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Abstract

In this paper we study pairs of polynomials with a given factorization
pattern and such that the degree of their difference attains its minimum.
We call such pairs of polynomials Davenport–Zannier pairs, or DZ-pairs
for short. The paper is devoted to the study of DZ-pairs with rational
coefficients.

In our earlier paper [17], in the framework of the theory of dessins
d’enfants, we established a correspondence between DZ-pairs and weighted
bicolored plane trees. These are bicolored plane trees whose edges are
endowed with positive integral weights. When such a tree is uniquely
determined by the set of black and white degrees of its vertices, it is
called unitree, and the corresponding DZ-pair is defined over Q. In [17],
we classified all unitrees. In this paper, we compute all the corresponding
polynomials. In this way, the present paper is a sequel of [17].

In the final part of the paper we present some additional material
concerning the Galois theory of DZ-pairs and weighted trees.

1 Introduction

Let α, β ` n be two partitions of an integer n,

α = (α1, . . . , αp), β = (β1, . . . , βq),

p∑
i=1

αi =

q∑
j=1

βj = n,

and let P and Q be two coprime polynomials of degree n having the following
factorization patterns:

P (x) =

p∏
i=1

(x− ai)αi , Q(x) =

q∏
j=1

(x− bj)βj . (1)

In these expressions we consider the multiplicities αi and βj , i = 1, 2, . . . , p,
j = 1, 2, . . . , q as being given, while the roots ai and bj are not fixed, though
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they must all be distinct. In this paper we study polynomials satisfying (1)
and such that the degree of their difference R = P − Q attains its minimum.
Numerous papers, mainly in number theory, were devoted to the study of such
polynomials.

Assumption 1.1 (Conditions on α and β) Throughout the paper, we al-
ways assume that

• the greatest common divisor of the numbers α1, . . . , αp, β1, . . . , βq is 1;

• p+ q ≤ n+ 1.

The case of partitions α, β not satisfying the above conditions can easily be
reduced to this case (see [17]).

In 1995, Zannier [22] proved that under the above conditions the following
statements hold:

1. degR ≥ (n+ 1)− (p+ q).

2. This bound is always attained, whatever are α and β.

Definition 1.2 (DZ-pair and its passport) A pair of polynomials (P,Q)
such that P and Q are of the form (1) and deg (P − Q) = (n + 1) − (p + q)
is called Davenport–Zannier pair, or DZ-pair for short. The pair of partitions
(α, β) is called the passport of the DZ-pair.

Obviously, if (P,Q) is a DZ-pair with a passport (α, β), and if we take

P̃ = c ·P (ax+ b), Q̃ = c ·Q(ax+ b) where ac 6= 0, then (P̃ , Q̃) is also a DZ-pair
with the same passport. We call such DZ-pairs equivalent.

Definition 1.3 (Defined over Q) We say that a DZ-pair (P,Q) is defined
over Q if P,Q ∈ Q[x]. We say that an equivalence class of DZ-pairs is defined
over Q if there exists a representative of this class which is defined over Q.

By abuse of language, in what follows, we will use the shorter term “DZ-pair”
to denote also an equivalence class of DZ-pairs.

In our previous paper [17], using the theory of dessins d’enfants (see, for
example, Ch. 2 of [14]), we established a correspondence between DZ-pairs and
weighted bicolored plane trees. These are bicolored plane trees whose edges are
endowed with positive integral weights. The degree of a vertex is defined as
the sum of the weights of the edges incident to this vertex. Obviously, the sum
of the degrees of black vertices and the sum of the degrees of white vertices
are both equal to the total weight of the tree. Let α = (α1, α2, . . . , αp) and
β = (β1, β2, . . . , βq) be two partitions of the total weight n which represent the
degrees of black and white vertices respectively. The pair (α, β) is called the
passport of the tree in question.
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Proposition 1.4 (DZ-pairs and weighted trees) There is a bijection be-
tween DZ-pairs with a passport (α, β) on one hand, and weighted bicolored plane
trees with the same passport on the other hand.

Definition 1.5 (Unitree) A weighted bicolored plane tree such that there is
no other tree with the same passport is called unitree.

General facts of the theory of dessins d’enfants imply that DZ-pairs corre-
sponding to unitrees are defined over Q. Basing on our experience, we claim
that this class represents a vast majority of DZ-pairs defined over Q. The other
examples may roughly be subdivided into two categories. The members of the
first one are constructed as compositions of DZ-pairs corresponding to unitrees.
The second category is, in a way, a collection of exceptions. Still, the latter
category is no less interesting since it involves some subtle combinatorial and
group-theoretic invariants of the Galois action on DZ-pairs and on weighted
trees.

The main result of [17] is the classification of all unitrees. The
main result of the present paper is a complete list of the correspond-
ing polynomials. The final part of [17] is devoted to the study of Galois
invariants of weighed trees. In the final part of the present paper we compute
the corresponding polynomials.

The class of unitrees comprises ten infinite series, denoted from A to J ,
and ten sporadic trees, denoted from K to T . The pictures of these trees are
given below in the text. DZ-pairs corresponding to the series from A to J are
presented in Sects. 3 to 8; those corresponding to the sporadic trees from K
to T , in Sect. 9. The Galois action is treated in Sects. 10 to 12.

For individual DZ-pairs, a computation may turn out to be difficult, some-
times even extremely difficult, but the verification of the result is completely
trivial. As to the infinite series, the difficulties grow as a snowball. The “compu-
tational” part now consists in finding an analytic expression of the polynomials
in question, depending on one or several parameters, while the “verification”
part consists in a proof, which may be rather elaborate. See a more detailed
discussion below.

2 Preliminaries

2.1 A brief history of the question

In 1965, Birch, Chowla, Hall, and Schinzel [5] asked a question which soon
became famous:

Let A and B be two coprime polynomials with complex coefficients;
what is the possible minimum degree of the difference R = A3−B2 ?

In order for the question to be meaningful we should take A3 and B2 of the same
degree and with the same leading coefficient. Denote degA = 2k, degB = 3k,
so that degA3 = degB2 = 6k. Let us start with an example.
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Example 2.1 In this example, k = 4, so that both polynomials P and Q are of
degree 6k = 24. As to their difference R = P −Q, all its coefficients of degrees
from 24 down to 6 vanish, so that R becomes a polynomial of degree 5.

P = (x8 + 84x6 + 176x5 + 2366x4 + 13 536x3 + 26 884x2

+ 218 864x+ 268 777)3, (2)

Q = (x12 + 126x10 + 264x9 + 6195x8 + 31 392x7 + 163 956x6

+ 1 260 528x5 + 3 531 639x4 + 19 770 400x3,

+ 62 912 622x2 + 94 024 776x+ 291 742 453)2, (3)

R = −238 · 33 (x5 + 62x3 + 148x2 + 1001x+ 8852). (4)

The following two conjectures were proposed in [5]:

1. For degA = 2k, degB = 3k, one always has deg(A3 −B2) ≥ k + 1.

2. This bound is sharp: that is, it is attained for infinitely many values of k.

The first conjecture was proved the same year by Davenport [9]. The second
one turned out to be much more difficult and remained open for 16 years: in 1981
Stothers [20] showed that the bound is in fact attained not only for infinitely
many values of k but for all of them.

A far-reaching generalization of the above result was proved in 1995 by
Zannier [22]. Let α = (α1, . . . , αp) and β = (β1, . . . , βq) be two partitions of an
integer n satisfying the conditions of Assumption 1.1, and let P and Q be two
polynomials of degree n having the factorization pattern (1). Then

1. deg(P −Q) ≥ (n+ 1)− (p+ q).

2. This bound is always attained, whatever are α and β.

For the case of cubes and squares considered above we have n = 6k,

α = (3, 3, . . . , 3︸ ︷︷ ︸
2k

) = 32k, β = (2, 2, . . . , 2︸ ︷︷ ︸
3k

) = 23k,

so that p = 2k and q = 3k, whence

(n+ 1)− (p+ q) = (6k + 1)− (2k + 3k) = k + 1.

A result equivalent to that of Zannier was, in fact, proved, in a very implicit
way, by Boccara in 1982 [6] (see also [11], page 775). The result of [6] was purely
combinatorial, and relations between combinatorics and polynomials were at the
time largely overlooked.

Recall that a pair of polynomials (P,Q) satisfying (1) and such that the
degree of P − Q is equal to the minimum value (n + 1) − (p + q) are called
Davenport–Zannier pairs or DZ-pairs (Definition 1.2). The theory of dessins
d’enfants implies that DZ-pairs are always defined over the field Q of algebraic
numbers. However, the most interesting case is, without doubt, the one of pairs
defined over Q. In 2010, Beukers and Stewart [4] undertook a study of DZ-pairs
of the special type P = As, Q = Bt, defined over Q. In our paper we study
DZ-pairs of a general form (1) defined over Q.
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2.2 Dessins d’enfants

As we have already said, the framework of our paper is the theory of dessins
d’enfants (see, for example, Ch. 2 of [14]). The main notion of this theory is
that of Belyi function. For a rational function f : C → C : x 7→ y, where
C = C ∪ {∞} is the Riemann complex sphere, let us call y ∈ C a critical value
of f if the equation f(x) = y has multiple roots. The definition of a Belyi
function restricted to the planar case is as follows:

Definition 2.2 (Belyi function) A rational function f : C → C is a Belyi
function if f has at most three critical values, namely, 0, 1 and ∞.

Theorem 2.3 (Belyi functions and maps) If f : C→ C : x 7→ y is a Belyi
function then:

1. The preimage M = f−1([0, 1]) is a plane map, that is, a connected graph,
which is embedded into the sphere in such a way that its edges do not
intersect.

2. The map M has a natural bipartite structure: its vertices may be colored
in black and white in such a way that each edge would connect vertices of
opposite colors. Namely, black vertices of M are the points x ∈ f−1(0),
and white vertices ofM are the points x ∈ f−1(1), the vertex degrees being
equal to the multiplicities of the corresponding preimages.

3. Inside each face, there is a unique pole of f whose multiplicity is equal to
the degree of the face. Here the degree of a face is defined as a half of the
number of surrounding edges. We call this pole the center of the face in
question.

In the opposite direction, if M is a bicolored plane map then:

4. There exists a Belyi function f such that M can be realized as a preimage
M = f−1([0, 1]).

5. This function f is unique, up to an affine change of the variable x.

6. There is a uniquely defined number field K corresponding to M which is
called the field of moduli of M. The function f can be realized over a
number field L ⊇ K.

Statements 4 and 5 represent a particular case of Riemann’s existence the-
orem. Statement 6 follows from the rigidity of the ramified covering f : C→ C
and from some general facts of the Galois theory.

