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The restriction homomorphism Resg : Who(X) — Why(X)

for G a compact Lie group
Soéren Illman

Let G be a compact Lie group and let H be a closed subgroup of G . The main ob-
jective of this paper is to establish a construction of the following form. Given a finite
G—CW complex X there exist a finite H-CW complex RpX and an H-homotopy

equivalence

such that this construction is unique up to simple H-homotopy type; i.e., if
7" : X — RgX is another choice then 7’ o ”—1 :RgX— RgX is a simple
H-homotopy equivalence. (Here 1;_1 denotes an H-homotopy inverse of % .) The
notion of equivariant simple—homotopy equivalence is as defined in [3]. The operation
of restricting the transformation group G, of an arbitrary G-CW complex, to a closed
subgroup H of G is treated in [8], and in fact we use the same construction in this
paper. Our main task in this paper is then to prove that in the case of a finite G-CW
complex X the construction has the additional property that it produces a finite
H-CW complex RHX which is uniquely determined up to simple H-homotopy type.
Here we should recall the following two facts. First, the H-CW RpX i8 in general not
H-homeomorphic to the H-space X . For more details on this see [8], in particular
the example given in [8, Section 2]. Secondly we recall that equivariant Whitehead tor-
gion is not an equivariant topological invariant. This means that there may exist two
finite H—-CW complex structures Y, and Y2 on the same H-space Y such that the

identity map of Y , idY : Y1 —-rY2 is not a simple H-homotopy equivalence
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between the finite H-CW complexes Y, and Y, . Thus we see that although one can-
not construct an H—CW complex structure on the H—space X itself, one can establish
a result that in fact is more precise and says something more, namly one can construct a
finite H-CW complex RgX which represents a unique simple H-homotopy type.
This construction also has the property that djm(RHX)K = dixln xK , for every closed
subgroup K of H and moreover the H—isotropy types occuring- in the H—spaces X
and RHX are exactly the same. We call such an H-homotpy equivalence
7:X— RpX a preferred H-reduction of X . The existence of such a class of pre-

ferred H—reductions of X is proved in Section 6.

Then we go on to establish that if X and X, are finite G—CW complexes of the
same simple G—homotopy type then the finite H—CW complexes RgX and RgX,
have the same simple H-homotopy type. A result of this form (see Corollary 8.2) leads
to the definition of a well—defined homomorphism Resy : Why(X) — W(X) . Recall
that an element of the equivariant Whitehead group Wh(X) is given as an equi-
valence class sG(V,X) of a finite G-CW pair (V,X), where the inclusion X ==V is
a G-homotopy equivalence, and the relation is the one of formal G—deformations of
V rel X (see [3]). The definition of Resg can then be given by
Resg(sG(V,X)) = (RgV,RyX) € Whp(RgX) and Whp(RgX) can moreover be
interpreted as a group that we denote by WhH(X) . We prove that
Resg : Why(X) — Whp(X) is a homomorphism and we also establish the basic fact
that for any G-homotopy equivalence f: X — Xl we have that the H-—equivariant
Whitehead torsion of the induced H-homotopy equivalence RHf : RHX —_— RHX1 is

given by

(2) (Ryf) = Res5i(r(D)) .
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The main result of this paper, Theorem 6.1, which proves the existence of preferred
H-reductions , was announced in [7, Theorem C], and the corresponding restriction
homomorphism Resy : Why(X) — Why(X) is discussed in Section 2 of [7]. (In
[7] we denoted RpX by eshp(X).)

A different approach to the restriction homomorphism between equivariant

Whitehead groups is given in the forthcoming book by W. Lick [9].

We shall in a later paper prove the transitivity property Resg o Resg = Resg ,

where K < H < G . Curiously enough this transitivity property is a non—trivial fact.

The reader should be advised that the present form of the paper at hand is a some-
what preliminary one.

I wish to thank the Max—Planck—Institut fiir Mathematik for providing excellent

working conditions.



1. Preliminaries

Let G be a compact Lie group. We will consider the basic properties of G—-CW
complexes a8 well-known and use them without any further reference. For example the
fact that a G—CW pair (X,A) has the G-homotopy extension property and the equi-
variant skeletal approximation theorem, also in its relative form, are used freely in this
paper. The following statement concerning different choices of characteristic G—maps
for a G—cell ¢ does perhaps not appear in the literature, so we present it here since we

have explicit use of it in this paper.

Lemma 1.1. Suppose that £¢ : (D™ x G/P,S% x G/P) — (c,¢) = (X®X"7})
are two characteristic G—maps for some G—cell ¢ of X . Then there exists g,e N(P)
and an isometry a:R™ — R™ such that the G—maps

¢: (D" x G/P,s" ! x G/P) —s (X, X")) and

(axgy) o€’ : (D" x G/P,S" ™ x G/P) — (X" X"™) are G—homotopic . In parti-
cular we have that the G—maps ¢] : S"L x G/P — X®7} and

(axgg)o ¢ : s x G/P — X271 are G-homotopic .

In Lemma 1.1 one can always choose a: R™ — R® to be either the identity map on
R™ or the isometry given by a(xy, .. X ) = (xy, ... X _4,—x ) . These two alterna-

tives then give a map from o1

to itself of degree 1 or degree —1 , respectively. The
map g, : G/P — G/P , given by gP ~— ggyP forall gPe G/P , is a real analytic
G—isomorphism of the real analytic G—manifold G/P to itself. The proof of Lemma

1.1 is easy and left to the reader.

We will also have use of the following weakened version of the notion of skeletal map.
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Definition 1.2. Let (A,B) be a finite G-CW pair and let X be a finite G—CW
complex. We say that a G—map ¢:B— X is (A,B)-skeletal if for every G—cell

¢, say of dimension m ,in A-B, we have ¢(c) C xm-1

Observe that if ¢: B — X is an (A,B)-skeletal G-map then the adjunction
space X U ‘PA is a finite G-CW complex.

In [10] Matumoto and Shiota show that one can associate to any compact smooth
G—manifold a well-defined simple G—homotopy type. In this paper we only use a very
special case of this result, namely the following one. Let H be a closed subgroup of G
and consider the standard action of H by multiplication from the left on a homogeneous
space G/P , where P denotes a closed subgroup of G . Then one can give the compact
H-manifold G/P a well-defined simple H-homotopy type in the following way. By a
well-known theorem, due independently to Mostow [11] and Palais [12], there exists a
linear representation space R"(p) for G , where p: G — O(n) , and a point
v € R%(p) such that G, = P . Then the G-orbit through v is a real analytic G-sub-
manifold of R"(p) which is G-isomorphic to G/P . We now consider R%(p) as a
linear representation space of the closed subgroup H ; i.e., we consider the linear repre-
sentation space |Rn(p|H) . It is a well-known result that the orbit space an(p| H)/H
can be considered as a semi—algebraic subset of some euclidean space RE . Since the
H-manifold G/P is a real analytic H-submanifold of R"(p|H) it follows that the
orbit space (G/P)/H , where (G/P)/H CR%(p|H)/H C RE , i8 a subanalytic subset of

RX .

