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The restriction homomorphism Res~ : Wha(X) --:. WhH(X)

for G a compact Lie group

Sören lllman

Let G be a compact Lie group and let H be a closed subgroup of G . The main ob­

jective of this paper is to establiah a construction of the following form. Given a finite

G-eW complex X there exist a finite H-eW complex RHX and an H-homotopy

equivalence

(1)

such that trus construction is unique up to simple H-homotopy type; Le., if

1]' : X ----+ RirX ia another choice then 1]' 0 1]-1 : RHX~ RirX is a simple

H-homotopy equivalence. (Here 1]-1 denotes an H-homotopy inverse of 1].) The

notion of equivariant simple-homotopy equivalence is as defined in [3]. The operation

of restricting the transformation gro"Up G, of an arbitrary G-eW complex, to a closed

subgroup H of G is treated in [8], and in fact we use the same construction in this

paper. Dur main task in trus paper is then to prove that in the case of a finite a-ew

complex X the construction has the additional property that it produces a finite

H-eW complex RHX wruch is uniquely determined up to simple H-homotopy type.

Here we should recall the following two facts. First, the H-eW RHX ia in general not

H-homeomorphic to the H-space X. For more details on trus see [8], in particular

the exampie given in [8, Section 2] . Secondly we recall that equivariant Whitehead tor­

sion ia Mi an equivariant topological invariant. This means that there may exist two

finite H-eW complex structures Y1 and y 2 on the same H-space Y such that the

identity map of Y, idy : Y1~ Y2 is not a simple H-homotopy equivalence
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between the finite H-CW complexes Y1 and Y2 . Tbus we see that although one can­

not construct an H-CW complex structure on the H-;;pace X HseH, one can establish

a result that in fact is more precise and says something more, namly one can construct a

finite H-CW complex RHX which represents a unique sim~le H-homotopy type.

This construction also has tbe property that dim(RHX)K = dim XK , for every closed

subgroup K of H and mOIE~over the H-isotropy types occuring in the H-spaces X

and RHX are exactly the same. We call such an H-homotpy equivalence

fJ: X --+ RHX a preferred H-reduction of X. The existence of such a class of pre­

ferred H-reductions of X is proved in Section 6.

Then we go on to establish that if X and Xl are finite G-CW complexea of the

same simple G-homotopy type then the finite H-CW complexes RHX and RHXl

have the same simple H-homotopy type. A result of this form (see Corollary 8.2) leads

to the definition of a well-defined homo~orphism Res*: WhG(X) ---t WH(X) . Recall

that an element of the equivariant Whitehead group WhG(X) is given aB an equi­

valence class sG(V,X) of a finite G-CW pair (V,X) , where the inclusion X ~ V is

a G-homotopy equivalence, and the relation is the one of formal G-deformations of

V rel X (see [3]). The definition of Res~ can then be given by

Res~(SG(V,X))= (RHV,RHX) E WhH(RHX) and WhH(RHX) can moreover be

interpreted aB a group that we denote by WhH(X). We prove that

ReS~ : WhG(X) --+ WhH(X) is a homomorphism and we also establish the basic fact

that for any G-homotopy equivalence f: X --+ Xl we have that the H-equivariant

Whitehead torsion of the induced H-homotopy equivalence RHf: RHX --+ RHX1 is

given by

(2)
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The main result of tbis paper, Theorem 6.1, which proves the existence of preferred

H-reductions , was announced in [7, Theorem C], and the corresponding restriction
G -

homomorphism ResH : WhG(X) ----+ WhH(X) is discussed in Section 2 of [7]. (In

[7] we denoted RHX by eshH(X).)

A different approach to the restriction homomorphism between equivariant

Whitehead groups is given in the forthcoming book by W. Lück [9].

We shall in a later paper prove the transitivity property Res~ 0 Res~ = Res~ ,

where K < H < G . Curiously enough tbis tranaitivity property is a non-trivial fact.

The reader should be advised that the present form of the paper at hand is a some­

what preliminary one.

I wish to thank the Max-Planck-Institut für Mathematik for providing excellent

working conditions.
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1. PreliIDinaries

Let G be a compact Lie group. We will consider the basic properties of G-eW

complexes a.s well-known and use them without auy further reference. For example the

fact that a G-eW pair (X,A) haB the G-homotopy extension property and the equi­

variant skeletal approximation theorem, also in its relative form, are used freely in this

paper. The following statement concerning different choices of characteristic G-maps

for a G-eell c does perhaps not appear in the literature, so we present it here since we

have explicit use of it in this paper.

kmma 1.1. Suppose that {,e': (nn )( G/p,Sn-l )( G/P) --t (c,c) ~ (Xn,Xn- 1)

are two characteristic G-maps for some G--cell c of X . Then there exists go 'E. N(P)

and an isometry a:!Rn -----t!Rn such that the G-maps

e: (no x G/P ,So-l )( G/P) --t (Xn,Xo- 1) and

(a x ~) 0 e' :(nn x G/P ,Sn-l )( G/P) -----t (Xn,Xn- 1) are G-homotopic. In parti­

cular we have that the G-maps el : So-l x G/P --t Xn- 1 and

(a x ~) 0 {' I :Sn-l x G/P --t Xn- 1 are G-homotopic.

In Lemma 1.1 one can always choose a:!Rn -----t!Rn to be either the identity map on

!Rn or the isometry given by a(x1, ... ,xn) = (Xl' ... ,xn-l'- xn) . These two alterna­

tives then give a map from Sn-l to itself of degree 1 or degree -1 , respectively. The

map gO: G/P --t G/P , given by gP t--+ ggoP for all gP E. G/P , is areal analytic

G-isoIDorphisID of the real analytic G-manifold G/P to itself. The proof of Lemma

1.1 is easy and left to the reader.

We will also have use of the following weakened version of the notion of skeletal map.
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Definition U. Let (A,B) be a finite G-eW pair and let X be a finite G-eW

complex. We Bay that a G-map cp: B -----+ X is (A,B)-skeletal if for every G-eell

C , say oe dimension m, in A-B , we have cp( c) ( Xm- 1 .

Observe that if cp: B -----+ X is an (A,B)-skeletal G-map then the adjunction

space X Ulp A is a finite G-eW complex.

