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Abstract. We characterize the joint reductions of a set of monomial ideals in the ring

On of complex analytic functions defined in a neighbourhood of the origin in Cn. We also

define an integer σ(I1, . . . , In) attached to a family of ideals I1, . . . , In in a Noetherian local

ring that extends the usual notion of mixed multiplicity. If I1, . . . , In are monomial ideals,

then we also obtain a characterization of the families g1, . . . , gn such that gi ∈ Ii, for all

i = 1, . . . , n, and that e(g1, . . . , gn) = σ(I1, . . . , In).

1. Introduction

The computation of the integral closure of ideals is one of the central problems in com-

mutative algebra (see [5], [9] or [26]). A key role in the context of this problem is played

by the reductions of an ideal, which were defined by Northcott and Rees in [14] (see Section

2). These ideals are very useful in the computation of multiplicities of ideals. For instance,

if I is an ideal of C[[x1, . . . , xn]] of finite colength generated by monomials, then the author

obtained in [3] a canonical reduction of I that allowed to compute the multiplicity of I in

an effective way (we refer [6] for a different approach to the computation of the multiplicity

of a monomial ideal).

The notion of reduction of an ideal was generalized by Rees in [17] thus giving the notion of

joint reduction of ideals. This notion simplifies the task of computing the mixed multiplicities

of ideals, defined by Teissier and Risler in [21]. By a result of Swanson [20], joint reductions

of ideals of finite colength are characterized via an equality of mixed multiplicities. This

results extends the celebrated Rees’ multiplicity theorem (see [9, p. 222]).

In Section 2 we define an integer attached to an ample class of n-tuples of ideals I1, . . . , In

in a Noetherian local ring of dimension n (see Definition 2.4). This integer, that we denote

by σ(I1, . . . , In), extends the notion of mixed multiplicity of ideals of finite colength defined

by Teissier and Risler in [21]. However σ(I1, . . . , In) it is not defined for arbitrary n-tuples of

ideals. We call σ(I1, . . . , In) the σ-multiplicity of I1, . . . , In. In the study of this new invariant

we apply results developed by Rees [17] and Swanson [20] concerning joint reductions, mixed

multiplicities and integral closures of ideals.

Let us denote by On the ring of analytic function germs f : (Cn, 0) → C. Let I1, . . . , In be

monomial ideals of On. Then we give in Section 3 a combinatorial characterization of the joint

reductions of I1, . . . , In (see Proposition 3.7). If we assume that σ(I1, . . . , In) < ∞, then we
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will apply this result to characterize those analytic maps g = (g1, . . . , gn) : (Cn, 0) → (Cn, 0)

such that gi ∈ Ii, for all i = 1, . . . , n and such that e(g1, . . . , gn) = σ(I1, . . . , In) (see Theorem

3.10), where e(g1, . . . , gn) is the Samuel multiplicity of the ideal of On generated by g1, . . . , gn.

This characterization is expressed via the respective Newton polyhedra of I1, . . . , In. The

set of such maps is denoted by R(I1, . . . , In).

If I1, . . . , In are monomial and integrally closed ideals of On, then, at the end of the paper,

we give a result where an important part of the integral closure of the ideals generated by

the components of a map of R(I1, . . . , In) is computed.

The results that we show in this article will be applied, in a subsequent work, to problems

in singularity theory concerning invariants of analytic functions f : (Cn, 0) → (C, 0). This is

the main reason that we fix the setup of this work in On instead of the ring of formal power

series C[[x1, . . . , xn]].

2. Joint reductions of ideals and σ-multiplicity

Let R be a commutative ring. We denote by I the integral closure of an ideal I of R. If J

and I are ideals of R such that J ⊆ I, then J is said to be a reduction of I if there exists an

integer r > 0 such that Ir+1 = JIr. This definition is due to Northcott and Rees [14]. It is

known that J is a reduction of I if and only if I = J (see [9, p. 6]). The notion of reduction

was generalized by Rees in [17] by defining the notion of joint reduction of a set of ideals.

Definition 2.1. [17] Let I1, . . . , Ip be ideals of R. Let g1, . . . , gp be elements of R such that

gi ∈ Ii, for all i = 1, . . . , p. The p-tuple (g1, . . . , gp) is termed a joint reduction of (I1, . . . , Ip)

if and only if the ideal

g1I2 · · · Ip + g2I1I3 · · · Ip + · · · + gpI1 · · · Ip−1

is a reduction of I1 · · · Ip.

Let (R, m) be a Noetherian local ring of dimension n. If an ideal I of R is m-primary

then we will also say that I has finite colength. If I is an ideal of R of finite colength then

we denote by e(I), or by e(I; R), the multiplicity of I in the sense of Samuel (see [9, p.

214]). If I1, . . . , In are ideals of R of finite colength, we denote indistinctly by e(I1, . . . , In)

or by e(I1, . . . , In; R) the mixed multiplicity of I1, . . . , In defined by Teissier and Risler in

[21] (we also refer to [9, §17] or [20] for the definition and fundamental results concerning

mixed multiplicities of ideals). We remark that if I1, . . . , In are all equal to a given ideal,

say I, then e(I1, . . . , In) = e(I). We will need the following known result (see [9, p. 345] or

[20, Lemma 2.4]).

Lemma 2.2. Let R be a Noetherian local ring of dimension n > 1. Let I1, . . . , In be ideals

of R of finite colength. Let g1, . . . , gn be elements of R such that gi ∈ Ii, for all i = 1, . . . , n,

and that the ideal 〈g1, . . . , gn〉 has also finite colength. Then

e(g1, . . . , gn) > e(I1, . . . , In).

Rees proved in [16] that if J ⊆ I are ideals of a quasi-unmixed Noetherian local ring R, then

J is a reduction of I if and only if e(I) = e(J) (see also [9, p. 222]). Moreover, Rees proved in
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[17, Theorem 2.4] that if (g1, . . . , gn) is a joint reduction of (I1, . . . , In), where I1, . . . , In is a

set of ideals of finite colength of a local Noetherian ring R, then e(g1, . . . , gn) = e(I1, . . . , In)

(see also [9, p. 343]). The converse of this result is a nice result of Swanson that we now

state.

Theorem 2.3. [20] Let R be a quasi-unmixed Noetherian local ring. Let I1, . . . , Is be ideals

and let gi be an element of Ii, for i = 1, . . . , s. Suppose that the ideals I1, . . . , Is and

〈g1, . . . , gs〉 have the same height s and the same radical. If

e(〈g1, . . . , gs〉Rp; Rp) = e(I1Rp, . . . , IsRp; Rp),

for each prime ideal p minimal over 〈g1, . . . , gs〉, then (g1, . . . , gs) is a joint reduction of

(I1, . . . , Is).

We now define an invariant, defined in terms of mixed multiplicities of ideals, that is

attached to a set of ideals in a Noetherian local ring. The ideals we consider are not assumed

to have finite colength. We denote by Z+ the set of non-negative integers.

