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This Arbeitstagung 2009 talk surveys the current state of develop-
ment of Tropical Geometry. We do not make an attempt to make an
exhausting survey, but rather choose some particular topics to make it
a collection of some short stories from the area.

1. Introduction and a (basic) example

Recall that as Mathematics operates with rather abstract notions,
many notions may admit several different-looking (and perhaps still
sufficiently abstract) realizations.

For example, let us consider (algebro-geometric) curves. These are
1-dimensional algebraic varieties. Their classical realization (XIX cen-
tury) is provided by Riemann surfaces, i.e. smooth 2-dimensional man-
ifolds with a choice of complex structure in their tangent bundle. The
story generalizes to higher-dimensional algebraic varieties, but it is es-
pecially easy is dimension 1. In this dimension the complex structure
is given by an endomorphism J in every tangent space with the prop-
erty that J2 = −1 (i.e. an almost complex structure). Furthermore, a
complex structure on a Riemann surface may be described by a metric
of constant curvature. Projective curves correspond to compact sur-
faces. The genus of a curve is one half of its first Betti number (i.e.
the number of cycles). It can also be computed as the dimension of the
space of holomorphic 1-forms on the surface.

Compact tropical curves can be realized as so-called metric graphs
(considered up to an equivalence). These are finite graphs where the
interior of each edge is enhanced with an inner metric. We impose the
requirement that the length of an edge adjacent to a 1-valent vertex
must be infinite. Such an edge is called a leaf edge. The genus of a
tropical curve is the number of cycles. It can be also computed as the
dimension of the space of tropical 1-forms on the graph.

To get tropical curves we consider metric graphs equivalent if one
can obtained from the other by contracting a leaf edge. Clearly genus
depends only on an equivalence class. Note that all genus 0 curves are
equivalent. Thus the tropical rational curve is unique just as in the
classical case. Curves of positive genus g > 0 admit unique minimal
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Figure 1. Equivalent elliptic curves

models – graphs without leaves. Generically such graphs are 3-valent
and have 3g − 3 edges of some length. Thus the space of all curves of
genus g > 1 is (3g − 3)-dimensional.

It is easy to see that tropical curves possess many other properties
that we can expect from projective curves. In particular, any curve
of genus smaller than 3 admits a hyperelliptic involution. In the same
time a generic genus 3 curve is not hyperellptic, but trigonat, etc. To a
tropical curve we may associate its Picard group, its jacobian varieties.
Many classical 19th century theorems about Riemann surfaces (such as
Abel-Jacobi, Riemann-Roch, the Riemann theorem on Θ-divisor, etc)
admit straightforward and easy-to-visualize tropical counterparts, cf.
[9].

Figure 2. A genus 2 curve as a Θ-divisor in its Jacobian variety

2. Tropical varieties and morphisms, the balancing
condition

As a set tropical numbers T coincide with the half-open real line
[−∞,+∞). There are two tropical arithmetic operations (which we de-
note in quotation marks to distinguish them from standard arithmetic
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operations): tropical addition “x+ y” = max{x, y} and tropical multi-
plication “xy” = x+ y. Clearly we get tropical division “x/y” = x− y.
However there is no chance for tropical subtraction as tropical addition
is idempotent: x + x = x. Actually in most geometric constructions
we can easily avoid using arithmetics at all.

Let us consider the affine n-space Tn and the n-torus (T×)n = Rn.
Here T× = Tr{0T} = R as the neutral element under addition is 0T =
−∞. Tropical structure in these spaces is given by the sheaf of tropical
regular functions that are obtained from tropical rational functions by
restricting them to open sets where they are convex. The geometric
structure that encodes such a sheaf is the integer-affine structure on
Rn. Thus tropical varieties can be thought as polyhedral complexes
enhanced with an integer-affine structure.

There are local and global conditions on such an enriched polyhe-
dral complex (X,O). Locally we require that (X,O) is equivalent to
(Tn,OTn). Equivalence here is generated by smooth divisors, i.e. those
that are themselves smooth (n−1)-dimensional tropical varieties. Glob-
ally we require a certain finite type condition. The resulting object is a
(smooth) tropical manifold. Tropical manifolds come with (equivalent)
local embeddings to TN , N ≥ n, that exhibit them as piecewise-linear
polyhedral complexes Q ⊂ RN (or, rather their closures in TN ⊃ RN).
By a piecewise-linear polyhedral complex we mean a union of convex
polyhedra in RN . Furthermore, we require that the slope of each face E
is integer, i.e. the vector subspace VE ⊂ RN parallel to E is generated
by integer vectors.