The above theorem, being applied to the DZ-pairs, gives the following state-
ment (see more details in [17]).

Proposition 2.4 (DZ-pairs and Belyi functions) A pair of complex poly-
nomials (P,Q) is a DZ-pair with a passport (α, β) if and only if the rational
function f = P/R, where R = P −Q, is a Belyi function for a bicolored plane
map M with the following characteristics:
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1. The map M has n = degP = degQ edges, p black vertices with the
degree distribution α, and q white vertices with the degree distribution β.
The Euler formula then implies that the number of faces is (n+2)−(p+q).

2. All faces of M except the outer one are of degree 1.

3. The number of the faces of M of degree 1 is equal to r = degR. In other
words, the degree distribution of the faces is equal to (n − r, 1r) where
r = (n+ 1)− (p+ q).

Furthermore, if K ⊂ Q is the moduli field of M, then it is possible to find
a corresponding DZ-pair such that P,Q ∈ K[x]. In other words, in this case
the realization field L (see the last statement of Theorem 2.3) coincides with
the field of moduli K. In particular, an equivalence class of the pair (P,Q) is
defined over Q if and only if the field of moduli of the map M is K = Q.

The characteristic which distinguishes the maps corresponding to DZ-pairs
from other maps is property 2 of the above theorem.

2.3 Weighted trees

We will call the faces other than the outer one inner faces. The maps whose
all inner faces are of degree 1 can be easily represented in the form of weighted
trees: just merge every sheaf of parallel edges into one edge and indicate the
number of edges merged together as the weight of the corresponding edge of the
weighted tree: see Fig. 1. Weighted trees are easier to work with than maps.

5

3

2

2

Figure 1: The passage from a map with all its inner faces being of degree 1, to
a weighted tree. The weights which are not explicitly indicated are equal to 1;
the edges of the weight greater than 1 are drawn thick.

Definition 2.5 (Weighted tree) A weighted bicolored plane tree, or a weigh-
ted tree, or just a tree for short, is a bicolored plane tree whose edges are endowed
with positive integral weights. The sum of the weights of the edges of a tree is
called the total weight or the degree of the tree.

The degree of a vertex is the sum of the weights of the edges incident to this
vertex. Obviously, the sum of the degrees of black vertices, as well as the sum of
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the degrees of white vertices, is equal to the total weight n of the tree. Let the
tree have p black vertices, of degrees α1, . . . , αp, and q white vertices, of degrees
β1, . . . , βq, respectively. Then the pair of partitions (α, β) of the total weight n
of the tree is called its passport.

Forgetting the weights and considering only the underlying plane tree, we
speak of a topological tree. Weighted trees, all of whose edges are of weight 1,
will be called ordinary trees. Belyi functions for ordinary trees are polynomials
(with the only pole at infinity); they are usually called Shabat polynomials.

We call a leaf a vertex which has only one edge incident to it, whatever is
the weight of this edge. By abuse of language, we will also call this edge itself
a leaf.

The adjective plane in the above definition means that the cyclic order of
branches around each vertex of the tree is fixed, and changing this order will
in general produce a different plane tree (though the tree considered as a mere
graph, without “planar” structure, remains the same). All trees considered in
this paper will be endowed with the planar structure; therefore, the adjective
“plane” will often be omitted.

The filed of moduli of a unitree is Q, see, e. g., [17]. Therefore, the second
part of Theorem 2.4 implies the following statement.

Proposition 2.6 (Unitree implies Q) If a weighted bicolored plane tree is a
unitree, then the corresponding equivalence class of DZ-pairs is defined over Q.

Example 2.7 (Example 2.1 revisited) Let us consider the tree shown in
Fig. 2. It has eight black vertices of degree 3 and twelve white vertices of
degree 2, so that its total weight (or degree) is 24. Accordingly, n = 24, and α
and β are the following two partitions of 24:

α = (3, 3, 3, 3, 3, 3, 3, 3) = 38, β = (2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2) = 212.

In the corresponding DZ-pair, the polynomial P must have eight roots of
multiplicity 3, the polynomial Q must have twelve roots of multiplicity 2. In
other words, P = A3 with degA = 8, and Q = B2 with degB = 12. The
difference R = P −Q must be of degree (24 + 1)− (8 + 12) = 5.

The general results formulated up to now, being applied to this particular
tree, imply the following statements:

• The mere existence of such a tree implies the existence of polynomials
with needed properties.

• The fact that there exist polynomials P and Q with rational coefficients is
a consequence of the fact that there exists a unique tree with the passport
(38, 212).

All this can be affirmed without any computations, just by looking at the pic-
ture. As to the polynomials themselves, they are given in Example 2.1.
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2

2

2

2

2

T

Figure 2: One of the sporadic trees of our classification of unitrees we will speak
about further. It is denoted as tree T .

2.4 Reciprocal polynomials

It turns out that technically it is often much more convenient to work not with
the polynomials appearing in DZ-pairs but with their reciprocals.

Definition 2.8 (Reciprocal polynomial) For a polynomial P of degree n,
its reciprocal is P ∗(x) = xn · P (1/x).

In many examples, the reciprocals of polynomials forming a DZ-pair take
the form of initial segments of power series of some special functions. After
having observed this phenomenon we learned that it was (re)discovered many
times, notably in [8], [3], [4].

Assume that polynomials P and Q form a DZ-pair, so that

deg (P −Q) = (n+ 1)− (p+ q) = n− (p+ q − 1), (5)

and denote by m the number of edges of the corresponding topological tree.
This tree has p + q vertices, therefore it has m = p + q − 1 edges. Considering
P and Q as power series we may write condition (5) as

P −Q = O(xn−m) when x→∞. (6)

For the reciprocal polynomials condition (5) is transformed into the following
one:

P ∗ −Q∗ = xm · S, (7)

where S is a polynomial, or, equivalently, to the condition

P ∗ −Q∗ = O(xm) when x→ 0. (8)
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For instance, in the Example 2.1 the polynomials reciprocal to (2) and (3) and
to their difference look as follows:

P ∗ = (1 + 84x2 + 176x3 + 2366x4 + 13 536x5 + 26 884x6

+ 218 864x7 + 268 777x8)3,

Q∗ = (1 + 126x2 + 264x3 + 6195x4 + 31 392x5 + 163 956x6

+ 1 260 528x7 + 3 531 639x8 + 19 770 400x9

+ 62 912 622x10 + 94 024 776x11 + 291 742 453x12)2,

P ∗ −Q∗ = x19 × −238 · 33 (1 + 62x2 + 148x3 + 1001x4 + 8852x5).

2.5 Remarks about computation

The computation of Belyi functions has recently become a vast domain of re-
search. A remarkable overview of this activity may be found in [19], a paper of
57 pages, with a bibliography of 176 titles. Beside a direct approach, involving
the solution of a system of polynomial equations, the authors of [19] also discuss
complex analytic methods, modular forms methods, and p-adic methods.

In order to get an idea of the level of difficulty of such a computation let
us return once again to Example 2.1. A naive approach would be to write
down polynomials A =

∑8
i=0 uix

i and B =
∑12
j=0 vjx

j with indeterminate
coefficients ui and vj , and then equate to zero the coefficients of degrees from 6
to 24 of the difference R = A3−B2 . In this way we get a system of 24−5 = 19
algebraic equations for 9 + 13 = 22 unknowns. Then we may set, for example,
u8 = 1, u7 = 0, and v12 = 1. The system thus obtained (19 equations with
19 unknowns) will be of degree 25 509 168 ! Obviously, this is not a clever way
to proceed.

By the way, the solution we are looking for is unique; all the other solutions
of this enormous system are “parasitic” ones. For example, the system does not
give us any guarantee that the polynomials A and B obtained as its solution will
be coprime. This condition should be added to the system, but this addition
will make our situation even worse.

Notice, however, that, once the result is obtained, its verification is trivial.

Taking into account the above considerations, we would like to underline
one aspect of our work: though we do compute Belyi functions for certain
individual dessins, the most interesting part of the paper is the computation
of Belyi functions for infinite series of dessins which depend on one or several
parameters. For infinite series the situation is significantly more complicated
than for individual dessins. Usually, the first thing to do is to compute quite
a few particular cases, sometimes dozens of them (or to use other heuristics
whenever possible). Then, we need to guess a general pattern of corresponding
Belyi functions. And, finally, instead of a trivial verification step which was
applicable to individual dessins, we should provide a proof, which may turn out
to be rather laborious.

In the present paper we obviously do not expose the first step of the above
procedure. What we do is presenting the final results, that is, the general form
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of Belyi functions in question, and then we give the proofs whenever they are
necessary.

∗ ∗ ∗
As it was already said, the unitrees comprise ten infinite series, from A

to J , and ten sporadic trees, from K to T . In the subsequent sections we do
not strictly follow the “alphabetic” order of trees since we prefer to underline
the structural properties of Belyi functions in question. Certain Belyi func-
tions are expressed in terms of Jacobi polynomials; there are others which lead
to interesting differential relations; we will also encounter compositions, Padé
approximants, an application to the Hall conjecture, etc.

3 Stars and binomial series

Our first series, called “series A” in [17], is composed of stars-trees, see Fig. 3.
All edges except maybe one are of the same weight. This is a three-parametric
series.

s

s

s

s

s
s

s
s

t

0
1

Figure 3: Star-trees. There are k edges of weight s and one edge of weight t,
and gcd(s, t) = 1.

Denote the number of leaves of weight s by k; then the total weight of the
tree is n = ks+ t. Clearly, we may put the only black vertex at x = 0, put the
white vertex of degree t at x = 1, and assume that both P and Q are monic.
Then P (x) = xn and

Q(x) = (x− 1)t ·A(x)s, (9)

where A is a monic polynomial of degree k whose roots are the white vertices
of degree s. Now, condition (6) takes the form

xn − (x− 1)t ·As =
x→∞

O(xn−(k+1)). (10)

The only thing we need to know is the polynomial A.

Proposition 3.1 The polynomial A∗ reciprocal to A is the initial segment of
the binomial series for (1− x)−t/s up to the degree k:

(1− x)−t/s =
x→0

A∗ +O(xk+1). (11)
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Proof. Let us pass to reciprocals in (10): we need to obtain A∗ such that

1− (1− x)t · (A∗)s =
x→0

O(xk+1).

Let us verify that the polynomial A∗ defined in (11) satisfies the latter equality.
We have:

A∗ = (1− x)−t/s + h · xk+1, (12)

where
h =
x→0

O(1).