Definition 2.4. Let (R,m) be a Noetherian local ring of dimension n. Let I1, . . . , In be

ideals of R. Then we define the σ-multiplicity of I1, . . . , In as

(1) σ(I1, . . . , In) = max
r∈Z+

e(I1 + mr, . . . , In + mr).

The set of integers {e(I1 + mr, . . . , In + mr) : r ∈ Z+} is not bounded in general; there-

fore σ(I1, . . . , In) is not always finite for any family of ideals I1, . . . , In. The finiteness of

σ(I1, . . . , In) is characterized in Proposition 2.9. We remark that if Ii has finite colength, for

all i = 1, . . . , n, then σ(I1, . . . , In) equals the mixed multiplicity e(I1, . . . , In).

Proposition 2.5. Let (R, m) be a Noetherian local ring of dimension n. Let I1, . . . , In be

ideals of R such that σ(I1, . . . , In) < ∞ and let g1, . . . , gn be elements of R such that gi ∈ Ii,

for all i = 1, . . . , n, and 〈g1, . . . , gn〉 is an ideal of finite colength. Then σ(I1, . . . , In) =

e(g1, . . . , gn) if and only if there exists an integer r0 > 1 such that (g1, . . . , gn) is a joint

reduction of (I1 + mr, . . . , In + mr), for all r > r0.

Proof. The if part follows as a direct consequence of the expression of mixed multiplicities

as the multiplicity of a joint reduction (see the paragraph before Theorem 2.3).

Conversely, if σ(I1, . . . , In) = e(g1, . . . , gn) then (g1, . . . , gn) is a joint reduction of (I1 +

mr, . . . , In + mr), for all r � 0, as a consequence of Theorem 2.3. �

By virtue of the previous result we give the following definition.

Definition 2.6. Let (R, m) be a local ring of dimension n and let I1, . . . , In be ideals of R.

Let gi ∈ Ii, for i = 1, . . . , n. We say that g1, . . . , gn is a σ-joint reduction of (I1, . . . , In) when

there exists an integer r0 > 1 such that (g1, . . . , gn) is a joint reduction of (I1 + mr, . . . , In +

mr), for all r > r0.

We will use the following auxiliary result, whose proof appears in [9, p. 134].
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Lemma 2.7. Let (R, m) be a Noetherian local ring and let I be an ideal of R. Then

I =
⋂

r>1

I + mr.

Proposition 2.8. Let (R, m) be a Noetherian local ring of dimension n and let I1, . . . , In be

ideals of R. Let gi ∈ Ii, for i = 1, . . . , n. If g1, . . . , gn is a σ-joint reduction of (I1, . . . , In)

then (g1, . . . , gn) is a joint reduction of (I1, . . . , In).

Proof. When n = 1 the result follows easily from Lemma 2.7. Let us suppose that n > 2.

Let us define the ideals

Pr = g1(I2 + mr) · · · (In + mr) + · · ·+ gn(I1 + mr) · · · (In−1 + mr)

Qr = (I1 + mr) · · · (In + mr).

Then there exists an integer r0 > 1 such that

(2) Qr = Pr, for all r > r0.

If j, s ∈ {1, . . . , n}, we define

Lj =
∑

16i1<···<ij6n

Ii1 · · · Iij , Ls
j =

∑

16i1<···<ij6n
ij 6=s

Ii1 · · · Iij ,

where in the definition of Ls
j we suppose that j 6 n− 1. Then, a simple computation shows

that

(3) Ln + mr(n−1)L1 ⊆ Qr = Ln + mrLn−1 + · · · + mr(n−1)L1 + mrn ⊆ Ln + mr+n−1

and that

(4) Pr = g1L
1
n−1 + · · ·+ gnLn

n−1 +

n
∑

i=1

gi

(

mrLi
n−2 + · · ·+ m(n−2)rLi

1 + m(n−1)r

)

.

Let J denote the ideal of R generated by g1, . . . , gn. Then

(5) g1L
1
n−1 + · · ·+ gnLn

n−1 + m(n−1)rJ ⊆ Pr ⊆ g1L
1
n−1 + · · ·+ gnLn

n−1 + mr+n−1.

Then, from Lemma 2.7 and the inclusions given in (3) and (5) we obtain the equalities

(6) Ln =
⋂

r>1

Qr, g1L1
n−1 + · · · + gnLn

n−1 =
⋂

r>1

Pr.

Therefore, from (2) we have

g1L1
n−1 + · · ·+ gnLn

n−1 =
⋂

r>r0

Pr =
⋂

r>r0

Qr = Ln = I1 · · · In.

This implies that g1L
1
n−1 + · · · + gnL

n
n−1 is a reduction of I1 · · · In, or equivalently, that

(g1, . . . , gn) is a joint reduction of (I1, . . . , In). �
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In Example 2.10 we show that the converse of Proposition 2.8 does not hold in general.

Let (R, m) be a local ring of dimension n with k = R/m an infinite field. Let I1, . . . , In

be ideals of R. Let us consider a generating system ai1, . . . , aisi
of Ii, for i = 1, . . . , n.

Let s = s1 + · · · + sn. We say that a property holds for sufficiently general elements of

I1 ⊕ · · · ⊕ In if there exists a non-empty Zariski-open set U in ks such that all elements

(g1, . . . , gn) ∈ I1⊕· · ·⊕In satisfy the said property provided that gi =
∑

j uijaij, i = 1, . . . , n,

where (u11, . . . , u1s1
, . . . , un1, . . . , unsn

) ∈ U .

Proposition 2.9. Let I1, . . . , In be ideals of a Noetherian local ring (R, m) such that the

residue field k = R/m is infinite. Then σ(I1, . . . , In) < ∞ if and only if there exist ele-

ments gi ∈ Ii, for i = 1, . . . , n, such that 〈g1, . . . , gn〉 has finite colength and σ(I1, . . . , In) =

e(g1, . . . , gn). In this case, we have that σ(I1, . . . , In) = e(g1, . . . , gn) for sufficiently general

elements (g1, . . . , gn) ∈ I1 ⊕ · · · ⊕ In.

Proof. The if part is immediate. Let us suppose that σ(I1, . . . , In) < ∞. Then there exists

a positive integer r0 such that

σ(I1, . . . , In) = e(I1 + mr, . . . , In + mr),

for all r > r0. By the definition of joint reduction we have that if (a1, . . . , an) is a joint

reduction of (I1 + mr, . . . , In + mr) and P denotes the ideal

a1(I2 + mr) · · · (In + mr) + · · · + an(I1 + mr) · · · (In−1 + mr),

then

(I1 + mr) · · · (In + mr) = P ⊆ 〈a1, . . . an〉.

Therefore, we observe that there exists an integer s > 1 such that ms ⊆ 〈a1, . . . , an〉, for

all joint reduction (a1, . . . , an) of (I1 + mr0 , . . . , In + mr0). We can suppose that s > r0.