Any local model polyhedron complex Q ⊂ Rn is balanced. This
is a property at (n − 1)-dimensional faces of Q. Let E ⊂ Q be an
(n − 1)-face and F1, . . . , Fk be the n-facets adjacent to Q. Each Fj

defines a vector vj in the quotient vector space RN−n = RN/VE,namely
a primitive integer vector parallel to the image of Fj in the projection.
The balancing condition is formulated as∑

j

vj = 0 ∈ RN/VE.

It is always satisfied if Q is locally equivalent to Tn. Furthermore we
have some additional (finer) properties at faces of codimension greater
than 1.

Alternatively, we may define a class of tropical n-spaces where we
only impose the balancing condition at the faces of codimension 1 and
no additional conditions at higher codimensions. Furthermore, at the
n-faces we may put integer weights. These are the so-called tropical
cycles. A cycle is effective if the weights are positive. We may define
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Figure 3. Balancing condition

positive multiplicities at the points of such cycles. If all these mul-
tiplicities equal to one then the cycle is called a homological tropical
variety (or a pseudomanifold). Such spaces are locally given by ma-
troids and their local realizability by complex effective cycles depends
on the realizability of the corresponding matroid, cf. [7].

All morphisms between homological varieties are given by integer
affine-linear maps of the ambient varieties. Morphisms between smooth
tropical manifolds are more restricted, they are given by regular func-
tions. E.g. scaling by 2 of all the edges is induced by an integer
affine-linear map of the ambient R2, but is not an endomorphism of a
tripod graph (as a smooth tropical 1-manifold). Note that the number
of critical points of this would-be endomorphism is negative and thus
it is never approximated by a complex map.

Figure 4. A (realizable) degree 2 map from an elliptic
curve to TP1.

3. Interactions between tropical and classical worlds

Connection between complex and tropical numbers is provided by
logt : C → T, z 7→ logt |z|. When t → ∞ the map becomes more and
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more homomorphism-like. Images of complex affine varieties under the
map

Logt : Cn → Tn

obtained by coordinate-wise application of logt are called amoebas and
carry significant information about geometry of complex varieties. Even
better picture is obtained after consideration of images of families
Vt ⊂ Cn under Logt when t → ∞. The limits of these images are
(perhaps singular) tropical varieties.

More generally, tropical varieties X sometimes can be obtained as
a result of collapse λt : Xt → X of families of complex varieties Xt.
Such a collapse is easy to produce in the case when X is a tropical
curve (with the help of decomposition into pairs-of-pants) or if X is
a smooth tropical complete intersection (by tropicalizing the defining
equations). Tropical varieties may be enhanced with phases responsible
for gluing data. The phase-tropical structure can also be included in
the approximation data.

For curves the phase data amount to the twist for gluing pairs-of-
pants. If the curve is given by a 3-valent graph and we fix a cyclic
orientation for the edges adjacent to every 3-valent vertex we have a
canonical (untwisted) choice of gluing. E.g. if we have a plane curve h :
C → TP2 the cyclic order is given by the ambient plane. The untwisted
phase-tropical curves give the so-called simple Harnack curves, cf. [5].

d=10

Figure 5. A Harnack curve of degree 10.
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Suppose that h : C → X is a tropical morphism, where C is a curve
and X is a complete intersection. We may approximate C by a complex
family Ct and X with a complex family Xt. But can we approximate h
with a family of holomorphic maps Ht : Ct → Xt. It turns out that it is
not always so. Nevertheless the following theorem provides a criterion
for such realizability.

It can be shown (with the help of the tropical Riemann-Roch theo-
rem) that any tropical curve h : C → X in X has a deformation space
of dimension at least −KX .[h(C)] + (1− g)(dimX − 3).

Definition 3.1. A tropical map h : C → X is called regular if the
dimension of the deformation space of h is−KX .[h(C)]+(1−g)(dimX−
3). Otherwise h is called superabundant.

Theorem 1 ([6]). A regular tropical morphism h : C → X is approx-
imable by a family of holomorphic maps Ht : Ct → Xt.

