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§1. Introduction. The Dedekind zeta function (r(s) of an algebraic
number field F is the most important invariant of F'. Its Euler product tells
how the unramified primes of @ split in F. Information about the ramified
primes and about the behavior at infinity is contained in three integers A,
n4 and n_: the first is the absolute value of the discriminant of F and is a
positive integer whose prime divisors are precisely the primes ramifying in
F, and the other two (= r; + r2 and r; in the standard notation) give the
dimensions of the (+1)- and (—1)-eigenspaces of complex conjugation on
F @qR (= R™ x C™). These invariants are in turn determined by (r(s)



via its functional equation

s+1
2

Ch(s) = AV (x™0(3)) " (¢ D(Z5=)) " Gr(s) = C(1-9). (1)

In the case F' = Q, the function (r(s) = ((s) = Y oo, n~° was first
studied by Euler, who showed that its values at negative odd integers are
rational and that its values at positive even integers are rational multiples of
powers of m: ((2) = 72/6, ((4) = 7*/90, etc. More generally, if F is totally
real (n_ = 0), then the Klingen-Siegel theorem says that the values of
(r(s) at negative odd integers are again rational numbers, or equivalently
(by (1)), that the values at positive values of s are rational multiples of
s/ VA. I F is not totally real, then one does not expect rationality
results of this form. However, the Dirichlet class number formula says that
the value of (r(s)/C¢q(s) at s = 1 equals 7™~ /\/A times a rational linear
combination of (n4 — 1)-fold products of logarithms of numbers in F' (we
cannot ask directly for the value of (#(s) at s = 1 since there is a simple pole
there), while the result proved in [17] by 3-dimensional hyperbolic geometry
is that the value of (r(s) at s = 2 equals 72"+ /+/A times a rational linear
combination of n_-fold products of dilogarithms of algebraic numbers (in
F or an extension of F' of degree at.most 4). These two cases suggest the
conjecture that the value of (p(m) for an arbitrary number field F' and

integer m > 1 can be expressed in terms of the polylogarithm function
Lix(z), defined by

Lis(z) = Y %; (keN, |e|<1) 2

n=1

(and by analytic continuation if |z| > 1). This conjecture was stated and
a few numerical examples supporting it were given in [19], but a precise
formulation was not given. It is the purpose of this paper to provide such
a formulation and to describe the evidence supporting it. The conjecture
will take the form that (p(m) is equal up to a rational factor to 7™"% /v/A
times the determinant of an ny X ny-matrix whose entries are Z-linear
combinations of numbers P,,(z) with z € F, where the sign =+ is determined
by (=1)™ = %1 and where P,, : C — R is a certain combination of the
polylogarithm functions Lix(z), ¥ < m (the detailed formulation will say
precisely which matrices one can take). The statement can be generalized
to include values of Artin L-functions at s = m and in this form reduces to
a weakened form of Stark’s conjectures for m = 1.

Finally, we must bring in the third ingredient of the title, algebraic K-
theory. For each integer i > 1 we have the groups K;(F) and K;(OF), the
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1th algebraic K-groups of F' and of its ring of integers. For : = 1 we have
K (F) = F* and K;(OF) = Of =~ 2™+~ (here and in the sequel, we will
use A = B for two abelian groups A and B to mean that there is a map
A — B with finite kernel and cokernel). For ¢ > 1, it was shown by Borel
[4] that

0 if 7 is even,

3
Z"* ifi=2m—-1lisodd, (-1)™ = +1 )

K,(F) 3 K.‘(OF) ~ {

and that in the latter case there is a natural map (the regulator mapping) of
K;(F) into R™¥ whose image is a lattice with covolume a rational multiple of
¢r(m)/7™™+ /A, (Note that, by (1), the rank p = nx of Kom_1(F) equals
the order of vanishing of {r(s) at s = 1 —m and that {(r(m)/#™"tV/Aisa
rational multiple of lim,—1_m (F(s)/(s—1+m)?.) From this point of view,
our conjecture says that the algebraic K-group Kam—1(F) is a subquotient
of the free abelian group on F*, the regulator mapping being given by
the polylogarithm function Py, evaluated on the different embeddings of F
into C. (There are n3 essentially different such embeddings as far as the
function P,, is concerned, since Pp,(T) = FPr(z) for z € C.) This will be
discussed in more detail in the body of the paper.

The paper contains a rather large number of numerical examples (mostly
for m = 3) motivating and substantiating the various forms of the main con-
jecture. The reader who is willing to take the motivation on faith can skip
straight to §§7-8, where the general formulation of the conjecture is given,
and to the further examples and discussion in the following two sections.

In the final section of the paper we will also describe briefly the progress
which has been made on our conjecture since the Texel conference: Deligne
and Beilinson have reformulated and refined it using ideas from motivic
cohomology, Goncharov has proved (most of ) the case m = 3 and in partic-
ular has shown that {#(3) for any number field F' can be expressed in terms
of the modified trilogarithm function P3;, and Beilinson has constructed a
map from the subquotient of the free abelian group on F'* specified in the
conjecture to the group K2m—1(F') such that the polylogarithm corresponds
to the Borel regulator.

I would like to express my thanks to Christophe Soulé, Spencer Bloch,
Herbert Gangl and Alexander Goncharov for useful discussions about the
material in this paper, and especially to Pierre Deligne and Sasha Beilin-
son for trying to explain to me the mysteries of algebraic K-theory and
the philosophy of motivic cohomology and for helping me formulate a rea-
sonably precise version of the conjectural relationship between zeta values,
polylogarithms, and K-groups.



§2. The dilogarithm, hyperbolic geometry, and the Bloch group.
For m = 2 the Bloch-Wigner function is the modified dilogarithm function
defined by

D(z) = S(Liz(z) + log |z| log(1 — z)) (Jz] £ 1),
D(z) = —D(1/z) (Jz} = 1).
It is a continuous function from the Riemann sphere P!(C) to R and is

(real-) analytic except at the points 0, 1 and oo, where it has the value
0. It satisfies a number of functional equations, most notably the six-fold

symmetry property

z—1 1
T ) - D(l—:c

D(s) = D( ) =-D(3) = -D(1-2) = -D(=5)

z—-1" (4)
(z € P}(C))

and the “five-term relation” of Spence and Abel

11—z -y _
1_xy)+D(1—a:y)+D(1_xy) =0

(z,y € PY(C))

(which include equations (4) by specializing to y = 0 or o0). These can
be expressed in a more natural way by thinking of the argument of D as
the cross-ratio of four points a, b, ¢, d on the complex line, i.e. by defining
D(a,b,c,d) = D(u b'd), in which case they take the form

a—d b—c

D(z) + D(y) + D( )

jj(aﬂ'(l), Ax(2)) @r(3)s Gn(4)) = sign(7r) f?(al, az,as, a4) (7f € G4),
Z D(ai,@it1,ai42,8i43) =0 (a;i €PY(C), aips=a;). (6

t (mod 3)

This in turn has a geometric interpretation: if we think of P!(C) as the
boundary of hyperbolic 3-space, then ﬁ(a, b, c,d) is the hyperbolic volume
of the ideal hyperbolic tetrahedron A(a, b, c,d) with vertices a, b, ¢ and d,
and (6) just says that this volume is independent of the numbering of the
vertices (except that the orientation changes under odd renumberings) and
that the five tetrahedra A(ai, ai+1,ai+2,ai+3) add up algebraically to the
zero 3-cycle.

The relationship between (r(2) and D(z) was proved in [17] using this
interpretation of D(z) as a hyperbolic volume. For instance, in the case
n_ =1 we showed that

7r2n+

r(@)~ T 3 D)
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(here and from now on, a ~ b means that a/b € Q*) for some numbers
T; € @ of degree < 4 over F. This is because one can associate to F
a hyperbolic 3-manifold Mr whose volume is ~ A%C F(2)/72"+, and then
triangulate Mr into ideal tetrahedra whose invariants (= cross-ratios of
their vertices, taken with the proper orientation) z; are at most quartic
over F'. If n_ > 1, then a similar argument shows that

7r2n+

¢r(@)~ —= 3 [[ D(o(e), (7

where o ranges over (extensions of) the n_ non-real embeddings of F into
C. (Note that D(Z) = —D(z), so D(z) = 0 for z real.)

Now the invariants z; of an ideal triangulation of a complete hyperbolic
3-manifold are not arbitrary: they must satisfy the relation

dlmilAll-z]=0 € A¥CX), (8)

where A%(C*) denotes the second exterior power of C*, thought of as a
module over Z. (This relation was noticed several years ago by Thurston
and is mentioned in [9]. It also follows from Corollary 2.4 of [13], which
describes the combinatorics of triangulations of hyperbolic 3-manifolds.)
This suggests the following definition. For any field F, denote by Fr the
free abelian group on F* (i.e., the set of finite linear combinations ), n;{z;]
with n; € Z, z; € F*; we will also identify Fr with the quotient of the free
abelian group on P!(F') by the subgroup ([0], [¢])), and define

A(F) = (S nilei] € Fr | T nidail All —2] =01in A%(P*) 82 Q}. (9

In other words, A(F) is the kernel of the map 8 : Fr — A(F)®z2 Q
defined by 8([z]) = [z] A[1 — z] for  # 1, B([1]) = 0. It is easily checked
that the expression

1—z
1-—2zy

+[1-ay] +[—%], (o)

Szy=[x]+[y]+[ 1—-zy

corresponding to the 5-term relation (3), belongs to A(F) whenever it
makes sense (i.e. for all z, y € P(F) except (z,y) ='(0,oo), (00,0), or
(1,1); if z or y or zy equals 0, 1 or co, we use our convention {0] = [oc] = 0).
We set

C(F) = <Szy>z1yeP1(F)y (:,y);é(o,oo),(oo,ﬂ),(l,l) (11)

)



and define the Bloch group B(F) as the quotient A(F)/C(F). Taking
(z,y) = (0,0), (1,00) (,0) and (z,00), we find that the relations [1] = 0
and [z] + [1 — z] = [z] + [1/z] = 0 (Vz € P!(F)) hold in B(F). The func-
tional equation (5) implies that the function D can be defined on B(F’) for
any subfield F C C by >_ ni[zi] = > niD(z;). Therefore if F is a number
field, [F : Q] = ny + n_ as usual, then there is a map Dp : B(F) — R"-
defined by Y ni[z;] = (3 niD(o(z;))),, where o ranges over the non-real
embeddings F' — C (taking one of each complex conjugate pair).

The algebraic theorem that explains—and strengthens—equation (7) is
now the following: for each number field F’, there is a map B(F) — K;3(F)
with finite kernel and cokernel whose composition with the Borel regulator
mapping K3(F) — R™- is Dp. This result is due to Bloch and Suslin; cf.
Suslin’s ICM survey talk [15]. Together with Borel’s theorem, it implies that
B(F) has rank n_ and that (7) is true with arguments in F' itself (rather
than quartic over F') and with the sum of n_-fold products replaced by
the n_ X n_ determinant det (D(a({,,)))u,a, where (§,)1<v<n_ are linearly

independent elements of B(F') and o ranges over the non-conjugate non-real
embeddings F — C.

A more leisurely expository account of the material in this section is
given in [18].

