evolution of any function F' is governed by the equations:

oF
a5 = (M F) (2.7)
These flows commute iff
OHr OH;
Y,k {Hj,%k}=—?i’l——ﬁg-. (2.8)

oti otk
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To represent (2.5) in this formn, we choose X = (EndT)™, S = B. The Poisson
structure will be the product of m standard Poisson structures on the matrix spaces.
If we choose a basis in T and identify End T with the space of matrices (Aqg), the
bracket of two matrix elements is

{Aap, Ayst = S8y Aas — asAyp. (2.9)

(I apologize for using the subscript § in the Kronecker delta symbol.)
Finally, put:

Tr (A;A;)
[T

2.4.1. Theorem. Schlesinger’s equations (2.5) are equivalent to the equations

.. OA;q
Vi,5,a,0: # = {Hi, Ajap}- (2.11)
The flows (2.11) pairuise commaute.
Proof. Rewrite {2.5) as
0Ajap [As, Ajlap
—= = — ——r 2.12
oal t‘Z#‘J at — al ? ( )
Ajap _ [AiAjlap ., »
— = . : . 2.1
B g LF (2.13)
On the other hand, in view of (2.10),
{Tr (Ai4;), Ajap}
Aiag) = - ) 1 , 2.14
{HJaAJ 8} Z ai — ad ( )

iit]

{Tr (A:4), Ajas}

{Mi, Ajap} = pra—

, TE . (2.15)

(Notice that the matrix elements of A; and A pairwise Poisson commute if j # .)
A straightforward calculation using (2.9) then shows that (2.12) (resp. (2.13))
coincides with (2.14) (resp. (2.15).)

The fact that (2.11) commute means that the trajectories of the flows starting at

one point are all contained in a multisection of p which is equivalent to the flatness
of V and to (2.5).



62

§3. Semisimple Frobenius manifolds
as special solutions to the Schlesinger equations

3.1. Special solutions. Slightly generalizing (2.5), we will call a solution to
Schlesinger’s equations any data (M, (u*), T, (A;)) where M is a complex manifold
of dimension m > 2; (u!,...,4™) a system of holomorphic functions on M such
that du' frecly generate Q}, and for any i # j, € M, we have u'(x) # w/(z); T a
finite dimensional complex vector space; A; : M — EndT, j =1,...,m, a family
of holomorphic matrix functions such that

Vii o dAj= Y [Ai, A d(w’ —w) (3.1)

wt —
1:i£7

Let such a solution be given. Summing (3.1) over all j, we find d(3_; 4;) = 0.
Hence >, A; is a constant matrix function; denote its value by W.

3.1.1. Definition. A solution to Schlesinger’s equations as above is called spe-

cial, if dimT = m = dim M ; T is endowed with a complez nondegenerate quadratic
1 . . .

formg; W = —V—_1d, where V € End T is a skew symmelric operator with respect

to g, and finally
1
Vj . Aj = —(V + 5 Id)PJ . (32)

where P; : M — EndT is a family of holotnorphic matriz functions whose values
at any point of M constitute a complete system of orthogonal projectors of rank one
with respect to g:

Tr
PP =6xP;, » Pi=Idr, g¢(ImP;,ImP;)=0 (3.3)

i=1
if 1 # j. Moreover, we require that A; do not vanish at any point of M.

3.1.2. Comment. We commited a slight abuse of language: the notion of
special solution involves a choice of additional data, the metric g. However, when
it is chosen, the rest of the data is defined unambiguously if it exists at all.

In fact, assume that A; = WP; as above do not vanish anywhere. Then they
have constant rank one. Hence at any point of M we have

Ker A; = Ker WP; = Ker Pj = @;.i%;Im F;,
so that

ImP; = My j#i Dk k#tj ImP, = ﬂj;j#Ker Aj.
This means that P; can exist for given Aj; only if the spaces 7; = N;.ix;Ker A; are
one-dimensional and pairwise orthogonal at any point of M.

Conversely, assume that this condition is satisfied. Define P; as the orthogonal
projector onto 7;. Then A; FP; = 0 for 7 # j because 7; = Im P; C Ker A;. Hence

m

Aj = A;(Q_P) = AP = (3 A)P; = WP
i=1

i=1
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1 1
Notice that all A, are conjugate to diag (—-2-, 0,...,0) and satisfy A? + 3 A;=0.

1
These conditions, as well as Zj Aj=—(V+ 3 Id}, are compatible with the equations
(3.1) and so must be checked at one point only.

3.2. From Frobenius manifolds to special solutions. Given a semisimple
Frobenius manifold with flat identity and an Euler field £ with dg = 1, we can
produce a special solution to Schlesinger’s equations rephrasing the results of the
previous two sections.

Namely, we first pass to a covering M of the subspace of tame points of the initial
manifold such that ’TAfJ is trivial and a global splitting can be chosen, represented
by the canonical coordinates (u'). Then we put T = ['(M, TA’;) and A; = the
coefficients of the second structure connection written as in (2.4).

Since this connection is flat, (M, (u'), T, (A4;)) form a solution of (3.1).

Moreover, this solution is special. In fact, T comes equipped with the metric g.
The operator A; is the principal part of order 1 of V at A = u! which is of the form
(3.2), with P; = ejo.

Finally, this special solution comes with one more piece of data, the identity
e € T. We will axiomatize its properties in the following definition.

3.2.1. Definition. Consider a spectal solution to Schlesinger’s equations as
in the Definition 8.1.1. A vector e € T is called an identity of weight D for this
solution, if

D
a). Vie)=(1- ~2—)e
b). e; := Pj(e} do not vanish at any point of M.

For Frobenius manifolds with dy = 1, a) is satisfied by Ch. I, (2.16) and (1.2).

3.3. From special solutions to Frobenius manifolds. Let (M, (u*), T, g, (A;))
be a special solution, and e € T" an identity of weight D for it.

3.3.1. Theorem. If D # 1, these dalta come from the unique structure of
semisimple split Frobenius manifold on M, with flat identity and Euler field, as it
was described in 3.2.

Remark. I do not know whether the restriction D s 1 can be removed. (This
is the case d; = 0 in 1.4.2.) For quantuin cohomology, this excludes only the
case of P1. Very intercsting Frobenius manifolds with D = 1 are constructed in
[D2], Appendix C. They are related to the universal elliptic curve and the Chazy
equation, and show that the Painlevé property in flat coordinates can fail.

Proof. Proceeding as in 3.2, but in the reverse direction, we are bound to make
the following choices.

Put e; = Pi(e) C Oy ®T, j=1,...,m. Identify Oy ® T with Tpr by setting
e; = d/0u?. Transfer the metric g from T to Tps. Define the multiplication on Ty
for which e; 0 e; = d;;e;. Put 13 := g(e;, €;).

We get a structure of semisimple pre—Frobenius manifold in the sense of Ch. I,
Definition 3.2.
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To establish that it is Frobenius, it suffices to prove that e;n; = e;n; for all 4, 5
see Ch. I, Theorem 3.3.

We have 7; = g(e, ¢;). Therefore

1-D
5 (34)

gle, Aj(e)} = —gle,(V+ %Id) Pje) = g(Ve,e;) — %g(e,cj) =

since V is skewsymmetric, and e is an eigenvector of V. Furthermore, let V be the
Levi-Civita connection of the flat metric g. Then derivating (3.4) we find for every

,7:

% % 1y = 9(Ve, (e}, Aj(e)) + g(e, Ve, (4;(e))) =
= g(e, 223 (@), (35)

because e € T so that V(e) = 0. If i # j, we find from (3.1)

0A;  [Ai, A;] 04
out  wi—w  Guw’ (36)

This shows that if D # 1, e;n; = e;jn;.

It remains to check that E = Y u'e; is the Euler field. According to the
Theorem 3.6 b) of Ch. I, we must prove that En; = (D — 2)n; for all j. Insert (3.6)
into (3.5) and sum over i # j. We obtain:

1-D _ _1-D ;O 1-D ,0n;
g Bl= g D Wity W g, =
1t#£]
- 3 o (el ) +uigte, S22 @) (3.7
1 tF#£]
From (3.1) it follows that
[4i, 45)
8u3 B ‘Z:J ut —ud’ (3:8)
On the other hand,
Ai, A A, Ay
[ Ai 45) = [Ai, Aj} +d =20 [ ] (3.9)
ut — ud ut — uyd

Inserting (3.8) and (3.9) into (3.7), we find

P = Y oo A A @)+ Y g ( A"A](e))+

iridj iridj

+ulg(e, ZAJ () =g(e,[ ) A Ajl(0)) =
117
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= —g(e,[V+ %m, (V+ -;—Id)Pj] (e)). (3.10)

Using the skew symmetry of V, we sce that the last expression in (3.10) equals
1-D :
—5 (D —=2)n;. Hence En; = (D —2)n; if D # 1.

3.4. Special initial conditions. Theorem 2.3.1 ¢) shows that arbitrary initial
conditions for Schlesinger’s equations determine a global meromorphic solution on
the universal covering B(m) of C™ \ {diagonals},m > 2.

Fix a base point by € B(m). Studying the special solutions, we may and will
identify T with the tangent space at by thus eliminating the gauge freedom. This
tangent space is already coordinatized: we have e; and e.

We will call a family of matrices AY,..., A2 € EndT special initial conditions
if we can find a diagonal metric g and a skew symmetric operator V such that
A= —(V+ 3 1d) P; where P; is the projector onto Ce;.

We will describe explicitly the space I(m) of the special initial conditions.
3.4.1. Notation. Let R be any equivalence relation on {1,...,m}, |R| the
number of its classes. Put F(m) = (End C™)™, Furthermore, denote Fr(m) the

subset of families (Ay,..., Ay) in F(m) such that R coincides with the minimal
equivalence relation for which iRj if Tr A;A; # 0, and put Ir(m) = Fr(m)NI(m).

3.4.2. Construction. Denote by T(m) C C™ x C™(™~1/2 the locally closed
subset defined by the equations:

Z”‘ =0, u #0 forallg; (3.11)
i=1
vi;n; = —vjn for all 4, 3, (3.12)
= D
Z vij =1— ) does not depend on j. (3.13)

i=1

Each point of T(m) determines the diagonal metric g(e;, e;) = n; and the operator
V: e; = >, vije; which is skew symmetric with respect to g and for which e is an

1
eigenvector. Setting 4; = —(V + 2 1d) P; we get a point in I(m).

This amounts to forgetting (n;) which furnishes the surjective map I(m) — I(m)
because

1 m
Ai(ej) =0 for ¢ -',é j, A;(Bi) = —5 €y — E Vij€y.
j=1

3.4.3. Theorem. a). The space I(m) can be realized as a Zariski open dense
subset in CMHm-—1)(m=2)/2
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b). Inverse image in I(m) of any point in Ir(m) is a manifold of dimension 1
for |R| =1, |R| =1 for |R| > 2.

Proof. Fixing 7;, we can solve (3.12) and (3.13) explicitly. Put w;; = vy;7); so
that wi; = —wj; and (3.13) becomes

. i D
Vi > wij = m;(1 - > ) (3.14)
i=1

If we choose arbitrarily the values (w;;) for all 1 <4 < j < m — 1, we can find
Wmj from the first m — 1 equations (3.14), and then the last equations will hold
automatically:

t=1
m m m—1 m-—1
D D
Zwimz_zwrnk:“znk(1_§)+ UJ{}U:T[m(l—-é-)
i=1 k=1 k=1 i,k=1

because of (3.11),
It remains to determine the fiber of the projection onto I(m).

We have for 2 # j: Tr A;A; = v;;v;;. Hence in the generic case when all these
traces do not vanish, we can reconstruct 7; compatible with given v;; from (3.12)
uniquely up to a common factor. Generally, for 4, 7 in the same IR—equivalence class,
(3.12) allows us to determine the value 7;/7; so that we have |R| overall arbitrary
factors constrained by (3.11).

3.4.4, Question. If we choose a special initial condition for the Schlesinger
equation, does the solution remain special at every point?

Generically, the answer is positive. If this is the case, we obtain the action of
the braid group Bd,, as the group of deck transformations on the space I(m).

3.5. Analytic continuation of the potential. The picture described in
this section gives a good grip on the analytic continuation of a germ of semisimple
Frobenius manifold (Mjy, o) in terms of its canonical coordinates. Namely, con-
struct the universal covering M of the subset of the tame points of My, then fix at
the point by = (u'(mg)) € B(m) the initial conditions of M at mg. This provides
an open embedding (M, mg) C (B(m), by). Loosely speaking, we find in this way a
maximal tame analytic continuation of the initial germ.

Now construct some global flat coordinates (z¢) on B{m) corresponding to a
given Frobenius structure. They map B(m) to a subdomain in C™. This is the
natural domain of the analytic continuation of the potential ® of this Frobenius
structure, which is the most important object for Quantum Cohomology. Unfortu-
nately, its properties are not clear from this description.
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§4. Quantum cohomology of projective spaces

In this section we will apply the developed formalism to the study of the quantum
cohomology of projective spaces P, r > 2, first introduced in Ch. I, 4.4. Our main
goal is the calculation of the initial conditions of the relevant solutions to the
Schlesinger’s equations.