There are many examples of non-realizable superabundant curves.
For example a map h : C → TP1 from an elliptic curve depicted on
Figure 6 is realizable only if the lengths a and b are equal. This is a
special case of a realizability of genus 1 curves found by David Speyer
[10].

Figure 6. A non-realizable superabundant map from
an elliptic curve to TP1.

4. Applications to complex and real enumerative
geometry

Theorem 1 allows to replace certain (regular) enumerative problems
in classical (complex and real) geometry with the corresponding trop-
ical problems. Often the latter problems are much more manageable
combinatorially.

For example, consider the problem of finding the number of complex
(or real) curves of degree d and genus g passing through 3d − 1 +
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g generic points in P2 or 2d points in P3. In the case of the real
enumerative problems the curves have to be counted with signes defined
by Welschinger [12], [13] in the case of genus 0 (in the case of positive
genus we do not consider the real case at all as at the moment there is
no corresponding real invariant defined).

Theorem 1 may be used to reduce both complex and real problem
to enumeration of tropical curve passing through the corresponding
collection of points in TP2 or TP3. Each such tropical curve acquires a
multiplicity that might be different for the instances of real and complex
enumeration.

In the corresponding tropical enumerative problem we may choose
the points to be well stretched vertically. Tropical curves passing
through such points are described by the so-called floor diagrams, see
[1]. Every floor diagram (with marking) encodes a unique tropical
curve. Without the marking the floor diagram is an even better-looking
combinatorial object. As it was shown in [2] in the planar genus 0
case it corresponds to a tree on d vertices, so there is dd−2 of them.
Thus the number of corresponding complex and real curve (the genus
0 Gromov-Witten and Welschinger numbers for P2) can be interpreted
as two (different) statistics on trees. Both of this statistics are non-
negative and coincide on trees corresponding to floor diagrams where
the weight of all edges are equal to 1 (otherwise they differ by scal-
ing depending on these weights). In particular, this implies the results
of Itenberg-Kharlamov-Shustin [4] on logarithmic asymptotics of the
Welschinger invariants.

Figure 7. Floor diagrams computing the number of
complex and real rational cubic curves through 8 generic
points in P2.



8 GRIGORY MIKHALKIN

5. Patchworking of real varieties

Yet another direction of applications of tropical geometry is based on
interpretation of Theorem 1 as a generalization of Viro’s patchworking
theorem [11]. Recall that the Viro theorem allows to find real curves
embedded to the plane with controlled topology in the context of the
first part of Hilbert’s 16th problem. Theorem 1 allows to generalize
this construction to immersed curves in the plane as well as to algebraic
knots and links in RP3.

To illustrate what happens with the analogue of Hilbert’s question
in dimension 3 (particularly in the positive genus case) we list a clas-
sification of smooth curves of degree 5 and genus 1 in RP3 recently
obtained by Mikhalkin and Orevkov [8]. All topological types in this
case are depicted on Figure 8.

Figure 8. Topological types of degree 5 genus 1 knots
in RP3.

As it was shown by Harnack [3] the number of components of a real
curve of genus g can not exceed g+ 1. The following theorem comes as
an application of Theorem 1 and allows to represent any projective link
in RP3 by an algebraic curve of the minimal possible genus (without
specifying the degree).

Theorem 2. Let L ⊂ RP3 be a link in g + 1 components (i.e. a
smoothly embedded disjoint union of g + 1 circles). There exists a
smooth algebraic curve of genus g isotopic to L.

Clearly this theorem provides a generalization for the well-known
theorem that any knot can be approximated by a rational curve. Find-
ing the minimal degree of an algebraic realization for most simple knots
and links in RP3 is a challenging question.



TROPICAL GEOMETRY 9

I would like to finish this talk with the question on the knot type of
rational curves passing through 2d points in RP3. A rational curve of
odd degree in RP3 is homologous to [RP1] ∈ H1(RP3). We say that it
is knotted if it is not isotopic to RP1 ⊂ RP3.

Question 1. Suppose that d is a large odd degree. Is it true that for
any generic collection of 2d points in RP3 there exists a knotted rational
curve passing through the points. Are there any knot types that are
forced to appear in such enumeration?

In this question we restrict to the case odd degree as 3-dimensional
Welschinger invariant is non-trivial then. (An easy symmetry consid-
erarion shows that it is zero if d is even.) Perhaps a similar question is
also sensible for the even degree.
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