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Introduction.

The following viewpoint (originally due to A. Grothendieck) might be considered as
the point of departure for this work: "To do geometry you really don’t need a space. All
you need is a category of sheaves on this would-be space’. (Yu. I. Manin, [M1, p. 83)).
This was supported by a theorem of P. Gabriel which is one of the main results of [Gab]:

Theorem. Any noetherian scheme can be reconstructed uniquely up to isomorphism from
the category of quasi-coherent sheaves on this scheme.

Thanks to the discovery of an appropriate notion the spectrum of abelian categories
(cf. [R1], or [R], Ch.3) the noetherian hypothesis in this theorem can be dropped: any
scheme can be reconstructed from the category of quasi-coherent sheaves on it (see [R2] for
a complete exposition, or the Appendix in this paper for the reconstruction procedure).
The possibility to replace schemes by categories of quasi-coherent sheaves on them is
an important fact of commutative algebraic geometry. But for noncommutative algebraic
geometry it is a source of existence. Apparently, Yu. 1. Manin was the first one who figured
this out and proposed to use the identifying spaces with categories of structure sheaves
on them as a ’right’ way to introduce objects of noncommutative algebraic geometry -
‘noncommutative spaces’ (cf. [M1, p. 83]). In particular, the projective spectrum of a
noncommutative Z . -graded ring can be defined by imitating the Serre’s description of the
category of quasi-cohcrent sheaves on projective schemes ([A], [AZ], [M1], V1], [R], [LR2]).
But in spite of the growing interest in noncommutative algebraic geometry an adequate
analog of the most important notion of the commutative algebraic geometry — that of a
scheme — had not been found (see [M2], p. 7). One of the main purposes of this paper is
to introduce noncommutative schemes and sketch some of their basic properties.
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The paper is organized as follows.

In Section 1 we introduce a 'geometrical’ language: continuous morphisms, flat, coflat,
and Zariski covers and associated cosimplicial complexes, the standard complex of a functor
depending on a cover. We show that the standard complex of an exact functor is exact.

In the second section we prove that, for any coflat finite cover of an abelian category
and for any adapted to this cover (’locally exact’) functor, the corresponding standard
complex is a resolution of the functor.

In Section 3 we consider Zariski covers and show that if the cover is ’semiseparated’
(semiseparated affine covers are available on semiseparated schemes), the standard complex
is homotopically equivalent to the Cech complex of the cover.

In Section 4 we define the category of quasi-schemes and schemes over a given category.
Relative quasi-schemes are locally cohomologically trivial morphisms. More explicitly,
quasi-schemes are defined as morphisms with locally exact direct image. They are the
most natural class of ’spaces’ to introduce after learning first properties of the standard
complex of a cover. Schemes are defined as morphisms direct image of which have locally
a right adjoint. Surprisingly, this general nonsense definition gives what one would like
to expect of schemes. For instance, schemes over a commutative ring &k (i.e. the base
- category s the .category-of-k-modules)- are-locally- categories-of-modules-over- k-algebras.
And the category of affine k-schemes is equivalent to the category dual to the category
of k-algebras. And morphisms from an arbitrary k-scheme to an affine k-scheme are in
bijective correspondence with morphisms of k-algebras of their global sections. Note by
passing that Drinfeld’s ’quantum spaces’ [Dr] over a commutative ring & are nothing else
but affine schemes over k.

In Section 5 we introduce noncommutative projective spectra and their cones and
consider two important examples: skew projective spaces and quantized flag varieties.

In the second part of the paper, Complementary Facts and Examples, we study

— Connections between some properties of flat covers and those of associated Zariski
covers. Compatibility of standard complexes with certain localizations. Resolutions related
to infinite covers. '

— Standard resolutions of functors and, more specifically, resolutions of ’invertible
sheaves’.

As an example, we compute cohomology of invertible sheaves on a skew projective
space getting direct analogs of the classical results [S] and their consequences including
the Serre duality. In [LR3], the standard complex is used for studying cohomologies of
invertible sheaves on quantized flag varieties.

In the appendix we recall what is the spectrum of an abelian category (introduced
in [R1]) and explain how to reconstruct an arbitrary scheme from the category of quasi-
coherent sheaves on the scheme.

I would like to thank Valery Lunts for persuading me to write this text and Jim Davis
for useful conversations on some parts of the work. And I thank Max-Planck Institut fir
Mathematik for hospitality and a very stimulating working atmosphere.



1. Covers and associated standard complexes.

Categories here are thought as categories of ’structure sheaves’ on 'spaces’ and are
identified with the ’spaces’. Accordingly some of functors could be upgraded to morphisms.

1.0. Morphisms. We define a morphism f from a category A to a category B as an
isomorphness class of right exact functors from B to .A. Any functor B — A from f will
be called an inverse image functor of f. And once we made a choice of an inverse image
functor, we shall denote it by f*. The composition of morphisms is natural: fog = [g* o f*]
(here [u] means all functors isomorphic to u). Allowing only categories which are equivalent
to 'small categories’ with respect to some universum, we define this way a category which
shall be denoted by RCat.

A morphism f is continuous if its inverse image functor f* has a right adjoint called
a direct image functor of f and denoted usually by f.. We call a morphism f flat if it is
continuous and its inverse image functor is exact. We call a continuous morphism f coflat
if its direct image functor is exact. Finally, we call f biflat if it is flat and coflat.

A morphism f : B — A such that f* is a localization (i.e. a universal functor
making invertible all arrows of £y := {s € Hom|f*(s) is invertible}) will be called by
abuse of language-a .localization. We.call .a-localization .f a flat-localization-if.f is a flat
morphism. This means that f is a flat morphism having a fully faithful direct image
functor.

1.1. Covers. We call a set of flat morphisms {f; : B; = A | i € J} a flat cover of A if
any morphism s of A such that f*(s) is invertible for all < € J is invertible.

We call a flat cover {f; : B; = A| i € J} a Zariski cover if each of the inverse image
functors f is a localization. This means exactly that direct image functors f;. are fully

faithful for all ¢ € J (cf. [GZ], Proposition 1.1.3).

1.1.1. Example. Let A4 be an abelian category. And let {S;|i € J} be a family of
localizing subcategories of .A. Recall that a subcategory 8 is called localizing if it is thick and
the localization A — A4/S at § has a right adjoint. Being an exact functor, a localization
at S; might be regarded as inverse image functor of a flat morphism f; : A/S; — A. The
family {f;|s € J} is a cover iff (,c;8; = 0. And any Zariski cover of A is of this form. =

1.2. The standard cosimplicial resolution of a continuous morphism. Fix a
continuous morphism f : B — A with the inverse image functor f* and a direct image
functor f,. Let n : Idg — f,f* and ¢ : f*f, — Idg be adjunction arrows. Set
Gf := fof* and p = fief* : QS? — &y. The standard cosimplicial resolution CR(f)
of the morphism f is the standard cosimplicial resolution of the pair of adjoint functors
(f*, fu); l.e. €R(S) is the augmented cosimplicial object in End.A defined by

dy, = B®T 8 — &Y, s = shueT T et — 8]
with the augmentation morphism 7 : Id 4 — &;.

1.3. The standard cosimplicial resolution of a family of continuous morphisms.
Fix a family f = {f; : B; = A | i € J} of continuous morphisms. For each i € J, denote
by ®; the composition f;. o f and by resp. n; and ¢; adjunction arrows Id 4 — &; and
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fi fix — Idg. For any positive integer n, let J" denote the direct product of n copies of
J. To this data there corresponds a cosimplicial object

(Ida —”‘-lH@ H@l_,HG (1)

ieJ @’:77 leJ? —*igJ?

where, for any i = (i1,...,i,) € J*, &;:= &;, o...0®; . We assume that all products in
the diagram (1) exist.
Let now F be a functor from A to an additive category B. And let

&(3, F HFocs -—+HFo®i—> [[Foe.. (2)

icJ icJ? ieJ3

be a cochain complex associated to the image F o €(F) of the cosimplicial object (1).
We call €(F, F) the augmented standard complez of the functor F associated to the cover
F={fi: Bi » A| i€ J}. The standard complez of F with respect to § is the chain
complex

@ F)=(][Fo®:i— [[Foti — [[ Fo&i...) (3)

iceJ icJ? ieJ?

1.4. Proposition. Let §F = {f; : B; = A | i € J} be a finite flat cover of an abelian
category A. Then, for any exact additive functor F : A — B, the standard complex
(T, F) is exact.

Proof. Since €(F, F) = F o €(F,Id ), it suffices to prove the assertion in the case
F =1dy4.

(a) Suppose that card(J)=1; i.e. the cover F consists of one morphism f. The complex
J* o €(f,Id4) is homotopically trivial, hence it is exact. This fact is in [Go], Appendix,
Section 5. Since § = {f} is a flat cover, the inverse image functor f* is faithfully flat.
Therefore the exactness of f* o €(f, Id 4) implies the cxactness of €(f, Id4).