4.1. Notation. We start with recalling (and somewhat revising) the basic
notation. Put H = H*(P",C) = Y| _ CA,, A, = the dual class of P™™¢ C
P". Denote the dual coordinates on H by zy,...,z, (lowering indices for visual
convenience), 8, = 8/dx,. The Poincaré form is (gap) = (g°°) = (Saxbr)- The
term %(73) in 1. (4.13) is the cubic self-intersection form, the classical part of the
Frobenius potential

1
P (x) = 8 Z ZTa,TayTas- (4.1)

a1-taztaz=r

The remaining part of the potential is the sum of physicists’ instanton corrections
to the self-intersection form:

Qs () 1= Z Bylmq, ..., ), (4.2)
d=1
where we will now write ®4 as

oo ‘

Za, - - Tqg, )

O S SR (T RE Ty
n=2 a1+ -+ap= :

r(d+1)+d—3+n
This means that if we assign the weight a — 1 to 2, a = 2,...,n, ®4 becomes the
weighted homogeneous polynomial of weight (r + 1)d+r — 3. Morcover, if we assign
to e®1 the weight —(r + 1), ®¢ and ® become weighted homogencous formal series
of weight 7 — 3. (Notice that e in the expressions e and alike is 2,71828...,
whereas in other contexts e means the identity vector field. This cannot lead to
confusion.)
The starting point of our study in this section will be the following result.

4.2. Theorem. a). For each r > 2, there exists a unique formal solution of the
Associativity Equations I. (1.6) of the form

(I)(:E) = ‘I)cl(m) -+ (I)'mst.(m) (4.4)

for which I(1;r,r) = 1.

b). This solution has a non-empty convergence domain in H on which it defines
the structure of semisimple Frobenius manifold Hyyant(PT) with flat identity e = dy
and Fuler field

E= i(l — a)z%d, + (r +1)9, (4.5)

a=0

withdg =1,D =2 —17.



68

c). The coefficient I{(d;ay,...,a,) is the number of rational curves of degree d
in P" intersecting n projective subspaces of codimensions ay,...a, > 2 in general
postlion.

Uniqueness of the formal solution can be established by showing that the Asso-
ciativity Equations imply recursive relations for the coefficients of ® which allow
one to express all of them through I(1;7,7). This is an elementary exercise for
r = 2 {(cf. Introduction, (0.19).) A more gencral result (stated in the language
of Gromov—Witten invariants but of essentially combinatorial nature) is proved in
[KM], Theorem 3.1, and applied to the projective spaces in [KM], Claim 5.2.2.

Existence is a subtler fact. The algebraic geometric (or symplectic) theory of
the Gromov-Witten invariants provides the numbers I(d;aq,...ay,) satisfying the
necessary relations, together with their numerical interpretation: see [KM], [BM],
[FuO]. Another approach consists in calculating ad hoc the “special initial condi-
tions” for the semisimple Frobenius manifold Hyuant(P") in the sense of the previous
section and identifying the appropriate special solution to the Schlesinger equations
with this manifold. For r = 2, direct estimates of the coefficients showing conver-
gence can be found in [D2], p. 185. Probably, they can be generalized to all r.

Our approach in this section consists in taking Theorem 4.2 for granted and
investigating the passage to the Darboux—Egoroff picture as a concrete illustration
of the general theory. The net outcome are formulas (4.18) and (4.19) for the special
initial conditions.

Conversely, starting with them, we can construct the Frobenius structure on the
space B(r + 1) as was explained in 3.5 above. Expressing the E—homogencous flat
coordinates (zg,...,%,) on this space satisfying (4.17) in terms of the canonical
coordinates and then calculating the multiplication table of the flat vector fields,
we can reconstruct the potential which now will be a germ of holomorphic function
of (z,). Because of the unicity, it must have the Taylor series (4.4). So the Theorem
4.2 a),b) can be proved essentially by reading this section in the reverse order. Of
course, the last statement is of different nature.

4.3. Tensor of the third derivatives. Most of our calculations in (7, o) will
be restricted to the first infinitesimal neighborhood of the plane zo = -+ =z, =0
in H. This just suffices for the calculation of the Schlesinger initial conditions. We
denote by J the ideal (za,...,z,).

Multiplication by the identity e = g is described by the components ®g.° = a5,
of the structure tensor. Of the remaining components, we will nced only ®,,? which
allow us to calculate multiplication by ¢, and proceed inductively. This is where
the Associativity Equations are implicitly used.

Obviously, ®10° = 61p.
4.3.1. Claim. We have

for 1 S a<r— 1: ‘I’lab = §a+l,b + :n,.+1__a+bez1 + O(JZ), (46)

@1,»6 = (Sboexl + $b+16zl + O(.]2) (47)
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(Here and below we agree that «, =0 for ¢ > 1.

Proof. The term d,415 in (4.6) comes from ®;. The remaining terms are
provided by the summands of total degree < 3 in z,,...,z, it

aI(I)inst, = Z dedm (Z I(d: ai, a2) % + Z I(dy a1, az, a3)&fggj:_ai) +O(J4)
d>1

For n = 2, the grading condition means that d = 1,a) = ap = r. For n = 3, it
means that d = 1, a; + a3 + a3 = 2r + 1. We know that I(1;r,7) = 1. Similarly,
I{1;a;,az,a3) = 1in this range. This can be deduced formally from the Associativ-
ity Equations. A nice exercise is to check that this agrees also with the geometric
description (for instance, only one line intersects two given generic lines and passes
through a given point in the three space.) So finally

Py

r; 1 .
01 Pinse = ("5' + 6 Z Ia1xag$a3) e + O(J4)

a14az+az=2r+1
z2
The term dppe™ in (4.7) comes from —;21 Furthermore,

_— 2
(I)inst;lab = $2r+1—aﬂbezl + O(J )

and
b 2
(I)inst;la = (I)inst;l,a,r—b = $r+1—a+be$] + O(‘] )

4.4. Multiplication table. The main formula of this subsection is

r—1

E)T(rﬂ) = e”! (30 + Z(b + 1)$b+13b) +0(J?). (4.8)

b=1

We will prove it by consecutively calculating the powers d®. The intermediate
results will also be used later. (Notice that O(J?) in (4.8) now means O}, J29;).)

First, we find from (4.6) and (4.7) for 1 <a <7 - 1:

r a—1
01000 = 0140 = Oat1 + €™ Y Tryr-atsds + O(J7), (4.9)

T r—1
31 o} 8,. = Z q)l,.bab = 63:] (30 -+ th+18b) + O(Jz) (410)

b=0 b=1
Then using (4.9) and induction, we obtain
a—2

for1<a<r:  07*=0,+e" Y (b+1)orr2—assds + O(J?). (4.11)
b=0
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Multiplying this formula for a = » by &, and using (4.10), we finally find (4.8).
From (4.11) it follows that §7° for 0 < a < 7 freely span the tangent sheaf.

4.5. Idempotents. Formula (4.8) allows us to calculate all e; mod J? thus
demonstrating semisimplicity. Namely, denote by ¢ the (r+1)— th root of the right

271
hand side of (4.8) congruent to e+ mod J and put ¢ = exp ( : 1) Then

€y =

T+ﬁl§:C‘ﬁ(3loq_lfj (4.12)
7=0

satisfy
€ioc; = (5,-]-6,-, E € = (90
i

for all i =0,...7. A straightforward check shows this.

4.5.1. Proposition. We have

r -2 .
—ij —my i b+1—Nr+1-7)
— T r N
&= T E (TYe T T (ezl E r+1 Tpybt2-;0p +
7=0 b=0
r .

(b+1—3) 2

+d; — E Tor1 Typ1-50n | +O(J7). (4.13)

b=j+1

Proof. We have

: —b+1
q_l = e-r’_-h (80 - Z . 1£L‘b+13;,) + O(Jz)
b=1

Together with (4.9) this gives

r—1
x b+1
Oog l=e T |5 — i + O(J?).
194 (1 ;r+1$b+l b+1) ( )

Hence

r—1
— 7 _d= 01 ceo{g— b+].
(Brog ) = e 7er (813 ~ joyu ) OZ T+ 1$b+13b+1) + O(J?).
b=1

Inserting this into (4.12) and using (4.9)-(4.11) once again, we finally obtain (4.13).

4.6. Metric coefficients in canonical coordinates. The metric potential 5
is simply z” (see Ch. 1, (2.4).) Hence we can easily calculate 7; = ¢;z,. The answer
is

T+ 1 (r+1)2

As an exercise, the reader can check that the same answer results from the (longer)
calculation of 7; = g{e;, e;).

i r b -
T = e > < b(r+1-b)e @ oy + 0(J2).  (4.14)
b=2

4.7. Derivatives of the metric coefficients. We now see that the chosen
precision just suffices to calculate the restriction of 75, v;; and the matrix elements
of A; to the plane 3 = --- = z, = 0 any point of which can be taken as initial one.
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4.7.1. Claim. We have

Ci—k e T1
G =12 r+ 1)

Mki = kT = —2 +O(J). (4.15)

Notice that (4.15) is symmetric in ¢, k as it should be.

This is obtained by a straightforward calculation from (4.13) and (4.14). The
numerical coefficient in (4.15) comes as a combination of E;=1 j¢? and Z;=1 g2¢3
which are then summed by standard tricks.

4.8. Canonical coordinates. We find u* from the formula F oe; = u'e;. To
calculate F oe;, use (4.5), (4.13) and (4.9)—-(4.11). We omit the details. The result
is:

4.8.1. Claim. We have

u' = mo -+ Cr + 1)e T + Y (Herig, + O(J2). (4.16)

a=2

The reader can check that e;ul = 6;; + O(j).

4.8. Schlesinger’s initial conditions. Recall that the matrix residues A; of
Schlesinger’s equations for Frobenius manifolds are

Ajfe;) =0 for i # j,

11
Aj(e;) = —5e¢;

- (u* — ) e, (4.17)

2 < g

(cf (1.13).) Substituting here (4.14), (4.15) and (4.16), we finally get the main
result of this section.

4.8.1. Theorem. The point (xg,x1,0,...,0) has canonical coordinates u* =
o + CH{r + 1)ew

The special initial conditions at this point (in the sense of 3.4) corresponding to
Hquant.(Pr) are given by

Gi—k
Uik =TT Gk (4.18)
and .
Cl —my =L
;= — R 4.19
T . € ( )

As an exercise, the reader can check that

> e =- 2=
_— ﬁ= _ — = —,
k:k;ﬁjl ¢/ 2 2
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§5. Dimension three and Painlevé VI

The equations for the potential ® or metric potential 7 generally form a system
of PDE. However, in the three-dimensional semisimple case, in the presence of a
flat identity and an Euler field, they can be cffectively reduced to one nonlinear
ODE belonging to the family Painlevé VI. This section contains some details of
this study.

5.1. Normalization. i) Spectrum and normalized flat coordinates. We start
along the lines of Ch. I, 4.2, but with some additional assumptions; see [D2], pp.
127-129 for the general case.

Let M be a connected simply connected Frobenius manifold with flat identity
and Euler field with dy = 1. The most important spectrum point is D.

From the start, we will exclude from consideration two of the critical values of
D. Namely, we will assume D # 1 in order to be able to use in the semisimple case
Theorem 3.3.1, and D # 2 which guarantees that the spectrum of —ad £ on Thj; is
simple.

In fact, in the notation of Ch. 1, 2.4, this spectrum must be of the form
(do, dy,d2) = (1, —lzz,D — 1), where the eigenvector for dy = 1 is Jp = e, gle, e) = 0;
the eigenvector for d = D —1 is uniquely normalized by the condition g(e, 82) = 1;
" and the one for % is uniquely up to sign normalized by g(d;,01) = 1. Thus
(9ab) = (9%°) = (Basp,2)-

We can now consider three flat coordinates (zg,x1,z2) such that 8, = 9/0z,

defined up to a shift (and sign change for 2:,.) Their final normalization will depend
on the Buler field.

The spectrum of V = —ad F — gld is (1 — %, 0,% - 1) .

i) Euler field and normalized potential. If D # 0,1, then all d; do not vanish,
and we can choose z, so that

: D
D#£0: E=:17080+—2—3:18'1+(D—1) z20s. (5.1)

(Notice that the origin (z4) = (0) cannot be tame semisimple because E vanishes
there.)

For D = 0 we obtain an extra parameter (cf. Ch. I, 2.4) which we denote 7 + 1
to conform with (4.5); z; remains defined only up to a sign change and shift:

D=0: E = :1:060 + (T + 1) 81 — .’12262. (52)

We will assume 7 + 1 5 0; then the sign can be normalized by Re(r + 1) > 0.
The potential can be written in the form (Ch. I, (2.3)):

D(xo,z1,22) = (-’505‘7% + .’L‘giﬁz) + t,o(ll?hﬂ?z)-

B[
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It is defined up to a quadratic polynomial in (z4) and must satisfy E® = (D+1)®+
g, where ¢ is also a quadratic polynomial. We can try to make ¢ = 0 by replacing
¢ with ® 4+ p and solving (E —1—-D)p=¢q. If D # 0 and D # —1, such p exists
and is unique. If D = —1, we cannot kill a possible constant term ¢ in g which is a
new parameter. If D = 0, we can unambiguously kill any quadratic polynomial in
(1, z2) but the term containing zo will remain. So our final normalization is:

D #+1,2: Ep=(D+1)yp, (5.3)
D=-1: Ep=c.

iil) Associativity Equations. A straightforward check shows that all the Associa-
tivity Equations follow from one of them, which can be written as

@222 = P13 — P111P122- (5.4)

In [D2], p.128, equations (5.3) and (5.4) are reduced to an ODE for the function f
which is defined in the following way.