§3. The trilogarithm and {r(3). We would like to get an analogous
statement for other special values of (7 (s), involving higher polylogarithms
and some generalization of the Bloch groups. Specifically, we would like
to define for each number field F' groups Am(F) and Crm( F') such that the
quotient B (F) = Am(F)/Cm(F) is a model for the K-group Kom-1(F)
and the regulator map on Kym—_1(F') corresponds to the mth polylogarithm
function on B, (F). By analogy with the case m = 2, A,(F) should
be defined as the subgroup of elements of Fr satisfying some algebraic
relation, while Crn(F) should come from the functional equations of the
polylogarithm function. To guess the right form, we look at numerical
examples, starting with the case m = 3, to which the next several sections
are devoted. As mentioned in the introduction, the reader not interested
in the numerical motivation of the conjecture can skip to §6.

We first need an analogue of the Bloch-Wigner function D(z). A modi-
fied polylogarithm function which is one-valued for all z # 0, cc was defined
implicitly by Ramakrishnan [14] and explicitly in [18] (and, in a modified
form which we will discuss in §7, in [16]), and discussed in some detail in
[19]. It is given for |z| < 1 by

m—1

Din(z) = Rm <Z (_1‘1!)r log” |z| Lim—r(z) — %"i log™ |x|>, (12)

r=0



where R,, denotes R or & depending whether m is odd or even, and for
|z| 2> 1 by the functional equation

Dn(3) = (-1)"'Dn(z)  (z€O). (13)

The function Dy, : P}(C)\ {0,00} — R is real-analytic except at £ = 1 and
satisfies the functional equation

Dp(Z) = (=1)™ 'Dnp(z) (z€C). (14)

Thus, unlike the case m = 2 where D,, vanished on R and hence only the
non-real embeddings of F' played a role, D,, for m odd is non-trivial on R
and we can start by looking at totally real fields and m = 3, the function
D3(z) being given for z real by

. . 1 1
D3(z) = Lis(z) — log |z| Lia(z) — 5 log? |z|log(1 — z) + -1-2- log? |z| (15)

if -1 £ z £1 and by (13) otherwise. Since 3 is odd, the Klingen-Siegel
theorem does not apply and we do not a priori know anything about (#(3)
even in the totally real case. For F' = @, of course, the relation (r(3) =
¢(3) = Li3(1) = Dj3(1) is trivial, so we begin by looking at real quadratic
fields F = Q(v/D). Here ny = 2, n_ = 0, so the group Bz(F) should
be 2-dimensional. This means that we expect VD ¢r(3) to be expressible
as the determinant of a.2 x 2 matrix whose entries are combinations of
trilogarithms. This is unsuitable for numerical work, since it is hard to guess
the entries of a matrix of size bigger than 1x 1 knowing only 1ts determinant.
However, we know that F is abelian over @ and that (#(3) splits as {(3)
times L(3, xp) for a certain Dirichlet series L(s, xp) = >_ xp(n)n~*, and it
is reasonable to expect that the Galois group of F over @ acts on B3(F) and
splits it into two one-dimensional spaces B3(F)* and B3(F)~ on which the
determinant of the regulator mapping is equal (or rationally proportional)
to ¢(3) and VD L(3, xp), respectively. Thus we expect that VD L(3,xp)
can be written as a linear combination of numbers D3(z) — D3(z’), where
z' denotes the conjugate of z € F over Q (here we are thinking of F' as
embedded once and for all in R, say by vD > 0).

To find such a formula empirically, we take a collection of “simple”
numbers z € F, where “simple” means that z and 1 — r factor into prime
ideals of small norm, and search for numerical relations among vD L(3,xD)
and the numbers D3(z) — D3(z') using the L*® (Lenstra-Lenstra-Lovasz)
algorithm. We recall that this is an algorithm which finds short vectors
in a finite-dimensional lattice; to use it for the problem of finding linear
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relations over Z among a collection of given real numbers a4, ..., ar, one
applies it to the lattice Z" with the length form

H(ny, ..., no)2=n2 4+ -+ 02+ M(niar + - - nray)?

with a very large constant M, in which case any short vector will correspond
to an r-tuple of reasonably sized integers n; with > nja; equal to 0 or
extremely small. Applying the algorithm to the fields ' = Q(v/5) (D = 5)
and F = @(v/2) (D = 8) and to reasonably chosen collections of numbers
z € F, we found the relations

1+\/_

32 2)-Ds (= 2\/5)],
20v2

——L(3, xs) = Ds(4 +2v2) — Ds(4 —2V2) + 9[Da(x/§) — Dy(—v2)]
- 9[D;(2+ V2) — Ds3(2 - \/5)] —6[Ds(1 + V2) — D3(1 - \/5)]

In both cases, we performed the search using a larger collection of numbers
z € F than the ones which actually appear, and the relation given was the
only one found by the computer. In both cases, too, the search was carried
out “honestly” in the sense that the L® algorithm was first applied with
a reasonably large value of M (about 10%*°) and using a reasonably high
precision for the numbers L(3,xp) and D3(z) (about 20 digits), and the
relation found by the computer then checked independently by recalculating
all of the numbers involved to a much higher precision (about 50 digits);
thus despite the question marks over the equal sign, the above equalities
carry a much higher level of certainty than many theorems.

As the next step, we looked for an algebraic relation analogous to (8)

which is satisfied by the two linear combinations [2 —\/ETJ —e— 3[1 +2\/5]

and [4 + V2] -+ 6[1 — \/ﬂ occurring in the above relations and which
is not satisfied by any other linear combination of the [z] — [z'] over which
the search was performed. As a reasonable guess, we assumed that this
relation would take place in ®° F* and would involve only the numbers z
and 1 — z. After some effort, we found that there was a unique relation of
this form which worked, namely

S fei o i o [
means “equal modulo torsion.” This suggests the definition
AD(F) = ker(8) : Fr — (F* @ F* @ FX) 9 Q),

Dl - z]e]e [1] ~ 0.

M L(3,x5) = D3(2—\/5)—D3 (2+\/5)+3[D3(

0, (16)

“_”

where

[m] )



(We have written the superscript “(1)” because this will not be our final
definition of A3(F’).) As before, we can extend D; from C* to A&”(C) by
D3 (Y nilzi]) = Y_niDs[z;]; then for each embedding o of a number field
F into C we get a map DY from Agl)(F) to R by composing Agl)(F) —
Agl) (C) with D3;. We can now formulate:

CONJECTURE (FIRST VERSION). Let F be a totally real field of degree n

and discriminant D. Then the image of themap [] DZ: AY(F) =R
o F—R
is a lattice (= cocompact Z-submodule) whose covolume is a rational mul-

tiple of /D (r(3). In particular, /D (r(3) is a rational linear combination
of n-fold products D3 (z?) --- D3 (z(™), z € F.

Of course, what we really want is that there should be a canonically defined
subgroup C:,(.’l)(F) of Agl)(F) and an isomorphism (up to torsion) from the
K-group Ks5(F) to the quotient group AE,”(F)/CS)(F) whose composite
with [[D{ is the Borel regulator map; however, we will wait with the
formal statement of this until we give our final definition of A3(F).

One nice aspect of the conjecture is that it makes non-trivial predictions
even in the case F' = @, which because of the identity ((3) = D3(1) had at
first sight appeared to be of no interest. For instance, let

1
27

?

O] oo

}

1
’97

02
el -
Wit
|
el
e
w | o
|~

X =Xpa ={-1,

be the set of all rational numbers z with |z| < 1 (since z and 1/z are
equivalent from the point of view of D3) such that z and 1 — z contain only
the prime numbers 2 and 3 in their numerator and denominator. The point
of the restriction on the prime factors of £ and 1 — z is that it makes it

easier to satisfy the conditions defining Agl)(Q): specifically, each element
ﬂgl)([:c]) = [z] ® [z] ® [z/(1 — 2)?] (z € X) is (up to 2-torsion) a linear
combination of the six elements

21®[21®[2], ({2
]

RleEl+3Be) e BeBle,
2leReB], (298] +(3 [

® ]
®[Bl+[B8]1®[2])® 3l B]®[B]® 3],

so any seven of the [z] are linearly dependent modulo A3 )(Q) The space

Fx = {3 ;ex n=(z]} must therefore have an intersection with _A( )(Q) of
rank at least 5. A brief computation shows that the rank is in fact exactly

9



3, a basis‘being given by

&=, &=l +al-3] - [z,
g =4fz] +4[~3] - [5], &=9[5]+18[-5]-[~5], (D
& = 3(3] +2[5] - 6[3] - [-5] -3(g] + 5]

Calculating independently with the L® algorithm to search for numerical
linear relations between the values D3(z) (r € X) and ((3), we found
exactly the same 5-dimensional space of relations, the numerical values of
the D3(&;) being

i | 1 2 3 4 5
Ds(¢j)| -3¢3) 0 0 —35¢(3) —&¢(3)

Finally, we can get other examples of the conjecture by returning to the
two quadratic fields we started with. In @(1/5) the images of the elements

2 -5, 2+/5, 1(1+5) and (1 - v/5) under ﬂgl) are (up to torsion)

(18)

(471 @ [67°] @ [¢7'/4] = —18[¢] ® [¢] ® [2] - 9[¢] ® [¢] ® [4],
[¢°] @ [¢°] ® [¢/4] = -18[¢] ® [¢] ® [2] +9[¢] ® [¢] ® [4],
floldle[s’] = 3se4 (4], and
[t ee7]e[s7°] =- 3[¢] ® [¢] ® [4],

respectively, where ¢ = 3(1 + V/5), so the two elements

2-VA] - 2+ VA a((R2) - L)), (R (1o

belong to Agl) (F). The first is Galois anti-invariant and gives the relation
D3(€) ~ /5 L(3, xs) we already saw, while the second is Galois invariant
and leads to the relation

1+\/'

Dy ( ) _ L),

) + Ds(*

Similarly, for @(v/2) we find that the 8 numbers z = 4 +2/2, ... occurring
in our original numerical relation involve (up to sign) only two numbers
1++v/2 and V2 in the factorizations of z and 1— —, so just as with X5 3y there
are 6 conditions which a linear combination of them must satisfy to belong

10



to ker ﬂ§” , and consequently at least two linearly independent combinations
belonging to the kernel. Doing the calculation, we find that there are
exactly two, the Galois anti-invariant combination [4+2v/2]—[4—2v/2]+- - -
we already exhibited and the Galois invariant combination

¢ =[4+2v2] + [¢ - 2v2] - 9([V2] + [-V2)])
-9([2+ V2] + [2-v2]) -3([1 + V2] + [1 - V2)),

for which D3(&) should be rationally proportional to {(3) and in fact equals
—125¢(3). Thus for both our quadratic fields F' we have given elements in
Agl)(F ) whose images under [[ D : Agl)(F) — R? are rational multiples
of (¢(3),¢(3)) and of (\/5 L(3,xp),—VD L(3,xp)) and hence which span
a lattice with covolume ~ /D (p(3), in accordance with the conjecture.

§4. The trilogarithm (continued). The examples we have just given
show that the conjecture formulated in §3 is reasonable for totally real
fields. However, when we pass to general number fields, then the group
Agl)(F ) is too big and we must impose a further condition on elements of
FF to get elements in K-theory. This phenomenon, which is immediately
seen in the numerical examples, was predicted by P. Deligne. To see what
happens, consider an element £ = ) ni[z;] € Fr and suppose that ¢ be-
longs to ker ,3;1), i.e., that equation (16) holds. Let v : F* — Z be any
homomorphism (for instance, the valuation at a prime p in case F' = Q).
Then applying v ® Id ® Id to (16), we find

Xi:ne v(zi) [2:] ® [m]

0.