By the theorem of existence of joint reductions (see [20, p. 4] or [9, p. 336]), let us consider

elements gi ∈ Ii, for i = 1, . . . , n, and elements hi ∈ ms+1, for i = 1, . . . , n, such that

(g1, . . . , gn) is a joint reduction of (I1, . . . , In) and that (g1+h1, . . . , gn+hn) is a joint reduction

of (I1 + ms+1, . . . , In + ms+1). Let J be the ideal of R generated by g1 + h1, . . . , gn + hn.

Then J has finite colength and e(J) = e(I1 + ms+1, . . . , In + ms+1).

Since s > r0, we have

e(I1 + mr0 , . . . , In + mr0) = e(I1 + ms+1, . . . , In + ms+1) = e(J).

Then it follows that (g1 + h1, . . . , gn + hn) is a joint reduction of (I1 + mr0 , . . . , In + mr0) by

Theorem 2.3. But this implies that ms ⊆ J , by the definition of s.

Hence we have

J ⊆ 〈g1, . . . , gn〉 + m · ms ⊆ 〈g1, . . . , gn〉 + m · J.

By the integral Nakayama’s Lemma (see [21, p. 324]), we deduce that

J ⊆ 〈g1, . . . , gn〉.

Then 〈g1, . . . , gn〉 has also finite colength. Moreover we have

σ(I1, . . . , In) = e(J) > e(g1, . . . , gn) > e(I1 + mr0 , . . . , I1 + mr0) = σ(I1, . . . , In).
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Hence we have

(7) e(g1, . . . , gn) = σ(I1, . . . , In).

By the construction of the elements g1, . . . , gn that we have considered, we observe that

equality (7) is satisfied for sufficiently general elements of I1 ⊕ · · · ⊕ In, as a consequence of

the theorem of existence of joint reductions. �

By Proposition 2.9, if σ(I1, . . . , In) < ∞ then I1 + · · ·+ In is an ideal of finite colength in

R. Obviously the converse does not hold. We also have that e(I1 + · · ·+ In) 6 σ(I1, . . . , In),

by Lemma 2.2. As a consequence of Rees’ multiplicity theorem (see [9, p. 222]) we have that

e(I1 + · · ·+ In) = σ(I1, . . . , In) if and only if any n-tuple (g1, . . . , gn) such that gi ∈ Ii, for all

i = 1, . . . , n, and satisfying the equality e(g1, . . . , gn) = σ(I1, . . . , In) generates a reduction

of I1 + · · ·+ In.

By Propositions 2.5 and 2.8 we have that σ(I1, . . . , In) = e(g1, . . . , gn), where (g1, . . . , gn)

is a joint reduction of (I1, . . . , In). However, if σ(I1, . . . , In) < ∞, not every joint reduction

of I1, . . . , In generates an ideal of finite colength. Moreover, if I is the ideal generated by a

joint reduction of I1, . . . , In and we suppose that I has finite colength then it does not hold

in general that e(I) = σ(I1, . . . , In). Both facts are shown in the following example.

Example 2.10. Let us consider in O3 the ideals I1 = I2 = 〈x, y〉 and I3 = 〈z〉 and the

elements g1 = g2 = x + y and g3 = z, where we have fixed the coordinates x, y, z in C3. It is

obvious that σ(I1, I2, I3) = 1 and that (g1, g2, g3) is a joint reduction of (I1, I2, I3). However

g1, g2, g3 do not generate an ideal of finite colength of O3.

Let us consider the elements g′
1 = x + y + x3, g′

2 = x + y + y3, g′
3 = z. Then we observe

that (g′
1, g

′
2, g

′
3) is also a joint reduction of (I1, I2, I3). These elements generate an ideal of

finite colength of O3 but σ(I1, I2, I3) = 1 and e(g′
1, g

′
2, g

′
3) = 3.

Let (R, m) be a Noetherian local ring of dimension n such that the residue field R/m

is infinite. The mixed multiplicity of ideals, as introduced by Risler and Teissier [21] and

studied by Rees [17] and Swanson [20], is defined for n ideals I1, . . . , In of finite colength in

R. By the theorem of existence of joint reductions (see [9, p. 336]), we have

(8) e(I1, . . . , In) = e(g1, . . . , gn)

where (g1, . . . , gn) is a sufficiently general element of I1 ⊕ · · · ⊕ In.

The number e(I1, . . . , In) is equal to the coefficient of the term r1 · · · rn in the homogeneous

part of degree n of the polynomial that coincides with the length function `(R/I r1

1 · · · Irn
n )

for r1, . . . , rn � 0. We observe that this function is well defined if and only if Ii has finite

colength, for all i = 1, . . . , n. However, the multiplicity on the right hand side of (8) could

be computed in cases where some of the ideals Ii has not finite colength. By Proposition

2.9, this multiplicity is expressed as a σ-multiplicity (see Definition 2.4).

If I, J are two ideals of finite colength of R, then we can define for all i ∈ {0, 1, . . . , n} the

multiplicity

(9) ei(I, J) = e(I, . . . , I, J, . . . , J),
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where I is repeated n − i times and J is repeated i times, for all i = 0, 1, . . . , n. If I and J

are arbitrary ideals, we define analogously the number σi(I, J) by replacing in (9) the mixed

multiplicity e(I, . . . , I, J, . . . , J) by σ(I, . . . , I, J, . . . , J) (of course, for arbitrary ideals I and

J the resulting numbers are not always finite for all i = 0, 1, . . . , n).

If J is an ideal of R, let J∞ = {x ∈ R : xsJ = 0, for some s > 1}. As can be seen

in the paper [24] of Trung, there is also defined a family of mixed multiplicities {ei(I|J) :

i = 0, 1, . . . , r} of a pair of ideals I, J , where I is assumed to have finite colength, J is an

arbitrary ideal of R and r = dim(R/(0 : J∞))− 1. These numbers arise from the coefficients

of the homogeneous part of highest degree of the polynomial that coincides with the length

function of the bigraded ring

R(I|J) =
⊕

(u,v)∈Z2
+

IuJv/Iu+1Jv.

We refer to [11], [24], [25] and [28] for the details about this definition.

Let `(J) denote the analytic spread of J . The multiplicities ei(I|J) are not all positive for

all i = 0, 1, . . . , r. In fact, Trung proved that ei(I|J) = 0, for all i > `(J) (see [24, Corollary

3.6]). Moreover, if i ∈ 0, 1, . . . , ht(J) − 1, then it is proved in [24, Proposition 4.1] that

(10) ei(I|J) = e
(

a1, . . . , an−i, b1, . . . , bi

)

,

where (a1, . . . , an−i, b1, . . . , bi) is a sufficiently general element of I ⊕ · · · ⊕ I ⊕ J ⊕ · · · ⊕ J .