Let F be a finite H-CW complex such that the orbit space F/H is a finite simpli-

cial complex. We say that an H—homeomorphism
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u:F-—g-iG/P

is a distinguished H-triangulation of the H-manifold G/P if the induced map
u:F/H— (G/P)/H is a subanalytic triangulation of the subanalytic set (G/P)/H .
The existence of distinguished H-triangulations is a consequence of the result con-
cerning existence of subanalytic triangulations of subanalytic sets, due to Hironaka [2]
and Hardt [1], together with the lifting procedure of Matumoto and Illman, see [4],
which gives an H-CW structure on an H—space whose orbit space has a well-behaved
triangulation. We can now state the result that gives a well-defined simple H—homo-
topy type tothe H—manifold G/P .

Theorem 1.3. There exists a distinguished H—triangulation u:F — G/P of the
H-manifold G/P . u:F— G/P and u’:F——G/P are distinguished

1

H—triangulations of the H-manifold G/P , then u’  ou " :F—— F’ is a simple

H-homotopy equivalence.

The uniqueness part of Theorem 1.2 follows from the fact that two subanalytic
triangulations of a subanalytic set have a common subanalytic subdivision, see Hironaka
[2] and Hardt [1], and the fact that any H—equivariant subdivision map of finite
H—CW complexes is a simple H-homotopy equivalence, see [6, Theorem 12.2].

We will have use of the following result.
Lemma 14. Let f:Y — Z be a simple H-homotopy equivalence between finite

H-CW complexes, and let L be an ordinary finite CW complex. Then

idxf:LxY—Lx7Z is asimple H-homotopy equivalence.
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This is an immediate consequence of the product formula for equivariant Whitehead

torsion [5], but one can also easily give a direct proof.
Furthermore we will need the following.

Lemma 1.5. Suppose that (L,LO) is a finite CW pair such that L collapses to Ly -
Let F be a finite H—-CW complex. Then the H-CW complex L x F H-—collapses to
L0 xF.

The proof of the above lemma is easy and left to the reader.

Definition 1.6. Let U be an arbitrary H-space and let Y1 and Y2 be finite
H-CW complexes. We say that two H—maps fl U — Y1 and f2 U — Y2 are
s—equivalent if there exists a simple H—homotopy equivalence o : Y, —Y, such

that oo fl is H-homotopic to f2

If (U,U;) is an arbitrary H-—pair and (C;,D;) and (C,p,D,) are finite H-CW
pairs we say that the H-—maps f : (U,Uj) — (C;,D;) and f,: (U,Ug) — (Cy,D,)
are s—equivalent , as maps of pairs, if there exists an H-map a: (CI’DI) —_— (02,D2)
such that the maps a o f; and f,: (U,Uj) — (C,,D,) are H-homotopic as maps of

pairs and a: C1 -— 02 and af : D1 _ D2 are simple H-homotopy equivalences.
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2. Back nd information on equivariant homoto of adjunction spa

Let H denote an arbitrary compact Lie group. (In this section and in Section 3 the
role of the transformation group H is completely formal, and hence H could as well be
any locally compact group.) By X and Y we denote arbitrary H—spaces and (A,B)
and (C,D) denote H-—pairs , which have the H-homotpy extension property, and
where B and D areclosedin A and C, respectively.

The map k(®) in Lemma 2.1 is defined as the composite map

* -

XU, A -5 XUg(Ax{0}UBxT) — X Ug(AxT) —1o X Ug(Ax{1}UBxI) 25 XU_ A
%o 1

where the first and last map are natural G-homeomorphisms, which we shall use as
identifications. Since A x {0} UBxI and A x {1} UBx1I are strong H-defor-
mation retractions of A x I it follows that both ;0 and fl are H-homotopy equi-
valences. (A more detailed discussion of the H-homotopy equivalence k(%®) can be
found in [8, Section 3].) In this section we simply state the results, and leave the proofs

to the reader.

All results in this section are well known and they have easy proofs. (Proofs of Lemma

2.4 and 2.5 are given in [8, Section 3].)

Lemma 2.1. Suppose that the H—maps PPy B — X are H-homotopic and that

®:BxI— X is an H-homotopy from vy to ¥ . Then

k(@):XU%A——oXU‘plA



is an H-homotopy equivalence. Furthermore k(®)|X =idy and k(d’—l) is an
H-homotopy inverse of k(®) rel X .

Lemma 2.2. Suppose that &,&’ : BxI— X are two f{—homotopies from Py to
2 such that & and &’ are H-homotopic rel B x I . Then the two H-homotopy

equivalences

ry .
K(@)K(®'): XU, A—XU, A

are H-homotopic rel X . By abuse of notation we denote the conclusion of Lemma 2.2

simply by k() =k(3’).

If : BxI— X isan H-homotopy from 9y to ¢ and :BxI— X isan
H-homotopy from ¢; t0 g, the join & *Q:BxI—— X isan H-homotopy from

¥y to ¥y -
Lemma 2.3. We have

K@ *Q)=k(Q)ok(®): XU A—XU A.
%0 P2

If f:X——Y isan H-map we let

T:XUWA—oYUfwA
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be the H—map induced by f and by the identity mapon A . Wecall T the canonical

extension of {. We have T |X ={.

Lemma 2.4. Suppose that the H-maps fo,fl : X —Y are H-homotopic and that

F:XxI— Y isan H-homotopy from fy to 1, . Then the diagram

TO
XU(pA —_—a Y Ufo‘PA
. | x(0)
! YU, A
1

is H-homotopy commutative. Bere § =F o (pxid):BxI— Y , and k(§) de-

notes the corresponding H-homotopy equivalence given by Lemma 2.1.

Lemma 2.5. If f:X—Y is an H-homotopy equivalence then so is its canonical

extension T:XU¢A—aYUf¢A.

Lemma 2.6. Let ®:BxI—— X be an H-homotopy from Wy to @, and let
f:X—Y bean H-map . Then the diagram

Tr
XU, A YU, A
k(@)l 11;({0@)
XU A T

-+ YU, A
4 fﬁal
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is H—homotopy commutative.
If a: (A,B)— (C,D) is an H-map we define
a:XU A XU,C

to be the H-map induced by the identity map on X and the H-map a on A . Ob-
serve that a|X =idy .