In [10] Matumoto and Shiota show that one ca.n aBsociate to any compact smooth

G-manifold a well-defined simple G-homotopy type. In this paper we only use a very

special case of this result, na.mely the following one. Let H be a c10sed subgroup of G

and consider the standard action of H by multiplication from the left on a homogeneous

space G/P ,where P denotes a c10sed subgroup of G . Then one can give the compact

H-manifold G/P a well-defined simple H-homotopy type in the following way. Bya

well-known theorem, due independently to Mostow [11] and Palais [12], there exists a

linear representation space IRn(p) for G, where p: G~ O(n) , and a point

v E. (Rn(p) such that G = P . Then the G-orbit through v is areal analytic G-sub-v

manifold of IRn(p) which ia G-isomorphic to G/P. We now consider IRn(p) aB a

linear representation space of the closed subgroup H; i.e., we consider the linear repre­

sentation space IRn(pl H) . It is a well-known result that the orbit space [Rn(p IH)/H

can be considered aB a semi-algebraic subset of some euclidean space IRk . Since the

H-manifold G/P is a real analytic H-submanifold of IRn(p IH) it follows that the

orbit space (G/P)/H, where (G/P)/H ( IRn(p IH)/H ( IRk , is a subanalytic subset of

IRk .

Let F be a finite H-eW complex such that the orbit space F /H is a finite simpli­

cial complex. We say that an H-homeomorphisID
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N

u:F~G/P

is a distinguished H-triangulation of the H-manifold G/P if the induced map

ü : F/R --+ {G/P)/H is a subanalytic triangulation of the subanalytic set (G/P)/H.

The existence of distinguished H-triangulations ia a consequence of the result con­

cerning existence of subanalytic triangulations of subanalytic sets, due to Hironaka [2]

and Hardt [1], together with the lifting procedure of Matumoto and lllman, see [4],

which gives an H-eW structure on an H-ftpace whose orbit space has a well-behaved

triangulation. We can now state the result that gives a well-defined simple H-homo­

topy type to the H-manifold G/P.

Theorem U. There exists a distinguished H-triangulation u: F --+ G/P of the

H-manifold G/P . If u: F --+ G/P and u': F --+ G/P are distinguished

H-triangulations of the H-manifold G/P 1 then u' 0 u-1 : F --+ F' is a simple

H-homotopy equivalence.

The uniqueness part of Theorem 1.2 follows from the fact that two subanalytic

triangulations of a 8ubanalytic set have a common subanalytic subdivision, see Hironaka

[2] and Hardt [1], and the fact that any H-equiva.riant subdivision map of finite

H-eW complexes is a simple H-homotopy equivalence, see [6, Theorem 12.2] .

We will have use of the following result.

Lemma 1.4. Let f: Y --+ Z be a simple H-homotopy equivalence between finite

H-CW complexes, and let L be an ordinary finite CW complex. Then

id )( f: L )( Y --+ L )( Z is a simple H-homotopy equivalence.
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Thie ie an immediate consequence of the product formula for equivariant Whitehead

torsion [5], but one can also easily give a direct proof.

Furthermore we will need the following.

Lemma 1.5. Suppose that (L,Lo) ie a finite CW pair such that L collapses to LO'

Let F be a finite H-eW complex. Then the H-eW complex L)( F H--eollapses to

La )( F .

The proof of the above lemma is easy and left to the reader.

Definition l-..§.. Let U be an arbitrary H~pace and let YI and Y2 be finite

H-eW complexes. We say that two H-maps f1 : U --+ YI and f2 : U --+ Y2 are

s-equivalent if there exists a simple H-homotopy equivalence u: YI --+ Y2 such

that U 0 fl is H-homotopic to ~ .

If (U,Ua) is an arbitrary H-pair and (Cl'D1) and (C2,D2) are finite H-eW

pairs we S8.y that the H-maps f1 : (U,Ua) --+ (Cl'D1) and f2 : (U,UO) --+ (C2,D2)

are s-equivalent , aB maps of pairs, if there exists an H-map a: (CI,DI) --+ (C2,D2)

such that the maps a 0 fl and ~: (U,Uo) --+ (C2,D2) are H-homotopic as maps of

pairs and a: Cl --+ C2 and al : DI --+ D2 are simple H-homotopy equivalences.
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2. Background information on eguivariant homotopy type of adjunction spaces

Let H denote an arbitrary compact Lie group. (In tbis section and in Section 3 the

role of the transformation group H is completely formal, and hence H could as well be

any locally compact group.) By X and Y we denote arbitrary H-spaces and (A,B)

and (C,D) denote H-pairs, which have the H-homotpy extension property, and

where B and D are c10sed in A and C, respectively.

The map k(~) in Lemma 2.1 is defined aB the composite map

where the first and last map are natural G-homeomqrphisms, which we shall use as

identifications. Since A)( {O} UB )( I and A)( {1} U B )( I are strong H-defor­

mation retractions of A)( I it follows that both 10 and I1 are H-homotopy equi­

valences. (A more detailed discussion of the H-homotopy equivalence k(~) can be

found in [8, Section 3] .) In this section we simply state the results, and leave the proofs

to the reader.

All results in tbis section are well known and they have easy proofs. (Proafs of Lemma

2.4 and 2.5 are given in [8, Section 3] .)

Lemma 2.1. Suppose that the H-maps <PO,<Pl: B --+ X are H-homotopic and that

~ : B )( I --+ X ia an H-homotopy from '1'0 to <P1 . Then

k(~) : X U A --+ X U A
<PO <P1
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ia an H-homotopy equivalence. Furthermore k(C)) Ix = idX and k(~-l) is an

H-homotopy inverse of k(~) rei X .

Lemma 2.2. Suppose that C},~': B )( I ---+ X a.re two H-homotopies from <PO to

'PI such that c) and C)' are H-homotopic rei B )( t . Then the two H-homotopy

equivalences

k( C}),k(~ ') : X U A ---+ X U A
<PO <PI

are H-homotopic rei X . Ey abuse of notation we denote the conclusion of Lemma 2.2

simply by k(C}) = k(C}') .

If ~ : B )( I ---+ X ia an H-homotopy !rom 'PO to 'Pi and n: B )( I ---+ X ia an

H-homotopy from <PI to <P2 the join ~ *n : B )( I ---+ X ia an H-homotopy from

<PO to 'P2'

Lemma 2.'1. We have

k( C} * {}) = k(n) 0 k( C}) : X U A ---+ X U A .
<PO <P2

If f: X ---+ Y ia an H-map we let

7 : X U A ---+ Y Ur A
'P Itp
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be the H-map induced by f and by the identity map on A. We call T the canonical

extension of f. We have T IX = f .

Lemma 2.4. Suppose that the H-maps fO,fl : X --+ Y are H-homotopic and that

F : X )( 1--+ Y is an H-homotopy !rom Co to Cl . Then the diagram

T
X U A O. Y Uc A

'" ~ OI{J

1",~ 1k(O)
I Y U A

Cl

is H-homotopy commutative. Here 0 = F 0 (cp )( id) : B )( 1--+ Y ,and k(O) de­

notes the corresponding H-homotopy equivalence given by Lemma 2.1.