We remark that relation (10) shows that ei(I|J) = σi(I, J), for all i ∈ 0, 1, . . . , ht(J)− 1, by

Proposition 2.9. However, we show a simple example where the multiplicity on the right hand

part of (10) can be positive for i = `(J) and therefore it can be expressed as a σ-multiplicity.

Example 2.11. Let I, J be the ideals in O3 given by I = 〈x, y, z〉, J = 〈x2, y2〉. Then

`(J) = 2 (see [3, Theorem 2.3]) and σ2(I, J) = σ(I, J, J) = 4.

3. Mixed multiplicities and non-degeneracy

Throughout the remaining text, if no confusion arises, we will denote the maximal ideal

of On by m instead of mn. We say that an ideal I of On is a monomial ideal when I

is generated by a family of monomials xk such that k ∈ Zn
+, k 6= 0. Let I1, . . . , In be

a sequence of monomial ideals in On such that σ(I1, . . . , In) < ∞. In this section we

characterize the sets of functions g1, . . . , gn ∈ On such that gi ∈ Ii, for all i = 1, . . . , n,

and that e(g1, . . . , gn) = σ(I1, . . . , In). In order to show our results we will introduce first

some definitions and notation.

Let h ∈ On, let us suppose that the Taylor expansion of h around the origin is given by

h =
∑

k akx
k. We define the support of h, denoted by supp(h), as the set of those k ∈ Zn

+

such that ak 6= 0. If A is a compact subset of Rn
+, then we denote by hA the polynomial

given by the sum of all terms akx
k such that k ∈ supp(h) ∩ A. If supp(h) ∩ A = ∅, then we

set hA = 0. If I is a monomial ideal of On, we define the support of I, denoted by supp(I),

as the set of k ∈ Zn
+ such that xk ∈ I.

We say that a subset Γ+ of Rn
+ is a Newton polyhedron when there exists some B ⊆ Qn

+

such that Γ+ is equal to the convex hull in Rn
+ of the set {k + v : k ∈ B, v ∈ Rn

+}. In this
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case we say that Γ+ is the Newton polyhedron determined by B and we also denote Γ+ by

Γ+(B). A Newton polyhedron Γ+ is termed convenient when Γ+ intersects each coordinate

axis in a point different from the origin. In this case, we denote by Vn(Γ+) the n-dimensional

volume of the set Rn
+ r Γ+.

If h ∈ On, the Newton polyhedron of h is defined as Γ+(h) = Γ+

(

supp(h)
)

. Let J be an

ideal of On, let us suppose that J is generated by the elements h1, . . . , hp. Then the Newton

polyhedron of J , denoted by Γ+(J), is defined as the convex hull of the union Γ+(h1)∪ · · · ∪

Γ+(hp). It is easy to check that the definition of Γ+(J) does not depend on the chosen

generating system of J .

If Γ1
+, . . . , Γp

+ are Newton polyhedra in Rn
+, then we define the Minkowski sum of Γ1

+, . . . , Γp
+

as

Γ1
+ + · · ·+ Γp

+ = {k1 + · · ·+ kp : ki ∈ Γi
+, for all i = 1, . . . , p}.

This set is again a Newton polyhedron, since it is known that Γ1
+ + · · ·+ Γp

+ = Γ+(I1 · · · Ip),

whenever Γi
+ = Γ+(Ii), for some monomial ideal Ii ∈ On, i = 1, . . . , p (see for instance [7]).

Let us fix a Newton polyhedron Γ+ ⊆ Rn
+. Given a vector v ∈ Rn

+ r {0} we define

`(v, Γ+) = min
{

〈v, k〉 : k ∈ Γ+

}

.

We say that a subset ∆ of Γ+ is a face of Γ+ if there exists a vector v ∈ Rn
+ r {0} such that

∆ is expressed as

(11) ∆ =
{

k ∈ Γ+ : 〈v, k〉 = `(v, Γ+)
}

.

We will denote the set on the right hand side of (11) by ∆(v, Γ+) and we will also say that

∆ is the face of Γ+ supported by v. We have that ∆(v, Γ+) is a compact face of Γ+ if and

only if all components of v are non-zero. If I is an ideal of On, then we denote by Γ(I) the

union of the compact faces of Γ+(I). Moreover, we will denote the face ∆(v, Γ+(I)), for a

given v ∈ Rn r {0}, by ∆(v, I).

Definition 3.1. Let I1, . . . , Ip be monomial ideals in On. Let g : (Cn, 0) → (Cp, 0) be

an analytic map germ such that gi ∈ Ii, for all i = 1, . . . , p. Let v ∈ Rn
+ r {0} and let

∆i = ∆(v, Ii), for all i = 1, . . . , p. We say that g satisfies the (Kv) condition with respect to

I1, . . . , Ip when
{

x ∈ Cn : (g1)∆1
(x) = · · · = (gp)∆p

(x) = 0
}

⊆ {x ∈ Cn : x1 · · ·xn = 0}.

Then the map g is termed non-degenerate with respect to I1, . . . , Ip when g satisfies the (Kv)

condition with respect to I1, . . . , Ip for all v ∈ (R+ r {0})n.

Under the conditions of the above definition, we observe that if there exists some i0 ∈

{1, . . . , p} such that gi0 is equal to a monomial xk, for some k ∈ Zn
+, k 6= 0, and Ii0 = 〈xk〉,

then the map g is automatically non-degenerate with respect to I1, . . . , Ip.

If L ⊆ {1, . . . , n}, L 6= ∅, we define Cn
L = {x ∈ Cn : xi = 0, for all i /∈ L}. The set

Rn
L is defined analogously. If h ∈ On and the Taylor expansion of h around the origin

is given by h =
∑

k akx
k, we denote by hL the function obtained as the sum of those

terms akx
k such that k ∈ supp(h) ∩ Rn

L. If supp(h) ∩ Rn
L = ∅, then we set hL = 0. If

g = (g1, . . . , gp) : (Cn, 0) → (Cp, 0) is an analytic map germ, then we denote by gL the
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map (gL
1 , . . . , gL

p ) : (Cn
L, 0) → (Cp, 0). In some occasions we will identify Cn

L with Cr, where

r = |L|.

Let L = {i1, . . . , ir} ⊆ {1, . . . , n}, then we denote by On,L the subring of On generated by

the functions of On depending, at most, on the variables xi1 , . . . , xir . We denote by mL the

maximal ideal of On,L. We observe that the map On → On,L given by h 7→ hL, h ∈ On, is

a ring epimorphism. If I is a monomial ideal of On then we denote by IL the ideal of On,L

generated by all monomials xk such that k ∈ supp(I) ∩ Rn
L. If supp(I) ∩ Rn

L = ∅, then we

set IL = 0.

Definition 3.2. Let I1, . . . , Ip be monomial ideals of On such that I1 + · · ·+ Ip is an ideal of

finite colength in On. Let g : (Cn, 0) → (Cp, 0) be an analytic map germ such that gi ∈ Ii,

for all i = 1, . . . , p. We say that g is strongly non-degenerate with respect to I1, . . . , Ip when

for all L ⊆ {1, . . . , n}, L 6= ∅, the map gL : (Cn
L, 0) → (Cp, 0) is non-degenerate with respect

to the non-zero ideals of the sequence of ideals IL
1 , . . . , IL

p .