Therefore,
A∗(1− x)t/s = 1 + h · xk+1(1− x)t/s,

and

(A∗)s(1− x)t =
[
1 + h · xk+1(1− x)t/s

]s
=
x→0

1 +O(xk+1)

which concludes the proof. �

Some particular cases of formula (11) were previously found by N. Adrianov
(unpublished).

4 Forks and Hall’s conjecture

The two-parametric series of trees shown in Fig. 4 was called “series D” in [17].

s

s

t s s+t

D

Figure 4: Fork-trees. There are exactly two leaves of weight s and exactly one
leaf of weigh s+ t. As usual, gcd(s, t) = 1.

4.1 Calculation of DZ-pairs

This is the only infinite series of unitrees for which we were able to find the corre-
sponding DZ-pairs by computer. Let us introduce the following three quadratic
polynomials:

A – the roots of A are two black vertices of degree 2s+ t;
B – the roots of B are two white vertices of degree s+ t;
C – the roots of C are two white vertices of degree s.
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Proposition 4.1 We have P = A2s+t and Q = Bs+t · Cs, where

A = x2 − (3s+ t)(3s+ 2t); (13)

B = x2 − 6s · x+ (3s− 2t)(3s+ t); (14)

C = x2 + 6(s+ t) · x+ (3s+ 2t)(3s+ 5t). (15)

Proof. By (8), we must prove that

(A∗)2s+t − (B∗)s+t · (C∗)s = O(x5). (16)

Clearly, we may assume that the sum of the roots of A equals zero. Write

A∗ = 1− ax2, B∗ = 1− bx+ cx2, C∗ = 1 + dx+ ex2,

and calculate, with the help of Maple, the first five coefficients of the Taylor
series in the left-hand side of (16). Equate now the expressions thus obtained
to zero and solve the corresponding system in the unknowns a, b, c, d, e. Maple
returns two solutions:

a = −e, b = 0, c = e, d = 0, e = e,

and

a =
b2
(
9 s2 + 9 ts+ 2 t2

)
36s2

, b = b, c =
b2
(
9 s2 − 3 ts− 2 t2

)
36s2

,

d =
(t+ s) b

s
, e =

b2
(
9 s2 + 10 t2 + 21 ts

)
36s2

.

Rejecting the first solution, for which the roots of A, B and C coincide, and
making an additional normalization by setting the b = 6s, we obtain formulas
(13), (14) and (15). �

4.2 An application: Danilov’s theorem

In 1971, M. Hall, Jr. [13] suggested the following two conjectures.

1. There exists a constant c such that for all positive integers a, b, a3 6= b2,
the inequality

|a3 − b2| > c · a1/2

holds.

2. The exponent 1/2 in the above inequality cannot be improved. Namely,
for every ε > 0 there exists a constant C(ε) such that there are infinitely
many pairs of integers (a, b) satisfying the inequality

|a3 − b2| ≤ C(ε) · a1/2+ε.
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This first conjecture is neither proved nor disproved. However, a general belief
is that in order to be true it should be modified as follows: for each ε > 0
there exists a constant c(ε) such that for all positive integers a, b, a3 6= b2, the
inequality

|a3 − b2| > c(ε) · a1/2−ε

holds. In this form the conjecture is a corollary of the famous ABC-conjecture
(see, e. g., [15], [4] for further details).

As to the second conjecture, in 1982 Danilov [7] proved its stronger version.
His result is interesting for us since in his proof he used, in a slightly different
normalization, the above polynomials A,B,C, see (13), (14), (15), with the
parameters s = t = 1.

Proposition 4.2 (Danilov’s theorem) There exists a constant C such that
there are infinitely many pairs of integers (a, b) satisfying the inequality

|a3 − b2| ≤ C · a1/2. (17)

Proof. Specializing (13), (14) and (15) for s = t = 1 and computing the
difference P −Q we get

(x2 − 20)3 − (x2 − 6x+ 4)2(x2 + 12x+ 40) = 1728x− 8640.

Substituting x = 2z and dividing both parts by 8 we get

(2z2 − 10)3 − (2z2 − 6z + 2)2(2z2 − 12z + 20) = 432z − 1080. (18)

Let us now consider the factor 2z2−12z+ 20 = 2(z−3)2 + 2 and try to make it
a perfect square; then (18) will give us a relatively “small” difference between
a cube and a square. To do that we have to solve the Diophantine equation

u2 − 2v2 = 2, (19)

where v = z − 3.
The last equation is a Pell-like equation, that is an equation of the form

u2 −Dv2 = m,

where D > 0 is a square-free integer and m ∈ Z. For m = 1 this equation is a
usual Pell equation, and it is well known that any Pell equation has infinitely
many integer solutions. Pell-like equations not necessarily have integer solutions.
However, if at least one such solution (u0, v0) exists, then we can obtain infinitely
many solutions (un, vn) using the following recursion:

un + vn
√
D = (un−1 + vn−1

√
D)(k + l

√
D)

where (k, l) is the minimum solution of the equation k2 −Dl2 = 1. In our case,
(k, l) = (3, 2).
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Equation (19) does have an integer solution (u0, v0) = (2, 1). Returning
to (18), it is easy to verify that for all z ≥ 3 one has

432z − 1080 < 216
√

2 · (2z2 − 10)1/2,

which proves the theorem: there are infinitely many pairs of integers (a, b)
satisfying (17), with the constant C = 216

√
2. �

The same polynomials A,B with the parameters s = t = 1 were used by
Dujella [10] for constructing an infinite series of pairs of polynomials P,Q with
the following properties: (a) degP = 2k, degQ = 3k; (b) P and Q are not
coprime; (c) deg(P 3 − Q2) = k + 5, so that the minimum degree k + 1 is not
attained, though the discrepancy remains bounded; (d) in return, P and Q are
defined over Q.

Using other DZ-pairs, Danilov [8] and Beukers and Stewart [4] obtained
results similar to Proposition 4.2 for the differences between integer powers
an and bm.

5 Jacobi polynomials

5.1 Trees of this section

Davenport–Zannier pairs for the series of trees considered in this section are
expressed in terms of Jacobi polynomials. The trees in question are constructed
as follows. First, we take chain-trees with alternating edge weights s, t, s, t, . . .,
see Fig. 5. We must distinguish chains of odd and even length since in one case
both ends are of the same color while in the other case they are of different
colors.

t s ts

s t s t s

B

B1

2

Figure 5: Series B1 and B2: chain-trees

Then, we have a right to attach to the end-points an arbitrary number of
leaves of the weight s+ t. In this way we obtain “odd” series E1, E3 and “even”
series E2, E4, see Figs. 6 and 7. We call these series “double brushes”. Note
that any of the parameters k, l, and also both of them, may be equal to zero.
Thus, B1 and E1 are particular cases of E3, and B2 and E2 are particular cases
of E4.

There are two exceptions from the above construction. The first is when the
chain part consists of a single edge, so that there is no alternance of weights.
We thus obtain the series C, see Fig. 8. In contrast to the general case, now the
weight of leaves may be smaller than the weight of the edge between the leaves.
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s+t

s t s t s

s+t
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s+t

E3

l
s t s t s s+t
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−1

−1 1

s+t

s+t s+t

1

Figure 6: Series E1 and E3: odd double brushes

k l

E4

s+t

s t s t s t s+t
s+t

s+t

s+t

s t s t s t s+t

s+t

l

E2

−1

−1

s+t s+t

s+t

1

1

Figure 7: Series E2 and E4: even double brushes
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s

s

s

s

s

s

k l
t

C

−1 1

Figure 8: Series C: trees of diameter 3
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The second exception is when the chain part consists of two edges. In this
case it is possible to attach exactly one leaf of weight s + t to one of the ends
and exactly two leaves of weight s (or t, to ensure the weight alternance) to the
other end. In this way, we get the series of forks D already studied in Sect. 4.

5.2 Jacobi polynomials: preliminaries

Let us recall some general facts concerning Jacobi polynomials; for more ad-
vances and detailed treatment see, for example, [21] or [1].

The classical Jacobi polynomials Jn(a, b, x), deg Jn = n, are defined for the
parameters a, b ∈ R, a, b > −1, as orthogonal polynomials with respect to the
measure on the segment [−1, 1], given by the density (1 − x)a(1 + x)b. The
restriction a, b > −1 is necessary in order to ensure the integrability. The
polynomial Jn(a, b, x) can also be defined as a unique polynomial solution of
the differential equation

(1− x2)y′′ + [b− a− (a+ b+ 2)x] y′ + n(n+ a+ b+ 1)y = 0, (20)

satisfying the condition Jn(a, b, 1) =
(
n+a
n

)
, or by the explicit formula

Jn(a, b, x) =

n∑
k=0

(
n+ a+ b+ k

k

)(
n+ a

n− k

)(
x− 1

2

)k
. (21)

Notice that equation (20) can be written in the form

(1− x2)Y ′′ + [a− b+ (a+ b− 2)x]Y ′ + (n+ 1)(n+ a+ b)Y = 0, (22)

where Y = (1− x)a(1 + x)b · y, implying that the function

(1− x)a(1 + x)b · Jn(a, b, x) (23)

satisfies (22).
It follows from (21) that Jn(a, b, x) are also polynomials in parameters a

and b. Therefore, their definition can be extended to arbitrary (even com-
plex) values of these parameters. These generalized Jacobi polynomials still
satisfy (20), although they are no longer orthogonal with respect to a measure
on the segment [−1, 1]. Similarly, since the function (23) may be represented
as a power series in x whose coefficients are polynomials in a, b, this function
satisfies equation (22) for arbitrary a and b.

The following key observation will be used in subsequent proofs. If, in the
differential operator (20), we replace n with n + a + b, a with −a, and b with
−b, we get exactly the differential operator (22). Therefore, Jn+a+b(−a,−b, x)
along with (23) satisfies (22). The last statement, however, should be taken
with caution: the subscript n+ a+ b must be a non-negative integer since it is
the degree of a polynomial.

Notice that if a and b do not satisfy the inequalities a, b > −1, then the
degree in x of the polynomial Jn(a, b, x) defined by (21) may drop down below n.
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Indeed, (21) implies that the leading coefficient of Jn(a, b, x) is equal to

1

2n

(
2n+ a+ b

n

)
=

1

2n · n!

2n∏
i=n+1

(a+ b+ i) . (24)

Hence, in order to obtain a polynomial of degree n we must require that the
sum a+ b does not take values −(n+ 1), −(n+ 2), . . . , −2n. In particular, this
is always true if a and b are real and n ≥ −(a+b) or, equivalently, n+a+b ≥ 0.