Applying to this the projection F* @ F* — A%(F*), we deduce that
Zn,' ’U(:I:,') [a:,] A [1 - l‘,‘] =0,

i.e., that Y n;v(z;)[zi] belongs to the group A(F’) defined in §2. If 7 denotes
the canonical projection from A(F) to B(F) = A(F)/C(F) = K3(F), then

the extra condition we must impose is

W(Z n; v(z:) [mg]) = 0. (19)

(In the case of totally real fields, this extra condition was not necessary
because B(F) ® Q = {0}.) Then we have:

11



CONJECTURE (SECOND VERSION). Let F be an arbitrary number field of
degree n = ny +n—, A the absolute value of the discriminant of F'. Define

A(2)(F) as the set of £ = 3 ; n; [z:] € .A(l)(F) such that (19) holds for all
v € Hom(F*,Z). Then the image of the map T] DS : AP (F) - R™+,

FR

where the product is taken over all real embeddmgs and one of each pair
of complex conjugate embeddings of F into C, is a lattice whose covolume
is a rational multiple of VA (r(3)/x*"~. In pa.rticu]a.r, VA (R(3)/73"- is
a rational linear combination of n-fold products [] D3 (o(z)), z € F.

-4

We now give an example of the necessity of the condition (19), taking for
F the non-real cubic field of largest discriminant, namely the field F' = Q(6)
where 82 —6 —1 = 0. (We cannot take F to be an imaginary quadratic field
because in that case the complex conjugation belongs to the Galois group of
F over Q, so any £ can be decomposed as %(E—E) plus %(§+£); the first has a
trivial image under D3, so cannot be used for the regulator, and the second
is always in the kernel of D3, so the condition is automatically satisfied.) We
have the real embedding given by (1) = 1.32471--- and the two complex

1) = _
embeddings 6(?) = 6 ( 2 _ 1) and 6®) = §(?), The zeta-function

2 \26V +3
of F splits as ((s)L(s) where the L-series L(s) =1—-2"°—-3"°4+6"°+-.-
can be given either as a difference of Epstein zeta functions

1 1 1
Ls) = 2 m;ez ((m2 +mn+6n?)*  (2m? +mn + 3n2)’)
(m,m)#(0,0)

or as the Mellin transform of the modular form n(7)7(237) = ¢—¢%> — ¢ +
q® +--- of level 23 and weight 1. Using either representation and standard
formulas, we can calculate L(3) to a high accuracy:

L(3) = 0.84395 21532 37338 53825 22215 69424 77200 00563 -

(we have resisted the impulse to give this many digits of any of the numbers
occurring up to now!). If £ = 3 n;[r;] is any element of Fr, we denote by
¢, @ £0) the images of £ in Fe under the various embeddings F < C;
then for a good £ we expect the numbers

D3 (M) + 2D, (¢®)
¢(3) ’

235/‘2
T L(3), to be rational. Here the factor 23%/96 has been

inserted for convenience, and the justification for the linear combinations

D5 (5(1)) —Dj (5(2))

+ =
5() = = ,

67(8) = (20)

where Az =
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of D3 (E(l)) and D; (6(2)) comes from the Artin L-function version of our
conjecture which will be mentioned later (§10C); note that we do not need
D3 (5(3)) because it equals D3 (6(2)). Consider the six numbers z;,... ,z6 =
6, —6, 6%, 63, —6* and 6°. Each of them has the property that z; and 1—z;
are, up to sign, powers of §, so each Bgl)(:c.') is a multiple of [6] ® [6] ® [4],
the multiples being 9, —5, 16, 9, —96 and —75, respectively. There are
therefore 5 linearly independent elements 5[6] + 9[—6], ... belonging to
ker( :(,1)). However, when we compute the corresponding values of §¥(¢)
numerically, we do not find rational numbers. (And if we do not believe
the splitting (20) of the expected 2-dimensional space B3(F) into two 1-
dimensional Q-vector spaces, we can take two different £ from our list and
compute the 2 x 2 determinant giving the covolume of the lattice they
generate; the answer is not a rational multiple of 23!/2¢(3)/7%.) On the
other hand, each [z;] belongs to A(F) (since z; and 1 — z; are powers
of 8 and [6] A [6] = 0), so the value of Dz(zgz)) for each ¢ is a rational
multiple of 233/2¢r(2)/7*, the multiples being 1, —2, =2, 2, 1 and —1,
respectively. Hence, taking v to be any homomorphism which is non-zero
on 6, we see that the values of v(z;) 11'2([3:,']) are proportional to 1, —2, —4,
6, 4 and —5, respectively. Thus (19) imposes an extra condition on ¢ and
cuts down the space of solutions to dimension 4, a basis being given by
4[6] +4[—-6] —[6%],3[6%] +27[6] —2[6°], 13 [6°] +30 [—6] +125 [6] and
5 [—04] - 130 [9] - 22 [95] . For these four elements we do indeed find that
the values of (6%(¢), §(£)) belong to @? (or even, with our normalization
of A, to Z?), the values being (0,0), (—3,69), (13,259) and (-12,-351),

respectively.

§5. The trilogarithm (concluded). We now have a conjecture in the
case m = 3 which works for all number fields. However, it turns out that
there is still a further improvement which can be made. To see this, we
assume for convenience that we are back in the totally real case, so that a
“good” element & = 5 n;[z;] € Fr is one satisfying (16). Since z — log |z
is a homomorphism from C* to R, it follows that

Zn. log? |z;] log](1 )2] =0.

Consequently we can modify the function D3(z) by adding to it any multiple
of the function log? |z| log |z/(1 — z)?| without affecting the validity of our
conjecture. The obvious choice is the function

~ 1 T
D3(.’L‘) = D3(:Z:) bl ']'5 log2 l:z:l 10g|(—1—_—z)2'|, (21)

because according to (15) it is given for —1 <z < 1 by
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Ds(z) = Lis(z) — log |z| Lia(z) — % log” || log(1 — z) (22)

in which the term log® |z| which blows up at £ = 0 has disappeared.

Now a miracle occurs. Replacing D3 by Dj; does not affect the validity
of our previous conjecture, as already mentioned, because the two functions
agree on Agl)(F) anyway. But as a result of this change we find that there
are suddenly many more combinations ) n;[z;] which work than before.
For instance, return to the 1l-element set X = X(; 3} which was already
used as an example in §3. Applying the L® algorithm as before to find
linear relations over Z, now between the values D3(z) (z € X)) and ¢(3), we
find a 9-dimensional space of solutions rather than a 5-dimensional space
as before, a basis being given by the 5 old elements (17) together with the
4 new elements

6=[5, &=205]-4[2]-2[-31+ 3],
1 1 3 1 1 2 (23)
=4[5+ 351+, &=[-51+G1+5E

the corresponding values of Eg(fj) being equal to %C(3), 0, —2((3), and
¢(3), respectively.

Now, just as before, we look for an algebraic condition which picks out of
the 11-dimensional space Fx precisely the 9-dimensional subspace spanned
by €1, ..., e, and again we find exactly one which works: the relation (16)
must be replaced by the relation

Sl <[:1:,-] AfL- m,-]> o, (29)

which now takes place in F* ® A%2(F*) and, as before, is required to hold
only up to torsion. In other words, our new candidate for the numerator of
the Bloch group in the case m = 3 (for F totally real) is the group
A (F) = ker(Bs : Fr — (F* @ AX(FX)) ® Q),
Bs: lz] = [e]® (el A[1~2]), [1] =0,
and we make the

CONJECTURE (THIRD VERSION). Let F' be a totally real field of degree n

and discriminant D. Then the image of themap [] Dg: A (F) —R"
o:F—R

is a lattice with covolume ~ /D (r(3).

If F is not totally real, of course, then we must add to the definition
of Ag3)(F ) the same supplementary condition as in §4, namely, that (19)
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should hold for every linear map F* — Z. In other words, if £ = Y n;[z;]
satisfies (24), then the element :,(£), where ¢, : Fr — FF is the map
defined on generators by [z] +— v(z)[z], belongs to A(F) = ker([z] —

[z] A [1 — z]), and we want the image of ¢ under the composite mapping

AP (F) 2 A(F) 5 A(F)/C(F) = B(F) ~ Ks(F)

to vanish for all v. This can be expressed more algebraically by saying that
the image of £ under the composite mapping

AP (F) 5 F* @ A(F) —2%, F* @ B(F)

vanishes, where ¢ : Fr — F* @ Fr is the map defined on generators [z]
(z € F) by [z] — [z] ® [z]. Thus we have finally:

CONJECTURE. Let F' be a number fleld of degree n = ny + n_, A the
absolute value of the discriminant of F. Define A3(F) = ker((Id® w) o :
A(F) » F*@B(F)) and Df =[] Df : As(F) — R™+ (product over the

embeddings of F into € up to complex conjugation). Then DF (As(F)) is
a lattice in R™+ with covolume ~ VA (r(3)/x%™-.

We can summarize the various definitions of the last three sections and
their interrelationships by the commutative diagram

Df Fr 2 APF) 2D AP(F)
%
R+ N . N (25)
N
DF Fr D AP(F) D  AF)

where .Agl)(F) and Ags)(F) denote the kernels of [z] — [z]®[z]®[z/(1—1)?]
and [z] — [z] ® ([z] A [1 — z]), As(F) is the kernel of [z] — [z] © m([z]),
A;(;z) (F) = Agl)(F) N A3(F), and the horizontal inclusions are equalities
when F' is a totally real field.

We now give numerical examples of the above versions of the conjecture

for the same number fields Q(v/5), @(v2) and Q(6) (8* — 8 — 1 = 0) that
were used to illustrate the first two versions. For F' = Q(v/5) we had four
elements 2+ /5 and (1++/5)/2 and two linear combinations of them which

satisfied (16) and hence belonged to Agl)(F). For the last two of these
elements z, both £ and 1 — z belong (up to torsion) to the group generated
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by ¢ = (1+/5)/2, so [z]® ([z] A[1 —z]) vanishes trivially. This gives a new
element [(1 ++/3)/ 2] -[(1- V5) / 2] It is anti-invariant under the action of

Gal(F/Q), so should map under Ds to a rational multiple of v/5 L(3, xs).
The multiple turns out to be 25/24, giving the identities

D, ( ! ’;*/‘F’) 4(3) + = 25‘/— L(3,xs)-

For F = Q(+/2) the situation is similar. Here we had used a collection of 8
elements for which z and 1—z belonged to a sub Z-module of F'* of rank 2.
This led to 6 linear conditions needed to satisfy (16) and hence to 2 linear
combinations £ which mapped to zeta values under Dj. Equa.t1on (24), on
the other hand, imposes only 2 conditions, since each [z] ® ([z] A [l —z]) is
up to torsion a linear combination of the two elements [e] ® ([e] A [7]) and
[71® (] A [7]) (e = 1+ V2, T = V/2), so we now get a 6-d.imensiona.l space
of linear combinations which work for D;. As a basis of this space we can
take the two previous elements and the four new ones

(V2] + [-v2], 2+v2] + 2= V2] + [1 + V2] + [1 - V2],
[1+v2] - [1-v2], and [2+ V2] - [2- V2] + [V2] - [-V2].