We remark that, since we are assuming in the above definition that I1 + · · ·+ Ip is an ideal

of finite colength, then the set of non-zero ideals in the sequence IL
1 , . . . , IL

p is non-empty,

for all L ⊆ {1 . . . , n}, L 6= ∅.

Under the conditions of Definition 3.2, we denote the set of analytic maps g : (Cn, 0) →

(Cp, 0) such that gi ∈ Ii, for all i = 1, . . . , p, and such that g is strongly non-degenerate with

respect to I1, . . . , Ip by R(I1, . . . , Ip). Let us remark that if g ∈ R(I1, . . . , Ip) then gi does

not need to have the same Newton polyhedron as Ii, for all i = 1, . . . , p.

Example 3.3. Let us consider the ideals I1, I2, I3 of O3 and the polynomials g′
1, g

′
2, g

′
3 given

in Example 2.10. Then we have that the map g′ : (C3, 0) → (C3, 0) defined by g′ = (g′
1, g

′
2, g

′
3)

is non-degenerate with respect to I1, I2, I3. If L = {1, 2}, then {i : IL
i 6= 0} = {1, 2}. We

observe that the map h = ((g′
1)

L, (g′
2)

L) is not non-degenerate with respect to IL
1 , IL

2 , since h

does not satisfy the (Kv) condition for v = (1, 1). Therefore g′ is not strongly non-degenerate

with respect to I1, I2, I3.

Remark 3.4. Let Γ1
+, . . . , Γp

+ be a family of Newton polyhedra in Rn
+. It is well known that

if ∆ is a compact face of Γ1
+ + · · · + Γp

+, then ∆ is uniquely expressed as ∆1 + · · · + ∆p,

where ∆i is face of Γi
+, for all i = 1, . . . , p. This expression is a consequence of the following

relations:

`(v, Γ1
+ + · · ·+ Γp

+) = `(v, Γ1
+) + · · · + `(v, Γp

+)

∆(v, Γ1
+ + · · ·+ Γp

+) = ∆(v, Γ1
+) + · · ·+ ∆(v, Γp

+),

for all v ∈ Rn
+ r {0}. Therefore, under the hypothesis of Definition 3.1, the set of non-

redundant (Kv) conditions that a non-degenerate map with respect to I1, . . . , Ip must satisfy

is parameterized by the set of compact faces of Γ+(I1)+ · · ·+Γ+(Ip). Hence the definition of

strongly non-degenerate map with respect to I1, . . . , Ip consists of a finite set of conditions.

Here we recall the definition of Newton non-degenerate ideal (see [3] or [4]). Let I be an

ideal of On and let g1, . . . , gr be a generating system of I. Then the ideal I is said to be
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Newton non-degenerate when for each compact face ∆ of Γ+(I) we have
{

x ∈ Cn : (g1)∆(x) = · · · = (gr)∆(x)
}

⊆ {x ∈ Cn : x1 · · ·xn = 0}.

It is straightforward to see that this definition does not depend on the generating system of

I. We observe that any monomial ideal is Newton non-degenerate. Moreover, we also have

that an ideal I of On is Newton non-degenerate if and only if I admits a generating system

g1, . . . , gr such that the map (g1, . . . , gr) : (Cn, 0) → (Cr, 0) is non-degenerate with respect to

I, . . . , I, with I repeated r times (see Definition 3.1). If I is an ideal of finite colength, then

this condition is equivalent to saying that (g1, . . . , gr) ∈ R(I, . . . , I), where I is repeated r

times (see also Corollary 3.8).

The next result shows a numerical characterization of the Newton non-degeneracy condi-

tion (we refer to [2] for the definition and characterization of the Newton non-degeneracy

condition in the context of submodules of the free module Op
n, p > 1).

Theorem 3.5. [3, 4] Let I be an ideal of On of finite colength. Then e(I) > n!Vn

(

Γ+(I)
)

and equality holds if and only if I is a Newton non-degenerate ideal.

Given an ideal J of On and a fixed coordinate system in Cn, we denote by J0 the ideal

of On generated by all monomials xk such that k ∈ Γ+(J). The ideal J0 is integrally closed

(see [9, p. 11] or [22]). Therefore, from the inclusions J ⊆ J ⊆ J0 = J0, we deduce that

Γ+(J) = Γ+(J).

Proposition 3.6. Let I be a Newton non-degenerate ideal of On and let J ⊆ I. Then the

following conditions are equivalent:

(1) J is a reduction of I;

(2) J is Newton non-degenerate and Γ+(J) = Γ+(I);

(3) there exists a generating system g1, . . . , gr of J such that, for all compact face ∆ of

Γ+(I), we have

(12)
{

x ∈ Cn : (g1)∆(x) = · · · = (gr)∆(x)
}

⊆ {x ∈ Cn : x1 · · ·xn = 0}.

Proof. We point out that the ideal I is not assumed to have finite colength. Let us see

(1) ⇒ (2). Suppose that J is a reduction of I. Then I = J and, in particular, we have that

Γ+(I) = Γ+(J). Moreover we also deduce that

(13) I + mr = I + mr = J + mr = J + mr,

for all r > 1. Using relation (13) and the fact that I + mr is a monomial ideal of finite

colength, it follows that

n!Vn

(

Γ+(J + mr)
)

= n!Vn

(

Γ+(I + mr)
)

= e(I + mr) = e(J + mr),

by Theorem 3.5. Therefore the ideal J + mr is Newton non-degenerate, for all r > 1, by

virtue of Theorem 3.5. Let r0 a positive integer such that each compact face ∆ of Γ+(J)

is a compact face of Γ+(J + mr), for all r > r0. Therefore, by writing down the condition

that J + mr is Newton non-degenerate, for all r > r0, we conclude that J is Newton non-

degenerate.
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Let us see (2) ⇒ (1). We will see that item (2) implies that I = J . In particular, we

will have that J is a reduction of I, since J ⊆ I (see [9, p. 6]). As before, let us consider

a big enough positive integer r0 such that each compact face of Γ+(J) is a compact face

of Γ+(J + mr), for all r > r0. Then we have that J + mr is Newton non-degenerate, for

all r > r0. Hence e(J + mr) = n!Vn(Γ+(J + mr)), for all r > r0. This implies, by Rees’

multiplicity theorem, that

J + mr = (J + mr)0 = (J0 + mr)0 = J0 + mr, for all r > r0.

By Lemma 2.7, we have

(14) J =
⋂

r>r0

J + mr =
⋂

r>r0

J0 + mr = J0 = J0.

Since J ⊆ I and Γ+(I) = Γ+(J), then J ⊆ I ⊆ I0 = J0. Then relation (14) implies that

I = J .