Lemma 2.5. If C: X --+ Y is an H-homotopy equivalence then so is its canonical

extension T: X Ucp A --+ Y Ufcp A .

Lemma 2.6. Let ~: B )( I --+ X be an H-homotopy !rom <PO to cpl' and let

f : X --+ Y be an H-map. Then the diagram

XU A T • YUf A
CPo CPo

k( iJi) 1
T

1k(foiJi)

xu A • YUf A
C{Jl CPI
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is H-homotopy commutative.

Ha: (A,B) ----+ (C,D) is an H-map we define

to be the H-map induced by the identity map on X and the H-map ° on A. Ob­

serve that a IX = idX .

Lemma 2.7. Suppose that the H-maps °0,°1 : (A,B) ----+ (C,D) are H-homotopic

(as maps of pairs) and that A: (A,B) )( 1----+ (C,D) is an H-homotopy from 00 to

01 . Then the dfagram

x Ut/n
O

A

k(r) 1
xUt/n11 A

is H-homotopy commutative. Here r = 1/J 0 (A I) : B x I ----+ X ,and k(r) denotes

the corresponwng H-homotpy equivalence as given by Lemma 2.1.

Lemma 2.8. Suppose that 0: (A,B) ----+ (e,D) is an H-homotopy equivalence of

H-pairs . Then a: X Ut/n I A ----+ X U1/J C is an H-homotopy equivalence.

kmma 2.9. Suppose that Y: D x I ----+ X is an H-homotopy from 1/JO to 1/J1 and

that 0: (A,B) ----+ (C,D) is an H-map. Then the diagram
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-
X Ut/Joo I A

0
I Y U"O C

k' 1
-

1k

X U1/J10 I A
0

• X U"lO I C

is H-homotopy commutative. Here k = k(ii) and k' = k(v 0 (0 I )( id)) .

Lemma 2.1Q. Let f: X --1 Y and 0: (A,B) --1 (C,D) be H-maps. Then the dia-

gram

x U1jn I A T
.YUr 1/n I A

a 1 1a

X U,p C I Y Urt/J C

commutes.
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3. k-eguivalence and A-maps

Assume that we are given a diagram of the form

A 0 .c
U U

(S) B 01 .0

~l l~
X !J IY

where a: (A,B) ----. (C,D) is an H-homotopy equivalence of pairs and 1]: X ----. Y

is an H-homotpy equivalence and where the Iower square of the diagram is H-homo­

topy commutative. Let r!: B )( 1----. Y be some H-homotopy from 1] 0 <p to

I' 0 a I . Then we can form the composite map

A(SjO) : X U A~ Y U A k(O} I Y U I A Ci". y U C.
<p 1NJ J1ll Jl

The maps 1j, k(O) and Ci" are H-homotopy equivalences by Lemma 2.5,2.1 and 2.8,

respectively. Furthermore we have 1j IX = 1]) k(fl) IX = idX and a IX = idX ' and

hence A(Sjr!) IX = 1] . Also recall that for a fixed H-homotopy n the map k(n) ia

determined up to H-homotopy rei X . Thus the diagram (8) and a fixed choice of an

H-homotopy f2: B )( I~ Y from 1] 0 <p to Jl 0 0 I gives U8 an H-homotopy equi­

valence

A(Sjf2) : X Ucp A ----i Y UI' C
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such that ~(Sin) IX = idX and A(SjS1) is uniquely determined up to H-homotopy

rel X.

We shall show below that for two different choices oC H-homotopics n and n'
!rom f/ 0 tp to Ji 0 Cl I the corresponding H-homotopy equivalences ~(Sj{}) and

~(S;n') are k-equivalent in the sense defined below.

Definition 3.1. We say that two H-maps Cl : U ----+ Y Ut;. C and

~ : U --+ Y U C are k--equivalent if there exists an H-homotopy A: D x 1--+ Y
~

!rom t;. to J."2 such that the diagram

is H-homotopy commutative.

Lemma 3.2. The k--equivalence relation ia both symmetrie and transitiv. .

Proof. This followa immediately from Lemma 2.1 and Lemma 2.3.

o

Lemma 3.3. Let f1 : U --+ Y Ut;. C and f2 : U ----+ y U~ C be k-equivalent

H-maps . Then we have:
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(a) Ir 0: Y ----. Z ia an H-map the H-maps 7J 0 f1 : U ----+ Z U0#1. C and

7J 0 ~ : U ----. Z UB~ C are k-equivalent.

(b) If n: D x I --+ Y ia an H-homotopy !rom l4J. to 1"'3 we have that the

H-maps f1 : U ----+ Y U#1. C and k(O) 0 fO: U --t Y UILJ C are k--equivalent.

Proof. (a) is an immediate consequence of Lemma 2.6, and (b) follows !rom Lemma 2.3.

o

In Lemma 3.4 below U and Y denote arbitrary H-spaces. By

Cl : (A,B) ----+ (C,D) we denote an H-homotopy equivalence of pairs and

e:(C,D) --+ (A,B) ia an H-homotopy inverse of Cl. We let 1/J: B --+ Y and

p: D --t Y denote arbitrary H-maps.

Lemma 3.4. Suppose that f1 : U ----+ Y Ut/J A and f2 : U ----+ Y Upa I A are k-equi­

valent H-maps. Then the H-maps m-I
0 f i : U ---+ Y U?/-( I A and

Ci 0 ~ : U ----+ Y UP C are k--equivalent.

Proof. We consider the following diagram



-16-

Here k = k(A) ,wher~ A: B x 1-----+ Y ia some H-homotopy from 1/J to IJaI ,and

the upper triangle is H-homotopy commutative. Let k' = k(A 0 ({ I x id)) , then the

left band side square is H-homotopy commutative by Lemma 2.9. Let

~ : (C,D) x 1-----+ (C,D) be an H-homotopy !rom a 0 e:(C,D) --t (C,D) to the

identity map. Then J' 0 <I» I :D )( 1-----+ Y is an H-homotpy from J1ll1 el to J1., and

we set k1 = k(J' 0 <1») . Since a 0 { =Ci{ it follows by Lemma 2.7 that the lower right

band aide triangle is H-homotopy commutative. Thus the above diagram ia H-homo­

topy commutative. By Lemma 2.3 we have that k1 0 k' = k(r) t where

r : D x I -----+ Y ia an H-homotopy from t/i, I to p.. 1t now follows that

k(r) 0 (0-1
0 f1 ja H-homotopic to a 0 ~ ; i.e., the H-map (0-1

0 f1 js k-equi­

valent to 0 0 S.
o

Lemma 3.5. The H-homotopy equivalences

(0-1
0 ~ : X U A --t Y U Ccp 1I

and

A(S;!l) : X U A -----+ Y U Ccp J'

are k-equivalent .