2
If D#0,%1,2, put § = D 2. Then (5.3) means that locally ¢ can be written
as zizy ! f(zoxf).
If D = —1, we can put similarly ¢ = 2clogz; + f(z2z7?).

If D = 0, we have ¢ = z; ! f(z,+ (r +1)log z3). We will copy Dubrovin’s equation
for f in this case:

FhC+102 4 2f —(r+ )" = 2 =6(r+1D2f" +11(r +1) f' = 6f = 0. (5.5)

The case D = 0 is the most interesting for us because it includes the quantum
cohomolgy of P2. It is not easy to recognize in (5.5) a classical equation. Below we
will describe how Dubrovin uses the additional semisimplicity condition in order to
reduce it to PVIL.

5.2. Semisimplicity and tameness. At a tame semisimple point of M, the
operator Fo has simple spectrum (canonical coordinates of this point.) Conversely,
if this is true, one can write down explicitly the idempotents e; as polynomials in
E. This criterium is sufficiently practical for use in flat coordinates.

5.3. Analyticity. Consider now the case when ® is analytic at the origin.
(Recall that if D = 0, the origin can be any point along the z;-axis, so its choice
is the same as the choice of z;.)

5.3.1. Proposition. a). The origin can be tame semisimple only if D = 0. In
this case the normalized analytic potential can be written in the form

1
®(zo, 21, 42) = 2 (woz] + wiza) + Z

n=0

e r+l1

M(n) _-r_m]g (5.6)

so that E® = & + (r + 1) zoz;.
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b). The Associativity Equations are equivalent to the following recursive relations
for the coefficients M(n):

M(n+3) = G +14 Z () (k+ DM+ 1) (k+2)2( +2)%—
—M(E)M(1+2)(k+1)°(1 + 3)] . (5.7)

Hence any formal solution is uniquely defined by the choice of M(0), M(1), M(2)
which can be arbitrary.

¢). The point (000) is tame semisimple iff the polynomial

s MO . 8M(1) 3M(2)

G N O N A

has no multiple roots.

For the quantum cohomology of P?, we have r + 1 = 3, M(n) = 0 unless
n=3d—1, and M(2) = 1. If we put N(d) := M(3d — 1), (5.7) becomes (0.19).

Proof. a). As we have already remarked, (000) cannot be tame semisimple with
E of the form (5.1) since E vanishes at this point. One easily sees that for D = 0,
(5.6) is normalized.

b). This is a restatement of (5.4).

c). We will use the criterium of 5.2. From (5.2) one sees that one can look at
the spectrum of Jo in lieu of Fo. The multiplication table at the origin is

81 © aO = ala
_4M(1) M(0)
0100, = (r 1) do -+ ot 1) o1 + Oq,
_ 3M(2) 4M(1)
Orobe="77 0ot e O
Hence ) . i
det (81 o —1U Id) = + ( ) (1) ( )

13" o (r+1)2"+ r+1°
This finishes the proof.
5.3.2. Exercises. a). Calculate formal (at the origin) potentials for D # 0.
b). Calculate the special Schlesinger’s initial conditions at the origin for the
potential (5.6).

5.4. Introduction to the PVI equations. These equations form a family
PVI, g,4,6 depending on four parameters e, 3,7, d, and classically written as:

#X _1/1 1 1 dX 1,1 1 \adx,
di2 2\ X  X-1 X—t)\ dt t t—-1 X —t) dt
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X(X-1)(X—-1t) t t—1 t(t - 1)
— ) .
ra-1r TP T o PO e
They were discovered around 1906 and have been approached from at least three
different directions.

(5.8)

a. Study of non-linear ordinary differential equations of the second order whose
solutions have no mouvable critical points.

Their classification program was initiated by Painlevé, but he inadvertently omit-
ted (5.8) due to an error in calculations. It was B. Gambier [G] who completed
Painlevé’s list and found (5.8).

b. Study of the isomonodromic deformations of linear differential equations.

c. Theory of abelian integrals depending on parameters and taken over chains
with boundary (not necessarily cycles.)

These two approaches are due to R. Fuchs [F].

In the subsequent development of the theory, relationship with isomonodromic
deformations proved to be most fruitful. Briefly speaking, (5.8) can be obtained
by a change of variables from Schlesinger’s equations with four singular points and
the two-dimensional space 7. This description can be used in order to connect
PVI to the three dimensional Frobenius manifolds. For some recent research and
bibliography the reader may consult [JM], [O1], [H1], [H2].

In this section we take up the somewhat neglected approach via abelian integrals
and algebraic geometry.

The main outcome of this approach is the representation of (5.8) as an equation
on the multisection of an (arbitrary nonconstant) pencil of elliptic curves with
marked sections of order two. In particular, passing to the classical uniformization,
we will find the following equivalent form of (5.8):

5.4.1. Theorem. The equation (5.8) is equivalent to

2z 1 o T,
75 = Wz%pz(z-i-?],v') (5.9)
=0
where 1
(o, ..., a3) == (e, 3,7, 3 4), (5.10)

(To, ..., T3) = (0,1, 7,1+ 7), and p(z,7) is the Weierstrass function.

5.4.2. Theorem. Any potential of the form (5.6) can be expressed through a
solution to (5.9) with (ao, ..., a3) = (3,0,0,0) that s,

d*z 1
F = —sz(Z,T) (511)

In particular, the solution corresponding to P? passes through a point of order three
on an elliptic curve with complex wmultiplication by cubic root of unity.

Below we will give a more detailed version and a proof of both theorems.
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The last result gives exact meaning to the statement “mirror of P2 is a pencil of
elliptic curves with marked sections of order two and an additional multisection.”
It is conceivable that a similar picturc will cmerge for all homogeneous and toric
Fano manifolds and for all Fano complete intersections in them.

An intriguing question about the analytic nature of the particular solution corre-
sponding to P? remains open. There are theorems saying that solutions of (5.8) are
generically “new” transcendents. There are also many examples of the particular
solutions reducible to more classical functions, like hypergeometric ones.

5.5. Painlevé equations and elliptic pencils. We start with the following
classical result.

5.5.1. Theorem (R. Fuchs, 1907). The equation (5.8) can be written in the
form

2 (X.Y) z
t(1 1) t(l—t)j—ﬁﬂl—zt)gg_ﬂ/ VA —dl)(w—t) B
_ay4ply DY Lt — )Y (5.12)

et o TPy
where Y? = X(X — 1)(X - t).

Proof. First, let us clarify the meaning of (5.12). Consider the family of elliptic
curves F — B parametrized by t € P\ {0,1,00} := B : the curve E; is the
projective closure of Y? = X (X — 1){X — t). Points at infinity of {E;} form a
section Dy of this family which is the zero section for the standard group law on
fibers. Choose in E;(C) a path from Dgy(t) to the point (X(t),Y(t)) of a local
section. The operator

d? d 1

d,.
annihilates the periods / el along closed paths in E;(C) because
y

82 o 1 dE‘/BT 1 Y
t(l —t)— 1—-2t)— — - = — —_— 5.14
[( Yo i y 2 EIBg —1)? (5.14)
0 (XY) dg
where we put —(z) = 0 and dg/gt = 0. Applying L; to f — we get
ot o0 y
1 y (‘Yly)
3 m plus the contribution of the boundary sections which together with

the right hand side of (5.12) amounts to (5.8).

5.5.2. p—equations. The equation (5.12) is an instance of the general con-
struction which was used in [Mal] to prove the functional Mordell conjecture. We
will briefly describe it now.
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A p-equation is a system of non-linear PDE in which independent variables are
(local) coordinates on a manifold B and unknown functions are represented by a
section s of a family of abelian varieties (or complex tori) # : A — B. To write
this system explicitly, assume B small enough so that =, (Q‘{1 / p) and Dp (sheaf.of

differential operators on B) are Op—free, and make the following choices:
a. An Op-basis of vertical 1-forms wy,...,w, € T'(B, 7, (QL/B)).

b. A system of generators of the Dp—module of the Picard—Fuchs equations

n
ZL,(.j)/w,-:o, j=1,...,N, (5.15)

t=1 v

where v runs over families of closed paths in the fibers spanning H; (B;).
¢. A family of meromorphic functions ®), j=1,..., N on A.

The respective p—equation for a local (multi)-section s : B — A reads then
n _ 8 )
ZLS”/ w; =s*(®0), j=1,...,N, (5.16)
i=1 0

where 0 denotes the zero section.

One drawback of (5.16) is its dependence on arbitrary choices. Clearly, this
can be reduced by taking account of the transformation rules with respect to the
changes of various generators. For elliptic pencils, the result takes a neat form.

Let again £ — B be a non-constant one-dimensional family of elliptic curves.
We temporarily keep the assumption that m.(QJ / p) and the tangent sheaf 7z are

free. For any symbol of order two o € S%(7g) and any generator w of Tr*(Q};/B)

denote by L, the Picard-Fuchs operator on B with the symbol o annihilating all
periods of w.

8
5.5.3. Lemma. For any local section s, the expression L,,,w/ w s Op-
0

bilinear in o and w.

Proof. Obviously,

Lfa,w = fLo,wa Lo,gw = gLa,w © g—l’

where f, g are functions on B. The lemma follows.

Thus the expression

p(s) = (L,,u/ w) o '@w e S QL) ® (M Qp5) 7" (5.17)
0

depends only on s and is compatible with restrictions to open subsets of B. This
means that the natural domain of the right hand sides for elliptic py—equations is

the set of meromorphic sections ® of the sheaf 7* [SZ(Q};) ® (W*QIE/B)_l] .
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Notice that the Kodaira-Spencer isomorphism (and eventually a choice of the
theta—characteristic of B) allows us to identify & with a meromorphic section of
(Q,p)° or T (02%)%/2 as well.

We will now lift the Fuchs-Painlevé equation (5.12) to the classical covering
space, which in particular will make transparent the nature of its right hand side.

5.5.4. Uniformization. Consider the family of elliptic curves parametrized by
the upper half-plane H: E, := C/(Z + Z7) — 7 € H. Recall that

olzT) :=$+Z’ ((z+mlr+n)2 - (m’r:-n)z)’ (5.18)
pa(z,7)==2) (z+m{r+n)3. (5.19)
We have
pa(2,7)* = 4(p(z,7) — er(r))(p(2,7) — e2(7))(p(2,7) - ea(r)) (5-20)
where -
ei(T) = p(?‘,fr), (To,...,T3) = (0,1, 7,14 7) (5.21)

and e; + ez + e3 = 0. Functions p and g, are invariant with respect to the shifts
Z? : (2,7) = (z+m7+n,7) and behave in the following way under the full modular
group [':

z ar+b\ 2
© (CT Ly d) = (ct + d)*p(z, 1), (5.22)
z at + b
= (ct + d)* . 2
oo (2 T = @+ Fpulann) (5.23)
Consider now the morphism of families ¢ : {E;} — {E;} induced by
50(21 T) — €1 pz(th) €3 — €1
,TI— | X = Y = = . 5.24
() ( ez — € 2(e2 — ;)32 ez —ex (5.24)
This is a Galois covering with the group I'(2) x Z2. We have
* dE BX
v (/T) = 2(ez — e1)/?dg y 2. (5.25)

In the future formulas of this type we will omit ¢* and denote differentials over

a base B by d;. For instance, dl( i—d) = cffd’ whereas d( i—d) =
cT CT

dz czdT
er+d  (er+d)?

It follows from (5.25) that if we denote by 1 (resp. 7,) the image of [0,1] (resp.
[0,1]7) in {E,}, then

d X d; X
¢7 = 2(es — e1)"/?, /; lT = 27(e2 — e1)'/? (5.26)

71
so that the operator L, from (5.13) annihilates periods (5.26) as functions of 7.
We can now prove Theorem 5.4.1 in the following form:
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5.5.5. Claim. The lift of (5.12) to the (2,7)~space C x H is (5.9).

Proof. Following the lead of 5.5.3, we will directly calculate the y—equation for
2 2

d d
{E.}, choosing w = d 2 (instead of d; X/Y) and ¢ = o (instead of £2(1 —t)zﬁ.)

T ;
Since periods of d;z are generated by 1 and 7, the relevant Picard-Fuchs operator

2
is simply — = . From the Lemma 5.5.3 and (5.26) it follows that
T
1/2 d?
t(l — t)Lt Q 2(82 - 61) / = Z(T)F.

Using (5.24) and comparing symbols, we see that

Z(T)—z( “‘31)2(63_62)2 (e2 — )’ ez —e1)!/2 =

ey — e ex —e1) 9(erey — eqze})
2 HI>J( 63)2 3/2
= - — BN 5.27
9 (e1€y — ege])? (e2=e1) ( )
Since e; + e; + ez = 0, we can replace (e1e), — egef)? by (e’ — eje et)? for any @ # 7.

It follows that

Hz>3(e 83)2

(ere) — egef)?

C .=

is a modular function for the full modular group without zeroes and poles, hence a

constant. A calculation with theta—functions, here omitted, shows that C = —972,
so that finally
XY ) g g 2
t(1 —t)L A2 = on?(ey —eg) T2 [ 2
( ) t/OO ” 7 (e — e1) = (5.28)

for the respective sections. We can now consecutively compare the summands in
the right hand side of (5.8) with those in (5.9). The first summand gives

o -
aY = 5(62 —ey) 3/zpz(z,T).