The implication (2) ⇒ (3) is obvious. In order to see the implication (3) ⇒ (2) it suffices

to prove that Γ+(I) = Γ+(J). Let g1, . . . , gr be a generating system of J verifying the

inclusion (12), for all compact face ∆ of Γ+(I). In particular, if ∆ is a vertex of Γ+(I), then

this condition must be satisfied for ∆. This implies that if ∆ is any vertex of Γ+(I), then

some function (gi)∆ is not identically zero. Thus Γ+(I) ⊆ Γ+(J). But since we assume that

J ⊆ I, we have that Γ+(I) = Γ+(J). �

The previous proposition gives the family of all reductions of a given monomial ideal. Rees

and Sally [18] defined the core of an ideal I in a commutative ring as the intersection of all

reductions of I; it is denoted by core(I). In particular, by Proposition 3.6, the computation

of the core of a monomial and integrally closed ideal I in On, or in C[[x1, . . . , xn]], reduces

to compute the intersection of all ideals J of On such that Γ+(I) = Γ+(J) and J is Newton

non-degenerate. We remark that the study of the core of an ideal is quite an active research

topic in commutative algebra (see for instance [10] or [15]).

In the next result we show a characterization of the joint reductions of a family of monomial

ideals.

Proposition 3.7. Let I1, . . . , Ip be monomial ideals of On. Let g1, . . . , gp ∈ On such that

gi ∈ Ii, for all i = 1, . . . , p. Then the following conditions are equivalent:

(1) (g1, . . . , gp) is a joint reduction of (I1, . . . , Ip);

(2) the map g = (g1, . . . , gp) : (Cn, 0) → (Cp, 0) is non-degenerate with respect to

I1, . . . , Ip.

Proof. Let us consider the ideal J of On given by

(15) J = g1I2 · · · Ip + g2I1I3 · · · Ip + · · ·+ gpI1 · · · Ip−1.

By Definition 2.1, we have that (g1, . . . , gp) is a joint reduction of (I1, . . . , Ip) if and only if

J is a reduction of the monomial ideal I1 · · · Ip. Let I denote the ideal I1 · · · Ip, then J ⊆ I.

Therefore, item (1) holds if and only if J satisfies item (3) of Proposition 3.6 with respect

to Γ+(I).
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Let Γ+ = Γ+(I), we remark that Γ+ is equal to the Minkowski sum Γ+(I1) + · · ·+ Γ+(Ip).

Let B denote the set {1, . . . , p}. From the definition of J we have that there exist finite

subsets S1, . . . , Sp ⊆ Zn
+ such that the set J of functions given by

J =
{

g1x
k2+···+kp : ki ∈ Si, i ∈ B, i 6= 1

}

∪
{

g2x
k1+k3+···+kp : ki ∈ Si, i ∈ B, i 6= 2

}

∪ · · · ∪

∪
{

gpx
k1+···+kp−1 : ki ∈ Si, i ∈ B, i 6= p

}

is a generating system of J . Let us fix a compact face ∆ of Γ+(I). Then ∆ is expressed

univocally as ∆ = ∆1 + · · · + ∆p, where ∆i is a compact face of Γ+(Ii), for all i = 1, . . . , p.

If h is an element of J, then there exists an i0 ∈ B such that h = gi0x
k1+···+ki0−1+ki0+1+···+kp,

for some ki ∈ Si, i 6= i0. Therefore h∆ is expressed as

h∆ =
(

gi0

)

∆i0

(

xk1
)

∆1
· · ·

(

xki0−1
)

∆i0−1

(

xki0+1
)

∆i0+1
· · ·

(

xkp
)

∆p
.

Then the set of common zeros of {h∆ : h ∈ J} in (C r {0})n is equal to the set of common

zeros of {(gi)∆i
: i = 1, . . . , p} in (Cr{0})n. This fact shows that item (3) of Proposition 3.6

applied to the ideals J and I holds if and only if the map g is non-degenerate with respect

to I1, . . . , Ip. Thus the equivalence between (1) and (2) follows. �

Corollary 3.8. Let I1, . . . , Ip be monomial ideals of finite colength of On. Let g1, . . . , gp ∈ On

such that gi ∈ Ii, for all i = 1, . . . , p. Let g = (g1, . . . , gp), then g ∈ R(I1, . . . , Ip) if and only

if g is non-degenerate with respect to I1, . . . , Ip.

Proof. The only if part is obvious. Let us suppose that g is non-degenerate with respect to

I1, . . . , Ip. Therefore (g1, . . . , gp) is a joint reduction of (I1, . . . , Ip), by Proposition 3.7. This

means that J is a reduction of I1 · · · Ip, where J is the ideal defined in (15). In particular, for

a given L ⊆ {1, . . . , n}, L 6= ∅, we have that JL is a reduction of (I1 · · · Ip)
L = IL

1 · · · IL
p , since

reductions are stable under ring morphisms. Therefore (gL
1 , . . . , gL

p ) is a joint reduction of

(IL
1 , . . . , IL

p ). We have that IL
i 6= 0, for all i = 1, . . . , p, since each ideal Ii has finite colength.

Then the result follows as a consequence of Proposition 3.7. �

Given an integer r > 1 and a subset L ⊆ {1, . . . , n}, we denote by δL,r the convex hull in

Rn of {rei : i ∈ L}, where e1, . . . , en denotes the canonical basis in Rn.

If I is an ideal of On, I 6= 0, then we denote by ord(I) the maximum of those integers

s > 1 such that I ⊆ ms.

Lemma 3.9. Let I1, . . . , In be monomial ideals in On such that I1 + · · · + In has finite

colength. Let us consider, for a given integer r > 1, the ideal Qr = (I1 + mr) · · · (In + mr).

Then, there exists an integer r0 > 1 such that for all r > r0 the following hold:

(1) every compact face of Γ+(I1 · · · In) is a compact face of Qr;

(2) let ∆ be a face of Γ+(Qr) not intersecting Γ(I1 · · · In), let us write ∆ as ∆ = ∆1+· · ·+

∆n, where ∆i is a face of Ii+mr, for all i = 1, . . . , n, and let S = {i : ∆i∩Γ(Ii) 6= ∅};

then S 6= ∅ and there exists some L ( {1, . . . , n} such that

∆ =
∑

i∈S

∆i +
(

n − |S|
)

δL,r,

and ∆i is a face of Γ(IL
i ) if IL

i 6= 0.
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Proof. Let us define, for a given integer j ∈ {1, . . . , n}, the ideal

Lj =
∑

16i1<···<ij6n

Ii1 · · · Iij .

Since the ideal L1 has finite colength, then there exists an integer r0 > 1 such that mr0 ⊆ L1.

Then, for any integer r > r0, we observe that Qr is expressed as

(16) Qr = Ln + mrLn−1 + · · ·+ mr(n−1)L1.

Relation (16) shows that we can increase the integer r in order to have that any compact

face of Ln is a compact face of Qr. Then item (1) holds.