Proof. Since fj: X U A -----+ Y U A js k-equivalent to
CP fNJ

k(O) 0 ij: X Ucp A -----+ Y UIJaI A we have by Lemma 3.4 that

m-1
0 fi: X Ucp A --I Y Urwe I C = Y Uv C ia k--equivalent to

Ci 0 k(O) 0 1j = A(SjO) : X Ucp A -----+ Y Up. C .

o
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Corollary U. Let fl,O I : B )( 1---+ Y be two H-homotopics from 11 0 <p to

J.' 0 0 I . Then the H-homotopy equivalences A(S;O) and A(S;l1 ') are k-€quivalent .

Proof. This is an immediate consequence of Lemma 3.5, since k-equivalence is a tran­

sitiv relation.

o

Given the H-homotopy commutative diagram (8) we will by

denote an H-homotopy equivalence of the form A(5;fl). Consequently "\(S) denotes

an H-homotopy equivalence, uniquely determined up to k-equivalence, by the dia­

gram 5 ,. We sometimes call "\(5) the "\-map induced by the diagram (5). On same

occasions we will denote the A-map induced by (5) by

and such a map is uniquely determined up to k-equivalence.

Furthermore the following holds. Suppose
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A °1 IC

U u
(Sl) B °11 .D

~1
"1

li'I
X .y

is an H-homotopy commutative diagram such that 0 1 : (A,B) ----t (C,D) is

H-homotopic to the H-map 0 : (A,B) ----t (C,D) in (S) and such that

"1 : X ----+ Y is H-homotopic to Tl: X ----+ Y in (S). Then we have

Corollary 3.7. The map

is k-equivalent to A(S) = A(fJ,a) .

Proof. This follows from Lemma 3.5.

o

Let

A 0 .C

U u
(Sl) B 01 ID

~1 Ip

X 1] IY
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and

C 7 IE

U U

(82) D 71 .F

~l l~
y ()

I Z

be H-homotopy commutative diagrams, where a : (A,B) --+ (C,D) and

1: (C,D) --+ (E,F) are H-homotopy equivalences of pairs, and fJ and () are

H-homotopy equivalences, and cp, J.' and w are H-maps . Let {l1: B x 1--+ Y be

an H-homotopy from 1] 0 cp to J.' 0 al ,and {l2: D x 1--+ Z an H-homotopy

from 8 0 J.' to w 0 'Y I .This gives us the ~-maps

and

The "composite" of the diagrams (81) and (52) gives us the H-homotopy commutative

diagram
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A 1 0 0 .E

U U

(8) B~F

~l 1w

X 80." .z

Let n: B )( I ---+ Z be any H-homotopy from 8 0 fJ 0 cp to W 0 ('Y 0 0 I) .

Lemma U. The composite map

ia k--equivalent to >'(5jO): X Ucp A ----+ Z Uw E .

Proof. Let e: (C,D) ---+ (A,B) be an H-homotopy inverse of 0, and let

, : (E,F) ---+ (C,D) be an H-homotopy inverse of "(.

Proof. By Lemma 3.5 (0-1
0 11 ia k--equivalent to ,\(S1j01)' Hence Lemma 3.3 a

and b imply that 7J 0 (0-1
0 11 ia k-equivalent to k(n2) 0 7f 0 '\(51;°1) . Applying

Lemma 3.4 to these k--equivalent H-mapa we conclude that (~-1 0 7J 0 (0-1
0 11 is

k-equivalent to "1 0 k(112) 0 7J 0 >'(51;°1) = ,\(52jn2) 0 '\(51;°1) . But

(~-1 0 7J 0 (0-1
0 11 = (ro-n-1

0 "D01j , by Lemma 2.10, and by Lemma 3.5 this map

ia k--equivalent to ..\(Sj!l). ThUB we have shown that ;\(52;°2) 0 >'(81j01) ia k--equi­

valent to '\(Sj!l) .

o
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4. Eguivariant simple-homotopy~ Qf adiunction spaces

Proposition 4.1. Let Y be a finite H-eW complex and (C,D) a finite H-eW pair.

Suppose that JLo'JL.t: D --i Y are skeletal H-maps that are H-homotopic and that

A : D )( I --i Y is an H-homotopy !rom Ilo to #1 . Then

k = k(A) : Y UIlo C --i Y Upt C

is a simple H-homotopy equivalence.

Proof. Ey the relative equivariant skeletal approximation theorem A is H-homotopic
N N

rel D )( t to a skeletal H-map A: D )( I --i Y . Then A is a skeletal H-homotopy

!rom Ilo to #1 . Ey Lemma 2.2 k(A) is H-homotopic (in fact rel Y) to k(A). Hence

it is enough to prove that k(A) is a simple H-homotopy equivalence. The adjunction

space Y UA(C )( I) is a finite H-CW complex. Since C)( I H-eollapses· to

C )( {O} UD )( I (see [3, Corollary 11. 1.10]) it follows, by [3, Lemma II. 1.6], that

Y U (C)( I) H-eollapses to Y U (C)( {O} UD )( I) = Y U C. In the same way
A A Ilo

we see that Y UA(C )( I) H--collapses to Y Ut1 C . Hence, in the composite map

k(A) : Y UJlo C

N

the inclusion 10 ia an H-expansion and 11 is an H-eollapse. Thus k(A) ia a formal
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H-deformation (rel Y) and in particular k(A) is a simple H-homotopy equivalence.

D

Corollary 4.2. Let Y and (C,D) and Po,I;. : D --+ Y be as in Proposition 4.1. Sup­

pose that fo: U ---+ Y U C and fI : U ---+ Y U· C are k--equivalent
Po I;.

H-maps . Then fO and fI are s-equivalent.

D

Propositions 4.3 and 4.4 below have proofs that are very similar to each other. Of

these the proof of Proposition 4.4 is the more enlightening one, and also the somewhat

more complicated one. Hence we give the proof of Proposition 4.4 in detail and leave the

proof of Proposition 4.3 to the reader.

Proposition 4.3. Let Y and Y' be finite H-CW complexes and let (C,D) be a

finite H-CW pair, and let J1.: D ---+ Y be a skeletal H-map. Suppose that

u : Y ---+ Y' is a skeletal simple H-homotopyequivalence. Then its canonical exten­

sion ü: Y UJ1. C ---+ Y I Uup C is a simple H-homotopy equivalence.