(b) Fix a family § = {fi : Bi = A | ¢ € J} of continuous morphisms. The family §
can be encoded in one morphism f : @;csB8; — A having the inverse image functor

£ :A4—[[8, X — []fX) (1)

ieJ ieJ

The morphism f has a direct image functor: f,(®icsX;) = ®icy fie (X;). The adjunc-
tion arrow
n=n:lda — foof" =[] fuuo f7
icJ
is determined by the adjunction arrows 7; : Idg — ®&; = fi, o
arrow

¢ €J. The adjunction

e=¢:f of, — Idg,
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where B := ®;cB;, assigns to any (X;) € ObB; the composition of the projection
£* o £.(Xi) — (i o fix(Xi))

and the product (e, : f* o fi.(X;) — Xi) of adjunction morphisms ¢;. Note that
— The complex €(F, Id4) of the family § coincides with F(f, Id).
— The family § is a flat cover ifl {f} is a flat cover, i.e. f* is a faithfully flat functor.
' Thus the assertion in the general case follows from (a). =

2. The standard Complex of a cover and a resolution
of locally exact functors.

2.1. Locally exact functors. Fix a category A and a flat cover § = {f; : B; —» A |
i € J}. For any functor FF : A — B, where B is an additive category with products
of card(J) objects we have the chain complex €(F, F). Therefore we have cohomology of
F associated to the cover §. Suppose on the other hand that 4 is an abelian category
with enough injectives. So that one can talk about derived functors R*F of the functor
F. We are going to produce a natural conditions on the cover § and the functor F' which
garantee the isomorphism of ®*F and the Cech cohomologies, H*€(F, F), of the functor
F corresponding to the cover §.

Call a cover {f; : B; = A |1 € J} biflat if the morphisms f;, 7 € J, are biflat, i.e. the
direct image functors f;. are also exact for all i €J. The property which we are going to
use is that, for any 7 € J, the composition f;. o f is an exact functor.

Let § = {fi : Bi = A i € J} be a flat cover. We say that a functor F : 4 — C is
adapted to the cover § if, for any 7 € J, the composition F o f;, is exact.

We call a functor F : A — C locally ezact if there exists a finite flat cover §F = {f; :
B; » A|: € J} such that F is adapted to §.

2.2. Theorem. Let A be an abelian category. And let § = {fi : B; = A|i € J} be a
finite biflat cover of A. Suppose each category B; has enough injectives. And let a functor
F: A — C be adapted to §. Then the standard complex €(F, F) of the functor F with
respect to the cover § is a resolution of the functor F.

Proof. Let f* denote the inverse image functor functor @icsf : A — BicsB; = By
associated with the cover §. And let f, denote a right adjoint to f* (cf. the part (b} of
the Proof of Proposition 1.4). Since the cover § is biflat, the functor G := f, o f* is exact.
This implies that the standard complex €(F, Id4) of the cover § provides a resolution

Idg — €@ =G —>G? — ... —-G"—...)

of the identical functor. To show that the standard complex €(F, F) = F o &(F) is a
resolution of the functor F, it suffices to check that, for any X € ObA, the object G™(X)
is F-acyclic (i.e. RPF(G™*(X)) =0if p > 0) for all n > 1. (cf. [Gr] Proposition 2.5.1 in
and the following example).

Note that, since the functor £* is exact, the functor f, sends injectives into injectives.
And since each category B; has enough injectives, the product of the categories B; has
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enough injectives too. Let J(X) be an injective resolution of f* o G*(X), n > 0. Then,
since the functor f, is exact and sends injectives into injectives, f.(J(X)) is an injective
resolution of f, of* o G™(X )} = G"*1(X). Since the functor F of, is exact, the cohomology
of the complex F(f.(3(X)) are zero in degrees > 1. This proves that the objects G™(X)
are F-acyclic for any X € ObA and alln> 1. »

3. Zariski covers.

3.1. First cancellations. Let § = {f; : B; - A | i € J} be a Zariski cover; i.e.
every of the inverse image functors f is a localization. This implies that the functors
®; := fi.f] are idempotent. More explicitely, the morphisms &;7; and 7®;¢; coincide and
are isomorphisms. The latter allows to replace the standard cosimplicial complex €(F)
of the cover § by a more economic expression. Namely denote by J,, the subset of all
elements (iq,...,%,) of J*™ (=the product of n copies of J) such that 7x # ir4, for all
1 <k < n— 1. The complex €(F) is homotopically equivalent to the complex

@ =T B[ —=[[ei—= [ (1)

where, for each i = (¢1,...,ip) € Jn, B1: =&, 0...08; .
In fact, the canonical projection €(®) — €'(F) is invertible in the homotopical
category.

3.2. Semiseparated Zariski covers. Call a Zariski cover §F = {f; : Bi = A|i € J}
separated if B;08; ~ &;00; for ali4,j € J. Fix an order in J. Then €(F) is homotopically
equivalent to the complex

(Ida l%Hes HQ”*——->H® (1)

icJ @tn i€ty » i€EJac¢

where J, = {(i1,...,%n) € J*™|i; < 72 < ... < iy}. The equivalence is given by the
projection €(®) — CB(F).

Moreover, if f} is a localization at the class of arrows S;, i € J, then, for any i =
(t1,--.,tn) € J*™, &; = fi. f;*, where f is a localization at (the saturation of ) | J; <1<, Sis-
3.3. Example: the standard complex of a cover of a scheme. Let X = (X, 0)
be an arbitrary quasi-compact scheme. For any affine cover i of X, we have endofunctors
{8y = fu.f5|U € U} of the category Qcohx of quasi-coherent sheaves on X. Note that

By By ~ By By implies that By By is isomorphic to Gyny:. Thus we have the following
assertion:

3.3.1. Proposition. Let U be any affine open semiseparated cover of a scheme X; i.e.
Gy 0By ~ Sy for allU, U’ € U . Then the standard cosimplicial complex €(L1) of the
cover 4l is equivalent to the complex

i

e3) = (Ida X [ — H & [] & (1)

i€J Qj,nj i€ T iEJS<
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where, for any i = (i1,...,%n), Ui := (\icren Uix- In particular, for any additive functor
F : Qcohx — C, the standard chain complex C(i, F) is homotopically equivalent to the
Cech complez C(4, F).

3.3.2. Remark. Let f: X — S be a scheme morphism having a direct image functor
f« (for instance, f,. is the global section functor). Since X is quasi-compact, there exists
a finite affine cover U of X such that f |y is an affine morphism for any U € Y. Then the
standard complex €(4, f.) corresponding to the cover U is a resolution of the functor f,.
Therefore it can be used for computing higher direct images (=derived functors) of f..

If the localizations at different open sets of the cover U commute (i.e. By Sy =~ Gy By
for all U, U’ € ), the complex €(4, f,) is homotopically equivalent to the Cech complex,
C(4, f.) of the cover 4. One can show that the following conditions are equivalent:

(a) For any affine cover 4l of a scheme X, &y &y ~ Gy&y. for all U, U’ € 4.

(b) The scheme X is separated.

In other words, the Cech complex is equivalent to the standard complex for any
affine cover only if the scheme is separated. If the scheme X is not separated, the higher
cohomology of the Cech complex C(4, f.) are not isomorphic, for a general affine cover 4,
to the corresponding derived functors of f.. =

4. Quasi-schemes and schemes.

4.1. Relative quasi-schemes. We call a continuous morphism f : A — C almost affine
if f, is an exact and faithful functor.

We call a continuous morphism f : A — C a quasi-scheme over C if there exists a
Zariski cover § = {u; : Bi =» A | i € J} such that the direct image f. ou;. of fou; is exact
and faithful (i.e. f o u; is almost affine) for all ¢ € J.

With any continuous morphism f: A — C, we associate a monad Gy = (&, 1) and
a canonical functor f. : A — Gy — mod such that f, is the composition of f, and the
forgetful functor Gy — mod ~— C. Here & := f, o f* and p = f.ef*; € is an adjunction
morphism f* o f, — Id4. The canonical functor f{. assigns to any object M of A the
Gy-module (f.(M), f.e€).

If f: A— C is an almost affine scheme, it follows from the the Barr-Beck theorem
(cf. [ML]) that f, : A — Gy — mod is an equivalence of categories.

Note that, since f, exact, the functor &y is right exact. Therefore, if C is an abelian
category, the category Gy — mod of Gg-modules is abelian too. Thus if f : A — C is
almost affine and C is an abelian category, then A is abelian.

It follows that an arbitrary quasi-scheme is locally a category of modules over a right
exact monad. This also implies that if f : A — C is a quasi-scheme and the category C
is abelian, then A is abelian.

We call a continuous morphism f : A — C a relative semiseparated quasi-scheme if
there exists a semiseparated biflat Zariski cover § = {u; : B; = A | 1 € J} adapted to f
and such that f, ou;, is faithful for all ¢ € J.

Any almost affine morphism f is a relative semiseparated quasi-scheme, since f is
adapted to the trivial cover {Id4}.

We shall denote by Cat, /C the full subcategory of RCat/C generated by continuous
morphisms A — C. We denote by QSch/C the category of quasi-schemes over C which

7



is the full subcategory of Cat,/C formed by quasi-schemes over C. We single out the
full subcategory QSch./C of guasi-compact quasi-schemes. The latter means that a biflat
cover in the definition of a quasi-scheme can be chosen finite. By 'technical reasons’ (i.e. to
avoid too overloading with technicalities} and also because the known interesting examples
of quasi-schemes are quasi-compact, we shall use mostly the category QSch./C.