The first two are Galois invariant and map under Dj to z C (3) and -2—7 ¢(3),

respectively, while the latter two are Galois ant1-1nva.r1ant and both map

to 4—\/-—.—L(B xs). Finally, look again at the field FF = Q(6) and the six -
numbers z1 =0, ..., 26 = 6 of §4. All six lie in A®(F), since all
have {z,1 — z} C (+£1,6), and for the same reason the requirement that
m2(¢v(€)) = 0 (or equivalently, that D(:,(¢®)) = 0, where (-)® is a non-
real embedding of F into C) imposes only a single linear condition. The
space of solutions is therefore now 5-dimensional, rather than 4-dimensional
as before; as a basis we can take the four elements we had before together
with the new solution [—6]+2[6], or, better, a new simpler basis [—8] +2[6],
(6] + 4[6], [8°] — 6[8], [—8%] — 4[4, [6°] + 5[] with images (0,3), (0,—12),
(3,-15), (2,~-13) and (1,13) under the (conjectural) mapping (§, 67) :
A3(F) — Z? defined by equation (20). Examples of this kind can of course
be multiplied indefinitely, but become numerically quite intricate even for
relatively simple number fields. For instance, for the field F = Q(v/-11)
the conjecture predicts that 133({) for any element ¢ of A3(F') should be a
rational multiple of ((3) (because n4 = 1, the same value as for Q; note
that ((3) ~ VD ¢r(3)/7®). By looking at the 26 numbers z € F \ Q for
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which z and 1 — z involve only the three primes 2 and (1 + +/=11) (this
seems to be the smallest set which works), we obtain enough numbers and

few enough conditions to produce non-trivial relations 53(5 ) ~ ¢(3), but all
involve several terms and fairly complicated coefficients, a typical example
being

4+\/_

17655 (2EY 1) — 13905, (— Y1 v_11) —3456133(;1+3—— —y
—80003(4+‘/—) B, (1+\/_)_5353(31+\/—11) 1264 ().

32

If we also use the € Q for which z and 1 — z involve only the primes 2
and 3, we get simpler relations, e.g.

~ 9++—11 ~ -1+

By (YY) o5y L By dy 25,2 — g

§6. Functional equations of the trilogarithm and the group C3(F).
The conjectures which we have stated are thus supported by considerable
numerical evidence. However, if we compare them with the results de-
scribed in §2 for the dilogarithm, then we see that they are still incom-
plete: we should still define a subgroup C3(F’) analogous to C(F') such that
B3(F) = A3(F)/C3(F) is conjecturally isomorphic (up to torsion) to the
K-group K5(F), with D corresponding to the Borel regulator mapping.
In analogy with C(F'), which was defined (eq. (11)) as the space spanned
by the 5-term relation satisfied by D(z), we would expect C3(F') to be
spanned by the functional equations of the trilogarithm. We now come to
the second remarkable property of Dj: all of the functional equations of the
trilogarithm become “clean” (i.e., contain no lower-order terms) if we use
the trilogarithm function Ds. Specifically, the classical functional equations
of the trilogarithm are the easy 1-variable relations

L=[]-[2], D.=[]-4fs]~4[-2], T =[a]+[-2]+[1-2]~[1
and the 2-variable relation
@ _=l-v? z z(l-y) z(1-y)
Sly _[y(l—-z)2]+[ y]+[y] 2[y(1—3:)] 2[ z—1 ] (26)
~ 2= 212 - ofe] —2fy] 2],

found by Spence (1809) and Kummer(1840); here z and y are free variables
and by “relations” we mean that for each of the given expressions { =
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> ni[zi] the sum }_ n;Lis(z;) is a linear combination of lower order terms
(here, products of logarithms of rational functions of z and y). The number
of such lower-order terms is fairly large, but goes down considerably when
the functional equation is expressed in terms of D3 rather than Lis; for
instance, we have

1 z 22
Ds(L) =0, Ds(Tz) = 35 log|e(1 = o) log| =3 | log| 7

and
D3(S(3)) S log|zy[ log|—| logl (1 — x)2i

(as observed in [18]), with 0, 1, and 1 products of logarithms on the right,
whereas the corresponding formulas for Lis itself ([10], eqs. (6.7), (6.11)
and (6.96)) have 2, 3, and 7 lower-order terms, respectively. When we pass
to 133, however, there are no lower terms at all:

Ds(I;) = Dy(D;) = D3(T:) = D5(55)) =0 Va, y.

This property of D3 was noted by Lewin ([11], 3.2) and will be generalized
in §7, where we will show that n,-53(x,~) is constant for any collection of
integers n; and rational functions z; satisfying the identity (24).

We thus have two ways to try to define the group C3(F). One, by
analogy with (11), is to find a sufficient set of functional equations for
Ds analogous to the 5-term relation for the Bloch-Wigner function. All
of the relations given above, as well as various other functional equations
given in [10], can be obtained from the Spence-Kummer relation (26) by
specialization, and we will present further evidence in a moment that this
relation generates the full kernel of Df : A3(F) — R™+ for number fields.
We can thus define, in full analogy with (11),

Ca(F) = (S3)) (27)

z,y EP1(F); no indeterminate terms

(the phrase “no indeterminate terms” means that we exclude pairs like

(z,y) = (0,0) where one or more of the terms in SS;) becomes 0/0). A
more modest definition, since we do not know that all functional equations
follow from the Spence-Kummer ones, would be to define C3( F') as the group
spanned by all functional equations of D3 with the variables specialized to
F'. For higher polylogarithms, where we definitely do not possess generating
collections of functional equations, we are of course forced to use the latter
definition; we will therefore have to give a precise formulation of it for
the general case in §7 and do not give a formulation here. Whichever
way we define C3, we define the third Bloch group B3(F') as the quotient
A3(F)/C3(F) and make the conjecture
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CONJECTURE. The map DF : B3(F) — R™ for any number field F is an
isomorphism onto a sublattice of R™+ with covolume ~ /A (p(3)/n3"-.

Of course, what we really want is that there is a canonical map K5(F) —
B;3(F) which is an isomorphism up to torsion and whose composite with
5{" gives the Borel regulator mapping; we have not stated the conjecture
in this form because our numerical evidence only concerns the image of the
trilogarithm map ﬁf and gives no information about algebraic K-theory.

To support this conjecture, as well as to provide yet further evidence for
the conjectures of §§3-5, let us look once more at the field F' = Q, this time
allowing the prime factors 2, 3 and 5 in the numerators and denominators of
z and 1—z. The set X = X2 35y of = having this property and with |z| < 1
contains exactly 50 rational numbers, the one with the largest denominator
being T%é" For z € X, we write z = £2%23%35% 1 — g = £2P23Ps5hs

and set vgr = ] for ¢, r € {2,3,5}. The product a,vy, gives the

ﬂ Br
coefficient of [p] ® ([¢] ® [r]) in B3 ([z]). There are 9 such products (since
Yqr = —7rq), but only 8 of them are linearly independent since we have the
relation
as 3 Qs
azyss —Qa3Yes +asys = |az a3 as|=0.

B2 Bz Bs

Also, 25 = v35 (mod 2), as one sees by an easy argument using the Legen-
dre symbol at 5. We therefore have 8 linearly independent integral invari-
ants vy(z), ...,vs(z) defined by

/V](.’l:) 100 0-1 0-—2—3\ ( 2723 \

ve(z) 010001 0-1 —a37Y23

vi(z) 00101111 %as("/ss —v25)

va(z) | 000 1-1-1-2-2 —as573s

vs(z) | =] 00001100 —azv2s

ve(z) 000001 0-1 a373s

vi(z) 00000011 —3aa(7v2s + 735)
\Vs(:t)/ \ 00O00O0 000 1) \ %a3(725 +‘7’35) /

(Example, left to the reader: the invariants vi(z), ...,vs(z) for ¢ = 35

are 251, 5, —216, 288, —144, 12, —72, —9.) The triangular matrix and the
order of the invariants on the right of this equation have been chosen so that

vi(z;) = 6; j (Kronecker delta) for the 8 rational numbers z, ...,zs = -1,
3, i -4 2 -2 &, 1. Hence the eler.nent [z] - Z,_ vi(z) [x,] of Fgq
belongs to ker(f;) for any z € X , and if our conjecture is right we must
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have
8

Dy(z) = Z vi(z) Dy (zi) +

=1

m(:c)

((3) (28)

for some rational number m(z) whose value can be calculated numerically.
For instance, using the values of v;(:33 ) just given, one finds m(53;) = 7518.
In fact, m(z) turns out to be integral for all z € X except 3. What’s more,
the integrality of m(z) is a theorem, not merely a numerical fact, since H.
Gangl in Bonn has checked that the relation (28) is a consequence of the
Spence-Kummer relation for all 50 elements z € X. This provides rather
strong evidence for the conjecture presented above that the kernel of D3
coincides with the group generated by the Spence-Kummer relation for all
z, y € F. Gangl has performed similar calculations for the much larger set
X = X{(2,3,57} and again all relations D3(¢) = p((3) ({ € A(Q) N Fx,
4 € Q) which he checked turned out to be deducible from the Spence-
Kummer relation and to have the property that u is a multiple of 1/24,
though it need now no longer be an even multiple even if £ does not contain
[%] ; for instance, the image of

1 1 1 1 1 1 2
3] 6] 8] 36] +2[ 2]—18 [—6]+[ 48]+[9]

under Dj is 51 ¢(3). In any event, it seems to be the case that the image

4(z]-12[2] =-3[z] +3]

of the map Dj : A3(Q) — R is the lattice -21—4- ¢(3)Z and that the kernel is
the group generated by the Spence-Kummer relation.

§7. Higher order polylogarithm functions and functional equa-
tions. Like D3(z), the function D,,(z) defined by (12) has a log™ singu-
larity at z = 0 (and hence, by the functional equation (13), also at z = o0)
if m is odd, but this can be removed in the same way as in the case m =3
by adding a suitable multiple of log™ ™! |z| log li755z s ie. by looking at

m-—1

5'"(2) —_ (Z ( logl$|) -r(x)“f‘( lognlf!l)m— log|1 -.’L").