Proposition 4.4. Let Y be a finite H--eW complex, and let (C I ,D ') and (C,D) be

finite H--eW pairs, and let 1': D ---+ Y be a skeletal H-map. Suppose that

1 : (C I ,D ') ---+ (C,D) is a skeletal H-map such that 1: C' ---+ C and

1 I: D ' ---+ D are simple H-homotopy equivalences. Then

7:Y U I c' ---+ Y U C ia a simple H-homotopy equivalence.
1'1 I'

Proof of Proposition 4.4. We consider the diagram
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y u (C' )( {O} UD/xI)~ y U (C x {O} U DxI)
(/l"'11 ){ 1} /l{ 1}

i I 1 1i

Y U(IL"Y I) (C I X I) "'1 x I t Y U (C x I)
~, {I} /l{l}

r I 1 ! r

Y U/l"'11 c'

Here /l{I}: 0 x {l} ----i Y , is given by /l{l}(d,l) = P(d) for all dEO, and

(/l"'11){I} : 0 I X {I} ----i Y is defined similarly.

The inclusions C x {O} U0 x I C-....+ C )( I and C' x {O} U0 ' x I e........., 0 ' x I

are H~ansions, see [3, Corollary IT. 1.10]. Hence it follows by [3, Lemma II. 1.6]

that the inclusions i and i I in the above diagram are H~ansions. The upper

square of the above diagram clearly commutes.

In the lower square of the above diagram r and r I denote the retractions induced

by the standard projections C x I ----i C X {I} = C and

C' x I ----i C' )( {I} = C' , respectively. With tbis choice of retractions r and r '

the lower square clearly commuteB. Since C x I H-eollapses to C x {I} , see [3,

Corollary 11. 1.10] , it follows by [3, Lemma II. 1.6] that Y U (C x I) H-eollapses
/l{l}

to Y U C. Therefore any H-retraction from Y U (C x I) onto Y U C is a
/l /l{I} ~

simple H-homotopy equivalence. In particular r is a simple H-homotopy equi-

valence, and the same argument shows that r ' is a simple H-homotopy equivalence.
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Thus we have shown that the maps r 0 i and r' 0 i' are simple H-homotopy

equivalences. Therefore, in order to prove that '1 is a simple H-homotopy equivalence,

it is enough to show that the map '1 = i )( {O} U i I x I , at the top of the diagram, is a

simple H-homotopy equivalence. This we do in the following way.

In order to simplify the notation we denote

W' = y U( I) (C' x {O} UD' x I)
J11 {I}

and

W = y U (C x {O} UD x I) .
J1{1}

We shall prove that

'1 = 1 x {o} U11 )( I: W' --+ W

*is a simple H-homotopy equivalence. Let W denote the H-equivariant subdivision

of W obtained by subdividing the unit interval I = [0,1] at the JX>int 1/2. Then

*Wo =C )( {O} UD x [0,1/2]

and

*W1 = Y U (D )( [1/2,1])
J1{1}
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*are H-subcomplexes of W . Furthermore we have that

and

* *Wo nW1 = D )( {1/2} .

*In complete analogy with the above we define an H-equivariant subdivision W I of

* * *W ' ,and obtain H-subcomplexes Wo and Wi of W ' such that

* * *Wo U Wi = w '

and

* *We claim that '11 :Wo ----+ Wo is a simple H-homotopy equivalence. In order to

see this we consider the commutative diagram

C' )( {o}~ C )( {o}
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where rO denotes the restrietion induced by the standard projection

D )( [0,1/2J --+ D )( {o} and ra is defined similarly. Then ra and ra are simple

H-homotopy equivalences, and since ,.,: C' --+ C is a simple H-homotopy equi­

valence, by aBsumption, the claim follows.

N * *The map ,., I :W 1. --+ W 1 is also a simple H-homotopy equivalence. This

follows from the fact that in the commutative diagram

id
----+1 Y

the retractions r1 and ri. ' induced by the standard projections

D )( [1/2,1] --+ D )( {I} = D and D')( [1/2,1] --+ D' )( {1} = D' , are simple

H-homotopy equivalences.

N * * * *Furthermore we have that ,., I : Wa nw 1. --+ Wanw1 is a simple

H-homotopy equivalence since it equals ,., I )( {1/2} : D' x {1/2} --+ D )( {1/2} ,

which is a simple H-homotopy equivalence by assumption.

Hy the sum theorem for equivariant Whitehead torsion, see [3, Theorem II. 3.12] , it

N * *now follows that ,.,: W' --+ W is a simple H-homotopy equivalence. Further-

*more, the G-equivariant subdivsion map8 j: W --+ W and

*j' : W' --+ W' are simple G-homotopy equivalences by [6, Theorem 12.2]. Hence

'1 :W' --+ W is a simple H-homotopy equivalence.

o
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We shall now combine the results of this section into one theorem. In Theorem 4.5

below Yi denote finite H-eW complexes, (Ci'0i) denote finite H-eW pairs and

pt : 0j ---+ Yi are skeletal H-maps, i = 1,2 .

Theorem U. Suppose that

Cl 1 I C2

U U

(S) °1 -----.J:.L 02

I1tl l~
Yl

U
I Y2

is an H-homotopy commutative diagram, where 'Y: Cl ---+ C2 , 'Y 1 : Dl ---+ D2

and u: Yl ---+ Y2 are simple H-homotopy equivalences. Then

is a simple H-homotopy equivalence.

Proof. Hy Corollary 3.7, Corollary 4.2 and the equivariant skeletal approximation

theorem, we can assume that 'Y and u are skeletal h-maps. Let n: Dl )( 1---+ Y2

be an H-homotopy from u 0 P-J. to ~ 0 11 . Then

-u Y U C k(n) I Y U Cl
l 2 UP-J. I 2 1k],11

-
1 I Y

2
U C

2
~
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is a simple H-homotopy equivalence, since ü, k(O) and "1 are simple H-homotopy

equivalences by Propositions 4.3, 4.1 and 4.4, respectively.

o
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5.. A conyeniant lemma

In Lemma 5.1 below X denotes an H-fipace, (A,B) is an H-pair, which has the

H-homotopy extension property and where B is closed in A, and t/J: B ----+ X is an

H-map . Furthermore, Y. are finite H-eW complexes, (C.,D.) are finite H-CW
1 1 1

pairs and Pj : Di ----+ Yi denote skeletal H-maps, i = 1,2 .

Lemma 5.1. Suppose that

Q.

A 1
I C.

1

U U

(Si) B °d
I D. i = 1,2

I

t/Jl
().