4.2, Morphisms of quasi-schemes. The main theorem about scheme morphisms says
that, if X = (X, Ox) is an arbitrary scheme and Y = (Y, Oy) is an affine scheme, then
there is a natural isomorphism

Schemes(X,Y) — Rings(I'(Y, Oy),['(X, Ox)). (1)

The goal of this section is to establish an analog of this fact (actually a generalization)
for quasi-schemes. To see better the nature of things, we begin with the category Cat,/C
of continuous morphisms to C, where the desired fact is valid in a most naive form.

Denote by MMonC the category of monads in C. Let £ denote the functor from (9MonC)®
to the category Cat,/C of continuous morphisms to C which assigns to any monad F the
canonical continuous morphism F — mod — C.

4.2.1. Proposition. The functor £: (MonC)® — Cat,/C is fully faithful and has a left
adjoint.

Proof. (a) We begin with the construction of a left adjoint functor to £.

Let ~ be a morphism from f: A — C to g: B — C. After chosing g* and h*, we
can take f* = h* o g* as an inverse image morphism of f. This way we have the equality
feoh*og* = f, o f* which together with the composition

ge — feofrog,=fioh*og*og, — fioh®

provides a morphism g.og* — f.o f*. We leave to a reader to check that this is a monad
morphism and that we have defined the required functor. Moreover, we have a natural

commutative diagrarm:
h
A — B

& | | ¢ (1)
“g(n’
Gy —mod —— Gy —mod

Here the vertical arrows are canonical morphisms with direct image functors (g, :
X — (fu(X), fee(X)), where ¢ is an adjunction arrow f*f, — Id4 and similarly
Cgx; “£(h) is the pull-back moprphism determined by the morphism of monads defined
above. Note that (1) is a diagram of morphisms over C. Clearly ({;) is an adjunction
morphism Idgg, jc —> £0 "£. The second adjunction morphism is identical. The latter

fact implies that the functor £ is fully faithful. w

Let MoneC be the full subcategory of the category 9MonC generated by right exact
monads, i.e. such monads (F, i) that F is a right exact functor.
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4.2.2. Lemma. A monad F = (F,pu) belongs-to MontC if and only if the canonical
morphism f : F — mod — C is almost affine. In particular, £ induces a functor, L, from
the category (IMontC)° to the category QSch/C of quasi-schemes over C.

Proof. If f is almost affine (i.e. f. is exact), then, clearly, F' = f. o f* is right exact.
Conversely, suppose that F is right exact. Let g,h: (M, m) — (M',m’) be arbitrary F-
module morphisms; and let ¢ :M’ — N be a coequalizer of the pair f.(g), fu(h): M —
M’. Since eom’ o Fg = eom’ o Fh and (because F is right exact) Fe is a coequalizer of
the pair (Fg, Fh), there exists a unique arrow v : F(N) — N such that eom’ = v o Fe.
One can check that vo Fv =vou and vo Fp(N) = idy, i.e. (N,v) is an F-monad. The
equality e o ' = v o Fe means that e is a morphism (M’,m') — (N, v). Clearly the
module (N, v) is an equalizer of the pair (g, k). This shows that the direct image functor
f+ 18 right exact. Therefore it is exact. m

4.2.3. Proposition. The functor £ : (MoneC)° — QSch/C is fully faithful and has a
left adjoint.

Proof. Let f : A — C be a quasi-scheme; and let U = {u; : {l; = Ali € J} be a coflat
Zariski cover such that, for any 7 € J,_f. o u;, is.exact and faithful (i.e. fou;: Uy — C is
almost affine). Let u denote the corresponding to the cover & morphism [[;c ;4 — A.
Note that f. o €(U) o f* is a complex in the category Endr(C) of right exact functors
C — C. Tt follows from Proposition C4.3 that the functor

= H(fuoC(W) o f*) i= Ker(fu o (Gy — L) o f*):C —C )

where the kernel is taken in the category EndrC, does not depend on the choice of the
cover Y. And &' has a uniquely defined monad structure g’ The morphism f: A —C
decomposes uniquely into a continuous morphism ¢ } A — G’f —mod and Gy —mod — C.
Here G’f = (05}, ¢'). The map assigning to any quasi-scheme f : A — C the right exact
monad Gy extends naturally to a functor which is a left adjoint to the functor £. And
¢ = (C}) is the adjunction arrow from Idgscn/c to £ o “L. The other adjunction arrow is
identical. m

4.2.4. Proposition. The functor £ : (MoneC)° — QSch/C establishes an equivalence
between the category (MontC)® dual to the category of right exact monads and the category
QATfE/C of almost affine quasi-schemes over C.

Proof. The assertion follows from Proposition 4.2.3 and the fact that any almost
affine quasi-scheme f : A — C satisfies the conditions of the Barr-Beck theorem; hence
the canonical morphism A — Gy — mod is an equivalence (cf. the discussion in Section
41). =

4.3. Relative schemes. We call a continuous morphism f : 4 — C affine if its direct
image functor f, is faithful and has a right adjoint. Usually, we shall denote the right
adjoint to f, by f;.

A family of morphisms (in particular a cover) § = {u; : B; = A | i € J} will be called
affine if each u; is affine.



A continuous morphism- f-: A — C shall be-called a scheme over C if there exists an -
affine Zariski cover U = {u; : B; = A | i € J} such that f owu; is an affine morphism for
alli e J.

Clearly any scheme over C is a quasi-scheme over C.

Any scheme morphism X — Y having a direct image functor defines a relative
scheme Qcohx — Qcohy in the sense of the definition above.

Denote by Sch/C the full subcategory of Cat,/C objects of which are schemes over
C. We single out the full subcategory Sch./C of quasi-compact schemes, i.e. schemes
f : A — C which have a finite Zariski cover 4 = {u; : B; = A | i € J} such that fou, is
an affine morphism for all i € J.

Finally, we denote by Aff/C the full subcategory of Sch/C objects of which are affine
schemes over C.

4.4. The main theorem on scheme morphisms. Denote by MoncC the full subcate-
gory of MMoncC objects of which are continuous monads in C, i.e. monads F = (F, ) such
that the functor F' has a right adjoint. Clearly every continuous monad is right exact:
MoncC C MoncC.

.4.4.1. . Lemma. . A monad.F = (F, p).in.C is.continuous if .and .only if .the .canonical
morphism f : F — mod — C is affine.

Proof. (a) One direction is trivial: for any affine morphism g the functor g, o g* has
a right adjoint by definition; and for the f : F — mod — C, f. o f*=F.

(b) Suppose that F = (F ) is continuous. Let F'~ be a right adjoint to F; and let
€ :FoF" — Ide, n':1dc — F~ o F be adjunction arrows. Then

vi=F"( opF)oyFoF :FoF" — F" (1)
is an action of F on F~ which satisfies the properties:
vonF" =idp- and vo uF" =vo Fu. (2)
Here 7 : Id¢ — F is the identity of the monad F. In fact,
vonF :=F (douF)onyFoF onF" =F " o(F uoyFon)F" =
Fdo(FuoF Fnon)F =F ¢ on'F" =idp-.

We leave the checking of the associativity identity to the reader.

The relations (2) imply that (F~ (M), v(M)) is an F-module for any M € ObC. Clearly
the map f; assigning to any M € ObC the module (F"(M),v(M)) and to any arrow f of
C the morphism F” f of the corresponding modules is a functor. The compositions of the
forgetful functor f, and f; are:

f*ofT:FA! fTOf*:(M1m)'_)(FA(M)’V(M))'

There are canonical morphisms
€ :=€conF :fiofi=F — Idc (3)
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and 1" : Idp_mod — ft © f. defined by
7' (M,m):= F mon'(M): (M,m) — (F (M), v(M)) (4)

We it leave to the reader to check that (4) is really an F-module morphism and the functor
morphisms € and n” are adjunction arrows for f, and f;.

4.4.2. Corollary. A morphism f: A —> C is affine if and only if Gy = (fuo f*, 1) is a
continuous monad.

Proof. Only if is trivial.

If: In fact. if f is almost affine, f. is (cf. Proposition 4.2.4) equivalent to the forgetful
functor §: Gy — mod — C,Gy = (f, o f*,1). By Lemma 4.4.1, the existence of a right
adjoint to B, is equivalent to the existence of a right adjoint to f, o f*. =

Thus the functor £ : (MonC)® — Cat./C which assings to any monad F the canonical
morphism F — mod — € induces a functor & from (MoncC)® to Sch./C.

4.4.3. Pr0p051t10n The functor G (DJToncC) — Sch /C is fulh fazthful and has a
left adjoint. - - - e e

Proof. Let f: A — C be a scheme; and let U = {u,; : 8; — A|i € J} be a coflat
Zariski cover such that, for any i € J, f. o ;. is faithful and has a right adjoint (i.c.
fou; : & — (C is affine). Let u denote the corresponding to the cover Y morphism
[I;cs 4 — A. Note that f, o €(tl) o f* is a complex in the category €nd(C) of continuous
functors C — C. It follows from Proposition C4.3 that f, o €({) o f* is a resolution of the
functor

&5 = H%(f.o€(W) o f*):= Ker(fuo (&, — B2)of*):C —C (1)

where the kernel is taken in the category €nd C. In particular, 6}’ does not depend on
the choice of the cover U. The functor QS? has a uniquely defined monad structure pu”.
The morphism f : A — C decomposes uniquely into a continuous morphism C}’ A —
G — mod and Gy — mod — C. Here G / (8%, 1""). The map assigning to any scheme
f A — C the continuous monad G’ extends naturally to a ’global section’ functor
' : Sch/C — (9MoncC)® which is a left adjoint to the ’localization’ functor &. And
¢" = (¢¥) is the adjunction arrow from Idgcn/c to & o "I'. The other adjunction arrow is
identical. =

4.4.3.1. Corollary. The functor & : (MoncC)° — Sch/C establishes an equivalence

between the category (MoncC)® dual to the category of continuous monads and the category
AfF/C of affine schemes over C.