Lemma 2.7. Suppose that the H-maps a;a (A,B) — (C,D) are H-homotopic
(as maps of pairs) and that A:(A,B) x I— (C,D) is an H-homotopy from a, to
a; . Then the diagram

is H-homotopy commutative. Here T' =1%o (A|): BxI— X, and k(I') denotes

the corresponding H—homotpy equivalence as given by Lemma 2.1.

Lemma 2.8. Suppose that a:(A,B)— (C,D) is an H-homotopy equivalence of
H—pairs . Then a: X U va| A— XU " C is an H-homotopy equivalence.

Lemma 2.9. Suppose that ¥ :D x I — X is an H-homotopy from ¢0 to 1,111 and
that a:(A,B)— (C,D) is an H—map . Then the diagram
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XU A a YU, C
¢oa| 11’0
k'l lk
a

is H-homotopy commutative. Here k =k(¥) and k' =k(¥ o (a]| xid)).

Lemma 2.10. Let f: X— Y and a:(A,B)— (C,D) be H—maps . Then the dia-

gram

ki

al la-
f
X Uy C ' YUg, ©

commutes.
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3. k—equivalence and A—maps

Assume that we are given a diagram of the form

A—2% ¢

U U
(S) B—=al ,p

wl J#

X —1 v

where a:(A,B)— (C,D) is an H-homotopy equivalence of pairs and 7: X —Y
is an H-homotpy equivalence and where the lower square of the diagram is H—homo-
topy commutative. Let ©:BxI—Y be some H-homotopy from no¢ to

po a| . Then we can form the composite map
Q) : 1, K9, a .
A(S;Q) XU(pA YUWA YUm| A—»YU”C

The maps %, k() and a are H-homotopy equivalences by Lemma 2.5, 2.1 and 2.8,
respectively. Furthermore we have 7|X =19, k(Q)|X =idy and a|X = idy , and
hence A(S;€2)|X = n . Also recall that for a fixed H-homotopy ! the map k() is
determined up to H-homotopy rel X . Thus the diagram (S) and a fixed choice of an
H-homotopy 2:BxI—Y from oy to poa| gives us an H-homotopy equi-

valence

,\(S;Q):XU(pA—-rYUpC
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such that A(S;Q)|X = idX and A(S;R) is uniquely determined up to H-homotopy
rel X

We shall show below that for two different choices of H-homotopics £ and Q'
from mo¢ to poa| the corresponding H-homotopy equivalences A(S;2) and
A(S;Q") are k—equivalent in the sense defined below.

Definition 3.1. We say that two H-maps fl :U—YVU i C and

£2 U Y U"'z C are k—equivalent if there exists an H—homotopy A:DxI—Y

from i to p, such that the diagram

YU C
f, #

U lk(A)
f u

Y ”_20

is H—homotopy commutative.
Lemma 3.2. The k—equivalence relation is both symmetric and transitiv.

Proof. This follows immediately from Lemma 2.1 and Lemma 2.3.

Lemma 3.3. Let fl :U—Y Uu1 C and f2 :U—Y U,“2 C be k—equivalent

H—maps . Then we have:
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(a) f 6:Y—Z is an H-map the H-maps Hofl:U-—aZUH”lC and

fo f,: U—12 Uﬂlhz C are k-equivalent.

(b) If Q:DxI——Y isan H-homotopy from u, to {n we have that the
H-maps f;: U—Y Uﬂ-_l C and k(@) ofy: U—Y U”'3 C are k—equivalent .

Proof. (a)is an immediate consequence of Lemma 2.6, and (b) follows from Lemma 2.3.

O

In Lemma 34 below U and Y  denote arbitrary  H-spaces . By
a:(AB)— (C,D) we denote an H-homotopy equivalence of pairs and
¢:(C,D)— (A,B) is an H-homotopy inverse of a . We let ¢:B— Y and
p:D —Y denote arbitrary H—maps .

Lemma 3.4. Suppose that fl :U—Y U¢A and f2 : U ——rYUM| A are k—equi-
valent ~ H-maps . Then the  H-maps (Z")—1 of :U~——YU v | A and
aofy: U—-+YU”C are k—equivalent .

Proof. We consider the following diagram

b

YU A ——-—-—»YUm A

(N (S
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Here k =k(A), where A :BxI—Y is some H-homotopy from % to pa| ,and
the upper triangle is H—homotopy commutative. Let k' = k(A o (¢] x id)) , then the
left hand side square is = H-homotopy commutative by Lemma 2.9. Let
$:(C,D)xI—(C,D) be an H-homotopy from ao f:(C,D)— (C,D) to the
identity map. Then po ®|:DxI—Y is an H-homotpy from pa|{]| to p,and
weset k) =k(no @) . Since aof=af it follows by Lemma 2.7 that the lower right
hand side triangle is H—homotopy commutative. Thus the above diagram is H-homo-

topy commutative. By Lemma 2.3 we have that k, ok’ =k(T) , where

1
':DxI—Y is an H-homotopy from €| to pu . It now follows that
k(T) o (Z')—1 of, is H-homotopic to aof, ;ie, the H-map (E)_1 of is k-equi-

valent to a o f, .
Lemma 3.5. The H-homotopy equivalences

(-E)_lo‘:-;.':XUgoA—iYUVC

and

A5;0): X U(pA-—--—oYU“C
are k—equivalent .

Proof. Since 7:XU ‘pA—»YUWA is k—equivalent to

k() o?):XU(PA——tYUm' A we have by Lemma 3.4 that
a1 - _ . .

(&) oq.XU(pA——»YUMI C=YU,AC is k—equivalent to

Eok(ﬂ)o}}:,\(s;ﬂ):XU@A—-»YUI‘C.
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Corollary 3.6. Let Q0 :BxI— Y be two H-homotopics from 7o¢ to
poa| . Then the H-homotopy equivalences A(S;2) and A(S;Q2’) are k—equivalent .

Proof. This is an immediate consequence of Lemma 3.5, since k—equivalence is a tran-
gitiv relation.
Given the H-homotopy commutative diagram (S) we will by
§): XU A YU
A(S) oA #C
denote an H-homotopy equivalence of the form A(S;f2) . Consequently A(S) denotes
an H-homotopy equivalence, uniquely determined up to k—equivalence, by the dia-
gram S . We sometimes call A(S) the A-map induced by the diagram (S). On some
occasions we will denote the A—map induced by (S) by
Alga): XU A YU C,

and such a map is uniquely determined up to k—equivalence.

Furthermore the following holds. Suppose



X —— Y

is an H-homotopy commutative diagram such that a: (A,B)— (C,D) is
H-homotopic to the H-map a:(AB)—(C,D) in (S) and such that

1, : X—Y is H-homotopicto #: X —Y in (S) . Then we have
Corollary 3.7. The map

A(S{) = AMny0qy) : X UEP A—Y Uﬂ'1 C
is k—equivalent to A(S) = A(n,a) .