Along with the density (1 − x)a(1 + x)b, which is defined on [−1, 1], we
will use the multivalued complex function (z − 1)a(z + 1)b (note the change of
the sign of the term in the first parenthesis). Clearly, this function has three
ramification points −1, 1,∞. Further, observe that if a+ b ∈ Z, then any germ
of (z−1)a(z+1)b defined near a non-singular point z0 extends to a function µ(z)
which is single-valued in any domain U obtained from CP1 by removing a simple
curve connecting −1 and 1. Indeed, in such U the function µ(z) may have a
ramification only at infinity. On the other hand, since the analytic continuation
of µ(z) along a loop around infinity is e2π(a+b)iµ(z), we see that ∞ is not a
ramification point since a + b ∈ Z. In particular, µ(z) can be expanded into a
Laurent series at infinity,

µ(z) = ca+bz
a+b + ca+b−1z

a+b−1 + . . . .

Finally, if a and b are rational numbers, say

a =
n1
m
, b =

n2
m
, n1, n2,m ∈ Z, (25)

then any µ(z) as above satisfies the condition

µ(z)m = (z − 1)n1(z + 1)n2 ,

implying that µ(z) is defined up to a multiplication by an mth root of unity,
and that for a certain choice of this root the equality ca+b = 1 holds. By abuse
of notation, below we will always use the expression (z − 1)a(z + 1)b to denote
the function µ(z) which satisfies the equality ca+b = 1.

Lemma 5.1 Assume that a and b are rational numbers which satisfy the con-
dition a+ b ∈ Z. Then for any n ≥ −(a+ b) the equality(

z − 1

2

)a(
z + 1

2

)b
Jn(a, b, z)− Jn+a+b(−a,−b, z) =

z→∞
O(z−(n+1)) (26)

holds.

Proof. As it was mentioned above, the function (23) satisfies the differential
equation (22), where the function ν(x) = (1 − x)a(1 + x)b is assumed to be
defined on [−1, 1]. However, since this function is analytic near the origin, we
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can consider its analytic continuation ν(z), and the function ν(z)Jn(a, b, z) will
satisfy (22) in the domain U as above. Furthermore, if (25) holds, then

ν(z)m = (−1)n1

(
(z − 1)a(z + 1)b

)m
,

implying that the function (z − 1)a(z + 1)bJn(a, b, z) also satisfies (22) in U .
Since the polynomial Jn(a, b, x) satisfies the differential equation (20), we

conclude that the functions

Y1 =

(
z − 1

2

)a(
z + 1

2

)b
Jn(a, b, z) and Y2 = Jn+a+b(−a,−b, z)

both satisfy the differential equation

La,bn (Y ) = 0, (27)

where

La,bn = (1− z2)
d2

dz2
+ [a− b+ (a+ b− 2)z]

d

dz
+ (n+ 1)(n+ a+ b).

This implies that the function Y0 = Y1 − Y2 also satisfies this equation. On the
other hand, it is easy to see that if Y (z) is a function whose Laurent expansion
at infinity is

Y = Cdz
d + Cd−1z

d−1 + . . . ,

then
La,bn (Y ) = C̃dz

d + C̃d−1z
d−1 + . . .

where

C̃d = −d(d− 1) + d(a+ b− 2) + (n+ 1)(n+ a+ b)

= (n+ a+ b− d)(d+ n+ 1).

Therefore, if Y satisfies (27) and Cd 6= 0 while C̃d = 0, we should have either
d = n + a + b or d = −(n + 1). Finally, (21) implies that the leading terms of
both Y1 and Y2 are equal to

1

2n+a+b

(
2n+ a+ b

n

)
zn+a+b.

Therefore, the degree of the leading term of their difference Y0 = Y1− Y2 is less
than n+ a+ b, hence the only possible case is d = −(n+ 1), implying (26). �

5.3 Double brushes of even length

Let T be a weighted tree from the series E4 or of its two particular cases E2

or B2, see Figs. 7 and 5. Denote by r the number of white vertices of T which
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are not leaves. Then the total weight of T is equal to (s+ t)(k+ l+ r) and the
total number of edges is equal to k + l + 2r. Clearly,

P = (x− 1)l(s+t)+t(x+ 1)k(s+t)+s ·As+t, (28)

Q = Bs+t (29)

for some polynomialsA andB with degA = r−1, degB = k+l+r. Furthermore,
by (6), we must have:

P −Q =
x→∞

O(xm),

where

m = (s+ t)(k + l + r)− (k + l + 2r) = (k + l + r)(s+ t− 1)− r. (30)

Proposition 5.2 The polynomials P and Q may be represented as follows:

P (x) =

(
x− 1

2

)l(s+t)+t
·
(
x+ 1

2

)k(s+t)+s
· Jr−1(a, b, x)s+t, (31)

where Jr−1(a, b, x) is the Jacobi polynomial with parameters

a =
l(s+ t) + t

s+ t
and b =

k(s+ t) + s

s+ t
, (32)

and

Q(x) = Jk+l+r(−a,−b, x)s+t. (33)

Proof. Since the polynomials A and B in (28), (29) are defined in a unique
way up to a multiplication by a scalar factor, it is enough to show that

(
x− 1

2

)l(s+t)+t(
x + 1

2

)k(s+t)+s

Jr−1(a, b, x)s+t−Jk+l+r(−a,−b, x)s+t =
x→∞

O(xm),

(34)

where a and b are given by (32), and m, by (30).
Represent the left side of (34) as a product of two factors using the formula

us+t − vs+t = (u− v)(us+t−1 + us+t−2v + · · ·+ vs+t−1), (35)

where

u =

(
x− 1

2

)a(
x+ 1

2

)b
Jr−1(a, b, x), v = Jk+l+r(−a,−b, x),

It is easy to see that both u and v are O(xk+l+r) near infinity. Let us consider
the difference u− v. Clearly,

k + l + r = r − 1 + a+ b.
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Furthermore, since k, l, r ≥ 0 the inequality

r − 1 ≥ −(a+ b) = −(k + l + 1)

holds. Therefore, by Lemma 5.1, we have:

u− v =
x→∞

O(x−r).

On the other hand,

us+t−1 + us+t−2v + · · ·+ vs+t−1 =
x→∞

O(x(k+l+r)(s+t−1)).

Thus,
us+t − vs+t =

x→∞
O(xm)

as required. �

Remark 5.3 Belyi functions for the series E2 and E4 with the parameters
s = t = 1 were first calculated in the thesis of Nicolas Magot in 1997 [16]. A
different proof, proposed by Don Zagier, was given in Ch. 2 of [14]. We used
Zagier’s proof as a model for the above construction.

5.4 Series E1 and E3: double brushes of odd length

Let now T be a weighted tree from the series E3 or of its two particular cases E1

and B1, see Figs. 6 and 5. As above, denote by r the number of white vertices
of T which are not leaves, so that the total weight of T is (s+ t)(k+ l+ r) + s,
and the total number of edges is k + l+ 2r+ 1. Now we must find polynomials
P and Q such that

P = (x+ 1)k(s+t)+s ·As+t, (36)

Q = (x− 1)l(s+t)+s ·Bs+t (37)

for some polynomials A and B with degA = l + r and degB = k + r, and

P −Q =
x→∞

O(xm),

where

m = (s+t)(k+l+r)+s−(k+l+2r+1) = (k+l+r)(s+t−1)+s−r−1. (38)

Proposition 5.4 The polynomials P and Q may be represented as follows:

P (x) =

(
x+ 1

2

)k(s+t)+s
· Jl+r(a, b, x)s+t, (39)

where Jl+r(a, b, x) is the Jacobi polynomial with the parameters

a = − l(s+ t) + s

s+ t
and b =

k(s+ t) + s

s+ t
, (40)

and

Q(x) =

(
x− 1

2

)l(s+t)+s
· Jk+r(−a,−b, x)s+t. (41)
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Proof. We must show that(
x + 1

2

)k(s+t)+s

Jl+r(a, b, x)s+t −
(
x− 1

2

)l(s+t)+s

Jk+r(−a,−b, x)s+t =
x→∞

O(xm)

(42)

where

a = − l(s+ t) + s

s+ t
, b =

k(s+ t) + s

s+ t
,

and m is defined by (38).
Equality (42) is equivalent to the equality(
x− 1

2

)−(l(s+t)+s)(
x + 1

2

)k(s+t)+s

Jl+r(a, b, x)s+t − Jk+r(−a,−b, x)s+t = O(xp),

(43)

where

p = m− (l(s+ t) + s) = (k + r)(s+ t− 1)− (l + r + 1).

On the other hand, since

k + r = (l + r) + a+ b

and
l + r ≥ −(a+ b) = l − k,

it follows from Lemma 5.1 that(
x− 1

2

)a(
x+ 1

2

)b
Jl+r(a, b, x)− Jk+r(−a,−b, x) = O(x−(l+r+1),

implying in the same way as in Proposition 5.2 that (43) holds. �

5.5 Series C and B

The series C is a particular case of the series E of odd length corresponding to
the case of r equal to zero. In order to adjust the notation (which is slightly
different for the series E and C) we must set r = 0 and change s to t and t to
s− t in formulas (39)–(41). Thus,

P (x) =

(
x+ 1

2

)ks+t
· Jl(a, b, x)s, (44)

where Jl(a, b, x) is the Jacobi polynomial of degree l with parameters

a = − ls+ t

s
and b =

ks+ t

s
, (45)

while

Q(x) =

(
x− 1

2

)ls+t
· Jk(−a,−b, x)s. (46)

Finally, it is clear that the series B1 and B2 (chains of odd and even length) are
particular cases of the series E3 and E4, so that the Davenport–Zannier pairs
for B1 and B2 are obtained from those for E3 and E4 by setting k = l = 0.
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5.6 Padé approximants

The above results can be interpreted in terms of Padé approximants for the
function (1− x)a(1 + x)b. Recall that if

f(x) =

∞∑
k=0

ckx
k

is a formal power series, then its Padé approximant of order [n/m] at zero is a
rational function pn(x)/qm(x), where pn(x) is a polynomial of degree ≤ n and
qm(x) is a polynomial of degree ≤ m, such that

f(x)− pn(x)

qm(x)
=
x→0

O(xn+m+1). (47)

Defined in this way, Padé approximants do not necessarily exist. However, if an
approximant of a given order exists, it is unique.

Linearizing the problem by requiring that

qm(x)f(x)− pn(x) =
x→0

O(xn+m+1) (48)

we arrive to the notion of a Padé form (pn, qm) of order [n/m]. Being defined
by linear equations, Padé forms always exist (in general, (48) does not imply
(47) since qm(x) may vanish at zero), and the Padé form of a given order is
defined in a unique way up to a multiplication by a constant.