If v = (v1, . . . , vn) ∈ Rn then we define v0 = mini vi. We also define L(v) = {i : vi = v0}.

For any vector v ∈ (R+ r {0})n and any r > 1 we have

(17) `(v, mr) = rv0 and ∆(v, mr) = δL(v),r .

Let us suppose that r > ord(IL
i ), for all i = 1, . . . , n and all L ⊆ {1, . . . , n}, L 6= ∅. Let

v ∈ (R+ r {0})n and let j ∈ {1, . . . , n} such that I
L(v)
j 6= 0. Then

`(v, Ij) 6 `(v, I
L(v)
j ) = ord(I

L(v)
j )v0 < rv0 = `(v, mr).

In particular, there exists an integer r1 > r0 such that for all r > r1 we have

(18) ∆(v, Ij + mr) ∩ ∆(v, Ij) 6= ∅,

for all vector v ∈ (R+ r {0})n and all j such that I
L(v)
j 6= 0.

Let us consider an integer r2 > r1 such that each compact face of Γ+(Ii) is a compact face

of Γ+(Ii + mr), for all i = 1, . . . , n and all r > r2. Then the number of compact faces of

Γ+(Ii + mr) does not depend on r, if r > r2, for all i = 1, . . . , n. In particular, there exists

an integer r3 > r2 such that the number of compact faces of Γ+(Qr) does not depend on r

if r > r3.

For each face ∆ of Γ+(Qr3
), let us choose a vector v∆ such that ∆ = ∆(v∆, Qr3

). Let

us consider the decomposition ∆ = ∆1 + · · · + ∆n, where ∆i = ∆(v∆, Ii + mr3), for all

i = 1, . . . , n.

Let us suppose that ∆ is face of Γ+(Qr3
) such that ∆ ∩ Γ(I1 · · · In) = ∅. Then the set

S = {i : ∆i ∩ Γ(Ii) 6= ∅} is non-empty, by (16). Moreover, if L denotes the set L(v∆) we

have that {j : IL
j 6= 0} ⊆ S, by (18). In particular, if i /∈ S then IL

i = 0 and ∆i = δL,r3
, by

(17).

We remark that, for a given i ∈ {1, . . . , n}, any face of Γ+(Ii+mr), for r > r2, is determined

by its intersection with Γ+(Ii) and its intersection with the family of the coordinate axis.

Then the vector v∆ is integrated in a natural way in a family of vectors vr
∆, for r > r3,

satisfying

∆(vr
∆, Ii + mr) ∩ Γ(Ii) = ∆i ∩ Γ(Ii), for all i ∈ S

∆(vr
∆, Ii + mr) ∩ Γ(mr) = δL,r, for all i /∈ S

L(vr
∆) = L.
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Then we can consider an integer r∆ > r3 such that if j ∈ S verifies that IL
j 6= 0, then

∆(vr
∆, Ij + mr) ⊆ ∆(vr

∆, Ij) ∩ Rn
L,

for all r > r∆. Hence, if r > r∆, the face ∆ is written as

∆ =
∑

i∈S

∆i + (n − |S|)δL,r,

where ∆j is a face of Γ(IL
j ) for all j ∈ S such that IL

j 6= 0. �

Theorem 3.10. Let I1, . . . , In be monomial ideals of On. Suppose that σ(I1, . . . , In) < ∞.

Let g1, . . . , gn ∈ On such that gi ∈ Ii, for all i = 1, . . . , n. Then the following conditions are

equivalent:

(1) the ideal 〈g1, . . . , gn〉 has finite colength and σ(I1, . . . , In) = e(g1, . . . , gn);

(2) g ∈ R(I1, . . . , In).

Proof. Let g denote the map (Cn, 0) → (Cn, 0) given by g = (g1, . . . , gn). For a given r > 1

we define the ideals

Pr = g1(I2 + mr) · · · (In + mr) + · · ·+ gn(I1 + mr) · · · (In−1 + mr)

Qr = (I1 + mr) · · · (In + mr).

Let us see that (1) implies (2). By Nakayama’s Lemma we can suppose that gi is a

polynomial, for all i = 1, . . . , n. By Proposition 2.5, (g1, . . . , gn) is a σ-joint reduction of

(I1, . . . , In). In particular, it is a joint reduction of (I1, . . . , In), by Proposition 2.8. Therefore

g is non-degenerate with respect to (I1, . . . , In), by Proposition 3.7.

Let r0 be an integer such that Pr is a joint reduction of Qr, for all r > r0. Let us fix

a subset L ( {1, . . . , n}, L 6= ∅, and an integer r > r0. Since reductions are stable under

ring morphisms, we have that P L
r is a reduction of QL

r . Therefore the map gL is non-

degenerate with respect to (I1 + mr)L, . . . , (In + mr)L, by Proposition 3.7. Let us remark

that (Ii + mr)L 6= 0, for all i = 1, . . . , n.

Let C = {i : IL
i 6= 0}. The condition σ(I1, . . . , In) < ∞ implies that I1 + · · · + In has

finite colength and. Therefore C 6= ∅. Without loss of generality we can suppose that

C = {1, . . . , s}, for some 1 6 s 6 n. We have to see that (gL
1 , . . . , gL

s ) : (Cn
L, 0) → (Cs, 0) is

non-degenerate with respect to IL
1 , . . . , IL

s .

Since gi is a polynomial, for all i = 1, . . . , n, let us assume that

(19) supp(gi) ∩ Γ+(mr) = ∅, for all i = 1, . . . , n.

Let H = (IL
1 + mr

L) · · · (IL
s + mr

L). Then QL
r = Hm

r(n−s)
L . In particular, we have

(20) Γ+(QL
r ) = Γ+(H) + Γ+(m

r(n−s)
L ).

By Lemma 3.9 (1) we can suppose that r0 is big enough in order to have that each compact

face of IL
1 · · · IL

s is a compact face of H. This fact together with (20) implies that if v is a

vector of (R+ r {0})q, where q = |L|, then the set

(21) ∆(v, IL
1 · · · IL

s ) + ∆(v, m
r(n−s)
L )
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is a compact face of Γ+(QL
r ).

By hypothesis the map gL is non-degenerate with respect to (I1 + mr)L, . . . , (In + mr)L.

Then gL verifies the (Kv) condition with respect to these ideals (see Definition 3.1). There-

fore, writing down this condition and considering (19) and (21), we have
{

x ∈ Cn
L : (gL

1 )∆1
(x) = · · · = (gL

s )∆s
(x) = 0

}

⊆
{

x ∈ Cn
L :

∏

i∈L

xi = 0
}

,

where ∆i = ∆(v, IL
i ), for all i = 1, . . . , s. This shows that the map (gL

1 , . . . , gL
s ) : (Cn

L, 0) →
(Cs, 0) is non-degenerate with respect to IL

1 , . . . , IL
s . Then g ∈ R(I1, . . . , In), since we started

from an arbitrary L ( {1, . . . , n}.