IPj
X 1

I Y.
I

are two H-homotopy commutative diagrams such that 0i: X ----+ Yi , i = 1,2 , are

s-equivalent H-homotopy equivalences and 0i: (A,B) ----+ (Ci'Di), i = 1,2 , are

s-equivalent , as maps of pairs, H-homotopy equivalences of pairs. Then the ..\-maps

;\(Si) : X Ut/J A ----+ Yi UI'; Ci' i = 1,2 , induced by the diagrams (SI) and (S2) I are
1

s-equivalent H-homotopy equivalences. In fact, if u: Y1 ----+ Y2 ie a simple

H-homotopy equivalence such that u 0 01 is H-homotopic to ()2' then, there exists

a simple H-homotopy equivalence E: Y1 UIi. Cl ----4 Y2 U~ C2 which extends u

and E 0 A(SI) is H-homotopic to ;\(S2) .
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Proof. Let u: Y1 ---+ Y2 be a simple H-homotopy equivalence such that u 0 01 is

H-homotopic to °2 . 8uppose that i: (Cl'D1) ---+ (C2,02) is an H-map such that

"'1 : Cl ---+ C2 and 'Y I: D1 ---+ D2 are simple H-homotopy equivalences, and

"'10°1 ia H-homotopic to 02 as maps of pairs. By Corollary 3.7 we have that the dia­

gram (82) and the diagram

i 0 °1A I C2

U U
* 'Y 0 all

(82) B
• °2

~l l":!
u 0 °1X

• Y2

induce A-mapS that are k--equivalent to each other. Furthermore we have by

*Lemma 3.8 that A(82): X Ut/J A ---+ Y2 Ul4], 02 is k--equivalent to the composite map

.>t(8) 0 .>t(81) , where (8) denotes the diagram

Cl 1 I C2

U U

(8) °1 ~D2

~l l":!
Y1

u
I Y2

Thus A(82) ia k--equivalent to A(8) 0 .>t(81) .
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In particular we have by Corollary 4.2 that A(S2) and A(S) 0 A(Sl) are s--equi­

valent. Since A(S) is a simple H-homotopy equivalence by Theorem 4.5 it follows

that A(Sl) and A(S2) are s--equivalent .

D
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6. Preferred H-reductions

Theorem §.J. Let G be a compact Lie group and H a closed subgroup of G. Then,

given a finite G-eW complex X, there exist a finite H-eW complex RHX and an

H-homotopy equivalence

such that this construction ia unique up to a simple H-homotopy equivalence.

The last statement in Theorem 3.1 means that if one by some other choicea in the

construction arrives at the finite H-eW complex RüX and the H-homotopy equi­

valence 1/' : X --+ RÜX , then, f/ and 1/' are s-equivalent H-maps; Le., the map

is a simple H-homotopy equivalence. (Here f/-l denotes an H-homotopy inverse of

11 .)

Proof. The proof is by induction on the number oI G-eells in X. Aasume first that X

consists of one o-dimensional G-eell, say X = G/P . By Theorem 1.3 there exists a
rv

distinguished H-triangulation ,: C ---=-+ G/P of tbe H-manifold G/P. We define

RH(G/P) = C and f/ = ,-1 : G/P --+ RH(G/P) . Then RH(G/P) is a finite H-eW

complex and 1] ia an H-bomeomorphism and hence in particular an H-homotopy

equivalence. If , I : C' --+ G/ P is another distinguished H-triangulation of GIP

there exists by Theorem 1.3 a skeletal simple H-homotopy equivalence u: C --+ C'

such that 1 ~,' 0 (j . Hence the H-maps 1J and 1/' ,where



-33-

1/' = (')" )-1 : G/P ---i C' = Rß(G/P) ,are s-equivalent.

We now assume by induction that X is a finite G-CW complex, which is obtained

from a subcomplex Xo by adjoining one G-eell, and that we have given a con­

struction of a finite H--eW complex RHXO and an H-homotopy equivalence

o:Xo--+ RHXO ' such that the construction is unique up to a simple ~-homotopy

equivalence. Suppose that X = XoUc , where c is a G-<ell, of 8ay dimension n and

type G/P. Let

be a characteristic G-map for c and let

denote the corresponding attaching map. We choose a distinguished H-triangulation

,.,: (C,D)~ (Dn )( G/p,Sn-l )( G/P)

of the H-pair (Dn )( G/p,Sn-1 )( G/P) , see Theorem 1.3, and denote

6 = ')'I:D --+ Sn-1 )( G/P .

We now consider the diagram
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Dn )( G/P C

U u

(*) Sn-1 )( G/P ß D

,pI 1J'

Xo
8

I RHXO

where
-1

a="( and ß= 0 1
, and hence ß= a ISn-1 )( G/P . Furthermore

J.' : D --t RHXO is a skeletal H-map such that the diagram (*) is H-homotopy

commutative; Le., J' is a skeletal H-approximation of the H-map

8 0 1/J 0 5 : D --t RHXO. We now define 1]: X --t RHX to be the composite map

where A(*) is the A-map induced by the diagram (*). Then 1] is an H-homotopy

equivalence and 1] IXo = 8 : Xo --t RHXO . Furthermore we know by Corollary 3.6

that A(*) is uniquely determined up to k--equivalence by the diagram (*). The ad­

junction space RHX = RHXOUJ' C ia a finite H-eW complex since RHXO is a finite

H-CW complex and (C,D) ia a finite H-CW pair and J': D --t RHXO is a skeletal

H-map.

If we are at the inductive level choose B' : Xo --t RiIXo ' then we have by the in­

ductive assumption that the H-homotopy equivalences 8 : Xo--t RHXO and

8' : Xo --t R:8:XO are s--equivalent. In case we choose another distinguished

H-triangulation l' : (C' ,D ' ) --t (nn )( G/P ,Sn-1 )( G/P) of the H-pair

(nn )( G/p,Sn-1 )( G/P) then we have by Theorem 1.3 and Lemma 1.4 that the

H-homotopy equivalences (in fact H-homeomorphisms)
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o : (Dn )( G/P ,Sn-1 )( G/P) --+ (C,D) and.

0' = (;,)-1 : (Dn )( G/P,Sn-1 )( G/P) ---+ (C' ,D') are s-equivalent as maps of

pairs. Now consider the H-homotopy commutative diagram

Dn )( G/P
0' C'

U u
(*' ) Sn-1 )( G/P~ D'

!pI
(J'

I 11'

Xo I RiIXo

where p' is a skeletal H-approximation of the H-map

0' 0 t/J 0 (1' I) : D' --+ RHXO. By Lemma 5.1 any;\-map

induced by (*') is s-equivalent to A(*) .