Keeping the notation of Sect. 5.3 we may now reformulate the condition for
P and Q to be a Davenport–Zannier pair for the series E of even length as
follows (a similar result is also true for the series E of odd length).

Proposition 5.5 (Padé forms, even case) Let polynomials A and B be like
in formulas (28) and (29). Then the pair of their reciprocals (A∗, B∗) is the
Padé form of order [r − 1/k + l + r] for the function (1 − x)a(1 + x)b with
parameters

a =
l(s+ t) + t

s+ t
and b =

k(s+ t) + s

s+ t
. (49)

Proof. Since the pairs (P,Q) and (A,B) are both defined up to a multiplica-
tion by a constant, it is enough to show that

(x− 1)l(s+t)+t(x+ 1)k(s+t)+s ·As+t −Bs+t =
x→∞

O(xp), (50)

where
p = (k + l + r)(s+ t− 1)− r.

By definition of Padé forms we have:

(1− x)a(1 + x)bA∗ −B∗ =
x→0

O(xk+l+2r),
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implying that

(1− x)l(s+t)+t(1 + x)k(s+t)+s · (A∗)s+t − (B∗)s+t =
x→0

O(xk+l+2r), (51)

(here we use formula (35) again though now the factors involved are series by
non-negative powers of x). Finally, substituting 1/x in place of x in (51) and
multiplying both sides by

x(k+l+r)(s+t)

we obtain (50). �

Proposition 5.6 (Padé forms, odd case) Let polynomials A and B be like
in formulas (36) and (37). Then the pair of their reciprocals (A∗, B∗) is the Padé
form of order [l + r/k + r] for the function (1− x)a(1 + x)b with parameters

a = − l(s+ t) + t

s+ t
and b =

k(s+ t) + s

s+ t
. (52)

The proof is similar to the previous one, so we omit it.

Remark 5.7 (On Padé approximants) From the computational point of
view, a great advantage of Padé approximants is due to the fact that the equa-
tions describing them are linear. This observation remains true even in the case
like ours when the polynomials in question are known explicitly. One has to
use some astute tricks in order to make Maple work with Jacobi polynomials
whose parameters do not satisfy the condition a, b > −1. At the same time, the
computation of Padé approximants is instantaneous.

A vast literature is devoted to the study of Padé approximants for some
particular functions. This is the case, for example, for the exponential function.
To our surprise, we did not find any research concerning Padé approximants
for the function (1 − x)a(1 + x)b. By the way, our Lemma 5.1 can also be
reformulated as a result about Padé forms for this function.

6 Series F and G: trees of diameter 4

Below we find DZ-pairs for the series F and G, see Figs. 10 and 9, using their
relations to differential equations. For the series F , which consists of ordinary
trees, the corresponding formulas are particular cases of the formulas for Shabat
polynomials for trees of diameter four, first calculated by Adrianov [2].

Since any tree from the series F is ordinary, the degree of R = P −Q is zero,
that is R = c for some c ∈ C. Therefore, in order to describe the corresponding
DZ-pair it is enough to find P and c. This is equivalent to the finding of the
Shabat polynomial corresponding to the tree. Similarly, for trees from the series
G the degree of R is one, and it is technically easier to provide explicit formulas
for P and R rather than for P and Q.

We start with the series G.
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6.1 Series G

The polynomial P for the series G takes the form

P = A(x)m, (53)

where A is a polynomial of degree k − 1 whose roots are the black vertices (all
of them are of degree m). Notice that the number of these vertices does not
coincide with the degree of the central vertex since we have one “double” edge.

2

m
m

m

m

m

k m

G

Figure 9: Series G. The degree of the central vertex is k, the number of branches
(and the number of black vertices) is k − 1.

We choose the normalization of P , Q and R = P −Q in the following way:

• P = Am where A is monic, degA = k − 1;

• the central vertex is placed at x = 0, so that Q = xk ·B where B is monic,
degB = n− k; the roots of B are the white vertices distinct from zero;

• R = c (x− 1); this means that the pole inside the only face of degree 1 is
placed at x = 1.

Thus, we get
Am − c (x− 1) = xk ·B. (54)

Proposition 6.1 The polynomial A satisfies the differential equation

mA′ · (x− 1)−A = (m(k − 1)− 1)xk−1. (55)

Consequently, coefficients a0, . . . , ak−1 of A(x) =
∑k−1
i=0 aix

i may be found by
the following backward recurrence:

ak−1 = 1, ai =
m(i+ 1)

mi− 1
· ai+1 for 0 ≤ i ≤ k − 2. (56)

Finally, c = −a0.
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Proof. Taking the derivative of the both sides of equality (54) we obtain the
equality

mAm−1A′ − c = xk−1 (kB + xB′) ,

implying the equality

mAmA′ − cA = xk−1A (kB + xB′) .

Substituting in the last equality the value of Am from (54), we obtain

mA′
[
c (x− 1) + xkB

]
− cA = xk−1A (kB + xB′)

and
mA′ · c (x− 1)− cA = xk−1 [kAB + xAB′ − xmA′B] .

We now observe that the degree of the left-hand side of the latter equality is
k−1, while its right-hand side is proportional to xk−1. Therefore, the expression
in the square brackets on the right is some constant K, and both parts are equal
to K · xk−1. The constant K can be easily found as the leading coefficient of
the left-hand side: it is equal to mc(k − 1)− c. Finally, we get the equality

mcA′ − cA = (mc(k − 1)− c)xk−1,

which implies (55).

Substituting A(x) =
∑k−1
i=0 aix

i in (55) we obtain (56). Finally, substituting
x = 0 in (54) we obtain c = −am0 . �

Example 6.2 Let us take k = 6, so that degA = k − 1 = 5. Then the
corresponding polynomial looks as follows:

A = a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x+ a0, (57)

where

a5 = 1,

a4 =
5m

4m− 1
,

a3 =
5m · 4m

(4m− 1)(3m− 1)
,

a2 =
5m · 4m · 3m

(4m− 1)(3m− 1)(2m− 1)
,

a1 =
5m · 4m · 3m · 2m

(4m− 1)(3m− 1)(2m− 1)(m− 1)
,

a0 =
5m · 4m · 3m · 2m ·m

(4m− 1)(3m− 1)(2m− 1)(m− 1)(−1)
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Remark 6.3 (Hypergeometric equation) Polynomial A also satisfies the
hypergeometric differential equation

x(1− x)
d2y

dx2
+
[
c− (a+ b+ 1)x

]dy
dx
− ab · y = 0. (58)

Indeed, applying the differential operator x
d

dx
+(1−k) to both parts of equality

(55) we obtain

x [mA′ · (x− 1)−A]
′
+ (1− k) [mA′ · (x− 1)−A] = 0,

implying

x(x− 1)A′′ +

[(
1− 1

m
+ (1− k)

)
x− (1− k)

]
A′ − (1− k)

m
A = 0.

Therefore, A is a solution of the differential equation

x(1− x)
d2y

dx2
+

[
(1− k)−

(
(1− k)− 1

m
+ 1

)
x

]
dy

dx
+

(1− k)

m
y = 0

which is a particular case of (58) with

a = 1− k, b = − 1

m
, c = 1− k.

6.2 Series F

m

m

m

m

m

k l

F

Figure 10: Series F

For this series we may assume that

P = (x− 1)lA(x)m, Q = xkB(x). (59)
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Here A is monic and degA = k − 1; namely, A is a polynomial whose roots are
the black vertices of degree m. Now, B is a polynomial whose roots are the
white vertices distinct from zero, degB = n − k. The polynomials P and Q
must satisfy the condition

(x− 1)lA(x)m − xkB(x) = c , (60)

where c ∈ C is a non-zero constant.

Proposition 6.4 The polynomial A satisfies the differential equation

mA′ · (x− 1) + lA = [m(k − 1) + l] xk−1. (61)

Consequently, coefficients a0, . . . , ak−1 of A(x) =
∑k−1
i=0 aix

i may be found by
the following backward recurrence:

ak−1 = 1, ai =
m(i+ 1)

mi+ l
· ai+1 for 0 ≤ i ≤ k − 2. (62)

Finally, the value of c in (60) is equal to (−1)lam0 .

Proof. As above, let us take the derivative of both sides of equation (60).
Then we get

(x− 1)l−1Am−1 [lA+m (x− 1)A′] = xk−1 (kB + xB′) .

We observe that the polynomial xk−1 is coprime with the factor (x−1)l−1Am−1

in the left-hand side, and therefore it must be proportional to the factor lA +
m (x − 1)A′ which is itself a polynomial of degree k − 1. Therefore, both of
them are equal to K · xk−1 where the constant K can be found as the leading
coefficient of lA + m (x − 1)A′; namely, it is equal to m(k − 1) + l. Thus, (61)
holds.

Now, substituting A(x) =
∑k−1
i=0 aix

i in (61) we obtain the recurrence (62),
and substituting x = 0 in (60) we obtain the value of c. �

Here, like in the case of the series G, the polynomial A also satisfies the hy-
pergeometric differential equation, and therefore it may be represented through
a hypergeometric function.

Example 6.5 Let us take k = 6, so that degA = k − 1 = 5. Then the
corresponding polynomial looks as follows:

A = a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x+ a0,
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where

a5 = 1 ,

a4 =
5m

l + 4m
,

a3 =
5m · 4m

(l + 4m)(l + 3m)
,

a2 =
5m · 4m · 3m

(l + 4m)(l + 3m)(l + 2m)
,

a1 =
5m · 4m · 3m · 2m

(l + 4m)(l + 3m)(l + 2m)(l +m)
,

a0 =
5m · 4m · 3m · 2m ·m

(l + 4m)(l + 3m)(l + 2m)(l +m)l
.

6.3 Differential relations

The above method may be applied to DZ-pairs which do not necessary corre-
spond to trees of diameter four or to unitrees. However, in general, it leads to
differential relations between P and Q. Let us clarify what we mean by consid-
ering the problem of the difference between cubes and squares of polynomials,
which was at the origin of the whole activity concerning DZ-pairs, see [5], [9].

Let A, B, and R be polynomials such that

A3 −B2 = R (63)

and
degA = 2k, degB = 3k, degR = k + 1.

Taking the derivative of both parts of (63) we obtain

3A2A′ − 2BB′ = R′.

Multiplying now the last equality by A and substituting A3 from (63) we obtain
the equality

3A′
(
B2 +R

)
− 2BB′A = R′A,

implying in its turn the equality

B (3A′B − 2AB′) = R′A− 3A′R.