4.5. Schemes over a category of modules. Let C be the category k — mod of left
modules over a ring k, and let f : A — C be a morphism. We can assign to the morphism
f the pair (A, f*(k)). This correspondence provides a functor from the category Cat*/C
to the category Cat, objects of which are pairs (A, O), where A is a category (thought
as the category of quasi-coherent sheaves on a scheme) and O is an object of 4 (thought
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as the structure sheaf). Morphisms from (A, O) to (A’, ) are pairs (f, ¢), where f is a
morphism from A to A’ and ¢ is an isomorphism from f*(0’) to O.

Suppose now that f: A — C is a continuous morphism. Then it is defined uniquely
up to isomorphism by the object O = f*(k).

In fact, we have functorial isomorphisms A(f*(k), X) =~ C(k, f.(X)) =~ f.(X) which
shows that the direct image functor f. of f is naturally isomorphic to the functor X ——
A(f*(k), X). Therefore the inverse image functor f* (representing f) is defined uniqely
up to isomorphism (being a left adjoint to the functor f,) by the object f*(k). Note that
since f* respects colimits, there exist a coproduct of any set of copies of O = f*(k).

Conversely, suppose that (A, Q) is an object of the category Cat, such that the
category A is abelian and there exists a coproduct of any set of copies of . Then the
functor X — A(OQ, X) from A to the category K —mod, where K = A(O, 0)°, is a direct
image of a continuous morphism from A to K — mod ([BD], Proposition 6.6.23).

Now fix an additive category A and a continuous morphism f : 4 — C = k=mod.
And set O = f*(k). The functor f. is faithful iff O is a generator of the category A. In
this case, A has a structure of a k-linear category.

Since f, ~ A(Q,), the morphisin f is coflat iff O is a projective object.

Thus f.is almost-affine-iff-O-is a-projective generator. -Finally,-f-is-affine-iff O is a
projective generators of finite type.

4.5.1. Proposition. (a) For any continuous morphism f: A — C = k — mod, there s
a canonical functor morphism

vy A0, 0)°®r — A(O, f*-) (1)

such that 1¥¢(V') 1is an isomorphism for any free k-module V of finite type.

(b) If f is almost affine, then ¥¢(V) is an isomorphism for any finitely presented
k-module V. In particular, if k is left noetherian, then ¥¢(V) is an isomorphism for any
finitely generated k-module V.

(c) The morphism 15 is an isomorphism if and only if f is affine.

(d) The morphismn f is affine if and only if the functor
A(O,~): A — A(O,0)° — mod is an equivalence of categories.

Proof. (a) For any additive functor F': k — mod — k — mod, the module F(k) has
a natural k-bimodule there is a canonical functor morphism g : F(k)®i — F (see for
instance, [Bass], Ch.I). Recall that, for any k-module V', the morphism ¥ (V') is the image
of idy with respect to the composition

Homg(V, V) — Homy (V, Homg (k, V))

Homy(F (k) ® V, F(V)) «—— Homy(V, Homy(F(k), F(V))

Since ¥ (k) is an isomorphism and the functor F is additive, ¢ (V) is an isomorphism
for any free k-module V of finite rank.

(b) If the functor F is right exact, i.e. it preserves cokernels, (V) is an isomorphism
for any finitely presented object V, since finitely presented objects are exactly cokernels
of morphisms between free objects of finite rank.
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(c) The morphism % is an isomorphism iff the functor F' preserves arbitrary colimits
(or, equivalently, has a right adjoint). ’

The assertions (a)-(c) of the lemma are just specializations of these facts for the
functor f. o f* = A(O, f*-).

(d) By Proposition 4.2.4, if f : A — k — mod is almost affine, the canonical functor
A — Gy — mod is an equivalence of categories. The assertion (¢) implies that if {and
only if) f is affine, the monad Gy is naturally isomorphic to the monad (A(O, O)®x, m},
where m is induced by the multiplication in A(O, 0)°. The category (A(O, O), m) — mod
is isomorphic to the category of left modules over A(O,0)°. =

4.5.2. Remark. The analysis above shows that when the ring £ is commutative, affine
schemes over C = k —mod are affine schemes in the sense of M. Artin and J.J. Zhang [AZ).
]

4.5.3. General schemes over k. Let f : A — C be an arbitrary quasi-scheme over
C =k —mod; and let U = {u; : B; > A|i € J} be a Zariski cover adapted to f such that
fv 0 4. is an exact, faithful functor for any 2 € J. Or, in our new language, f o u; is an
almost affine quasi-scheme for any 7. By 4.1, this means that the category B; is naturally
equivalent, to the category.Gyoy,;.—mod,-where.Gyoy,- is. the-monad in.the category k —mod
(shortly k-monad) associated with the morphism fowu;. If f: A — C is a scheme and
1 is the corresponding affine cover, then B; is isomorphic to the category of R;-modules,
where R; = B;(0;, 0;)°,0; is the ’structure sheaf’ on B; : O; = ul(k).

Thus any scheme over k — mod is locally the category of left modules over k-algebras.
Every quasi-scheme over & — mod is locally the category of left modules over a k-monad.

Examples of interest of relative schemes are noncommutative projective spaces and
quantized flag varieties of semisimple Lie algebras. We discuss them in Section 5.

5. Noncommutative quasi-affine spaces and projective spectra.

5.1. Projective spectrum and a quasi-affine space related to a graded algebra.
Let k be a commutative ring, I' a commutative directly ordered group. And let R be an
associative I'-graded k-algebra. For any v € I, set Ry := @554 R,. For any R-module M
and any v € [, denote by M, the subset of all elements of M annihilated by R .. Denote
by 7 the full subcategory of the category R — mod generated by all R-modules M such
that M = sup{M,|y € T}. One can see that T} is a Serre subcategory of the category
R —mod. The quotient category Coner(R) := R—mod/T,. is called the quasi-affine space
(or affine cone) of R.

Let F be the natural functor gepR — mod — R — mod. And let T4 denote the
preimage of 7} in grpR — mod. Since the functor F is exact, T, is a Serre subcategory
of gep R — mod. The quotient category Projr(RR) = gepR — mod/%4 is called projective
spectrum of R.

We have the following canonical continuous morphisms:

The ’'embedding’ v : Coner(R) — R — mod with a localization at 7 as an inverse
image functor.

The morphism 7’ : Projp(R) — gtR — mod with with a localization at T as an
inverse image functor.
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The morphism ¢ : grp R — mod — Ry — mod, with the direct image functor
@Yo : gtpR — mod —> Ry — mod, M = ®yerMy— M. (1)

Here 0 denotes the identity element of the group I
Note by passing that the inverse image functor ¢* : V +— R ®p, V is fully faithful.
This follows from the fact that the adjunction morphism

n:Idpy—mod — @x0@™, N(V):V — (R®R, V)o = Rg®r, V

is an isomorphism.
Set m:= pon’: Projp(R) — Ry — mod. The direct image m, of m can be regarded
as the global sections functor.

5.1.1. A remark about changing the grading. Let R be a I'-graded k-algebra; and
let ¥ : I' — T' be a group epimorphism. Then R becomes a I''-graded algebra. So
that we have the I''-cone of RConer:(R) and the I'-projective space Projr(R). The
natural functor F : gtpR — mod — grp R — mod induces exact and faithful functors
Coner(R) — Coner(R) and Projr(R) — Projp (R) such that the diagram

Coner(R) —— Coner (R)

] T M

Projp(R) —— Projp(R)

commutes.

There could be that the horizontal arrows in (1) are equivalences of categories. This
happens (in the commutative case) when there is an epimorphism from Pic(Projp. (R))
onto I'. For example, the flag variety of a reductive Lie algebra g is a projective spectrum
of a Z-graded algebra. On the other hand it can be regarded as Projp(R), where I' =
Z", r = rank(g) (cf. Section 5.5}

But in general the horizontal arrows of (1) are not. equivalences.

5.2. Affine covers of projective spectra. Let & and T" be as in Section 5.1. Fix a
I-graded associative k-algebra R.

5.2.1. Lemma. Let & = {S;ji € J} be a family of left homogeneous Ore subsets of the
algebra R. And let, for each i € J, S; be the Serre subcategory of R — mod generated by all
modules M such that any element of M is annihilated by some element of S;. And let S;
be the preimage of 8; in gep R — mod.

The following conditions are equivalent:

(a) The Serre subcategories {S;|i € J} provide a cover of the ’quasi-affine space’
Coner(R); i.e. [;es8i= T,

(b) The Serre subcategories {S;|i € J} provide a cover of the projective spectrum
Projp(R); i.e. (ic; Si = %y .