29

This is the form of the function Dm(z) given by Wojtkowiak [16], who(de?
notes it —L(z). Observe that the function Dpm vanishes at z = 0 and—since
the addition of the (—1)™~!-symmetric term 5 log™~ !|z|log | 7255z | does
not affect the validity of the functional equation (13)—also at z = co. We
now show that D, for every m satisfies “clean” functional equations, i.e.,
functional equations involving no lower-order polylogarithms or ordinary
logarithms.
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PROPOSITION 1. Let {ni, zi(t)} be a collection of integers n; and rational
functions of one variable z;(t) satisfying the identity

Zn, O] @ ([zd®)] At —z:®)]) =0 (30)

in (Sym™~2(C(t)*) @ A*(C(t)*)) @ Q. Then " n; D (zi(t)) = constant.
Z :
PRrROOF: Using the identities

1

dlogla] _ 1 OLiy®) _, OLijz) _ | 7@ G232
oz = 2z’ oz ) 9r 1 (‘_1),
1 - x J=
we find after a short calculation that
Bﬁm(x) _ O, m—2 log Il — l log le
9z - 2 Dp—1(z) + Bm log | ~ 1 =),

where a,, denotes (—1)™/2y/—1 and Bm is vV—1/2(m — 1)! for m even,
(m —1)/2m! for m odd. Hence

% Zn.‘ D (zi(t)) = am Z = Eg Drm-1(zi(t))

+6m 3 log™" o) (2 8 og 1~ 2 - S g0

The second sum vanishes because of (30) and because the maps A : z(t) —
log |z(t)| and A : z(t) — z'(t)/z(t) are linear on C(¢)*. For the first
sum, we use the fact that, by the fundamental theorem of algebra, any
rational function z(t) factors as c[J(t — @)**(*) and hence z'(t)/z(t) =
Y- va(z)/(t ~ a), where the product and the sum extend over all a € C
(only finitely many terms being non-trivial) and va(z) denotes the order of
z at a. Hence the first sum can be written as

> t_la (va(xi(t))ﬁm-l(x,-(t)))

a€C

But the formal sum Y n; va (m,(t)) [:::,'(t)] satisfies the analogue of (30) with
m replaced by m — 1 (if m = 2, then this makes no sense, but then there

is nothing to prove since D; = 0), so the expression in the inner sum is
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a constant by the proposition applied inductively to Dm_1. Substituting
t = a, we see that this constant is zero, since whenever vq (a:i(t)) is not zero

the function INJm_l is being evaluated at either 0 or oo, where it vanishes.
Hence (9/8t)(3 ngﬁm(zi(t))) = 0 and similarly, of course, for 8/8t. O
REMARK: There is a similar result, slightly simpler to prove, for polyloga-
rithms of a real variable. For —1 < z <1 define

m-—1
—loglz])" .. —log |z|)™!
Ln,(z)= 2(:) (——fll—l) Lim—(z) + ( grlz!l) log|1 —z|, (31)

1
z/ _ ~
odd with the restriction of D, to R (for m even, of course, D, |R vanishes
identically). It was defined (for £ < 1 and by a recurrence rather than a
closed formula) by Lewin ([11], eq. (16)), who conjectured that it always
satisfies “clean” functional equations and verified this for the functional
equations found by Kummer for the polylogarithms of order < 5. In our
language this takes the form that > n;Ln (:c,-(t)) is piecewise constant (the
pieces being the intervals between the real roots of the functions z;(t)—1 if
m is even) for any collection of n; € Z and zi(t) € R(?) satisfying (30). The
proof, as already remarked, is similar to that of Proposition 1, but even
simpler: we now have

Lin(a) = g, togm~? o] (ELL=21 . 281D,

and extend to R by Lm(=) = (=1)™ 'L (z). This function agrees for m

d _1)m-1
aZmLm@“”)ﬁﬁ—(mlrz—)!
X (A@...@/\@/\')(Zni zi®...®m,~®(x.-®(1—:c,-)——(l—x,-)@a:,-))

=0

where A : z — |z| and A : z — z/z’ as before. Note that this time the
fundamental theorem of algebra, which is false over R, was not needed since
dLm /dz, unlike 0Dy, /Oz, does not involve the (m — 1)st polylogarithm. O

The analogue of Proposition 1 for the function D,, is:

PROPOSITION 2. Let {ni, zi(t)} be a collection of integers n; and rational
functions of one variable z;(t) satisfying the identity

a0 @ [T = 0 (52)
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in (Sym™ =1 {(C(t)*) @ C(t)*) @ Q. Then }_n;Dm (zi(t)) = constant.

PROOF: Just as before, except that in the formula for Dm(z)/dz the
expression (lﬂli"J +1°glzl) becomes log [z|(2 + t%2),and 2’ (1 +25) =
A ((1 - z),) Alternatively, one can deduce this proposition directly from

Proposition 1 since clearly > niDm(z:i) and Zn;ﬁm(:c,') agree for any
>~ ni[zi] satisfying (32). O

We end this section by discussing a different generalization of D3 which
also satisfies “clean” functional equations, namely, the function

Pa(z) = R (32 22 (t0g o1}’ Lim_s(2) ). (33)
7!

=0

where B; is the jth Bernoulli number (By =1, B, = —— , By = 6, cee )
(The letter “P” here stands for Polylogarithm; the “D” of Dm(x) goes back
to the Bloch-Wigner Dilogarithm and is illogical for m > 2!) The motiva-
tion for the choice of coefficients, which at first sight looks a little arbitrary,
is as follows. We want a function of the form P, (z) = Dn(z)+(lower or-
der terms) which, like Dy, is one-valued, real-analytic on P(C)~ {0, 1, oo},
and (—1)™"l-symmetric with respect to z — 1/z or z — Z, but which is
continuous on all of P}(C). To ensure the one-valuedness we make the
Ansatz

m—1 .
Pp(z) = ) v; (log|z])” Dm—j(z) (34)
Jj=0 .
with some universal coefficients v¢ = 1, 11, ... yet to be determined. The

requirement of (—1)™~!-symmetry with respect to z + 1/z or z — T is
then equivalent to the requirement that v; = 0 for 7 odd. On the other
hand, the definition of D, can be written

Dn(e) = %m (Y- S (108 ) Lin-i(2)),

7=0

with the convention Lio(z) = —3, so we can rewrite (34) as

Pn(z) = Rm (g 8 (g 21)' Lim—())

with {3;} defined by the generating function identity

[o o] o0
Syl et =) 8 (35)

j:O 31=0
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Now log’ |z} Lim—j(z) is o(1) as z — 0 for j < m (since Lim—;(z) = O(x)),
and the term j = m gives 0 if m is even because then Rm(Lim~;) =
Rm(—3) = 0. Consequently Pm(z) is automatically continuous (with value
0) at £ = 0 when m is even, but is finite at £ = 0 for m odd if and only if
Bm = 0. We therefore demand that #,, = 0 for all odd m > 1. Replacing
z by —z in (35) and subtracting, we deduce (since v; = 0 for j odd)

(5 0e) (<) -2
1=0

whence

o0
. 2’B
. i= = '
;"/,:c smha: Zﬂ,m er —1’ i Tt

7=0

This explains the choice of coefficients in equation (33) and proves that
the function it defines is continuous (with value 0) at z = 0 and hence, by
the functional equation, at z = oo; at £ = 1, of course, it is continuous
with value 0 for m even, ((m) for m odd. Furthermore, from the formula

(> 7ja:j)-1 = 5" z% /(2 + 1)! we deduce that the functions P,, and D,
are related by

log ! =l
thus Do(z) = Py(z) =0, Dl(:c) = Pi(z) = 3 log Iz, D2(z) = Pa(z) =
D(z), D3(z) = Ps(z) + -};Pl(a:)log2 |z|, etc.

PROPOSITION 3. The statement of Proposition 1 remains valid if D, is
replaced by Pp,.

PROOF: Let Pm(z) = Y Brlog” |z|(Lim-r(z) — (=1)"Lim—r(T)), which
differs from Pn(z) only by a factor of £2 or +2i. Using the identities

=Y BBk =rBr+28ro1, =3 (-V*BkBrox =18  (r21),
k=1 k=1

which are easily proved from the generating function }_ Brz" = 2z/(e** 1),
we find after a short calculation that

5} _ Om m—2 log|ll —z| log|z|
57Pn(2) = 22 Pruy(2) + B log™ o (B 4 2EE),
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- 5} :
and similarly for 5 The rest of the proof is like that of Proposition 1. [J

Finally, we mention a different way to see the function P,(z) which
was pointed out to me by Deligne and Beilinson, and which appears in the
interpretation of the polylogarithm in terms of variations of mixed Hodge
structures. Let g(z) (z # 0, 1) denote the n x n triangular matrix (n > m)

1 r—s
with entries gro(z) = 0 if r < s, ! Og? if 0 < s £r, and
(r—s)!\ 2=

(2 2 o ~———Li,(z) if s = 0. This matrix is well-defined if we have defined the
polylogarithms using a common path from 0 to z in C \ {0,1}, and the
many-valuedness of the logarithms and polylogarithms is expressed by the
fact that g(z) is multiplied on the right by a triangular matrix with rational
entries when z moves around a loop in C* \ {1}. Since such a matrix is
in particular real, the matrix A(z) = g¢(z)g(z)~! has entries which are
single-valued functions of z. We write h(z) = etP(2) where P(z) is a real
triangular matrix. It is easy to see that the entries of P(z) all vanish

1 ..
except for the subdiagonal entries, which equal — log |z|, and the entries in
the first column, and a short calculation shows that the mth entry in the

first colum i8 ——— @y Pn(2).

§8. Formulation of the main conjecture. In this section we state
conjectures for the higher order polylogarithms analogous to the conjectures
for the trilogarithm presented in §§3-6. We shall give two versions, anal-
ogous to the different versions for the trilogarithm; the second one seems
preferable, but neither one obviously implies the other.

For any field F let Fr denote the free abelian group on F'*, or alterna-
tively, the quotient of the free abelian group on P!(F) = F U {co} by the
relations [0] = [oo] = 0, and let ¢ : Fr — F* @ FFr be the map defined on
generators by [z] — [z] ® [z]. We define subgroups AG )(F YCFr(m2>1)
recursively by

AD(F) =ker(8Y),  ADF) = (FXQAZL(F) (m22)

or in one step as ker(ﬁg)), where Fg = F* @2 Q and 3%) is the map
Fr — Sym™ (Fgq) ® Fq defined on generators by

() = )" @ [g] @ ePUAN {0 L))

and ﬁ(l)([z]) =0 for r € {0,1,00}. Define C(I)(F) to be the subgroup of
ALY (F) generated by all images (o — ¢3)(A(1)(Q(t))) as a and 3 range
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over P1(F), where ¢o : FQi)y — Fr is the evaluation map defined on
generators by [z(t)] — [z(a)]. By virtue of Proposition 2 of the last section,
ch )(F) is the group spanned by the functional equations (with arguments
in Q(t)) of the mth polylogarithm function Dp; this is like eq. (11) for
m = 2, except that we no longer know the functional equations of D,
explicitly. In any case, it follows that if F' is a subfield of C, then the map
D,, : Fr — R vanishes on C,, (F). Finally, and with apologies for the many
superscripts, we define

AD(F) = " (F* @CRLy (F))
. ; et 1
= ker(Ag)(F) —- F*Q® Afn)_l(F) — F* ®fF/Cm—1(F))’

where 7!',(,12_1 is the obvious projection, and BY (F), the (first version of the)

mth Bloch group, as the quotient AS:‘:)(F)/CS:)(F).

Now suppose that F' is an arbitrary field with [F : Q] = n4 + n_ and
A = absolute value of discriminant of F' as usual. For each embedding o of
F into C we define D7, as the composite of ¢ with the map Dy, : P}(C) - R
defined by (12), and define Df, : Fr — R™* (where (—1)™ = %1) as the
product of the DJ, over all the real and half the complex embeddings of F’
(one of each complex conjugate pair) if m is odd and over half the complex
embeddings if m is even. By what we just said, the map Df, vanishes on

f,})(F), so it defines a map from Bg)(F) to R™¥.