Since the degree of the right-hand side is

deg(R′A− 3A′R) ≤ 3k

while degB = 3k, the above equality implies that

3A′B − 2AB′ = c (64)

for some non-zero constant c ∈ C.
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The last expression is a differential equation of the first order with respect
to A as well as with respect to B. Unfortunately, both A and B are unknown.
Thus, it does not give us any immediate information about A and B. Still,
algebraic equations for coefficients of A and B obtained from (64) are (mostly)
of degree 2 while the equations obtained from (63) are (mostly) of degree 3.

Differentiating (64) and writing the expression thus obtained as a differential
equation with respect to A we get:

A
′′

+
B

′

3B
·A

′
− 2B

′′

3B
·A = 0. (65)

This differential equation is a particular case of the differential equation

d2S

dz2
+

 m∑
j=1

γj
z − aj

 dS

dz
+

V (z)∏m
j=1(z − aj)

S = 0, (66)

where V is a polynomial of degree at most m − 2. Polynomial solutions of the
last equation are called Stieltjes polynomials. The polynomials V for which (66)
has a polynomial solution are called Van Vleck polynomials. Thus, B is a Van
Vleck polynomial, and A is the corresponding Stieltjes polynomial.

Writing now (65) in the form

B
′′
− A

′

2A
·B

′
− 3A

′′

2A
·B = 0

we obtain that A is a Van Vleck polynomial and B is the corresponding Stieltjes
polynomial.

The above observations show that the relations between DZ-pairs and differ-
ential equations may be deeper than it seems at first glance and deserve further
investigation.

7 Series H and I: decomposable ordinary trees

In this section we consider series H (Fig. 11) and I (Fig. 13). In both cases the
corresponding DZ-pairs are obtained with the help of the operation of composi-
tion. Notice that the trees in question are ordinary (the weights of all edges are
equal to 1). As it was mentioned in Definition 2.5, Belyi functions for ordinary
trees are called Shabat polynomials.

7.1 Series H

The trees of the series H are compositions of trees from the series C with the
parameters s = t = 1 and chains of length 2.

The expressions of the Shabat polynomials for the trees from the series C in
terms of Jacobi polynomials are given in Sect. 5.5. Using the fact that s = t = 1
we can also compute them directly. Indeed, the trees in question have exactly
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H

k l

Figure 11: Series H: ordinary trees of diameter 6 which are decomposable.

k l

Figure 12: Replace every edge of this tree with a two-edge chain, and you get
the tree H

two vertices of degree greater than 1. Putting them into the points x = 0 and
x = 1 and taking into account that the degree of the corresponding Shabat
polynomial S(x) is k+ l−1, we conclude that the derivative of S is proportional
to xk−1(1− x)l−1. Therefore, the polynomial S(x) itself can be written as

S(x) = K ·
∫ x

0

tk−1(1− t)l−1dt. (67)

Then we automatically have S(0) = 0, while in order to get S(1) = 1 we must
take

K =
1

B(k, l)
=

(k + l − 1)!

(k − 1)!(l − 1)!
, (68)

where

B(k, l) =

∫ 1

0

tk−1(1− t)l−1dt (69)

is the Euler beta function.
Then, taking the Shabat polynomial for the chain with two edges and with

two black vertices put to 0 and 1, which is equal to

U(y) = 4y(1− y), (70)
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we obtain the following

Proposition 7.1 The polynomial P for the tree H is equal to

P (x) = U(S(x)) (71)

where U is as in (70) and S is as in (67) and (68).

The proof is obvious.

7.2 Series I

I

kk

Figure 13: Series I

Below are given Shabat polynomials P (z) for the trees of the series I. These
trees are compositions of trees from the series C with s = t = 1 and k = l, and
the stars with three edges. Thus, P (x) = U(S(x)), where S is a Shabat polyno-
mial corresponding to a tree from the series C, and U is a Shabat polynomial
corresponding to the star with three edges. However, in order to achieve the ra-
tionality of the coefficients of P we still must find an appropriate normalization
of S.

k k

Figure 14: Replace every edge with a three-edge star, and you get the tree I

For this purpose, contrary to all traditions, let us put the vertices of degree k
of the tree from the series C into the points x = ±

√
−3. Then the derivative of
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the corresponding Shabat polynomials S(x) must be equal to

S′(x) = a (x+
√
−3)k−1(x−

√
−3)k−1 = a (x2 + 3)k−1, a ∈ C. (72)

Therefore,

S(x) = a

∫
(x2 + 3)k−1dx+ b = a

[
k−1∑
i=0

(
k − 1

i

)
x2i+1

2i+ 1
3k−1−i

]
+ b (73)

for some b ∈ C. Substituting into S(x) the critical points x = ±
√
−3, we obtain

the critical values b± c
√
−3, where

c = a · 3k−1
k−1∑
i=0

(
k − 1

i

)
(−1)i

2i+ 1
. (74)

Setting

b = −1

2
(75)

and choosing a in such a way that

c =
1

2
, (76)

we obtain a polynomial S ∈ Q[x] with two critical values

y1,2 =
−1±

√
−3

2
. (77)

Taking now

U(y) = 1− y3 (78)

(we must take 1−y3 instead of y3 in order to get the colors of the vertices which
would correspond to Fig. 13), we obtain the following

Proposition 7.2 The polynomial P (x) for the tree I is equal to

P (x) = U(S(x)), (79)

where U is as in (78) and S is as in (73) with a and b defined by conditions
(74), (75), (76).

Once again, the proof is obvious.
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Figure 15: Series J

8 Series J

This is the last infinite series of unitrees. The degree of this tree, or its total
weight, is 2k + 6.

Let us normalize the polynomial P so that

P = (x+ 1)4 · (x2 + a)2k+1. (80)

This means that the black vertex of degree 4 is put at x = −1, while two black
vertices of degree 2k + 1 are put at the points ±

√
−a for certain a ∈ Q, a > 0.

All the white vertices are of degree 2; therefore, the polynomial Q has the
form

Q(x) = A(x)2

for some polynomial A, degA = 2k + 3. Further, condition (6) gives us

(x+ 1)4 · (x2 + a)2k+1 −A(x)2 =
x→∞

O(x2k+1);

here 2k + 1 is the “overweight” of the tree (that is, its total weight minus the
number of edges of the topological tree). For the reciprocal polynomials this
gives (see (5))

P ∗ −Q∗ = (1 + x)4 · (1 + ax2)2k+1 −A∗(x)2 =
x→0

O(x2k+5); (81)

here 2k + 5 is the number of edges of the topological tree.

Proposition 8.1 The reciprocal polynomials P ∗ and Q∗ may be represented as
follows:

P ∗ = (1 + x)4 · (1 + (2k + 4)x2)2k+1, Q∗(x) = A∗(x)2, (82)

where A∗ is the initial segment of the series (P ∗)1/2 up to the degree 2k + 3:

(1 + x)2(1 + (2k + 4)x2)(2k+1)/2 =
x→0

A∗ +O(x2k+4). (83)
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Proof. Let

A∗ = (1 + x)2 · (1 + ax2)(2k+1)/2 + x2k+4 · h (84)

where
h =
x→0

O(1).

Computing (A∗)2 we get

(A∗)2 = P ∗ + 2x2k+4 · h · (1 + x)2 · (1 + ax2)(2k+1)/2 + x4k+8 · h2

= P ∗ + x2k+4
[
2h · (1 + x)2 · (1 + ax2)(2k+1)/2 + x2k+4 · h2

]
. (85)

Thus, for any value of the parameter a we have

P ∗ −A∗(x)2 =
x→0

O(x2x+4),

and therefore, in order to obtain (81), we only have to show that for a = 2k+ 4
the constant term of h is equal to zero, or, equivalently, the coefficient in front
of x2k+4 in the series

(P ∗)1/2 = (1 + x)2 · (1 + ax2)(2k+1)/2

vanishes.
Let us write the second factor of the latter expression explicitly:

(1 + ax2)(2k+1)/2 = 1 +
2k + 1

2
ax2 +

1

2!
· (2k + 1)(2k − 1)

4
a2x4 +

1

3!
· (2k + 1)(2k − 1)(2k − 3)

8
a3x6 + . . . +

1

(k + 2)!

(2k + 1)(2k − 1) . . . (−1)

2k+2
ak+2x2k+4 + . . . (86)

Notice that this series involves only even powers. Multiplying it by

(1 + x)2 = 1 + 2x+ x2

we see that the coefficient in front of x2k+4 in (P ∗)1/2 is the sum of the coeffi-
cients in front of x2k+4 and x2k+2 in (86). Therefore, we must ensure that

1

(k + 1)!
· (2k + 1)(2k − 1) . . . · 1

2k+1
· ak+1 +

1

(k + 2)!
· (2k + 1)(2k − 1) . . . · (−1)

2k+2
· ak+2 = 0. (87)

Collecting similar terms we get

1

(k + 1)!
· (2k + 1)(2k − 1) . . . · 1

2k+1
· ak+1

(
1 +

1

k + 2
· (−1)

2
· a
)

= 0, (88)

which gives a = 2k + 4. �
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Example 8.2 Let us take k = 3. Then we have:

P ∗ = (1 + x)4(1 + 10x2)7.

Further,

(P ∗)1/2 = (1 + x)2(1 + 10x2)7/2

= 1 + 2x+ 36x2 + 70x3 +
945

2
x4 + 875x5 + 2625x6 + 4375x7 +

39 375

8
x8 +

21 875

4
x9 − 21 875

4
x11 +

65 625

16
x12 + . . .

Notice that the term with x10 is missing. Finally,

A∗ = 1 + 2x+ 36x2 + 70x3 +
945

2
x4 + 875x5 + 2625x6 + 4375x7 +

39 375

8
x8 +

21 875

4
x9.

9 Sporadic trees

As it was explained previously, in Sect. 2.5, the verification of the results given
below is trivial. Therefore, we present nothing else but the polynomials them-
selves.

9.1 Tree K

2

K

Figure 16: Tree K

P = (x2 − 5x+ 1)3(x2 − 13x+ 49),

Q = (x4 − 14x3 + 63x2 − 70x− 7)2,

R = −1728x.

9.2 Tree L

P = (x3 − 16x2 + 160x− 384)3,

Q = x (x4 − 24x3 + 336x2 − 2240x+ 8064)2,

R = −214 · 33 (x2 − 13x+ 128).
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2

2

L

Figure 17: Tree L

9.3 Tree M

2

2

M

Figure 18: Tree M

P = x (x3 − 36x2 + 540x− 2592)3,

Q = (x5 − 54x4 + 1296x3 − 15 552x2 + 87 480x+ 104 976)2,

R = −26 · 312 (x2 − 28x+ 324).