(c) The family of Ore sets S = {S;|i € J} has the properties:

(i) for anyy €T and any i € J, SiN Rs, # 0.
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(ii) if m is-a left ideal of R such that mNS; # O for alli € J, then Ry, C m for some
vyeTl.

Proof. (a)={(c). The condition (%) is equivalent to the inclusion 7, C §; for all 7 € .J.
The condition (i) says that T contains the intersection [);c;S;. Therefore 7. = ;¢ S:-
The implications (b)=(c) are established the same way. =

5.2.1.1. Remark. In [VW], a Z -graded noetherian ring R such that there exists a
family of left and right Ore sets § = {S;|t € J} satisfying the equivalent conditions of
Lemma 5.2.1 is called schematic. Quite a few algebras of interest are schematic. We refer
to [VW] for examples. m

5.2.2. Proposition. Any family S = {Sili € J} of left homogeneous Ore subsets of R
satisfying the conditions (i), (ii) of Lemma 3.2.1 determines an affine cover {S{|i € J} of
Projr(R) adapted to the global section functor m, : Projp(R) — Ry — mod.

Proof. Here S, denote the image of the Serre category S; in Projp(R).
The composition of 7, and the direct image of u; : Proj(R)/S! — Projr(R) equals
to the composition

7, 0 Ui = (7' o w;)y : Projp(R)/S; — gtR — mod (1)

and the functor ¢, : grpR — mod — Ry — mod (cf. (1) in 5.1). Note that the category
Projr(R)/S! is naturally identified with the category gep R — mod/S;; so that the functor
(1) becomes a right adjoint to the localization

Qi : gep R — mod — grp R — mod/S;. (2)

Since (2) is a localization at a left Ore set S;, the quotient category grp R — mod/S; is
equivalent to the category gvS;” 'R — mod of graded S R-modules. Thus gtpR ~ mod/S;
can be replaced by S; 'R — mod. And the localization Q; can be identified with the
tensoring S; 'R®p. Therefore a right adjoint functor to Q; is exact. Since the functor
wx @ grpl — mod — Ry — mod is exact, we obtain the exactness of 7, o u;.. Now the
assertion follows from Proposition 2.2. m

5.3. Remark. Under the conditions of Proposition 5.2.2, the family of Ore sets & =
{S;]i € J} determines an affine cover of Coner(R) := R — mod/7T; which is adapted to
the direct image functor u, : Conepr(R) — R — mod (cf. 5.1). The covers of Projp(R)
and Coner(R) defined by the family S are compatible with the natural (inverse image)
functor Projp(R) — Coner(R); i.e. the diagram

Projr(R) —— Projp(R)/S]

| | (3)

Coner(R) —— Conep(R)/S!

is commutative for all ¢ € J. Here 8] is the image of the Serre category §; in Coner(R).
And Coner(R)/S! can be identified with R — mod/S; = S; 'R ~ mod. =
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5.4. Example: noncommutative skew projective spaces. Let A be an arbitrary
associative k-algebra. And let q denote a matrix [gi;]; jes with entrees in k such that
gi;q;: = 1 for all 7, 7 € J. In particular, ¢;; = 1 for ali 2 € J. To this data there corresponds
a skew (or q—)polynomial algebra A4[x], where x denotes the set of indeterminates {;|i €
J}. The defining relations are:

TiT; = qi;T;x; foralli,j € J, (1)

zir=rz; forallie Jandr e R (2)

Let J = {0,1,...,7}. Set I := Z"*!; and let +;, i = 0,1,...,7, denote the canonical
generators of I'. We provide I with a standard lexicographic preorder. Assigning to each
z; the parity -;, we turn the skew polynomial algebra R := Aq[x] into a I-graded algebra
with Ro=A.

There is a natural choice of left (and right) homogeneous Ore subsets of the ring
R:8; :={zPn > 1} for all : € J. The family S = {S;|i € J} satisfies the conditions
(i), (ii) of Lemma 5.2.1. Therefore S determines, by Proposition 5.2, affine covers of the
spaces Projp(R).and Coner(R)..These.covers. have. all.’classical’ properties:

(a) One can see that the category Coner(R)/S) =~ Aq[x,z '] — mod.

(b) Let ['; denote the quotient group I'/Zy; ~ Z". We have:

Projp(R)/S! = gtpR — mod/S; ~ grpR[zi, 2] '] — mod. (3)

The right hand side category in (3) is naturaily equivalent to the category grp, Aq, [x/z;]—|]
mod of left I';-graded modules over the skew polynomial algebra Aq, [x/x;]. Here x/z; de-
notes {z;/zi|j € J,j # i}, and q; denotes the matrix (gnignmdy; Inmes-{) (cf. [R],
Example 1.7.2.2.4}.

Note that Ag,[x/z;] is the T';-component of the algebra A4[x,z; '] of the 'functions
on Coner(R)/S}.

(c) One can see that the category Projr(R)/S! is naturally identified with the category
grr, Ag,[x/z;] — mod and Coner(R)/S; with grp Aqlx,z] '] — mod. And the canonical
functor Projp(R)/S; — Coner(R)/S. of Remark 5.3 is isomorphic to the tensoring by
the algebra Aq[x,z; '] over its I';-component Aq,[x/z;] = Ag[x, 7] 0.

(d) The composition of the Gabriel functors G; := @Q;” 0 Q;, where Q; is a localization
at S;, commute one with another. In other words, the canonical cover of Projr(It) is
semiseparated. This implies that, for any subset J' of J, the composition of G;, 7 € J’, is
the Gabriel functor of the localization at the multiplicative set generated by {z;|i € J'}.

5.4.1. The ’projective space’ P”. Let again R = Aq4[x], x = (zo,Z1,-.-,2Z»). But
take I' = Z with the natural order; and set the parity of each z; equal to 1. One can
repeat with Conez(R) and P" := Projz(R) the same pattern as with Coner(R) and
PL := Projp(R). Only this time the quotient groups I'; will be trivial, and we obtain a
picture very similar to the classical one: P™ covered by r+1 affine spaces Aq;[x/z;] —mod,
1=0,1,...,7. The details are left to the reader.

Note that the categories P" and P} := Projp(R) are not equivalent if » > 1.
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5.4.2. -A useful generalization. - Suppose we are given a k-algebra A and- a matrix
q = (¢ij)o<ij<r (as in 5.4), and a group homomorphism 9 : Z™*1 — Autr(A). Define
Aq[x, 9] as the k-algebra generated by A and x = (g, 1,...,%,) subject to the relations:

TiT; = q,-j:r_.,-:c,-, :B,'b = ﬂi(b)a:,- (1)

for all 0 < 7,7 < r and b €A. Here ¢; is the image with respect to ¥ of the canonical
generator y; of [ = Z"t!. The corresponding projective spaces shall be denoted by PT s
and by Pj.

5.5. Flag varieties of quantized enveloping algebras. Let g be a reductive Lie algebra
over C and U(g) the enveloping algebra of g. Let P denote the group of integral weights
of g, and let B, be the semigroup of nonnegative integral weights. Let R = @xeqp, Ra,
where R, is the vector space of the (canonical) irreducible finite dimensional representation
with the highest weight A. The module R is a ‘P -graded algebra with the multiplication
determined by the projections Ry ® R, — Rx4v, for all A, v € P,. It is well known that
the algebra R is isomorphic to the algebra of regular functions on the base affine space of
g. Recall that Y = G/U, where G is a connected simply connected algebraic group with
the Lie algebra g, and U is its maximal unipotent subgroup. -

The Coner(R) is equivalent to the category of quasi-coherent sheaves on the base
affine space Y of the Lie algebra g. The category Projp(R) is equivalent to the category
of quasi-coherent sheaves on the flag variety of g.

Let now g be a semisimple Lie algebra over a field k of zero characteristic (say, k =
Q(q)) and U,(g) the quantized enveloping algebra of g. Define the 8 -graded algebra R =
@aep, R the same way as above. This time, however, the algebra R is not commutative.
Following the classical example (and identifying spaces with categories of quasi-coherent
sheaves on them), we call Coner(R) the quantum base affine space and Proj(R) the
quantum flag variety of g.

5.5.1. An affine cover of the flag variety. Let W be the Wey! group of the Lie algebra
g. Fix aw € W. For any A € P, choose a nonzero w-extremal vector e, generating
the one dimensional vector space formed by the vectors of the weight wA. Set S, :=
{k*ewalX € PB4} It follows from the Weyl character formula that eyaewy € k™ eyrpp)-
Hence e, is a multiplicative set. It was proved by Joseph [Jo| that S, is a left and right
Ore subset in R. The Ore sets {S,,|w € W} determine a locally affine cover of the quantum
base affine space Coner(R) and the quantum flag variety Projp(R) of g. This cover enjoys
properties similar to the properties (a)—(c) of the canonical cover of a ’projective space’
and its cone (cf. 5.4). Namely, Coner(R)/S,, is naturally equivalent to S;'R — mod and
Projr(R)/S,, is naturally equivalent to (S R)o — mod. But the analog of the property
(d) in 5.4 does not hold: the multiplicative subset generated by S,, and S, for different w
and w’ is not an Ore set in general. Which means that the situation is not analogous to the
classical one: the canonical cover is not semiseparated. Still the standard complex allows
to compute the cohomology of line bundles on the quantized flag variety by comparing
them with the cohomology of the classical specialization. This is done in [LR3].
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Complementary facts and examples.
C1. Flat covers and Zariski covers.