MAIN CONJECTURE (FIRST VERSION). DZE is an isomorphism from Bf,})(F)
onto a lattice in R** whose volume is a rational multiple of VA (p(m)/x™"

For the second version of the conjecture we modify the definitions as
done in §5 for the trilogarithm. We define groups AP (F) C FF recursively
by

AD(F)=ker(B), AQF) = (F*@AD (F)) (m=3)
or in one step as ker(ﬂm), where 8, : Fr — Sym"‘"z(F&f) ® A? (F&f) is
the map defined on generators by

Bm(la]) = [a]" @ (Wl A[L=al) (2 €PY(F) {0,1,00})

and fOm([z]) = 0 for z € {0,1,00}. Define Cn(F') to be the subgroup of
AS,?’(F) generated by all images (¢ — d)g)(ASﬁ)(Q(t))) as a and (3 range
over P1(F), and set
Am(F) =17 (F* ® Cm_1(F))

Id®rm_1

= ker(AD(F) = F* @ A (F) F* @ Fr[Crm-1(F)),

and Bm(F), the (better) mth Bloch group, as Am(F)/Cm(F).
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MAIN CONJECTURE (SECOND VERSION). DE isan isomorphism from B, (F)
onto a lattice in R®¥ whose volume is a rational multiple of VA (p(m)/x™"% .

The various groups and maps we have defined are related by the com-
mutative diagram (25) with “3” replaced everywhere by “m.” In particular,
the lattices given in the two conjectures must coincide if both conjectures
are true, but the one in the second conjecture a priori could be larger. Note
also that we could replace the function D, by the function P,, in the sec-
ond conjecture, since D, and Dm clearly agree on Ag), while P, and Do
agree on A,, by virtue of (36) and the definition of An,.

Of course, as explained in §§1-2, what we really want is that the lattice
in R™# arising in the two above versions of the conjecture coincides (up to
torsion) with the lattice given by the Borel regulator mapping K2m—1(F) —
R"¥, in which case the statement about the covolume is a consequence of
Borel’s theorem. Thus our final formulation is

MAIN CONJECTURE. There is a canonical map Bm(F) = Kom—1(F), with
finite kernel and cokernel, whose composite with the Borel regulator map-
ping coincides with PE.

Before turning to examples, we make two remarks about aspects of the
above formulations which might have bothered the reader. First of all,
it might be objected that the definition of the kernel C,,(F) is not really
constructive, since we have no criterion to determine which elements of Fp
can be obtained as linear combinations of specializations of functional equa-
tions of the polylogarithm: for m > 6 no functional equations at all beyond
the trivial inversion and duplication relations are known, and even, say, for
m = 2, where it is known that the 5-term relation (10) gives everything, it
is not clear how to check whether a given element > n;[zi] € Fr is a linear
combination of elements of this form. This objection 1s especially serious
since, even if we decided not to worry about the kernel of our hypothetical
surjection Am(F) — Kom—1(F), as was done in §§3-5 for the case m = 3,
we would still need to know Cim(F) inductively in order to define the next
group Am+1(F). However, in practise we can decide whether a given ele-
ment is in Cm(F) by first checking whether it is in A, (F") (assuming the
group Cp—1(F) known by induction) and then computing its image under
the polylogarithm map. According to the conjecture, the answer must lie
in a latttice in Euclidean space, and by computing many examples we can
both see numerically that this holds—thus confirming the conjecture—and
also recognize which elements are zero, since the vanishing of an element
in a discrete subgroup of Euclidean space can be ascertained by a finite
precision computation. In other words, the numerical verification proceeds
by a bootstrap procedure from one level to the next, with the consistency
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of the entire numerical procedure providing the evidence for the correctness
of the conjecture.

The other remark concerns the definition of the kernel using 1-variable
functional equations only, i.e., by specializing elements of Am (Q(?)) to val-
ues t € F rather than specializing elements of A, (Q(tl, R 1 N)) to values
t1,...,tn € F. This may seem strange in view of the fact that the basic
functional equations used for the di- and trilogarithms, namely the 5-term
relation (10) and the Kummer-Spence relation (26), involve two variables,
and it is clear that no single one-variable equation can ever suffice to pro-
duce the whole kernel. However, there is no loss of generality involved, since
the specialization of a functional equation }_ n;Pn (zi(t1,... ,tN)) = c to
values t; = a3 € F, ..., ty = any € F is the same as the specialization
of the one-variable functional equations Y n;Pm(zi(fi(t),..., fn(1))) =¢
tot = ag, where FF = Q(ag) and fi,...,fn € Q(¢) are chosen such
that a; = fi(ao); indeed, this shows that in the definition of Cp(F) we
could have fixed the choice of @ and 8 as ag and oco. We have cho-
sen the one-variable formulation because (i) it is simpler, (ii) it has an
algebraic-topological flavor (compare the definitions of homology and ho-
motopy groups in terms of bounding cycles of one dimension higher or
of deformations of maps) and thus should lend itself to the comparison
with K-theory, and (iii) it sidesteps the question, which we cannot handle
anyway, of the existence of a universal functional equation like (10) for the
higher polylogarithms, since as soon as we restrict to one-variable equations
we are forced to look at infinitely many equations anyway. Of course, one
can still speculate that for each m there may be a a single many-variable
equation, or even a single two-variable equation like S, or S';({:’,), whose
specializations to F' generate the group Cnm(F).

We end this section by giving a slightly different formulation of the
algebraic structures we have described. For each m we have a filtration

Fr=Amo(F)D An1(F)D ... Amme1(F) D Am.m(F)
with A1 (F) = AD(F), Amm_1(F) = An(F), and Apm m(F) = Cm(F)

in our previous notation. The groups A, ; for i < m are defined inductively
as L (F* @ Am—1,i(F)), while Am m(F) is defined as before as the image
of Am,1(Q(t)) under specialization. By induction, one sees that Am ; for
¢ > 1 is the kernel of the (conjecturally surjective) map Apm i—1(F) —
Sym™ ™' (F*)®B;(F) induced from the map «(™~% : F - Sym™ {(F)Q Fr
sending [z] to [z]™* ® [z]. The definition of A 1(F) = ker(8m) can be

written in a similar form by noting that there is an exact sequence
0 — Sym™(F*) =5 Sym™ ! (F*) @ F* —% Sym™ 2(F*) @ A(FX)
2L Sym™ Y (F) @ AN FX) - ..., (37)
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where «; sends [z1].. . [Tm—i]® ([y1]A. . .Alyi]) to 1:;_:[2:1] ... @ o [Tm-i]®

([z;]Aly1]A.. .Alyi]), and that the image of 8., is in the kernel of «;. Thus
we can think of 3, instead as a map to Sym™~}(F>*)® F* /Sym™(F>). In
other words, fm (}_ ni[zi]) = 0 iff the element §_ ni[z;]™ ! ®[1 —z;], which
is already invariant under permutations of the first m — 1 variables, is also
invariant under permutation of the last two. Then we can summarize by
saying that we have injective, and conjecturally surjective, maps

(Sym™~Y(F*) @ FX)/Sym™(F*)  (i=1)
Sym™{(F)® Bi(F*) (1<i<m)
induced by the map (™9 : Fr - Sym™~{(F*) ® Fr.

Ami—1(F)/Am i(F) — {

§9. Examples. We have given many examples supporting the conjecture
for m = 3 in previous sections. We now give a few examples for larger m.

A. Penta- and heptalogarithms of rational numbers. For our first
examples, we look at the field X = Q and the 11-element set X = X/, 3,
of §3. We look for non-trivial combinations £ of elements of r belonging to
the group Bs(Q) and consequently giving a rational multiple of {(5) under
Ps; here for the first time we will see the necessity of the analogue of (19)
for higher Bloch groups even when F is not totally real. For r € X we have
z,1—z € (£1,2,3) and consequently Bs(z) = Qz([2], [3]) ® ([2] A [3]) where
Q:(a,b) is a homogeneous cubic polynomial in two variables. For instance,
for z = 1/4 we have

G (1A LD = (-212)° © (~2(2) A (3] -2020)) = 162 @ ([21A[3)

and consequently Q;/4(a,b) = 16a3. Computing the values of Q.(a,b) for
each z € X and forming linear combinations to eliminate these polynomi-
als, we find that the kernel of 35 on Fx is 7-dimensional, with generators
(1], 3], (~3] - 23], [&] ~ 163, (-] - 162(~3], [4] - 48([4]. and
(2] -9[2] -36[2] —18[—-3] —6[3]- If € = 3_ni[z:] is one of these elements.
then each of the sums Y nva(zi)#vs(zi)”[z:] (1 +v = 2) belongs to A3(Q)
and therefore gives a rational multiple of {(3) under P;. We must then form
linear combinations for which this triple of rational numbers vanishes. This
gives 3 linear conditions on our 7 elements and finally a 4-dimensional so-
lution space, with basis [-1], [3] —16[3] —16[—3], [§] —16[3] —16[—3],
and [-%] — 126 [%] ~ 162 [-—-é—] The first three elements are uninterest-
ing, since they correspond to the inversion and duplication relations of the
trilogarithm, but the last gives the non-trivial relation

‘g) — 126 P5(5) - 162 Ps(-3) = 55 ¢

Ps( 16
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By looking at the larger set X 3 5y considered in §3, we get many more
non-trivial relations of this sort, a typical one being

P5(32) — Ps(33) +30Ps(F) — 30Ps(F2) — 3P5(F) — P5(5h) + 22P5(3)
— P5(8) — 24P5(3) — 10P5(3) + 10Ps(5) — 18Ps(3) + T6Ps(3) = 22 {(5).

We did not have to put question marks above the equality signs in
the last two identities because their correctness can be verified analytically
using Kummer’s functional equation. Christophe Soulé suggested that it
might be worth finding at least one example for higher-order logarithms,
where no functional equations beyond the inversion and duplication rela-
tions are known, just to be sure that the theory does not break down there.
To find such an example for the heptalogarithm (since Bm(Q) is supposed
to be 0 for m even), take X to be the set of ¢ € @ such that z has only
the prime factors 2 and 3 in its numerator and denominator and 1 — z
only the factors 2, 3, 5 and 7, and (to avoid the inversion and duplication
relations) also with |z| < 1, z # square. There are 29 such elements, and
28 relations to be satisfied: 20 to make sure we are in ker(37), another 5 to
make sure that the images under [z] — vo(z)*v3(z)”[z] (¢ +v = 4) map to
0 in the 1-dimensional group B;3(F'), and 3 more to make the images under
[z] — va(z)*v3(z)”[z] (1 + v = 2) vanish in Bs(Q). There must therefore
be at least one non-trivial solution, and indeed we find exactly one, the
value under P being (numerically) a rational multiple of {(7) as expected:

25111753072P; (1) + 27461584367P; () — 43524P; (54

470985412 _ 17015061 _ 7 1020149599795
- —3—"‘P7 (—Bl) - —T—PT (4—81) +-- = 9% ¢(7),

the omitted 24 coefficients being integers of between 6 and 12 digits. (This
example was found in collaboration with H. Gangl.)

B. Cyclotomic fields. To get elements in the higher Bloch groups, we
have to satisfy algebraic relations like 3" ni(z;]™ 2 @ ([z:] A [l —z:]) =0
together with supplementary conditions involving the images ¢,([zi]) =
v(z;)[z:] for all homomorphisms v : F* — Z. If all of the z; are roots of
unity, then these relations are automatically satisfied, since both [z;] € Fg
and v(z;) vanish. Thus any combination of roots of unity defines an element
of the Bloch group of any order of the field they generate.