Proof. This follows from Lemma 3.5.

Let
A—2 ,C
U u
(S;) B—=2al D
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and
c—21 L E
U U
(8y) p —1l L F
10
6

Y ——— 2

be  H-homotopy commutative diagrams, where «a:(A,B}—(C,D) and
7:(C,D) — (E,F) are H-homotopy equivalences of pairs, and 5 and 6§ are
H-homotopy equivalences, and ¢, x4 and « are H—maps . Let Ql :BxI—Y be
an H-homotopy from nog¢ to poa|,and 92 :Dx1—7Z an H-homotopy
from fop to wo | . This gives us the A—maps

AS;9): X U:p A—Y Up C
and
A(S9ify) = Y U# C—ZU_E

The "composite" of the diagrams (S,) and (S,)) gives us the H-homotopy commutative
diagram
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A —TI°¢ g
U U
(S) B__I%l__.p

1Ll
X _ fon 4

Let ©:B xI— Z be any H-homotopy from fono ¢ to wo(yoa]).
Lemma 3.8. The composite map

A(54;92,) 0 A(84;2,) : X U{p A—ZU_E
is k—equivalent to A(S5;Q2) : X U(p A—2Z Uw E.

Proof. Let ¢:(C,D)—(A,B) be an H-homotopy inverse of a , and let
¢ : (E,F) — (C,D) be an H-homotopy inverse of 7.

Proof. By Lemma 3.5 (§) o7 is k—equivalent to A(S;;®,) . Hence Lemma 3.3 a

and b imply that T o ({) T o7 is k—equivalent to k() o T o A(S;;2,) . Applying
Lemma 3.4 to these k—equivalent H—maps we conclude that (D_l ofo (E)_l o7 is
k—equivalent to 70 k(©,) o ¥ o A(S;;2;) = A(S5;Q5) © A(S;%2;) . But

(Z')—1 ofo ('g")_1 on=(fo ()—1 ofon,by Lemma 2.10, and by Lemma 3.5 this map

is k—equivalent to A(S;$2) . Thus we have shown that A(S,;(},) o A(S;;2,) is k—equi-
valent to A(S;Q).
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4. Equivariant simple-homotopy type of adjunction spaces

Proposition 4.1. Let Y be a finite H—-CW complex and (C,D) a finite H—CW pair.
Suppose that Bkt D — Y are skeletal H—maps that are H—homotopic and that
A:DxI—Y isan H-homotopy from fy t0 p; . Then

k=k(A): YU C—YU C
()Y”0 Y"l

is a simple H-homotopy equivalence.

Proof. By the relative equivariant skeletal approximation theorem A is H-homotopic
relD x I to askeletal H-map A:DxI—Y . Then A is a skeletal H-homotopy
from gy to p; . By Lemma 2.2 k(A) is H-homotopic (in fact rel Y) to k(A) . Hence

it is enough to prove that k(A) is a simple H—homotopy equivalence. The adjunction

space YUK (CxI) is a finite H—-CW complex. Since C xI H-collapses to

Cx{0}UDxI (Qee [3, Corollary II. 1.10]) it follows, by {3, Lemma II. 1.6], that
YUK(C x I) H—collapses to YUK (C x {0} UDxI)=YU#OC . In the same way

we see that YU X (C xI) H—collapsesto YU iy C . Hence, in the composite map

r

k(X):YU#OC——lﬂ—»YUK(CxI)r—l-aYU#lC

~

the inclusion i, is an H-expansion and r, is an H—collapse. Thus k(A) is a formal
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H—deformation (rel Y) and in particular k(A) is a simple H-homotopy equivalence.

(o}

Corollary 4.2. Let Y and (C,D) and oty :D—Y be as in Proposition 4.1. Sup-

posethat f,: U—— YU C and f,: U— YU C are k—equivalent
0 Ky 1 "

H—maps . Then fo and fl are s—equivalent.

Propositions 4.3 and 4.4 below have proofs that are very similar to each other. Of
these the proof of Proposition 4.4 is the more enlightening one, and also the somewhat
more complicated one. Hence we give the proof of Proposition 4.4 in detail and leave the

proof of Proposition 4.3 to the reader.

Proposition 4.3. Let Y and Y’ be finite H-CW complexes and let (C,D) be a
finite H-CW pair, and let p:D-——Y be a skeletal H-map . Suppose that
o0:Y—Y’ is a skeletal simple H-homotopy equivalence. Then its canonical exten-

sion 7:Y U# C—Y’ Uap C is a simple H-homotopy equivalence.

Proposition 4.4. Let Y be a finite H—CW complex, and let (C’,D’) and (C,D) be
finite H—-CW pairs, and let x:D—Y be a skeletal H-map . Suppose that
q4:(C’,D’) — (C,D) is a skeletal H—map such that 7: C’ — C and

7|: D’ — D are simple H-homotopy equivalences. Then

F:YU | C/'—Y Uﬂ C is a simple H-homotopy equivalence.

Proof of Proposition 4.4. We consider the diagram
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/5 ’ ’7*{0}U7|"I: x x
Y U(‘”’){l} (C” x {0} UD'xI) YUI‘{l}(C {0} U DxI)

i’ li

’ x1
r’ l r
’ 7 ,
Y U l"7| C ) YU“ C

Here By Dx {1} — Y , i3 given by p{l}(d,l) =p(d) forall deD, and
(p7|){1} : D’/ x {1} — Y is defined similarly.

The inclusions Cx {0} UDxI «+CxI and C’ x {0} UD’ xI e« D’ x1I
are H-expansions , see [3, Corollary II. 1.10]. Hence it follows by [3, Lemma II. 1.6]
that the inclusions i and i’ in the above diagram are H—expansions . The upper

square of the above diagram clearly commutes.

In the lower square of the above diagram r and 1’ denote the retractions induced
by the standard projections C x I — C x {1} = C and
C’ xI— C’ x {1} = C’ , respectively. With this choice of retractions r and r’
the lower square clearly commutes. Since C x1 H-—collapses to C x {1} , see [3,

Corollary II. 1.10], it follows by [3, Lemma II. 1.6] that Y U“ (C x I) H—collapses
1
to Y U“C . Therefore any H-retraction from Y U u (CxI) onto Y U“ C isa
1

simple H-homotopy equivalence. In particular r is a simple H-homotopy equi-

valence, and the same argument shows that r’ is a simple H-homotopy equivalence.
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Thus we have shown that the maps roi and r’ oi’ are simple H-homotopy

equivalences. Therefore, in order to prove that 7 is a simple H-homotopy equivalence,

it is enough to show that the map 5 = x {0} U 7| x I, at the top of the diagram, is a

simple H-homotopy equivalence. This we do in the following way.
In order to simplify the notation we denote

W =YU o (C” x {0} UD’ xI)

and

W=YUp{1}(Cx{0}UDxI).