9.4 Tree N

P = x3 (x3 − 8)3,

Q = (x6 − 12x3 + 24)2,

R = 64 (x3 − 9).

This tree is symmetric, with the symmetry of order 3. Therefore, P , Q, R are
polynomials in x3.
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2

N

2

2

Figure 19: Tree N

2 2

2

2

2

2 2

O

Figure 20: Tree O
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9.5 Tree O

P = (x4 + 6x2 + 64x− 55)5,

Q = (x10 + 15x8 + 160x7 − 70x6 + 1440x5 + 6510x4

− 11 040x3 + 26 805x2 + 40 160x− 226 797)2,

R = 220 (5x7 + 59x5 + 690x4 − 485x3 + 3820x2

+ 20 165x− 49 534).

This triple was found in Beukers and Stewart [4] (only the polynomial P is
given in their paper, but it uniquely determines two other polynomials).

9.6 Tree P

22

3

33 11

P

Figure 21: Tree P

P = (x3 + 9x+ 9)5,

Q = (x5 + 15x3 + 15x2 + 45x+ 90)3,

R = −27 (15x8 + 395x6 + 423x5 + 3330x4 + 7290x3

+ 11 880x2 + 29 565x+ 24 813).

Once again, the answer is taken from [4], with a slight renormalization.

9.7 Tree Q

P = (x3 + 15x+ 16)3(x5 + 39x3 + 64x2 + 384x+ 1872),

Q = (x7 + 42x5 + 56x4 + 525x3 + 1680x2 + 1792x+ 6456)2,

R = −26 · 312.

This tree is the only sporadic tree from the Adrianov’s list of ordinary uni-
trees. Correspondingly, P is a Shabat polynomial: the polynomial R is a con-
stant.

Note that the positions of certain black vertices are rational:

x3 + 15x+ 16 = (x+ 1)(x2 − x+ 16),

x5 + 39x3 + 64x2 + 384x+ 1872 = (x+ 3)(x4 − 3x3 + 48x2 − 80x+ 624).
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Q

Figure 22: Tree Q

9.8 Tree R

R

2

2

2

2

Figure 23: Tree R

The tree R is the “square” of the tree L: it is symmetric, with the symmetry
of order 2, and one of its “halves” is equal to L. Therefore, we may take the
polynomials for the tree L and insert x2 instead of x.

P = (x6 − 16x4 + 160x2 − 384)3,

Q = x2 (x8 − 24x6 + 336x4 − 2240x2 + 8064)2,

R = −214 · 33 (x4 − 13x2 + 128).
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2

2S

Figure 24: Tree S

9.9 Tree S

P = x2 (x4 + 24x3 + 176x2 − 2816)3,

Q = (x7 + 36x6 + 480x5 + 2304x4 − 3840x3,

− 55 296x2 − 14 336x+ 221 184)2

R = 222 · 33 (x3 + 17x2 + 56x− 432).

Notice that the second factor in P , the one which is “cubed”, does not
contain the term with x: this is not a misprint.

9.10 Tree T

The picture of this tree is given in Example 2.7, and the corresponding polyno-
mials are given in Example 2.1.

10 Trees defined over Q by virtue of Galois
theory

Recall that the passport of a (bicolored weighted plane) tree is a pair of par-
titions α, β ` n, where n is the degree (or the total weight) of the tree, α
represents the set of degrees of its black vertices, and β represents the set of
degrees of its white vertices.

Definition 10.1 (Combinatorial orbit) The set of weighted trees with the
same passport is called combinatorial orbit.

Unitrees represent, in fact, combinatorial orbits consisting of a unique tree.
Usually, a DZ-pair corresponding to a tree is defined over a number field

whose degree is equal to the size of the combinatorial orbit to which this tree
belongs. This is why unitrees are always defined over Q. There exist, however,
other Galois invariants which may split a combinatorial orbit into several distinct
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Galois orbits. In this way we may obtain certain trees which are not unitrees
but which are still defined over Q. In [17] we gave several such examples. Here
we present the corresponding DZ-pairs.

10.1 A tree with the monodromy group PGL2(7)

A bicolored map may be characterized by a pair of permutations acting on the
set of its edges: one permutation represents the cyclic order (in the positive
direction) of the edges around black vertices, the other one, the cyclic order
around white vertices. For example, the map shown in Fig. 25, is represented
by the pair of permutations

a = (1, 7, 6, 5, 4, 8, 3), b = (1, 2)(3, 8)(6, 7).

It turns out that the permutation group G = 〈a, b〉 is equal to PGL2(7). This
group, which is called monodromy group, is a Galois invariant. Since this tree
is the only one in its combinatorial orbit whose monodromy group is PGL2(7),
it is defined over Q.

2

2

2

6

7

1

3
8

5

4

Figure 25: The monodromy group of this tree is PGL2(7). Numbers written on
the edges of the tree on the left are their weights; numbers written on the edges
of the map on the right are not weights: they are edge labels from 1 to 8.

P = x7(x− 6),

Q = (x3 − 6x2 + 12x− 36)2(x2 + 6x+ 12),

R = −24 · 33 (7x2 − 6x+ 36).

The combinatorial orbit to which this tree belongs, that is, the set of trees
with the passport (7111, 2312), contains six trees. The five remaining trees
constitute a single Galois orbit; the corresponding DZ-pairs (or, we may say,
the trees themselves) are defined over the splitting field of the polynomial

a5 + 22a4 + 209a3 + 1040a2 + 2624a+ 2560.

10.2 Another tree with the monodromy group PGL2(7)

The combinatorial orbit corresponding to the passport (6112, 3212), consists of
five trees. One of them, shown in Fig. 26, has the monodromy group PGL2(7).
Therefore, it is defined over Q. Its DZ-pair is given below.
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3

Figure 26: This tree also has monodromy group PGL2(7).

P = x6(x2 − 9x+ 21),

Q = (x2 − 3x− 3)3(x2 + 3),

R = 27 (7x2 + 9x+ 3).

One of the trees in this combinatorial orbit is symmetric (see Fig. 27) and
is therefore also defined over Q.

22

Figure 27: The symmetric tree with the passport (6112, 3212, 6112).

The corresponding polynomials are

P = x6(x2 − 2),

Q = (x2 − 1)3(x2 + 1),

R = −2x2 + 1.

The three remaining trees constitute a single Galois orbit and are defined
over the splitting field of the polynomial

a3 − 6a+ 16.

10.3 A series in which one of the trees is self-dual

The duality for the bicolored maps is defined as follows:

• a map and its dual share their white vertices;
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• black vertices of each map correspond to the faces of the dual map;

• edges of the dual map connect the centers of the faces of the initial map
to the white vertices which lie on the border of these faces.

See details and examples in [17]. A map is self-dual if it is isomorphic to its
dual. Self-duality is a Galois invariant. The maps corresponding to weighted
trees may well be self-dual.

Let p, q be two positive integers, and p < q. We consider the trees with the
black partition α = (p+ q, 1p+q−2) and the white partition β = (2p− 1, 2q− 1).
The partition representing the face degrees is γ = (p + q, 1p+q−2). We notice
that γ = α; therefore, the corresponding combinatorial orbit may contain self-
dual trees. It is easy to verify that this combinatorial orbit consists of 2p − 1
trees, and that only one of them is self-dual, namely, the tree shown in Fig. 28.
Therefore, this tree is defined over Q.

p q
q−1p−1

Figure 28: Self-dual tree.

Put the white vertices at the points x = −1 and x = 1 so that

Q(x) = (x+ 1)2p−1 (x− 1)2q−1

(notice that both powers are odd). Observe now that this polynomial is “an-
tipalindromic”: if we write it as

anx
n + an−1x

n−1 + . . .+ a1x+ a0,

then an = −a0, an−1 = −a1, . . . This fact trivially follows from the equality
xn · Q(1/x) = −Q(x). Because of this, the coefficient in front of the “middle”
degree n/2 = p + q − 1 is zero. Therefore, if we take the higher degrees from
2p + 2q − 2 to p + q, what will remain is a polynomial of degree p + q − 2. In
other words,

Q(x) = xp+q ·A(x)−R(x),

where degA = degR = p+ q − 2. Setting now

P (x) = xp+q ·A(x),

we see that P , Q is a DZ-pair with required properties. Notice that the polyno-
mial R(x) is reciprocal to A(x). Geometrically, this means that if x1, x2, . . . , xm
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are the positions of the black vertices of degree 1 (here m = p+ q− 2), then the
centers of the faces of degree 1 are 1/x1, 1/x2, . . . , 1/xm. Together with the fact
that the position of the black vertex of degree p + q is x = 0 while the center
of the face of degree p + q is ∞, this shows that the map in question is indeed
self-dual.

Example 10.2 Let us take, for example, p = 2, q = 5. Then

Q(x) = (x+ 1)3 (x− 1)9 = x12 − 6x11 + 12x10 − 2x9 − 27x8 + 36x7

− (1− 6x+ 12x2 − 2x3 − 27x4 + 36x5)

= x7 ·A(x)−R(x) = P (x)−R(x),

where degA = degR = 5 and R = A∗.

10.4 A “historical” sporadic example

ba

d

c

Figure 29: Four trees with the passport (310, 215). The trees a and d are defined
over Q.

The combinatorial orbit corresponding to the passport α = 310, β = 215 is
shown in Fig. 29. It consists of four trees (recall that the invisible white vertices
are middle points of the edges), and is divided into three Galois orbits.
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The tree a is the only one which is symmetric with the symmetry of order 3.
Therefore, it is defined over Q. The corresponding polynomials were computed
by B. Birch in 1965 [5]. They look as follows (notice that they are polynomials
in x3):

Pa(x) = x3(x9 + 12x6 + 60x3 + 96)3 ,

Qa(x) = (x15 + 18x12 + 144x9 + 576x6 + 1080x3 + 432)2 ,

Ra(x) = −1728 (3x6 + 28x3 + 108) .

The trees b and c are symmetric with the symmetry of order 2 with respect
to an (invisible) white vertex. They are also mirror symmetric to each other;
therefore, the complex conjugation sends one of the trees to the other. Thus,
we may conclude that this couple of trees constitutes a separate Galois orbit,
and this orbit is defined over an imaginary quadratic field. The corresponding
polynomials were computed in 2005 by Shioda [18] and, indeed, they are defined
over the field Q(

√
−3). We do not present these polynomials here.