Let F' = Q(() be the cyclotomic field generated by a primitive Nth root
of unity ¢ (N > 2). For any M # 0 and m > 1 we have the “distribution
relations”

Pr(y) = M™t Z Pr(z), (ye ) (38)

M =y
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(the special cases M = ~1 and M = 2 are the inversion and duplication
relations). Using them for the divisors M of N, we see that the values of
P(¢?) for (j,N) > 1 can be expressed in terms of those with (j,N) =1.
so that we need only look at primitive Nth roots of unity. Also, P((?) =
(=1)™" Py (¢N—7), so we can restrict to j in the set A = {0 <j < N/2 |
(j,N) = 1}. We have [A| = 24(NV) = n4 = n_, the expected rank of the
Bloch group Bm(F'), so it is reasonable to expect that the elements [(7];¢4
form a basis. To see that they are linearly independent, we compute their
images under the polylogarithm mapping PL. The components of this map
are the compositions of P, with half the embeddings o : F — C. We take
these embeddings to be those given by ¢ — en(k) = e?™*/¥ as k runs
over A. For each Dirichlet character x (mod N) with x(~1) = (=1)™"!
we let £ denote the element 3., x(1){¢?] of FFr @ C. Its image under the

mapping P is the vector

Pr(6x) = (D x(7) Pml(en(ik)))ien = A« (X)) e
JEA

where Ay = . 4 Pm(en(j)). The vectors (Y(lc))k&1
early independent (characters of a finite abelian group are linearly inden-
dent). Therefore the vectors PL((7) (j € A) are linearly independent if
and only if all A, are non-zero, and then span a lattice of covolume Hx Ay
which we now calculate. Suppose that x is induced from a primitive char-
acter xo modulo a divisor f = f, of N. Then we have the following more
or less standard calculation:

=3 X x) Prlen(s))

1<j<N
(7 N)=1

% Z ( Z #(d)> xo0(j) Pm(en(j)) (u(d) = Mdbius function)

1<jEN Md(5,N)

as Yy varies are lin-

Il

[

Il

52 a(d) Y xo(dr) Pm(ensa(r))

d|N 1<r<N/d

5 2w Y xS Paleln)

d|N 1<t<f 1<r<N/d
(d,f)=1 r=t (mod f)

=% Y u(d)xo(d) Y xo(t)(%)m’le(ef(t)) (by eq. (38))

d|N/f 1<t<f

= (5 ( > u(d)xo<d>dm‘1) > () Y

d\N/f 1<e<f
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e ( S 4(d) xold) d’"“) . 7(x0) - L(m, o),

diN/ f

where @« = 1 or ¢ depending whether m is odd or even and 7(xo) =
> xoft)eg(t) is the Gauss sum associated to xo. Each of the factors in
the last line is non-zero (the number 7(x)/a equals W,/f, with W,, the
root number in the functional equation of L(s, x), of absolute value 1), so
Ay is non-zero for each x and the vectors we have constructed in Im(8m)
form a basis of R*¥. The covolume of the lattice they generate, [] Ay,
is rationally proportional to \/ZCF(m)/ 7"+ by the formula we have just
proven together with the facts that (r(s) is the product of the L-series
L(s, x) over all Dirichlet characters x (mod V), that L(m,x) for x with
x(=1) = (=1)™ is a rational multiple of Wx+/fy #™L(1 — m, x), that
[I,Wx =1and [, fx = A, and that the numbers L(1 — m, x) for the
characters with x(—1) = (—1)™ are algebraic numbers which are permuted
among one another by the action of Gal(@/Q). We therefore have:

PROPOSITION. Let F be a cyclotomic field. Then PL maps the subgroup
of B (F) generated by the roots of unity in F onto a lattice in R"¥ whose
volume is a rational multiple of ﬂ(p(m)/wm"*. a

If m = 2, then it follows from the results quoted in §2 that the the roots
of unity generate all of B,,(F'). Beilinson has proved in general that the
images of the roots of unity under the polylogarithm map lie in (and hence
span) the image of the Borel regulator mapping (cf. §11).

C. “Ladders”. It turns out that there are already in the existing literature
many numerical examples supporting the conjectures of this paper. These
are the so-called “ladder relations” of Lewin and his coworkers (see [1]
and the references given there). Suppose given a number u, necessarily
algebraic, which satisfies a relation of the form

A: H(l —u")r = 4V (39)

r>1

for some integers a, (Lewin always supposes that the r occurring are di-
visors of a fixed ro with ar, = 1, but this is not needed and spoils the
property that the set of relations of the form (39) form a group). Then for

each m > 2 the linear combination £n(A) = 3 m:1 [u'] is in the kernel
- r

of 3, (even of 55,1)). We thus get in a systematic way elements of AS’(F)

(or even .AS,I,)(F)) for every m for the field F = Q(u). The extra condi-
tions defining the subgroup A, (F) are also particularly easy to fulfill for
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the special elements {,(A), since the subgroup of F* generated by their
support is 1-dimensional: for each value m’ =2,... ,m —1 in succession we
require that £m,/(A) define the O element in B/ (F), in which case &, (.\)
will define an element of the next Bloch group B, (F). The number of lin-
early independent conditions this imposes at each stage is alternately n_
and n4, so if these numbers are small and the number u happens to satisfy
a large number of relations (39), we will be able to climb up several steps
of the “ladder.” Of the many examples given in the papers referred to, we
describe only one family which is particularly spectacular. This is for the
field Q(0) (6° — 6 — 1 = 0) already used by us as an example in §4 and §5.
We had implicitly used the ladder concept by observing that the numbers
=0, -0, 6*, —6* and 6° all have the property that 1 — z belongs to the
group generated by —1 and 6:

1-0=—6"% 1460=6% 1-03=-6, 1+6*=6°1-6°=—¢*

(one can use 1 +z = (1 —z%)/(1 —z) to put these in the form (39).) In [2],
Lewin et al. study the same field and give the seven further ladder relations

1+6° _p 14067 1467 5 1+6° 5
1+62 "7 1-67 7 146 7 (1+6%)2
1+014 _ ” . 1+915 5 1+921 95

(1+6%)(1-67) (1401465 7 (1+6)2(1+67)
This gives altogether 12 elements [6], [—6],... ,[—6%!] —3[—67] — 14[—6°] of
A(F). Each gives a rational multiple of 23%/2L(2)/7* under P,(-) = D(-)
(cf. §4), so we get 11 linear combinations ) . ar[u”"]/r which give 0 in By (F)
and hence lift to elements ¢ = Y a,[u"]/r? of A3(F). For each of these
the elements §7(£) and §_(¢) defined by (20) are rational, and these must
vanish in order to be able to lift again to _ a.[u"]/r?® € A4(F). Continuing
in this way, we find that the number of “viable ladders” drops alternately
by n_ =1 or n4 = 2 at each stage, the relevant linear combinations being
obtained by computing the images of £ under Pn(:)/{(m) for m even and
the map (20) (with 3 replaced by m) for m odd. This is exactly the structure
which was found empirically by the authors of [2], except that they used
only the real embedding of F and thus had to find one of the linear relations
at each odd stage by searching numerically for a linear combination which
gave a rational multiple of ((m) under Pn,. (At the even stages they used
Lewin’s function L,, as defined in §7 rather than the function Pn, which
vanishes on R, and always found a rational multiple of {(m) here, too: this
is not covered by our conjecture, which only says that Pm( ¢ should be
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a rational multiple of v/23 L(m)/72™ in this case.) At the last stage of the
computation, for instance, one has two elements

& = 6230[6*%] + 15778[6°°] + 164700[6°%] + - - - — 382768243200 (6]

&2 = ~20440[8*?] + 122794[6°°] + 29700(6%°] + - - - + 816983193600 (6]
in Ag(F) (their images under Py = Ly equal 2k times the elements de-
noted Ag and By, respectively, in [2], where the interested reader can find
the remaining coefficients). Computing the values of §(¢;) as defined
by the analogue of (20) with 9 instead of 3, we find that the polyloga-
rithm mapping P{ : ¢ — (Pg(ﬁ(l)),Pg(E(z))) € R? maps & and & to
9850530391e; — 3307e2 and —21953831855e; + 7055e2, respectively, where

er =4¢(9)(1,1) e = %231*’/2 @(2, -1),

in agreement with the result found in [2] that 7055Ps({1) + 3307Ps(&2) is
a rational multiple of ((9). Observe that the covolume of the lattice in R?
spanned by e; and e is a rational multiple of /23 (¢(9)/7?, in accordance
with the general theory.

§10. Complements. In this section we discuss some further aspects of
the main conjecture.

" A. Satisfying the conditions defining A,.(F). The group An(F) is
defined by a number of multilinear conditions on z and 1 —z € F*. To
satisfy them, we need a large number of z with z and 1 — z belonging to a
relatively small subspace of F*. It is not clear a priori if such elements can
be found when m is large, and indeed Deligne asked me in a letter of 1988
whether this could always be done. In this subsection we show that the
answer is affirmative and discuss some of the numerical aspects involved.

We first count the number of conditions needed. Let S be a subset of
F* of cardinality s (we may assume without loss of generality that the
elements of S are linearly independent) and consider the set

X=XS)={zeQ|z,1-z€V},

where V = (5) is the subspace of F'* ®z Q generated by S (earlier we used
the notation X for a similarly defined set.) It generates a subgroup Fx
of Fp of rank equal to |X|, the cardinality of X. We want to estimate
the number of linear conditions on an element £ € Fx imposed by the
requirement that it belong to A, (F); if this number is (much) less than
|.X|, then we get (many) elements of A (F)N Fx.
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The basic condition that an element £ € Fx must satisfy is that it
belongs to the kernel of Bm : Fx — Sym™ (V) ® A*(V). The number of
conditions this imposes is dim(Sym™~%(V)) dim(A%(V)) = (*1™7°) ().
This can be improved slightly by noting that the image of 3, in fact
belongs to the subspace (Sym™ (V) ® V)/Sym™(V) of Sym™ (V) ®
A%2(V) (cf. the exact sequence (37)), so the actual number of conditions
is dim(Sym™ }(V)® V) — dim(Sym™(V)) = (m — 1)(™"27?). Once our
element £ belongs to ker 8 = S , we must ensure that it lies in the sub-
group Am(F). This will be the case if it lies successively in the kernel of a
sequence of maps to Sym*(V) ® Bm_i(F) fori = 2, 3,... (cf. the filtration
of Am(F) given at the end of §8). Since dim(Sym'(V)) = (**97') and
dim(Bm_,'(F)) = n(_1)m-i-1, this gives finally

dim(Fx N Am(F)) > |X|

—(m_1)<3+2—2)_ 5 <i+‘2"1>n(_l)m_;-1. (40)

1<i<m—2

In any case, the number of conditions which an element of Fx(s) must
satisfy in order to belong to A, (F) grows polynomially with s. To be sure
of obtaining elements of A,(F) for each m, therefore, we need to know
that we can find sets S of arbitrarily large cardinality s such that |.X(5)]
grows more than polynomially in s. That this can be done is the content
of a beautiful theorem of Erdds-Stewart-Tijdeman [7]. Since the result is
not very well known and the proof a little hard to extract from [7], where
it is presented as a series of lemmas which are specializations of much more
general and complicated propositions stated elsewhere in the paper, we
digress from our main theme to state the complete statement and proof.