We shall prove that

Y=9x{0}Uq| xI: W/ — W

*
is a simple H-homotopy equivalence. Let W denote the H—equivariant subdivision

of W obtained by subdividing the unit interval I = [0,1] at the point 1/2. Then

*

Wy

= C x {0} UD x [0,1/2]

and

W =Y Ui‘{1} (D x [1/2,1])
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are H—subcomplexes of W* . Furthermore we have that
* * *
W0 U W, =W
and
* *
W00W1=D x {1/2} .

*
In complete analogy with the above we define an H—equivariant subdivision W’ of

* * *
W’ , and obtain H—subcomplexes W6 and Wi of W/ such that
¥ ¥ ¥
WO U W1 =W
and

W/

* /* 7
£ W] =D’ x {1/2} .

~ * *
We claim that 7| : W6 — W0 is a simple H—homotopy equivalence. In order to

see this we consider the commutative diagram

C’ x {0}_7)(_{2}__,(])({0}

g

W’* —?J——b W"l

0 0
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where 1, denotes the restriction induced by the standard projection
D x [0,1/2] — D x {0} and r6 is defined similarly. Then 1, and r; are simple
H-homotopy equivalences, and since 7:C’ — C is a simple H-homotopy equi-

valence, by assumption, the claim follows.

~ * *
The map 7| :Wi —— W, s also a simple H-homotopy equivalence. This

follows from the fact that in the commutative diagram

~

W’* ol *

1 W,
/
S
Y Y

id

the retractions r, and ri , induced by the standard projections
Dx [1/2,1]] — Dx {1} =D and D’ x [1/2,1]] — D’ x {1} =D’ , are simple
H-homotopy equivalences.
~ * x * *
Furthermore we have that 7| : Wy NW] — W, N'W, isasimple
H-homotopy equivalence since it equals 7| x {1/2} : D’ x {1/2} — D x {1/2} ,

which is a simple H-homotopy equivalence by assumption.

By the sum theorem for equivariant Whitehead torsion, see [3, Theorem II. 3.12], it
~ * *
now follows that 7: W/ —— W s a simple H-homotopy equivalence. Further-
*
more, the G—equivariant subdivsion maps j: W — W and
:/

*
j’ W’ — W’ aresimple G-homotopy equivalences by [6, Theorem 12.2]. Hence

7: W’ — W is a simple H-homotopy equivalence.
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We shall now combine the results of this section into one theorem. In Theorem 4.5
below Y, denote finite H—CW complexes, (Ci,Di) denote finite H—CW pairs and
T Di —_— Yi are skeletal H-maps, i =1,2.

Theorem 4.5. Suppose that

U
(S) p, —1 4 p

is an H-homotopy commutative diagram, where ~: C,—Cy, 7] : Dy — D,

and o: Yl — Y2 are simple H-homotopy equivalences. Then

AS):¥pU, € —Y,U, Gy

H

is a simple H—homotopy equivalence.

Proof. By Corollary 3.7, Corollary 4.2 and the equivariant skeletal approximation
theorem, we can assume that 7 and o are skeletal h—maps. Let Q: Dy xI— Y2

be an H-homotopy from ¢ o B to pyo 7| . Then

k(€2
c, Xy, U

P
C,— Y, U,

AS): Y, U y

iy Cl—-’l-.quﬂ_Zcz
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is a simple H—homotopy equivalence, since o, k(2) and 7 are simple H-homotopy

equivalences by Propositions 4.3, 4.1 and 4.4, respectively.
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5.. A conveniant lemma

In Lemma 5.1 below X denotes an H-space, (A,B) is an H—pair , which has the
H-homotopy extension property and where B isclosedin A ,and ¢: B— X isan
H-map . Furthermore, Y, are finite H-CW complexes, (Ci’Di) are finite H-CW

pairs and % Di —_ Yi denote skeletal H—maps , i =1,2.

[emma 5.1. Suppose that

(S;) B —1— D, i=12

are two H-homotopy commutative diagrams such that ﬂi X — Yi , i=1,2, are
s—equivalent H-homotopy equivalences and a,: (A,B) —r(Ci,Di) , i=1,2, are
s—equivalent , as maps of pairs, H-homotopy equivalences of pairs. Then the A-maps

A(Si) : X U¢A —Y, U"i C,, i=1,2, induced by the diagrams (S,) and (Sy) , are

s-equivalent H-homotopy equivalences. In fact, if o: Y1 ——rY2 is a simple
H-homotopy equivalence such that o o 01 is H-homotopic to 02 , then, there exists
a simple H-homotopy equivalence X :Y, U iy C,—Y, U by C, which extends o
and ¥ o A(S;) is H-homotopic to A(S,) .
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Proof. Let o: Y1 —_ Y2 be a simple H-homotopy equivalence such that ¢ o 01 is
H-homotopic to 02 . Suppose that ~: (Cl’Dl) —_ (02,D2) is an H—map such that
v: 01 —_ 02 and 7 |: D1 — D2 are simple H-homotopy equivalences, and
70y is H—homotopic to (., a8 maps of pairs. By Corollary 3.7 we have that the dia-
gram (S,) and the diagram

(Sy) B ——

induce A—maps that are k—equivalent to each other. Furthermore we have by

*
Lemma 3.8 that ,\(Sz) : XU ¢A —Y, U oy D, is k—equivalent to the composite map

A(S) 0 A(S,) , where (S) denotes the diagram

(S) p, —2 . p

Thus A(S,) is k—equivalent to A(S) o '\(Sl)'
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In particular we have by Corollary 4.2 that A(S,) and A(S) o A(S,) are s—equi-
valent . Since A(S) is a simple H-homotopy equivalence by Theorem 4.5 it follows
that A(S;) and A(S,) are s—equivalent .
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6. Preferred H—reductions

Theorem 6.1. Let G be a compact Lie group and H a closed subgroup of G . Then,
given a finite G—CW complex X , there exist a finite H-CW complex RHX and an

H-homotopy equivalence
7: X— RHX
such that this construction i8 unique up to a simple H-homotopy equivalence.

The last statement in Theorem 3.1 means that if one by some other choices in the
construction arrives at the finite H-CW complex R]’IX and the H-homotopy equi-
valence 7’ :X-——;Rﬁx ,then, 7 and %’ are s—equivalent H-maps ;i.e., the map

7’ o 17_1 : RgX — RI'IX

is a simple H—homotopy equivalence. (Here 1]_1 denotes an H-homotopy inverse of

n.)