C1l.1. Lemma. Let A be a category with finite limits and colimits. Then any flat (i.e.
exact and having a right adjoint) functor T : A — B is represented uniquely up to
isomorphism as the composition H o Q, where Q is a flat localization, and H s a faithfully
flat functor.

Proof. The functor T is represented as the composition T' = H o ), where @ is the
localization at S = {s € HomA | T's is invertible}. Since the functor 7'= Ho(Q has a right
adjoint, T, the functor H is left adjoint to the composition @ o T"; and the adjunction
arrow € : T o T" —» Id can be also regarded as an adjunction morphism Ho (QoT") =
Ho H" — Id. As for the second adjunction arrow, v: Id — H o H = (QoT" )o H,
it is uniquely defined by the equality v@Q = Qn (cf. [GZ], Lemma 1.1.3.1). Here 7 is the
adjunction morphism Id — T" o T'.

Let F denote the composition T oT. Define the functor G : A — A as the equalizer
of the pair Fn,nF : F — F o F. And let v denote the canonical arrow G — F.

Note that if s €HomS, then Gs is invertible. In fact, s €HomS if and only if T's is
invertible. But, this implies that Fs and F o F(s) are invertible. Herice G's is invertible.

Therefore G = L o @ for a uniquely defined functor L. We claim that the functor L
is right adjoint to Q. In fact, since the adjunction arrow n: Id — F = T" o T equalizes
(Fm,nF), we have a canonical morphism 6 : Id — L o Q = G uniquely defined by the
equality: vod = 1.

On the other hand, applying the localization @ to the arrows Fn, nF, we obtain a
pair of morphisms from

QoF =QoT oT=(QoT )oHoQ=(H oH)oQ
to
QoFoF=(QoT )o(HoQ)oF=(H oH)oQoF =(H oH)o(H oH)oQ.
Since vQ = @n, we have:

QnF =yQF = yHQ, and QFn = H" HQn = HyQ.

By Proposition 1.3.4 in {GZ], the functor H is exact and faithful; therefore it is faith-
fully flat. By Lemma 1.3.1, the adjunction arrow v : Id — H is the equalizer of the pair
H~,vH. In particular,

YR =Qn:Q —HoQ=QoF
is the equalizer of YHQ = @nF and HyQ = QF1.

Notice now that, by the same Proposition 1.3.4 in [GZ], S admits left and right frac-
tions. By Proposition 1.3.1 in [GZ], the localization @ : A — A[S~!] is an exact functor.
In particular, it preserves equalizers.

Thus, we have obtained: both the arrows, Qv : QoG — QF and Qn: Q — QF,
are equalizers of the pair QnF,QF7. Since @n = Q(v 0 §) = Qv o Q6, this means that
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the arrow @4 -Q — @ o G- =-Q o L o-Q} is-an isomorphism. By the universal property
of the localization @, there is a unique functor isomorphism o : @ o L — Id such that
cQ = Qé71.

By the definition of o, we have: 0@ o Q6 = idg.

Note that (Lo o §L)Q 0§ = Lo@Q o LQ5 o 6 = 4. This implies, by the universal
property of 8, that (Lo o 6L)Q = idp.g. Therefore, by the universal property of @, we
have: Lo odL = idy.

The equalities 0@ o Q4 = idg, Lo o 6L = idy show that the functor L is the right
adjoint to the localization @), and § and ¢ are adjunction arrows. »

Let § = {fi : Bi = A|i € J} be a family of flat morphisms. By Lemma C1.1 each
fi is represented as a composition of a flat localization ¢; : A; — A and a faithfully flat
morphism h; : B; — A;. Clearly ¥ is a cover iff {g; : A; = Ali € J} is a cover.

Another application of Lemma C1.1 is the following proposition.

C1.2. Proposition. Let § = {f; : B; = Ali € J} be a finite family of flat morphisms to
an additive category A. And let ¢* be a localization at Lz = {s € HomA|f?(s) is invertible
for alli e J}. Then the standard complex

0— ¢ — ¢ ([[o) —a(J[e8) —...—¢([[ &) —... @
i€ e i

18 exact.

Proof. Tt suffices to prove the assertion in the case card(J}=1 {cf. the argument
of Proposition 1.4); i.e. when § = {f} for a flat morphism f : B — A. By Lemma
Cl1.1, f = go h, where ¢ : A — A is a flat localization (i.e. ¢* is a flat localization)
and h : B — A is a faithfully flat morphism. Since ¢* o ¢, ~ Id_4, we have canonical
isomorphisms: ®7% =~ g, o 8} o ¢*. The complex (1) is isomorphic to

¢(h,Id)g" = (Jdgy — &), — &2 — ... — BT — ... )og* (2)

Since the morphism h is faithfully flat, the complex €(h, I'd) is exact. Therefore the
complex (2} is exact. =

C1.3. A remark on localizations. We have defined the almost affinnity of a flat
morphism f as the exactness of the functor f.. Since f* is exact, the exactness of f, o f*
is garanteed if f, is exact. In the case when f is a flat localization, the inverse is true: f,
is exact if f, o f* is exact. This is a corollary of the following useful observation:

C1.3.1. Lemma. Let f : B — A be a continuous morphism such that the direct image
functor f. is fully faithful (hence f* is a localization). And let © : D — A be a diagram
such that there exists colim(f, o D). Then colim® exists and the following conditions are
equivalent:

(a) Gy := f.o f* is commutes with colim(f, o D).

(b) f. commutes with colim® .

Proof. The existence of colim® follows from Proposition I.1.4 in [GZ].

19



(a)=(b). The condition (a) means that the natural morphism
colimGy o (f. 0 D) — Gy(colim(f. 0 D))
is an isomorphism. But since f, is fully faithful, f* o f, ~ I'd. So that
colimGy o (f. 0 D) =~ colim(f. o D).
On the other hand, since f* commutes with colimits,
Gy (colim(f, o D)) = f. o f*(colim(f. 0 D)) = fu(colim(f* o fa 0 D)) ~ fi(colim(D))

which proves the claim. =

C1.3.2. Corollary. Let f : B— A be a flat localization (i.e. f* is exact and f. is fully
faithful). Then the following conditions are equivalent:

(a) Gy = f.o f* is ezact.

(b) f. is exact.

C2. Standard complex of a family of morphisms and localizations. Here we shall
discuss the compatibility of derived functors with certain localizations.

C2.1. Lemma. Let f : B — A be continuous morphism; and let Q : A — A’ be flat
localization such that f* factors through Q : f* = f'*oQ.

(a) Then f'* is an inverse image functor of continuous morphism f': B — A’.

(b) If G := f. o f* is an ezact functor, then Gy = fl o f'* is exact.

In particular, if f is a biflat localization, then f' is a biflat localization.

Proof. (a) The statement is a consequence of Lemma 1.1.3.1 in [GZ].

(b) Since f* = f*oQ, f. = Q" of,. Sothat Gy ~ Q oG 0Q); hence QoG = G 0Q.
The latter isomorphism shows that the functor Q) o G factors through the localization @.
Since the functors @@ and Gy are exact, @ o Gy is exact and, therefore, Gy is exact by
Propositions 1.3.2 and 1.3.4 in [GZ]. =

C2.2. Lemma. Let § = {f; : B; = Ali € J} be a set of biflat morphisms; and let
Q: A— A be a flat localization such that every f; is compatible with Q). Then

(a) The induced localizations of A', § = {f] : Bl — A’lt € J}, are biflat.

(b) If Q(s) is invertible for any arrow s of A such that f}(s) is invertible for alli € J,
then § induces a biflat cover, F', of A’.

Proof. The assertion follows from Lemma C2.1. u

C2.3. Proposition. Let A be an abelian category with enough injectives. LetQ : A — A’
be a flat localization; and let § = {f; : B; = Ali € J} be a finite set of biflat morphisms
compatible with Q and such that Ker(Q) C (;c, Ker(f]).

(i) Then § induces a biflat cover of A'.

(ii) Suppose that A be an abelian category and each category B; has enough injectives.
Let a functor F : A — C be adapted to the family §. Then the standard complex €(F, F)
of the functor F' with respect to the family ¥ is a resolution of the functor F o Q".
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Proof. (i) Note that if the category A is abelian, the condition of the assertion (b) of
Lemma C2.2 is equivalent to the inclusion: Ker(Q) C N;c; Ker(f;).

(ii) Recall that *F is adapted to § ’ means that F o f;, is an exact functor for all i € J.
Since fix = Q" o f!. (in the notations of Lemma C2.1), F is adapted to § = {fi|7 € J} iff
FoQ" is adapted to §' := {f!/|t € J}. The statement follows now from Theorem 2.2. =

C2.4. Corollary. Suppose that the conditions of Proposition 5.4.3 hold. If the functor
FoQ" is ezact, then H*(€(F,F)) =0 for alli > 1.