For the remaining ones we have to use the addition formulas

(e('sﬂ_(zejr))(— ei)e;)sﬂz(z,f), {i.5,k} = {1,2,3},

_",T)z_

Pz + 5

so that, say, for 1 = 3 we get

_ -1y o 1 (es—ei){es—e2)  pulz,7)  (ea— er)?
S L6 o E L A1 B TS T 4 Fte g
—_ _l (6 _ l) (82 _ el)—3/2 . _(83 — 61)(63 - 62)

(p(2,7) — e3)? pal7) =
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1 1

:—5(5_ 5)(32—81)_3/261’:(3"‘ ) T)-

The remaining two summands are treated similarly. This finishes the proof.

1+7

In [Ma5] Theorem 5.4.1 was used in order to give an algebraic geometric descrip-
tion of the Painlevé VI equations and of their Hamiltonian structure.

5.5.6. Sy—symmetry and the Landin transform. As an application of (5.9)
we will construct some natural transformations of PVL.

a. The classical S4—symmetry. Isomorphisms of elliptic pencils with marked
sections of order two (F, D;) which do not conserve the labelling of D; induce
transformations of PVI permuting «;. In the form (5.9), they act on the solutions

z ar+b
cz+ T cT + d)

as compositions of the transformations of two types: (z,7) — (

T.
indexed by cosets I'/T'(2), and (2,7) = (2 + 7‘, ) shifting the zero section.

b. The Landin transform. From (5.19) one easily deduces Landin’s identity

T 1 1
zZ\%y o =-2 =
pa(z 2) [Z(z—f—?m%-l-n)s'+Z(z+%+2m%+n)3]

: T
= pz(za'r) + Sﬂz(Z + 517)'

Hence if 2(7) is a solution to PVI with parameters (ag, a1, g, 1), we have

d*z(r T 1 1+7
20 wolpale )+ gule ]+ el 5.7) 4 a4 1T 7)) =
1 d?z(r) T 1 T
S idE Qo (2, 5) +a1p.(z + 5,—):

that is, 2(27) is a solution to PVI with parameters (4ag,4ay,0,0). The converse
statement is true as well. In this way we get the following bijections between the
sets of solutions to (5.9):

(ag, a1, 09, 1) 4 (4avg, 4y, 0,0) (5.29)

and in particular
(0'0,0,00,0) A (4(]0,0,0,0). (530)

5.5.7. The symmetry group W. Put now ¢; = 2a2,i = 0,...,3. In [02],
Okamoto found out that the following group W of the transformations of the pa-
rameter space {a;) can be birationally lifted to the group acting on the space of all
solutions of all Painlevé VI equations. By definition, W is generated by

a). (a;) = (g;a;), where ¢; = £1.
b). Permutaions of (a;).

3
c). (a;) = (a; +n;), where n; € Z and Zni =0(2).

i=0
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This result. goes back to Schlesinger who discovered the general discrete symme-
tries of his equations. It is remarkable however that they act so neatly on a specific
reduction represented by PVI. Explicit formulas are quite complicated even for the
simplest shift (a;) — (a; + 2d;0), and composition quickly makes them unmanage-
able.

5.6. From Frobenius to Painlevé. Following [D2], Appendix E, we will now
describe the map which produces a solution to (5.8) for any analytic potential of
the form (5.6).

Let ®(zq,z1,z2) be the germ of analytic function of the form (5.6), satisfying
the Associativity Equations, for which (000) is a tame semisimple point with non
zero canonical coordinates, or equivalently, M(2) # 0. For a,b = 0,1, 2 calculate
consecutively the following functions of (zg, z1, z2):

1
Gap = (“1)“58_1,’0(1)05 -+ 5 (1‘ + 1)5a+b,1: (531)
2
g = SnE2 =G (5.32)
Ga2
G ,
e 1G22 (5.33)

 G%, + G02G12Gaz — G11G12Gaz — G3,Gor

Denote by (uy,ua,u3) the eigenvalues of the operator Eo. Since they are local
canonical coordinates, ¢ and p are functions of «;. Finally, put

Uz — Uy
t =

X =17
Uy — Uy Uy — U

(5.34)
The fact that locally X depends only on ¢ and not on separate u; follows from the
equation E® = ® + (r + 1)zox;.

5.6.1. Claim. The function X (t) satisfies the PVI equation (5.8) with param-

eters 9 1
(ayﬂa'Y: 6) = (5:07015) (535)

Moreover, we have

dX_(2p+ : )( e (5.36)

dat q—uz) (uz —uz)(ug —uy)’

In fact, Dubrovin in [D2], Appendix E, deduces a more general statement appli-
cable to the case D # 0 at semisimple points as well. We will restrict ourselves to
comparing notation. Our (zg, z1,2) are Dubrovin’s (t!,¢2,¢%). Our functions G
correspond to Dubrovin’s gog and are calculated with the help of Dubrovin’s (3.17),
(3.18) and (1.9) (superscripts being lowered with our Poincaré form (8445 2).) Our
formulas (5.32) and (5.33) are Dubrovin’s (E.8); (5.35) is obtained from the fact
that Dubrovin’s p is —1 for D = 0. Finally, (5.34) and (5.36) are Dubrovin’s (E.16).
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Dubrovin also shows how to reconstruct the potential knowing X (t). This in-
volves integration which explains the discrepancy in the numbers of constants (al-
ready noticed by the attentive reader.)

5.6.2. Potential for P2. We can now calculate the Painlevé initial conditions
for P? at the point z, = 0. According to Theorem 4.8.1, we have (up to renumber-
ing) (u1,up, u3) = (3,3¢,3¢?), ¢ = €¥™/3 at this point. After calculating (5.31), we
obtain ¢ = p = 0, again at the origin. Then (5.34) and (5.36) give

= (41, X(g+1)=lT1C, X’(t)=%. (5.37)

Obviously, the elliptic curve Y2 = X(X — 1)(X — ¢ ~ 1) admits complex multi-
plication by ¢ : the g-coordinate can be simply multiplied by ¢. The point ¢ = 0
remains invariant, hence it must be of.order three on this curve. (I do not see the
meaning of the last condition X'(t) = 3.)

It is interesting to remark that the point (5.35) in the parameter space of PVI in
a sense also corresponds to the “half period.” More precisely, the {(a;)-coordinates
of this point are (ag,...a3) = (3,0,0,0). By the Schlesinger-Okamoto shift we can
reduce this point to (1,0,0,0).

The point (0,0, 0,0) corresponds to the equation dzz/d 72 = 0 trivially solvable
with two arbitrary constants; all X (¢) can be expressed via Weierstrass function.

The same is true for the shifted point (2,0,0,0) by Okamoto. The P2-point lies
exactly half-way in between.
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CHAPTER III. FORMAL FROBENIUS MANIFOLDS
AND MODULI SPACES OF CURVES

§1. Formal Frobenius manifolds

and Commq,—algebras

In this Chapter we return to the supergeometric setting of Chapter I, §1 (or
rather to its formal version.)

1.1. Formal Frobenius manifolds. Let k be a supercommutative Q-algebra,
H = @.kA, a free (Zy—graded) k-module of finite rank, ¢ : H® H — k an
even symimetric pairing which is non—degenerate in the sense that it induces an
isomorphism ¢’ : H — H* where Ht is the dual module.

Denote by K = k[[H*]] the completed symmetric algebra of H*. In other words,
if >°, %A, is a generic even element of H, then K is the algebra of formal series

k[[z*]]-

1.1.2. Definition. The structure of the formal Frobenius manifold on (H,g) is
gwen by an even potential ® € K, defined up to quadratic terms, and satisfying the
Associativity Equations (1.6).

In other words, the multiplication law Aoy = ) Pup®A turns Hy = K@i H
into a supercommutative K -algebra.

1.1.3. Examples. a). If (M, g, ®ar) is a Frobenius manifold over ¥ = R or
C, z a point of M, put H = T, (the tangent superspace at z identified with the
space of local flat tangent fields), ® = the image of &4 in the completion of the
local ring Ops 4, (%) a system of local flat coordinates vanishing at .

More generally, we can start with a relative Frobenius manifold M/S where
S is affine or Stein, and a section z : § — M with normal sheaf trivialized by
the vertical flat vector fields. The completion along this section will be a formal
Frobenius manifold over k = I'(S, Og).

b). Quantum cohomology, briefly described in Chapter I, 4.4, furnishes many ex-
amples of formal Frobenius structures on the cohomology modules (H = H*(V, k),
g = Poincaré pairing), see e.g. potentials (4.13) of projective spaces.

In this section we will show that the Taylor coefficients of a formal potential ®
can be interpreted as a family of multilinear composition laws on H furnishing a
beautiful generalization of the usual commutative algebra. Let (H,g) be as in 1.1.

1.2 Definition. The structure of the cyclic Commes—algebra on (H,g) is a
sequence of even polylinear maps o, : H® — H, n = 2,3,... satisfying the
following conditions:

a). Higher commutativity: o, are S,-symmelric (in the sense of superalgebra).

We will denote op(y1 ® -+~ ® vn) by (y1,- -+, 7n)-
b). Cyclicity: the tensors

Yotr1: HOOD Sk Yot ® - ® %0 @ Yaug1) = 9((715 -+ )y Youp1) (L.1)
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are S, 41 -symmetric.

c). Higher associativity: for allm > 0 and «, 3,7,61,...,0m € H, we have

> e'(a)((a,B,8:11 € 81),7,0; |5 € S2) =

o: 5 ] S2={1,...,m}

o LN (Bmdilie $1),55 € S). (1.2)
o: 5 ] S2={1,...,m}

1.2.1. Comments. In (1.2) o runs over all ordered partitions of {1,...,m}
into two disjoint subsets. The signs €'(o), ¢’(c) are defined as follows: fix an
initial ordering, say, (a, 8,7, 01, - .., 0m), then calculate the sign of the permutation
induced by o on the odd arguments in (1.2).

b). For m = 0, (1.2) reads

((, 8),7) = (e, (8, 7)), (1.3)

and form =1

(@, 8),7,8) + (=1)P((, 8,8),7) = (v, (B,7,8)) + (@, (8,7),9).

The general combinatorial structure of (1.2) can be memorized as follows: start
with (1.3) and distribute (44,...,d,,) in all possiblc ways between the brackets
at both sides, without introducing new brackets and retaining the initial ordering
inside each bracketed group.

¢). The term “cyclic” comes from cyclic cohomology. One could also say that
g must be an invariant scalar product with respect to all multiplications: compare

(1.1) to Chapter I, (1.2). Choosing o,, = 0 for all n > 3, we will get a conventional
commutative algebra with invariant scalar product.

1.3. Abstract Correlation Functions. Clearly, given g, o,, and Y}, uniquely
determine each other. It will be useful to axiomatize the functional equations
between Y, 41 which turn out to be cquivalent to the higher associativity laws.

1.3.1. Definition. A system of Abstract Correlation Functions (ACF) on (H,g)
is a family of S,-symmetric even polynomials Y, : H® — k, n = 3,4,5,...
satisfying the following coherence relations:

for all n > 4, all pairwise distinct i,j,k,l € {1,...,n} and all y1,...,vn € H,
we have

D e(oNYisi 41 ® Visy+1) (®pesi 1o ® A ® (Bgesy¥e)) = (F @ k), (1.4)

o ijokl

where A = 3" A9t @ Ay,

Here o runs over stable partitions of {1,...,n} (this means that |S;| > 2), and
the notation ijokl means that either 7,7 € S1, k,1 € Sy, or 1,5 € So, k,1 € S;.
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1.4. Correspondence between formal series, families of multiplications,
and families of polynomials. Let ® € k[[H"]] be a formal series. Disregarding

terms of degree < 2, write
o0

1
=S -V, (1.5)
= n!

where Y,, € (H*)®" can also be considered as an even symmetric map H®" — k.
Having thus produced Y,,, we can define the symmetric polylinear multiplications
o, satisfying (1.1). Clearly, both correspondences are bijective.

We can now formally state the main result of this section.

1.5. Theorem. The correspondence of 1.4 establishes a bijection belween the
sets of the following structures on (H,g):

a). Formal Frobenius manifolds.

b). Cyclic Comme, —algebras.

c¢). Abstract Correlation Functions.

Proof. We start with the correspondence a) ¢ c¢). The Associativity Equations
for ¢ can be written as

Va,b,c,d, Z ‘I’abegef@fcd =(a b c—a), (1.6)
of

where the subscripts label a basis of H. Representing ® as in (1.5) and writing
v = 3., %A, we sce that (1.6) is equivalent to

1
——-__},n B3 Aa A Ac efh--—)/n A Ac A ®(n2—3) _
ng” om0 ®ABA®A.)g e =31 (D 5®ARA®y )
1 ) -
=2 (n1 — 3)!(na —3)'(Y"‘®K‘=)(’V®("l DQABDARARA,BA@yOM ) =
ni23 : :
(a— b—cH a). (1.7)

In order to deduce (1.7) from the coherence relations (1.4}, we proceed as follows.
Fix n > 4, consider in (1.7) only the terms with n, -+ ng — 2 = n, and multiply them

by (n1 + ng — 6)! The resulting identity is a particular case of (1.4), corresponding
to the following choices:

(711 .- ')’Yﬂ) = (75 RPN S Aa; Ab, Acn Ad)a

(4,7, k, 1) = (n1 +ng —5,n1 +n2 —4,n1 + ng — 3,01 + 12 — 2).