Proof. The proof is by induction on the number of G—cells in X . Assume first that X
consists of one (O—dimensional G-cell , say X = G/P . By Theorem 1.3 there exists a
distinguished H—triangulation 7:C —=- G/P of the H—manifold G/P . We define
Ry(G/P) = C and =7 " : G/P — Ry(G/P) . Then Ry(G/P) is a finite H~CW
complex and % is an H-homeomorphism and hence in particular an H-homotopy
equivalence. If 4’ : C’ — G/P is another distinguished H-triangulation of G/P
there exists by Theorem 1.3 a skeletal simple H—homotopy equivalence ¢ : C —— C’

such that 7~ 7’ o ¢ . Hence the H-maps n and g’ , where
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7 =(7')}:G/P — C’ = RY(G/P), are s—equivalent.

We now assume by induction that X is a finite G—CW complex, which is obtained
from a subcomplex XO by adjoining one G-cell , and that we have given a con-
struction of a finite H—CW complex RHXO and an H-homotopy equivalence
6: XO — RgX, such that the construction is unique up to a simple H-homotopy
equivalence. Suppose that X = XO Uc, where ¢ is a G—cell , of say dimension n and
type G/P . Let

¢: (D" x G/B,S" L x G/P) — (¢,8) = (X,X)

be a characteristic G—map for ¢ and let

$=¢|: " xG/P— X,

denote the corresponding attaching map. We choose a distinguished H-triangulation
v:(C,D) 2 (D" x G/P,s" ! x G/P)

of the H—pair (D® x G/P,S%! x G/P), see Theorem 1.3, and denote

§=4|:D— " xg/p.

We now consider the diagram
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D" x G/p —&— C

U U
() s"lxgp_—B8 , p

¢l l#

0
Xy — RgX,

where a=7—1 and f=§ 1 , and hence ,6=a|Sn_1 x G/P . Furthermore
p:D— RgX, is a skeletal H-map such that the diagram (*) is H-homotopy
commutative; i.e., g is a skeletal H—approximation of the H—map

food: D — RgX, . We now define n: X — RgX to be the composite map
—1
A(*
(1) n:XJD—aXOUJanG/p)—(—)——-»RHXOUuC:=RHX

where A(*) is the A—map induced by the diagram (*). Then % is an H-homotopy
equivalence and n|)(0 =0: Xy, — RpX, . Furthermore we know by Corollary 3.6
that A(*) is uniquely determined up to k—equivalence by the diagram (*). The ad-
junction space RpX = RgX, U u C is a finite H-CW complex since RpX, is a finite
H-CW complex and (C,D) is a finite H—CW pairand s: D — RygX, is a skeletal
H-map .

If we are at the inductive level choose 6’ : Xy — RI’IXO , then we have by the in-
ductive assumption that the H-homotopy equivalences H:XO—-»RHXO and
0’ :X,— RgX, are s—equivalent . In case we choose another distinguished
H—triangulation 7’ : (C’,D’) — (D" x G/P,Sn_1 x G/P)  of the  H-pair
(D™ x G/P,Sn_1 x G/P) then we have by Theorem 1.3 and Lemma 1.4 that the

H-homotopy equivalences (in fact H-homeomorphisms)
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a:(D®x G/P,S" ! x G/P) — (C,D) and
a’ = (')r’)_1 . (D™ x G/P,Sn"1 x G/P)— (C’,D’) are s—equivalent as maps of

pairs. Now consider the H-homotopy commutative diagram

DUx GP —2, ¢’

U U
(*I) Sn—l x G/P G’l DI

ﬂ l Iy
XO —-—0—,—-——4 Rﬁxo

where pu’ is a skeletal H—approximation of the H-map

9’ oo (7’]): D’ —-aR}’IXO . By Lemma 5.1 any A—map
A(x7): X uw(DIl x G/P) — RpXy U s C’ = RgX
induced by (*”) is s—equivalent to A(¥).

It remains to prove that if we choose another characteristic G—map
¢/ (D™ x G/P,Sn"1 x G/P) — (c,c) = (X,X;) and use this one instead in
forming the map in (1) then the resulting map is s—equivalent to the one in (1). This

follows from Lemma 1.1 by arguments analogous to the one above.

The choice of a G—subcomplex XO of X such that X is obtained from XO by ad-
joining one G—cell corresponds to the choice of one specific filtration of X by an in-
creasing sequence of G-subcomplexes each obtained from the preceeding one by

adjoining one G—cell . The construction of 7: X — Ry X is independent up to simple
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H-homotopy equivalence of this choice of filtration, and we leave the verification of this

fact to the reader. This completes the proof of Theorem 6.1.

It follows from the comstruction of the finite H-CW complex RgX that it also

satisfies the following properties

(i) djm(RHX)K — dim XK ,forevery K < G.

(ii) The H-isotropy types occurringin RpX andin X are exactly the same.
Compare with Theorem A in [8].

Definition 6.2. Let X be a finite G—CW complex. A preferred H-reduction of X

consists of a finite H-CW complex Y and an H-homotopy equivalence
0:X—Y

such that # is s—equivalent to an H-homotopy equivalence 7:X — RHX con-

structed in Theorem 6.1 and Y satisfies conditions (i) and (ii) above.

With this terminology we can say that Theorem 6.1 proves the existence of preferred
H-reductions for any finite G—CW complex X . Observe that the construction given
in Theorem 6.1 is such that if (V,X) is a finite G—CW pairand 5: X — RpX is
any preferred H-reduction of X then there exists a preferred H-reduction
%:V—RgV of V suchthat RgX CRyV and 7|X =7, and hence we obtain a
preferred H—reduction 3 : (V,X) —-)(RHV,RHX) of the G-CW pair (V,X).
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The following LLemma is easy to prove, and we leave the details to the reader.

Lemma 6.3 Let §: X —— Y be a preferred H-reduction of the finite G—-CW com-
plex X, and let L be an ordinary finite CW complex. Then

idxf:LxX— LxY isa preferred H-reduction of the finite G—-CW complex
LxX.
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7. A key property of preferred H—reductions

Let X be a finite G—CW complex and let (A,B) be a finite G—CW pair, and
assume that ¢: B — X is an (A,B)-skeletal G—map . Then X UﬁP A is a finite
G-CW complex.