The tree d does not have any particular combinatorial properties. (It is
known that the mirror symmetry of a dessin is not a Galois invariant.) But it
remains alone, that is, it constitutes a Galois orbit containing a single element.
Therefore, it is defined over Q. The corresponding polynomials were computed
in 2000 by N. Elkies [12]. They look as follows:

Pd(x) = (x10 − 2x9 + 33x8 − 12x7 + 378x6 + 336x5 + 2862x4

+ 2652x3 + 14 397x2 + 9922x+ 18 553)3,

Qd(x) = (x15 − 3x14 + 51x13 − 67x12 + 969x11 + 33x10 + 10 963x9

+ 9729x8 + 96 507x7 + 108 631x6 + 580 785x5 + 700 503x4

+ 2 102 099x3 + 1 877 667x2 + 3 904 161x+ 1 164 691)2,

Rd(x) = 26 315(5x6 − 6x5 + 111x4 + 64x3 + 795x2 + 1254x+ 5477).

By the way, a naive approach mentioned in Sect. 2.5, namely, taking polyno-
mials A and B of degrees 10 and 15 respectively with indeterminate coefficients
and equating to zero the coefficients of degrees from 7 to 30 of A3 −B2, would,
this time, lead us to a system of polynomial equations of degree 6 198 727 824.
It took 40 years (from 1965 to 2005) to compute all the four DZ-pairs of this
example, but the fact that there are exactly four non-equivalent solutions and
that two of them are defined over Q while the other two are defined over an
imaginary quadratic field, can be immediately seen from the picture without
any computation.

11 Some sporadic examples of Beukers and
Stewart [4]

All the polynomials in this section which correspond to the asymmetric trees are
taken from the above-cited article [4]. The normalization sometimes is changed.
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The goal of this section is to show the combinatorial reasons of appearance of
these sporadic examples.

11.1 Passport (73, 37)

The passport shows that we are treating here the problem of the minimum
degree of the difference A7−B3 where degA = 3, degB = 7. The combinatorial
orbit consists of two trees, see Fig. 30. One of them is symmetric, the other one
is not; therefore, both are defined over Q.
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Figure 30: Two trees corresponding to the passport (73, 37); one of them is
symmetric, the other one is not. Therefore, both are defined over Q.

The triple corresponding to the asymmetric tree is as follows:

P = (x3 + 18x+ 18)7,

Q = (x7 + 42x5 + 42x4 + 504x3 + 1008x2 + 1512x+ 3024)3

R = 24 33 (77x12 + 5922x10 + 6237x9 + 172 368x8 + 366 606x7 + 2 451 330x6

+ 7 314 300x5 + 19 105 632x4 + 53 867 268x3 + 82 260 360x2

+ 86 097 816x+ 62 594 856).

The triple corresponding to the symmetric tree may be computed as follows:

1. Compute the polynomials corresponding to a branch of this three-branch
tree, that is, to a tree of the series A (see Sect. 3) with the parameters
s = 3, t = 1, k = 2.

2. Make the change of variables x → 1− x in order to put the white vertex
of degree 1 to the point x = 0; thus, the polynomial P (x), instead of
being x7, becomes (1− x)7; it is convenient to change its sign and to get
(x− 1)7.

3. Insert x3 instead of x.

By pure convenience we add to the above operations one more: instead of taking
P (x) = (x − 1)7 we take P (x) = (x − 3)7. This permits us to avoid fractional
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coefficients. The resulting triple is

P = (x3 − 3)7,

Q = x3(x6 − 7x3 + 14)3,

R = −14x12 + 189x9 − 987x6 + 2359x3 − 2187.

11.2 Passport (83, 38)

The passport corresponds to the problem of the minimum degree of the differ-
ence A8 − B3 where degA = 3, degB = 8. The combinatorial orbit consists of
two trees, see Fig. 31. One of them is symmetric, the other one is not; therefore,
both are defined over Q.

3

3 3

3

3
3

3 3

3

2 1 1 2

33

3

2 1 1 2

Figure 31: Two trees corresponding to the passport (83, 38).

The triple corresponding to the asymmetric tree looks as follows:

P = (x3 + 27x+ 81)8,

Q = (x8 + 72x6 + 216x5 + 1620x4 + 9720x3 + 24300x2 + 87480)3,

R = −310 (52x14 + 6942x12 + 21 816x11 + 366 444x10 + 2 319 840x9

+ 13 129 047x8 + 90 716 760x7 + 406 062 720x6 + 1 812 830 544x5

+ 7 862 190 642x4 + 23 694 237 936x3 + 67 352 942 772x2

+ 173 534 618 376x+ 204 401 597 391).

The triple corresponding to the symmetric tree may be computed as follows:

1. Compute the polynomials corresponding to the series E4 (see Sect. 5.3)
with s = 1, t = 2, k = 1, l = 2.

2. Make the change of variables x→ x+ 1 in order to move the (left) black
vertex of degree 4 from −1 to 0.

3. Insert x2 instead of x.

We omit the resulting polynomials.

11.3 Passport (103, 310)

This time we deal with the problem min deg(A10−B3), degA = 3, degB = 10.
The combinatorial orbit corresponding to this passport contains three trees, see
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Figure 32: Three trees corresponding to the passport (103, 310).

Fig. 32. These trees have three different symmetry types, hence all of them are
defined over Q.
The polynomials for the asymmetric tree look as follows:

P = (x3 + 54x + 162)10,

Q = (x10 + 180x8 + 540x7 + 11 340x6 + 68 040x5 + 374 220x4

+ 2 449 440x3 + 8 573 040x2 + 22 044 960x + 57 316 896)3,

R = −24 311 (595x18 + 201 960x16 + 629 748x15 + 28 669 140x14

+ 179 596 440x13 + 2 460 946 860x12 + 20 601 540 000x11

+ 158 558 654 736x10 + 1 257 674 415 840x9 + 7 823 104 403 040x8

+ 46 607 404 043 520x7 + 253 091 029 021 200x6 + 1 120 772 437 834 752x5

+ 4 520 664 857 839 680x4 + 15 435 507 254 345 280x3

+ 37 331 470 988 020 800x2 + 62 014 139 393 904 000x

+ 62 042 237 538 382 656).

The polynomials for the tree with the symmetry of order 2 is computed in
the same way as in Sect. 11.2. The parameters of the tree of the type E4 are
s = 2, t = 1, k = 1, l = 3; then we must replace x with x + 1, and insert x2

instead of x.
The polynomials for the tree with the symmetry of order 3 is computed in

the same way as in Sect. 11.1. The parameters of the tree of the type A are
s = 3, t = 1, k = 3; then we must replace x with 1 − x, and insert x3 instead
of x.

11.4 Passport (95, 59)

We finish this section with an example which shows that the combinatorial
methods, while being very powerful, are, however, not all-powerful. There are
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several trees with the passport (95, 59), and one of them, shown in Fig. 33,
is defined over Q without any apparent reason. All known combinatorial and
group-theoretic Galois invariants fail to explain this phenomenon. All we can
say is that the corresponding system has rational solutions “by chance”.

The polynomials P and Q for the tree of Fig. 33 are as follows:

P = (x5 + 50x3 + 500x+ 500)9,

Q = (x9 + 90x7 + 2700x5 + 900x4 + 30 000x3 + 36 000x2

+ 90 000x+ 180 000)5.

The polynomial R here is of degree 32, and it is too cumbersome, so we do not
write it explicitly.

1
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3

3

5

5

1

4 5

4 5

Figure 33: This tree, corresponding to the passport (95, 59), is defined over Q.
All known combinatorial invariants of Galois action fail to explain this phe-
nomenon.

12 Yet more examples

12.1 An infinite series of splitting combinatorial orbits

We have already seen two examples (see Sect. 11.1 and 11.2) of combinatorial
orbits of size 2 which, instead of being defined over a quadratic field, split in
two orbits defined over Q because the trees in question have different orders of
symmetry. Here we present an infinite series of such examples.

The trees in question have the passport (k2, 4112k−4) for k ≥ 3, see Fig. 34.
Belyi function for the symmetric tree looks as follows:

f1(x) =
(−1)k+1

kk
· (x2 − k)k

x2 − 1
.

Belyi function for the asymmetric tree looks as follows:

f2(x) =
(−1)k

(6k)k−1(k − 2)k−2(2k − 1)2k−1
· (x2 − 6k(2k − 1)x− 6k(k − 2)(2k − 1)2)k

x2 + 6k(k − 2)x + 6k(k − 2)2(2k − 1)
.
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Figure 34: Two trees with the passport (k2, 4112k−4). One of them is symmetric,
the other one is not.

In both cases, the white vertex of degree 4 lies at x = 0. The expressions for
Belyi functions give us the polynomials P and R.

In order to prove the correctness of the above expressions we need to verify
two things: for both f1 and f2, we have (a) f(0) = 1; (b) first three derivatives
of f(x) at x = 0 vanish.

We leave the proof to the reader.

12.2 Trees with a relaxed minimum degree condition

Let us return to the problem of the minimum degree of the difference A3 −B2,
the question from which this whole line of research started (see [5]. We have
seen that when degA = 2k, degB = 3k, we have min deg(A3−B2) = k+1. For
k ≥ 6, the computation becomes exceedingly difficult, and there is practically
no hope to find solutions defined over Q. However, if we are not so demanding
and accept a solution with the degree of A3 − B2 slightly greater than k + 1,
then sometimes we can find a needed solution.

Example 12.1 Let us take a polynomial A with one double root, so that A3

would have one root of multiplicity 6 and all the other roots of multiplicity 3.
The corresponding tree would have one vertex less and therefore one face more.

The tree in Fig. 35 corresponds to k = 7. It is the “cube” of the tree S,
see Sect. 9.9. Therefore, all we have to do is to insert x3 instead of x in the
formulas of Section 9.9.

P = x6 (x12 + 24x9 + 176x6 − 2816)3,

Q = (x21 + 36x18 + 480x15 + 2304x12 − 3840x9 − 55 296x6

− 14 336x3 + 221 184)2,

R = 222 · 33 (x9 + 17x6 + 56x3 − 432).

Example 12.2 When all the roots of A and B are distinct, the polynomial R
has k + 1 distinct roots. Let us accept R with a multiple root (thus, its degree
will be greater that k + 1). The tree in Fig. 36 gives such and example. It
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0

Figure 35: The map on the left represents two polynomials A and B, of degrees
2k = 14 and 3k = 21 respectively, such that deg (A3 − B2) = 9. Thus, the
degree of the difference does not attain its minimum value k + 1 = 8, but in
return both A and B are defined over Q.

corresponds to k = 6, and degR = 9. The polynomials for this tree look as
follows:

P = (x3 + 3)3 (x9 + 9x6 + 27x3 + 3)3,

Q = (x18 + 18x15 + 135x12 + 504x9 + 891x6 + 486x3 − 27)2,

R = 1728x3 (x6 + 9x3 + 27).
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