Since all the arguments except for the four deltas coincide, summation over the
partitions in (1.4) will produce the binomial coefficient which we need. (Actually,
we have v € Hg, but this does not violate (1.4).)

Arguing in reverse order, we can deduce (1.4) from (1.7). Then one first obtains
(1.4) with a part of v’s coinciding, belonging to Hg and being generic even elements.
An easy version of the polarization argument then gives the desired conclusion.
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We now turn to the correspondence b) < ¢). The relation (1.1) can be rewritten
as

(71, O 7715) = Z Yn+l (71 R B ® Aa)!]abAb. (1.8)
ab

From here we deduce
((711"‘)771.1))'71114-1)'"17“1-{-1’12—1) =

=) YO Yarim ® - @1, ® A0)gAu @ Y41 ® - B Ynypmg—1) =

ab cd
= Z(Ynlﬂ @Y 11)(11® ®Yn, ®A®Vn, 418 @Yy g —1®80) g% Ay, (1.9)
ab

The associativity relations (1.2) will exactly match the coherence relations (1.7)
rewritten via (1.9) if weput m+3=n1+nz, a=7,8=72, Y =Tn+1; =2, =
Lk=ny+1,l=m+3.

1.6. Identity. If a formal Frobenius manifold (H, g, ®) admits a flat identity
e, it can be identified with a basic element Ag. In the respective structure of the
cyclic Commee—algebra the formula (2.3) of Chapter I transforms into the following
definition of identity, perhaps slightly counter—intuitive:

vi forn=1,

(Do, Y153 n) = { (1.10)

0 otherwise.

In fact, this formula for n = 1 is equivalent to the statement (Ag, A,) = A, for all
a, or else g((Ao, Ayn), Ap) = gap for all ¢, b. But in view of (1.1), the left hand side
is the same as

Y3(A0 ® Aa ® Ap) = 0p0a0p®(7), ¥ = Y z°Aq,

which is gap in view of Chapter 1, (2.2).

1.7. The Euler operator. There is not much new to add to the discussion of
§2, Chapter I. It is probably worth noting that in the formal situation the grading
induced by E interacts with the natural grading on K in which H is of degree 1. If in
the semisimple decomposition of E (2.14), Chapter I, the term > 8y is present, then
the grading relation (2.7), Chapter I, connects Yy, to Y;,, otherwise they become
decoupled. This last possibility occurs in quantum cohomology for manifolds with
vanishing canonical class so that the general constraints of Frobenius manifolds
become less stringent for such manifolds.

1.8. Semisimplicity. (H, g, ®) is called (formally) semisimple if the k-algebra
H with the structure constants ®,,°(0) is isomorphic to £™. One can prove then that
Hg is isomorphic to K™. The basic idempotents e; € Hg have the same properties
as in the geometric theory.

1.9. Why alternative descriptions? The formal version of Frobenius geom-
etry is natural from the viewpoint of quantum cohomology: the relevant sructure
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initially is formal, and only after some work ® can be analytically continued and
geometrized.

The reformulation in terms of o, suggests a non—trivial extension of the notion
of commutative algebra and combined with operadic formalism (about which later)
leads to an unexpected generalization of other classical structures. For example,
one can introduce and study the notion of Lie,,—algebras, given by a family of
Sn—skewsymmetric polylinear brackets [ },, : H®* — H,n = 2,3,... satisfying
the higher Jacobi identities: for all & > 2,1 > 0, ay,...,ax,b1,...,0; € H the
expression
l Ze(i,j)[[ai,aj],al, v ,ai, R ,Ej, - .,(Lk,bl, . ,b[]

i<y

must vanish for [ = 0 and be equal to [[ay,...,ak],b1,...,b] otherwise. This
structure was called gravity algebra by E. Getzler. It is dual to Commy, in the
same sense as Lie algebras are dual to the commutative ones (Quillen, Kontsevich,
Kapranov and Ginzburg.)

It would be interesting to find and study a geometric counterpart of this structure
for which Lieo, would be a formal version), with an appropriate notion of potential.
PP

Finally, the structure of Abstract Correlation Functions turns out to be a trun-
cated version of an apparently much- richer object, consisting of maps I,, : H®"* —
H* (Hgn, k), n > 3, where My, are the moduli spaces of stable curves of genus zero
with n labelled points. These maps arc constrained by the relations coming from
the geometry of My, which extend and “explain” the formal identities (1.4).

The most remarkable fact is that this rich structure is in fact equivalent to its
truncated version, thus to Commes and formal Frobenius manifolds. On the other
hand, it admits an intrinsic operation of tensor product, quite unexpected in either
of the previous descriptions, geometric and formal alike.

The remaining part of this Chapter will be devoted to this structure.
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§2. Pointed curves and their graphs

Moduli spaces (orbifolds, stacks) of curves with labelled points are stratified
according to their degeneration type. In this section we review the combinatorial
structure of this stratification.

2.1. Definition. A prestable curve over a scheme T is a flat proper morphism
m: C — T whose geometric fibers are reduced one-dimensional schemes with at

most ordinary double points as singularities. Its genus is a locally constant function
on T': g(t) := dim H(Cy, Oc¢,).

2.2. Definition. Let S be a finite set. An S-pointed (equivalently, S-labelled)
prestable curve over T is a family (C,m,z;|1 € S), where m: C — T is a prestable
curve, and x; are sections such that for any geometric point t of T we have z;(t) #
z;(t) fori# j and z;(t) are smooth on Cy. Points z;(t),t € S, and singular points
of Cy are called special.

Such irreducible curve is called stable if 29 —2+|S| > 0 and if every non-singular
genus zero component of any Cy contains at least three special points. A general
prestable pointed curve is called stable if all its connected components are stable.

2.2.1. Remark. Let (C,m,z;|7 € S) be an S-pointed prestable curve. It is
stable iff automorphism groups of its geometric fibers fixing the labelled points are
finite.

2.3. Definition. A (finite) graph 7 is the data (F,,V;,0:,5,) where F, is a
(finite) set (of flags), V; a finite set (of vertices), 0, : Fp — V. is the boundary
map, and j, : F, — F, is an involution, j2 = id.

An isomorphism T — o consists of two bijections F. — F,, V. — V., compatible
with 0 and j.

Two-element orbits of 3, form the set E, of edges, and one—element orbits form
the set S, of tauls.

It is convenient to think of graphs in terms of their geometric realizations. For
each vertex v € V, put F,(v) = 871 (v) and consider the topological space “star of
v” consisting of |v| := |Fr(v)| semiintervals having one common boundary point.
These semiintervals must be labelled by their respective flags. Then take the union
of all stars and replace every two-element orbit of 7, by a segment joining the
respective vertices so that these two flags become halves of the edge, and tails
become non-paired flags.

A graph 7 is called connected (resp. simply connected) if its geometric realization
||| is so.

2.4. Definition. A modular graph is a graph T together with « map g : V, —
Z>p, v = gy. An isomorphism of two modular graphs is an isomorphism of the
underlying graphs preserving the g—labels of vertices.

A modular graph (7, g) is called stable if |[v| > 3 for all v with g, = 0, and jv| > 1
for all v with g, = 1.



89

2.5. Definition. The (dual) modular graph (1, g) of a prestable S-pointed curve
(C,m,z; |1 € S) over an algebraically closed field consists of the following data:

a). F, = the set of branches of C passing through special points.

b). V. = the set of irreducible components of C, g, = the genus of the normal-
1zation of the component correspondint to v (denoted sometimes C,.)

c). 0-(f) = v, iff the branch f belongs to the component C,. '

d). j.(f) = f, f # f, iff the two branches f, f intersect at a common double
point. Therefore, edges of T bijectively correspond lo the singular points of C.

e). 3-(f) = f, iff f is a branch passing through a labelled point of C. Thus the
tails of T bijectively correspond to the labelled points of C and to the set S of their
labels.

We will sometimes call the isomorphism class of (r, g) the combinatorial type of
C.

If C is stable, the combinatorial type of C is stable, and vice versa. Any modular
graph represents the combinatorial type of some semistable labelled curve.

2.6. Proposition. Let (7,g) be the combinotarial type of a prestable S—pointed
connected curve (C,m,z;|i € S), g = genus of C, n =|S|. Then we have

g= > go+dim Hy(|]), (2.1)
veV,
g-1=> (g9,—1) +E,], (2.2)
veV,
> o] = 2|E.| +n. (2.3)
veV,

Proof. Consider the normalization morphism

f: Hé‘v:(ﬂf’——)c

veV;

where C, is the normalization of C,. The cxact sequence of sheaves on C

0= f*(Oc) = Of = Byec,in, ky) = 0
generates an exact sequence of linear spaces
0 k— kY = kB = HY(C, f1(O¢)) = HY(C,O¢) — 0. (2.4)

Moreover, B
dim HY(C, f*(O¢)) = dim HY(C,0¢) = g,

dim Hl(é, 60) = Z Gu-
veV,
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Hence we get

1_|VT|+‘ET|_9+ Z: gu:O-
veV,

Replacing here |E;| — |V;| by
—x(lI7}l) = dim Hy({|7[]) - dim Ho(||7]]) = dim Hy(||7[) - 1

(since ||7|| is connected) we get (2.1). Replacing 3° oy g0 — V2| by 3 ey (gu 1)
we get (2.2). Finally, both sides of (2.3) are equal to |F;| counted in two different
ways.

2.6.1. Corollary. For any (g,n) with 2g — 2+ n > 0 there exist only finitely
many isomorphism classes of connected stable modular graphs of genus g with tails
{1,...,n} (or simply stable (g,n)-graphs).

More precisely, if (7,g) is connected and stable, then:

a). |Vr| € 2g—2+n, with equality sign ezactly on graphs for which (g,,n) = (0, 3)
or (1,1) for all vertices v.

b). Forvy > 2,
29—-24+n

card{v| g, = 7} < 5

c). |Er| < 3g —~ 3+ n, with equality sign exactly on graphs with g =0, (gy, [v]) =
(0,3) for all vertices.

Proof. Adding (2.1) to one half of (2.3), we get:

1 1
S (gu—1+5h)=5n+g-1>0.
vEV,

Stability implies that g, — 1 + %l'l)| > % for g, = 0,1 and > g, — 1 for g, > 2. The

first two assertions of the Corollary now follow directly.

From (2.2) one sees that
|Er| <g~14card{v|g, =0} <g-1+|V| <n+3g-3,

equality sign corresponding to all g, = 0 and hence |v| = 3 in view of a).

2.6.2. Remarks. a). There exist infinitely many unstable (0,2), (0,1) and (0,0)
graphs.

b). The stable modular graphs with g, = 0 and |v] = 3 for all v describe
maximally degenerate pointed curves. Such curves have no moduli because each
component is a P! with three special points on it.
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2.6.3. Corollary. a). Stable connected modular (0,n)-graphs are trees with
vertices of valency > 3.

b). Any isomorphism of such graphs is uniquely defined by its restriction on
tails.

c). |Vr| — |E;| =1 for such graphs.

2.7. Combinatorics of degeneration. Let (7,¢), (g, h) be connected stable
modular graphs with the same (or explicitly identified) set of tails S = S, = S,. We
will write (7, g) > (o, h) if there exists a family of stable curves with an irreducible
base such that the generic geometric fiber has the combinatorial type (7, g}, some
other geometric fiber has the type (o, /), and the specialization of the structure
sections induces the given identification of tails.

When the set S is fixed, this relation becomes a partial order, called specializa-
tion. If (7,9) > (o,h) and any intermediate (p, k) coincides with either (7,g) or
(o, h), we will say that (o, h) is a codimension one specialization of (7, g).

Any codimension one specialization (7,g) > (o, k) can be uniquely specified by
the data of one of the two types:

a). Splitting. Choose a vertex v € V, of genus g, > 0, a decomposition g, =
g, + g and a partition of the set of the flags incident to v: F,(v) = F/(v)U F} (v),
such that both subscts are j,—invariant. To obtain (o, L), replace the vertex v in
7 by two vertices v’,v" connected by an edge e, put g,» = g5, go = g, Fs(v') =
Fl(v) U {e'},F,(v") = F/(v) U {e"} where e',e” are the two halves of e. The .
remaining vertices, flags and incidence relations are the same for 7 and o.

Geometrically, this describes the following degeneration: the irreducible compo-
nent C,, splits into two irreducible curves, among which the special points of C,
[0 }

are distributed as specified by the partition of flags. The new edge e “is” the new
singular point Cy N Cyrr.

b). Acquisition of a loop/cusp. Choose a vertex v € V; of genus g, > 1. Put
V, =V, keep all the g-labels of vertices the same except for g, which is replaced
by g» — 1 in 0. Finally, add two new flags forming one j,—orbit (a loop) to F,(v).

Geometrically, this corresponds to a degeneration of €, acquiring a new cusp.
The genus of the normalization is thereby reduced by one.

Arbitrary combinatorial specialization of the stable modular graphs can be real-
ized geometrically.

2.8. Stratified moduli spaces. For any (¢,n) with 29 — 2 + n > 0 there
exist two basic types of moduli spaces: Mg, and Hg'n. The first one classifies only
irreducible stable n—labelled curves, the second onc arbitrary ones. The precise
definition/construction of these spaces varies depending on the context. There are
versions of the type “coarse moduli spaces”, “orbifolds”, “moduli stacks”.