Suppose that

n:X— RHX

is a preferred H-reduction of X , and that

0: (A,B) — (RgA,RgB)

is a preferred H-reduction of (A,B) . Let pu:RgB— RgX be a skeletal
H—approximation of the H-map noygo (0])_1. ‘

Proposition 7.1. The H—map
A(n0) : X Ug: A— RgX UpRHA
is a preferred H-reduction of the finite G—CW complex X U ‘pA.
Proof. The proof is by induction on the number of G—cells in A-B . Let AO be a

G—subcomplex of A such that B ( A0 and such that A—A0 consists of one G—cell
¢, say of dimension n and type G/P . Let
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£: (D" x G/PS" ™ x G/P) — (¢,¢) = (A,Ay)
be a characteristic G—map for ¢, and let
b=l 8" xa/P—iA,
be the corresponding attaching G—map for c¢ . Then
£: 4, U¢(Dn x G/P) —=— A

is a G—homeomorphism and {|A;=id, .
0

Next we note the following. If §: (A,B) — (RgA,RgB) and
8’ : (A,B) — (RﬁA,R}_ﬁ{B) are preferred H-reductions of (A,B), then it follows by
Lemma 5.1 that the H—maps A(75,6) : X U(p A— RgX U# RgA and
A(n8’): X U(p A— RgX U#' R]’iA are s—equivalent, and hence if one of them is a
preferred H-reduction of X U 0 A then 8o is also the other one. Thus in order to prove
Proposition 7.1 it is enough to find an appropriate H-reduction
0: (A,B) — (RgA,RgB) for which we can show that
And): X Ugo A— RgXU u RyA is a preferred H-reduction of X v ¢ A.

So let us first exhibit a preferred H-reduction of (A,B), with which it will be con-

venient to work. Let

A :B—-aRHB
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be a preferred H—reduction of B and extend this to a preferred H—reduction

where RpB CRpA, . Let u:F—— G/P be a distinguished H—triangulation of the
H-manifold G/P , and let

1

k=idxul: (D" x G/P,S" "} x G/P) — (C,D)

be the corresponding preferred H-reduction of (D" x G/P,Sn_1 x G/P) , where we
have denoted (C,D) = (D" x F,Sn_1 x F) , see Lemma 6.3. In order to shorten the
notation we denote in the following

(M,N) = (D" x G/P,5*! x G/P).

The H-map
)L 7, - :

where w=(0])o ¢o (x| )_1 and w is a skeletal H—apprbxima.tion of w,isa pre

ferred H-reduction of A . Observethat 6|A; =6, and §|B =6] .
We shall show that with 4 as in (1) the map

(2) A(n8): XU, A — RgX U, (RgAq uz C)
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is a preferred H—reduction of X U 0 A . This map is the composite map

(3)
: 7 k(Q [
An8) : X UwA_’T_.RHX UWA_(_)_.RHX Ug| A== RgXU, (RgA uz C).

We will prove that A(7,d) in (3) is a preferred H-reduction of X U 0 A, by com-

paring this map with another H—map which we know is a preferred H-reduction .

We now consider the H—map

In case A-B consists of one G—cell ; i.e., when Ap=B,themap A, in (4) equals
7:X—RgX,a preferred H-reduction of X . In case B S AO we have that the
number of G—cells in AO—B is one less than in A-B , and hence we will have, by the

inductive assumption that Proposition 7.1 holds in this case, that '\0 is a preferred

H-reduction of X U«p AO .

We shall now extend AO to a preferred H-reduction of XU P A . We have that
XU " A is obtained from X U " AO by adjoining a G-cell of dimension n and type
G/P , with characteristic G—map

¢: (D" x G/P,S"™! x G/P) — (A,A)) — (X U, AX U, Ag)

and corresponding attaching G—map equal to
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1/J:sn'le/P—-bA0—-+XU‘oA0.
Then
) n o
Z.(XUQDAO)U#)(D xG/P)—--—»XUwA

is a G—homeomorphism. In this situation we know that the composite map

1 X
. 0
a.XUwA-—%)—»(X Uy Ag) Uy M — (RgX U, RgAq) Uy M
(5)

E »

where v= ’\0 o Yo (k| )"1 and ¥ is a skeletal H~approximation of v, is a preferred

H-reduction of XU 0 A.

Now inserting 4 from (1) into the H—map A(f),é) in (3) and inserting the map A,
from (4) into the H-map o in (5) one checks that A(7,6) and o are k—equivalent
and hence s—equivalent . In the case where AO = B this establishes the start of the in-
duction, namely that A(7n,0) is a preferred H—reduction of X U 0 A in the case when
A-B consists of one G—cell . This having been established we have by the inductive
assumption that ’\0 in (4) is a preferred H—induction of X U‘p AO , and the above con-
clusion then gives that A(7,0) is a preferred H-reduction of X U(p A since A(7n,0) is
s—equivalent to ¢ in (5) which is a preferred H-induction of X UﬁP A

o
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8. Definition asic properties of the regtriction homomorphism

Res} : Whe(X) — Whg(X)

Lemma §.1. Suppose that (X,X,) is a finite G—CW pair such that X, is an elemen-
tary G—collapse of X . Then RgX H-—collapses to RgX, .

Proof. The assumption that X0 is an elementary G—collapse of X means that
X=X U, (1" x G/P)

where P < G and ¢: Jn—1 x G/P __’XO is a G—map such that

I xG/P)C XD and (1" x G/P) CXD2, see [3, p. 13]. In the termi-

nology of Definition 1.2 the conditions on the map ¢ mean that

p: "1 xG/P — X, isa (I"x G/P,J"" x G/P) — skeletal G-map.

Let w:F — G/P be a distinguished H—triangulation of the H—manifold G/P .
Then (= w-l : G/P — F is a preferred H-reduction of the 0—dimensional G—cell
G/P . By Lemma 6.3

a:idx(:I"xG/P—1I"xF
and

ﬁ=idXC:Jn_1xG/P——>Jn_1xF

are preferred H-—reductions of " x G/P and Jn'_1 x G/P , respectively. We denote
C=I"xF and D=J""'xF.
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Let 8: Xy — RgX, be a preferred H-reduction of XO . We consider the

H-homotopy commutative diagram

"xgp —2— C

U U
Mlxgp —8 _ »p

spl lu

g
XO —_— RHXO

where p is a skeletal H—approximation of the H-map fogpo ff 1 :D— RHXO .
By Proposition 7.1 the A—map

M8): X, U, (I" x G/P) — RgX, u,c

induced by the diagram (S) is a preferred H-reduction of X =X,U 0 (1" x G/P) .
Thus we may take

(RgX,RpXg) = (RgX, U, CREX,) .

07p

Since I™ collapses to g1 (in fact by one elementary collapse) it follows by
Lemma 1.5 that C=1I"x F H-collapses to D = 3% 1 x F . Hence we have by [3,
Lemma II. 1.6] that RgX = RpX, U " C H—collapses to RpX, U “ D =RpgX,.
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Corollary 8.2. Suppose that (V,X) and (U,X) are finite G-CW pairs such that
there is a formal G-—deformation rel X from V to U . Then there is a formal
H-—deformation rel RHX from RHV to RHU.