1t remains to prove that if we choose another characteristic G-map

e' :(nn )( G/P ,sn-l )( GIP) --+ (c, c) ~ (X,Xo) and use this one instead in

forming the map in (1) then the resulting map is s-equivalent to the one in (1). This

follows from Lemma 1.1 by arguments analogous to the one above.

The choice of a G---fiubcomplex Xo of X such that X is obtained from Xo by ad­

joining one G-cell corresponds to the choice of one specific filtration of X by an in­

creasing sequence of G-Bubcomplexes each obtained from the preceeding one by

adjoining one G-cell. The construction of 1/: X ---+ ~X is independent up to simple
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H-homotopy equivalence of this choice of filtration, and we leave the verification of this

fact to the reader. This completes the proof of Theorem 6.1.

o

It follows from the construction of the finite H-{::W complex RHX that it also

satisfies the following properties

(i) dim(RHX)K = dim XK ,for every K < G .

(ii) The H-isotropy types occurring in RHX and in X are exactly the same.

Compare with Theorem A in [8].

Pefinition 6.2. Let X be a finite G-{::W complex. A preferred H-reduction of X

consists of a finite H-eW complex Y and an H-homotopy equivalence

O:X---+Y

such that 8 is s-equivalent to an H-homotopy equivalence 1]: X ---+ RHX con­

structed in Theorem 6.1 and Y satisfies conditions (i) and (ii) above.

With this terminology we can say that Theorem 6.1 proves the existence of preferred

H-reductions for any finite G-eW complex X. Observe that the construction given

in Theorem 6.1 is such thai if (V,X) is a finite G-eW pair and 1]: X ---+ RHX is

any preferred H-reduction of X then there exists a preferred H-reduction

~ : V ---+ RHV of V such that RHX CRHV and 1] IX = 1] , and hence we obtain a

preferred H-reduction fi: (V,X) --+ (RHV,RHX) of the G-{::W pair (V,X) .
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The following Lemma is easy to prove, and we leave the details to the reader.

Lemma 6.3. Let 8: X --+ Y be a preferred H-reduction of the finite G-ew com­

plex X, and let L be an ordinary finite CW complex. Then

id x 8 : L x X --t L x Y is a preferred H-reduction of the finite G-eW complex

LxX.
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7. A key property of preferred H-reductio1lB

Let X be a finite G--eW complex and let (A,B) be a finite G--eW pair, and

assume that rp: B ----i X is an (A,B)-tlkeletal G-map. Then X Urp A is a finite

G-CW complex.

Suppose that

is a preferred H-reduction of X J and that

ia a preferred H-reduction of (A,B). Let J1. : RHB ----i RHX be a akeletal

H-approximation of the H-map 1] 0 tp 0 (8 1)-1 ..

Proposition 11. The H-map

is a preferred H-reduction of the finite G--eW complex X Utp A .

Proof. The proof is by induction on the number of G-eells in A-B. Let AO be a

G-subcomplex of A such that B CAO and such that A-AO consists of one G-eell

c , aay of dimension n and type G/P. Let
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be a characteristic G-map for c, and let

be the corresponding attaching G-map for c. Then

is a G-homeomorphism and ~ IAO= idA .
o

Next we note the following. If 8 : (A,B) ---+ (RHA,RHB) and

()' : (A,B) ---+ (RirA,RirB) are preferred H-reductions of (A,B) , then it follows by

Lemma 5.1 that the H-maps A(1JJ()) : X Ucp A ---+ RHX UI' RaA and

A(1/,8') : X Ucp A ---+ RHX U1" RHA are s-equivalentJ and hence if one of them is a

preferred H-reduction of X Ucp Athen 80 is also the other one. Thus in order to prove

Proposition 7.1 it is enough to find an appropriate H-reduction

o: (A,B) ---+ (RHAJRHB) for which we can show that

A(1],0) : X Ur.p A ---+ RHX UJI. RHA is a preferred H-reduction of X Ur.p A .

So let U8 first exhibit a preferred H-reduction of (A,B) , with which it will be con-

venient to work. Let
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be a preferred H-reduction of B and extend this to a preferred H-reduction

where RHB ( RHAO. Let u: F ----+ G/P be a distinguished H-triangulation of the

H-manifold G/P , and let

K = id )( u-1 : (On )( G/P ,Sn-1 )( G/P) ----+ (C,O)

be the corresponding preferred H-reduction of (nn)( G/P ,Sn-l )( G/P) , where we

have denoted (C,D) =(Dn )( F,Sn-l )( F) , see Lemma 6.3. In order to shorten the

notation we denote in the following

(M,N) = (On )( G/p,Sn-l )( G/P) .

The H-map

(1) 8 '. A ({)-l. A U M 7JO I RHA
O

U M~RAU C~RAU C
~ 0 1/J 001/J ---, H 0 w ----, H 0 W

where w= (B I) 0 1/J 0 (" 1)-1 and ~ is a skeletal H-approximation of w, is apre­

ferred H-reduction of A . Observe that BI AO= 00 and BI B = °I .

We shall show that with B as in (1) the map

(2)
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is a preferred H-reduction of X Ucp A . This map is the composite map

We will prove that >'(f},(J) in (3) is a preferred H-reduction oe X Ucp A , by com­

paring tbis map with another H-map wbich we know is a preferred H-reduction.

We now consider the H-map

(4)

In case A-B consists of one G-eell; Le., when AO= B , the map >'0 in (4) equa1s

f}: X~ RHX , a preferred H-reduction of X . In case B ~ AO we have that the

number of G--<:ells in AO-B is one less than in A-B, and hence we will have, by the

inductive assumption that Proposition 7.1 holds in tbis case, that >'0 is a preferred

H-reduction of X Ucp AO.

We shall now extend >'0 to a preferred H-reduction of X U<p A . We have that

X Ucp A is obtained !rom X Ucp AO by adjoining a G--<:ell of dimension n and type

G/P , with characteristic G-map

and corresponding attacbing G-map equal to
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Then

is a G-homeomorpbism. In tbis situation we know that the composite map

(5)

where 11 = ;\0 0 1/1 0 (KI )-1 and v is a skeletal H-approximation of 11, ia a preferred

H-reduction of X Utp A .

Now inserting ° from (1) into the H-map ..\(1],0) in (3) and inserting the map ..\0

from (4) into the H-map u in (5) one checks that ..\(1],0) and u are k--equivalent

and hence a--equivalent. In the case where AO= B tbis establishes the start of the in­

duction, namely that ;\(1],9) is a preferred H-reduction of X Utp A in the case when

A-B consists of one G-cell. This having been established we have by the inductive

assumption that ..\0 in (4) ia a preferred H-induction of X Ucp AO' and the above con­

clusion then gives that ..\(",,0) is a preferred H-reduction of X Ucp A since ..\(1],9) ia

s--equivalent to u in (5) which is a preferred H-induction of X Utp A .

o
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8. Definition and basic properties of the restriction homomorphism

ß&§~ : WhGOO ---+ WhHOO .