In all versions, however, the following intuitive picture can be made precise.

a). Myo(g > 2), My,1, Mp 3 are the basic smooth orbifolds of dimension 39—3,1,0
respectively. Each of them carries the universal curve C — M.
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b). My, is the n-th (resp. (n—1)-th, (n—3)-th) relative power of the respective
C — M, with partial diagonals (and eventually incidence loci with 1 or 3 basic
structure sections} deleted.

We can similarly define My s parametrizing S—marked curves.

¢). For any stable connected n—labelled graph (7, g) put

M(7,q) = (H M U,FT(u)) /G,

veV,

where G is the automorphism group of (7, g) identical on tails. This is the moduli
space of stable n-labelled curves of the combinatorial type (7, g). In fact, deforming
such a curve is equivalent to independently deforming its irreducible components
keeping track of special points and their incidence relations.

d). Finally, we have a decomposition of M, ,, into pairwise disjoint locally closed
strata indexed by the isomorphism classes of n—graphs:

My, = 1] Mooy =11 (H M(gu,mv))) /G.

(Tvg) (Tlg) ‘UEV.,—

The stratum M, ) belongs to the closure of M(, gy exactly when (7,g) > (o, h).

In the next section we treat the genus zero case in more detail. An essen-
tial simplification is due to the fact that stable n—trees have no non-trivial n-
automorphisms (that is, automorphisms identical on leaves.) Therefore moduli
spaces of genus zero are actually smooth manifolds.
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§3. Moduli spaces of genus 0

This section is a report on the structure of the moduli spaces of curves of genus
zero elaborating the general discussion of the previous section. We give precise
statements but often omit or only sketch the proofs which can be found in [Kn] and
[Ke]. We work in the category of schemes over an arbitrary field (in most cascs,
Spec Z would do as well.)

3.1. Theorem. a). For any n > 3, there ezists a universal n—pointed stable
curve (Ty, : Con = Mon; i, i = 1,...,n) of genus zero. This means that any such
curve over a scheme T 1s induced by a unique morphism T — My,.

b). My, is a smooth irreducible projective algebraic variety of dimension n — 3.

¢). For any stable n—tree T, there exists a locally closed reduced irreducible sub-
scheme D(t) C My, parametrizing exactly curves of the combinatorial type T. Its
codimenston equals the cardinality of the set of edges |E.| that is, the number of
singular points of any curve of the type 7. This subscheme depends only on the
n-isomorphism class of 7.

d). My, is the disjoint union of all D(1). The closure of any of the strata D(T)
is the union of all strata D{(o) such that T > o in the sense of 2.7.

Let o, be the one—vertex n—tree. We will denote D(s,,) by Mg, and the induced
stable curve by 7, : Con — Mo, It classifies the irreducible pointed curves. Its
geometric points are systems of n pairwise distinct points on P! considered up to
a common fractional linear transformation.

The codimension one strata are labelled by the isomorphism classes of stable
one-edge n—graphs o. Each such class can be identified with an unordered partition
{1,...,n} = 8, ][ S, stability means that |S;| > 2 for i = 1,2. The curve C,, over
D(o) has two components, and the partition Sy [| Sz corresponds to the distribution
of the structure sections z; between these components. Of course, with obvious
modifications we can replace here {1,...,n} by any finite set S.

3.2. Examples. The following pictures show the structure of My, with its
canonical stratification, and the structure of Cy,, for n = 3,4, 5.

Fig. 1



94

Moys = Mgz is simply a point, and Cy,, is P! endowed with three points labelled
by 1,2,3 because the fractional linear group acts simply transitively on the ordered
triples.

M4 is as well P! with three labelled points, but this time the labels are one-
edge stable trees with tails {1,2,3,4} corresponding to the divisorial strata, and
Mo, is the complement to these three points. Furthermore, Cyq4 is a surface fibered
over P! and endowed with 4 labelled sections. In addition to them, there are
six components of degenerate fibers. One can check that all the ten curves are
exceptional of the first kind, forming a configuration well known in the theory of
the Del Pezzo surfaces. In fact, Co4 is isomorphic to the (rigid) Del Pezzo surface of
degree 5, which can be obtained by blowing up four points of P? in general position.
It is known that Ss, and not just Sy (renumbering sections) acts on such a surface.,
In our context this can be explained by the fact that Cos can be identified with
Ms (non—canonically) or rather with some Mygs, |S| = 5 canonically; the reader
is invited to describe S. '

Fig. 2

Of course, Mys is the complement to the ten boundary divisors marked by the
stable 5—trees with one edge. Each of these divisors contains three 0-dimensional
strata marked by the stable 5-trees with two edges.

We sec an emerging pattern: Cg ,, is isomorphic to Hg‘n.{.l. It can be explained
by the following considerations.

Consider a stable pointed curve (C,x;,...2,41) of genus 0 over a field. We will
say that (C,z1,...,Z,) is obtained from it by forgetting the point z,.;. However,
(C,z1,...,z,) may well be unstable. This will happen precisely when the compo-
nent of C supporting z,1 has only one additional labelled point, say z;. In this -
case we can contract this component to its intersection point :c; with some other
component of C, thus getting the n—pointed curve (C', z1, ..., 21,2}, ..., z,,). We
will call the last step stabilization, and the resulting construction (forgetting plus
stabilization whenever necessary) stable forgetting.
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3.3. Theorem. o). There is a canonical morphism pniq : —Mo,,,_,_l - Mo,
which acts on the isomorphismn classes of (n+1)-pointed curves by stably forgetting
the last point.

b). There ezists a canonical isomorphism p,, : Ho,n-i-l = Cy, commuting with
projections to My,,.

The first statement is not obvious because it is not clear that collapsing of
unstable components can be performed uniformly over a base.

F. Knudsen ([Kn],§2) proves both statements in the following way. He remarks
that not only Mg 41 but Cp,, as well represents a natural functor, namely

Con(T) = {T—families of stable (0,n)—curves with an extra section A}/(iso).

No restriction is imposed on this extra section. The universal family is Coy, xmﬁo,,
fibered over Cy, via the second projection, with relative diagonal as A.

Therefore it suffices to produce a functorial bijection between the T'-families of
the types (C,z1,...,%n,Znt1) and (D,y1,...,Yn, A) respectively. This bijection
is defined via two mutually inverse birational maps: a morphism C — D and a
blow up D — C. The first one maps C to the projective spectrumn of the sheaf
of algebras gencrated by wer(z1 4 -+ + z,) where wg,r is the relative dualizing
sheaf. One easily sees that it blows down preciscly those components of the fibers
which become unstable after removing z,,+1. We will not describe the second map.

Forgetful morphisms can be used in order to establish relations between the
cohomology classes of strata.

For n > 4, choose pairwise distinct ¢,7,k,{ € {1,...,n} and a stable 2-partition
o of {1,...,n}. Recall that we write ¢jokl if 7,5 and k,! belong to the different
parts of o. Let pu : Mo, — My (i be the iterated forgetful morphism stably

forgetting all points except for z;, x;, 2, ;. The three boundary points of MQ){,'J‘};[}
correspond to the three different stable partitions of the labels; choose one of them,

say {1,7} U {k,[}.

3.4. Theorem. The fiber of p over this point is the scheme theoretical union
Ua:ijale(J)-

For a proof, see [Kn], Theorem 2.7, and [Ke], p. 552, Fact 3.

3.4.1. Corollary. Let{D(o)] be the cohomology (or Chow) class of D(c). Then
for any quadruple ,3,k,1 € {1,...,n} we have

> D) - > D) =0. (3.1)
ijokl kjril

In fact, (3.1) is the difference of two fibers of the forgetful morphism.

In order to state the second corollary, we introduce some notation. For two
unordered stable partitions o = {51, S2} and 7 = {T}, T3} of S put

a(o,7):= the number of non—-empty pairwise

distinct sets among S, N Ty, a,b=1,2.
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Clearly, a(o,7) = 2,3, or 4. Moreover, a(o,7) = 2 iff 0 = 7, and a(o,7) = 4 iff
there exist pairwise distinct 1, 7, k,1 € S such that simultaneously ijokl and ik7jl.
If a{o,7) = 3, we sometimes call o and 7 compatible. A family of 2-partitions

{o1,...,0m} is called good, if for all ¢ # j, 0y and o; are compatible.
3.4.2. Corollary. If a(o,7) =4, then
D(e)NnD(1) = 0. (3.2)

In fact, D(c) and D(7) belong to two different fibers of an appropriate forgetful
morphism to P!.

3.5. The ring structure of H*(Mys). Keel [Ke] has shown that the dual
classes of [D(7)] generate the ring H*(Mys), whereas (3.1) and (3.2) generate the
ideal of relations.

More precisely, for a given finite set S of cardinality > 3, consider a family
of independent commuting variables D, indexed by stable unordered 2—-partitions
of S. Put Fs = k[D,]) (Fs = k for |S| = 3.) This is a graded polynomial ring,
deg D, = 1. Define the ideal Is C Fs generated by the following elements:

a). For each ordered quadruple 7,7, k,l € §

Rijkl = Z Do’ - Z D-,- € Is. (33)
tjokl kjril

b). For each pair o, 7 with a(c, 7) = 4:

D,D; eIs. (3.4)
Finally, put H} = K[D,]/Is.
3.5.1. Theorem (Keel [Ke]). The map
D, — dual class of D(o)
induces the isomorphism of rings (doubling the degrees)
HE = H*(Mog, k) = A*(Mos)k. (3.5)
Here A* is the Chow ring.

Keel’s presentation (3.5) in principle solves the problem of algorithmic calcu-
lations in the cohomology ring. In practice, however, even the most basic prop-
erties of this ring are not obvious for Hg, e.g. the fact that Hy = 0 for ¢ >
|S] =3, dim HLSI_z = 1, and the Poincaré pairing is perfect duality.

In the next section we will need more precise information about the homogeneous

components not only of Hg, but Ig as well. The remaining part of this subsection
is devoted to the preparatory work. We keep notation of the Theorem 3.5.1.

The monomial D,, ...D,, € Fs is called good, if the family of 2-partitions
{o1,...,04} is good, i.e. a(oi,0;) = 3 for © # j. Notice that the relevant divisors
are then pairwise distinct. In particular, D, and 1 are good.

Consider a stable S—tree 7. Any edge e € E; defines a stable partition o(e) : if
one cuts e, the tails of the resulting two trees (except for halves of e) form o(e).
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3.5.2. Proposition. a). The monomial

m(r) = H Dg(e)

e B,

s good.

b). For any 0 < r < [S|—3, the map 7 —> m(7) establishes a bijection between
the set of good monomials of degree r in Fg and stable S-trees T with |E.| = r
modulo S-isomorphisms. There are no good monomials of degree > |S| — 3.

Proof. a). Let f be a flag of a tree 7 whose boundary is the vertex v. It defines
a subtree of 7 which we will call the branch of f. If f is itself a tail, its branch
consists of f and v. In general, it comprises all vertices, flags and edges that can be
reached (in geometric realization) by a no-return path starting with (v, f). Denote
by S(f) the set of leaves on this branch (or the set of their labels.)

Let now e # ¢ € E,. There exists a sequence of pairwise distinct edges e =
€0: €15+ 1€py €ryy = €, 7 > 0, such that ef,- and e;-+1 have a common vertex v;.
Let u be the remaining vertex of e, w that of ¢’. Let S’ be the set of all tails of 7
belonging to the branches starting at v but not with a flag belonging to e; similarly,
let S be the set of all tails of 7 belonging to the branches that start at w but not
with a flag belonging to ¢’. Finally, let T be the set of all tails on the branches
at v, ..., v, not starting with the flags in eg,... e} (we identify tails with their
labels). Since 7 is stable, all three sets S, S” and T are non-empty, and

ale) = {8, 8"[[ T} ole') = {S'[[ T, 5"}

It follows that a(o(e), o(e’)) = 3 so that m(7) is a good monomial.

b). For r = 0,1 the assertion is clear. Assume that for some r > 1 the map
7 — m(7) is surjective on good monomials of degree r. We will prove then that
it is surjective in the degree r + 1.

Let m' be a good monomial of degree r + 1. Choose a divisor D, of m’ which is
extremal in the following sense: one element, say Sy, of the partition o = {5, Sz}
is minimal in the set of all elements of all 2-partitions ¢’ such that D, divides m'.
Put m' = D,m. Since m is good of degree 7, we have m = m(7) for some stable
S-tree 7. We will show that m/ = m(r’) where 7/ is obtained from 7 by inserting a
new edge with tails marked by Sy at an appropriate vertex v € V;. In other words,
7' 1s a codimension one specialization of 7 in the sense of 2.7.

First we must find v in 7. To this end, consider any edge e € E; and the respec-
tive partition o(e) = {S., S/'}. Since m/ is good, we have a({S1, S2}, {S.,57}) =3
As S; is minimal, one sees that exactly one of the sets {S., SI'} strictly contains Sj.
Let it be S7. Orient e by declaring that the direction from the vertex (correspond-
ing to) S, to S, is positive. We claim that with this orientation of all edges, for
any w € V, there can be at most one edge outgoing from w. In fact, if T contains
a vertex w with two positively oriented flags fiand fo, then S; must be contained
in the two subsets of S, branches S(f;) and S(f2). But their intersection is empty.

It follows that there exists exactly one vertex v € V, having no outgoing edges.
Moreover, S, is contained in the set of labels of the tails at v by construction. If we
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now define 7/ by inserting a new edge e’ at v so that o(e’) = o, we will clearly have
m’ = m(7’'). If » < |S| — 4, the tree 7/ cannot be unstable because, first, |S1]| > 2,
and second, at least two more flags converge at v: otherwise the unique incoming
edge would produce the partition {S7, Sz} = ¢ which would mean that D, divides
already m(r).