C3. A resolution related with an infinite cover. Fix a family §= {f; : B; > A |7 €
J} of continuous morphisms. For each 7 € J, denote by ®; the composition f;, o f and
by resp. n; and €; adjunction arrows Id4 — &; and f} o fix — Idg. We can encode the
family § in one morphism f; : ®;csB; — A having the inverse image functor

f5:4— [[8, X— ][] (1)

ieJ ieJ
C3.1. Lemma. Suppose that the category A has J-indezed products. Then the morphism
f; has a direct image functor: £5.(DicsXi) = Sics fise (Xi)-

Proof. Set for conveneince By = @;¢s8;. The adjunction arrow

n=mne:Ida — .85 =[] fif7
ied

is determined by the adjunction arrows n;,¢ € J. The adjunction arrow
e=¢: 35, — Idg,
assigns to any (X;) € Ob®;ecy B; the composition of the natural projection
£385.(X) — (fi fiu(X3))

and the product (¢, : f; fi.(X;) — X;) of adjunction morphisms ¢;. We leave the checking
that n and € are really adjunction arrows to a reader. m

Note that if the family § is biflat, i.e. the functors fi. f? are exact for all ¢ € J, then
the morphism f; is biflat: the functor f;.f} = @ic s fi. fI is exact.

Note however that even in the case of abelian categories it is not true in general that
the exactness of all fi, ff, i € J, implies the exactness of f;.fj. Still we can use the
standard resolution related to a family ¥ for a certain subcategory of A which, in the case
when § is a biflat cover could be thought as a full subcategory of sheaves with a compact
support. :

Denote by Az the full subcategory of A generated by all objects X for which there
exists a finite subset J' = J/'(X) of J with the following property:

(#) for any morphism s : M — L in A such that f*(s) is invertible for all ¢ € J',
the corresponding map A(s, X) : A(L, X) — A(M, X) is bijective.
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C3.2. Lemma. Let F = {fi: B; &> A| i€ J} be a set of flat morphisms. Suppose that
the categories A and B; are abelian and the categories B; have enough injectives. Then Ag
is an abelian category with enough injectives.

Sketch of proof. For any finite subset J' of J, denote by A, the full subcategory
of A generated by X € ObA having the property (#). The category Az is the union of
the directed (with respect to C) set of subcategories Ay . Each of the subcategories Ay
is equivalent to the quotient category A/S;:, where 8§ is the intersection of the kernels
of functors ff, i € J'. In particular Ay is an abelian category covered by subcategories
B;,i € J'. Since each B; has enough injectives, Ay has enough injectives, and these
injectives are injectives of the category A (hence of Az) at the same time. w

Note that the category Az does not have usually infinite direct sums.

C3.3. Theorem. Let A be an abelian category. And let F={f; : B; > A|i € J} be an
arbitrary set of biflat morphisms. Suppose each category B; has enough injectives. And let
a functor F : A — C be adapted to §. Then the standard complex €(F, F) of the functor
F unth respect to the cover § computes the values of the derived functors of the restrition
of F to the subcategory Agz.

Sketch of proof. Fix a finite subset J' of J. The complex €(F, F') restricted to the
subcategory Ay for some finite .J' is (homotopically) equivalent to the complex €(F 5, F),
where § 0 :={fi: B = A| i€ J'}. But §, induces a finite biflat cover of the subcategory
Ay, The assertion follows now from Theorem 2.2. =

C4. Resolutions of functors. Let f : A — C and g : B — C’ be continuous
morphisms. Suppose that the categories of functors Fun(A4, B) and Fun(C,C’) are well
defined (each of the categories in question is equivalent to a small category). The pair
of morphisms f, g determines a continuous morphism ®:Fun({A, B) —Fun(C,C’) with an
inverse and direct image functors resp. ®*: X 3 g*o X o f,and ¢, : Y —> g. oY o f*.
Moreover, if f and g are localizations (i.e. f, and g, are fully faithful), then ® is a
localization too. This follows from the fact that the adjunction morphism ®* o ®,(Y) :=
grog.,oYof*of, — Y is an isomorphism for any Y if the adjunction arrows f*o f, — Idc
and g* o g. — Id¢+ are isomorphisms.

C4.1. Lemma. (a) Let R = (Idg — Ro = Ry — ...) be a resolution of the identical
functor in B. Then R :Y+—— RoY is a resolution of Idpyn(a,B)-

(b) If the resolution R is adapted to g; i.e. the functors g. o R; are exact for alli > 0,
then the resolution R is adapted to ® : Fun(A, B) — Fun(C,C’).

Proof. (a) The defining properties of R: the complex of endofunctors
0—0Ildg — Ry — R — ...

is exact and each of the functors R; is exact, ¢ > 0. Since the notions of a mono- and
epimorphism and exactness of sequences for functors are defined object-wise, the functor
"R has the same properties.

(b) By assumption g. o R; is an exact functor for all ¢ > 0. This implies that the
functor ®, o R; : Fun(A, B) — Fun(C,C'), Y — g.oR;0Y o f*, is exact for all i > 0.
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In particular, the-resolution "R of the identical functor of Fun(A,B) is adapted to the -
morphism . =

C4.2. Note. Let f: A — C,g : B — C be continuous morphisms. And let R be a
resolution of I'dp such that g, o R; is an exact functor for all ¢ > 0.

(a) The functor ®, o N sends any right exact functor into a complex of right exact
functors.

(b) If f is flat (i.e. f* is exact), then ®, o” R sends any (left) exact functor into a
complex of (resp. left) exact functors. m

C4.3. Proposition. Let f : A — C,g: B— C’ be continuous morphisms; and let § be
a biflat cover adapted to g. Let R = &(F) be the corresponding resolution of Idg. Then
the resolution R:Y —— B(F) oY is adapted to the morphism

® : Fun(A,B) — Fun(C,C'),®.:Y —— g.oY o f*.

Proof. The assertion follows from Theorem 2.2 and Lemma C4.1. w»

It follows from Proposition C4.3 that the derived functors of the direct image functor
&, : Fun(A, B) —» ‘EndC are isomorphic tothe corresponding cohomology of the complex

P,0 BF):Y — g, 08(F)oY o f*. (1)

C5. Cohomology of invertible sheaves on a skew projective space. Return now to
the setting of Section 3; i.e. fix a I'-graded k-algebra R. For each v € T, we have an auto-
equivalence 1, of the category gep R — mod assigning to cach graded module M = @, M,
the graded module M (v) defined by: M(v), := M,y4, for all v € T. Clearly the ’torsion
category’ T, is invariant with respect to ¥, for all ¥ € I'. Therefore 9., induces an
auto-equivalence, O(7y), of the category Projp(R) := grp R — mod/T . We call the auto-
equivalences O(7y) canonical line bundles on Projr(R). One of important problems is the
computing cohomology of O(v),v € T.

We make these computations below using the Cech complex for the skew projective
space PT. . which is by definition Projp(R), where I' = Z"™', R is the algebra of skew
polynomials in 7 + 1 indeterminates (cf. Example 5.4).

Let R be the k-algebra of skew polynomials over a k-algebra A (cf. Example 5.4).
We provide R with the canonical [-grading, ' = Z™+!, assigning to any element of the
algebra A the parity 0 and to any generator z; the parity v;, where +y; is the i-th canonical
generator of Z™+1,

C5.1. Proposition. (a) The natural map R — &,erH®(O(w)) is an isomorphism of
the I'-graded algebras.

(b) H™(O(7)) =~ Az" if all the components of v are negative, and H"(O(y)) = 0 if
some of the components of v are nonnegative.

(c) There is a natural map H°(O(v)) ®4 H'(O(v) — H™(O(y +v)) for ally,v €T
which induces a perfect pairing

H(O(7)) @4 H™(O(w ~ ) — H™(O(w)) = Az™
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wherew = (-1,-1,...,-1).
(b) H(O()) =0 forallyeT if0 <i<r.

Proof. We shall use the standard (or ruther Cech) complex in an argument analogous
to the proof of the Serre’s theorem in {Ha] (Theorem IIL.5.1).

By Proposition C4.3 the cohomology of any sheaf G : Projp(R) — Projp(R) can be
computed as the cohomology of the standard complex

T (INE) =Ty (F)oGon (1)

where § is the canonical affine cover of Projp(R). Since the cover § is semiseparated, the
standard complex (1) is homotopically equivalent to the Cech complex

T,C84(F)(G) =moCCy(F)oGon” (2)

The right hand side of the complex (2) is

[[70®s0Gon® — ][ mo®s0Gont — ... . J] mo®s0Gom™ — ... (3)
iceJ i€J2< iE-]n<

where, for each i = (i1,...,%,), Ti := @i, ... T;,; and B, ~ (7;) " 'R®p regarded as an
endofunctor of Projp(R).

Since the functor 7 is the composition of the tensoring R®4 and the localization
Q : grpR — mod — Projp(RR), the functor m, is the composition of a right adjoint @~
to the localization @ and the functor gep R — mod — A — mod assigning to any graded
R-module its zero component, the functor

Teo®, 0Gon* 1 A—mod — A - mod ‘ (4)

is isomorphic to the functor (z;)~'G(R(v)o®a. In particular, if G = O(«) for some vy € T,
the functor (4) is isomorphic to (z;) "' R(v)o® 4. Taking G equal the direct sum ®,erO(v),
we obtain that 7, 0 84, 0cGon* ~ (z;) "' R®4, where (z;) "' R is provided with the natural
[-grading. Set for convenience Rz, := (zi)"'R. And let G denote @,erO(y). Then the
Cech complex (3) is isomorphic to

C36)8a=([[Re — [] R — ... — ] Res — ... — Rug.z,)®4 (5)
icJ i€Joc¢ i€Jnc

For any flat left A-module L, the cohomology of the complex C'(F,R) ®4 L are
isomorphic to A*(C'(F,R)) ®4 L.