THEOREM (ERDOS-STEWART-TIDEMAN). For every sufficiently large in-
teger s there is a set S of cardinality s for which the set X(S) has >
e(#=o()/s/198 s glements with an effective o(1) constant (i.e., for each num-
ber ¢ < 4 the expression 4 — o(1) can be replaced by c for s greater than an
effectively computable number so(c)). The set S can be taken to consist
only of primes if so desired.

PROOF: Let y>>0 and u >3 be real numbers and W the set of integers < y*
all of whose prime factors are < y. For the cardinality of W, usually denoted
¥(y*,y), we have the well-known Canfield-Erdés-Pomerance estimate (5]

u logu

Wi > (ye+°(1))u,
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where the dependence of o(1) on u as u — oo is effective. It follows that

by choosing u = (2 + o(1))\/y/logy we can force (l";l) Jy* = M =

w
e(4+°(VF/108 Y Byt for each of the l2 I) pairs (a,¢) € W? with 0 <

a < ¢, the difference ¢ —a is an integer < y*, so by the pigeonhole principle
there must be an integer b < y* which is representable as ¢ —a in > M
ways. Set S = {p prime, p < y} U {b}; then the numbers b/c belong to
X(S) and there are at least M of them. The cardinality of S is given by

s=m(y)+1< (1+0(1))y/logy, so M > e(t—o(M/s/logs T, get the
last statement, we replace the choice S = { primes < y} U {b} by S =
{ primes < y} U {prime factors > y of b}, noting that the number of prime
4

logy

log b
factors of b greater than y is bounded by %— u= 0( ) =o(s), so

that the estimate given is not affected. d

Notice that in the statement and proof we do not necessarily take S to
be the set consisting of the first s prime numbers. If we do take this set,
however, then the cardinality of X(S) for s < 8 is given by the following
table, due to P. Vojta and R. Gross:

s |12 3 4 5 6 7 8
1X(S)|] 3 21 99 375 1137 3267 8595 21891

(actually, these are lower bounds; there may be more solutions). We also
mention that the maximum size M, of X(S) for any S of cardinality s is
< 1000 - 50° (J.-H. Evertse), so that the imit Lim 2%.°8Ms
s—oo logs

lies between 1/2 and 1; in [7] it is conjectured that the correct value is
in fact 2/3. However, for our purposes only the lower bound on M, is
important.

Finally, we should remark that in practise it would be unwise to look for
§ € Fr supported on the whole of X (S), since | X(S)|, despite the theorem,
grows far too slowly with |.S| for this to work well when m is at all large. It is
far better to restrict the prime factors of z to a much smaller set than those
of 1—z, since [z] occurs multilinearly and [1—z] only linearly in the defining
equations of A (F). Thus in §9A, by looking at the heptalogarithms for
non-trivial z with |z} € (2,3) and |1 — z| € (2,3,5,7) we obtained a system
of 28 equations in 29 unknowns, well within the range of the computer.
Had we tried instead to use the whole set X(S) for some S, then we would
have needed | Xs| = 2(]X(S5)| + 1) to be larger than 6(**%) + (°T1) + (°T%)
(compare eq. (40)); according to the above table, this first happens for
|S| = 8 and we would have had to solve a system of | X{2,3,... 10}] = 10946

equations in 6(173) + (g) + (141) = 10662 unknowns!

, if it exists,
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B. Rational independence of polylogarithm values. We would like to
make, or at least suggest, the conjecture that the only rational dependences
over @ of values of the modified polylogarithm function P at arguments
in @ C C are those which follow from the functional equations of P,,
(including the reality condition Pn(T) = (—1)™"'P,(z)), i.e., that the
kernel of the map P, : Fg — R is the subgroup generated by Cm(Q)
and the group of elements [z] + (—1)™[Z]. The corresponding statement
when we look only at Am(F) C Fg and use all embeddings F' — C is
part of our main conjecture. In that case the polylogarithm mapping is
supposed to map isomorphically to a discrete submodule of Euclidean space,
so that the injectivity can be “seen” by a finite precision calculation. When
we use only one embedding, the image will in general be dense, but the
mapping should still be injective. There is no evidence for the conjecture
beyond the trivial case m = 1. Indeed, so far as I know, there is not a
single pair of rational linear combinations of values of the Bloch-Wigner
function at algebraic arguments whose ratio is known to be irrational, so
the map P, : Fig/(5-term relation, [z] + [7]) — R, far from being injective,
might conceivably have a 1-dimensional image over Q! Nevertheless, the
underlying algebraic structure of the polylogarithm and the Bloch groups
makes the conjecture seem plausible. By virtue of the theorem explained in
§9B, a special case of the conjecture would be that the numbers P (() as
¢ runs over all roots of unity in C are linearly independent over @ except
for the relations coming from the distribution relation (38). For m = 2 this
is a well-known conjecture of Milnor [12].

C. Generalization to Artin L-functions. The whole situation described
in this paper should generalize in the more or less obvious way to the
pieces of the Bloch group corresponding to various Artin L-series. Specif-
ically, if NV is a Galois extension of @ containing F' and G = Gal(N/Q),
H = Gal(N/F), then one knows that the Dedekind zeta-function of F
factors as a product of Artin L-functions L(s, p) corresponding to the irre-
ducible components p of the representation of G on CC/H  and we expect
the Bloch group Bm(F) to split up in the same way, with the matrix of
the polylogarithm map PZ splitting up into a direct sum of matrices whose
determinants are the appropriate multiples of the numbers L(m, p). We do
not give the details of the correct formulation, leaving these to the reader or
referring him /her to the unpublished paper [9] of B. Gross, where they are
described completely (in terms of algebraic K -theory, not of Bloch groups).
Observe that the refined conjecture, unlike the statement given in §8, is
completely unknown even for m = 1, where it reduces to (an imprecise
formulation) of Stark’s conjecture that L(1,p) can always be expressed in
closed form in terms of logarithms of algebraic units.
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Several cases of the refined conjecture have occurred in this paper: in
§3, where the group B3 (F') for a real quadratic field F = Q(\/_ﬁ) split up
into two one-dimensional pieces on which the trilogarithm was proportional
to ((3) and VD L(3, xp), in §4, where the group B3(F) of the non-abelian
cubic field Q(8) split up in a similar way (cf. equation (19), noting that
the coefficients (1,2) and (1,—1) correspond to the real parts of the trivial
and non-trivial characters, respectively, on a group of order 3), and in
§9B, where the entire mth Bloch group of a cyclotomic field split up into
one-dimensional pieces corresponding to the various characters x and with
values of the polylogarithm proportional to the numbers L(m,x). As a
further illustration, note that a special case of the refined conjecture is that
the value of the zeta-function of an ideal class of a number field F at s =m
should be expressible in terms of the mth polylogarithm function with
algebraic arguments (in the Hilbert class field of F'). As an example, take
F = @(/—-23). Here there are three ideal classes Ay (= {trivial ideals}),
A1, and A; = A ! The zeta function of the former is the Epstein zeta-
function Y_(m? +mn + 6n?)~* (sum over non-zero pairs of integers (m, n),
taken up to sign), while the zeta functions of the other two coincide and
equal the Epstein zeta-function Y (2m? + mn + 3n?)~*. Thus (r(Ae,3) +
2CF(A173) = CF(3) ~ 773((3)/\/2_37 while CF('AO’ 3) - CF(‘AI’ 3) = L(3)7 the
value of the L-series of Q(8) discussed in §4. Thus the rationality of the
numbers §¥(8) defined by (19) says that both {r(Ao,3) and {r(A1,3) can
be expressed in terms of the trilogarithm at arguments in F(9), the Hilbert
class field of F'. .

A special case of the refined conjecture, far from obvious, is that if
E is a Galois extension of F, then the subspace of Bm(E) invariant under
Gal(E/F) is precisely B, (F'). The corresponding property for Kom-1(F)®

Q is known.

§11. Recent developments. In this section, we describe very briefly
some recent results concerning the conjecture presented in this paper.

In (8], A. Goncharov essentially proves the conjectures about the trilog-
arithm presented in §§3-5. Using the connection between K-theory and
certain geometric configurations, he is led to a new functional equation for
the trilogarithm having 22 terms and depending on 3 parameters, namely
D3(Gayazas) = 0 where

3

010203 —Z( ax [/Bx/at—l] [ﬂi/ai—lai] + [aiﬂi—-l/ﬁi-{-l]

1

+ [=Bi/aifiza] — [aiai—lﬁi+1/ﬂi]) -3 [1] + [~e1azas],
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where the o; are arbitrary complex numbers and 8; = 1 — i(1 — a;_;) (in-
dices ¢ taken modulo 3). The Spence-Kummer relation is deduced from this
by specializing, say, to (al,ag, a3) = (1,z,(1-y)/(1 —z)). It is not known
whether, conversely, Goncharov’s relation can be deduced from Kummer’s.
Goncharov expresses the opinion that it cannot, but the evidence presented
in §6 seems to suggest the contrary. In any case, Goncharov defines B3(F)
as the quotient of A3(F)/(Ga,azas)a1,as,a05eF and proves that there is a
canonical map K5(F) ® @ — B3(F) ® Q, conjecturally an isomorphism,
whose composite with 5{ is the Borel regulator map.

In [6] and [3], the conjecture formulated in this paper is reinterpreted
in terms of motivic cohomology and variations of Hodge structures. In [6],
P. Deligne furthermore refines it by replacing the real-valued map P,, by
a map, well-defined on A,,, with values in C/7™:Q. This map behaves
correctly under complex conjugation, so gives for a number field F' of de-
gree n a map on B, (F) with altogether n components, ny of which (the -
ones we have used) are well-defined real numbers, while the other ny are
well-defined only modulo rational multiples, presumably with bounded de-
nominator, of #™. (An example of this phenomenon occurred in §9C, where
the one-dimensional groups Am(Q(6)) for m even could be detected using
the value of Lewin’s function L, which is well-defined modulo Q7™ on
B,., even though PF|R vanishes in this case.) In [3], A. Beilinson also con-
structs an element of a certain K-group that is related under the regulator
mapping to polylogarithms. By specializing it to roots of unity he shows
that their images under PZ lie in the Borel regulator lattice (cf. §9B).

Finally, Beilinson has just informed me that he can construct for all m
and F' a canonical map from B, (F)QQ to K2m-1(F)®Q whose composite
with the regulator mapping coincides with Pf. Thus the image of the
polylogarithm map is always contained in the regulator lattice in R"¥ .
and the determinant det(P,f(fj))j for any nx elements £; € Bn(F) is a

rational multiple of VACr(m)/x™. It is still not known in general whether
the €; can be chosen to make this multiple non-zero, i.e., whether PE s
a surjection from the Bloch group to the regulator lattice. This can, of
course, be checked for any given number field F’ and value of m by a finite
computation, and is true in the case that F is cyclotomic by the discussion
in §9B and in the case m = 3 by Goncharov’s theorem. A consequence
of Beilinson’s result and the discussion of §10A is that there are infinitely
many relations over @ among the values of the polylogarithm function of
arbitrary order at algebraic, or even rational, arguments.
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