For r = | 5| -3, this argument shows that m’' cannot exist because all the vertices
of 7 have valency three.

It remains to check that if m(7) = m(m), then 7 and m are S—isomorphic.

Assume that this has been checked in degree < r and that deg 7 = deg 7 =
r + 1. Choose an extremal divisor D, of m(r) = m(72) as above and contract the
respective edges of 71, 72 getting the trees 71, 75. Since m(r]) = m(7}) = m(n;)/ Dy,
71 and 74 are S—-isomorphic by the inductive assumption. This isomorphism respects
the marked vertices v}, v4 corresponding to the contracted edges because as we have
seen they are uniquely defined. Hence it extends to an S-isomorphism 7 — 7.

3.5.3. Remark. Since the boundary divisors intersect transversally, the image
of m(7) in H*(Mys) is the dual class of D(7).

3.6. Multiplication formulas. In this subsection we will show that good
monomials modulo Is span Hg and therefore, dual classes of strata span H*(Mgs).
This will follow from the more precise formulas (3.6)-(3.9) allowing one to express
recursively a product of good monomials modulo Ig as a linear combination of good
monomials.

Let 0,7 be two stable S-trees, |E,| = 1. We have to consider the following
alternatives.

a). Dy,m(1) is a good monomial Then
Dom(71) = m(7) (3.6)

where 7 is obtained from 7' by contracting the edge in £, whose 2-partition coin-
cides with that of .

More generally, if m(o)m(7) is a good monomial, then
m(o)m(r) = m(o x 7) (3.7)

where the direct product is the categorical one in the category of S-trees and
S-morphisms, to be desribed later. We can identify Eox, with E, [[ E;, and

p1: 0 X T — o (resp. pp: pX 7T — 7) contracts edges of the second factor (resp.
of the first one).

b). There ezists a divisor Dy of m(7), |Eyt = 1, such that a(o,0') = 4. Then

D,m(7} =0 mod Ig (3.8)
in view of (3.4).

c¢). Dy divides m(7). Then let e € E; be the edge corresponding to o; vy, vg its
vertices, (v;,e) the corresponding flags.
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We will write several different expressions for Dan_l('r) mod Ig, corresponding to
various choices of unordered pairs of distinct fags {7, 7} C Fr(v1)\{{v1,€)}, {k,{} C
F,(v2) \ {(vz,€)}. For each choice, put

Ty = Fr{wn)

\{%.J, (v1,e)},
Ty = Fr(v2) \ {k, 1,

(v2,€}}-

Notice that because of stability the set of such choices is non-empty.

3.6.1. Proposition. For every such choice we have

Dym(r) = - E m(trp (7)) — g m(trp (7)) mod Ig (3.9)
TCT TCT;
IT[21 (Ti21

where trp (1) is the tree obtained from T by “transplanting all branches starting in
T to the middle point of the edge e.” (An empty sum is zero).

Fig. 3. Transplants: arrows correspond to branches

Remark. We can also describe trpo(7) as a result of inserting an extra edge
instead of the vertex v; (resp. wy) and putting the branches T to the common
vertex of the new edge and e. There exists a well defined edge in trr(7) whose
contraction produces 7.

Proof. We choose pairwise distinct labels on the chosen branches ¢ € S(7), j €
S(3), k € S(k), l € S(£) and then calculate the element (see (3.3))

Riji - m(1) = Z D, -~ Z D, | m(r)=0mod Is. . (3.10)

1jpkl kjpil

Clearly, 1jokl, so that for all terms D, of the second sum in (1.5) we have a(o, p) =4
so that D,m(7) € Is. Among the terms of the first sum, there is one D,. If ijpkl
and p # o, then D, cannot divide m(7). Otherwise p would correspond to an edge
e # e, but the 2-partition of such an edge cannot break {i, 7, k,{} into {7,j} and
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{k,1} as a glance to a picture of T shows. It follows that D,m(7) = m(p x 7) as in
(3.7). The projection p x 7 = 7 contracts the extra edge onto a vertex that can be
only one of the ends of e, otherwise, as above, the condition ¢jpk! cannot hold. It
should be clear by now that p x 7 must be one of the trees trr.(7), and that each
tree of this kind can be uniquely represented as p x 7 for some p with i5pkl. But
from (3.10) it follows that

Dym(r) = — Z D, m(7) mod Ig
ijpkl
p#Eo

which is (3.9).

3.7. Integral over the fundamental class. The functional fz7 _: H*(Mo,s) —
k is given by ‘
1, if deg m{r)=|S|-3,

0 otherwise.

m(r) — {

Notice that deg m(7) = |S| — 3 iff |u| = 3 for all v € V., and D(7) is a point in this
case.
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§4. Formal Frobenius manifolds
and Cohomological Field Theories

4.1. Definition. In the notation of 1.1, the structure of the (tree level) Coho-
mological Field Theory (CohFT) on (H,g) is given by a family of even linear maps
(correlators)

I,: H® 5 H* (Mo, k), n=3,4,... (4.1)
satisfying the following conditions:

a). Sy —covariance (with respect to the natural action of S, on both sides of
(4.1).)

b). Splitting, or compatibility with restriction to the boundary divisors: for any
stable ordered partition o : {1,...,n} = S1[] Sz, ni = |S;|, and the respective map

Yo - H(),n|+1 X H(],1r12+1 - E(O’) - HOT&
we have

Polln(n®...0v)) =€e(0)(In,+1® [ 41)(®pes, 1p ® AR (®q€Sz’Yq)) i (4.2)

where & = LA,9" ® Ay is the Casimnir element, and (o) is the sign of the per-
mutation induced on the odd arguments yi,... ,¥,.

Let (H,g,1.) be a CohFT. Its correlation functions are polylinear functionals

Y, : H®n—>ka Yn(71®"'®7n) :=/

MOn

In(71®"'®7n) (43)

where the integral denotes the value of the top dimensional component of I, on the
fundamental cycle of My,., cf. 3.7 above.

4.2. Proposition. Correlation functions of a CohFT satisfy the azioms of
Abstract Correlation Functions (Definition 1.8.1.)
Proof. Clearly, functionals (4.3) are symmetric, because I,, are S,—covariant.

In order to check (1.4), look at (3.1), this time interpreted as the linear relation
between the homology classes of the boundary divisors. This implies

Z [H ‘P;(In('h ®...0W))=( k). - (4.4)

orijokl Y Mon +1X Mo ng

Substituting (4.2) into (4.4) we obtain (1.4).

We can now state the central result of this section and Chapter:
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4.3. Theorem. Each ACF s the system of correlation functions of the unique
CohFT. Thus, the following notions are equivalent:

a). Formal Frobenius manifolds.
b). Cohomological Field Theories.

Before proving this theorem, we will discuss two related themes.

4.4. Tensor product. Let {H’,¢’, I} and {H",g",1]]} be two CohFT’s.
Define H=H' @ H' and g = ¢’ ® ¢. Put

LW ®...807,07) =¥, YV (N®...0 V) AL(W®...®,) (4.5)

where €(v',v") is our standard sign in superalgebra, and A is the cup product in
H* (MOn’ k).

Claim. (H,g,1,) is a CohFT.

One can easily check S,,~invariance and (4.2).

Thanks to the Theorem 4.3, this tensor product operation can be defined on
Commey,—algebras and formal Frobenius manifolds. But even if (4.5) looks very
simple on the level of the full CohFT’s, it cannot be trivially restricted to the former
structures. In fact, they are directly formulated in terms of the top components of
I,, whereas the tensor product involves components of all degrees.

4.5. Complete Cohomological Field Theories. Complete, as opposed to
tree level, CohF'T structure on (H,g) is given by a family of maps

Ign: H® — H*(M, ., k)

indexed by all stable pairs (g, n). They must satisfy the following extension of the
geNnus Zero axioms:

a). S,—invariance for all g.

b). Splitting: for any g1, 92, g1 + g2 = g, and o as above, such that (g;,n; + 1)
are stable, we must have

"Iy n(1®...@%n)) = €(0)(Ig, n14+1® gy n24+1) (Opes: Tp ® A B (®qes,7q)) (4.7)

where ¢ : Mg, a,41 X Mg, nay1 — My, is the respective boundary morphism
corresponding to the degeneration described in 2.7a).

¢). Acquiring a cusp: for g > 1
I';b‘(j ,n(’YI ®...0 ’Yﬂ)) = Ig-—l,n+2(71 ®..® Tn ® A) (48)

where ¢ : My_1 .42 = M, is the boundary morphism described in 2.7b).

The theory of Gromov—Witten invariants actually furnishes such a structure on
the cohomology spaces of projective algebraic and symplectic manifolds. Hence it
is very important to study the complete CohFT’s. The tensor product formula
extends to the complete case and plays the role of the Kiinneth formula for the
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Gromov-Witten invariants. However, it is not clear how to pass from a complete
CohFT via formal generation functions to a meaningful geometric picture extending
the theory of Frobenius manifolds.

Technically, the difference between the tree level and the complete case reflects
our very incomplete understanding of the topology of M , for g > 1.

We now start proving Theorem 4.3. We shall first show that if a CohFT with a
given system of correlation functions exists at all, then it is unique.

4.6. Proposition. Let (H,g,1.) be a CohFT with correlation functions (Y,).
Then for any stable n—tree T we have

/_( )fn(’}'l ®...® M) = (Quev, Yr. (v)) (®ies, v ® A®F7) (4.9)
D~

Since the homology classes of D(7) span H.(Moy,, k) (cf. 3.6), this establishes
the uniqueness.

Proof. Let us explain the meaning of (4.9). We use the extension of the formal-
ism of direct products to the arbitrary finite sets S. Then, say, Y,(71® - ®,) can
be replaced by Ys(®iesvi), and the argument of ®ev, Y, (y must be some linear
combination of the elements of the form ®uev, (® ek, (v)ats), oy € H. If f is a tail
marked by i, we choose a; = v; in (4.9). Otherwise f is a half of an edge {f, f},
and each such edge contributes A.

The formula (4.2) furnishes a particular case of (4.9) for the one-edge tree 7. But
we can iterate (4.2) refining the inclusion D(7) C My, to a sequence of codimension
one boundary embeddings and using (4.2) at each step. A contemplation will
convince the reader that (4.9) will be the final answer, independent on the chosen
refinement. This proves the Proposition 4.6.

It remains to establish that if (Y,) is an arbitrary ACF, then the formulas (4.9)
actually define a CohFT. The only problem is to check that for any n > 3 and
Y1,.--yYn € H, there exists a cohomology class I,(11® - ®,) € H*(Moy,, k) which
as a linear functional on [D(7)] is defined by (4.9). Then it will be automatically
Sy—invariant, and will satisfy (4.2).

In other words, it remains to show that all linear relations between [D(7)] are also
satisfied by the right hand sides of (4.9). Again, for the codimension one case this
is a built-in property: Keel’s relations (3.3) between [D(7)] are precisely reflected
in the quadratic relations (1.4) postulated for any ACF. To deal with arbitrary
codimension, we will start with a generalization of Keel’s relations.

4.7. Basic linear relations. As in 3.6, we will work with classes of boundary
strata in H*(Mgs), represented by the classes of good monomials in Fgmod /5.

Let |S| > 4. Consider a system (7,v,1%,7, k,1) where 7 is an S-tree, v € V; is a
vertex with |v| > 4 and 1,7, k,I € F,(v) are pairwise distinct flags (taken in this
order). Put T = F,(v)\ {%,7,k,1}. For any ordered 2-partition of T, o = {T}, T3},
(one or both T; can be empty) we can define two trees 7'(a) and 7”(a). The
first one is obtained by inserting a new edge ¢ at v € V with branches {¢,7,7}}
and {k,1,T2} at its edges. The second onc corresponds similarly to {k,7,T,} and
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(7,1, T3}. We remind that S(7) is the set of labels of tails belonging to the branch
of i: see Figure 4.

4.7.1. Proposition. We have

R(r,v,1,3,k,1) := Z[m(r'(a)) - m(t"(a))] € Is. (4.10)

Proof. Choose i € S(i), j € S(j), k € S(k), I € S(I), and calculate R;jpm(r) €
Is, where Ryjg; is defined by (3.3). Consider for instance the summands D,m(r)
for 2j0kl.

From the picture of 7 it is clear that D, does not divide m(7). If Dym(7) does
not vanish modulo Ig, we must have D,m(7) = m(o x 7}, and o x 7 is of the type
7'{@). Similarly, the summands of D,m(7) with kjoil are of the type m(r"(«)).

4.8. Theorem. All linear relations modulo I's between good monomials of de-
gree v + 1 are spanned by the relations ({.10) for |E.| =1r.

Proof. For r = 0 this holds by the definition of Is. Generally, denote by H,s
the linear space, generated by the symbols p(7) for all S—isomorphism classes 7 of
stable S—trees satisfying the analog of the relations (4.10)

(10,55, k1) =) [u(r'(a)) = u(v"(a))] = 0. (4.11)

Denote by 1 the symbol u(p) where p is the one-vertex tree.