Lemma 8.1. Suppose that (X,Xo) is a finite G-CW pair such that Xo is an elemen­

tary G-collapse of X . Then RHX H-eollapses to ~HXO'

Proof. The assUInption thai Xo is an elementary G-collapse of X means that

where P < G and rp: Jn-1 )( G/P --+ Xo is a G-map such that

<p(Jn- 1 )( G/P) (X~-l and <p(t n- 1 )( G/P) ( X~-2 , see [3, p. 13]. In the termi­

nology of Definition 1.2 the conditions on the map rp mean that

rp: Jn-1 )( G/P ---+ Xo is a (rn )( G/P,Jn- 1 )( G/P) - skeletal G-map.

Let w: F ---+ G/P be a distinguished H-triangulation of the H-manifold G/P.

Then (= w-1 : G/P ---+ F is a preferred H-reduction of the D-dimensional G-eell

G/P . By Lemma 6.3

o : id )( ( : rn )( G/P --+ In )( F

and

ß= id )( ( : Jn-l )( G/P --+ Jn-l )( F

are preferred H-reductionB of In )( G/P and Jn-1)( G/P J respectively. We denote

n n-lC = I )( F and D = J )( F .
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Let (J: Xo----+ RHXO be a preferred H-reduction of XO . We consider the

H-homotopy commutative diagram

In x G/P a C

U U

Jn-1 x G/P ß D

10 1 1#1

Xo
(J

, RHXO

1where #1 is a skeletal H-approximation of the H-map (J 0 cp 0 {1 : D ----+ RHXO.

By Proposition 7.1 the A-map

induced by the diagram (8) is a preferred H-reduction of X = XoUcp (In )( G/P) .

Thus we may take

Since In collapses to Jn-1 (in fact by one elementary collapse) it follows by

n n-lLemma 1.5 that C = I )( F H-rollapseB to D = J x F . Hence we have by [3,

Lemma II. 1.6] that RHX = RHXOUJL C H-eollapseB to RHXOU#1 D = RHXO.

o
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Corollarv §.#.. Suppose that (V,X) and (U,X) &Te finite G-eW pairs such that

there is a formal G-deformation rel X hom V to U. Then there is a formal

H-deformation rel RHX hom RHV to RHU.

o

As a consequence of the above corollary we obtain a well-defined map

by defining

for every sG(V,X) E. WhG(X) . The fact that this gives a well-defined map is an im­

mediate consequence of Corollary 8.2. If sG(V,X) =sG(U,X) E. WhG(X) then there is

a formal G-deformation rel X from V to U , and hence by Corollary 8.2 there is a

formal H-deformation rel RHX from RHV to RHU which means that

SH(RHV,RHX) = SH(RHU,RHX) E. WhH(RHX) .

Lemma 8.3. The map Res~: Wha(X) --t WhH(RHX) is a homomorphism.
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The space VI Ux V2 ; Le., then union of VI and V2 &long X, can also be considered

as the adjunction space obtained by adjoining V2 to VI by the inclusion map

i : X --+ VI. Therefore we have by Proposition 7.1 that

Thus we obtain

o

We shall investigate the fact that WhH(RHX) is independent of the choice of pre­

ferred H-reduction 1]: X --+ RHX . This will give us a group WhH(X) and a homo­

morphism ReS~: Wha(X) --+ WhH(X) .

Let
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and

be preferred H-reductions of X . Then

is a simple H-homotopy equivalence. In particular u is an H-hornotopy equivalence

and hence induces an i80morphism

Let (V,X) be a finite G--eW pair, where X is a strong deformation retract of V ,

representing the element sG(V,X) E. WhG(X) . Let

be a preferred H-reduction of (V,X) extending the given preferred H-reduction f/ of

X. Let

be a preferred H-reduction of (V,X) extending the given preferred H-reduction f/'

of X . Then we have, by the definition above, that
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and

We now have a commutative diagram

RHX
(f

) R'XH

j 1 1j'

RHV I R'VH

where (f and E are simple H-homotopy equivalences. We now compute the

.H-equivariant Whitehead torsion of the composite map E 0 i = i' 0 (f • By the for­

mula for the equivariant Whitehead torsion of a composite map, [3, Proposition 11.

3.8] , we obtain

and

Thus
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Since q and E are simple H-homotopy equivalences we have 'T(:E) = 'T(u) = 0 and

hence

i.e.,

But by [3, Lemma n. 3.11] we have

and

Thus the above formula reads

i.e.,

Thie shows that the diagram.
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commutes. Hence we may identify WhH(RHX) with WhH(RÜX) through q * J and

call this group WhH(X) , and then the restriction homomorphisms ReS~ and Res I ~ '

determine the same bomomorphism

To conelude this paper we will inveatigate the behaviour of the equivariant

Whitehead torsion under tbe restriction homomorphism. Suppose that f: X --+ Xl is

a G-bomotopy equivalence between finite G-eW complexes. Let fI: X --+ RHX

and fll: Xl ---+ RHXI be preferred H-reductions of X and Xl' repectively. Let

RH!: RHX ---+ RHX1 be the H-homotopy equivalence induced by f, Le., we have

the H-homotopy commutative diagram

x !
-----tl Xl

-1 -1
and RH! = fli 0 ! 0 fI J where fI ia some H-homotopy inverse of fI. We may

assume that RHf is skeletal.

We claim that the H-equivariant Whitehead torsion of RHf is given by
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We may aBsume that f is skeletal and the G-equivariant Whitebead torsion of f is

then given by

where Mf denotes tbe mapping cylinder of X , see [3, page 23 and Proposition n. 3.5] .

Similarly we have that

Hy Lemma 6.3 we have that a =1] x id : X x I ---t RHX x I ie a preferred H-re­

duction of X x I . We now consider the H-homotopy commutative diagram

x x I a • RHX x I

U U

(8) X )( {l}~ RHX x {I}

f{l}1
fJl

1(RHf){l}

Xl I RHXl

Hy Proposition 7.1 we have that
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is a preferred H-reduction of Mf = Xl Uf (X )( I) ; Le.
{l}

is a preferred H-reduction of Mf. This means that we have

Thus we obtain

We may write this as

In particular it follows from this formula that if f: X --+ Xl is a simple G-homotopy

equivalence then the induced H-homotopy equivalence RHf: RHX --+ RHX1 is also

a simple H-homotopy equivalence.
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