Let us see that (2) implies (1). Let us suppose that g ∈ R(I1, . . . , In). By Proposition 2.5

and Proposition 3.7, item (1) holds if and only if there exists an integer r0 such that g is

non-degenerate with respect to I1 + mr, . . . , In + mr, for all r > r0.

Let r0 be an integer such that items (1) and (2) of Lemma 3.9 hold for all r > r0. Let

us fix an integer r > r0 and let us fix a compact face ∆ of Γ+(Qr). Let us write ∆ as

∆ = ∆1 + · · · + ∆n, where ∆i is a face of Γ+(Ii + mr), for all i = 1, . . . , n. We have to see

that

(22)
{

x ∈ Cn : (g1)∆1
(x) = · · · = (gn)∆n

(x) = 0
}

⊆ {x ∈ Cn : x1 · · ·xn = 0}.

Let ∆′ = ∆ ∩ Γ+(I1 · · · In) and let ∆′
i = ∆i ∩ Γ+(Ii), for all i = 1, . . . , n. If ∆′ 6= ∅, then

∆′ = ∆′
1 + · · ·+ ∆′

n and (gi)∆i
= (gi)∆′

i
, for all i = 1, . . . , n. Thus inclusion (22) holds, since

g is non-degenerate with respect to I1, . . . , In by hypothesis.

Let us suppose that ∆′ = ∅. By Lemma 3.9, there exists a subset L ( {1, . . . , n} such

that, if S = {i : ∆′
i 6= ∅} and CL = {i : IL

i 6= 0}, then CL ⊆ S and ∆ is written as

∆ =
∑

i∈S

∆i + (n − |S|)δL,r.

Let us suppose that CL = {i1, . . . , is}, for some 1 6 i1 < · · · < is 6 n, s 6 t, where t = |S|.

Therefore we have

∆ = ∆1 + ∆2,

where ∆1 is a face of mr(n−t)IL
i1
· · · IL

is
and ∆2 =

∑

i∈SrCL
∆i.

Then we observe that the set of common zeros of (g1)∆1
, . . . , (gn)∆n

is contained in the set

of common zeros of (gi1)∆′

i1
, . . . , (gis)∆′

is
.

Since ∆′
i is a face of IL

i , for all i ∈ CL, then (gi)∆′

i
= (gL

i )∆′

i
, for all i ∈ CL. Then the

inclusion (22) follows, since the map (gL
i1
, . . . , gL

is
) : (Cn

L, 0) → (Cs, 0) is non-degenerate with

respect to IL
i1
, . . . , IL

is
, by hypothesis. �

Let us suppose that I1, . . . , In are ideals of finite colength of On. Then Rees showed in [17]

that the mixed multiplicity e(I1, . . . , In) can be computed in terms of Samuel mutiplicities

via the following formula:

e(I1, . . . , In) =
1

n!

∑

J⊆{1,...,n}
J 6=∅

(−1)n−|J |e

(

∏

j∈J

Ij

)

.
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If we assume that Ii is a monomial ideal for all i = 1, . . . , n, then e(
∏

j∈J Ij) can be computed

effectively using [3], for all J ⊆ {1, . . . , n}, J 6= ∅. That is, we can apply [3, Theorem 5.1] to

deduce that if fJ denotes the polynomial given by the sum of all xk such that k is a vertex

of Γ+(
∏

j∈J Ij), for all non-empty J ⊆ {1, . . . , n}, then

e(I1, . . . , In) =
1

n!

∑

J⊆{1,...,n}
J 6=∅

(−1)n−|J | dimC

On

〈x1
∂fJ

∂x1
, . . . , xn

∂fJ

∂xn
〉
.

Thus we have an effective method to compute the mixed multiplicity e(I1, . . . , In) when Ii are

monomial ideals of finite colength of On. Let us suppose now that some of these ideals do not

have finite colength but still σ(I1, . . . , In) < ∞. Then, by the above discussion, the effective

computation of σ(I1, . . . , In) reduces to compute some r > 1 such that σ(I1, . . . , In) =

e(I1 + mr, . . . , In + mr). If g = (g1, . . . , gn) ∈ R(I1, . . . , In), then we found in the proof of

Theorem 3.10 that g is non-degenerate with respect to I1 + mr, . . . , In + mr, when r is an

integer such that Γ+(Qr) satisfy conditions (1) and (2) of Lemma 3.9. Hence e(g1, . . . , gn) =

e(I1 +mr, . . . , In +mr) and therefore σ(I1, . . . , In) = e(I1 +mr, . . . , In +mr). Obviously, the

problem of finding an integer r satisfying these conditions is easy when n = 2, and needs a

more careful analysis in higher dimensions.

To end the paper we show a result about the computation of the monomials which are

integral over the ideal generated by the components of a given map of R(I1, . . . , In).

Proposition 3.11. Let I1, . . . , In monomial ideals of On such that σ(I1, . . . , In) < ∞. Let

g = (g1, . . . , gn) ∈ R(I1, . . . , In). Then

I1 ∩ · · · ∩ In ⊆ 〈g1, . . . , gn〉.

Proof. Let J be the ideal of On generated by g1, . . . , gn. Let xk be a monomial in On. By

Rees’ multiplicity theorem we know that xk ∈ J if and only if e(J) = e(J, xk) (see [9, p.

222]).

By a result of Northcott-Rees (see [9, p. 166] or [14]), we can consider general C-linear

combinations h1, . . . , hn of g1, . . . , gn, x
k such that the ideal H generated by h1, . . . , hn is a

reduction of J + 〈xk〉. Then e(H) = e(J, xk). Therefore, let A be a squared matrix of size n

with entries in C and let B be a row matrix with n columns with entries in C such that

(23)
[

g1 · · · gn xk
]

[

A

B

]

=
[

h1 · · · hn

]

.

Since the coefficients of A are generic, we can suppose that A is invertible. In particular,

multiplying both sides of (23) by A−1, we obtain:

(24)
[

g1 · · · gn xk
]

[

In

BA−1

]

=
[

h1 · · · hn

]

A−1,

where In denotes the identity matrix of size n. We observe that the entries of the left hand

side of (24) are of the form g1 + α1x
k, . . . , gn + αnxk, for some α1, . . . , αn ∈ C. Relation (24)

implies that H = 〈g1 + α1x
k, . . . , gn + αnxk〉. Then, we obtain that

(25) e(J) > e(J, xk) = e(H) = e(g1 + α1x
k, . . . , gn + αnxk),
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for some α1, . . . , αn ∈ C. If xk ∈ I1∩· · ·∩In, then e(g1+α1x
k, . . . , gn+αnxk) > σ(I1, . . . , In),

by Lemma 2.2. But by Theorem 3.10, the equality e(J) = σ(I1, . . . , In) holds, since we

assume that g ∈ R(I1, . . . , In). Then (25) implies that e(J) = e(J, xk) and hence xk ∈ J . �
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