4.8.1. Main Lemma. There ezists on H.s a structure of Hg-module given by
the following multiplication formulas reproducing (8.7), (3.8) and (3.9):

Dyp(r) = (o x 7), (4.12)
if Dem(7) is a good monomial;

Dyu(r) =0, (4.13)
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if there exists a dwisor Dy of m(r) such thet a(o,0') = 4;

Dop(ry == > pltrre(r)) = > pltrre(T)), (4.14)
Tch TrCcTy
ITI>1 I7]>1

if D, divides M (1), and e corresponds to . The notation in (4.14) is the same as
in (3.9).

Deduction of Theorem 4.8 from the Main Lemma. Since the monomials
m(7) satisfy (4.10), there exists a surjective linear map a : H,s — Hg, p(7r) —
m(7). On the other hand, from (4.12) it follows that m(o)u(r) = u(e x 1) if
m(o)m(r) is a good monomial. Hence we have a linear map b : H; — H.s :
m(7) — p(r) = m(7)1 inverse to a. Therefore dim H.s = dim Hg so that the
Theorem 4.8 follows.

We now start proving the Main Lemma.

4.8.2. (4.14) is well defined. The right hand side of (4.14) formally depends
on the choice of %, 7, k,I. We first check that different choices give the same answer
modulo {4.11). It is possible to pass from one choice to another by replacing one
flag at a time. So let us consider ' # 1,7, k,{ and write the difference of the right
hand sides of the relations (4.14) written for (r,v,%,J,k,1) and (r,v,%,3, k,1). The
terms corresponding to those T° that do not contain {7,i'} cancel. This includes all
terms with T C T,. The remaining sum can be rewritten as

- Y [eltrroy (7)) = mltrrug ()] (4.15)

Tch \{-{!;’ )5}

where now T' can be empty.

We contend that (4.15) is of the type (4.11). More precisely, consider any of the
trees troygy(7), trpuy(7) and contract the edge whose vertices are incident to
the flags 7,7,7. We will get a tree o and its vertex v € V. The pair (o,v) up to
a canonical isomorphism does not depend on the transplants we started with. In
F,(v) there are flags z, 5,7 and one more flag whose branch contains both k and {
and which we denote h. Then (4.15) is —r(0,v,1, 7,7, h). This is illustrated by the

Figure 5.
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4.8.3. Operators D, on H,s pairwise commute. We have to prove the
identities
Do\ (Do, 1i(7)) = Do, (Dg, u(7)). (4.16)

Consider several possibilities separatcly.

i). There ezists a divisor Dy of m(t) such thata(oy,0) = 4, so that D, p(r) = 0.

If D,,pu(7) = 0 as well, (4.16) is true. If Dy, pu{7) = p{o2 x 1), then D, divides
mfog x T), and (4.16) is again true. Finally, if D,, divides m(7), then o2 # o
(otherwise m(7) would not be a good monomial). Hence the transplants &ry o(7)
involved in the formula of the type (4.14) which we can use to calculate D,,p(7)
will all contain an edge corresponding to o so that D, (tr7 (7)) = 0, and (4.16)
again holds.

The same argument applies to the case when Dg, u(7) = 0.

From now on we may and will assume that for any divisor D, of m(r) we have
a(o,01) <3, a(o,02) < 3, and that oy # o2.

ii). a(oy,02) =4 and D,, divides m(r).

Then D,, does not divide m(7), so that Dy, ju{7) = pu(o1x7), and Dy, (D (7)) =
0. On the other hand, D,, u(7) is a sum of transplants to the midpoint of the edge,
corresponding to o;. Each such transplant has an edge giving the 2-partition o3,
so that D, (Dg, (7)) = 0.

The case a(0y,02) =4 and D,, /m(7) is treated in the same way.

Hence from this point on we can and will in addition assume that a{oy,02) = 3.

iil). Dy, does not divide m(r).

If D,, does not divide m(r) as well, then Dy (D, u{7)) = Dy, puog x 7) =
plor x oo x 1) = Dy, (Dg, (7). If D,, divides m(7), we will use a carefully chosen
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formulas of the type (4.14) for the calculation of D,,pu(r). Namely, let v, be the
(unique) vertex of 7 which gets replaced by an edge in o7 X 7, and let e; be the
edge of T corresponding to D,,. Let ug, u3 be the vertices of e such that u; can
be joined to v; by a path not passing by es.

Consider first the subcase uy # v1. Choose some 4, § € Fy(uz) and k l € Fruy)
in such a way that [ starts a path leading from u, to v;. Use these 7,7, k,1 in a
formula of the type (4.14) to calculate Dy, p(7) and then Dy, (Dy, (7)), that will
insert an edge instead of the vertex v; which survives in all the transplants entering
D, u(r). Then calculate Dy, (D, 42(7)) by first inserting the edge at vy, and then
constructing the transplants not moving 1, 7, k I. Since by our choice of [ we never
transplant the branch containing v;, the two calculations will give the same result.

Now let v; = uy. Let {S1, S2} be the 2-partition of S corresponding to o;. Since
o1 % T exists, {S1, Sz} is induced by a partition of F,(v;) = S; 1 Sy. We denote
by S the part to which the flag (v; = wuy, ez) belongs. Let T = S \ ({(v1 =
uy,ez)} 1] Fr(uz2)). This set is non-empty because otherwise e; would correspond
to {S1,S2} and we would have o, = 3. Take 1,7 € Fr(ug), k € 5 and I € T: sce
Figure 6.

Now consider D, (Dg, 1(7)) and D,, (Dg, 1(7)). To calculate the first expression
we form a sum of transplants of ¢, x 7. To calculate the second one, we form
transplants of 7, and then insert an edge at vy = u;.

The transplants corresponding to the branches at u, will be the same in both ex-
pressions. The transplants corresponding to the subsets T € 7'\ {I} will also be the
same. In addition, the second expression will contain the terms —Dg, (p(trr e, (7)))
where TN S; # @. But each such term vanishes. In fact, consider the 2-partition

= {R1, Ry} of S corresponding to the edge of trr.,(7) containing the flag
(v1 = u1,ez), and let k,1 € Ry. A glance to the third tree of the Figure 6 shows
that a(p, 1) = 4, because if £ € TN Sy, t € S(E), then ktoyil and kipit. Hence the
extra terms are irrelevant.

The case when Dy, does not divide m(r) is treated in the same way. It remains
to consider the last possibility.

iv). Dy, and D,, divide m(t), a(o1,02) = 3.
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Denote by e; (resp. e3) the edge corresponding to oy (resp. o2). Let uy,usg
(resp. vy, v2) be the vertices of ey (resp. ez) numbered in such a way that there is
a path from wu; to vy not passing through ey, ez (the case uz = v is allowcd) To
calculate the multiplication by D,, choose ¢,7 € Fy, (1) \ {(u1,e1)}, [ on the path
from uy to vy if ug # vy, and [ = (v1, e2) if uz = vy; k € Fr(vg) \ {l} To calculate
the product by D,,, choose snmlarly kU € Fr(va) \ {(vz, 62)} i € F.(v;) on the
path from v to wug, if v1 # ug, and ¢’ = (ug, e1) if vy = ua, j' € F,(v1) (see Figure
7).

The critical choice here is that of [ and 7’. It ensures that calculating Dy, (Dg, 14(7))

and Dy, (Dg, pu(1)) we will get the same sum of transplanted trees. This ends the
proof of (4.16).

4.8.4. Compatibility with /s—generating relations. If D, D,, = 0 be-
cause a(oy,02) = 4, one sees that D, (D, (7)) = 0 looking through various
subcases in 4.8.3. It remains to show that Rijxip(7) = 0 where Ry is defined by
(3.3).

Consider the smallest connected subgraph in 7 containing the flags ¢, j,k,{. The
Figure 8 gives the following exhaustive list of alternatives. Paths from ¢ to j and
from k to [: i) have at least one common edge; ii) have exactly one common vertex;
iii) do not intersect.

Consider them in turn.

1). Let e be an edge common to the paths 75 and kl. Denote by p the respective
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2-partition. Then ikpjl or ilpkj. Therefore any summand of R;;x annihilates D,
so that R;jkiu(7) = 0 in view of (4.13).

ii). Let v be the vertex common to the paths 7 and kl. Then exactly the same
calculation as in the proof of the Proposition 4.7.1 shows that

Rijup(r) = Y (' (@) = u(r"(@))] = 0
(notation as in (4.10) and (4.11)).

ii1). This is the most complex case. Let us draw a more detailed picture of 7 in
the neighborhood of the subgraph we are considering (Figure 9).

Let v; be the vertex on the path i which is connected by a sequence of edges
€1,.--,€m {(m > 1) with the vertex v, on the path kl so that e, has vertices
(Va, Va41) in this order. Let T, be the set of flags at v, which do not coincide with
7,7, k,1, and do not belong to eq_1, €q.

Consider any summand D, of Ry If jkoil, then Dop(7) = 0 because each
edge e, determines a partition p of § such that 77 pkl. From now on we assume that
ijokl. Then D, pu(7) can be nonzero if one of the two alternatives holds:

a). For some v,, there exists a partition T, = T, [[ T2 (with |T.| > 1,|T) > 1,
except for the case a = 1 where 7] can be empty, and @ = m where T, can be
empty) such that the following two sets

Si=SOIIsOHIIsa@D]IT- TIs@.
S2=S@N][S@ur) [T [T S@m) [T SR T S

form the 2-partition corresponding to ¢. In this case
Dop(r) = plo x 7),

and ¢ x 7 is obtained by inserting a new edge at v, and by distributing T, and 7.
at different vertices of this edge.

b). For some e,, the two sets

S1=8O TG [T s,

i<a
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S2=( [ s@n]Is®mIs®

i2a+1l
form the 2-partition corresponding to o.

In this case D, divides m(7), and in order to calculate D, u(7) using a formula
of the type (4.14) we must first choose two pairs of flags at the two vertices of v,.

Contributions from a) and b) come with opposite signs, and we contend that
they completely cancel each other.

To see the pattern of the cancellation look first at the case a) at v;. It brings
(with positive sign) the contributions corresponding to the following trees. Form all
the partitions Ty = T{ [[ T} such that T} # @, where Ty = F.(v1) \ {, 7, (v1,e1)}.
Transplant all T}'-branches to the midpoint of e;. Denote the new vertex v]. The
result is drawn as Figure 10.

Now consider the terms of the type b) for the edge e;. If m = 2, we choose for
the calculation of D,, u(7) (where oy corresponds to e;) the flags 7,7, k, 1. If m > 2,
we choose the flags 7, 7, (v2, €1),t € T5. Then we get the sum of two contributions.
One will consist of the trees obtained by transplanting branches at v;. They come
with negative signs and exactly cancel the previously considered terms of the type
a). If m = 2, the second group will cancel the terms of the type a) coming from vs.

Consider a somewhat more difficult case m > 2. Then this second group of
terms comes from the trees indexed by the partitions Ty, = Ty [[ T3, t € T3, Ty # 0.
Branches corresponding to T, are transplanted to the midpoint v] of the edge e;.
These terms come with negative signs: see Figure 11.
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These trees in turn cancel with those coming from the terms of the type a) at
the vertex v, with positive sign. However, there will be additional terms of the type
a) for which ¢ € T;. They will cancel with one group of transplants contributing to
D,, p(7) where o3 corresponds to the edge e; of the Figure 9, if for the calculation
of D, p1(7) one uses (4.14) with the following choice of flags: (v, e1),t at one end,

(v3,e1), some t' € Ty at the other end (this last choice must be replaced by k,, if
m = 3).

The same pattern continues until all the terms cancel.

4.8.5. Compatibility with relations (4.11). By this time we have checked
that the action of any element of Fg/Is on the individual generators p(7) of H,s
is well defined modulo the span I,g of relations (4.11). It remains to show that
the subspace in @, ks(7) spanned by these relations is stable with respect to this
action. But the calculation in the proof of the Proposition 4.7.1 shows that

T(T, ’U,’l:,j, k, l) = m(‘r)r,-jk; mod I.‘S,

where rijx; is obtained from Ryjx by replacing m(o) with pu(c). To multiply this
by any element of HZ we can first multiply it by m(7), then represent the result as
a linear combination of good monomials, and finally multiply each good monomial
by 7rijx. The result will lie in I,g.

This finishes the proof of the Main Lemma and the Theorem 4.8.

4.9. End of proof of the Theorem 4.3. According to the remark at the last
paragraph of 4.6, it remains to show that if we start with an ACF Y,, : H®" —
k, n > 3, (Definition 1.3.1) and extend these polynomial maps to all stable trees o
by putting

Ys (®ies, Vi) = (®uev, YF,(::))(@iGS,'Yi ® A®E") (4.16)
then Y, will satisfy the following version of the relations (4.10):
2 Y.rl(a) = Z YT”(ﬁ)' (417)
o B

The notation is explained in the first paragraph of 4.7. Recall that we start with
a tree 7, in which a vertex » and four tails %, 7, k,! arc marked. The trees 7/, 7"
are obtained from 7 by inserting an edge at v. This can be done in many ways,
parametrized by 2-partitions of F,(v). They induce 2-partitions of {7,7, k,1}. We
put to the left those which break this quadruple into {7, 7} N {k,[}, and to the right
those which break it into {7,1} N {k,7}. The remaining partitions do not contribute.

To prove (4.17), rewrite every summand using (4.16). Look at the factor A
corresponding to the inserted edge, and represent it as Y A,g%° ® A,. After some
fumbling with indices, one can recognize in the obtained expression a linear com-
bination of identities (1.4) written for various arguments and the one vertex tree
with flags S-.