As a consequence of the above corollary we obtain a well-defined map
ResS : Wh o(X) — Why (RpX)
H- G H'\'H
by defining
ResC(s,4(V,X)) = sxr(RigV,RirX)
HV'GY ™’ “HV'H 'H
for every sG(V,X) € WhG(X) . The fact that this gives a well-defined map is an im-
mediate consequence of Corollary 8.2. If 8+(V,X) =8,(U,X) € Wh(X) then there is
a formal G-deformation rel X from V to U, and hence by Corollary 8.2 there is a
formal H-deformation rel RgX from RgV to RzU which means that
sg(RgV,RgX) = sg(RgURpX) € Why(RpX) .
Lemma 8.3 Themap ResS : Whiy(X) — Whyy(RX) is a homomorphism.

Proof. Let 85(V),X) € Whiy(X) and s5(V,,X) € Whig(X) . Then
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The space V; Uy V, ;i.e., then union of V,; and V, along X, can also be considered
as the adjunction space obtained by adjoining Vo, to V; by the inclusion map
i: X— V1 . Therefore we have by Proposition 7.1 that

Rp(Vy Ux Vo) = RpVy U x ReVa -
Thus we obtain
Resgi(s(V,X) + 8(Vy,X)) = Resg(s(V, Uy VX))
= s(Ry(Vy Uy Vo) RgX) = s(RgVy Up_x RgVaRpX)
= s5(RgV RgX) + sg(Rg Ve R X)

= ResS(85(V;,X)) + Resa(s(VX)) € Wh(RpX) .

We shall investigate the fact that WhH(RHX) is independent of the choice of pre-
ferred H—teduction :X — RpX . This will give us a group Whg(X) and a homo-
morphism Ressy : Why(X) — Why(X) .

Let

7: X— RgX
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and
7 :X— RpX
be preferred H—reductions ‘of X . Then
|

c=17" oy iI%HX——;RﬁX

is a simple H—-homotopy equivalence. In particular ¢ is an H-homotopy equivalence

and hence induces an isomorphism
0+ : Whp(RpX) —=— Why(RfX) .

Let (V,X) be a finite G—CW pair, where X is a strong deformation retract of V,
representing the element 8,(V,X) € Wh5(X) . Let

1:(V,X) — (RgV.RgX)

be a preferred H-reduction of (V,X) extending the given preferred H—reduction 7 of
X. Let

7’ : (V.X) — (RGV.R{X)

be a preferred H-reduction of (V,X) extending the given preferred H-reduction %’

of X . Then we have, by the definition above, that

Res$(8(V.X)) = s5(RV,RgX) € Wh(RpX)
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and
G
Res’ g(85(V,X)) = sg(Rg RgX) € Whp(RpX) .
We now have a commutative diagram

o 7
RgX ——— RgX

| "

PN )
RHV . RHV

where ¢ and ¥ are simple H-homotopy equivalences. We now compute the
H—equivariant Whitehead torsion of the composite map T oi =i’ o ¢ . By the for-

mula for the equivariant Whitehead torsion of a composite map, [3, Proposition II.

3.8], we obtain
7(E o) = (i) + ix'7(E) € Why(RX)
and

i’ 0 0) = 1(0) + 05 7(") € Why(RpX) .

Thus

(i) + is (8) = (o) + o5 7(") € Whyg(RpX) .
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Since o and T are simple H-homotopy equivalences we have 7(X) = 7{¢) =0 and

hence
. -1 ..
(i) = 0% 1(i’) € Whp(RgX)
ie.,
1(i’) = o4r(i) € Whg(RgX) .
But by [3, Lemma II. 3.11] we have

(i) = sg(RgV,RgX) € Whyg(RpX)

and
i’) = sg(RgV,RgX) € Whp(RyX).
Thus the above formula reads
sH(RﬁV,RE’[X) = a*sH(RHV,RHX)
ie.,

Res’ $(s,5(V,X)) = o4Res S (s5(V. X)) .

This shows that the diagram:



—-50 —

Resg WhH(RHX)

Wh(X) » l 0%

4
Res’ g Why(RfX)

commutes. Hence we may identify Whp(RpX) with Whp(RpX) through oy, and
call this group WhH(X) , and then the restriction homomorphisms Resg and Res’ g ,

determine the same homomorphism
ResS : Wh o (X) — Why(X)
H "G J§ A

To conclude this paper we will investigate the behaviour of the equivariant
Whitehead torsion under the restriction homomorphism. Suppose that f: X — X, is
a G-homotopy equivalence between finite G—CW complexes. Let q:X——aRHX
and U X — RgX, be preferred H-reductions of X and X, , repectively. Let
RHf : RgX — RpX; be the H—homotopy equivalence induced by {,i.e., we have
the H-homotopy commutative diagram

f

X—4X1

7 l J ]
RHf

RHX—-;R X

H™1

and Rpf=1n ofo 1;_1 , where 1)_1 is some H-homotopy inverse of 7. We may

assume that RHf is skeletal.

We claim that the H—equivariant Whitehead torsion of RHf is given by

Ty
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r(Rygf) = Resa(r(f)) € Whyg(RX) .

We may assume that f is skeletal and the G—equivariant Whitehead torsion of { is
then given by

1) = 55(MpX) € Whiy(X)

where Mf denotes the mapping cylinder of X , see [3, page 23 and Proposition II. 3.5].

Similarly we have that

By Lemma 6.3 we have that a=9xid:X xI— RgX xI is a preferred H-re-

duction of X x I. We now consider the H-homotopy commutative diagram

Xx[ —& RpX x 1
U U
(S) x x {1} =2l RpX x {1}
1y | ®afpy

1
X,  — RHX1

By Proposition 7.1 we have that

A(S) : Xy Uf{l} (X x I) — RgX, U(RHf){l} (RgX x 1)
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is a preferred H-reduction of M =X, U, (X xI);ie.
1

{1}

A(S) : My — MRHf

is a preferred H-reduction of M. This means that we have
Ry (M) = Mp_i:
Thus we obtain
Res3(r(f)) = Ressi(s5(MpX)) = sg(Rpg(Mp),RprX)
= SH(MRHPRHX) = 1(Rgf) € Why(RgX) .

We may write this as

r(Rygf) = Resti(r(0)) € Why(X).
In particular it follows from this formula that if f: X — X, is a simple G-homotopy

equivalence then the induced H-homotopy equivalence RHf : RgpX — RgX, isalso

a simple H-homotopy equivalence.
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