(a) One can sec that the canonical morphism R — H®(C' (3, R)) is a monomorphism,
since {z;} are not zero divisors (i.e. already R — R, is a monomorphism for any 7).
Note that, for any 0 < ¢ < m < r, the sequence

0-——R—>R;, ®R;, — Rz,
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is exact.-Therefore the sequence

0—)R—)HR3'. — H Rz.-a:m
ieJ 0<i,m<r

is exact.
(b) H"(C (F, R)) is the cokernel of

dr_1: H R::o...a:k_la:k+1...zr — }z;vo...:;cr (6)
0<k<r

Note that Rz, -, is a free A-module with the basis zi, i € I'. The image of (6) is the
free submodule of Ry, . 5, generated by all z!, such that at least one of the components of
i = (d0,...,1,) is nonnegative. Therefore H"(C'(§, R)) is a free A-module with the basis
zi, where i runs through the set of elements of I' with all components negative.

(c) By (a), HC (%, R)) = R = [licr,, Az, where T'» consists of all elements of
" with nonnegative components. And, by (b), H™(C'(F,R)) = Hier‘<o Az!, where ' is
-the set of-elements-of I with-negative-components.-Therefore;-we have a'natural action

H(C'(3,R)®4 H'(C'(§,R)) — H"(C'(3, R)) (7)

determined by z! ® 2™~ —— x(m)z™, where x(m) = 1 if m € 'y and x(m) = 0 if
m &I 4. Let w denote the element (—1,—1,...,—1). Then the map (7) determines a
perfect pairing (Serre duality)

H(O(7)) ®4 H™(O(w = v) — H"(O(w)) = Az™. (8)

(d) H(C(F,R)) = 0 for 0 < ¢ <r. Localizing the complex C'(§, R) at (z,), we
get the complex C'(F(z,), R), where F(z,) is the canonical cover of the open subscheme
U(zy) := (z,)"'Proj(R) of Proj(R). Since U(z,) ~ (Rz.)o — mod — A — mod is
affine, H*(C'(F(z,), R) = 0 for i > 1. Since the localization at (z,) is an exact functor,
H*(C(§(z,),R)) ~ H*(C (F, R)):, - the localization of H*{(C (¥, R) at (z,)). Therefore
the equality H*(C"(§(z,), R)) = 0 means that any clement of H*(C(§, R)) is annihilated
by some power of z,. It remains to show that, for any 0 < 7 < r, the multiplication by z,
induces an injective map from H*(C (§F, R) to itself.

The exact sequence of I'-graded R-bimodules

0 — R(-7) = R — R/Rz, — 0 (9)
and the corresponding cohomological long exact sequence:

o= HY (G (=) — HY(G) — H'(Gy) — HYG(-v,) — ... — H'(G) — 0
(10)
The quotient ring R/ Rz, is actually the T”-graded skew polynomial algebra, T’ = Z",
with the I-grading induced by the projection I' = Z"+! — T sending ~, to 0. Therefore,
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by the induction-hypothesis, H*(Gy) = 0 for 0 < i < r — 1 which implies that z, :
HY(G(—~,;)) — H*(G) is an isomorphism for 0 < i < r — 1. Since the multiplication by
z, is locally nilpotent, this means that H*(G) =0 for 0 <i <r — 1.

Note that H*(G(~~,)) ~ H*(G)(—7,). Thus for i=0 we have an exact sequence

0 — H°(G(—v,)) = R(—y») — H°(G) = R — H°(Gy) = R/Rz, — 0 (11)

So that H'(G)(—~,) = 0= H!(G). At the other end of (4) we have the exact sequence

0 — H™YGn) 25 H™(G(~)) =5 HT(G) — 0 (12)

Indeed, H™Y(Gy) = [Tier Az'; H(G(—¥)) = [Licr, Az', where T, is the subset
{i = (i0,...,%) € Tlir = =1}; H™(G) = [l;er Az'. And the morphism &, is the dividing
by z,.

Therefore H™"'(G) =0. =

For Projgz(R), we have a direct analog of the classical result:

-C5.2.- ‘Proposition: —(a)~The natural map R — ©,¢zH(O(n)) is an isomorphism of
the Z-graded algebras.

(b) H(O(—r — 1)) ~ Az™v, where w = (—1,—1,...,~1).

(¢) The natural map

HY(OM) @4 H (O(=1~7 —n) — H(O(=r — 1)) = Az

is a perfect pairing of free A-modules of finite rank for alln € Z.
(d) H*(O(n)) =0 for alln € Z if 0 < i <r.

Proof. The assertions follow from the corresponding assertions of Proposition C5.1.
The detailes are left to the reader. m

C5.3. Generalizations. Propositions C5.1 and C5.2 can be easily extended to the cases
of skew projective spaces resp. PL. 4 and P} (cf. 5.4.2). We leave details to the reader.

Appendix: reconstruction of schemes.

A.0. Preliminaries on Spec. Fix an abelian category A with the property. Recall that,
for any two objects X, Y of A, we write X > Y if Y is a subquotient of a finite direct sum
of copies of X (cf. Note 2.5.1). For any X € ObA, denote by (X) the full subcategory of
A such that Ob(X) = ObA — {Y € ObA | Y = X}. 1t is easy to check that X » Y iff
(Y) C (X). This observation provides a convenient realization of the quotient of (ObA, >)
with respect to the equivalence relation induced by »: X =~ Y if X > ¥ > X. Namely,
(ObA, »)/ = is isomorphic to ({(X) | X € ObA}, D).

Set SpecA = {P € ObA | P # 0, and for any nonzero subobject X of P, X » P}.
The spectrum, SpecA, of the category A is the preordered set of equivalence (with respect
to > ) classes of objects of SpecA. The canonical realization of (ObA, »)/ = induces a
canonical realization of SpecA : (SpecA = {(P) | P € SpecA}, D).
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A.0.1. Proposition. For any P € SpecA, the subcategory (P) is a Serre subcategory of
A. If A is a category with the property (sup), then the converse is true: if X is an object
of A such that {X) is a Serre subcategory of A, then X is equivalent (in the sense of > )
toa P € SpecA; ie. (X)=(P).

Proof. See Proposition 2.3.3 and 2.4.7 in [R]. m

A nonzero object X of a category A is called quasifinal if, for any nonzero object Y
of 4, Y > X. The category A having a quasifinal objects is called local.

One can check that all simple objects of a local category (if any) are isomorphic to
each other. In particular, the category of left modules over a commutative ring R is local
iff the ring R is local.

A.0.2. Proposition. And the quotient category A/(P) is local.
Proof. See Proposition 3.3.1 and Corollary 3.3.2 in [R]. =

A.0.3. Proposition. (a) For any topologizing (i.e. full and closed with respect to taking
direct sums and subquotients) subcategory T of A, the inclusion functor T — A induces
an embedding SpecT — SpecA.

(b) For any ezact localization @ : A — A/S and for any P € SpecA, either P € ObS,
or Q(P) € SpecA/S; hence QQ induces an injective map from SpecA-SpecS to SpecA/S.

A.0.4. The support of an object. For any M € ObA the support of M, Supp(M),
consists of all (P) € SpecA such that M ¢ Ob(P).

A.0.5. Localizations at subsets of the spectrum. For any subset U of Spec.A, denote
by (U) the intersection () pyey(P). Being the intersection of a set of Serre subcategories,

(U) is a Serre subcategory. A localization at U is a localization at the Serre subcatcgory
{U).

A.0.6. The topology 7. We denote this way the strongest topology compatible with
the preorder D (recall that P O P’ means that P’ is a specialization of P). Its explicit
description: the closure of a subset W of Spec.A consists of all specializations of all points
of W.

A.0.7. The Zariski topology. A subscheme T of an abelian category A (cf. C6.0)
is Zariski closed or simply closed if it is a reflective subcategory of A; i.e. the inclusion
functor has a left adjoint. One can show that the family of sets SpecT, where T runs
through the class of closed subschemes of A can be regarded as a base closed sets of a
topology which is called the Zariski topology (cf. [R], 111.6.3.1).

A.1. A locally ringed space associated to a category. Fix an abelian category A.
Suppose we have fixed also a topology 7 on SpecA. Then we can associate to the pair
(A, T) aringed space (X, O), wherc the underlying topological space X is (SpecA, T) and
the 'structure’ sheaf O is a sheaf associated to the presheaf © which assigns to every open
set U the center of the quotient category A/(U). Recall that the center of a category is
the ring of endomorphisms of its identical functor.

We define a strongly closed subscheme as a closed subscheme T of A compatible with
localization at points of Spec.A. The latter means that the canonical functor T/TN{P) —
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A/(P) establishes-an equivalence of T/T N (P) and a closed subscheme of A/{P) for-any
(P) € SpecA. We define the strong Zariski topology, T3, on SpecA as the weakest
topology on SpecA such that the subset SpecT is closed for any strongly closed subscheme.

A.2. Theorem ([R2]). Suppose that A is the category of quasi-cooherent sheaves on an
arbitrary scheme X. Then the ringed space ((SpecA, T3), O 4) is isomorphic to the scheme
X.
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